
Agile Java Development with Spring, Hibernate and Eclipse

By Anil Hemrajani

...

Publisher: Sams

Pub Date: May 09, 2006

Print ISBN-10: 0-672-32896-8

Print ISBN-13: 978-0-672-32896-1

Pages: 360

Table of Contents | Index

Agile Java™ Development With Spring, Hibernate and Eclipse is a book about robust technologies and effective methods which

help bring simplicity back into the world of enterprise Java development. The three key technologies covered in this book, the Spring

Framework, Hibernate and Eclipse, help reduce the complexity of enterprise Java development significantly. Furthermore, these

technologies enable plain old Java objects (POJOs) to be deployed in light-weight containers versus heavy-handed remote objects that

require heavy EJB containers. This book also extensively covers technologies such as Ant, JUnit, JSP tag libraries and touches upon

other areas such as such logging, GUI based debugging, monitoring using JMX, job scheduling, emailing, and more. Also, Extreme

Programming (XP), Agile Model Driven Development (AMDD) and refactoring are methods that can expedite the software development

projects by reducing the amount of up front requirements and design; hence these methods are embedded throughout the book but with

just enough details and examples to not sidetrack the focus of this book. In addition, this book contains well separated, subjective

material (opinion sidebars), comic illustrations, tips and tricks, all of which provide real-world and practical perspectives on relevant

topics. Last but not least, this book demonstrates the complete lifecycle by building and following a sample application,

chapter-by-chapter, starting from conceptualization to production using the technology and processes covered in this book. In summary,

by using the technologies and methods covered in this book, the reader will be able to effectively develop enterprise-class Java

applications, in an agile manner!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Agile Java Development with Spring, Hibernate and Eclipse

By Anil Hemrajani

...

Publisher: Sams

Pub Date: May 09, 2006

Print ISBN-10: 0-672-32896-8

Print ISBN-13: 978-0-672-32896-1

Pages: 360

Table of Contents | Index

 Copyright

 Forewords

 About the Author

 Acknowledgments

 Preface

 Part I: Overview

 Chapter 1. Introduction to Agile Java Development

 What's Covered in This Chapter

 Technologies Used in This Book

 Software Development Methodology Used in This Book

 Summary

 Recommended Resources

 Chapter 2. The Sample Application: An Online Timesheet System

 What's Covered in This Chapter

 Business Requirements

 Software Development Methodology

 Applying XP and AMDD to Our Sample Application

 A Note About Wiki Software

 Summary

 Recommended Resources

 Part II: Building the Sample Application

 Chapter 3. XP and AMDD-Based Architecture and Design Modeling

 What's Covered in This Chapter

 Design Approach and Artifact Choices

 Free-Form Architecture Diagram

 From User Stories to Design

 Exploring Classes Using CRC Cards

 Application Flow Map (Homegrown Artifact)

 UML Class Diagram

 UML Package Diagram

 Directory Structure

 Sample File Names

 End-to-End Development Steps

 Acceptance Tests

 Other Considerations

 Summary

 Recommended Resources

 Chapter 4. Environment Setup: JDK, Ant, and JUnit

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 What's Covered in This Chapter

 Java Platform Standard Edition Development Kit (JDK)

 Directory Structure

 Ant

 JUnit

 SimpleTest: Making the Tools Work Together

 Test First Design and Refactoring

 Summary

 Recommended Resources

 Chapter 5. Using Hibernate for Persistent Objects

 What's Covered in This Chapter

 An Overview of Object-Relational Mapping (ORM)

 Design of Our Sample Database

 Where HSQLDB and Hibernate Fit into Our Architecture

 HSQLDB

 Working with Hibernate

 Other Hibernate Features

 Summary

 Recommended Resources

 Chapter 6. Overview of the Spring Framework

 What's Covered in This Chapter

 What Is Spring?

 Spring Packaging for Development

 Spring Packaging for Deployment

 Overview of the Spring Modules

 Where Spring Framework Fits into Our Architecture

 Benefits of Using Spring

 Fundamental Spring Concepts

 Spring Subprojects

 Summary

 Recommended Resources

 Chapter 7. The Spring Web MVC Framework

 What's Covered in This Chapter

 Benefits of the Spring Web MVC Framework

 Spring Web MVC Concepts

 Spring Setup for Time Expression

 Developing Time Expression User Interfaces with Spring

 Cascading Style Sheet (CSS)

 Timesheet List Screen: A No-Form Controller Example

 Enter Hours Screen: A Form Controller Example

 Views with No Controllers

 Spring HandlerInterceptors

 Our Sample Applicationin Action!

 New Tag Libraries in Spring Framework 2.0

 A Word About Spring Web Flow and Portlet API

 Summary

 Recommended Resources

 Chapter 8. The Eclipse Phenomenon!

 What's Covered in This Chapter

 The Eclipse Foundation

 The Eclipse Platform and Projects

 Eclipse SDK Concepts

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Installing Eclipse

 Setting Up Eclipse for Time Expression

 Java Development Tools (JDT) Features

 Installing the Eclipse Web Tools Platform (WTP) Plug-ins

 Using Eclipse for Time Expression

 More Eclipse? Yes, Plug-ins Galore!

 Eclipse Team Support

 Eclipse Help System

 Tips and Tricks

 Uninstalling Eclipse

 An Unfair Comparison to IntelliJ and NetBeans

 Summary

 Recommended Resources

 Part III: Advanced Features

 Chapter 9. Logging, Debugging, Monitoring, and Profiling

 What's Covered in This Chapter

 Logging Overview

 Jakarta Commons Logging (with Log4j and JDK Logging)

 Debugging Java Applications Using Eclipse

 Debugging Web User Interfaces Using Firefox

 Debugging TimesheetManagerTest End-to-End (Browser to Database)

 JMX Management and Monitoring

 Java Profilers

 Debugging Tips

 Summary

 Recommended Resources

 Chapter 10. Beyond the Basics

 What's Covered in This Chapter

 Recently Added Java Features

 Ant Tasks

 JUnit

 Hibernate

 The Spring Framework

 The Spring and Hibernate Harmony

 JSP Tag Libraries

 Refactoring

 Other Considerations

 Clustering

 Multithreading

 A Note About Java GUI (Thick Client) Applications

 Configuration Management (CM) Environments

 Asynchronous JavaScript and XML (AJaX)

 Javadoc and Comments

 Entire System in One WAR File!

 Summary

 Recommended Resources

 Chapter 11. What Next?

 What's Covered in This Chapter

 Complete the Time Expression Application

 XP and AMDD-Based Software Development

 Java Platform

 Ant

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 JUnit

 Hibernate

 The Spring Framework

 Eclipse SDK

 Logging, Debugging, Monitoring, and Profiling

 Getting Help

 A Quick Note About Code "Quality" Tools

 Summary

 Recommended Resources

 Chapter 12. Parting Thoughts

 My Near Future Plans

 The Future, Agile Methods, Java Technology

 Cheers!

 Part IV: Appendices

 Appendix A. Downloadable Code for This Book

 Third-Party Libraries Shared Directory

 Sample Application Directory (rapidjava/timex/)

 Refactored Sample Application Directory (rapidjava/timex2/)

 Spring-Hibernate Integration Demo Directory (rapidjava/springhibernate/)

 Appendix B. Refactoring Done to Sample Application

 SignInController.java: JMX Monitoring

 TimesheetListController.java: JMX Monitoring

 Manager Classes: Spring-Hibernate Integration

 timesheetlist.jsp: Switch to Include File and Displaytag

 enterhours.jsp: Swith to Include File and Timex Tag Library

 *Test Classes and TimexTestCase

 DateUtil.java: New Method

 timex.css: New Styles

 timexhsqldb.xml: Bad Data Defect Fix

 Appendix C. Java Code Conventions

 Appendix D. Securing Web Applications

 Appendix E. Sample Development Process Cheat Sheet

 Project Initiation

 Exploration Phase

 Planning

 Incrementally Build Software in Iterations

 Appendix F. Agile Modeling Values, Practices, and Principles Cheat Sheet

 Appendix G. Extreme Programming (XP) Cheat Sheet

 Overview

 Appendix H. Cool Tools

 Cross-Platform Tools

 Microsoft Windows-Based Tools

 Mac OS X-Based Tools

 Linux-Based Tools (KDE)

 Appendix I. Visual Patterns Research

 The Problem

 The Past: How We Have Been Kidding Ourselves

 The Future: Agile Methods

 My Perspective

 Join the Community?

 Index

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Copyright

Agile Java Development with Spring, Hibernate and Eclipse

Copyright © 2006 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic,

mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with

respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the

publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of

the information contained herein.

Library of Congress Catalog Card Number: 2005937888

Printed in the United States of America

First Printing: May 2006

09 08 07 06 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing

cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any

trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The

information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or

entity with respect to any loss or damages arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more

information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Acquisitions Editor Jenny Watson

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

Development Editors Scott Meyers Songlin Qiu

Managing Editor Patrick Kanouse

Project Editor Mandie Frank

Copy Editor Barbara Hacha

Indexer Cheryl Lenser

Proofreader Kathy Bidwell

Technical Editor Boris Minkin

Publishing Coordinator Vanessa Evans

Book Designer Gary Adair

Page Layout Nonie Ratcliff

Agile Java Development with Spring, Hibernate, and Eclipse is a well-written guide that covers numerous

significant technologies, weaving them together using practical and proven methods that will surely provide value

to practitioners of every level.

Dan Malks, VP Solutions & Strategic Development, JackBe Inc; Author, Core J2EE Patterns

Anil's relentless dedication to high quality really shows. This is a very well-written book!

Madhu Siddalingaiah, Consultant (madhu.com)

Anil has an uncanny ability to cut to the chase and tell you what you want to know. This book is one of those

jewels that appears only infrequently. Instead of voluminous explanations of APIs, Anil provides insightful

interpretation in highly visual terms, with a simple example that threads all the way through the book. It is a

masterwork of usability, as computer books go.

Cliff Berg, founder of Assured by Design, co-founder of Digital Focus, author and consultant

Dedication

This is dedicated to my loving and caring wife who has always patiently supported me (and my odd ways). Thank you for taking care of

everything during the times I was consumed by projects such as this book. This book would not be possible without you! And, of course,

to my dearest kids who brighten my every day.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://madhu.com

Forewords

The true goal of a foreword is to convince people to purchase the book. So, I guess you have three choices right now. First, you can

save yourself some time, stop reading this foreword right now, and simply take my word for it that buying this book is a good way to

invest your hard-earned money. Second, you could not trust me, which frankly is a smart thing to do because I'm a consultant, and

continue reading this foreword on the chance I might actually say something that resonates with you and thereby motivate you to buy the

book. Third, you could decide to not purchase the book, which is likely a really bad idea because the vast majority of Java programmers

that I have met could really benefit from this material.

In my opinion, the last thing that the Java community needs is another book describing some "really cool" Java technologies; there are

hundreds of books out there already, thousands of magazine articles, and tens of thousands of web pages already covering really cool

Java technologies. Luckily, that's not what this book is about. Agile Java Development is one of those rare books that teaches skills that

you will use throughout your career. Yes, it does cover the fundamentals of Spring, Hibernate, Ant, and a bunch of other stuff that you

need to succeed today. But, more importantly, it goes beyond the technology to describe agile techniques, adopted from Extreme

Programming (XP) and Agile Modeling (AM), which enable you to succeed at modern software development.

Most Java developers have heard about XP and many have adopted some of its techniques, such as test-driven design (TDD),

refactoring, and even pair programming. This is a good start, but it's not enough. In this book, Anil brings his years of experience to the

table, describing what actually works in practice. This is different from other books that often share a vision of what the author thinks will

work in theory; but as we all know, theory and practice are often two different things.

When Anil first approached me to be a technical reviewer of this book, the thing that most impressed me was his simple, yet effective,

approach to modeling on Java projects. In fact, you might want to flip through the book right now and take a quick look at some of the

models. I think that you'll notice that his diagrams are very similar to what you develop yourself on actual projectsa refreshing change

from the advice presented in many of the modeling books available today. You'll also notice how Anil describes how to move from those

simple models to the often-complex code that you write on a daily basis. This I think represents the greatest strength of this book: it

presents real-world advice that reflects what top-notch developers actually do in practice.

The book also shows how many of the common tasks that we perform, such as acceptance testing, unit testing, object/relational

mapping, system integration, and refactoring, fit into the software development picture. The book starts with the "5,000 foot" process

point of view, but dives down to ground level and describes how to use the tools in practice. Most books focus on one view but not the

other, but Agile Java Development pulls it off nicely and covers both views well. Take a few minutes and browse the rest of this book. I

think you'll see what I'm talking about.

Scott W. Ambler

Practice Leader, Agile Modeling

This book is not easily categorized. Let me explain why it's unusual, and why it deserves your attention.

Easily categorizable books abound in our industry. They are often books about a particular product or API. Some are good; some are

bad. You can choose by the cover, the font, the publisher, the credibility of the authorbut you have already made a far more important

choice: You know what book you are looking for. A good such commodity book may make you more efficient in a particular area, but it's

unlikely to change the way you work.

Books that are not easily categorizable are much rarer. They relate much more closely to their author, and potentially to you.

The present book shows how valuable such a book can be. Anil Hemrajani has distilled his extensive experience as an architect and

developer into a book that abounds in the practical insights of a successful practitioner. Like all the best books, it's an effective

communication between author and reader. As with all effective communication, the topic is not limited to the predictable, and it's

enjoyable: Anil has a natural writing style that is a pleasure to read.

This book has a remarkably broad scope. It tackles topics that are rarely tackled together, but should be. The process we use to develop

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

software is inextricably linked to the way in which we structure our code and the tools we use to write that code. No effective developer

works in a compartmentalized fashionthe many decisions to be made are intertwinedbut most books make little attempt to paint the big

picture that is essential to getting results.

To develop Java software productively today, you need to understand key concepts such as O/R mapping and Dependency Injection;

you need to understand how and why to use techniques such as unit testing and automated builds; andequally significantyou need to

know the best tools for the job, such as frameworks and IDEs. You also need to understand some of the pitfalls to avoid, and how

sometimes soft skills are as critical as technology.

Anil has done a remarkable job of bringing these things together into a book that provides clarity in an area that many find confusing. It

covers a lot of ground, but never loses sight of its aimto help readers complete successful projects.

I see this book as a good map. It clearly shows you the path on your journey to successful enterprise Java development. Along the way,

you may supplement it with more detailed maps of particular areas. But you will always benefit from the direction it provides.

I recommend this book to anyone setting out to become an enterprise Java practitioner today. It may well change the way you work, for

the better.

Rod Johnson

CEO, Interface21

Founder, Spring Framework

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

About the Author

Anil Hemrajani has been working with Java Technology since late 1995 as a developer, entrepreneur, author, and trainer. He is the

founder of Isavix Corporation, a successful IT service company (now Inscope Solutions), and isavix.net (now DeveloperHub.com), an

award-winning online developer community that grew to more than 100,000 registered members. He has 20 years of experience in the

information technology community working with several Fortune 100 companies and also smaller organizations. He has published

numerous articles in well-known trade journals, presented at conferences and seminars around the world, and received the "Outstanding

Contribution to the Growth of the Java Community" award from Sun Microsystems, the "Best Java Client" award at JavaOne for

BackOnline, a Java-based online backup client/server product, and was nominated for a Computerworld-Smithsonian award for a free

online file storage service website. His more recent project is the visualpatterns.com website.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Acknowledgments

I wrote this book but it wouldn't have been possible without the help of many brilliant people I have the distinct pleasure of knowing. I truly

want to thank everyone listed here, from the bottom of my heart!

Cliff Berg First and foremost, I want to thank Cliff, a long-time friend and colleague, for inspiring me to write this book and

giving me the confidence by validating and supporting my ideas.

Scott W. Ambler For agreeing to co-write the foreword for this book and reviewing every single element in it, chapter by

chapter. Scott has become one of my idols in this field, given his work on Agile Modeling and Agile Data, so I'm still amazed

that he agreed to get involved with this book considering how enormously busy he is. I also want to thank Scott for the

www.agilemodeling.com and www.agiledata.org websites; these have been invaluable for me. Scott, thank you.

Rod Johnson When I first met Rod, I had no idea I would be writing this book or asking him for a forewordI just knew we

shared similar views and I respected his work a lot. Given the Spring Framework's popularity these days, I'm surprised that

Rod even finds time to sleep, so fitting in the foreword for my book was especially meaningful to me (thank you!). I also want

to thank Rod for putting together the Spring Framework, something I've enjoyed working with.

Anil Singh I cannot even begin to thank (the other) Anil for his help; the long hours, the invaluable feedback, the late nights

over the phone discussing the contents of my chapters (3 a.m. at times)thanks for everything! I particularly appreciate Anil's

availability almost any and every time, to discuss my book. Yet, all I can offer in return is a heartwarming thank you!

Dan Shellman For his rapid but detailed and honest feedback, which helped make this book so much better. Thanks for

tolerating the 100 or so emails I sent over the course of this book. I particularly appreciate your feedback and telephone

conversations on weekends and even on family vacations! Dan has been a long-time colleague and friend and I hope this

remains the case for a long time to come.

Haresh Lala For his constant feedback on anything and everything! Thanks for testing all my code (twice!) and reading my

chapters in their earliest, very rough, draft form. Most of all, thank you for helping me during a time when you were super

busy with new things in your life.

Hernando Vera What would I do without Hernando's astute thinking, clear presentation of ideas, and well-thought-out

interpretation of technologies? Hernando has been one of my "go to" guys for almost a decade now. When I'm in doubt, I

know I can turn to him for answers from development to design to architecture to process and more. I have yet to meet

anyone else that has the full package: brilliant, innovative, current, and most of all one of the nicest people I know.

Martin Remmelzwaal Martin and I met relatively recently but I already consider him a close friend. Thanks for reviewing my

earlier chapters. However, I particularly want to thank you for responding to my neverending emails about your perspective

on various technology, and methodology, related matters. I hope to collaborate with Martin on various projects in the future.

The Spring Framework team First of all, you guys are simply awesome! Now, for specific names. I want to thank Alef

Arendsen for his review of Chapters 6 and 7 and assistance in general with anything and everything Spring; Alef's review

significantly improved Chapters 6 and 7. I also want to thank Juergen Hoeller for his help on declarative transaction

management and late discussions about interfaces. Given the spring team's day jobs (helping clients), night jobs (working on

the framework), and juggling multiple releases at the same timewell, what can I say but thanks, guys!

Madhu Siddalingaiah For his guidance in drafting up the outline of this book (and other publishing matters), and also for his

valuable feedback on Chapter 8.

Dave Berman Dave's in-depth review of Chapter 2 and various discussions about Agile methods helped make the Agile/XP

aspects of this book more solid and thorough.

Jeff Nielsen For his timely feedback on my diagrams in Chapter 2 and 3 and the XP+AMDD comic series used in this book; I

was able to fix some major errors in the nick of time, thanks to Jeff!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com
http://www.agiledata.org

Ramanand Singh For our initial discussions about Spring and feedback on Chapter 6.

Pearson staff I want to thank the staff at Pearson (Songlin, Mandie, Kim, Mark, Barbara, and several others behind the

scenes) for producing this book; a special thanks to Jenny for her involvement from beginning to end; her being there helped

me during normal and frustrating times. I also want to thank Boris for his in-depth, direct, and valuable review of this bookthis

book wouldn't be what it is without his help.

To my friend Peter, thanks for the intellectual stimulus from time to time, which helped me approach the book from unique

perspectives. Also, combined with Andy and Missy, thanks for all the laughs, which helped me let loose a bit when I needed it

most (particularly during the weeks of continuous 14- to 15- hour days writing this book).

To the Greenberry's coffee and tea shop staff for providing a comfortable environment, high-speed internet, and great coffee

and food; all of these allowed me to work there for hours at a time on this book.

Last but not least, this book is based on the innovative work of many people in our industry who have become my idols, so to

speak. I would like to thank these people, because they helped me indirectly by contributing some invaluable and amazing

concepts. Some of these people include Martin Fowler, Kent Beck, Eric Gamma, Ward Cunningham, and others.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're

doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our

way.

You can email or write me directly to let me know what you did or didn't like about this bookas well as what we can do to make our books

stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high volume of mail I

receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or email address. I will carefully

review your comments and share them with the author and editors who worked on the book.

E-mail: opensource@samspublishing.com

Mail: Mark Taber

 Associate Publisher

 Pearson Education

 800 East 96th Street

 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for convenient access to any updates, downloads, or errata

that might be available for this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:opensource@samspublishing.com
http://www.samspublishing.com/register

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Preface

I BEGAN WORKING WITH JAVA TECHNOLOGY in late 1995, shortly before the Java Development Kit (JDK) 1.0 was formally released.

Prior to that, I was programming in C and C++ for many years. I was truly excited about the features that Java offered, such as

cross-platform portability, simpler syntax (simpler than C++, for example), objectoriented, secure, rich API, and more.

Over my 20-year career, I have learned a few things. Among these, my favorite is simplicity; anytime I see complexity, I begin doubting

whether the solution is correct. This is how I had begun to feel about Java right around 2000, when the Java 2 Enterprise Edition (J2EE)

started becoming mainstream. Note that from this point on, I will refer to J2EE as JEE because the "2" was recently dropped from the

name by Sun Microsystems.

My growing lack of interest in Java was a result of what I saw as unnecessary complexity in JEE introduced by layers of abstraction. I

began to believe that Sun Microsystems (inventor of Java) was focusing Java and JEE on solving the most complex enterprise

applications, but somewhat ignoring the relatively less complex, small- to medium-sized applications. Furthermore, I saw the hype take

over people's common sense because I ran across projects in which Enterprise JavaBeans (EJB) were used for nondistributed

processing, such as local logging. I felt strongly enough about this subject to write a short article for JavaWorld.com in 2000

(http://www.javaworld.com/javaworld/jw-10-2000/jw-1006-soapbox.html) titled, "Do You Really Need Enterprise JavaBeans?" (About five

years later, we saw EJB 3.0 specifications being rewritten to become more simplified, to ease the development.) This brings us to this

book and the reason I wrote it.

I was recently hired as a consultant for a Fortune 100 company to build an enterprise web application running in a clustered

environment. While reviewing alternatives to the standard JEE/EJB model by researching online and having discussions with some smart

people, I decided on a solution, which included the Spring MVC web framework, Hibernate object-relational (OR) persistence framework,

the Eclipse IDE, JUnit testing framework, Ant build utility, several tag libraries, and a few other products. (All these products are covered

in detail later in this book, along with my rationale for choosing these technologies.)

I have enjoyed working with Spring and Hibernate, mainly because they allow me to work with plain-old Java objects (POJOs) and avoid

some of the hassles of working with EJBs. Also, working with the Eclipse IDE has been a nice experience. I continue to be amazed at

how well this product works, and that is the reason I dedicate a whole chapter in this book to it. In my opinion, products such as the ones

mentioned here are breathing new life into Java at a time when Java is at risk of losing its popularity to alternatives such as Microsoft's

.NET, LAMP (Linux, Apache, MySQL, and PHP or Python/PERL), and Ruby on Rails.

In this book, although Spring, Hibernate, and Eclipse are highlighted, a key goal for me is to provide you with a complete solution from

technical and process perspectives. From a technical perspective, I provide an end-to-end solution (using a variety of tools) for

implementing a complete sample web application with transaction management in the backend and suitable for a clustered environment.

From a process perspective, I recently switched from using the Rational Unified Process (RUP) to a process composed of guidelines

provided by Agile Model Driven Development (AMDD; agilemodeling.com) and Extreme Programming (XP; extremeprogramming.org).

As a result, in this book you will find concepts and artifacts such as user stories, release plans, CRC cards, and more. The idea is to

provide you with a comprehensive solution for rapidly developing and deploying enterprise Java applications.

One additional note about my background. I have been a developer for almost 20 years, primarily working with core technologies such as

C/C++, Java, enterprise relational databases, application servers, Unix, Microsoft Windows, and so on. However, I took a detour for

approximately five years around 1998 to build the company I had founded in 1996 (I was doing minimal programming during this time). I

later sold this company to get back into development. However, even though I was the CEO of this company and had several people

working for me, I got the opportunity to meet and interview literally hundreds of developers over a seven-year period and discuss

technology with them. Apart from this company, I also founded an online community for Java developers, grew it to over 100,000

members, and won several awards for this. I hope my experience from these ventures adds a unique perspective to this book.

In summary, I truly hope you will find this book useful and will enjoy reading it!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.javaworld.com/javaworld/jw-10-2000/jw-1006-soapbox.html
http://agilemodeling.com
http://extremeprogramming.org

Who This Book Is For

This book assumes that you have some working knowledge of Java and relational databases (including SQL) as well as experience

working on the command line. Aside from prerequisites mentioned here, the following types of people can use it:

Software Developers/Architects Developers and architects can gain value from this book because it includes a high-level

software development process, application design, and an in-depth and complete inspection of the Java and related files of a

fully functional, sample enterprise web application.

Technical Leads/Managers Technical leads and managers with a programming background, preferably in Java or similar

language, can get an in-depth look at how applications are built using a variety of Java technologies. This knowledge might

help during project planning or with staff troubleshooting technical problems (perhaps just for moral support during frustrating

times). Alternatively, technical managers can dive into a specific chapter (for example, Chapter 5, "Using Hibernate for

Persistent Objects") to understand how that specific technology works and fits into the big picture.

In addition, as a reader, you might gain some insight from this book on alternatives to JEE that you can use for building a robust

enterprise-class application. Furthermore, if you are not familiar with Agile Modeling or Extreme Programming or are looking for a nimble

software development process, this book might have just enough to get you going with a complete process for developing software

applications iteratively and incrementally.

Goals of This Book

The goals of this book are as follows:

Agile development The first and foremost goal of this book is to show you how to do rapid enterprise Java development. This

is achieved by combining multiple facets: a nimble/minimal software development process, a simple design (moderate use of

design patterns or layers of abstraction), convenience technologies (such as Spring and Hibernate), working with POJOs

versus remote objects, and in general, leveraging stable open source technologies whenever possible. In short, the idea is to

make Java simpler and faster to work with for developing enterprise-ready applications.

Complete solution A close second goal of this book is to provide you with a complete solution, from a technical and process

perspective. After reading this book, you should be able to build an entire application, not just technically, but also using the

process outlined in this book. In addition, when I cannot cover a given technology in depth, I provide references to resources

(websites) for further investigation of the technology. The cool thing about the technologies covered in this book is that you

can have a complete system, from the user interface to an embedded database along with the capability to schedule jobs

(thanks to the Spring Framework), all self-contained in a single web application archive (.war) file! However, you can always

replace the technologies mentioned in here with some other technology of your choice (for example, using an Oracle

database instead of HSQLDB). In summary, you will have the complete solution to do thisprocess and technologies!

Using an open source only solution is not a goal of this book Although I have based this book entirely on open source

frameworks, tools, and products, preaching an open source only solution isn't a goal of this book. For instance, you can

leverage Java's vendor portability and replace one of the products covered in here with a commercial product. However, open

source has come a very long way, and I'm thoroughly impressed by how robust these technologies are and how well

documented they are. For example, technologies such as the Eclipse SDK and Hibernate are arguably better than some of

their commercial counterparts. You could just as well use all the technologies mention in this book for an enterprise solution

and rest assured that they will perform as advertised. In fact, I recently implemented an enterprise solution for a large

company using the Spring Framework, Hibernate, Eclipse, JUnit, Ant, and other tools mentioned in this book! However, we

also used commercial products such as BEA's WebLogic Server and an Oracle database server. The same company (and

several others I know of) are basing their enterprise solutions on the open source technologies I mentioned.

Quick read This book is intentionally smaller than the typical 600+ page books you find on Java. This was done to enable you

to get through the book quickly and begin using the solutions in the real world. In light of this, I have tried to keep the content

in this book streamlined and more to the point. The one downside of not writing an extremely thick book is that I had to make

some tough decisions about which material to forego; however, I have tried hard to include all the important process- and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

technology-related material you will need for agile Java development (as explained in the previous goal of providing a

complete solution).

Simplicity Whenever possible, I take the simpler approach to accomplishing the same objective over a complex solution. For

example, the sample application covered in this book uses minimal layers of abstraction to accomplish our objective. By

layers of abstraction, I am referring to the excessive use of design patterns, interfaces, and application partitioning. Each of

these makes enormous sense, but using everything in moderation is a good practice and one I like to follow when I am

working with a software development process and artifacts produced from such a process. Furthermore, I believe simplicity

should also extend to designing, in that I tend to use UML when appropriate, but lean toward simpler, free-form diagrams

using tools such as OpenOffice.org, PowerPoint, or Visio versus something heavy like Rational Rose.

Tips and tricks As you might already know, when working with tools and technologies, tips and tricks not only make the

product work more effectively for you, but also make it more fun to use. I provide tips and tricks for some of the technologies

covered in this book. However, the appendixes also contain some goodies such as useful cheat sheets and a list of cool

tools.

Alternatives Throughout this book (although not in detail), I try to provide alternatives to the solution I am proposing. I realize

that one solution does not fit everyone's need. For example, you might be using Sun Microsystems's NetBeans or JetBrains's

IntelliJ as your IDE and do not want to switch to Eclipse. This type of scenario is to be expected and is completely

understandable. The organization of this book takes this into consideration; you should still be able to gain value from the

remainder of the book and replace a technology covered in this book with the technology of your choice (for example, JDO

versus Hibernate).

What Is Not Covered

This book assumes that you have working knowledge of Java and a relatively good understanding of JEE. It also largely assumes that

you have a reasonable understanding of software development processes, relational databases, n-tier architectures, and so on. Given

this assumption, I delve right into the specifics required to build our sample application. Furthermore, I refer you to the respective

websites for setup (and advance features) instructions instead of duplicating this information in this book and risk having it become

out-of-date.

On the flip side, this book assumes that you have no working knowledge of the key technologies covered here, such as the Spring

Framework, Hibernate, Eclipse, and so on. Given this view, this book provides the basics on these technologies to get them to work

together; this book also goes one step further to provide you with a brief introduction to some of the advanced features offered by these

technologies. Anything beyond what is mentioned here is beyond the scope of this book because there are literally entire books

dedicated to many of the technologies mentioned in this book.

What Is Covered (Technologies and Process)

The focus of this book is more on development and less on infrastructure. In other words, I've focused more on the application

development technologies such as Spring, Hibernate, and Eclipse than on products such as an application server (for example, JBoss)

or database (for example, MySQL). When in doubt, I went with the one easiest to set up. Also, I'm a big believer in getting the

functionality implemented in an application first and then optimizing later in the form of refactoring and optimization techniques. What I

have presented in this book has been tried in real-world applications that are running successfully in production (some in a clustered

application server environment), so I don't want to give you the impression that we are ignoring infrastructure altogether. One of the

goals of this book was to keep it short and to the point, so I have chosen to focus almost entirely on a well-designed application that

scales well.

Given the operating system (OS) and vendor portability benefits of Java, in theory, when your application is ready to be deployed, you

can deploy it to a more robust web application server and database combination. For instance, you could use the low-end products used

in this book (Apache's Tomcat and HSQLDB), upgrade to a JBoss Application Server and a MySQL database combination, or further

upgrade to a BEA WebLogic Server and Oracle's database server combination, for example. This is the beauty of Java; it is not only OS

portable, but also vendor portable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

One more note about the core technologies covered in this booknamely, Spring, Hibernate, and Eclipse. Although these are the

technologies I've worked with recently and use in this book, I have provided alternative and competitive technologies in the industry,

which I encourage you to look at. For example, if you choose to use JDO rather than Hibernate, you can still gain and apply the

knowledge from all chapters, except perhaps the one on Hibernate.

How This Book Is Organized

The chapters in this book are organized so that each chapter builds on the previous one. Furthermore, because the chapters are logically

segregated, you could jump into a chapter directly (for example, Chapter 6, "Overview of the Spring Framework") and learn about just

that chapter's content. Also, you might want to skip a chapter if you are not interested in using that technology (for example, you might

want to use NetBeans instead of Eclipse; therefore, you would skip Chapter 8, "The Eclipse Phenomenon!").

Chapter 1, "Introduction to Agile Java Development," gives you an overview and a preview of the technologies and process we will use in

this book. Chapter 2, "The Sample Application: An Online Timesheet System," is primarily dedicated to defining the business

requirements for our sample application; however, it also provides a nice overview of AMDD and XP methodologies. Chapter 3, "XP and

AMDD-Based Architecture and Design Modeling," covers the design of our sample application. Chapter 4, "Environment Setup: JDK,

Ant, and JUnit," covers the environment setup. From here, we enter the world of Java coding at a rapid pace, when we look at

programming with Hibernate in Chapter 5. Chapters 6 and 7 are dedicated to the Spring Framework. Chapter 7, "The Spring Web MVC

Framework," and Chapter 8 are what I call the "wow!" chapters, because everything converges in these chapters and you will see and

appreciate why we went through the earlier chapters in the way we did. You will know what happens underneath the covers and hence

have a solid foundation of the technologies such as Spring, Hibernate, Ant, and JUnit. From there, we will cover some advanced

concepts and wrap up the book with some goodies in the appendixes.

One other note is in regard to command-line development versus GUI (for example, using the Eclipse SDK). The earlier chapters

intentionally use the command line so that you can get some fundamental understanding of how these Java tools work. Then, when you

use these tools (for example, Ant and JUnit) in an IDE such as Eclipse, you will know exactly what is going on behind the scenes. This

becomes particularly important if the IDE does not meet your needs.

About the Code For This Book

This book is about Java coding and there is a lot of code related to the sample application we will build in this book. This completely

functional sample application with all the source code and related files can be downloaded from the publisher's website. Having the code

in electronic form versus printed in the book enables you to browse and test-drive the code/application for yourself.

The code itself is referenced and explained throughout the book using notable snippets/excerpts from the complete code. Furthermore,

there are two conventions used for this code:

In certain places, long single line of code (that is, more than 82 characters) have been split into two lines for readability in this

book

The code itself appears in monospace font.

Note

All the book's code is available for download at the publisher's website. For convenient access to this book's example

files and source code, as well as any possible updates or corrections, be sure to register your book at

www.samspublishing.com/register.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.samspublishing.com/register

About The Figures For This Book

A picture truly says a thousand words, so you will find many diagrams and screenshots in this book. While I have provided some UML

diagrams in this book, I tend to lean towards quick free-form diagrams and instead generate UML diagrams by reverse engineering an

application. I don't spend a lot of time on formal diagrams because many of these are throw-away diagrams after they have served their

purpose and most projects aren't able to keep these diagrams up-to-date anyways. I'm a big believer that the code and database are the

final and most important artifacts.

In summary, I believe diagrams should do the following:

Be developed only when they will be effective.

Be self-explanatory (for example, use words versus confusing notations, use legends).

Be simple, to the point, and really get across the intended message.

Conform to a standard notation (for example, UML) either if required by your organization, for a handover of a system to

another person or group, for code generation, or because you prefer to use a standard notation

One additional note about the figures in this book. In a few chapters, I have repeated/reused figures from previous chapters. This was

done for the following reasons:

To set context for the chapter or section that is about to be discussed

I did not want to inconvenience you by requiring you to flip back to a previous chapter where the figure was first introduced.

Personal Opinion Sidebars

Throughout this book, you will notice sidebars labeled "Personal Opinion," which is exactly what the content in these sidebar is. I have

tried hard to separate this subjective material from the objective material in the book. However, I hope you will find the viewpoints

expressed in these sections useful, as they are little nuggets of my experience from various perspectives: as a software engineer,

consultant, trainer, author, community builder, and even CEO of an IT services company.

XP and AMDD-Based Comics

You will see an illustration at the top of each chapter that makes up a fictional story throughout the book about an eight-week project

using AMDD. The four main characters in this story, also fictional, include a customer (Susan), a Project Manager (Ron), and two

programmers (Steve and Raj). The idea behind these illustrations is simple: to add a bit of humor to this book while teaching you about

AMDD and XP along the way. Also, the relaxed style of these illustrations is based on my interest in writing books for children (early

readers). I must warn you, these get a bit corny, but I hope you will find some humor and knowledge in them.

If you like the style of these illustrations and want to see more of these, please visit visualpatterns.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://visualpatterns.com

Recommended Resources

This book covers many technologies, and given the nature of this book, it provides just enough information on the technology to

complete our sample application. However, each technology warrants a book itself; indeed, there are books dedicated to many of the

technologies covered here.

Meanwhile, the following are websites for the key technologies covered in this book. Each provides additional documentation (and in

some cases, discussion forums) for their respective technology:

Agile Modeling http://www.agilemodeling.com

Ant http://ant.apache.org/

Eclipse SDK http://eclipse.org

Extreme Programming http://extremeprogramming.org

Hibernate Framework http://hibernate.org

HSQLDB database engine http://hsqldb.org/

JUnit http://junit.org

Spring Framework http://springframework.org

Visual Patterns http://visualpatterns.com

I will provide chapter specific resources at the end of each chapter, so you will have plenty of resources for further reading by the end of

this book!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com
http://ant.apache.org/
http://eclipse.org
http://extremeprogramming.org
http://hibernate.org
http://hsqldb.org/
http://junit.org
http://springframework.org
http://visualpatterns.com

I: Overview
 1 Introduction to Agile Java Development

 2 The Sample Application: An Online Timesheet System

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

1. Introduction to Agile Java Development

WHEN JAVA DEVELOPMENT KIT (JDK) v1.0 was released in January 1996, it was a fairly straightforward application programming

interface (API). Over the years, Java has matured into a full-blown platform. From JDK 1.0 to JDK 1.5, we have been introduced to many

new features, such as the Java Collections Framework, logging API, auto-boxing, generics, and more. Although most of these are useful,

Java has also become more complex, especially after the advent of the Java Platform Enterprise Edition (JEE). JEE introduced such

concepts as Enterprise JavaBeans (EJB), which sought to simplify vendor-portable, enterprise-level distributed computing, but instead, it

introduced unnecessary complexities for 80% of the applications out there. Nowadays, it is not uncommon for many people to think of

Java/JEE as being a big and heavy technology. Well, for starters, this couldn't be further from the truth, and second, let's see if we can

change this perspective in this book.

In the past few years, many open source frameworks have sprung up to solve some of the problems created by JEE. This book covers

some of these open source frameworks (for example, Spring and Hibernate) as well as open source tools (such as Ant and Eclipse), which

provide a comprehensive, effective, and elegant solution that can either be viewed as complementary or as a complete alternative to JEE,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

depending on how you apply these technologies for your specific needs. In addition, nimble software development processes such as

Extreme Programming (XP) and Agile Model Driven Development (AMDD) can assist in accelerating the project delivery.

Software development is about people, processes, and technology (and probably in that order of priority). The people are the

stakeholders, the customer we build software for. In this book, I will cover the process and technology parts. You will learn how to

leverage these tools and technologies to rapidly develop end-to-end applications using Java, from the client tier to the data tier, and more.

Along the way, you should see many of the benefits resulting from using these tools and technologiesfor example, simplicity and speed of

development.

Before we begin, if you have not read the preface, I would recommend at least glancing through it because it provides some foundation for

the goals of this book and the way it is organized, and includes some reasons why I wrote this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

This chapter provides a preview of the key technologies and software development process we will use in this book. In this chapter, you

will get an overview of the following:

The runtime technologies and development tools used in this book to build the sample application

The software development process used to build the sample application

How this book is organized

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Technologies Used in This Book

This book combines various open source technologies, shown in Table 1.1, which were chosen to provide a comprehensive solution for

building enterprise applications based on Java. I have also provided alternative open source technologies, and in some cases,

commercial technologies, in case you don't want to implement an end-to-end system using the technologies covered in this book. As I

mentioned in the preface, this book is organized so that you can either read it end to end, go to specific chapters only, or skip a chapter if

the technology being covered in it doesn't apply to you (Hibernate, for example).

Table 1.1. Technologies Covered in This Book

Chosen Technology Category

Free/Open Source

Alternatives Commercial Alternatives

Spring Framework

(springframework.org)

Inversion of Control (IoC)

Container, Web Framework

HiveMind and Pico for IoC

container; Struts, JavaServer

Faces, Tapestry, and others for

Web Framework

Not applicable

Hibernate (hibernate.org) Persistence Framework EJB, JDO, iBatis Oracle's TopLink

Eclipse SDK (eclipse.org) IDE NetBeans, jEdit, and several

others

JetBrain's IntelliJ, IBM's

WebSphere Studio Application

Developer

Ant (ant.apache.org) Configuration Management make, gnumake, nmake, jam,

cruise control, maven

Microsoft nmake, MKS make

JUnit (junit.org) Testing TestNG, Fit. Mercury LoadRunner

HSQLDB (hsqldb.org) 100% Java Database MySQL, PostgreSQL, One$DB Oracle, Microsoft, Sybase, and

more

Apache Tomcat

(tomcat.apache.org)

HTTP Server/Servlet Container Jetty and several others BEA WebLogic, IBM

Websphere, Caucho Resin,

and others

Mozilla Firefox (mozilla.com) Web Browser Microsoft Internet Explorer,

Opera

Not applicable

OpenOffice.org (openoffice.org) Office Suite (used for free form

diagrams in this book)

Koffice (for Linux KDE) Microsoft Office, StarOffice,

EasyOffice

Although, this book focuses on open source technologies, this isn't because I'm an open source fanatic. In fact, on my consulting

engagements, I work extensively with commercial products such as BEA's WebLogic server, Oracle's database server, and other

products. However, these technologies can be considered robust enough to deploy an enterprise-ready Java application and they cost you

nothing!

As I mentioned in the preface, the focus of this book is more on development and less on infrastructure, so I've used the server products

that were the easiest to set up and that were, coincidentally, smaller in size. However, as you undoubtedly know, Java is not only

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://springframework.org
http://hibernate.org
http://eclipse.org
http://ant.apache.org
http://junit.org
http://hsqldb.org
http://tomcat.apache.org
http://mozilla.com
http://openoffice.org

operating-system neutral, it is also vendor-product neutral; for example, you could swap out Tomcat with something like IBM WebSphere

by deploying our sample application to it. Although this might not be as simple as it sounds, it is certainly possible and something I've done

multiple times with JDBC-compliant databases and servlet containers, for example.

End-to-End, Self-Contained Application in a Single WAR File

I would like to emphasize something about the technologies covered in this book and the interesting possibilities they

open up. Imagine the capability to have an enterprise-ready application with an embedded database (HSQLDB, in our

case), with built-in job scheduling (thanks to the Spring Framework), enterprise-level transaction management, and a few

other enterprise servicesall within a single, self-contained, readily deployable web archive (.war) file!

The following two sections provide a brief description of each technology or tool, the purpose it serves, and my rationale for selecting it.

Runtime Technologies

This section provides a brief description of the runtime technologies. Runtime technologies are used to run the application after it is

deployed, versus development tools, which are used to develop the application. Figure 1.1 provides a visual representation of how these

technologies fit together to provide a complete runtime solution.

Figure 1.1. How the runtime technologies covered in this book fit together.

[View full size image]

Java Platform, Standard Edition (Java SE) Development Kit (JDK)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We will use the latest version of the JDK (for example, 1.5) available from the java.sun.com website. Note that as long as we have JDK 1.4

or later, the technologies covered in this book (Hibernate and Spring, for example) will work just fine.

The Spring Framework (springframework.org)

The Spring Framework contains a large number of classes and packages, but it is designed as a modular framework that can be phased

gradually into a project by using only the features needed (for example, web framework). Spring complements Java/JEE by providing an

Inversion of Control (IoC) container (explained later in book), a web framework, a transaction management abstraction layer, JDBC helper

classes, job scheduling APIs, email capabilities, and more. Spring has been around since 2002 and has gained considerable momentum

and support from the community, including commercial vendors such as BEA Systems.

As of the writing of this book, Spring was a frontrunner in the IoC container space; however, its web framework is surprisingly popular, as

well. I chose Spring for the web framework because I also needed many of its other features, such as IoC, transaction management, email,

scheduling, and more.

The Spring web MVC framework is second to none when it comes to robustness, flexibility, and a well-designed framework. I was

pleasantly surprised to find a large number of articles on this framework, a couple of books dedicated to this framework in the making (at

the time of this writing), lots of hits on google.com (for the words spring and mvc), and even a crude online poll indicating Spring MVC was

second in use only to Struts (http://www.bejug.org/confluenceBeJUG/display/BeJUG/2005/07/05/Polls+results).

Hibernate (hibernate.org)

Hibernate is an object-to-relational (OR) mapping persistence framework for Java. Hibernate can arguably be credited with bringing OR

technology to the forefront for average Java developers and not just specialized OR experts. Hibernate is perhaps the most widely used

OR framework currently in the world of Java developers. Hibernate also serves as a good alternative to Entity Beans, which is perhaps

one of the reasons EJB 3 has adopted many techniques from Hibernate (and JDO and Toplink). Given these reasons, my decision to go

with Hibernate was easier than selecting a web framework.

HSQLDB (hsqldb.org)

HSQLDB is a lightweight but complete relational database management system (RDBMS) written in 100% Java. It supports a subset of

the ANSI-92 SQL standard and has a JDBC driver to interface with the database via Java programs. The popularity of HSQLDB has

grown steadily over the past few years.

I decided to use HSQLDB because it is lightweight, easy to install, and because the focus of this book is on development, not

infrastructure. On a project recently, we used Oracle as our database; however, I used HSQLDB in the initial stages for development while

our Oracle database was being set up (slowly, thanks to corporate bureaucracy). If you use 100% ANSI SQL, in theory you could switch

back and forth between a local and enterprise database during your development.

Apache Tomcat (tomcat.apache.org)

Tomcat is perhaps the most popular Java-based web server and servlet container. It is a relatively lightweight servlet container that

has grown in popularity over the past few years. I chose this product because many developers are already familiar with it, so it seemed

like the obvious choice. Similar to HSQLDB, which can be replaced with a more robust database (such as MySQL or Oracle), Tomcat can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
http://springframework.org
http://google.com
http://www.bejug.org/confluenceBeJUG/display/BeJUG/2005/07/05/Polls+results
http://hibernate.org
http://hsqldb.org
http://tomcat.apache.org

also be replaced with a more robust web and/or application server, such as BEA's WebLogic.

Development Tools

The following are the development tools we will use to construct our sample application.

Eclipse SDK (eclipse.org)

Eclipse is one of the best things to have happened to Java in recent years. In my opinion, it has given Java a longer life as a dominant

technology. In fact, Chapter 8, "The Eclipse Phenomenon!," is dedicated to Eclipse and is loaded with information about the core IDE and

the enormous number of plug-ins available for it.

The Eclipse SDK is an open source integrated development environment (IDE) founded by IBM. Eclipse in itself is a platform; however, the

capability to develop plug-ins for this platform is what makes Eclipse such a powerful toolso much so that major product companies are

rebuilding or repackaging their products as an Eclipse plug-in. Given that Eclipse is open source, has lots of plug-ins available for it, and

has immense and growing industry support behind it, in some ways makes Eclipse a clear winner in the Java IDE space.

Eclipse's basic Java tools include source formatting, building, debugging, and integration with Ant. However, there are literally hundreds of

free and commercial plug-ins available for Eclipse. From UML diagramming to database tools, if there is a demand for some functionality,

you are likely to find a plug-in for it! Eclipse is covered in detail in later chapters; meanwhile, Figure 1.2 provides a preview screenshot of

the Eclipse SDK on Mac OS X, Figure 1.3 shows a screenshot of Eclipse on Windows XP, and Figure 1.4 shows Eclipse on Linux.

Figure 1.2. The Eclipse SDK 3.1 on Mac OS X.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://eclipse.org

Figure 1.3. The Eclipse SDK 3.1 on Windows XP.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 1.4. The Eclipse SDK 3.1 on Linux.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Ant (ant.apache.org)

Anyone working with Java these days has almost certainly heard of or worked with Ant. Ant is the most common way to build (and deploy)

Java programs today. Although Ant is similar to the Unix make utility, it provides several benefits over the make utility.

Ant is covered in detail in later chapters; meanwhile, the following is a sample Ant build.xml file:

<?xml version="1.0"?>

<project name="HelloTest" default="printmessage">

 <target name="printmessage">

 <echo message="Hello world!"/>

 </target>

</project>

However, when we discuss Ant in more detail in Chapter 4, "Environment Setup: JDK, Ant, and Junit," you will begin to see how powerful

Ant is and why it has become the de facto build tool in the Java community.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://ant.apache.org

JUnit (junit.org)

JUnit is the de facto unit-testing framework used by Java developers today. I wasn't always a fan of writing unit tests first, but recently I

have come to appreciate unit tests and the notion of tests first. I'll explain later in this book how to write effective unit tests. Figure 1.5

provides a screenshot of the JUnit GUI tool to give you an idea of how you can unit test your code. However, by the time we are done with

Chapter 8, you will appreciate how tightly integrated JUnit is with the Eclipse SDK.

Figure 1.5. JUnit Swing runner on Windows XP.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://junit.org

Firefox (mozilla.com)

You might be wondering why a web browser is explicitly listed here. Trust me, it isn't about a browser religion thing. Simply put, Firefox has

a lot of features that help in web application development, and we will use a couple of these in Chapter 9, "Logging, Debugging,

Monitoring, and Profiling."

What is fascinating about Firefox is the large number of useful plug-ins available for it. At the time of this writing, the

https://addons.mozilla.org/ website (also accessible from the Tools, Extensions menu) had 1,091 plug-ins!

OpenOffice.org (openoffice.org)

OpenOffice.org is an open source suite of office productivity tools that competes directly with Microsoft Office. At first, I wasn't sure if

listing OpenOffice.org explicitly in Table 1.1 was needed, because it isn't a core technology I'm writing about in this chapter. Also, I had

checked out OpenOffice.org a couple of years ago when it was still a maturing product, and I wasn't that impressed with it. OpenOffice.org

has come a long way and is equivalent to Microsoft Office in almost every respect. In fact, OpenOffice.org can also read and write natively

to Microsoft Office files, seamlessly.

I chose OpenOffice.org because I bought a new laptop and wanted to give this new (and of course, free) version of OpenOffice.org a try

before investing a couple of hundred bucks on Microsoft Office. I was so impressed with the latest version that I did all my free-form

diagrams in this book using the OpenOffice.org suite of office tools.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://mozilla.com
https://addons.mozilla.org/
http://openoffice.org

Software Development Methodology Used in This Book

To make a project successful, I have always believed that active stakeholder involvement, simplicity (design, tools, documentation),

common sense, and a basic/minimal software development process does the trick. Furthermore, I do not like to reinvent the wheel, so if

someone out there has assembled a good solution that I can use, I will. One such solution I have used in the recent past is the

combination of best practices and techniques recommended by the Agile Model Driven Development (http://agilemodeling.com) and

Extreme Programming (http://extremeprogramming.org), or for short, AMDD and XP, respectively.

Prior to the working with AMDD and XP, I was using the Rational Unified Process (RUP) for projects. However, I find RUP a bit heavier

on the artifact side. I like the combination of AMDD and XP because both methods are nimble and complement each other; XP focuses

on the full life cycle and AMDD focuses on modeling (user-interface model, for example). You will learn more about these two

methodologies in the next chapter along with my opinion about why I like Agile Modeling's values, principles, and practices.

Personal Opinion: A Decade of Java and More to Come

I must admit that this section is more about me than Java, so you can skip this if you don't like personal opinions.

When I reflect back on the years I have spent with Java, I feel old. No, but seriously. I started working with Java in late

1995, when the acronym JDK had not even been established. However, Java's roots actually date back to 1990 (to

read more about Java's history, visit wikipedia.org/wiki/Java_programming_language).

In these 10 or so years working with Java, I have met some of the original founders of Java, such as James Gosling,

Arthur Van Hoff, Jonathan Payne, and Sami Shaio (you will still find some of these names in the JDK source code). I

also had the opportunity to be the fifth person in WebLogic, Inc. (a couple of years before BEA acquired them) but

didn't want to relocate (yes, I know, I still kick myself for this once-in-a-lifetime, missed opportunity). I also trained over a

thousand students in Java and web technologies for the Learning Tree and later, my own courses. I have published

more than 25 articles on Java and even founded (and sold) two companies focused on Java-based solutions. At one of

these companies, my staff (and I) provided enterprise Java solutions to many companies. In fact, we introduced Java

to several large companies. (I'm particularly proud of personally introducing Java to a fortune 50 company!) In addition,

I've attended five JavaOne conferences and received two awards at JavaOne for a pure Java backup software I wrote

and an online community I built. Last, I have presented at several user groups and conferences internationally.

Why am I telling you all this? Well, first and foremost, to brag. Second, I hope to bring a unique perspective to this

book. But the third reason is that even after a decade, I'm amazed (and pleased) that Java is still considered a

dominant technology! In this book, I will introduce you to new technologies that give Java a whole new lifeline, and now

I'm convinced that Java will be hot for at least a few more years.

In short, if you are a Java developer, you should be excited about working with an elegant and robust technology that is

still very much current and thriving! I hope to prove this to you in this book. Enjoy!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://agilemodeling.com
http://extremeprogramming.org
http://wikipedia.org/wiki/Java_programming_language
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, you got an overview of

The runtime technologies and development tools used in this book to build the sample application

The software development process used to build the sample application

How this book is organized

In short, I gave you an overview of the tools we will use in this book to build our sample application, along with the software development

process we will follow. In the coming chapters, we will have some fun with these technologies by putting together a real-world

applicationa timesheet system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Recommended Resources

The following websites are relevant to and provide additional information on the topics discussed in this chapter:

Agile Modeling http://www.agilemodeling.com

Ant http://ant.apache.org/

Apache Tomcat http://tomcat.apache.org

Eclipse SDK http://eclipse.org/

Hibernate http://hibernate.org

HSQLDB http://hsqldb.org

Java open source products http://java-source.net/

JUnit http://junit.org

OpenOffice.org http://www.openoffice.org/

The Spring Framework http://springframework.org

Visual Patterns http://visualpatterns.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com
http://ant.apache.org/
http://tomcat.apache.org
http://eclipse.org/
http://hibernate.org
http://hsqldb.org
http://java-source.net/
http://junit.org
http://www.openoffice.org/
http://springframework.org
http://visualpatterns.com

2. The Sample Application: An Online Timesheet

System

[View full size image]

IN THE REAL WORLD, A NEW SOFTWARE development project is typically initiated because there is some sort of a customer need,

problem, or process optimization. This need can be from an internal group or an external party (for example, interfacing with an external

partner system or consumer demand for a product). After a problem or need is identified, there is typically some form of a project kickoff

meeting to better define the requirements.

As I mentioned in the previous chapter, this book tries to follow a flow similar to how a real-world project might flow. In this book, we will

pretend that we have a requirement from an internal group (a fictional customer) and use this requirement to build a sample application

named Time Expression.

I considered several types of applications to use as an example in this book; in the end I settled on a rudimentary timesheet system

because I believed that it was an application most readers would be able to relate to. For example, you might be an employee or

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

consultant who works by the hour, and you submit your timesheet online (and also get it approved online, and so on).

Our sample application, Time Expression, will have a user interface (UI) as well as some background processing. The UI will be web

based and will contain screens that provide the capability to enter hours worked, approve timesheets, run management reports, and more.

The background processing will include a weekly (scheduled) batch job that is automatically run to send out a reminder email.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

The focus of this book is more on technology and less on process. However, this chapter provides an overview of an agile software

development process that you can easily apply to your project. I'm a big believer in having a bare-minimum process, even if it is a 1-page

checklist of 10 or so items that serves as a memory jogger for things that need to be done as part of the process. (Note: I have included

such a checklist in the appendixes.) This minimal process ensures that the project is run efficiently and at the same time is focused on

customer satisfaction.

In this chapter, we will accomplish the following:

Gain an understanding of what our sample application will do by looking at some business requirements.

Establish a simple software methodology based on Extreme Programming (XP) and Agile Modeling Driven Development

(AMDD).

Develop some high-level artifacts such as a domain model, UI prototypes, high-level architecture, and more.

Create a simple release plan based on our user stories.

Note

It is important to realize that many of the artifacts shown in this chapter (release and iteration plans, for example) are

more for demonstration purposes. However, this chapter is very relevant to the rest of the book because we will

implement some of the functionality described in this chapter (for example, the Enter Hours and Timesheet List

screens). In general, you can ignore particulars such as dates and estimates.

Also, this chapter assumes that you have a basic understanding of software development processrelated concepts

(use cases, for example). However, if my brief explanations on the various concepts in this chapter aren't sufficient, I

recommend visiting www.agilemodeling.com for detailed explanations. In general, this website is loaded with

information relevant to this chapter. Also, visit the extremeprogramming.org website for detailed information on the XP

methodology.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com
http://extremeprogramming.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Business Requirements

I mentioned earlier that our fictional customer requires a simple online time entry and approval system. Let's go into a bit more detail here.

It is always a good idea to define what business problem is being solved, whom it is being solved for, and why our solution is important to

the customer. In addition, it is important to understand what the customer's expectations are: for example, when is the solution needed,

and what is the project scope.

Let's assume that a fictional organization wants to build a timesheet system to manage its hourly staff. To get things started, we can

define the problem statement as follows.

Problem Statement

Our employees currently submit their weekly hours worked using a paper-based timesheet system that is manually

intensive and error-prone. We require an automated solution for submitting employee hours worked, in the form of an

electronic timesheet, approving them, and paying for the time worked. In addition, we would like to have automatic

notifications of timesheet status changes and a weekly reminder to submit and approve employee timesheets.

Given our general problem statement, we can break this down into the following feature set or business requirements; this process could

be considered a part of use case analysis, in the Unified Modeling Language (UML) world:

Hourly employees should be able to sign in to a web application (once or more each week) and enter their hours for each day

of a given week. Along with the hours, the employee must select which department the hours are being billed to.

Employees will be required to submit their timesheets each week.

An employee's manager is notified of successfully submitted timesheets. The manager must then approve or disapprove the

timesheets.

After a timesheet is approved or disapproved, a notification is sent back to the employee indicating the updated status of the

timesheet. If the timesheet is approved, an email is also sent to the accounting department to process the paycheck for the

given employee.

All users of Time Expression will have one or more relevant reports available to them.

A weekly reminder email will be sent out to employees who have not submitted their timesheets. Another reminder

email is sent to managers who have employee timesheets pending approval.

Now that we have some basic business requirements, we can proceed with our software development process.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Software Development Methodology

Every project, small or large, should have some basic structure or process (methodology) it must follow. This could be a simple one-page

checklist or a slightly more formal process. Having no process at all is bad, but too much is equally bad. Finding the right balance depends

on the customer's needs and the project size, but in summary, I lean toward having less process with minimal (and "good enough")

documentation requirements, rather than having a bloated process that can bog down the customer and developers in paperwork and

procedures. In this chapter, I'll provide a basic software development process based on XP and AMDD.

Overview of XP and AMDD

XP and AMDD provide some fundamental guidelines for building software applications effectively and rapidly. XP and AMDD are

complementary methods because XP provides a disciplined, full life cycle software development approach that stresses customer

satisfaction. AMDD, on the other hand, generally provides effective practices for modeling and documentation, but goes a lot further by

providing a wealth of additional best practices that can be tailored to each software development project.

Personal Opinion: Why Agile Modeling and Extreme Programming?

In recent months, I have become quite fond of the Agile Modeling (AM; agilemodeling.com) values, practices, and

principles (see cheat sheets in Appendix J). Similarly I have also grown fond of Extreme Programming (XP;

extremeprogramming.org). Furthermore, what makes me even more confident about these methodologies is the plain

and simple fact that I have yet to hear anything bad about these methodologies from any developer who has actually

worked with them. I'm talking about some very intelligent people who are either working with these two methods or

promoting one or both.

AM is about modeling and documentation in an effective manner using simple tools. XP, on the other hand, is a full

development life cycle. Both of these align very well with my views on software developmentviews that are based on

experience I have gained over my jam-packed 20 years in IT working for a dozen or more very large, and also some

small, companies.

Prior to AM and XP, I had worked with the Rational Unified Process (RUP) and before that some custom home-grown

methodologies. Even though I enjoyed using RUP for a while, I began to find RUP a bit on the heavier side when it came

to requirements documentation and up front architecture and design; at least this is how I see most organizations using

RUP. On the other hand, AM and XP are nimble methods!

It takes a bit of time to get the hang of it; some of this is because of internal resistance to change or misconceptions

about XP. However, when you do get it, it does feel good! It feels so natural that you have to sit there and wonder why it

took so long. Seriously, these two methods are getting more and more popular by the day because they feel so natural to

developers.

Another reason XP and AMDD might take a little getting used to is because these methods don't work in a linear fashion.

This is the case because things don't always work in a linear fashion in the real world. Also, this approach facilitates

change better than the rigid linear methodologies in which all the requirements must be locked down up front and the

customers have their hands slapped if they request too many changes. Change is inevitable, so it is better to deal with it

by embracing it. Trust me, it took me a little getting used to because I had been working in the linear/rigid mode for years

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://agilemodeling.com
http://extremeprogramming.org

before discovering XP.

Incidentally, the term Agile refers to a wide range of software development methodologies. In 2001, the term Agile was

collectively agreed upon by representatives of methods such as Extreme Programming, SCRUM, DSDM, Adaptive

Software Development, Crystal, Feature-Driven Development, Pragmatic Programming, and others (see manifesto and

history at agilemanifesto.org). The agilemodeling.com website takes this into consideration and serves as a one-stop

website for getting a wealth of knowledge on these methods at your fingertips.

AMDD is more specific to development. I chose AMDD for this book because in addition to the fact that the AM viewpoint

aligns with my own, I also like that AMDD proposes just good enough modeling artifacts (such as free-form architecture

diagramsmy favorite kind). Perhaps these words from the AM website best summarize my feelings about producing

artifacts: "Your goal is to build a shared understanding, it isn't to write detailed documentation." Need I say more?

On the XP side, you will find many of concepts used in this chapter and throughout the book; concepts such as user

stories, CRC cards, test-first design, release and iteration planning, and more.

I have already stated reasons why these are popular with developers. However, customers love this style of working, too,

because both methods are customer focused and require active stakeholder participation. Granted, this does require

more of the customer's time, but they are pleased to see constant progress; as a result, fewer things can go wrong with a

project because ongoing communication exists between the customer and the developers.

Ongoing communication with the customer also helps the developers stay focused on the end goal and understand the

problem domain better and faster. Hence, understanding the customer's problem or need and staying focused on it

throughout the software life cycle is essential. By having ongoing communication and easy access to the customer, this

task becomes a lot easier.

Let me summarize why this makes so much sense by providing you the end-to-end process using XP. Your team builds

and unit tests software daily; the application is integrated often (maybe even continuously as unit tested code is checked

in); a production-ready version of the application is deployed every two weeks (iteration); and the customer gets to test

drive or fully use the newly added functionality every two weeks (with a full release every two months).

All in all, it is a win-win situation for all project stakeholders.

Although I have some fundamental practices I use on all projects, I typically pick and choose what applies to each project and

customize the software development process based on the needs of that project and customer. For example, in our sample

project/application in this book, Time Expression, I have used several of the techniques described next and shown in Figure 2.1 (refer to

agilemodeling.com/essays/agileModelingXPLifecycle.htm for details). Note that although I have adopted the XP and AMDD way, there

might be a few spots where I customize these methods (Project kick-off, for example) to accommodate what we need for Time Expression.

Figure 2.1. The XP project life cycle

(source: agilemodeling.com/essays/agileModelingXPLifecycle.htm); original diagram by Don

Wells (http://extremeprogramming.org).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://agilemanifesto.org
http://agilemodeling.com
http://agilemodeling.com/essays/agileModelingXPLifecycle.htm
http://agilemodeling.com/essays/agileModelingXPLifecycle.htm
http://extremeprogramming.org

Exploration Phase

The Exploration Phase (Beck, 2000) typically involves a combination of exploratory activities that help you better understand the

customer's needs and subsequently how the resulting application will be designed and built. The following are some examples of activities

that might take place in this phase of the project.

Domain model A domain model helps to define major business concepts (entities) and the relationships among them.

User interface prototypes and storyboard These are initial screen mockups to get a feel for how the customer visualizes the

application. The storyboard is the flow of the screens.

User stories A few user stories get the project started and make up the first release or version of the application. User stories

(similar to shall statements in other methods) are written by the customer in a brief sentence or two explaining what the

customer wants the application to do. Note that the number of user stories you gather up front will depend on the project, but

you should have enough to make a good and useful release.

Scope definition It is important to define the scope of the project up front so that you know what needs to be developed and

what can be deferred. It also clarifies the customer's expectations.

Analysis This can include a combination of whiteboarding, an informal architectural diagram, a glossary, and more.

Planning Phase

Planning can mean different things to different people. For me, it should at least include the following:

Release plan This is essentially a plan for the next release (version) of a system and can easily be put together using a

spreadsheet program or even a word processing program and/or HTML table. It lists all the user stories that will be included in

the next release of the system, grouped together in several iterations. Releases are typically of fixed length, anywhere between

one to three months; two months is typically an optimal size.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Iteration plan An iteration plan is developed prior to each iteration. It includes the user stories the customer wants implemented

in the next iteration. Iterations are typically of fixed length, anywhere between one to three weeks; two weeks is typically an

optimal size.

Define standards (code, database, process) Before beginning any development, it is a good idea to standardize such things as

coding conventions, database naming conventions, processes (build, integrate, deploy), and more.

Active Stakeholder Participation

According to the agilemodeling.com website, "Active Stakeholder Participation is an expansion of eXtreme Programming

(XP)'s On-Site Customer that describes the need to have on-site access to people, typically users or their

representatives, who have the authority and ability to provide information pertaining to the system being built and to

make pertinent and timely decisions regarding the requirements, and prioritization thereof."

Given this, I would recommend to always do release and iteration planning with the customer and developers.

Remember, successful projects are typically ones where the customer is actively involved (hence, the phrase Active

Stakeholder Participation).

For more details on active stakeholder participation, you may want to read the following essay on the AM website:

agilemodeling.com/essays/activeStakeholderParticipation.htm.

Iterations to Release Phase (Building Software in Increments)

Iterative development is a term you are probably familiar with. However, understanding of iterative development and what each iteration

should include varies from person to person and from methodology to methodology.

For me, iterative development means that each iteration includes design, coding, user acceptance, and deployment of "production ready"

code. This code can be deployed to the production environment or, if you are in a large corporation and deploying to production frequently

is not practical, perhaps deploying to the acceptance environment will do, so long as it is accepted by the customer, thus allowing you

to move on to the next iteration. To summarize, each iteration might include the following activities:

Development tasks, estimates by developers, and a plan for the next iteration.

Ad hoc Q & A between developers and the customer.

Design CRC cards, UML diagrams, and so on.

Code test first, refactor code/database/architecture as required, optimize later.

User acceptance testing (UAT).

Deploy iteration to production (or UAT); this step is also referred to as a small release.

By delivering iterations in this fashion, you can incrementally build the next release of an application. For example, we might estimate three

months for a given project and break it down into two-week iterations, resulting in approximately six iterations.

The bottom line at the end of each iteration is that the project should be deliverable; in other words, the small releases should contain

production-ready (stable) code, even it provides only a subset of the complete system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://agilemodeling.com
http://agilemodeling.com/essays/activeStakeholderParticipation.htm

Scope of Project

The scope of project can be defined in many formats. Sometimes it is as simple as a oneto two-line paragraph described by the customer,

or it can be more structured using diagrams. Many organizations go one step further and sign service level agreements (SLAs) with the

development team. Also, functional and nonfunctional requirements discussions can also occur to help define the scope.

In the past, I have used a table to show what is included in the scope and what is deferred (or excluded) from scope, as demonstrated in

Table 2.1, a sample scope table for Time Expression.

Table 2.1. Sample Scope Table

Scope Functionality

Include Time Expression will provide the capability to enter, approve, and pay for hours worked by

employees.

Defer Time Expression will not calculate deductions from paychecks, such as federal/state taxes

and medical expenses.

Defer Time Expression will not track vacation or sick leave.

Maintenance

This is where the application enters a maintenance state. This phase might include training for the user, minor enhancements/fixes (in the

form of user stories), as needed. Or the customer might want to do another major release, in which case you would start back from the

Exploration Phase mentioned earlier in this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Applying XP and AMDD to Our Sample Application

Now that we have looked at some background on a generic software development process, let's apply parts of this to our sample

application.

Domain Model

Let's start our domain model, which essentially has all the data entities and their relationships, but no attributes. This helps to define some

initial domain concepts and their relationships to each other. The domain model is typically sketched while working with domain experts

and people with business knowledge, such as business users and analysts.

Figure 2.2 shows the domain model for our application, Time Expression. As you can see, our domain model has a simple design because

it contains the bare-minimum number of entities to get us going while following a clean design. Again, we just need a simple domain model

to start with, something good enough for us to move forward with, which we have now.

Figure 2.2. Domain model for Time Expression.

[View full size image]

User Interface (UI) Prototype

Now that we have a fairly good idea of the features our customer is looking for in Time Expression, we can rapidly mock up some

prototype screens to allow the customer to test drive the mocked web application.

By developing prototype screens early on, you put a face to the application, which gets people excited and motivated to get the application

built. This is also a good way to eliminate many of the cosmetic changes up front (such as fonts, colors) and come up with an agreed upon

consistent look and feel that can be implemented using cascading style sheets (CSS). Furthermore, you can use prototypes to model the

business process and subsequently use the same prototypes to define the users' stories (covered later in this chapter).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figures 2.3 through 2.10 show what the various screens in the Time Expression application will look like. We will begin designing this

application in the next chapter; then, in subsequent chapters, we will get our environment set up and begin developing some code!

Figure 2.3. Sign-In screen.

[View full size image]

Figure 2.4. Timesheet List screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 2.5. Enter Hours screen.

[View full size image]

Figure 2.6. Print Hours screen.

[View full size image]

Figure 2.7. Approve Timesheets screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 2.8. Mark Paid screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 2.9. Report: Staff Hours screen.

[View full size image]

Figure 2.10. Report: Overall Summary screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

At this point, let's keep these screens as simple HTML (versus JSP) files so that we can pull them up locally in a browser instead of having

to run them in a Java web server or pull them up in a JSP/HTML editor each time. When working with a customer, it is a good idea to keep

technology out of the picture, as much as possible, until you are ready for developmentthis keeps things simple, so you can avoid any

"technical difficulties" and instead focus on the business requirements at hand.

Managing Customer Expectations During UI Prototyping

Although UI prototype provides significant benefits, it is important to manage the customer's expectations in this stage,

as well. For example, I have run across two problems. First, when customers see prototype screens, they might believe

the application is mostly developed and almost ready to be deployed. However, as developers, we know there is a lot

more to application development than mocked up screens. Second, user prototyping can get out of hand if the customer

is picky about fonts, button placements, and other UI aesthetics. Still, the customer should always come first because

they are typically paying for the application, and so you should try to find the right balance when managing a customer's

expectations. Of course, one effective way of getting around this management of expectations is to do hand-drawn UI

sketches instead of prototyping. This keeps thing simple because these sketches can be drawn on paper or the

whiteboard.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Storyboard

A storyboard, also called a UI flow diagram or website map, is essential to show a navigation map of the various screens. Figure 2.11

shows the storyboard for our sample application. As you can guess from our storyboard, after a user is signed in to the system, the user is

directed to an initial screen designated for the user's role type. Users belonging to either the Employee and Manager role have additional

functionality that can be accessed from the initial screens.

Figure 2.11. Storyboard (also known as a UI flow diagram).

[View full size image]

User Stories

Given the business requirements and UI prototypes defined for Time Expression earlier in this chapter, we can now define a set of user

stories for our application. As explained earlier in this book, I decided to use XP/AMDD; therefore, you see the use of the term user story

versus use case. Although these serve similar purposes, user stories tend to be shorter than use casesfor example, one to three

sentences each. The remaining details can be discussed between the developer and the customer when the developer begins working on

a given user story in the planned iteration; hence, the term active stakeholder participation.

Use cases come in many formats themselves. The three I'm familiar with are formal, brief, and casual. The casual format is probably closest

to a user story because it is short and informal. Formal use cases can entail a page or two of requirements with preconditions,

postconditions, success/basic path, failure/alternative path, and other sections for each use case. The reason I have described use case

and their formats here is because certain organizations define essential use cases (or even business requirements with "shall"

statements) first, and then later break each use case down into one or more (maybe even several) user stories using our guideline of one-

to three-day development per user story or development task.

We will use user stories in this book to not only define the requirements, but also to name our Java classes, using the story name/tag, and

create acceptance tests. Table 2.2 shows the user stories with the priority and initial estimate to complete. Note that the user stories you

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

might find in the real world might be a bit more detailed than what I have shown in Table 2.2; however, given the simplicity of Time

Expression, these work fine for us.

Table 2.2. User Stories, Priorities, and Estimates for Our Sample Application

#

Story Name (Tag) Story Description

Priority

Points

(estimate)

1 Enter Hours User can enter hours worked and save this data. 1 2

2 Timesheet List Employee can see a list of timesheets previously

entered and click the ones that can be modified.
 1 1

3 Sign In User can sign in to system using a valid employee id and

password.
 2 1

4 Sign Out Users can sign out of system to end current session. 2 1

5 Reminder Email:

Employee

A reminder email is sent every Friday at 2 p.m. to

employees who have not submitted their timesheet yet.
 2 1

6 Print Timesheet Employee can print timesheet using best possible

formatting in browser and automatic display of print

dialog box.

 3 1

7 Report: My Hours Employee can run a report named "My Hours" to

view/print summary of weekly hours.
 3 1

8 Submit Timesheet User can submit timesheet after hours have been

entered; submittal email is sent to Manager.
 3 1

9 Report: Staff Hours Manager can run a report named Staff Report to view a

summary of a given week's hours for all employees

under Manager.

 4 1

10 Report: Overall

Summary

Executive can run a report named Overall Summary to

view a summary of a given week's hours for all

Managers in company.

 4 2

11 Timesheet Approval Manager can approve/disapprove timesheet;notification

email sent to Employee and Accounting department.
 5 1

12 Timesheet Payment Accounting can indicate that Employee has been paid. 5 1

13 Reminder Email:

Manager

A reminder email is sent every Friday at 4 p.m. to

managers who have timesheets pending approval.
 5 1

 Total Points: 15

Incidentally, a good book to check out on user stories is Mike Cohn's User Stories Applied: For Agile Software Development

(Addison-Wesley Signature Series, 2004).

The estimates shown in Table 2.2 are initial estimates, or sizing. The developer provides more accurate estimates at the beginning of the

iteration when the user story will be developed, because the user story can be broken down into development tasks to better size the time

required to complete the entire user story. Incidentally, I have come across real-world projects where they did not do the breaking down of

user stories into tasks, nor did they size the user stories during iteration planning. The reason for this was because sometimes the user

story priorities changed or the user story itself changed, so the upfront work was for nothing. Instead, they picked two to three stories on

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

day one of a new iteration and only estimated those.

Points (last column of Table 2.2) are some unit of measure relative to the given project. For example, 1 point could equal 1 regular

workday, 1 ideal workday, 1 week or another periodwhatever the customer and developers agree on. Whatever each point might measure

is then used to provide estimates to the customer.

Ideal (development) days are a good way to estimate projects because it factors in planned and unplanned events (for example, meetings,

computer problems, sick leave, and so on). The difference between a regular day and an ideal day is referred to as the load factor.

A load factor, typically between 2 and 4, is a number you multiply your initial estimate by to come up with an ideal day. For example, I like

to use a load factor of 3 for projects where I have a good understanding of the business requirements and technologies. (Note: If you

believe there are risks involved, such as a learning curve related to a new technology, you can use a higher number, such as 4 or even 5.)

For example, if we know a development task will take me approximately 8 hours of uninterrupted, totally focused, heads-down time, we

can multiply that by 3 (that is, 8 * 3) and come up with 24 ideal hours or 3 ideal days (assuming a 8-hour work day).

In this book, we will develop the Enter Hours and Timesheet List (items 1 and 2 in Table 2.2; both with priority 1). So, if we use these two

screens as example, it would take 9 actual days to complete these screens (that is, 3 ideal days times the load factor of 3).

Release (and Iteration) Plan

After the customer (end user and/or business analyst) has defined the user stories, the customer and development project manager

(and/or developer) can put together a release plan for the next release or version of the application.

A release plan is essentially a project plan listing various system releases and the dates for each release. In this book, we will assume that

we have only one releasefor example, v1.0.

Releases are typically small, about 1 to 3 months in length. Each release consists of a set of user stories the customer wants implemented

in that release. Each release is then further broken down into iterations.

Iterations range between 1 to 3 weeks in length. Each iteration contains a list of user stories chosen from the set of user stories for the

given release that the customer wants implemented in that iteration (along with defect fixes from previously failed acceptance tests).

Based on the user stories we defined earlier in this chapter, we can come up with an initial release plan, shown in Table 2.3, to

incrementally build release v1.0 of our application.

Table 2.3. Release Plan

Iteration Features Release Date

0 Environment setup (JDK, Ant, JUnit) and database connectivity demo using

Hibernate.
 23-Dec-06

1 Small releaseAll priority 1 user stories. 12-Jan-07

2 Small releaseAll priority 2 user stories. 26-Jan-07

3 Small releaseAll priority 3 user stories. 09-Feb-07

4 Small releaseAll priority 4 user stories. 23-Feb-07

Our release plan does not use priority 5 user stories because these will be pushed off to release 2 of our application. Of course, this is all

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

fictional and many of the examples we have looked at so far, such as the iteration and release plans, are for demonstration purposes only.

In the real world, you are bound to see more detailed plans.

After the release plan containing the various iterations is defined for the next release of the software, the developer can begin working on

the first iteration.

Prior to each iteration, the customer and development staff get together for an iteration-planning meeting, the outcome of which is an

iteration plan for the next iteration. The customer picks the user stories that will be developed in the next iteration. The developers break

down each user story into individual development tasks required to implement the user story. This is done so that each development task

can be assigned to a developer, but more importantly, the tasks can be used to more accurately estimate the total development effort for

the given user story and, in turn, the next iteration.

If the total estimate or points (to implement all chosen user stories for the next iteration) exceeds the total points implemented in the

previous iteration (known as the Project Velocity in Extreme Programming), the customer must choose which user stories (or defect fixes)

to defer to a future iteration or release. If the opposite is truethat is, there is room to get more done in the next iteration, the customer may

add additional user stories, defect fixes, or enhancements, if needed.

For our purposes in this book, I have skipped including a sample iteration plan because this book is more about development than

process. Also, formats of an iteration (and release) plan can vary, so instead I chose to leverage the release plan (see Table 2.3) and

group our user stories by priority in it instead of breaking them down individually in each iteration plan.

Glossary

This is probably a good time for us to define a glossary for Time Expression.

A glossary is essentially a set of common terms, or project vocabulary, that everyone agrees on for the project. This list can include

business terms (for example, Timesheet and Approved) or technical terms (for example, Entity, used while discussing the logical data

model). The obvious benefit of a glossary is that it gets everyone in agreement with the terminology and definitions of each term to avoid

any confusion. (We have enough of that already given the terminology/acronym madness that exists in our industry.)

Accounting The accounting department/staff.

Approved Status of a timesheet when a Manager approves a previously submitted timesheet.

Employee A person who works on an hourly basis and reports to a manager.

Executive An officer of the company, such as CEO, CFO, or COO.

Hour A full hour of billable work that can be entered into a timesheet and the employee can get paid for.

Manager Direct supervisor of an employee.

Paid Status of a timesheet when the accounting department has issued a check.

Period Ending Date This is the last day of each week (Sunday, in our case).

Pending Status of a timesheet until the user submits it.

Submitted Status of a timesheet when an employee has submitted a timesheet. Timesheet is "locked" from further changes by

employee.

Week A 40-hour workweek from Monday through Friday.

Whiteboard Architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

By now, we have enough information to put together an informal architecture diagram. Figure 2.12 shows a high-level architecture

diagram for Time Expression (on an indispensable tool of the trade, the whiteboard). By establishing this diagram, the developers and

customer can agree on major technologies (for example, Java, database, web/app server) that will be used to build Time Expression.

Figure 2.12. An informal, high-level architecture on a whiteboard.

We will use an electronic and more detailed version of this architecture diagram in the next chapter to help us go one level deeper into the

design of the applications. Converting whiteboard diagrams or CRC cards to electronic formats are my personal preference because

legibility isn't a real concern with electronic artifacts. However, you could simply digitize artifacts such as whiteboard drawings and CRC

cards via tools such as a digital camera and scanner, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A Note About Wiki Software

When I first heard the term wiki or wikiwiki years ago, I ignored it thinking it wasn't worth my time (possibly because of the way it

sounds). However, the use of wiki software has spread like wildfire, and it has become an extremely effective tool to use for collaborating

and knowledge management in a project.

According to Ward Cunningham, the inventor of wiki software, wiki is the "simplest online database that could possibly work." Wiki is

collaborative software that is essentially installed in a web server and enables you to edit web pages using plain text (with various

formatting options). Although this might sound almost too simple, it is a powerful concept.

In a software project, a wiki website serves as a central dumping ground (so to speak) for content, which members of a software team

can add or change, collaboratively. This fits very well with the Agile and XP style of working in an iterative fashion. For example, online

help documentation for a software being built can be assembled using wiki, iteratively and incrementally, over a period of time (over a

two-month release, for example). In fact, most of the personal opinions you see in this book were accumulated using my wiki site over a

period of almost a year. It helped to have quick access to editable web pages for a quick brain dump when I had an idea.

There are literally hundreds of wiki engines (software) out there developed in almost every programming language you could think of.

There are wiki engines that work with flat-file databases and others that work with relational databases. Some wiki engines provide

robust authentication/authorization, whereas others are for personal use. Your biggest problem will likely be deciding on which one to

use.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Summary

In this chapter, we accomplished the following:

Gained an understanding of what our sample application will do by looking at some business requirements.

Established a simple software methodology based on Extreme Programming (XP) and Agile Modeling Driven Development

(AMDD).

Developed some high-level artifacts such as a domain model, UI prototypes, high-level architecture, and more.

Created a simple release plan based on our user stories.

Now it is time to begin getting our hands dirty with some design work.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to and provide additional information on the topics discussed in this chapter:

Agile Data http://www.agiledata.org

Agile Manifesto http://agilemanifesto.org

Agile Modeling http://www.agilemodeling.com

Extreme Programming http://extremeprogramming.org/

Article on PmWiki, a PHP-based wiki engine http://visualpatterns.com/resources.jsp

Wiki site http://wiki.org/

If XP isn't for you, you might want to check out Agile Unified Process (a lighter version of RUP) at

http://www.ambysoft.com/unifiedprocess/agileUP.html.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agiledata.org
http://agilemanifesto.org
http://www.agilemodeling.com
http://extremeprogramming.org/
http://visualpatterns.com/resources.jsp
http://wiki.org/
http://www.ambysoft.com/unifiedprocess/agileUP.html
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

II: Building the Sample Application
 3 XP and AMDD-Based Architecture and Design Modeling

 4 Environment Setup: JDK, Ant, and Junit

 5 Using Hibernate for Persistent Objects

 6 Overview of the Spring Framework

 7 The Spring Web MVC Framework

 8 The Eclipse Phenomenon!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

3. XP and AMDD-Based Architecture and Design

Modeling

IN THIS CHAPTER, WE FINALLY BEGIN to get into the technology side of things, so now begins the fun part.

In a truly iterative development environment, all the architecture and design issues would not necessarily be finalized up front.

Refactoring (improving code without impacting its functionality) plays a big role in constant improvement to the initially established design

because invariably you will find better ways to do something when you are actually coding. Furthermore, while the scope of the project can

be defined up front, the user requirements can continue to evolve from iteration to iteration versus having everything locked-down up front.

With requirements, the idea is to have a lot of interaction with the stakeholder and be able to ask ad hoc questions.

Although some work can be done up front, such as the user stories, high-level architecture, user interface prototypes, domain model,

standards and so on, other design issues can be resolved in the iteration they are applicable to. Furthermore, as we will see in Chapter 5,

"Using Hibernate for Persistent Objects," and Chapter 7, "The Spring Web MVC Framework," writing tests first can also help with the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

design of your classes, so you don't have to have all the fine details of your classes figured out up front; in other words, you can take a

just-in-time approach to design, so to speak.

However, some upfront design is bound to happen, perhaps in iteration 0 (perhaps when you are trying to demonstrate a proof-of-concept,

which shows that the chosen technologies can work end-to-end, from the user interface to the database, for example).

Note

Also, in iterations 1 and 2, perhaps fewer user stories get coded because of the extra time required for design and

environment setup work; this can include a domain model (explained later), definition of business objects, Java naming

conventions, build/integration process/scripts for the team, and so on.

In this chapter, I hope to provide you with an end-to-end approach using modeling and process guidelines provided by Agile Model Driven

Development (AMDD; agilemodeling.com) and Extreme Programming (XP; extremeprogramming.org).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://agilemodeling.com
http://extremeprogramming.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

In this chapter, we will accomplish the following architecture and design objectives for our sample application, Time Expression:

Develop a free-form architecture diagram

Explore objects using CRC cards

Assemble an artifact I like to call an application flow map

Develop class and package diagrams for Time Expression

Establish our development directory structure and look at some sample file names (we will create in later chapter)

Look at the steps we will follow in the upcoming chapters for end-to-end development of our screens

List advanced concepts we will need to consider as our sample application evolves: exception handling, scheduling jobs,

transaction management, logging, and more

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Design Approach and Artifact Choices

In the previous chapter, we looked at an XP-based approach to defining business requirements and working with the customer. In this

chapter, we will drill down into some minimal architecture and design to help us get going with building Time Expression, using popular

technologies such as Hibernate, the Spring Framework, the Eclipse SDK, and many other related tools such as Ant, JUnit, and more.

If you have come across the myth that XP programmers don't design or document, I hope this misconception will be cleared up by the end

of this chapter, because it couldn't be further from the truth. Let me give you a preview of what I'm talking about.

Take a look at Figure 3.1, which shows some possible artifacts you can produce at the release or iteration level. Release-level artifacts are

ones you produce prior to a new release; iteration-level artifacts are ones you produce prior to each iteration. These aren't all mandatory

for every project, so we can pick and choose the ones we need. However, between Chapter 2, "The Sample Application: An Online

Timesheet System," and this chapter, I have chosen to demonstrate as many of these as possible, and practical, for Time Expression. At

the end of this chapter, I will show you another diagram that will tie together all the artifacts produced as a result of our efforts between the

previous and this chapter (but don't cheat by looking now, because it is a detailed diagram and I don't want to overwhelm you at this point).

Figure 3.1. XP/AMDD style choices for artifacts to produce at release and iteration levels.

[View full size image]

At the very least, what you will see in this chapter will give you one perspective. This process might or might not work for you. However,

there must be some things good about these methodologies, because developers love them, and I have seen many successful projects as

a result of these methods. Also, in our case, the artifacts we will produce in this chapter are essential to the rest of this book, and this

process will help get us there.

As you can see from Figure 3.1, we have a few artifacts to produce in this chapter, so let's move forward. However, before we do, I want

to provide two perspectives from real-world users of XP.

A project director working at a Fortune 50 company told me recently, "When we kick off an iteration, the first day of the iteration is usually

spent reviewing stories and breaking them into tasks. The exercise of breaking them into tasks is truly a design session. What we ended

up observing is that something like 20% of the developer's time, during an iteration, was spent in design. If you add all that time for all

developers, across all iterations, it was a large numberwhich truly debunked the 'no design' comments."

To give you another perspective on the XP style of working, consider this statement from a senior architect at a well-established IT

solutions company that has deployed more than a dozen successful projects using XP and AMDD techniques: "There is also another level

of design that happens on an XP project which is at the daily level. Refactoring is a design activity. Although the iteration-kickoff design is

an important step, it is the design work after the code is written that makes the difference between an OK design and a truly elegant one."

The difference with the XP approach, is that the architecture and design happens throughout the application's release cycle, not just up

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

front. In other words, the application continues to evolve through the various iterations. The benefit of this approach is that the design is

actually applicable to what you are building, not three to six months into development when the requirements could have

changedsomething that is certainly possible in our fast-paced and ever-changing world today.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Free-Form Architecture Diagram

Figure 3.2 shows the high-level architecture for our sample application. Note that this has been converted to an electronic version from the

whiteboard version we saw at the end of the previous chapter. Converting it to an electronic format is a personal preference; you could just

as easily take a digital picture of the whiteboard version, but I personally like clean and readable diagrams.

Figure 3.2. High-level architecture for Time Expression.

[View full size image]

The architecture is fairly straightforward. We have our standard three-tier web architecture with the client tier (web browser), middle tier

(application server), and our data tier (database).

Also standard is the use of the model-view-controller (MVC) design pattern, as you find in most Java-based web frameworks these days.

The controller is the point of entry of the HTTP/web request; it controls the model and the view. The model deals with data, which is

obtained by the controller and passed to the view for rendering in a presentable way. In our case, the view will be written using JavaServer

Pages (JSP).

What makes our architecture interesting isn't that it uses a MVC pattern, but rather what's in the middle tier, namely the Spring

Framework and Hibernate, two technologies we will cover in detail later in the book. Hibernate, as you will see later, makes database

persistence very easy because you can reference database tables and records as plain old Java objects (POJOs). The Spring Framework

(springframework.org) provides many benefits, as well, especially when you're working with POJOs. For example, we will use the Spring

MVC for our web framework because it makes for cleaner code (when compared to something like Struts). Another notable feature of the

Spring Framework is the support for scheduling jobs rather than depending on an external scheduling service such as CRON or the

Windows Scheduler. Of course, the core feature provided by the Spring Framework is the inversion of control (IoC) functionality, which we

will learn about in later chapters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://springframework.org

From User Stories to Design

We covered a variety of user stories in Chapter 2. For the sake of brevity, we will not develop every single user story in this book.

However, the user stories I have chosen will given you complete end-to-end working examples of a form and a no-form screen. In

addition, we will look at advanced topics, such as implementing application security using interceptors, sending emails, and scheduling

jobs, which take care of a couple more user stories covered in Chapter 2.

In the rest of this chapter, I will provide examples based on at least the first two user stories, tag named Enter Hours and Timesheet List,

in Chapter 2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Exploring Classes Using CRC Cards

Figure 3.3 shows the domain model we established in Chapter 2. The domain model enables us to explore domain or business objects.

The user stories will enable us to discover the web-based user interface controller classes. So, let's look at coming up with objects for the

Timesheet List user story next, to see exactly how CRC cards work.

Figure 3.3. Domain model for Time Expression.

Figure 3.4 shows the Timesheet List UI prototype from Chapter 2. As I mentioned, we already know our user interface will be web based

and will use the MVC paradigm. So, let's approach the discovery of our initial classes from the MVC perspective.

Figure 3.4. Timesheet List screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

On the model part of the MVC, we already know some entity names for Time Expression from our domain model. For the controller part,

we know the user story tag (Timesheet List, in this example) from Chapter 2. Given these, we can now proceed with our initial class design

using CRC cards.

In case you have been wondering, CRC stands for class, responsibilities, and collaborators. Table 3.1 shows the layout of a sample CRC

card along with some explanations for the three components you see there. Note that although I have shown an electronic version, CRC

cards can actually be done on basic 3" x 5" index cards and later translated into a class diagram (if needed).

Table 3.1. A Simple CRC Card Layout

Class Name (Noun)

Responsibilities (obligations of this class, such as business

methods, exception handling, security methods,

attributes/variables)

Collaborators (other classes required to provide a complete

solution to a high-level requirement)

CRC cards provide an informal object-oriented technique for discovering interactions between classes. I like CRC cards because they can

be used in an informal session with developers or users to discover objects without the need for a computer. Furthermore, CRC cards can

be used to develop a formal class diagram, if needed (something we will do later in this chapter).

Tables 3.2 through 3.4 show some sample CRC cards for the actual classes we will develop later in this book, to meet the requirements for

the Timesheet List screen.

Table 3.2. Sample CRC Card for Timesheet Class

Timesheet

Knows of period ending date

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Timesheet

Knows of time

Knows of department code

Table 3.3. Sample CRC Card for TimesheetManager Class

TimesheetManager

Fetches timesheet(s) from database Timesheet

Saves timesheet to database

Table 3.4. Sample CRC Card for TimesheetListController Class

TimesheetListController

Controller (in MVC) for displaying a list of timesheets TimesheetManager

We just covered some basics about CRC cards. For now, we have a good enough idea of what we need to move forward with the next step.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Application Flow Map (Homegrown Artifact)

In past projects, I have used a table similar to Table 3.5. This format is homegrown, in that it is something I came up with. I call it an

application flow map because it shows me how a user interface will function (or flow) end to end. This technique also nicely maps the

user stories to the view (the "V" in MVC), which maps to the controller and, finally, to the model objects.

Table 3.5. Sample Application Flow Map

Story Tag View Controller Class Collaborators Tables Impacted

Timesheet List timesheetlist TimeSheetListController TimesheetManager Timesheet

Enter Hours enterhours EnterHoursController TimesheetManager Timesheet Department

A Complementary Technique

In comparing this application flow map to techniques such as class diagrams or CRC cards, you will find that this map complements CRC

cards and class diagrams. CRC cards list, among other things, responsibilities of each class, which is lacking in the application flow map.

Class diagrams on the other hand, show relationships, cardinality, behavior (methods), attributes, and possibly more, which are more

details than I like to have in this map.

By putting together classes in a textual and table format, we could also search for class names (in a large system, for example) and also

sort these easily using a spreadsheet program or command-line utilities.

Extending the Application Flow Map with CRUD Columns

This table can also be altered for use with non-UI stories such as the Reminder Email: Employee user story. For example, the view

and controller class columns can be replaced with a single column named Job, for instance.

Furthermore, you can extend this table by splitting the Tables Impacted column into four separate CRUD (create, read, update, delete)

columns. This not only shows which tables are impacted, but how they are impacted, by the various collaborator classes. By adding

CRUD columns, you essentially provide end-to-end flow of a user story (from the view to the database and back) in one row of our table.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

UML Class Diagram

Next, we will look at a rudimentary class diagram. This is an optional step in my opinion (see sidebar on UML diagrams) because our

CRC cards and application flow map provide us with enough information to move forward with coding. However, class diagrams can be a

good thing when used appropriately.

Figure 3.5 shows a sample and minimal class diagram for the classes we have defined so far.

Figure 3.5. Sample class diagram for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Personal Opinion: UML Diagrams

Over the years, I have used several types of UML diagrams, including the essential class diagram, package diagrams

(my favorite), and the less-often seen deployment diagram.

Then there are ones that I am not a fan of, such as the popular sequence diagram. I don't like this diagram because I

find it gets complex and cumbersome quickly. However, I'll be the first to tell you that I do not have better and

alternative ways to do what some of these diagrams do (at least not yet anyway, but eventually I hope to because I'm

currently conducting some research in better ways to model/diagramcheck the visualpatterns.com website for updates

periodically, if you are interested).

Meanwhile, I use UML diagrams when appropriate because I think they add value when used in the right place and at

the right time. In fact, I think UML diagrams are most useful when generated using reverse-engineering tools to

document the system already built (perhaps during a system handover).

I hope I don't come across as being dismissive about UML, because this isn't quite my intention, especially since it took

a lot of work over a number of years from some intelligent people to make a standard such as UML even possible. (In

fact, this is precisely why I'm basing all my research on work that has already been done instead of simply trying to

reinvent the wheel.)

My main complaint about UML diagrams is that they get complex very quickly, specially for larger projects. Another

issue I have with UML is that it requires special tools, which, because of software licensing costs, can be expensive for

an organization. In addition, some of these tools can have a steep learning curve and hence require training for the

people using these tools (one common example being Rational Rose), resulting in additional cost to the organization.

Furthermore, simpler tools such as OpenOffice.org, Microsoft PowerPoint, Microsoft Visio, and other similar tools

provide the capability to connect a variety of shapes (rectangles, for example) using connectors, which are essentially

straight or curved lines that connect two objects and stay tied to those objects when you move them around. This is a

powerful feature because it enables you to create flowchart-like diagrams. I use connectors extensively, as you will see

in many free-form diagrams in this book; in fact, almost all diagrams in this book were developed using OpenOffice.org!

Also, I tend to follow practices recommended by Agile Modeling, such as modeling with a purpose and producing good

enough artifacts. Furthermore, I update these only when it hurts, because many artifacts can be thrown away after they

have served their purpose. After implementing a design in code, you already have your documentationyes, the code.

(As I mentioned earlier, code can be reverse engineered to produce pretty class and other diagrams.)

What makes the idea of heavy documentation seem like sheer madness is the fact that I cannot recall one software

development project where the documentation was maintained until the very end and matched the end product. This is

the case because we live in a fast-paced world with sometimes unrealistic software delivery deadlines, and it becomes

a difficult task to keep the documentation up-to-date.

In summary, use UML diagrams when appropriate, but don't be shy or hesitant about using simple, yet effective,

free-form diagrams. Let me end by providing the same blurb from the agilemodeling.com website I provided in Chapter

2: "Your goal is to build a shared understanding, it isn't to write detailed documentation."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com
http://agilemodeling.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

UML Package Diagram

For our sample application, Time Expression, we will use the prefix com.visualpatterns.timex for our package name.

If you have worked with Java already, you probably know that the first part of the package name is typically tied to an organization's

domain name, just used backwards. For example, com.visualpatterns is the reverse for visualpatterns.com, which happens to be my

website. The timex portion of our package name is derived from the name of our sample application. The remainder, the suffixes, for our

package names are shown in Figure 3.6, a rudimentary UML package diagram.

Figure 3.6. UML package diagram for Time Expression.

[View full size image]

Note

I have chosen very basic Java packages names to match our MVC pattern-based design. For example, we could have

called our model package something like domain, but I prefer to match things upfor example, matching the package

names with the architecture or application flow map. That way, someone new taking over my code can easily follow its

organization. So, a fully qualified package name for the model package would be com.visualpatterns.timex.model.

As you might guess, the controller package will have controller-related classes in it. The job package will contain our email reminder job.

The util package contains common and/or utility code.

Last but not least, the test package will contain our unit test code. Although I have chosen to place our test classes in a separate package,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://visualpatterns.com

many developers prefer keeping the test classes in the same directory as the implementation code they are testing. This is a matter of

preference, but in my opinion, having a separate package/directory for the test classes keeps things nice and clean in the actual

implementation package directories.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Directory Structure

Figure 3.7 shows the directory structure we will use for our sample application. This should look pretty straightforward and familiar; the

most notable subdirectories here are src, build, lib, and dist. This figure will be referenced in later chapters (Chapters 4, 5, and 7, for

example) and the directories relevant to each chapter will be discussed in a bit more detail, when needed. Meanwhile, Figure 3.7

provides a brief description for all the key directories.

Figure 3.7. Development directory structure for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Sample File Names

Given our directory structure shown in Figure 3.7, we can now come up with some sample filenames for the classes we discussed in this

chapter. For example, for the Timesheet List screen we discussed earlier in this chapter, we will most likely end up with the following files

under the timex/src/java/com/visualpatterns/timex/ directory:

controller/TimesheetListController.java

model/Timesheet.java

model/TimesheetManager.java

test/TimesheetListControllerTest.java

test/TimesheetManagerTest.java

view/timesheetlist.jsp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

End-to-End Development Steps

Given what we have learned in this chapter so far, we can put together the steps that will be required to develop (code) for our first

user story, from the web UI to the database, and back. Here are tasks that will most likely be required to complete the first user story:

Set up our environment including the JDK, Ant, and JUnit (in Chapter 4)

Write test and implementation classes for model package (using Hibernate in Chapter 5)

Write test and implementation classes for controller package (using Spring Framework in Chapter 7)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Acceptance Tests

Acceptance tests can serve as our detailed requirements as they do in many Agile style projects. One example is a list of valid

operations a user can perform on a given screen. The idea of using acceptance tests as requirements is feasible because these tests

are something our customer expects our application to conform to. For our purposes, we will use them only for our unit tests; however, it

is becoming more and more common in the real world to use acceptance tests as detailed requirements.

The following sections are our list of acceptance tests and something we will implement for the user stories we will develop. In the real

world, these types of acceptance tests would be provided by the customer.

Sign In

The employee id can be up to 6 characters. The password must be between 8 and 10 characters.

Only valid users can sign in.

Timesheet List

Only a user's personal timesheets can be accessed.

Enter Hours

Hours must contain numeric data.

Daily hours cannot exceed 16 hours. Weekly hours cannot exceed 96 hours.

Hours must be billed to a department.

Hours can be entered as two decimal places.

Employees can view and edit only their own timesheets.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Other Considerations

As I mentioned earlier, we need to do just enough architecture and design to get us going. Although we did a reasonable amount of

architecture and design in this chapter, there are a lot of things we haven't discussed yet but will in later chapters, such as the following:

Application security This will be covered in Chapters 7, "The Spring Web MVC Framerwork" and 10, "Beyond the Basics."

Transaction management This will be covered in Chapter 5. We will see how to programmatically implement transaction

management using Hibernate.

Exception handling In Chapter 10 we will look at handled and unhandled exceptions and provide some guidance on when to

use one versus the other.

Other features Features required for Time Expression such as scheduling jobs and sending emails will be covered in Chapter

10. Other topics also discussed in later chapters include logging, tag libraries, and more.

Big Design Up Front Versus Refactoring

According to Martin Fowler (refactoring.com), refactoring "is a disciplined technique for restructuring an existing body

of code, altering its internal structure without changing its external behavior." Many developers have been refactoring

code for years, but Martin Fowler gave it a formal name (and I'm glad he did).

As you begin to code an application, you will invariably find better ways to do things than you might have originally

thought of (before coding began). For example, this could include removal of redundant code or cleaning up of code.

Hence, I am a big believer that refactoring should always be an open option, not just for code but also for database

design, architecture, documentation, build/integration scripts, and more. It also alleviates the burden of figuring out the

entire design and process of an application up front.

For example, I recently came across a portion in an essay on the agiledata.org website, which helps summarize how I

feel about this subject; this portion states that "Agile developers iterate back and forth between tasks such as data

modeling, object modeling, refactoring, mapping, implementing, and performance tuning."

Take this book, for example. This is essentially a project for me as I'm developing a sample application from scratch

and a book alongside it. Although I have done some upfront planning, I don't have 100% of the answers figured out,

but I am not worried because I can refactor the architecture, design, code, or process used for Time Expression in later

chapters because I want to make progress now instead of spending too much time trying to think of every possible

scenario that could go wrong.

In short, you should definitely do some initial architecture and design, but keep in mind that if there is a way to improve

something that adds value, such as simpler or cleaner code, and if it is not too late in the process (for example, the day

of acceptance tests or deployment), you should go ahead and refactor!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://refactoring.com
http://agiledata.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we covered a lot of material and accomplished the following objectives we established at the beginning of the chapter:

Develop a free-form architecture diagram

Explore objects using CRC cards

Assemble an artifact I like to call an application flow map

Develop class and package diagrams for Time Expression

Establish our development directory structure and look at some sample filenames (we will create these in later chapters)

Look at the steps we will follow in the upcoming chapters for end-to-end development of our screens

Review a list of advanced concepts we will need to consider as our sample application evolves

At the beginning of the chapter, I promised you a diagram to show you how we got here and some of the artifacts we produced along the

way. (Did you cheat and take a peak already?) Figure 3.8 shows this diagram. Of course, this also clearly shows that XP has artifacts at

various levelsconceptual, physical, and even in implementation. Note that the lines shown in Figure 3.8 are unidirectional because this is

how we developed these artifacts in the previous and in this chapter. However, in the real world, these would be bidirectional because

there is input coming from one direction and feedback going back in the opposite direction.

Figure 3.8. Conceptual, physical, and implementation artifacts for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

One parting thought on the subject of artifacts and documentation. Remember, that the database and code are the most important

artifacts of all! I cannot emphasize this enough. The other artifacts we discussed in this book are merely ones you pick and choose,

depending on your needs (these are not required). Furthermore, many of these optional artifacts could potentially be discarded after they

have served their purpose, because most people don't update these anyway. However, code is always current because that is what the

application for the customer is built with; the database can outlive all software programs written around it, so that should be considered

the most important component of a system.

Speaking of database and codenow it is time to get our hands dirty and begin setting up our development environment using tools such

as Ant and JUnit in the next chapters, so we can actually begin coding!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Agile Model Driven Development http://www.agilemodeling.com

Agile Data http://www.agiledata.org/

Extreme Programming http://extremeprogramming.org

CRC Cards http://c2.com/doc/oopsla89/paper.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com
http://www.agiledata.org/
http://extremeprogramming.org
http://c2.com/doc/oopsla89/paper.html
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

4. Environment Setup: JDK, Ant, and JUnit

IN THIS CHAPTER, WE WILL get the bare-bones set of tools installed so we can begin to develop, build, test, and deploy our Java code.

One of the goals of this book is to be a quick read and not to provide you with redundant, or even out-of-date, information. Hence, I'm

not going to provide setup instructions for the various tools covered in this chapter (for example, Ant). Instead, I will refer you to their

respective websites because all the tools covered in our book provide you with ample, up-to-date setup instructions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

What's Covered in This Chapter

In this chapter, we begin the setup of our development environment with the following core tools required for our Java development

through the remainder of this book:

Java Platform Standard Edition (JSE) Development Kit (JDK) setup Because this book is about Java technologies, this is the

first software we need to have working before we can do anything else.

Ant This is the de facto utility for building and deploying Java-based applications.

JUnit This is a simple unit-testing framework and standard way of unit testing Java code these days.

Make It All Work Together Finally, we will put together all three technologies and try out a simple unit test.

Note

The complete code for the examples used in this chapter can be found within this book's code zip file (available on the

book's website).

In later chapters, we will add to this environment by installing products such as a database, a web server, an IDE, tag libraries, and more.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Java Platform Standard Edition Development Kit (JDK)

Because we are doing Java development, it would make sense to have the necessary Java tools (for example, compiler) set up. If you

do not already have the JDK installed on your machine, or if you have an older version than ones required by JUnit and Ant, you should

get the latest version from the java.sun.com website and have it set up on your machine so that commands such as java are in your path.

After downloading and installing Java, you should be able to type the command javaversion to test your setup and ensure you have the

correct version of the JDK, as shown next:

C:\anil\rapidjava\timex>java -version

java version "1.5.0_06"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)

Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode, sharing)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com

Directory Structure

Let's revisit the directory structure we covered in the previous chapter. Figure 4.1 shows the directory structure. It is important to see

this again now before we jump into the Ant discussion. Let's review some of the more notable subdirectories here:

src directory will contain all the Java, HTML/Javascript, XML, and all other input/source files that we will develop ourselves.

build will contain the output of our builds (for example, compilation, copying of web and library files, and so on).

lib will contain all external JAR files required to run our application.

dist will contain our web archive (.war) file, which contains all the web-related files, compiled .class files, .jar library files, and

more.

Figure 4.1. Development directory structure for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Ant

I would not be exaggerating by claiming that Ant (ant.apache.org) is perhaps the single most important and widely used tool in the world

of Java today! Therefore, mastering this tool is the key to rapid Java development. So, it is no surprise that I'm covering this tool directly

after the JDK section, because I consider Ant the most vital tool to install after you are done with the basic Java setup.

By now you probably realize the important role Ant plays in Java development. We will use Ant extensively in this book! For example, we

will use it to build our application, deploy it, run various Java programs, create our database, run our tests, and more.

Ant was originally developed by James Duncan Davidson, from the Open Source Program Office at Sun Microsystems. Ant is a

cross-platform build tool that eliminates a lot of complexities and quirks that can be found in tools such as Unix make. Instead of using

shell commands proprietary to the operating system, Ant uses XML files to specify various tasks. Ant is a highly extensible tool, mainly

because of the huge market of builtin and external (open source and commercial) tasks available for Ant, which makes it so powerful. In

addition, you can easily write your own custom extensions.

Given that Ant itself is developed in Java, it is portable, and according to the Ant website, it has been tested on various Unix systems,

Microsoft Windows, Mac OS X, and others. The ant.apache.org website provides ample (and up-to-date) information on how to get Ant set

up on your system; if you do not already have Ant installed on your system, you should go ahead and do so at this point.

When you do have Ant set up successfully, you should be able to run the ant command without specifying the full path. That is, the ant

command should be in your path because the remainder of our book will reference ant without the full path. For example, if you typed ant

-version on the command line, you would see something similar to what is shown in Figure 4.2.

Figure 4.2. Testing the ant setup by running ant -version.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://ant.apache.org
http://ant.apache.org

A Simple Ant Build File

Ant, by default, expects a build.xml file in the current directory, if you do not provide the ant command with any arguments. Let's try out a

sample build.xml file; you might recall the following tiny Ant script from earlier in this book. It provides a target that executes the echo task:

<?xml version="1.0"?>

<project name="HelloTest" default="printmessage">

<target name="printmessage">

<echo message="Hello world!"/>

</target>

</project>

For example, if we saved this minimal XML code in a file named build.xml and in the same directory type ant, the command and its output

would look as follows:

> ant

Buildfile: build.xml

printmessage:

[echo] Hello world!

BUILD SUCCESSFUL

Total time: 0 seconds

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A Comprehensive Ant Build File

"Hello world" examples are good, but let's move toward building a comprehensive Ant build script for our sample application.

Note

This book's downloadable code shows the complete build script for our sample application, build.xml, along with

local.properties, a file used by build.xml to load some external properties. Both of these files will be placed in the top-level

directory, timex/.

Note that the use of local.properties here demonstrates a handy way of having different property files for different

configuration management environments such as development, test, staging, and production.

Ant Concepts

Before we inspect our build.xml file step-by-step, let's review some basic concepts about Ant.

The key concepts in Ant include a project, properties, targets, tasks, and elements. Properties are variables you can set for the ant

session. Targets contain blocks of XML code that get executed in the form of tasks. Tasks are the actual executables, such as the built-in

javac task. Tasks in turn can contain elements (for example, dirset or fileset).

Step-by-Step Walkthrough

Now, we will review the key targets in our build.xml file, but first, let's look at a graphical representation of this file, shown in Figure 4.3. You

may also want to review Figure 4.1 one more time before we begin this walkthrough, because our Ant build script is closely tied to this

development directory structure.

Figure 4.3. Hierarchical view of our Ant build.xml file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The first XML element that must appear in an Ant file is project, as shown here:

<project name="timex" basedir="." default="build">

The next few lines essentially set internal variables (properties) for our script. Most of these properties are related to the various source

and destination directories we will use, as shown in this excerpt (notice how we can use internal variables, surrounded by a dollar sign and

braces; for example, ${dist.dir}):

<property name="appname" value="timex" />

<property name="lib.dir" value="lib" />

<property name="war.dir" value="build/timex" />

<property name="war.file" value="${dist.dir}/${appname}.war" />

<property name="webinf.dir" value="${war.dir}/WEB-INF" />

After the properties are set up, the script sets up the classpath, which is used by various other tasks in the file. The classpath essentially

includes two sets of files: all the .jar files in our lib/ directory and the compiled class files under build/timex/WEB-INF/classes/, as shown

next:

<path id="master-classpath"

 description="Master CLASSPATH for this script">

 <fileset dir="${lib.dir}">

 <include name="*.jar" />

 </fileset>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 <pathelement location="build/timex/WEB-INF/classes/" />

</path>

The next target in our build script, init, ensures that certain output directories (under build/) are created in order for other tasks in our build

script to be successful (note, this is accomplished using the depends attribute in other targets):

<target name="init" description="Setup for build script">

 <mkdir dir="${class.dir}" />

 <mkdir dir="${libs.dir}" />

 <mkdir dir="${jsp.dir}" />

</target>

Our updateweb, updatelib, deleteconfig, and updateconfig targets basically copy or delete web and library-related files to the destination

directory.

The next interesting target is compile, which compiles .java files in src/java/ to .class files under build/timex/WEB-INF/classes/, as

demonstrated here:

<target name="compile" description="Compiles .java files to WAR directory">

 <javac srcdir="${src.dir}" destdir="${class.dir}" debug="true"

 failonerror="true" classpathref="master-classpath" />

</target>

Our dist target creates a WAR file and deploys it to the pathname the internal variable ${war.file} points to (that is, dist/timex.war). An

interesting thing to note about this target is the use of the war task and fileset element (known as an Ant type). The war task creates a .war

file; the fileset type can be used to specify an individual file or a group of files (using include and exclude pattern sets). Examples of both

the war task and the fileset element are shown here:

<war destfile="${war.file}" webxml="${src.dir}/conf/web.xml">

 <fileset dir="${war.dir}">

 <include name="**/*.*" />

 <exclude name="**/web.xml" />

 <exclude name="**/test/*.class" />

 <exclude name="**/*mock*.jar" />

 </fileset>

</war>

The other notable targets include deploy, clean, and test. The deploy target copies the .war file to a destination directory (we will use it to

deploy to an Apache Tomcat webapps directory). The clean target deletes files from the destination directory. We will use the test target

later in the chapter.

Ant Task Categories

The following are some of the tasks we used in our build.xml file:

Archive tasks such as war

Compile tasks (that is, javac)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

File tasks such as copy, delete, move, and others

Miscellaneous tasks such as echo

Property tasks for setting internal variables

Other built-in tasks worth exploring include the following categories:

Audit/coverage tasks

Deployment tasks

Documentation tasks

Execution tasks

Mail tasks

Preprocess tasks

Property tasks

Remote tasks

As I mentioned earlier, we will use Ant to build and deploy our web archive (.war) file. In the next chapters, we will continue to use the

command line for working with Ant. However, when we look at Eclipse in Chapter 8, "The Eclipse Phenomenon!," we will switch to using

Ant within Eclipse (shown in Figure 4.4), which makes editing and running the (same) Ant build.xml much easier!

Figure 4.4. The Ant view in Eclipse.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We will also look at a few more handy tasks in Chapter 10, "Beyond the Basics." Again, entire books are dedicated to Ant, so as you might

guess, I have merely scratched the surface here. However, the idea in this book is to get you going rapidly. If you have the need or interest

to explore further, you can find ample information online and in print for all the technologies I have covered in this book.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

JUnit

JUnit, originally written by Erich Gamma (Gang of Four, Design Patterns book) and Kent Beck (also author of Extreme Programming),

is an open source Java testing framework commonly used for unit testing of Java code. It can be downloaded from the junit.org website;

this website provides not only setup instructions, but also articles on unit testing and many benefits to writing tests first.

Test-driven development (TDD), a term coined by Kent Beck, can enable better code design, cleaner code (fewer print/debug statements

and test scripts), and more efficient code. Because we will follow this approach by writing tests first in this book, it makes sense to cover

JUnit directly after JDK and Ant sections.

JUnit Standalone Runners

For setting up JUnit, again I will refer you to the installation instructions found on the product's website, junit.org. The JUnit test runner

(Java main class) comes in two flavors: a textual version and a graphical version. The graphical version is available in two variations, a

Java Swing-based one (recommended) and an older, AWT-based one.

After you have JUnit set up correctly, you should be able to type the following command (from the JUnit install directory; for example,

C:\junit3.8.1) and be able to run the Swing version of JUnit's user interface, shown in Figure 4.5:

java -cp junit.jar junit.swingui. TestRunner

Figure 4.5. The JUnit Swing-based test runner.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://junit.org
http://junit.org

JUnit in Eclipse SDK

In the next chapters, we will continue to use the standalone JUnit test runners for working with JUnit, described here. However, when I

introduce Eclipse later in the book, we will switch to using JUnit within Eclipse (shown in Figure 4.6), which makes running and debugging

JUnit tests much more convenient. However, there might be times when you want to run batch tests using the Ant junit task on a server or

even test a single class outside of the IDE, using one of the JUnit built-in runners.

Figure 4.6. The JUnit view in Eclipse.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

SimpleTest: Making the Tools Work Together

Assuming we have the JDK, Ant, and JUnit set up correctly, we should be able to now write a sample JUnit Test and try it out.

Regardless of which flavor of JUnit we use, we can either pass it our test class name or type it into the UI runner. For example, if we

wanted to write a very simple test case to test the fact that 2 + 3 = 5, we would do the following:

Develop a JUnit test classfor example, SimpleTest.java.

Run the JUnit class using one of the JUnit runners.

SimpleTest.java

This book's code file (available on the book's website) shows the complete code for SimpleTest.java. The code should be fairly

straightforward to follow. There are two test methods: testAddSuccess and testAddFail, as shown here:

public void testAddSuccess()

{

 assertTrue(value1 + value2 == expectedResult);

}

public void testAddFail()

{

 assertTrue(value1 - value2 == expectedResult);

}

The testAddSuccess method will be successful, whereas the testAddFail method will fail (because 2 minus 3 does not equal 5). The

success or failure is determined by the JUnit assert methods, which throw an exception if the test failed.

JUnit Assert Methods

We saw an example of JUnit's assertTrue method in our example previously; JUnit also provides several other flavors of assert methods,

as shown next:

assertEquals

assertFalse

assertNotNull

assertNotSame

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

assertNull

assertSame

assertTrue

Running SimpleTest (a Single JUnit TestCase)

To try out the code we saw for SimpleTest, we need to create the SimpleTest.java file, compile it, and try running it. So, let's create the

SimpleTest.java file under our src/java/com/visualpatterns/timex/test/ directory. Then we can simply type the ant command from the timex/

directory to compile our unit test source code.

Now, let's try running our SimpleTest test case (from the top-level timex/ directory) using the JUnit test runner, as demonstrated here:

C:\anil\rapidjava\timex>java

 -cp \junit3.8.1\junit.jar;build/timex/WEB-INF/classes

 junit.textui. TestRunner com.visualpatterns.timex.test. SimpleTest

We should see something similar to what is shown in Figure 4.7.

Figure 4.7. Running SimpleTest in the text runner.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We could also run SimpleTest.class in the JUnit swing runner, as shown next (Figure 4.8 shows the result of this command):

java -cp \junit3.8.1\junit.jar;build/timex/WEB-INF/classes

 junit.swingui. TestRunner

com.visualpatterns.timex.test. SimpleTest

Figure 4.8. Running SimpleTest in the Swing-based JUnit runner.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The junit.framework. AssertionFailedError related messages you see in both the test runners is actually a good thing; these are valid

JUnit errors because our testAddFail method failed.

Running JUnit Tests in a Batch

There is one more way we can run JUnitthat is, as an Ant task. Next we'll take a look at how we do that.

First, let's copy the junit.jar file from the JUnit install directory to the <ant-home>/lib directory; for example, on Microsoft Windows you would

type something like copy \junit3.8.1\junit.jar \apache-ant-1.6.5\lib. This enables us to use the junit Ant task.

Second, we need to copy the same junit.jar to our timex/lib directory; this also will assist with our builds using Ant.

Now let's revisit our build.xml file. This file contains a target named test, which uses the junit task, as shown in the following excerpt:

<target name="test" depends="compile">

 <junit printsummary="true" showoutput="yes" filtertrace="false">

 <classpath refid="master-classpath"/>

 <batchtest fork="yes">

 <formatter type="plain"/>

 <fileset dir="${class.dir}">

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If we run the command ant test, the results of the batch test would appear in a file named TEST-com.visualpatterns.timex.test.

SimpleTest.txt in the current directory, an excerpt of which is shown here:

Testsuite: com.visualpatterns.timex.test. SimpleTest

Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.021 sec

Testcase: testAddSuccess took 0.004 sec

Testcase: testAddFail took 0.003 sec

FAILED

That's pretty much all there is to JUnit! Although JUnit is a simple framework, it is powerful because you can have several test methods

within each JUnit TestCase subclass (a suite). Furthermore, you can roll up the individual suites within other suites (with no limit). For

example, you can create a class named AllTests, which calls the suites of all other Test classes in the test package.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Test First Design and Refactoring

Test-driven development (TDD) has brought the concept of test first design to the fore-front. This approach has several benefits and

hence we will write tests first in this book, whenever possible.

Writing tests first takes a little bit of getting used to, and many times, you will wonder if you really have the time to write tests given the

pressure of deliverables. However, I find it is a nicer way to code (after you get the hang of it), particularly because it helps me think of

how to design/develop my classes. Also, if you factor in the time you spend unit testing and fixing defects discovered during functional

and user testing, you will find that this style of working can actually save time in the end.

Writing tests first has several benefits. For example, writing tests first ensures that you write only functional code that will actually be

used; this is based on the assumption that you have written code to satisfy the unit tests, which themselves are based on the acceptance

tests specified earlier in our business requirements. Second, if your code passes the unit and acceptance tests, you are done with that

part of the code. Third, it can help you design your classes better because when you write the test first, you are experiencing firsthand

how your actual classes/methods will be used. Last, test first can also help you to refactor with confidence because you can retest your

refactored code quickly through JUnit unit tests to ensure that the refactored code works as the original version did (assuming there is

little or no change to the external interface, as defined on refactoring.com).

Although, unit testing is only one part of the overall testing that occurs in corporations, it is something that developers should always do.

Other testing includes functional testing, user acceptance testing (UAT), system integration testing (also known as interface testing),

stress/load testing, and more.

We will use JUnit to implement our acceptance tests. The following are sample files to demonstrate our class-naming convention for test

classes:

test/TimesheetListControllerTest.java

test/TimesheetManagerTest.java

test/ReminderEmailTest.java

I have chosen to keep our JUnit test classes in a separate test package (that is, com.visualpatterns.timex.test) because I believe this is a

cleaner design. However, I've also seen other developers keep the JUnit test classes in the same directory as the code being tested. For

example, in this scenario, our TimesheetListControllerTest.java would be placed in our controller package.

Personal Opinion: Early Environment Setup Is Essential

After almost two decades of developing software, I am amazed how little some of the fundamental concepts have

changed. Although the technologies have changed dramatically, underlying concepts such as environment setup,

design, development, debugging, and so on remain fundamentally the same. One of things I have consistently found

over the years is that the environment setup almost always involves more than people expect or plan for. So, getting

the environment setup upfront is vital. Based on my personal experience, I like to recommend three things to my

customers in regards to environment setup.

First, get the minimal but completely functional environment set up up front (directory structure and build scripts, for

example). This should be consistent for all members of a software development team. Second, get a simple end-to-end

demo working up front (for example, a user interface to database round-trip demo). Third, environment setup generally

takes longer than people expect, so factor in enough time up front. This is one reason many Agile projects consider this

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://refactoring.com

iteration 0 (zero) or cycle 0 (Jim Highsmith), because a demo or environment setup doesn't produce anything tangible

from a customer perspective; it merely gets the environment setup for developers and testers to work in.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we began the setup of our development environment with the following core tools required for Java development:

Java development kit (JDK) setup

Ant

JUnit

However, we still have some environment-related setup remaining in the chapters ahead. For example, we need to install the database,

the web server, Eclipse, and more. However, we will tackle each technology one at a time and as we need it, in the coming chapters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Ant (built-in) Tasks http://ant.apache.org/manual/tasksoverview.html

Ant http://ant.apache.org/

Continuous Integration article http://www.martinfowler.com/articles/continuousIntegration.html

EasyMock http://www.easymock.org/

External Ant Tasks http://ant.apache.org/external.html

Framework for Integrated Test (FIT) http://fit.c2.com/

Full Life Cycle Object-Oriented Testing http://www.ambysoft.com/essays/floot.html

Java tutorial http://java.sun.com/docs/books/tutorial/

JDK http://java.sun.com

JUnit testing framework http://junit.org

Junit http://junit.org

Maven http://maven.apache.org/

Mock Objects http://mockobjects.com

Test Driven Development (TDD) http://www.agiledata.org/essays/tdd.html

Test First Guidelines http://www.xprogramming.com/xpmag/testFirstGuidelines.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.easymock.org/
http://ant.apache.org/external.html
http://fit.c2.com/
http://www.ambysoft.com/essays/floot.html
http://java.sun.com/docs/books/tutorial/
http://java.sun.com
http://junit.org
http://junit.org
http://maven.apache.org/
http://mockobjects.com
http://www.agiledata.org/essays/tdd.html
http://www.xprogramming.com/xpmag/testFirstGuidelines.htm
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

5. Using Hibernate for Persistent Objects

WITHIN THE FIRST FEW YEARS OF my software development career, I came to realize more and more that information (data) is an

organization's main asset; however, many developers tend to lose sight of this fact and get caught up in the latest cool tools.

We often use the words "information technology" (or simply, IT) but have you ever stopped to think about these two words? In my

opinion, the definition is obvious: technology to manage information. Simply put, data is at the core of what we do in our industry

because we are constantly moving data from point A to point B. No matter how many systems the data travels through, it originates on

one end (point A; for example, a UI) and is typically viewed on the other end (point B; for example, reports). Furthermore, the data and its

structure typically outlive the applications built around it; hence, it should arguably be the most important component of an overall

software application's architecture.

Given my emphasis on data and databases, I will cover Hibernate before the other key products discussed later in this book, such as the

Spring Framework and the Eclipse SDK.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

What's Covered in This Chapter

In this chapter, we develop the classes we need to implement functionality for the first five user stories (page 63) for our sample

application, Time Expression. So, we will do the following:

Understand what object-relational mapping technology is and the benefits it offers.

Install HSQLDB, a Java-based, lightweight relational database.

Design our database.

Write a Data Definition Language (DDL) script to create our database tables using Ant and test out some sample queries.

Set up Hibernate, understand its basic concepts, and begin working with it.

Demonstrate a simple and then a slightly more complex example (along with a corresponding unit test suite class) of using

Hibernate for Time Expression's Department and Timesheet tables.

Discuss advanced Hibernate areas for you to explore (should you need them).

Note

The complete code for the examples used in this chapter can be found within this book's code zip file (available on the

book's website).

We will cover a lot of material in this chapter, so let's get started.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

An Overview of Object-Relational Mapping (ORM)

It is no secret that relational databases are the most common type of databases in a majority of organizations today when compared

to other formats (for example, object-oriented, hierarchical, network). Product names such as Oracle, Microsoft SQL Server, MySQL, IBM

DB2, and Sybase are common terms used by developers in our line of work.

On the computer languages side of things, object-oriented (OO) programming has become the norm. Languages such as Java, C#, C++,

and even OO scripting languages are common discussion topics among developers.

A majority of the software applications that use relational database and OO languages end up writing code to map the relational model to

the OO model. This can involve anywhere from cumbersome mapping code (because of the use of embedded SQL or stored procedure

calls) to heavy-handed technology, such as EJB's entity beans.

Because most of us seem to like both relational databases and OO, Object-Relational Mapping (ORM) has become a natural choice for

working with POJOs (plain old Java objects), especially if you don't need the distributed and secure execution of EJB's entity beans (which

also map object attributes to relational database fields).

Although you still need to map the relational model to the OO model, the mapping is typically done outside of the programming language,

such as in XML files. Also, once this mapping is done for a given class, you can use instances of this class throughout your applications as

POJOs. For example, you can use a save method for a given object and the underlying ORM framework will persist the data for you instead

of you having to write tedious INSERT or UPDATE statements using JDBC, for example.

Hibernate is one such ORM framework and given its popularity in the world of Java today, we will use it for Time Expression. A few others,

such as JDO, iBATIS, Java, and Apache ObJectRelationalBridge, are listed at the end of this chapter under "Recommended Resources."

Hibernate also supports the EJB 3.0 standard, so should you need to move to EJB 3.0, it'll be an easy transition (in fact, EJB 3.0 is based

on many of the concepts and techniques found in Hibernate). EJB 3.0, as you might already know, aims to simplify working with EJB

technology prior to this release; for example, EJB 3.0 provides a lighter-weight persistent API similar to the one provided by Hibernate.

However, if you do not need the many services provided by EJB technology, you can use the Hibernate core technology by itself (without

needing a big EJB container product such as an application server).

Before delving into Hibernate, let's review some basic concepts common across ORM technologies. Later we will look at lots of Hibernate

Java code and XML file examples. After you have the hang of coding using an ORM framework, you will almost certainly not turn back to

the old ways of working with relational databases.

Relationships and Cardinality

Database relationships are typically defined in terms of direction and cardinality (multiplicity in OO terminology). From an OO

perspective, relationships are defined as association, inheritance, or aggregation. Many software development projects use ORM either

with existing databases or are required to conform to standards established by a database group within the organization; hence, I will

approach our relations discussion from a database perspective.

Note

Relationships can be viewed as unidirectional or bidirectional for objects. On the other hand, relations in a relational

database are bidirectional by definition because related tables know of each other. However, if we were designing objects

that map to the database, we would factor in both types of relations because object relationships have to be made

bidirectional explicitly. So for the sake of our discussion on relationships and cardinality, we will pretend that the database

can have bothunidirectional and bidirectionalrelations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Unidirectional is when one table knows of another, but not vice versa. For example, you might have a record that uses a unique primary

key; this same primary key can be used as a foreign key by records in a child table, thereby establishing a unidirectional relationship. In a

bidirectional relationship, records in both tables would know about each other. For example, assume we have two tables named Employee

and Project to store information about which employees worked on which project. In the Project record, we might have an EmployeeId

foreign key. On the flip side, we might have a ProjectId key in the Employee table.

Cardinality can be defined as one-to-one, one-to-many (or many-to-one depending on which direction you look at the relationship), and

many-to-many. We look at each briefly:

A one-to-one relationship is when a record in table 1 can have exactly one associated record in table 2. For example, a record in

a Person table might have exactly one related record in a JobTitle table.

A one-to-many relationship is typically seen in parent-child relationships where a parent record can have several related records

in a child table (for example, related via the parent's primary key).

A many-to-many relationship is where a record in table 1 can have several related records in table 2 and vice versa. For

example, an Employee table might have more than one record in a Project table (because an employee can be involved in

multiple projects). On the flip side, a record in the Project table might have several related records in the Employee table

because a project can have multiple employees assigned to it. Also, this type of relationship is typically achieved by using an

(extra) association table (for example, a ProjectEmployee table that contains foreign keys pointing to the two main tables).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Note

We will be looking at examples of relationships in this chapter from various perspectives, namely diagrams, code,

and mappings. For example, Figures 5.1 and 5.2 show examples of one-to-many relationships.

Figure 5.1. Domain model for Time Expression.

Figure 5.2. Physical database model for Time Expression.

[View full size image]

Object Identity

An object identity (or simply, object id) is something that uniquely defines a persisted object (that is, a record in the database). It is

commonly mapped to the primary key of a database table.

Cascade

Cascading can be defined as an action on a given entity flowing down to related entities. For example, if we wanted to maintain referential

integrity between related parent-child tables in a database, we would delete records from a child table whenever its related parent is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

deleted, so that no orphan records are left lingering in the database. Similarly, when you read a parent record in, you may also want to

read in all its children records. Cascading can be defined for each of the four CRUD operationsthat is, create, read, update, and delete.

Also, cascading is often handled via the use of database triggers.

Mapping

Before we can begin working with objects that store and retrieve data from a relational database, we must create mappings (usually in an

XML file) between the database tables and Java classes. The mapping file typically contains properties, which essentially map an attribute

(variable) in a class to a column in database. If you are new to some of these concepts, don't worry; after you see some examples later in

this chapter, it'll start to become a bit clearer.

There are various mapping strategies we can employ, such as horizontal mapping, vertical mapping, and union mapping. In vertical

mapping, each class in a hierarchy (abstract or concrete) is mapped to a different table. For example, if we have concrete classes named

Dog and Cat, both inheriting from an abstract class named Animal, we would end up having three tables in the databaseone for each

class. In horizontal mapping, each concrete class is mapped to a table. In union mapping, many classes (presumably part of the same

hierarchy) map to a single table.

Although vertical mapping is more flexible, it is also more complex because it requires multiple tables to extract all the data. Hence, we will

use horizontal mapping because it is a simpler design and can provide faster performance, especially for simple to reasonably complex

applications. To be more specific, our approach will involve one table per class mapping strategy.

In-Memory Versus Persisted Objects

When we are working with ORM technologies, there is a distinction between database objects we have in memory versus

persisted ones. If the object does not exist in the database, or its attribute values do match the corresponding column values in the

database, it is considered an in-memory object. For example, Hibernate distinguishes object states as persistent, detached, or transient

(each is explained later in this chapter).

Another way to look at this distinction is that if we remove an object from memory (for example, by removing it from a Java collection), it

does not necessarily mean the record has been physically deleted from the database (unless, of course, we mapped the collection in

Hibernate to have automatic cascading during parent deletes).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Design of Our Sample Database

Now that we have covered some OR concepts, it is time to set up our database so that we can move one step closer to building an

application's user interface with the help of the Spring Web MVC Framework.

As I mentioned in earlier chapters, the focus of this book is more on development and less on infrastructure. Given Java's vendor

product portability (for example, operating system, web/application server, databases), in theory, it should be relatively easy to develop

your application using one product but deploy to another application. In light of this, I chose the easiest (and consequently

lightest-weight) products to set up. HSQLDB, a relational database, is one such product (discussed later in this chapter), and we will use

it for Time Expression.

Denormalization

Before we look at HSQLDB, let's revisit our domain model from Chapter 3, "XP and AMDD-Based Architecture and Design Modeling,"

shown in Figure 5.1.

Given the simplicity of our sample application, Time Expression, and its domain model, we could create a physical database model

(PDM), also known as an Entity-Relationship (ER) diagram, which contains entities identical to ones in our domain model, with the

addition of columns and data types and other database constraints. However, let's denormalize it just a bit for performance and ease of

development purposes.

Figure 5.2 shows a PDM, denormalized a bit from our Domain Model and with data types (for example, varchar) added to it. The

denormalization is related only to the Timesheet and Time tables.

Naming Convention

You will notice we are using Java-like naming conventions for the table and column names. This makes our job easier because we can

use the same names across all artifacts related to Time Expression while also gaining consistency across them. In other words, we have

matching names from User Story tag/name to controller classes to model (domain) objects to the Hibernate persistent bean Java code

and finally, to the database tables and columns (shown in Figure 5.2).

This naming approach makes our job easier in two ways. First, we don't need to think about the naming convention for each layer, and

second, it reduces the amount of mapping details we need to specify in our Hibernate class mapping files because we do not have to

specify a corresponding column name for each property being mapped (as we will see later in this chapter).

However, in the real world, you might not have control over the database table/column naming because a database group might have

their own set of naming standards. In this case, it is easy to use Hibernate's column attribute to specify the database column name. I

would also encourage following your organization's naming standards for consistency sake.

Note that for database objects (such as tables and sequences), I tend to use names starting with an uppercase letter, whereas column

names start with a lowercase letter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Database Design Disclaimers

The following are some disclaimers and/or explanations for the PDM we looked at in Figure 5.2.

Unused Columns

By combining the Timesheet and Time entities into one physical table, there is the possibility of wasted database space by unused

columns. For example, there is a good chance that MinutesSat and MinutesSun will be less frequently used (unless employees in

this company work most or all weekends). However, the advantages of the simpler design and performance arguably outweigh the

disadvantages of a bit of wasted space.

Int Versus Float

We have used Minutes<Day> columns to store fractional hours worked (for example, 30 minutes or 0.5 hour) in the Timesheet table

versus Hours<Day> columns or even float data types. The reason we did this is because I want to demonstrate how we can use the

Spring Web MVC framework (in Chapter 7, "The Spring Web MVC Framework") to do automatic data conversions between the UI and

the database. Also, an int will typically take up less physical storage space than a float will (for example, 2 bytes versus 4 bytes).

Password

We have a Password column in the Employee table. Typically, in larger organizations, you might end up using something like a central

Lightweight Directory Access Protocol (LDAP) authentication service. However, this works well for our small (and sample) application,

Time Expression.

DDL Script

Now that we have a PDM (see Figure 5.2), we can move to the next level down, which is to write a DDL script that can be used to create

the actual databse. Our DDL script is embedded inside one of our Ant scripts, named timexhsqldb.xml. The table names, column names,

and data types in our DDL script closely match the PDM in Figure 5.2, as they should.

Our DDL file primarily contains CREATE TABLE statements. However, I would like to point out a couple of additional notable items.

First, the primary key column of the Timesheet table is of data type identity, as shown in this code excerpt:

CREATE TABLE Timesheet

(

 timesheetId IDENTITY NOT NULL,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

As you might already know, an identity is an auto increment database column (and is directly supported by Hibernate). For databases

that do not support identity types, we can use a sequence type instead.

Second, we have seen some test data being inserted; this is for use by our JUnit test cases covered later in this chapter. For the sake of

simplicity, I have not created any primary or foreign key constraints, as we typically should in a real-world application. Also, the focus of

this chapter is to demonstrate features of Hibernate and not necessarily database design.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Where HSQLDB and Hibernate Fit into Our Architecture

Before we get too far along with HSQLDB and Hibernate, it is a good idea to revisit our architecture diagram that we developed

earlier in this book. Figure 5.3 shows the diagram; notice where HSQLDB and Hibernate fit into the big picture (top-right).

Figure 5.3. High-level architecture for Time Expression.

[View full size image]

In later chapters, when we develop our web and schedule job-related code, we will need the classes and database we will create in this

chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

HSQLDB

HSQLDB is a lightweight Java database engine that has been around since 2001. However, because it is a continuation of Thomas

Mueller's closed Hypersonic SQL Project, it has actually been around longer than 2001. In short, the product is fairly mature.

HSQLDB provides a good amount of ANSI-92 SQL-compliant features (and many enhancements from more recent SQL standards)more

than we will need in this book. Furthermore, most of the features defined by JDBC 2, and some from JDBC 3, are also supported.

HSQLDB's popularity has grown significantly since its inception a few years ago, and it is commonly found bundled with open source and

commercial Java-related products such as JBoss, OpenOffice.org, Atlassian's JIRA, and many more.

At the time of this writing, the HSQLDB project was one of the top 50 ranking in more than 100,000 SourceForge.net projects.

HSQLDB can be found at http://hsqldb.org. There are ample setup instructions on this site to download, install, and configure it. I'm using

version 1.8.x in this book.

HSQLDB Server and Convenient Ant Tasks

Now we need to start the HSQLDB server and create the database using our DDL file. However, first, let's copy the hsqldb.jar file from

the HSQLDB install directory to our lib/ directory; for example, on my Microsoft Windows XP-based system, I typed the following:

copy \hsqldb\lib\hsqldb.jar \anil\rapidjava\timex\lib\

We will use our Ant script, timexhsqldb.xml, to start the server and also to create the database. This file is placed in the top-level

directory of our sample application (in my case, this is C:\anil\rapidjava\timex).

Assuming our HSQLDB configuration is set up correctly, we can now type the ant -f timexhsqldb.xml starthsql command to start the

HSQLDB server, as demonstrated here:

C:\anil\rapidjava\timex>ant -f timexhsqldb.xml starthsql

From another command window, we can type the ant -f timexhsqldb.xml execddl command to execute our DDL script for creating our

database within HSQLDB, as demonstrated here:

C:\anil\rapidjava\timex>ant -f timexhsqldb.xml execddl

Before we move on, let's review parts of timexhsqldb.xml.

The following properties are related to HSQLDB; that is, the hfile property points to a local set of files under the timex/data/ directory, the

halias is the alias we will use in our client applications to connect to the HSQLDB server, and the hport is the port number the HSQLDB

server will listen to:

<property name="hfile" value="-database.0 data/timexdb"/>

<property name="halias" value="timex"/>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://hsqldb.org

<property name="hport" value="9005"/>

Next, the starthsql Ant target starts the HSQLDB server using the built-in Ant java task, as shown here:

<java fork="true"

 classname="${hclass}" classpath="${hjar}"

 args="${hfile} -dbname.0 ${halias} -port ${hport}"/>

The execddl Ant target uses the built-in sql task to execute our SQL DDL script, as shown here:

<sql classpath="${hjar}"

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost:${hport}/${halias}"

 userid="sa" password=""

 print="yes">

HSQLDB Database Manager and SqlTool

HSQLDB is bundled with two tools you should read about in the HSQLDB documentation: HSQL Database Manager (GUI) and SqlTool

(command-line based). These are nice tools for working with our database. Meanwhile, you will find two convenient ant tasks in our

timexhsqldb.xml file, hsqldm and sqltool, which can be used to start these two tools. For example, to start HSQL Database Manager, type

the following on the command line:

ant -f timexhsqldb.xml hsqldm

After the Database Manager comes up, we can change the following parameters on the screen and work with our database in a GUI

fashion, instantly (assuming the HSQLDB server is running in another window):

Type: HSQL Database Engine Server

URL: jdbc:hsqldb:hsql://localhost:9005/timex

HSQLDB Persistent and In-Memory Modes

Be sure to read about the various modes HSQLDB can run in (such as local versus server and in-memory versus persistent); we will use

the server and persistent mode. For example, we could also use the very same HSQLDB database files (found under our timex/data/

directory) as follows:

jdbc:hsqldb:file:${catalina.base}/webapps/timex/WEB-INF/data/timexdb

Incidentally, this is a feature that ties in nicely with the next section on bundling HSQLDB in an archive file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Bundling HSQLDB in a Deployable Archive File

As an added benefit, HSQLDB has a small enough footprint to run entirely in memory. For example, we could deploy our sample

application with HSQLDB, bundled in the same web archive (WAR) file, essentially making the WAR file a fully self-contained system

with no need for an external database!

Personal Opinion: Data Is the Customer's Most Valuable Asset!

After all my years developing software, I still find that some people miss the whole point of Information Technology (IT).

In my words, IT means technology for managing information. Information. As in data (databases).

Data is the customer's asset and hence the single most important component of a system. The data outlives most

programs written to use it. This is precisely why the domain model, physical data model, and database refactoring are

more important aspects of software development than, for example, cool tools or adding layers of unnecessary

abstractions in your code.

When you're designing the database, one important thing to keep in mind is that the database can be used by multiple

applications, not just a single, well-designed, object-oriented, n-tier application. For example, querying and reporting

tools could also access the database for customer reports. So, as much as possible, the structure of the database

should be somewhat independent of a single application. Furthermore, even the original application designed for the

database can be retired after a few years, but the database will likely live on for a long time to come on.

For further reading on this matter, visit the agiledata.org website to learn more about database refactoring techniques.

You may also want to visit the domaindrivendesign.org website, which is complementary to the AM website. For

example, I found this line from an article by Eric Evans on this website, "the complexity that we should be tackling is the

complexity of the domain itselfnot the technical architecture, not the user interface, not even specific features."

To summarize, the data is the customer's asset, so focus on getting the domain model and database structure right

using a combination of some upfront design and database refactoring as necessary.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://agiledata.org
http://domaindrivendesign.org

Working with Hibernate

Hibernate has recently gained a lot of momentum in the world of Java database application development. Although products such as

Toplink and others have been around for many years, Hibernate is open source (hence, free), stable, mature, well documented, and

relatively easy to learn; these are probably just a few reasons why it is as popular as it is. Hibernate has been around for several years but

was recently acquired by the JBoss group. (However, it continues to operate autonomously as an open source project.)

The Hibernate persistence framework can make working with relational databases using Java a pleasant experience. This is especially

true if you have been developing using JDBC or using heavy-handed type entity beans. Defining the mappings can seem like a slight pain

initially, but as you will see in later in this book, there are tools to generate these mapping files.

No Need for DAOs or DTOs

The extra work of defining mappings is well worth it because our persistence code will be cleaner and we will have automatically

eliminated the need for Data Access Objects (DAOs), which typically are objects that know how to persist themselves. We also won't need

Data Transfer Objects (DTOs), which are objects used to encapsulate business data and get transferred between layers of an application.

Supported Databases

As of the writing of this book, Hibernate supported the following databases (other databases are supported via community efforts):

DB2

HSQLDB

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

SAP DB

Sybase

TimesTen

Note

The databases are supported via Hibernate's SQL Dialect classes such as org.hibernate.dialect. HSQLDialect,

org.hibernate.dialect. OracleDialect, org.hibernate.dialect. MySQLDialect, and so on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Hibernate and EJB 3.x

One thing worth mentioning here is that members of the Hibernate/JBoss team are part of the EJB 3.0 expert group, a group that helped

simplify the EJB specifications. It should come as no surprise, then, that the latest version of Hibernate supports the EJB 3.0 specification.

However, we will not cover the EJB 3.0 here because it is outside the scope of this book. The focus of this book is on lighter-weight (and

open source) frameworks, not heavy-handed specifications that require commercial application servers to use these features.

Simple Test for Hibernate Setup

Before diving into Hibernate concepts and terminology, let's look at a simple hibernate program and the setup involved. The following

sections outline the steps required to get our first test program, SimpleTest, working. But first, let's take another look at the development

directory structure we established in Chapter 3.

Figure 5.4 shows the development directory structure for Time Expression. It is important to review this again because we will create

several files in this chapter and refer to them using their relative path namesfor example, model/Department.java means file Department.java in the

timex/src/java/com/visualpatterns/timex/model/ directory.

Figure 5.4. The Time Expression development directory structure.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Hibernate XML Files and Related Java Files

We will place the three types of Hibernate files (discussed next), a Hibernate configuration file, related Java classes, and table mapping

files, in the same directory. This is the practice recommended in Hibernate documentation and examples.

The naming convention for the Hibernate mapping files is typically the name of the Java class name with a suffix of .hbm.xmlfor example,

Timesheet.hbm.xml.

Hibernate Configuration File (hibernate.cfg.xml)

First we will create a file named hibernate.cfg.xml in the timex/src/java/com/visualpatterns/timex/model/ directory. This file will contain a SessionFactory

definition (discussed later in this chapter) and reference to our first mapping file, Department.hbm.xml. Let's review some of the interesting lines

from this file:

The following lines show the HSQLDB-related configuration (as we saw in timexhsqldb.xml, previously):

<property name="connection.driver_class">

 org.hsqldb.jdbcDriver

</property>

<property name="connection.url">

 jdbc:hsqldb:hsql://localhost:9005/timex

</property>

<property name="connection.username">sa</property>

The following lines from our hibernate.cfg.xml show the reference to the mapping files we will create in this chapter:

<mapping resource="Department.hbm.xml"/>

<mapping resource="Employee.hbm.xml"/>

<mapping resource="Timesheet.hbm.xml"/>

Using the complete hibernate.cfg.xml file, we will be able to create a Hibernate SessionFactory (discussed later in this chapter).

Mapping File (Department.hbm.xml)

We will create our first mapping file, Department.hbm.xml, in the timex/src/java/com/visualpatterns/timex/model/ directory.

To keep things simple, I chose to start with the Department table because it is one of the simpler tables, and we will also use it in our

slightly more complex example later in this chapter. Let's review the Department.hbm.xml file a bit closer.

The following line maps our Java class to the database table:

<class name="com.visualpatterns.timex.model. Department" table="Department">

The following line establishes departmentCode as the object id (as we discussed earlier) and the database primary key, and also maps the two:

<id name="departmentCode" column="departmentCode">

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The generator class="assigned" value shown next tells Hibernate that we will be responsible for setting the value of this object id in our Java class,

and Hibernate does not need to do anything special, such as get the next sequence from an auto-increment type column (for example,

HSQLDB's identity data type):

<generator class="assigned"/>

This line maps the remainder of the Department tablethat is, the name column to a name property in the Department.java class file (discussed

next):

<property name="name" column="name"/>

Java Code

We will write two Java classes, one called com.visualpatterns.timex.model. Department and another called com.visualpatterns.timex.test. HibernateTest.

Department.java

The Department.java (under src/java/com/visualpatterns/timex/model) contains a simple JavaBean class, which provides accessors (get methods or getters)

and mutators (set methods or setters) for these two variables:

String departmentCode;

String name;

HibernateTest.java

Now we will write some simple code to accomplish two things: test the Hibernate setup and also look at a basic example of how to use

Hibernate. Let's review our HibernateTest.java file (under src/java/com/visualpatterns/timex/test) step-by-step.

The first few lines show how we obtain a Hibernate SessionFactory class and get a single Department record back for the

departmentCode "IT":

SessionFactory sessionFactory = new Configuration().configure()

 .buildSessionFactory();

Session session = sessionFactory.getCurrentSession();

Transaction tx = session.beginTransaction();

Department department;

department = (Department) session.get(Department.class, "IT");

System.out.println("Name for IT = " + department.getName());

The following lines shows how to get and process a java.util. List of Department objects.

List departmentList = session.createQuery("from Department").list();

for (int i = 0; i < departmentList.size(); i++)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

{

 department = (Department) departmentList.get(i);

 System.out.println("Row " + (i + 1) + "> " + department.getName()

 + " (" + department.getDepartmentCode() + ")");

}

The remaining notable line closes out theSessionFactory.

sessionFactory.close();

Note the HibernateTest.java file provides a simple example of using Hibernate by bunching all the code in a single (main) method. Later in this

chapter, we will look at a better way of building a SessionFactory and subsequently obtaining Session objects from it.

Now we are going to try running our test using our Ant build.xml file, introduced in Chapter 4, "Environment Setup: JDK, Ant, and JUnit." Our

Ant target, hibernatetest, is as follows:

<target name="hibernatetest" depends="build">

 <java fork="true" classpathref="master-classpath"

 classname="com.visualpatterns.timex.test. HibernateTest"/>

</target>

To run our test, we need to:

Change (cd) to the timex/ (top-level) directory.

Type the ant hibernatetest command, as shown in Figure 5.5.

Figure 5.5. Ant errors due to missing lib/hibernate3.jar file in classpath.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Notice that there are errors on the screen, such as package org.hibernate does not exist. This means it is time to download and set up Hibernate in our

environment!

Installing Hibernate

Hibernate can be found at http://hibernate.org. At this point, we will follow the setup instructions provided on this site to download and

install it to the recommended (or default) directory.

After we have the Hibernate installed, we will copy all the recommended libraries (for example, hibernate3.jar and antlr.jar) in the Hibernate

documentation to the rapidjava/lib directory.

Note that I also needed to copy ehcache-1.1.jar and antlr-2.7.6rc1.jar (which was not mentioned in the Hibernate reference documentation at the time

of this writing). Here is what I ended up with, in my timex/lib/ directory:

antlr-2.7.6rc1.jar

asm-attrs.jar

asm.jar

cglib-2.1.3.jar

commons-collections-2.1.1.jar

commons-logging-1.0.4.jar

dom4j-1.6.1.jar

ehcache-1.1.jar

hibernate3.jar

jta.jar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://hibernate.org

log4j-1.2.11.jar

Before rerunning our test, we need to temporarily alter the hibernate.cfg.xml file. Because we have only Department.hbm.xml implemented, we need to

temporarily remove the following lines (to conduct this test) from our hibernate.cfg.xml file:

<mapping resource="Timesheet.hbm.xml"/>

<mapping resource="Employee.hbm.xml"/>

Finally, we can rerun the ant hibernatetest command. If we run the ant as shown earlier in Figure 5.5, this time our command is successful,

as shown in Figure 5.6!

Figure 5.6. Output of the HibernateTest class.

[View full size image]

At this point, we can reinsert the following two lines into the hibernate.cfg.xml file:

<mapping resource="Timesheet.hbm.xml"/>

<mapping resource="Employee.hbm.xml"/>

Notice the log4j warning messages in Figure 5.6. We could ignore these because they are harmless. However, we'll go ahead and create

a minimal log4j.properties file (available in this book's code zip file) in our timex/src/conf directory. Logging will be discussed in more detail in Chapter

9, "Logging, Debugging, Monitoring, and Profiling."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Hibernate Basics

Now that we have looked at a small preview of Hibernate-related Java code and XML files, let's get a high-level understanding of

some basic Hibernate concepts before we look at slightly more complex Hibernate code for the Time Expression application.

Dialect

Hibernate provides dialect classes for the various supported databases mentioned earlier. This is essentially to ensure that the correct and

most optimized SQL is used for the database product being used. For example, we are using the org.hibernate.dialect. HSQLDialect class for

HSQLDB.

SessionFactory, Session, and Transaction

SessionFactory, as you might guess, manages a collection of Session objects. Each SessionFactory is mapped to a single database. The

Session object essentially is a wrapper for a JDBC connection and is also a factory for Transaction objects. A Transaction is a wrapper for

the underlying transaction, typically a JDBC transaction.

Built-In Connection Pooling

A side but important benefit of using Hibernate is that it provides built-in database connection poolinghence, one less thing for us to worry

about. Connection pooling, as you might be aware, is used to create a specified pool of open database connections (see connection.pool_size

property in our hibernate.cfg.xml). By using a pool of connections, we can achieve more efficiency in our use of the database because existing

open connections are reused. Furthermore, we get performance gains because we reuse open connections, thereby avoiding any delays

in opening and closing database connections.

Working with Database Records (as Java Objects)

Several methods available in Hibernate's org.hibernate. Session interface enable us to work with database records as objects. The most

notable methods are save, load, get, update, merge, saveOrUpdate, delete, and createQuery (several of these are demonstrated later in

this chapter).

Another noteworthy interface to mention is org.hibernate. Query, which is returned by calling the Session.createQuery Hibernate method

in our HibernateTest.java file. The Query class can be used to obtain a group of records in the form of a java.util. Collection object (for example,

Hibernate provides mapping elements such as an array, set, bag, and others).

One last interface worth mentioning here is org.hibernate. Criteria, which can be used for database queries in an OO fashion, as an

alternative to the Query class (which is HQL based).

We will look at examples of most of these interfaces and methods in this chapter.

Object States

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Hibernate defines three states for object instances: persistent, detached, and transient. Persistent objects are ones that are currently

associated with a Hibernate session; as soon as the session is closed (or the object is evicted), the objects become detached. Hibernate

ensures that Java objects in a persistent state for an active session match the corresponding record(s) in the database. Transient objects

are ones that are not (and most likely, never were) associated with Hibernate session and also do not have an object identity.

Data Types

Hibernate supports a large number of Java, SQL, and Hibernate typesmore than you will probably need for a typical application. Also, you

can have Hibernate automatically convert from one type to another by using a different type for a given property in a entity/class mapping

file.

The following is a partial list of types supported: integer, long, short, float, double, character, byte, boolean, yes_no, true_false, string,

date, time, timestamp, calendar, calendar_date, big_decimal, big_integer, locale, timezone, currency, class, binary, text, serializable, clob,

and blob.

Hibernate Query Language (HQL)

HQL is Hibernate's robust SQL-like query language, which is not case sensitive. HQL has many of the features defined in ANSI SQL and

beyond, because it is fully object-oriented and supports OO concepts such as inheritance, polymorphism, and more. The following are

some basic clauses and features supported in HQL. You will see some examples of these later in the chapter:

SELECT, UPDATE, DELETE, INSERT, FROM, WHERE, GROUP BY, ORDER BY

Joins (inner, outer)

Subqueries

Aggregate functions (for example, sum and count)

Expressions and functions (mathematical, string, date, internal functions, and more)

Furthermore, Hibernate provides methods that enable you to use native SQL (discussed in Chapter 10, "Beyond the Basics") for the

somewhat rare occasions when HQL is insufficient.

You will see basic examples of HQL throughout this chapter.

Unique Object Identifier (<id>)

Hibernate requires mapped classes to identify a table's primary key via the <id> element. For example, the following code excerpt from our

Department.hbm.xml file shows departmentCode defined as the primary key (for the Department table mapping):

<id name="departmentCode" column="departmentCode">

 <generator class="assigned"/>

</id>

Notice the generator class of type "assigned" in this code excerpt; this means the application will provide a value for this id property prior

to any database operations on this object.

Hibernate provides several ways to generate unique ids for inserted records, including increment, identity, sequence, hilo, seqhilo, uuid,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

guid, native, assigned, select, and foreign. The hibernate reference documentation provides ample explanation of each of these. We will

use the assigned and identity generators for our examples.

Mandatory Hibernate Transactions

According to the Hibernate documentation related to working with this API, "transactions are never optional, all communication with a

database has to occur inside a transaction, no matter if you read or write data."

Hence, you will find the following types of calls in all our Hibernate-related code:

session.beginTransaction()

session.getTransaction().commit()

session.getTransaction().rollback()

HibernateUtil.java

The Hibernate reference documentation recommends the use of a helper class (named HibernateUtil, for example) for setting up a

SessionFactory and providing access to it (via a getter method).

A sample HibernateUtil.java class file can be found under the timex\src\java\com\visualpatterns\timex\test directory. This helper class contains only a few lines

of actual code. The first notable lines are the following, which build a SessionFactory object:

sessionFactory = new Configuration().configure()

 .buildSessionFactory();

The only other interesting code in this class is a convenient getter method to return the SessionFactory, as shown here:

public static SessionFactory getSessionFactory()

{

 return sessionFactory;

}

Then we can obtain a Session object, as demonstrated in this code snippet, which fetches a list of Department database objects:

List departmentList=null;

Session session = HibernateUtil.getSessionFactory().getCurrentSession();

session.beginTransaction();

departmentList = session.createQuery("from Department ORDER BY name").list();

session.getTransaction().commit();

Further Reading

Again, we have looked only at high-level explanations of the various Hibernate concepts. I will refer you to the Hibernate

documentation (found on their website) for detailed information on the concepts discussed here; however, we will be using many of these

concepts in our examples, so I will provide additional explanations and code examples along the way.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Now that we have the basics covered, let's begin doing some real work by implementing a full-fledged example to exercise some of

Hibernate's many features.

Developing TimesheetManager.java Using Hibernate

If you think about the business requirements of Time Expression, combined with the prototyped screens we looked at in Chapter 2, "The

Sample Application: An Online Timesheet System," and the database model shown in Figure 5.2, you can easily see that the Timesheet

table is at the heart of our sample application (Time Expression). Hence, I've chosen to use this table as an example in this chapter

because our requirements will exercise both read and write type database operations on this table. For example, most screens in Time

Expression will either modify data in this table or fetch data from it.

Based on the class/package design we defined in Chapter 3 and the Hibernate configuration files needed, here are the files we will end up

with for the example to follow:

test/TimesheetManagerTest.java

model/TimesheetManager.java

model/Timesheet.java

model/Timesheet.hbm.xml

The following sections review each of these files in more detail.

TimesheetManagerTest.java

Let's begin by writing a little JUnit test class. Remember, write tests first whenever possible. We already looked at the reasons and

benefits of writing tests first in Chapter 4, so I won't repeat the same information here.

The only class we need to write a unit test for is TimesheetManager because Timesheet.java is a JavaBean and hence has no real logic in its

methods (just setters and getters).

If we analyze the following two screens from Chapter 2, we can come up with the type of functionality we need our TimesheetManager

class to provide:

Timesheet List A list of Timesheet records for a given employeeId.

Enter Hours The capability to insert and update a single Timesheet record.

Let's look at an example of the functionality we need and how we might implement it. We know we need a list of Timesheet records for the

Timesheet List screen (shown in Figure 5.7); this list will be fetched from the database using an employeeId (that is, the employee who is

logged in) and also for the current pay period. Hence, I can already picture a method in the TimesheetManager class with a signature that

looks something like this: getTimesheet(int employeeId, Date periodEndingDate). So, we can easily write a test case (method) such as

testGetByEmployeeIdAndPeriod().

Figure 5.7. Timesheet list prototype screen (from Chapter 2).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This book's code zip file contains TimesheetManagerTest.java, a complete JUnit test suite class to exercise all the methods in our TimesheetManager

class.

Note

Note that I didn't write the entire test class in one shot. As I mentioned earlier, unit testing and coding happen in the same

sitting. So you would write a little test code (perhaps a few lines in a single method), write a little implementation code,

compile, try, and repeat the steps until the method has been fully implemented. The idea is to write small methods, which

can be tested relatively easily. This technique also enables us to write the minimal code required to satisfy our user

requirements (nothing more, nothing less).

Let's review some of the test code behind this class next; we won't walk through the entire file because we only require fetching (get) of

Timesheet objects and saving of individual ones, so let's review methods related to these operations next.

testGetByEmployeeId()

Let's start with the testGetByEmployeeId() method. The first few lines of this code ensure that we get a java.util. List of Timesheet objects back

before proceeding:

List timesheetList = timesheetManager.getTimesheets();

assertNotNull(timesheetList);

assertTrue(timesheetList.size() > 0);

After we know we have at least one Timesheet object, we can fetch Timesheet records using the employeeId found in the first Timesheet

object, as shown here:

int employeeId=((Timesheet)timesheetList.get(0)).getEmployeeId();

timesheetList = timesheetManager.getTimesheets(employeeId);

assertNotNull(timesheetList);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Now we can simply test each Timesheet object in the list to ensure that these records belong to the employeeId we requested, as

demonstrated next:

Timesheet timesheet;

for (int i=0; i < timesheetList.size(); i++)

{

 timesheet = (Timesheet)timesheetList.get(i);

 assertEquals(employeeId, timesheet.getEmployeeId());

 System.out.println(">>>> Department name = "

 + timesheet.getDepartment().getName());

}

testSaveSingle()

Let's review one more test method from our TimesheetManagerTest.java file, testSaveSingle. The first half of this method sets up a Timesheet object to

save; however, the following lines are worth exploring:

timesheetManager.saveTimesheet(timesheet);

Timesheet timesheet2 = timesheetManager.getTimesheet(EMPLOYEE_ID,

 periodEndingDate);

assertEquals(timesheet2.getEmployeeId(), timesheet.getEmployeeId());

assertEquals(timesheet2.getStatusCode(), "P");

We essentially save a Timesheet object, and then fetch it back from the database and compare the two objects' attributes using the

assertEquals method.

TimesheetManager.java

Next we will look at our bread-and-butter class (so to speak). We will use this class extensively in Chapter 7 when we implement our user

interfaces (for example, Timesheet List and Enter Hours).

The key methods we will review here are getTimesheets, getTimesheet, and saveTimesheet.

Let's start with the TimesheetManager. getTimesheets(int employeeId) method. The key lines code essentially get a java.util. List of Timesheet objects from

the database using the Hibernate Session.createQuery method, as shown here:

timesheetList = session.createQuery(

 "from Timesheet" + " where employeeId = ?").setInteger(0,

 employeeId).list();

The next method, TimesheetManager.getTimesheet(int employeeId, Date periodEndingDate), is slightly different from the getTimesheets(int employeeId) method we just

looked at; the key difference is the use of Hibernate's uniqueResult method, which is a convenient method to get only one object back from a

query. The following code shows the notable lines from our getTimesheet method:

timesheet = (Timesheet) session.createQuery(

 "from Timesheet" + " where employeeId = ?"

 + " and periodEndingDate = ?").setInteger(0,

 employeeId).setDate(1, periodEndingDate).uniqueResult();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The last method in TimesheetManager that we will review here is saveTimesheet(Timesheet timesheet). This is a very straightforward method, and the

only code worth showing here is the Hibernate's session.saveOrUpdate method, which either does an INSERT or UPDATE underneath the

covers, depending on whether the record exists in the database:

session.saveOrUpdate(timesheet)

Timesheet.java (and Timesheet.hbm.xml)

Before we can successfully compile and use TimesheetManager.java, we need to quickly write files it relies on, namely Timesheet.java and its mapping

file, Timesheet.hbm.xml (both available in this book's code file). There is not much to these files; the Java code is a simple JavaBean and the

XML file simply maps the bean's properties to the appropriate database columns.

Employee.* and DepartmentManager.java

The other files provided in this book's code zip file but not explicitly discussed here include the following as we will need these to

implement our first five user stories (page 36).

At this point, we will create these files in our src/java/com/visualpatterns/timex/model directory:

DepartmentManager.java

Employee.hbm.xml

Employee.java

EmployeeManager.java

Files Required in Classpath

The various Hibernate files, such as the hibernate.cfg.xml and mapping files (for example, Department.hbm.xml) need to be in the CLASSPATH;

accordingly our Ant script, build.xml, automatically copies these files to the timex/build/timex/WEB-INF/classes directory during a build process.

Running the Test Suite Using Ant

Now we can run our test suite (TimesheetManagerTest) discussed previously. However, before we can run the test suite, we need to run

HSQLDB in server mode. We can either do it manually as shown here:

java -cp /hsqldb/lib/hsqldb.jar org.hsqldb. Server

 -database.0 data\time xdb -dbname.0 timex -port 9005

Note

I've assumed the HSQLDB directory is installed under the root directory (that is, /hsqldb); alter the java command shown here

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

according to your environment.

Or we can run it using our handy Ant script, as follows:

ant -f timexhsqldb.xml starthsql

After we start up the HSQLDB server successfully and have all our files created in the correct directories, we can test our new classes by

typing ant rebuild test on the command line (from the timex/ top-level directory). The output of this command is shown Figure 5.8.

Figure 5.8. Running JUnit test suites via Ant.

[View full size image]

Deleting Records

We covered database reads and writes. However, we have not covered deleting records, a basic need in any CRUD application. Deleting

records is not part of our Time Expression application's requirement. Nevertheless, I've added one for demonstration purposes. The only

thing different from what we have already seen is the Session.delete, which deletes a database record (object) and Session.load, which

fetches a record from the database, as demonstrated here:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

session.delete(session.load(Timesheet.class, new Integer(timesheetId)));

Alternatively, the delete code can be written using the Query.executeUpdate() method, useful for bulk processing, as shown here:

int updated = session.createQuery("DELETE from Timesheet"

 + " where timesheetId = ?")

 .setInteger(0, timesheetId)

 .executeUpdate();

Criteria Queries

Until now, we have utilized Hibernate's Query interface (via the Session.createQuery method) to fetch records from the database. However, there

is a slightly more dynamic, and arguably cleaner, way of fetching records using Hibernate's Criteria interface. This provides a more

object-oriented approach, which can result in fewer bugs because it can be type checked and can avoid potential HQL-related syntax

errors/exceptions. This method is cleaner because developer does use a more object-oriented approachmore objects rather than simple

text queries, hence, more type checking, hence fewer bugs, especially, QueryExceptions. It could be a problem though if query syntax is

too complex.

The Criteria interface can be obtained using the Session.createCriteria method as shown in the following code excerpt:

timesheetList = session.createCriteria(Timesheet.class)

 .add(Restrictions.eq("employeeId", employeeId))

 .list();

In addition, Hibernate provides several classes in the org.hibernate.criterion package, which work with the Criteria interface to provide

robust querying functionality using objects. Some examples of these classes are Restrictions, Order, Junction, Distinct, and several others.

Exception Handling

Most of the database-related exceptions thrown while using the Hibernate API are wrapped inside org.hibernate.HibernateException; more details

on this can be found in Hibernate's reference manual. Meanwhile, the following strategy is recommended in Hibernate's reference manual

for handling database exceptions:

"If the Session throws an exception (including any SQLException), you should immediately rollback the database transaction, call

Session.close() and discard the Session instance. Certain methods of Session will not leave the session in a consistent state. No

exception thrown by Hibernate can be treated as recoverable. Ensure that the Session will be closed by calling close() in a finally block."

We are following these guidelines, of course. However, you might also have noticed in our model code that we rethrow any caught

exceptions. It is generally a good idea to pass exceptions up the call stack, so the top-level methods can determine how to process the

exception. We will discuss exception handling in more detail in Chapter 10.

I think the problem with this piece of code may be that the developer will never know what exception has actually occurred, because all we

do in the catch block is roll back the transaction. Some kind of logging mechanism or exception propagation mechanism to outer callers is

necessary to make sure the exception is noticed and handled properly (otherwise, we'll never know about the failure details, except by

knowing that timesheet did not get saved).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Other Hibernate Features

Up to now in this chapter, we have looked at some basic Hibernate features. Next, let's review some additional, slightly more advanced,

Hibernate concepts.

Associations

The physical database design, the mapping, and the Java classes for Time Expression are all fairly straightforward. We have essentially

used a one-class-per-table mapping strategy to keep the design simple and fast. However, we have utilized a many-to-one association

to fetch the corresponding Department record, which we can use to obtain the name of the department. We will need this functionality on

various Time Expression screens that display the full Department.name (versus just the Department.departmentCode).

Let's dissect the Java code and XML mapping related to this association.

First, the persistent attribute Java bean code can be found in Department.java file; an excerpt of it, is shown here:

private Department department;

public Department getDepartment()

{

 return department;

}

public void setDepartment(Department department)

{

 this.department = department;

}

Secondly, the many-to-one mapping can be found in our Timesheet.hbm.xml file:

<many-to-one name="department" column="departmentCode"

 class="com.visualpatterns.timex.model.Department"

 lazy="false" not-found="ignore" cascade="none"

 insert="false" update="false"/>

Finally, the code on how we obtain the department name can be found in our TimesheetManagerTest.java file:

System.out.println(">>>> Department name = " +

timesheet.getDepartment().getName());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Locking Objects (Concurrency Control)

Database locking can apply to any database applications, not just ones based on ORM technologies. There are two common strategies

when dealing with updates to database records, pessimistic locking and optimistic locking.

Optimistic locking is more scalable than pessimistic locking when dealing with a highly concurrent environment. However pessimistic

locking is a better solution for situations where the possibility of simultaneous updates to the same data by multiple sources (for example,

users) is common, hence making the possibility of "data clobbering," a likely scenario. Let's look at a brief explanation of each of these

two locking strategies.

Pessimistic locking is when you want to reserve a record for exclusive update by locking the database record (or entire table). Hibernate

supports pessimistic locking (using the underlying database, not in-memory) via one of the following methods:

Session.get

Session.load

Session.lock

Session.refresh

Query.setLockMode

Although each of the methods accepts different parameters, the one common parameter across all is the LockMode class, which

provides various locking modes such as NONE, READ, UPGRADE, UPGRADE_NOWAIT, and WRITE. For example, to obtain a

Timesheet record for updating, we could use the following code (assuming the underlying database supports locking):

public Timesheet getTimesheetWithLock(int timesheetId)

{

 Session session =

 HibernateUtil.getSessionFactory().getCurrentSession();

 session.beginTransaction();

 Timesheet timesheet = (Timesheet)session.get(Timesheet.class,

 new Integer(timesheetId), LockMode.UPGRADE);

 session.getTransaction().commit();

 session.close();0

 return timesheet;

}

Optimistic locking means that you will not lock a given database record or table and instead check a column/property of some sort (for

example, a timestamp column) to ensure the data has not changed since you read it. Hibernate supports this using a version property,

which can either be checked manually by the application or automatically by Hibernate for a given session. For example, the following

code excerpt is taken verbatim out of the Hibernate reference documentation and shows how an application can manually compare the

oldVersion with the current version using a getter method (for example, getVersion):

// foo is an instance loaded by a previous Session

session = factory.openSession();

int oldVersion = foo.getVersion();

session.load(foo, foo.getKey());

if (oldVersion!=foo.getVersion) throw new StaleObjectStateException();

foo.setProperty("bar");

session.flush();

session.connection().commit();

session.close();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

StaleObjectStateException, shown in the previous example, is an exception in the org.hibernate package.

Lots More Hibernate

Although we covered a lot of material in this chapter, there is much more to Hibernate. However, as I mentioned earlier, entire books

exist on Hibernate, and we cannot cover everything about this technology in one chapter. Nevertheless, I have given you enough here to

build some reasonably complex applications using Java, Hibernate, and relational databases.

Other Hibernate advanced topics not covered here, but ones you might want to explore, include

Advanced mappings (for example, bidirectional associations, ternary associations, sorted collections, component mapping,

inheritance mapping, and more)

Advanced HQL

Annotations (and XDoclet)

Filters

Hibernate SchemaExport utility

Inheritance mapping

Interceptors

Locking objects

Performance improvement strategies (for example, fetching strategies, second-level cache)

Scrollable iteration and pagination

Transaction management (advanced topics)

Other areas such as using stored procedures, native SQL, and more

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we developed the classes we need to implement functionality for the first five user stories (page 36). Furthermore, these

classes are directly relevant to the code we will develop in Chapter 7 and the scheduled jobs in Chapter 10.

In this chapter, we accomplished the following:

Learned what object-relational mapping technology is and the benefits it offers

Installed HSQLDB

Designed our database

Used DDL script to create our database tables and some test data

Setup Hibernate, covered its basic concepts, and began working with it

Developed a simple and then a slightly more complex example (along with a corresponding unit test suite class) of using

Hibernate for Time Expression's Department and Timesheet tables

Discussed advanced Hibernate topics and other features for you to explore (should you need them)

However, we are not done with Hibernate just yet! For example, we will use some of the classes coded in this chapter in our web

application in the next chapter. In addition, I will demonstrate how we can use an Eclipse plug-in to generate the Hibernate mapping files

(in Chapter 8, "The Eclipse Phenomenon!").

For now, we are ready to dive into the next two chapters where we enter the world of user interfaces by using the Spring MVC web

framework to develop our web UI.

We will also begin working with the Eclipse SDK in Chapter 8 and see how much time IDEs can save. Till now, I have intentionally used

the command line because I truly believe learning the fundamentals first by using the manual way will help you better understand how

things work behind the scenes. It can also help you drop back to the command line in case the IDE does not provide a certain

functionality or it has a known bug.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Recommended Resources

The following websites are relevant to and provide additional information on the topics discussed in this chapter:

Agile Data http://www.agiledata.org

Agile Modeling http://www.agilemodeling.com

Apache ObJectRelationalBridge (OJB) http://db.apache.org/ojb/

Introduction to Concurrency Control http://www.agiledata.org/essays/concurrencyControl.html

Cocobase http://www.thoughtinc.com/

Database refactoring http://www.agiledata.org/essays/databaseRefactoring.html

Domain-Driven Design http://domaindrivendesign.org/

Hibernate forums http://forum.hibernate.org/

Hibernate http://hibernate.org/

HSQLDB http://hsqldb.org/

iBATIS Java http://ibatis.apache.org

JDO and EJB 3.0 http://java.sun.com

JORM http://jorm.objectweb.org/

Object Data Management Group http://www.odmg.org/

SimpleORM http://www.simpleorm.org/

The Castor Project http://www.castor.org/

Cocobase http://www.thoughtinc.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agiledata.org
http://www.agilemodeling.com
http://db.apache.org/ojb/
http://www.agiledata.org/essays/concurrencyControl.html
http://www.thoughtinc.com/
http://www.agiledata.org/essays/databaseRefactoring.html
http://domaindrivendesign.org/
http://forum.hibernate.org/
http://hibernate.org/
http://hsqldb.org/
http://ibatis.apache.org
http://java.sun.com
http://jorm.objectweb.org/
http://www.odmg.org/
http://www.simpleorm.org/
http://www.castor.org/
http://www.thoughtinc.com/

6. Overview of the Spring Framework

WHEN SUN MICROSYSTEMS INTRODUCED the Enterprise JavaBean (EJB) 1.0 specification a few years ago, I was excited at first

and even wrote a relatively lengthy article in 1999 for JavaWorld.com

(http://www.javaworld.com/javaworld/jw-04-1999/jw-04-middleware.html), essentially summarizing this specification in one article. The

article was well received and I was proud of my work.

A year later I wrote a much shorter article, also for JavaWorld.com, titled "Do You Really Need Enterprise JavaBeans?"

(http://www.javaworld.com/javaworld/jw-10-2000/jw-1006-soapbox.html).

My motivation for writing this article came from the many projects I ran across that were using EJBs in the wrong manner. For example, I

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.javaworld.com/javaworld/jw-04-1999/jw-04-middleware.html
http://www.javaworld.com/javaworld/jw-10-2000/jw-1006-soapbox.html

saw nondistributed use of this distributed technology. I even saw simple web applications use EJBs when they could have easily used

plain old Java objects (POJOs) in a well-designed application with a clear separation of the tiers (presentation and business tiers, for

example).

Furthermore, the role I played in my company required me to interview many developers, and that enabled me to gauge what the

mainstream companies, projects, and developers were using. Over a three-to-four-year period, it also enabled me to listen to personal

opinions of probably a hundred or so developers about EJBs (and other JEE components). The common theme I saw was that a large

majority were using only stateless session beans and the remainder were using a mix of entity beans and message-driven beans; I can't

recall anyone using stateful session beans.

So, what is the point of this story? Simple. In my opinion, Sun had defined a standard that was possibly more applicable to the complex

applications and less applicable to applications that did not require the many facilities provided by JEE. Furthermore, using EJB on a

project meant needing an EJB containerwhich can sometimes translate into an expensive, application server, if your organization

chooses to go the commercial route versus using open source products such as JBoss Application Server (jboss.com) or Apache

Geronimo (geronimo.apache.org).

When I came across the Spring Framework some time ago, I was thrilled to see that I could work with POJOs and still have many of the

services (similar to JEE/EJB) available to me, if I chose to use them. For example, Spring provides robust declarative transaction

management.

Dedicating two full and some partial chapters to the Spring Framework does not do it justice because there is so much to cover.

However, as you will soon see, the Spring Framework does not take an all-or-nothing approach; that is, you can pick and choose which

modules are applicable to you. In this book, we are using Spring for two main features: its web framework and of course, the inversion of

control (IoC; also referred to as dependency injection) services. In addition, we will use Spring for scheduling jobs and sending emails.

We will not use Spring AOP directly, but indirectly when we use the Spring Web MVC Framework.

Note

From this point, I will refer to the Spring Framework simply as Spring in many places. Also, I will use the terms

dependency injection and IoC interchangeably (more on this later in this chapter).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://jboss.com
http://geronimo.apache.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

The focus of this chapter is to get a high-level understanding of the Spring Framework and some related concepts (for example,

dependency injection). We will look at the Spring Web MVC Framework in the next chapter, and we'll look at other features such as job

scheduling and emailing in later chapters. In this chapter, we will

Get a clear understanding of what the Spring Framework is, its fundamental concepts, how it is organized, and the many

benefits of using this framework

Learn about the basic Spring concepts such as dependency injection, beans and bean factory, application context, property

editors, and more

Understand how the Spring Framework is packaged, from development and deployment perspectives

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

What Is Spring?

When people ask me what Spring does, I have to stop and think about how to answer it in one sentence, which is not easy to do as you

will see shortly. So, let me first start by quoting an excerpt directly out of the Spring Framework Reference Documentation

(springframework.org) because it describes the framework well:

"...Spring provides a light-weight solution for building enterprise-ready applications, while still supporting the

possibility of using declarative transaction management, remote access to your logic using RMI or web services,

mailing facilities and various options in persisting your data to a database. Spring provides an MVC framework,

transparent ways of integrating AOP into your software and a well-structured exception hierarchy including

automatic mapping from proprietary exception hierarchies.

Spring could potentially be a one-stop shop for all your enterprise applications, however, Spring is modular, allowing

you to use parts of it, without having to bring in the rest..."

Let's explore the "modular" aspect of Spring a bit further. Figure 6.1 (also taken directly out of the Spring Framework Reference

Documentation) is probably the best way to get an immediate understanding of the various things Spring can do, and it shows precisely

why it is difficult to describe the entire Spring Framework in a short sentence.

Figure 6.1. Overview of the Spring Framework (taken directly from the Spring Framework

Reference Documentation found on springframework.org).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://springframework.org
http://springframework.org

In this book, I use Spring Framework 2.0 RC1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Spring Packaging for Development

The Spring modules, shown in Figure 6.1, are essentially conceptual groups of functionality provided by the extensive list of Spring's Java

packages and underlying classes.

Figure 6.2 shows the various top-level Spring packages. (Note:The shaded packages are ones we will use for our sample application,

again demonstrating that Spring does not take an all-or-nothing approach.)

Figure 6.2. Spring's top-level Java packages under org.springframework.

Overwhelmed by the Size of the Spring Framework?

The Spring Framework contains something along the lines of 130+ Java packages and 1,200+ Java classes. However,

do not be overwhelmed by this number; here is why.

First, you may want to use only Spring's IoC features, so you could essentially ignore most of the APIs. Second,

although there are lots of classes and there's lots of Javadoc, many of these classes are for internal use by the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

framework itself. Third, Spring enables you to select the modules you want to use and ignore the rest. For example, we

will use only a handful of these for our sample application, Time Expressionthis is proof that Spring's design is highly

modular.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Spring Packaging for Deployment

The modular aspect of Spring extends to deployment as well, because you can deploy your application with only the subset of Spring

JAR files you need (for example, spring-jdbc.jar). Table 6.1 shows how Spring provides the packages using various JAR files. Notice

how the spring.jar is bigger than others, because it is the complete package. I tend to include the complete spring.jar file in my applications

because 1.7MB isn't considered very large these days, especially for server-side applications.

Table 6.1. Spring's Complete or Separate JAR Files

JAR File Size (KB)

spring.jar 1,731

modules/spring-beans.jar 258

modules/spring-aop.jar 224

modules/spring-jdbc.jar 210

modules/spring-webmvc.jar 208

modules/spring-support.jar 189

modules/spring-remoting.jar 166

modules/spring-web.jar 138

modules/spring-core.jar 129

modules/spring-context.jar 111

modules/spring-dao.jar 103

extmodules/spring-hibernate3.jar 102

extmodules/spring-portlet.jar 97

extmodules/spring-hibernate2.jar 85

extmodules/spring-mock.jar 69

extmodules/spring-jdo.jar 61

extmodules/spring-toplink.jar 55

extmodules/spring-ojb.jar 27

aspects/spring-aspects.jar 10

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Overview of the Spring Modules

Now that we have seen a very high-level preview of Spring, let's look at a brief description of each module. First, we will begin with the

two most important modules and then look at the remaining ones in an alphabetical order. Again, we will use only a subset of the

modules described next, so do not get overwhelmed by how extensive this framework is.

Spring Core

The core module is essentially the foundation for Spring. It provides fundamental features such as dependency injection (which we will

look at later in the chapter) and management of beans. Some of the top-level packages that fit under this module are

org.springframework.beans, org.springframework.core, and org.springframework.util.

Spring Context

The context module is perhaps the second most important module in Spring, after the Spring Core module. It contains key classes such

as ApplicationContext (explained later in this chapter) and WebApplicationContext, which we will use in Time Expression (loaded from our

timex-servlet.xml file, which is explained in the next chapter). In addition, we will use the org.springframework.mail (for sending emails)

and org.springframework.validation (for validating web UI fields) packages, which are also considered part of this module.

Other packages, primarily used for remote/distributed functionality (EJB and JNDI, for example), are outside the scope of this book.

Spring AOP

We will not write AOP code directly using Spring. However, indirectly we will end up using Spring AOP-based facilities, such as

interceptors for our web application and declarative transaction management. In fact, the Spring reference documentation mentions the

same point; that is, if the prepackaged functionality provided in Spring is sufficient for your needs, you do not need to use Spring AOP (to

write custom aspects, for example).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Personal Opinion: Projects Not Ready for AOP

Aspect-Oriented Programming (AOP) in some ways is a whole new world, even though it complements OO. Like

many other creative innovations, the AOP concept originated at Xerox PARC. Gregor Kiczales originated the AOP

concept and, along with his team, also developed AspectJ, the first AOP language and probably still the most popular,

or at least the most feature-rich AOP framework or toolkit available today.

AOP essentially provides a cleaner way of modularizing an application into distinct parts (known as separation of

concerns). Each layer of an application (business object layer, for example) focuses on its core functionality and does

not contain overlapping functionality with other layers. Things such as logging, security, transaction management, and

testing are the most common examples of concerns that can easily be separated from the business object layer, for

example, via the use of interceptors.

Typically, an implementation of an AOP language seeks to encapsulate these types of crosscutting concerns (such as

logging, security, transactions) through the introduction of a new construct called an aspect. An aspect can alter the

behavior of the base code (the non-aspect part of a program) by applying advice (additional behavior) over a

quantification of join points (points in the structure or execution of a program), called a pointcut (a logical description of

a set of join points).

Although AOP offers some obvious advantages and holds a lot of promise for the way we modularize our software

applications (using separation of concerns), in my personal opinion, a majority of the software projects are not ready for

AOP; hence, it won't become mainstream for another one to two years. Furthermore, I find that AOP's fundamental

problem is its core terminology. Terms such as concern, advice, jointpoint, pointcut, and aspect will take many

developers some time to adjust to.

Granted, this sounds like a silly reason, but I have always felt that people need to feel comfortable with the basics of a

new technology or approach before moving to a more advanced level.

Again, this is my personal opinion and not the state of AOP in the industry, because AOP as a technology is ready and

can significantly help your projects if applied correctly.

Spring DAO

Because we are already using Hibernate for database persistence, we do not need this module. However, this module is worth checking

out if you like, or need, to work with JDBC but don't like all the tedious try-catch-finally blocks, opening/closing connections, and more. In

addition, Spring goes one step further by providing a consistent exception hierarchy, which can convert vendor-specific checked

exceptions into more consistent runtime exceptions that can be caught only in the layer of your application you want and ignore it in other

places (thereby eliminating the need for cumbersome try/catch/finally code blocks).

Spring for Persistence

It is important to realize that Spring provides a complete persistence functionality. In other words, you could use

Spring without an ORM product such as Hibernate and still get the benefits of an easier and cleaner persistence

mechanism than plain JDBC (although it won't provide some of the benefits of ORM frameworks that we discussed in

Chapter 5, "Using Hibernate for Persistent Objects").

In addition, you get a consistent exception-handling mechanism and other related benefits. We are using ORM

framework because so we can work with database records as Java objects.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Spring ORM

Spring's Object-Relational Map (ORM) module provides integration support for popular ORM products used by Java developers, such as

Hibernate, JDO, Oracle TopLink, Apache OJB, and iBATIS SQL Maps.

Some of the benefits of using Spring's ORM support include ease of testing (via dependency injection), common data exceptions,

persistent resource management (for example, Hibernate's SessionFactory), integrated enterprise-class transaction management, and

more.

Spring Web and Web MVC

Among all the Spring modules mentioned here, the web modules are where we will spend the most time in this book. However, we will

work with only a few of the classes and packages. For example, we will not have a need for packages that support Sun Microsystem's

JavaServer Faces (JSF) standard and others.

Some examples of classes found in these packages, and applicable to Time Expression, are SimpleUrlHandlerMapping,

InternalResourceViewResolver, SimpleFormController, Validator, and many others. We will look at these and other classes in more

detail in the next chapter.

Note

There are many other Java packages that we have not touched on, and none of these are unimportantthey are just

outside the scope of this book.

A couple more classes worth mentioning are org.springframework.scheduling.quartz. CronTriggerBean and

org.springframework.mail.javamail.JavaMailSenderImpl. We will use these in Chapter 10, "Beyond the Basics," to

satisfy the automatic email sending requirements we defined in Chapter 2, "The Sample Application: An Online

Timesheet System." Furthermore, we will use classes found in the org.springframework.mock.web package to help us

unit test our code using mocked web objects. (For general information about mock objects, visit

mockobjects.commockobjects.com.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://mockobjects.com

Where Spring Framework Fits into Our Architecture

Before discussing the various benefits and concepts of Spring, it is a good idea to revisit our architecture diagram (from Chapter 3, "XP

and AMDD-Based Architecture and Design Modeling") to see where we will use Spring. Figure 6.3 shows the diagram. Notice that we will

use Spring web controllers (discussed in detail in Chapter 7, "The Spring Web MVC Framework"), job scheduling, sending emails (in

Chapter 10), and more. At the core of our application, we will use Spring's IoC services.

Figure 6.3. High-level architecture for Time Expression.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Benefits of Using Spring

By now, you should have a pretty good idea about what Spring is, how it is logically organized (into modules), and the types of

functionality it provides. Although the benefits may appear somewhat obvious, the following is an explicit list:

POJOs My favorite benefit is that Spring enables me to develop enterprise-class applications using POJOs. The benefit of

using only POJOs is that you do not need an EJB container product such as an application server if your application doesn't

require all the capabilities that such products provide. With Spring, you have the option of using only a robust servlet

container such as Tomcat or some commercial product.

Modular As we have already discussed, Spring is organized in a modular fashion. Even though the number of packages and

classes is substantial, you have to worry only about ones you need (see the sidebar "Overwhelmed by the Size of the Spring

Framework?"). Hence, phasing Spring into an existing or new project can be done on a case-by-case and module-by-module

basis.

Complementary I like the fact that Spring does not reinvent the wheel; instead, it truly complements some of the existing work

out there. For example, it complements several ORM frameworks, JEE, Quartz and JDK timers, other view technologies, and

more.

Testing Testing an application written with Spring is simple because environment-dependent code is moved into this

framework (versus JNDI lookups embedded in code, for example). Furthermore, by using JavaBean-style POJOs, it becomes

easier to use dependency injection for injecting test data (perhaps by using an XML file as the source of test data). In

addition, Spring's mock classes can help you simulate classes such as an HTTP request object. This is primarily true

because dependency injection works with setter and getter methods. Hence it is easy to inject test data into your objects and

unit test your code using a product such as JUnit. This also includes testing of web components developed using Spring's

web MVC framework, as you will see in the next chapter.

Singletons Spring eliminates the need to maintain your own singleton classes. Instead, you write a class as a normal POJO

(without the need for static variables/methods), and Spring ensures that you always get access to the same object, unless

you override the default by defining a class as nonsingleton.

Web framework Spring's web framework is a well-designed web MVC framework, which provides a great alternative to web

frameworks such as Struts or other overengineered or less popular web frameworks. It enables you to develop no-form

screens, simple-form screens, wizardlike screens, and much more. It can also bind HTML form fields directly to the business

objects instead of having to write custom classes that extend the web framework's classes. Spring Web MVC is also view

agnostic, so it can work with JavaServer Pages (JSP), Velocity, JavaServer Faces (JSF), and others. In addition, the Spring

Web Flow subproject can be used to develop web applications that require state management across several HTTP requests

(an online airline-booking website, for example).

Consistent exception hierarchy Spring provides a convenient API to translate technology-specific exceptions (thrown by

JDBC, Hibernate, or JDO, for example) into consistent, unchecked exceptions (org.springframework.dao.

PessimisticLockingFailureException, for example).

Enterprise-class transaction management Spring provides a consistent transaction management interface that can scale

down to a local transaction (using a single database, for example) and scale up to global transactions (using JTA, for

example). Spring also provides application server-specific integration, for instance, with BEA's WebLogic Server and IBM's

WebSphere. Spring's transaction management can be used programmatically or declaratively. We will use the declarative

version in Chapter 10.

Lightweight container IoC containers tend to be lightweight, especially when compared to EJB containers, for example. This

can be beneficial, perhaps for developing and deploying applications on computers with limited memory and CPU resources.

We saw some of the benefits here, particularly ones that are applicable to Time Expression. However, if you decide to use Spring

more extensively, you are likely to come up with your own list of benefits.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Fundamental Spring Concepts

We have covered a lot of introductory material on Spring already. However, this only reflects what Spring can do for you and how it is

organized. We still need to cover some basic concepts that Spring is built on. Let's do that now before jumping into Spring code related to

Time Expression (in the next chapter).

Dependency Injection Pattern (and IoC Containers)

In 2004, Martin Fowler published an article (http://www.martinfowler.com/articles/injection.html) discussing inversion of control (IoC)

containers. Martin Fowler, some people involved with the PicoContainer, Rod Johnson (founder of the Spring Framework), and others

collectively defined the dependency injection pattern. Dependency injection is a style of IoC; another style uses a template/callback

technique. In both cases you are giving control to something else (hence, the term inversion of control). We will, of course, use the

dependency injection style.

What is dependency injection exactly? Let's look at these two words separately. First, there is the dependency part; this basically

translates into an association between two classes. For example, class A might need class B to get its job done. In other words, class A is

dependent on class B. Now, let's look at the second part, injection. All this means is that class B will get injected into class A by the IoC

container. This injection can happen in the way of passing parameters to the constructor or by post-construction using setter methods.

(Both are described in more detail later in this chapter.)

Figure 6.4 shows an association between two classes we will see in our examples for Time Expression (in the next chapter). The

associations shown in this diagram are exactly the dependencies we will map in the Spring application context file. In other words,

TimesheetListController depends on TimesheetManager; hence, we will use Spring to automatically create a single instance of the

TimesheetManager and inject (set) it via the TimesheetListController.setTimesheetManager method.

Figure 6.4. Sample association to use for determining bean class dependencies for use with

Spring.

You might not be fully convinced of the benefits of using the design pattern approach for developing applications. However, after you begin

working in this fashion, you probably won't want to go back to constructing objects using new statements, which not only clutters your

Java code more than using dependency injection, but also couples your associated classes a bit more.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.martinfowler.com/articles/injection.html

Two Injection Styles

There are two key types of dependency injection styles: one via arguments passed to the constructor when an object is created and the

other via the setter methods of a JavaBean style class, after the object has been created.

Spring advocates the use of setter-based dependency injection (in the Spring Reference Documentation), because passing many

arguments to the constructor can get cumbersome. Martin Fowler, on the other hand, argues (also at

http://www.martinfowler.com/articles/injection.html) that if you have too many constructor arguments, your object might be too busy, and

it's worth considering splitting the class up.

Although there are pros and cons to both approaches, considering that we are using Spring, we will go with Spring's recommendation and

accordingly use setter-based injection for Time Expression. Also, I prefer the JavaBean style of injecting and obtaining property valuesthat

is, using setters and getters. For some reason, this feels a bit more natural to me while coding in Java, but you might disagree. To further

confuse things, the Pico Container team prefers the constructor-based injection and provides some valid reasons for it on their website

(http://www.picocontainer.org/Why+Constructor+Injection).

Either way, it is nice to know that Spring supports both styles, which we will review shortly.

Note

Fowler also suggests a third type, interface injection, which isn't covered here, but you can read about it at

http://www.martinfowler.com/articles/injection.html.

Beans, BeanFactory, and ApplicationContext

The org.springframework.beans.factory.BeanFactory interface is the actual IoC container! It is an interface that essentially manages the

application's configuration by instantiating and managing beans defined via code or, in our case, XML files. Beans can be any type of

objects, but commonly are JavaBean style classesthat is, classes with getters and setters.

The org.springframework.context.ApplicationContext essentially extends BeanFactory and adds additional facilities such as resource

bundles, integration with Spring AOP, message resource handling, event broadcasting, and more. Furthermore, WebApplicationContext

extends ApplicationContext by adding web application-specific context. Although you can use an implementation of the BeanFactory

interface (for example, XmlBeanFactory), it is recommended that you use ApplicationContext for server-side applications.

This book's code zip file shows springtest-applicationcontext.xml, a sample Spring application context file. This example demonstrates

both the setter-based injection using the <property> element and constructor-based injection using the <constructor-arg> element. In this

example, notice that the bean springtestmessage depends on bean stringmessage, as shown here:

<bean id="springtestmessage"

 class="com.visualpatterns.timex.test.SpringTestMessage"

 lazy-init="false" init-method="printMessage">

 <property name="message" ref="stringmessage" />

</bean>

Notice also that we have an initialization method using the init-method attribute; this is a nice way to invoke initialization and termination

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.martinfowler.com/articles/injection.html
http://www.picocontainer.org/Why+Constructor+Injection
http://www.martinfowler.com/articles/injection.html

methods on objects. This relationship (or association) is established using the <property> element and the injection occurs via the

SpringTestMessage.setMessage method, as shown here:

public void setMessage(String message)

{

 this.message = message;

}

Our SpringTest.java class (also in the book's code zip file) shows how simple it is to load an entire application context file and immediately

begin using the various beans, with all the collaborator classes autowired by Spring's IoC container, as demonstrated here:

public static void main(String args[]) throws Exception

{

 FileSystemXmlApplicationContext factory =

 new FileSystemXmlApplicationContext(

 "src/conf/springtest-applicationcontext.xml");

 SpringTestMessage stm = (SpringTestMessage) factory

 .getBean("springtestmessage");

}

Note

I chose FileSystemXmlApplicationContext for the sake of simplicity in my example. However,

ClassPathXmlApplicationContext is generally a better class to use because it searches not only for context definition files

in the classpath but also embedded within JAR files.

Before we move to the next section, the following list describes a couple of additional notes about beans:

Beans can be created by Spring via the constructor (as you normally would using a new statement) or via static factory

methods of another class.

Each bean must have a unique id (for example, springtestmessage).

Beans can be of two types, Singleton and Prototype (nonsingleton). By default, all beans are singletons, but you can make

them prototypes by specifying an attribute such as singleton="false". We will use only singletons for Time Expression because

Spring cannot manage the life cycle of a prototype bean after it has been created and handed off to (injected in) the objects

that depend on it. Also, by specifying singleton="false" for a given bean definition, you are instructing Spring to create a new

instance of the bean every time there is a request for this bean. Last, almost 100% of the time, using singleton beans is

sufficient.

You can inject values in a setter method or constructor as single objects or as collection elements (for example, List, Set, Map,

and Properties).

This is all we will discuss about BeanFactory and ApplicationContext classes in this chapter. After we move to the Spring Web MVC

Framework (in the next chapter), we will not have to worry about creating either of these objects manually.

However, you might want to familiarize yourself a bit more about how all this works by reading the Spring Reference Documentation

(springframework.org). For example, you might want to better understand constructor argument resolution, dependency checking,

autowiring of collaborator beans, programmatically interacting with the BeanFactory, injecting null values, method-based injection, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://springframework.org

much more. You will also see additional examples of several of these things in the next chapter and in later chapters in this book.

The spring-beans.xsd (or the older spring-beans.dtd) file provides the XML schema for the Spring Framework's application context file.

Looking at one of these files in the Spring's software directories might give you some additional insight into the various elements and

properties that can be specified in the application context file.

Property Editors

Spring makes heavy use of the java.beans.PropertyEditor interface by allowing custom property editors to be registered, which convert an

object into readable text, and vice versa. For example, in the next chapter, we will use it to convert the hours entered on our Enter Hours

web page.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Spring Subprojects

Just when you thought you had heard enough about Spring, there is more.

What we have looked at so far are modules and packages that are part of the Spring's core distribution. There are also other subprojects

hosted by the Spring team that can be found via the springframework.org website:

Acegi Security System for Spring This project provides comprehensive security services for the Spring Framework (for

example, HTTP security, object instance security, security taglib, password encoding, and more).

Spring BeanDoc This tool facilitates documentation and graphing of a Spring application's bean factories and application

context file. A very useful, easy, and flexible tool to use.

Spring IDE for Eclipse This is a graphical user interface for the configuration files used by a Spring-based application. We will

see a preview of this in Chapter 8, "The Eclipse Phenomenon!"

Spring Rich Client I have not personally worked with this project, so I will quote the Spring website, which claims that this is a

"viable option for developers that need a platform and a 'best-practices' guide for constructing Swing applications quickly."

Spring Web Flow This project is based on the concepts similar to the Spring Web MVC Framework, essentially providing

wizardlike screen functionality to implement a business process. This project has been getting a lot of attention recently and

is worth checking out if you need the type of functionality it provides.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://springframework.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we

Got a clear understanding of what the Spring Framework is, its fundamental concepts, how it is organized, and the many

benefits of using this framework.

Learned about basic Spring concepts such as dependency injection, beans and bean factory, application context, property

editors, and more.

Understood how the Spring Framework is packaged, from development and deployment perspectives.

We covered a lot of material in this chapter on the fundamentals of the Spring Framework. In the next chapter, we will take a closer look

at Spring's web-related modules. In later chapters, we will also take a look at the following features of Spring:

Declarative transaction management

Scheduling jobs

Sending emails

Now it is time to develop a couple of Time Expression's screens using the Spring Web MVC Framework!

One last note before we move on:You might have noticed that the Spring Reference Documentation was mentioned multiple times. This

is a well-written document. However, if you cannot find the information you are looking for in there, try the Spring Framework API

JavaDocs, which are well documented and complement the reference documentation quite nicely.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Acegi Security System for Spring http://acegisecurity.org/

Apache Geronimo http://geronimo.apache.org

AOP Alliance (Java/JEE AOP standards) http://aopalliance.sourceforge.net/

Dependency injection http://www.martinfowler.com/articles/injection.html

Eclipse SDK http://www.eclipse.org/aspectj/

Excalibur http://excalibur.apache.org/

HiveMind http://jakarta.apache.org/hivemind/

JBoss Application Server http://www.jboss.com

Mock Objects http://mockobjects.com

PicoContainer http://www.picocontainer.org/

Software Practices Lab http://www.cs.ubc.ca/labs/spl/

Spring discussion forums http://forum.springframework.org/

Spring IDE http://springide.org/project

The Spring Framework http://springframework.org

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://acegisecurity.org/
http://geronimo.apache.org
http://aopalliance.sourceforge.net/
http://www.martinfowler.com/articles/injection.html
http://www.eclipse.org/aspectj/
http://excalibur.apache.org/
http://jakarta.apache.org/hivemind/
http://www.jboss.com
http://mockobjects.com
http://www.picocontainer.org/
http://www.cs.ubc.ca/labs/spl/
http://forum.springframework.org/
http://springide.org/project
http://springframework.org

7. The Spring Web MVC Framework

IN THE PREVIOUS CHAPTER, I gave you an overview of the Spring Framework. We looked at what Spring is, how it is packaged, and

the various modules it contains. I also mentioned that with Spring, you do not have to take an all-or-nothing approach when trying to

decide whether you should use Spring. In other words, based on your needs, you can phase in the Spring Framework one module at a

time (along with any dependencies). In this chapter, I will demonstrate how to use Spring Web MVC Framework (module), to build Time

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Expression, our sample web application.

Note that from this point on, I will refer to the Spring Web MVC Framework as simply Spring MVC, in most places.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

In this chapter, we will

Look at the various benefits of using Spring MVC

Take an in-depth look at the Spring Web MVC Framework

Build three of the screens in Time Expression using Spring MVC: a no-form controller, two form controllers, and a Spring

HTTP interceptor.

Note

The complete code for the examples used in this chapter can be found within this book's code zip file (available on the

book's website).

This is an exciting chapter, so I won't waste any more time boring you with introductory material. Let's spring into action!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Benefits of the Spring Web MVC Framework

The Spring Web MVC Framework is a robust, flexible, and well-designed framework for rapidly developing web applications using the

MVC design pattern. The benefits achieved from using this Spring module are similar to those you get from the rest of the Spring

Framework. Let's review a few of these. I will demonstrate some of these benefits later in this chapter.

Easier testing This is a common theme you will find across all the Spring classes. The fact that most of Spring's classes are

designed as JavaBeans enables you to inject test data using the setter methods of these classes. Spring also provides mock

classes to simulate Java HTTP objects (HttpServletRequest, for example), which makes unit testing of the web layer much

simpler.

Bind directly to business objects Spring MVC does not require your business (model) classes to extend any special classes;

this enables you to reuse your business objects by binding them directly to the HTML forms fields. In fact, your controller

classes are the only ones that are required to extend Spring classes (or implement a Spring controller interface).

Clear separation of roles Spring MVC nicely separates the roles played by the various components that make up this web

framework. For example, when we discuss concepts such as controllers, command objects, and validators, you will begin to

see how each component plays a distinct role.

Adaptable controllers If your application does not require an HTML form, you can write a simpler version of a Spring controller

that does need all the extra components required for form controllers. In fact, Spring provides several types of controllers,

each serving a different purpose. For example, there are no-form controllers, simple form controllers, wizardlike form

controllers, views with no controllers, and even prepackaged controllers that enable you to write views without your own

custom controller.

Simple but powerful tag library Spring's tag library is small, straightforward, but powerful. For example, Spring uses the JSP

expression language (EL) for arguments to the <spring:bind> tag.

Web Flow This module is a subproject and is not bundled with the Spring core distribution. It is built on top of Spring MVC and

adds the capability to easily write wizardlike web applications that span across several HTTP requests (an online shopping

cart, for example).

View technologies and web frameworks Although we are using JSP as our view technology, Spring supports other view

technologies as well, such as Apache Velocity (jakarta.apache.org/velocity/) and FreeMarker (freemarker.org). This is a

powerful concept because switching from JSP to Velocity is a matter of configuration. Furthermore, Spring provides

integration support for Apache Struts (struts.apache.org), Apache Tapestry (jakarta.apache.org/tapestry), and

OpenSymphony's WebWork (opensymphony.com/webwork/).

Lighter-weight environment As I mentioned in the previous chapter, Spring enables you to build enterprise-ready applications

using POJOs; the environment setup can be simpler and less expensive because you could develop and deploy your

application using a lighter-weight servlet container.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://jakarta.apache.org/velocity/
http://freemarker.org
http://struts.apache.org
http://jakarta.apache.org/tapestry
http://opensymphony.com/webwork/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Spring Web MVC Concepts

The world of Java has seen many MVC design pattern-based web frameworks crop up in the past few years (several are listed at the very

end of this chapter). MVC was originally conceived at XEROX PARC around the 197879 time frame and was later implemented in the

Smalltalk-80 class library (also at XEROX PARC). It is a relatively simple concept to grasp and provides for a clean separation of

presentation and data, as I'll explain briefly here.

First, let's look at our architecture diagram established earlier in the book and shown here in Figure 7.1.

Figure 7.1. High-level architecture diagram for Time Expression.

[View full size image]

As you can see, all incoming HTTP requests from a web browser are handled by Controllers. A controller, as the name indicates, controls

the view and model by facilitating data exchange between them. The key benefit of this approach is that the model can worry only about

the data and has no knowledge of the view. The view, on the other hand, has no knowledge of the model and business logic and simply

renders the data passed to it (as a web page, in our case). The MVC pattern also allows us to change the view without having to change

the model.

Let's review some basic Spring MVC concepts. First, we will look at the concepts related to Java coding, and then we will look at the

configuration required to make all this work.

Spring MVC Java Concepts

Figure 7.1 provided us a high-level view of the architecture for Time Expression. Now let's take a slightly more detailed and focused look at

the Spring MVC components. Figure 7.2 shows an end-to-end flow for a typical screen in Time Expression. This diagram shows many of

the concepts we will discuss next.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Figure 7.2. End-to-end flow for Enter Hours screen using Spring and Hibernate.

[View full size image]

Controller

Spring provides many types of controllers. This can be both good and bad. The good thing is that you have a variety of controllers to

choose from, but that also happens to be the bad part because it can be a bit confusing at first about which one to use.

The best way to decide which controller type to use probably is by knowing what type of functionality you need. For example, do your

screens contain a form? Do you need wizardlike functionality? Do you just want to redirect to a JSP page and have no controller at all?

These are the types of questions you will need to ask yourself to help you narrow down the choices.

Figure 7.3 shows a class diagram of some of the more interesting controllers that are part of Spring MVC. Table 7.1 provides brief

descriptions on the interface and classes shown in Figure 7.3. (Note:The descriptions provided in this table are taken directly out of the

Spring Framework Javadocs.) I tend to use SimpleFormController, UrlFilenameViewController, and AbstractController most often. We will

see examples of these later in this chapter.

Figure 7.3. Class diagram showing a partial list of Spring controllers.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 7.1. Description of Various Spring Controllers

Controller Description (Taken Directly from the Spring Javadocs)

AbstractCommandController Abstract base class for custom command controllers.

AbstractController Convenient superclass for controller implementations, using the Template Method design

pattern.

AbstractFormController Form controller that autopopulates a form bean from the request.

AbstractUrlViewController Abstract base class for Controllers that return a view name based on the URL.

AbstractWizardFormController Form controller for typical wizard-style workflows.

BaseCommandController Controller implementation that creates an object (the command object) on receipt of a request

and attempts to populate this object with request parameters.

CancellableFormController Extension of SimpleFormController that supports "cancellation" of form processing.

Controller Base Controller interface, representing a component that receives HttpServletRequest and

HttpServletResponse like a HttpServlet but is able to participate in an MVC workflow.

ParameterizableViewController Trivial controller that always returns a named view.

SimpleFormController Concrete FormController implementation that provides configurable form and success views,

and an onSubmit chain for convenient overriding.

UrlFilenameViewController Controller that transforms the virtual filename at the end of a URL into a view name and

returns that view.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Model and View

Many of the methods in the Controller related subclasses return a org.springframework.web.servlet.ModelAndView object. This object

holds the model (as a java.util.Map object) and view name and makes it possible to return both in one return value from a method. We will

see examples of this later in this chapter when we build two of the screens for Time Expression.

Command (Form Backing) Object

Spring uses the notion of a command object, which essentially is a JavaBean style class that gets populated with the data from an HTML

form's fields. This same object is also passed to our validators (discussed next) for data validation, and if the validations pass, it is passed

to the onSubmit method (in controller related classes) for processing of valid data. Given that this command object is a simple

JavaBean-style class, we can use our business objects directly for data binding instead of writing special classes just for data binding. I will

demonstrate this benefit later in this chapter.

Validator

A Spring validator is an optional class that can be invoked for validating form data for a given command (form) controller. This

validator class is a concrete class that implements the org.springframework.validation.Validator interface. One of the two methods required

by this interface is the validate method, which is passed a command object, as mentioned previously, and an Errors object, which can be

used to return errors. I will demonstrate an example of a Validator class later in this chapter. Another notable validation class is

org.springframework.validation.ValidationUtils, which provides convenient methods for rejecting empty fields.

Spring Tag Library (spring:bind)

The spring bind tag library is simple yet powerful. It is typically used in JSP files via the <spring:bind> tag, which essentially binds HTML

form fields to the command object. Furthermore, it provides access to special variables within JSP, such as ${status.value},

${status.expression}, and ${status.errorMessages}, which we will look at later in the chapter.

Spring MVC Configuration Concepts

In this section, we will review some core concepts related to configuring the Spring Web MVC Framework.

DispatcherServlet

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

DispatcherServlet (part of the org.springframework.web.servlet package) is the entry point to the world of Spring Web MVC, as depicted in

Figure 7.2. It essentially dispatches requests to the controllers. If you have worked with Java web applications before, you will not be

surprised to find out that this class is configured in the web.xml file, as shown in the following excerpt from the complete web.xml for Time

Expression:

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

We will discuss DispatcherServlet in detail later in this chapter.

Handler Mappings

You can map handlers for incoming HTTP requests in the Spring application context file. These handlers are typically controllers that are

mapped to partial or complete URLs of incoming requests. The handler mappings can also contain optional interceptors, which are invoked

before and after the handler. This is a powerful concept. I will demonstrate an example of this later in this chapter when we use such a

web interceptor for authentication and close our Hibernate session for the given HTTP request.

The following code excerpt taken from our complete timex-servlet.xml file shows how a handler can be mapped to a partial URL:

<bean id="urlMap"

 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

 <property name="urlMap">

 <props>

 <prop key="/signin.htm">signInController</prop>

 <prop key="/signout.htm">signOutController</prop>

 </props>

 </property>

</bean>

View Resolvers

Spring uses the notion of view resolvers, which resolve view names to the actual views (enterhours to enterhours.jsp, for example). We

will use Spring's InternalResourceViewResolver class to resolve our view names. (This is covered in the next section.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Spring Setup for Time Expression

Now that I have provided you some fundamental concepts for Spring MVC, let's begin setting it up for development of Time Expression

screens.

We need a couple of components to get Spring up and running for us. Figure 7.1 showed the Time Expression high-level architecture we

established early in this book. As you can see, we need a servlet container that Spring can run within for our web application. So let's start

with the installation of a Servlet container first, and then we will download and install the Spring Framework.

Installing a Servlet Container (Apache Tomcat)

I have chosen to use Apache Tomcat (http://tomcat.apache.org/) as the Servlet container for the Time Expression application. However,

you can use any other product you want; this can be a servlet-container-only product, such as Tomcat, or a full-blown application server,

such as JBoss Application Server, BEA WebLogic, or IBM Websphere.

Note

If you have been following along the examples in this book, you will recall the timex/local.properties file used by our Ant

build.xml file (both files are provided in this book's code zip file). Note the deploy.dir property in the timex/local.properties

file; this can be adjusted to point to your servlet container's deployment directory. For example, in my case, the

deploy.dir property is set up as shown here:

deploy.dir=/apache-tomcat-5.5.15/webapps

Now we can run the ant deploy from a command line using our build.xml file.

By running this ant command, a fresh new timex.war web archive file will be built and deployed to the specified directory (in deploy.dir).

Hot Deploying WAR Files and HTTP Mock Style Testing

In 2001, I wrote an article titled "How Many Times Do You Restart Your Server During Development?"

(http://www.javaworld.com/javaworld/jw-04-2001/jw-0406-soapbox.html). Although various servlet containers or

application servers handle reloading of applications differently, restarting the server every time you make a change to

your application can become a waste of time. Much of this has to do with the way Java's class loading works, but it still

doesn't make it any less frustrating.

If your server doesn't (hot) redeploy your war files successfully, you could consider tweaking your style of coding and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://tomcat.apache.org/
http://www.javaworld.com/javaworld/jw-04-2001/jw-0406-soapbox.html

testing. One good alternative (discussed in this chapter) is to use Spring's mock classes to simulate a HTTP request and

use JUnit to unit test the code instead of relying completely on the web application server for your testing.

Incidentally, I recently came across an option for Apache Tomcat that will enable to us to avoid restarts when deploying

our application. This can be activated by setting the following attributes in the conf/context.xml file found under the

Tomcat install directory, <Context antiJARLocking="true" antiResourceLocking="true">.

Documentation on these attributes can be found at

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation.

Alternatively, we could use the Tomcat Ant deploy tasks; however, I wanted to keep our build.xml generic for most web

servers. Nevertheless, documentation on these tasks can be found at the tomcat.apache.org website.

Installing the Spring Framework

By now, you should have a thorough understanding of what Spring can do for you. Next, it is time to download Spring, install it, and begin

using it!

The Spring Framework can be downloaded from http://springframework.org. We will now follow the instructions provided on the website to

download and install it.

The following are one-time setup steps we will need to follow to get Spring set up for our environment. From here, you might add external

jars for added Spring functionality as needed to the timex/lib/ directory. (In Chapter 10, "Beyond the Basics," we will add OpenSymphony's

quartz.jar file to our directory.)

Spring Copy spring.jar to the timex/lib/ directory of Time Expression, based on the directory structure we established in Chapter

3, "XP and AMDD-Based Architecture and Design Modeling," and shown here in Figure 7.4.

Figure 7.4. Development directory structure for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://tomcat.apache.org
http://springframework.org

JSTL We also need to obtain JavaServer Pages Standard Tag Library (JSTL), which is part of the Jakarta taglibs project and

can be downloaded from http://jakarta.apache.org/taglibs/. After downloading this package, copy the jstl.jar and standard.jar

files to the timex/lib/ directory. JSTL helps eliminate (or at least significantly reduces) the amount of embedded scriptlet code in

our JSP files. For example, JSTL provides tags for iterations/loops (<forEach>, for example), conditional tags (<if>, for

example), formatting tags (fmt:formatDate, for example), and several other tags. You will see examples of many of these tags in

this chapter.

Running Our SpringTest

Incidentally, the three files we discussed in the previous chapter can now be created in the following paths, and we could run ant springtest

(from our timex/ top-level directory) to test that we can use Spring in our code. The complete code for these files can be found in this

book's code zip file:

src/conf/springtest-applicationcontext.xml

src/java/com/visualpatterns/timex/test/SpringTest.java

src/java/com/visualpatterns/timex/test/SpringTestMessage.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://jakarta.apache.org/taglibs/

Configuring Spring MVC

Now that we have the servlet container and Spring software installed, we need to configure Spring MVC so that we can begin

developing and deploying the Time Expression sample application.

Configure DispatcherServlet in web.xml

The very first thing we need to do is to have all incoming HTTP requests (that match a certain pattern) forwarded to Spring MVC, by

Tomcat.

The following excerpt from our web.xml file demonstrates how we can configure all requests ending with an .htm extension to be processed

by the Spring's org.springframework.web.servlet.DispatcherServlet class:

<servlet>

 <servlet-name>timex</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>timex</servlet-name>

 <url-pattern>*.htm</url-pattern>

</servlet-mapping>

Later on we will see how requests with a .jsp extension are handled by Spring's DispatcherServlet.

Note

Our Spring application context file, timex-servlet.xml, will automatically be searched for and loaded by Spring for us.

This file is stored under timex/src/conf but automatically copied to the timex/build/timex/WEB-INF/ directory by our Ant

build.xml file when the build, dist, or deploy targets are used.

Create Spring's Application Context XML File (timex-servlet.xml)

Now we need to create our application context XML file, timex-servlet.xml. We will review various parts of this file throughout the remainder

of this chapter. You will see how this file quickly becomes an essential part of working with Spring MVC.

The following excerpt from timex-servlet.xml shows how we configure a Spring view resolver to resolve logical view names to the physical

view (JSP) file:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

 <property name="viewClass">

 <value>org.springframework.web.servlet.view.JstlView</value>

 </property>

 <property name="prefix">

 <value>/WEB-INF/jsp/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

</bean>

Note

By storing our JSP files in the build/timex/WEB-INF/jsp/ directory, we are essentially hiding these files so they cannot

be accessed directly from a web browser using their actual filenames (that is, only views ending with .htm are mapped to

these files). To access .jsp files directly, they must be placed a couple of levels up, under build/timex/, the same location

where our welcome file, index.jsp, will reside.

Hiding files is a security precautionary measure. Appendix D, "Securing Web Applications," provides additional security

guidelines.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Developing Time Expression User Interfaces with Spring

Now that we have Tomcat and Spring installed and set up, we can go through the steps required to develop our sample screens. Let's

look at two Time Expression screens we will develop in this chapterone a nonform screen and the other an HTML form screen.

Timesheet List Screen

Figure 7.5 shows the Timesheet List screen, which is a nonform screen (that is, it contains no input fields a user can fill in because it is a

display-only screen). From the perspective of coding a controller, this is the most basic screen that you can develop using Spring MVC; we

will review the code behind this shortly.

Figure 7.5. Time Expression's Timesheet List web page (view name: timesheetlist).

[View full size image]

Enter Hours Screen

Figure 7.6 shows the Enter Hours screen, a form screen (that is, it contains input fields a user can fill in). This is a little more complicated

than the Timesheet List screen because we will have to bind the HTML form fields to our Java code, perform validations on the data

entered, display errors, and so on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 7.6. Time Expression's Enter Hours web page (view name: enterhours).

[View full size image]

Java Files

By now we have enough information to come up with filenames for our Java classes and JSP (view) filenames. Table 7.2 shows a map

of the view, controller, and collaborator (model) classes required to complete the two screens shown in Figures 7.5 and 7.6. You might

recall that we designed this map in Chapter 3 (see Table 3.5).

Table 7.2. Sample Application Flow Map (from Chapter 3)

Story Tag View Controller Class Collaborators Tables Impacted

Timesheet List timesheetlist TimeSheetListController TimesheetManager Timesheet

Enter Hours enterhours EnterHoursController TimesheetManager Timesheet Department

Note that the collaborator classes mentioned here were already developed in Chapter 5, "Using Hibernate for Persistent Objects," so we

need to develop the view and controller classes now.

Figure 7.7 shows a rudimentary class diagram on how the controller and model related classes fit together.

Figure 7.7. Class diagram showing relationship between Time Expression model and controller

classes.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If you have developed web applications in Java before, you might question the placement of .jsp files under the same directory structure as

my Java classes (that is, java/com/visualpatterns/timex/); this is purely a personal preference because I like to see my MVC files grouped

together under the same parent directory.

Let's look at how to develop the Timesheet List and Enter Hours screens, step-by-step. We will later look at how to develop the Sign In

screen because it is a special case because of the authentication (sign in) required.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Cascading Style Sheet (CSS)

Other than the Java and JSP files we discussed, we are also using a cascading style sheet (CSS) file named timex.css (placed in our

src/web/includes directory). CSS provides a consistent look-and-feel across our user interfaces; furthermore, it helps reduce the size of

our JSP/HTML code because we don't have as much formatting code in our view (JSP) files.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Timesheet List Screen: A No-Form Controller Example

Developing a no-form controller in Spring is a relatively straightforward process. Let's look at the steps involved to do this.

Step-by-Step Configuration

The following are Spring-related items we need to configure in timex-servlet.xml, our Spring application context file.

Map Handler

The first thing we need to do is to map the incoming request URL to an actual controller, which will handle the request. The following

excerpt from the timex-servlet.xml file shows how we can map the timesheetlist.htm URL to an internal bean reference named

timesheetListController (discussed next) with the help of Spring's SimpleUrlHandlerMapping class:

<bean id="urlMapAuthenticate"

 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

 <property name="interceptors">

 <list>

 <ref bean="httpRequestInterceptor" />

 </list>

 </property>

 <property name="urlMap">

 <props>

 <prop key="/timesheetlist.htm">

 timesheetListController

 </prop>

Also, notice the interceptors property; by configuring this, we can intercept HTTP requests, for example, to implement authentication

(interceptors are discussed in detail later in this chapter).

Define Controller and Associated Class

The next step is to define the controller class referenced by the map handler. The following excerpt from the timex-servlet.xml file

demonstrates how this is done:

<bean name="timesheetListController"

 class="com.visualpatterns.timex.controller.TimesheetListController">

 <property name="timesheetManager">

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 <ref bean="timesheetManager" />

 </property>

 <property name="applicationSecurityManager">

 <ref bean="applicationSecurityManager" />

 </property>

 <property name="successView">

 <value>timesheetlist</value>

 </property>

</bean>

Notice the ref attributes. As you might guess, these are references to other beans defined in our application context, as shown in this

XML excerpt:

<bean id="timesheetManager"

 class="com.visualpatterns.timex.model.TimesheetManager"/>

<bean id="applicationSecurityManager"

 class="com.visualpatterns.timex.util.ApplicationSecurityManager" />

We already developed the TimesheetManager class in Chapter 5; we will develop the ApplicationSecurityManager class later in this

chapter.

This is all we need to configure for the Timesheet List screen. Now we need to write the controller and view code, referenced here. Let's

look at that next.

Step-by-Step Coding

The Timesheet List screen is a relatively simple screen and will be developed using the most basic type of Spring controller because it

contains no form fields; therefore, it will not require things such as Command and Validator classes. Basically, if we look at this from an

MVC design pattern perspective, the files for this screen will include the following:

Model TimesheetManager.java and Timesheet.java

View timesheetlist.jsp

Controller TimesheetController.java

We already developed the model files in the previous chapter, so all we need to develop here are the controller and view files. Let's

dissect and review parts of our complete code.

Let's begin by writing the unit test code for our controller class.

Writing Our Test First with Mock Objects

The next few code excerpts from our TimesheetListControllerTest.java file show how we can unit test controller classes. We will create

this in the timex/src/java/com/visualpatterns/timex/controller directory.

We start by creating an instance of the org.springframework.mock.web. MockHttpServletRequest class to simulate a real HTTP request.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This class not only provides the benefit of being able to unit test our code but also reduces the need to deploy the application and

potentially restart the servlet container (Tomcat, for example) each time we want to test something.

mockHttpServletRequest = new MockHttpServletRequest("GET",

"/timesheetlist.htm");

Next, we will create some test dependency objects and inject them, as Spring will do for us at runtime:

Employee employee = new Employee();

employee.setEmployeeId(EMPLOYEE_ID);

applicationSecurityManager.setEmployee(mockHttpServletRequest,

 employee);

// inject objects that Spring normally would

timesheetListController = new TimesheetListController();

timesheetListController.setTimesheetManager(timesheetManager);

timesheetListController

 .setApplicationSecurityManager(applicationSecurityManager);

In our test code, we instantiated our own TimesheetManager class for the sake of simplicity. However in real-world applications, you

might want to use Spring's FileSystemXmlApplicationContext or ClassPathXmlApplicationContext classes to instantiate your classes.

This way, you not only get an instance of a class but also have its dependent objects loaded and injected by Spring.

Now we can complete our test by checking the java.util.List we just retrieved; our test ensures that list is not empty and also that it

contains Timesheet objects for the employee we requested the records for:

ModelAndView modelAndView = timesheetListController.handleRequest(

 mockHttpServletRequest, null);

assertNotNull(modelAndView);

assertNotNull(modelAndView.getModel());

List timesheets = (List) modelAndView.getModel().get(

 TimesheetListController.MAP_KEY);

assertNotNull(timesheets);

Timesheet timesheet;

for (int i = 0; i < timesheets.size(); i++)

{

 timesheet = (Timesheet) timesheets.get(i);

 assertEquals(EMPLOYEE_ID, timesheet.getEmployeeId());

 System.out.println(timesheet.getTimesheetId() + " passed!");

}

That's about it for our unit test class; now let's review the actual TimesheetListController class.

Writing Unit Test and Actual Code in the Same Sitting

This book's code zip file shows the complete code for our TimesheetListControllerTest.java class, which is the JUnit

test case for TimesheetController.java. As I've preached previously in this book, development of a unit test and the

actual code works best when it is done in the same sitting. For example, I wrote the TimesheetListControllerTest.java

and TimesheetListController.java in the same sitting; that is, I coded a little, compiled and tested a little, and then

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

repeated these steps until my controller class provided all the functionality I needed. The obvious benefit of this

approach was that my code was unit tested by the time I was done!

Furthermore, our controller class will now contain only the code we neednothing more, nothing less.

Another notable benefit worth mentioning is that at times I find myself getting programmer's block (similar to writer's

block). But starting out with the unit test code helps me get going. Note that what I have mentioned here is a personal

style of working, but hopefully you will find value in it and give the test-first approach a try (if you don't already do so).

One thing I do want to stress is that like everything else, you need to find the right balance. Although I believe in the

test-first approach, there are times when it isn't feasible for me to write a unit test code that becomes more

complicated than the actual code or is cumbersome to write. After all, you are writing Java code to test other Java

code, which raises an obvious questiondo we also test the test code? Of course, I'm kidding here, but my point is to

find the right balance and in most cases, unit tests work out pretty well.

Last, unit testing works best if you write small methods that can be unit tested relatively easily.

Controller Code

Now it is time to review the code behind our controller class for the Timesheet List screen, TimesheetListController.java. We will create

this in the timex/src/java/com/visualpatterns/timex/controller directory.

For starters, notice that we are implementing the org.springframework.web.servlet.mvc.Controller interface; this is perhaps the most

basic type of controller you can develop using Spring.

public class TimesheetListController implements Controller

The next interesting thing to note is the handleRequest method; this is the only method we must implement to satisfy the requirements of

the Controller interface.

public ModelAndView handleRequest(HttpServletRequest request,

 HttpServletResponse response)

The handleRequest method returns a ModelAndView object, which contains the view name and the model data (a java.util.List, in our

case). The view name is resolved by JstlView, which we defined in the timex-servlet.xml file we saw earlier in this chapter.

return new ModelAndView(VIEW_NAME,

 MAP_KEY,

 timesheetManager.getTimesheets(employeeId));

There are a few more variations to how you can construct the ModelAndView class, as shown in the following list (see the Spring

Framework API Javadocs for details):

ModelAndView()

ModelAndView(String viewName)

ModelAndView(String viewName, Map model)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ModelAndView(String viewName, String modelName, Object modelObject)

ModelAndView(View view)

ModelAndView(View view, Map model)

ModelAndView(View view, String modelName, Object modelObject)

View/JSP Code

We already prototyped the screens in Chapter 2, "The Sample Application: An Online Timesheet System," so we now need to add some

code to the related view (.jsp) files. This book's code zip file contains the before file, timesheetlist.html (prototyped, static HTML), and the

after file, timesheetlist.jsp (dynamic/JSP), versions of this file.

Let's review our timesheetlist.jsp a bit closer. For starters, we will create this in the timex/src/java/com/visualpatterns/timex/view directory.

Now let's look at some JSP code.

The following excerpt from our timesheetlist.jsp file shows the dynamic code used for populating the HTML table on the Timesheet List

screen; this is done in a loop using JSTLs forEach tag. Within each loop, we are generating the HTML table's rows and columns (and

also formatting the hours) using the JSTL core library.

<c:forEach items="${timesheets}" var="timesheet">

 <tr>

 <td align="center"><a

 href='enterhours.htm?eid=<c:out

 value="${timesheet.employeeId}"/>&tid=<c:out

 value="${timesheet.timesheetId}"/>'><fmt:formatDate

 value="${timesheet.periodEndingDate}" type="date"

Now let's look at another interesting piece of code from our view file, timesheetlist.jsp:

<c:if test="${not empty message}">

 <c:out value="${message}"/>

 <c:set var="message" value="" scope="session"/>

</c:if>

All this code does is check for any messages stored in the message session attribute. This message is set by the Enter Hours controller

upon a successful save in the onSubmit method, as you will see later in the chapter.

We just looked at how to configure and code the Timesheet List screen. Now it is time to review more complex Spring MVC features.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Enter Hours Screen: A Form Controller Example

The Timesheet List screen example we just looked at demonstrated how to develop a simple no-form controller. Now let's look at a slightly

more complex example using the Enter Hours screen shown in Figure 7.6.

As you can see from Figure 7.6, the Enter Hours screen enables users to enter their hours and select the department these hours should

be charged to (using a drop-down list). This functionality will require us to get a list of department names, bind the HTML form fields to a

Java object, validate data entered on the screen, and display error/status messages on the screen.

Step-by-Step Configuration

The following are steps required to configure the Enter Hours screen in our timex-servlet.xml file. For the sake of brevity, I will not provide

detailed explanations for the same steps we covered previously for the Timesheet List screen.

Map Handler

The following line provides the mapping for the Enter Hours view to the controller class:

<prop key="/enterhours.htm">enterHoursController</prop>

Define Controller and Associated Classes

The configuration for the Enter Hours controller is a bit more involved than the Timesheet List controller, so let's take a closer look at it.

First, you will notice that we have two model classes and one security-related (utility) class; these are required for the Enter Hours screen

to function, which are configured as follows:

<property name="timesheetManager">

 <ref bean="timesheetManager" />

</property>

<property name="departmentManager">

 <ref bean="departmentManager" />

</property>

<property name="applicationSecurityManager">

 <ref bean="applicationSecurityManager" />

</property>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

The following lines configure the command class for the EnterHoursController:

<property name="commandClass">

 <value>com.visualpatterns.timex.model. Timesheet</value>

</property>

The remainder of the configuration for this controller is Spring specific. For example, you will notice the validator property, which is an

optional configuration but one we will use to validate the input data from the screen. The formView is the name of the actual form view and

successView is the view you want Spring to redirect to upon a successful form submittal. The sessionForm property allows us to keep the

same instance of the command object in the session versus creating a new one each time.

<property name="formView">

 <value>enterhours</value>

</property>

<property name="successView">

 <value>redirect:timesheetlist.htm</value>

</property>

<property name="validator">

 <ref bean="enterHoursValidator" />

</property>

ResourceBundle

One other configuration item we should look at is related to externalizing string messages for internationalization and other purposes, as

shown here:

<bean id="messageSource"

 class="org.springframework.context.support. ResourceBundleMessageSource">

 <property name="basenames">

 <list>

 <value>messages</value>

 </list>

 </property>

</bean>

The ResourceBundleMessageSource Spring class relies on JDK's java.util.ResourceBundle class; we will use this to externalize our error

and status messages in a file called messages.properties (placed in our timex/src/conf directory), which contains the following messages:

typeMismatch.int=Invalid number specified in a numeric field

error.enterhours.missingdepartment=Please select a department

error.login.invalid=Invalid employee id or password

message.enterhours.savesuccess=Timesheet saved successfully

Alternatively, Spring also provides a class named ReloadableResourceBundleMessageSource, which can be used to reload the properties

periodically using its cacheSeconds parameter setting. This can come in handy during development, when the messages file can change

often.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Step-by-Step Coding

The following is Spring-related Java code we need to write for our form controller. By the end of this Enter Hours example, we will end up

with the following files (under our timex/src directory):

conf/messages.properties

java/com/visualpatterns/timex/controller/EnterHoursController.java

java/com/visualpatterns/timex/controller/EnterHoursValidator.java

java/com/visualpatterns/timex/controller/MinutesPropertyEditor.java

java/com/visualpatterns/timex/view/enterhours.jsp

Controller Code

Let's start by developing the controller. For starters, notice that instead of implementing the

org.springframework.web.servlet.mvc.Controller interface as we did for the TimesheetListController, we are extending Spring's

org.springframework.web.servlet.mvc.SimpleFormController (concrete) class.

public class EnterHoursController extends SimpleFormController

SimpleFormController implements the Controller interface but also is part of a hierarchy of various abstract controller-related classes (as

we saw in Figure 7.3). It can also automatically redirect the user to the default form view in case of errors and to a different (or same) view

if the form submission is successful; this is controlled using the successView and formView properties we set in our timex-servlet.xml for the

enterHoursController Spring bean, as we saw earlier.

Let's take a look at the various Spring-related methods for form processing. However, before looking at each method, let's look at the

order in which these methods are called.

Figure 7.8 shows three boxes: the first box is essentially when the user first enters the screen; the second box is when the user submits

the form with invalid fields (that is, validation fails), and the third/last box shows which methods are called when the validation is

successful. Now let's review the type of code that goes into each of these methods.

Figure 7.8. Life cycle of EnterHoursController.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The first method I will discuss is the formBackingObject, which returns a command object that is used to hold the input data from the HTML

form fields. Notice that we fetch an existing Timesheet record from the database if parameters are passed into the controller, indicating it is

an edit operation versus an add operation, in which case, we construct a new command object (which, incidentally, is a Time Expression

domain/business object).

protected Object formBackingObject(HttpServletRequest request)

{

 if (request.getParameter(TID) != null

 && request.getParameter(TID).trim().length() > 0)

 return timesheetManager.getTimesheet(Integer.parseInt(request

 .getParameter(TID)), false);

 Timesheet timesheet = new Timesheet();

 Employee employee = (Employee) applicationSecurityManager

 .getEmployee(request);

 timesheet.setEmployeeId(employee.getEmployeeId());

 timesheet.setStatusCode("P");

 timesheet.setPeriodEndingDate(DateUtil.getCurrentPeriodEndingDate());

 return timesheet;

}

Binding Directly to Domain (Business) Objects

One vital benefit of Spring MVC is the capability to bind the form fields directly to a domain object (Timesheet, for

example)! This is one of the things that separates Spring from many other web frameworks.

Next up is the initBinder method, which provides a good place to register custom property editors (discussed shortly), as shown here:

binder.registerCustomEditor(int.class, new MinutesPropertyEditor());

The referenceData method is a good place to return read-only data for forms, typically for drop-down lists on the screen, as we have done

by returning a list of departments for the Enter Hours screen:

model.put("departments", departmentManager.getDepartments());

Last, but not least, let's look at one of the most important methods in our controller class, the onSubmit method, shown next. As we saw in

Figure 7.8, this method is called only after all validations have passed through successfully:

protected ModelAndView onSubmit(

 HttpServletRequest request,

 HttpServletResponse response,

 Object command,

 BindException errors)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Timesheet timesheet = (Timesheet) command;

 timesheetManager.saveTimesheet(timesheet);

 request.getSession().setAttribute(

 "message",

 getMessageSourceAccessor().getMessage(

 "message.enterhours.savesuccess"));

 return new ModelAndView(getSuccessView());

}

Also, notice the following code in the onSubmit method, which returns a successful message via the HTTP session. This message is

extracted from the messages.properties file (using the message.enterhours.savesuccess key) and displayed on the Timesheet List screen.

This is about all we will cover for the controller class. Now, let's look at the other related classes used by this controller.

Custom Property Editor

As I mentioned earlier in this chapter, Spring makes heavy use of JavaBean style property editors (that is,

java.beans.PropertyEditorSupport).

We will write a custom property editor class, MinutesPropertyEditor, to convert the hours entered on the screen to minutes because that is

how our database is designed. The code for this class should be fairly straightforward because it performs the conversion from minutes to

hours and vice versa (that is, multiplying or dividing by 60 minutes).

Validation

Our validation example is very also fairly straightforward. The main code really is in the validate method of this class, as shown in the

following code excerpt:

Timesheet timesheet = (Timesheet)command;

if (timesheet.getDepartmentCode() == null ||

 timesheet.getDepartmentCode().trim().length() < 1)

 errors.reject("error.enterhours.missingdepartment");

The error variable shown here is of type org.springframework.validation. Errors, which provides several reject methods. The example I have

shown here is useful for displaying global messages for the entire screen; I tend to use this method rather than the field-specific ones. For

example, one of the field-specific reject methods has the following signature: rejectValue(String field, String errorCode).

Also, you might have noticed an onBindAndValidate method in Figure 7.8. This method has the following signature:

onBindAndValidate(HttpServletRequest request,

 Object command,

 BindException errors)

This method is called by Spring automatically after the Validator object has been invoked. This is a great place to do additional

validationsfor example, validations based on parameters sent in via HTTP request or database validations using one of the injected model

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

classes, perhaps to check for duplicate records in the database.

View/JSP Code

Now that we are done looking at Java classes for the Enter Hours screen, we can look at the corresponding view code, located in our

enterhours.jsp file. We will inspect a few excerpts here.

The first interesting block of code in our view is the displaying of error messages set in our EnterHoursValidator class, as shown here:

<spring:bind path="command.*">

 <c:if test="${not empty status.errorMessages}">

 <c:forEach var="error" items="${status.errorMessages}">

 <c:out value="${error}"

escapeXml="false"/>

 </c:forEach>

 </c:if>

</spring:bind>

This is the first time we are seeing the spring:bind tag, so let me explain a few things about it.

The key class behind the spring bind tag library is org.springframework.web.servlet.support.BindStatus. This tag enables you to bind the

HTML form fields to the command object (Timesheet, in our case). However, it also provides access to a special variable named status.

The status object contains some of the following attributes, which can be used in the JSP code:

status.value The value of a given attribute in the command object

status.expression The name of a given attribute in the command object

status.error A Boolean flag indicating whether an error exists

status.errorMessage A field-specific error message

status.errorMessages Global error messages for the view

status.displayValue Get a string value suitable for display using toString

Now let's look at how fields are bound. The following code shows how the departmentCode JSP/HTML variable is bound to the matching

variable in our Command object (that is, Timesheet.departmentCode).

<spring:bind path="command.departmentCode">

That is really all there is to enterhours.jsp; some of the code I have not explained here is because we already covered similar code for the

Timesheet List screen example earlier in this chapter (such as looping through code using the JSTL forEach tag).

I wish I could tell you there is more to Spring's bind tag library, but as I mentioned earlier, this library is fairly simple; but what you can do

with it is quite powerful.

Binding to Custom (Nonbusiness) Command Objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

One of the key benefits of Spring MVC is that it enables you to bind HTML form fields directly to your domain object. Spring refers to these

objects as command objects, perhaps based on the "Command" design pattern, which basically involves encapsulation of a request in an

object. Another way to view the concept of a command object is to view it as our form object because it can hold all the values entered on

the HTML form. However, because we can bind our HTML form fields directly to our business objects or have other data stored in this

object, the term command is more appropriate.

For the Time Expression screens, we bind directly to Timesheet, our domain object. However, you always have the option to create a

custom Command class, which could, for example, extend or contain the Timesheet class and provide some additional methods. For

instance, I worked on a project where I need to assemble and disassemble a java.util.Date object because the HTML form had separate

drop-downs for month, date, and year. In that case, I used methods such as assembleDate and disassembleDate in a custom command

class.

There are a couple of ways you can approach a custom command class. For example, we could have done something like the following:

public class TimesheetCommand extends Timesheet

By doing this, you can still bind directly to the setter/getter methods of our business object, but also extend it by adding additional methods,

as needed. Also, to construct a custom command class, you would need to specify it in the timex-servlet.xml file and also construct/return

an object of this type in the formBackingObject method.

The other approach is to have the TimesheetCommand class contain a reference to the Timesheet object. For example, this class could

have a constructor as follows:

public TimesheetCommand(Timesheet timesheet) {...}

Using this approach, you would bind the HTML form fields to the Timesheet object using a notation similar to this:

command.timesheet.minutesMon

The one problem you run into with this approach is related to JavaScript validation checking because JavaScript gets confused with the

dots in HTML field names. For example, command.timesheet.minutesMon would translate into timesheet.minutesMon for the HTML input

text field name if we used ${status.expression} to fill in the name of this input field.

DateUtil.java

The one other notable file is DateUtil.java; this file provides some utility type date methods. For example, our EnterHoursController class

uses one of these methods in its formBackingObject method:

timesheet.setPeriodEndingDate(DateUtil.getCurrentPeriodEndingDate());

JSP Taglib Directives

The one thing I haven't pointed out explicitly until now are the following lines of code you might have noticed in our JSP files:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

These directives are required before using a JSP tag library. More information on this and other JSP features can be found on the

java.sun.com website.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Views with No Controllers

There might be times when you do not need or want to write a controller. For example, suppose we want to implement a help screen for

Time Expression. We want this help screen to be accessible as /help.htm and have the real file (help.jsp) hidden in /WEB-INF/jsp. In this

case, we would first define UrlFilenameViewController in timex-servlet.xml, as shown next:

<bean id="urlFilenameController"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController"/>

Then we can reference urlFilenameController in our handler mapping (the urlMap bean in timex-servlet.xml, for example):

<prop key="/help.htm">urlFilenameController</prop>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Spring HandlerInterceptors

Until now, we developed our Timesheet List and Enter Hours screens without worrying about authentication. However, one of our

fundamental requirements from Chapter 2 is that employees can see only their own timesheets, which brings us to our Sign In and Sign

Out features.

Spring provides the concept of interceptors for web application development; these enable you to intercept HTTP requests. We will use

this feature to provide authentication for Time Expression.

To implement our sign in/out features, we will need to create the following files under the src/java/com/visualpatterns/timex directory:

controller/HttpRequestInterceptor.java

controller/SignInController.java

controller/SignInValidator.java

controller/SignOutController.java

util/ApplicationSecurityManager.java

util/DateUtil.java

view/signin.jsp

Authentication for Time Expression

The authentication for Time Expression is enabled by having all HTTP requests requiring authentication to be mapped as they go

through our interceptor class, HttpRequestInterceptor.java. The following code excerpt demonstrates how an intercepted request can be

preprocessed:

public class HttpRequestInterceptor extends HandlerInterceptorAdapter

{

 private ApplicationSecurityManager applicationSecurityManager;

 public boolean preHandle(HttpServletRequest request,

 HttpServletResponse response,

 Object handler)

 throws Exception

 {

 Employee employee =

 (Employee)applicationSecurityManager.getEmployee(request);

 if (employee == null)

 {

 response.sendRedirect(this.signInPage);

 return false;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 return true;

Notice the use of ApplicationSecurityManager here (and referenced several times earlier in this chapter). The complete code for this

class should be fairly straightforward to follow because it essentially provides methods for seting, getting, and removing a HTTP session

attribute named user (of type Employee, one of our domain objects), as demonstrated in the following code excerpt, which sets this

attribute:

public static final String USER = "user";

public void setEmployee(HttpServletRequest request, Object employee)

{

 request.getSession(true).setAttribute(USER, employee);

}

The SignInController class validates the login and also sets the Employee domain object using the

ApplicationSecurityManager.setEmployee method, as shown next:

Employee formEmployee = (Employee) command;

Employee dbEmployee = (Employee) command;

if ((dbEmployee = employeeManager.getEmployee(formEmployee

 .getEmployeeId())) == null)

 errors.reject("error.login.invalid");

else

 applicationSecurityManager.setEmployee(request, dbEmployee);

Our SignOutController class signs the user out by removing the Employee attribute from the session, as shown here:

applicationSecurityManager.removeEmployee(request);

Note

Our application uses a minimal index.jsp file, which will serve as our welcome file; this is placed under our src/web

directory and forwards the request to the our signin.htm URL, as shown here:

<c:redirect url="signin.htm"/>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Our Sample Applicationin Action!

Now that we have our web user-interface components (controller and view) and our model code developed, we have a completely

functional application that can be built, deployed, and test driven!

For example, we can now type ant deploy on the command line and have it (hot) deploy to our Tomcat webapps directory. After

deployment, the application can be accessed from a web browser using a URL such as http://localhost:8080/timex/. Figures 7.9 through

7.11 show our screens in action.

Figure 7.9. Sign In screen.

[View full size image]

Figure 7.10. Timesheet List screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Figure 7.11. Enter Hours screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Personal Opinion: Designing and Coding with Interfaces

The Spring reference documentation and many articles on the web recommend designing and coding with interfaces.

Spring supports both interface-based and class-based beans.

You might have noticed in Time Expression's class design that I have not used Java interfaces. This is related to my

philosophy on when and where to use interfaces.

Let me start out by saying that I like programming with Java interfaces a lot! However, similar to the way many people

jumped on the EJB bandwagon a few years ago, I see people jumping on the interface bandwagon recently. So, allow

me to share my thoughts on this matter; you may agree or disagree with them. I would like to begin by telling you a little

story on the topic of designing and coding with interfaces.

I have been using interfaces since 1996 and love the concept behind them. In 1997, I developed a 100% pure

Java-based backup software named BackOnline (http://visualpatterns.com/backonline/). This product was mentioned in

several well-known trade journals and won a Best Client award at JavaOne; it was even nominated by Scott McNealy

(CEO, Sun Microsystems) for a Computerworld-Smithsonian award. BackOnline is a client-server product; the server is a

multithreaded and multiuser server that essentially receives the files and stores them using an implementation class for

an interface named DataStore. The DataStore interface has FTP-like methods, such as get, put, open, close, and so on;

these, had to be implemented by concrete classes. The BackOnline software (which is no longer being sold) came

prepackaged with two default DataStore implementation classes, DataStoreFileSystem and DataStoreJDBC (the fully

qualified implementation class names were specified in a configuration file and dynamically loaded at runtime).

DataStoreFileSystem essentially used the java.io package to store the files using the local file system. DataStoreJDBC

used JDBC to store the file contents as Binary Large Objects (BLOBs) in a relational database.

I provided Javadoc and additional technical documentation for the DataStore interface, so Internet Service Providers

(ISPs) and products vendors who signed an OEM (original equipment manufacturer) with my company could write their

own custom implementations, if necessary. For example, an ISP might have wanted to take advantage of the native

operating system's features, such as extended file permissions.

For the BackOnline example I just went through, using interfaces was an obvious choice. Also, many times I find that

interfaces work well for lower-level APIs, such as the one I described for BackOnline or ones you find in frameworks

such as the JDK or the Spring Framework (for example, java.util.Collections or java.sql.Connection). Furthermore,

interfaces are great, if you think the underlying implementation can change (such as logging, authentication service, and

OS specific functionality). Of course, with remote technologies (EJB, for example), you have no choice but to use

interfaces.

For business applications, more times than not, especially on smaller projects, I have found that you need only one

implementation of domain (business) objects or service objects (such as the TimesheetManager class for Time

Expression). Furthermore, it doesn't make sense to have interfaces for domain objects (such as Timesheet.java, for

example).

Creating one interface file for each implementation class amounts to unnecessary overhead, in my opinion. For large

projects, this can amount to lots of extra .java (and .class) files without potentially adding much value. On the flip side,

there are times when using interfaces makes sense. For example, in Chapter 2, we discussed multiple user types (roles)

for the Time Expression application, such as Employee, Manager, and Executive. These could easily be created as

concrete classes that implement an interface named Person or Role. On the other hand, given the common behavior in

these objects, an abstract class would also make a lot of sense because the common methods could be pulled up into a

super (parent) class (called Person, for example).

In summary, given the right opportunity, you should use interfacesbut do not use them because it has been preached in

some book or article as the right thing to do. Furthermore, you should not feel at fault for not using interfaces for each and

every concrete class you write. Focus more on having a sound design for your applicationfor example, clean separation

of layers, good database design, easy-to-follow code, appropriate use of architecture/design patterns, and so on. I hope I

do not sound dismissive about interfaces because that is certainly not my intention; my point is to use everything in

moderation and appropriately.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com/backonline/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

New Tag Libraries in Spring Framework 2.0

At the time of this writing, the Spring team was getting close to releasing additional tag libraries to make it simpler to work with Spring

with JSP. However, the design of these new tag libraries was still evolving, so I was unable to cover this with accuracy.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

A Word About Spring Web Flow and Portlet API

Two additional user-interface Spring technologies might be of interest to you, if you have the need for features they provide.

Spring Web Flow

Spring Web Flow, based on similar concepts as Spring Web MVC Framework, essentially provides wizardlike screen functionality to

implement a business process. Good examples of such applications include an online shopping site such as amazon.com, which

requires you to go through several screens before the transaction is considered complete. This type of functionality requires

session/state management, which provides the capability to go back and forth through the screens without losing the information you

have already entered. This is precisely the type of functionality Web Flow eases. However, our application, Time Expression, does not

require such a feature and would not be a good example for the Spring's Web Flow.

Even though Web Flow is not covered in this book, given the scope of this book, I highly recommend that you give this technology a

serious look if your requirements call for this type of functionality.

Spring Portlet API

The Spring Portlet API is a new addition to Spring 2.0. It essentially implements the JSR-168 Portlet Specification defined on the Java

Community Process (JCP) website (http://www.jcp.org/en/jsr/detail?id=168). According to this, the Portlet API can be used for "Portal

computing addressing the areas of aggregation, personalization, presentation and security." Another way to look at this is that portlets are

part of a portal website, which might contain several portlets. Portlets are different from servlets in that they do not redirect or forward any

requests from or to the browser; instead, they are managed by a portlet container.

If you are interested in this API, you should check out the JCP website. Also, you might want to check out Apache's Pluto, a reference

implementation for the Portlet API.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://amazon.com
http://www.jcp.org/en/jsr/detail?id=168
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we

Looked at the various benefits of using Spring MVC

Took an in-depth look at the Spring Web MVC Framework

Built three of the screens in Time Expression using Spring MVC: one as a noform screen, the others as form screens

We covered a lot material in this chapter, but we aren't done with Spring just yet. In the next few chapters, we will touch on various

additional facets of the Spring Framework, including

The Spring IDE plug-in for Eclipse

Job Scheduling

Emailing

Meanwhile, if you want to dig into more Spring, take a look at Spring's JPetstore example and Reference Documentation, both part of

the Spring distribution software.

In the next chapter, we will look at Eclipse, which will completely change the way we have been working in this book! In other words, we

will change from command-line programming to a sophisticated Integrated Development Environment (IDE), which will make coding, unit

testing, and debugging much easierin short, agile Java development!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Websites for competing technologies to ones discussed in this chapter:

Apache Jakarta Tapestry http://jakarta.apache.org/tapestry/

Apache Jakarta Turbine http://jakarta.apache.org/turbine/

Apache Struts http://struts.apache.org/

Apache Tapestry http://jakarta.apache.org/tapestry/

Apache Tomcat http://tomcat.apache.org/

Apache Tomcat antiJARLocking and antiResourceLocking configuration attribute

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation

Apache Tomcat Ant Tasks

http://tomcat.apache.org/tomcat-5.0-doc/catalina/docs/api/org/apache/catalina/ant/package-summary.html

Apache Velocity http://jakarta.apache.org/velocity/

FreeMarker http://www.freemarker.org/

JavaServer Faces http://java.sun.com/j2ee/javaserverfaces/

Jetty Servlet Container http://jetty.mortbay.org/jetty/

Mock Objects http://mockobjects.com

OpenSymphony WebWork http://www.opensymphony.com/webwork/

Spring Discussion Forums http://forum.springframework.org/

Spring Framework http://springframework.org

The original MVC http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://jakarta.apache.org/tapestry/
http://jakarta.apache.org/turbine/
http://struts.apache.org/
http://jakarta.apache.org/tapestry/
http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://tomcat.apache.org/tomcat-5.0-doc/catalina/docs/api/org/apache/catalina/ant/package-summary.html
http://jakarta.apache.org/velocity/
http://www.freemarker.org/
http://java.sun.com/j2ee/javaserverfaces/
http://jetty.mortbay.org/jetty/
http://mockobjects.com
http://www.opensymphony.com/webwork/
http://forum.springframework.org/
http://springframework.org
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

8. The Eclipse Phenomenon!

UP TO THIS POINT IN THE BOOK, we have been working on the command line (to run Ant and JUnit, for example). Working on the

command line could be viewed as contrary to agile development by some. However, I'm a big believer that you need to understand the

fundamentals firstin other words, what is happening underneath the covers. Furthermore, many developers prefer the command line and

are highly effective working in this fashion, so I wanted to provide value to those developers as well. Now it is time to kick things into high

gear by using the Eclipse SDK!

The Eclipse SDK is a useful and highly effective Integrated Development Environment (IDE) for programming in Java and so much more,

as you will see shortly. Although the Eclipse SDK is quite robust in itself, what truly makes the Eclipse SDK so powerful is that it is also a

platform with well-defined standards for developing plug-ins, small applications that run inside Eclipse. Hundreds of plug-ins are available

for Eclipse. For example, at the time of this writing, a query on google.com for the words "eclipse" and "plug-in" resulted in millions of hits!

If you already use the Eclipse SDK or have used other products such as Mozilla Firefox browser (http://mozilla.com), you will appreciate

the power of plug-ins. In my opinion, the plug-in paradigm is taking open source to a new level, primarily because an organization such as

the Eclipse Foundation can put its muscle behind a platform. But the community as a whole completes and enhances the platform by

adding to it (using plug-ins, for example).

In this chapter we will take a close at the Eclipse SDK and various plug-ins useful for rapid Java development.

This is a special chapter because I have learned so much more about Eclipse while researching for this chapter; in fact, my entire

perspective on Eclipse has changed. I will share with you information about the history behind the Eclipse Foundation, the Eclipse

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://google.com
http://mozilla.com

platform, the enormous number of plug-ins, and how tremendously active the Eclipse community is. I hope by the end of this chapter, you

will have one word to say about the Eclipse phenomenonwow!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

In this chapter, we will take an in-depth look at Eclipse and how to leverage it for our sample application, Time Expression. By the time

this chapter is complete, we will have shifted every single technology we have covered so far in this book into Eclipse, using a variety of

free and sophisticated plug-ins. In this chapter we will learn about

The Eclipse Foundation

The Eclipse platform and projects

Eclipse SDK concepts

Installing Eclipse

Setting up Eclipse for Time Expression

The Java Development Tools (JDT) plug-in

Eclipse Web Tools Platform Project (for Tomcat support, JSP editing, and other JEE support)

Using Eclipse for Time Expression (starting Tomcat and connecting to HSQLDB, for example)

Eclipse team support using CVS

Plug-in directories for both free and commercial plug-ins

Eclipse tips and tricks

Results of a 30-minute comparison to IntelliJ and NetBeans

Why SDK and Not IDE?

SDK (Software Development Kit) typically implies an API, whereas IDE (Integrated Development Environment)

typically indicates a coding and debugging environment. The Eclipse documentation refers to its IDE as the Eclipse

SDK (perhaps because it is also an API for developing plug-ins). However, it is perfectly okay to call it the Eclipse IDE;

many people do.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Eclipse Foundation

Let me start by quoting some material directly from the Eclipse website, eclipse.org, because this will give you an immediate background

on the Eclipse Foundation, its history, and the major players behind this foundation.

"Eclipse is an open source community whose projects are focused on providing a vendor-neutral open development platform and

application frameworks for building software. The Eclipse Foundation is a not-for-profit corporation formed to advance the creation,

evolution, promotion, and support of the Eclipse Platform and to cultivate both an open source community and an ecosystem of

complementary products, capabilities, and services."

The website goes on to say:

"Industry leaders Borland, IBM, MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE, TogetherSoft and Webgain

formed the initial eclipse.org Board of Stewards in November 2001. By the end of 2003, this initial consortium had grown to over 80

members."

Eclipse was originally developed by Object Technology International (OTI), which was later purchased by IBM. IBM subsequently

donated the Eclipse technology (reportedly worth $40 million) to open source and recruited the various corporations mentioned

previously to jointly develop highly integrated products for this platform (in the form of plug-ins).

The Eclipse Foundation is similar to the Apache Foundation in that it provides open-source tools. However, the one underlying difference

is that Eclipse tools tend to be more graphical in nature versus Apache's tools, which tend to be more text based, such as servers, APIs,

and tools (Ant and Tomcat, for example). I think this is a refreshing change. In my opinion, the Java tools vendors are beginning to finally

get it (see the sidebar later in this chapter, "The GUI Development Tools Battle Has, Only Now, Begun!"). Why it took so long is beyond

my comprehension, considering robust GUI development/debugging tools for other programming languages have been around for a

couple of decades.

Personal Opinion: The Java Versus Microsoft Thing

This chapter isn't about a Java versus Microsoft comparison or battle, but I must deviate a bit here.

I have a love-hate relationship with Microsoft because, on one hand, I hate how they tried to derail Java a few years

ago; on the other hand, I also love many products they produce, one example being Microsoft Windows Media Center

Edition. Having said this, let me clearly state that Eclipse is the first tool I have seen in the Java community that comes

even close to competing with Microsoft's Visual Studio software. This is what excites me about Eclipse compared to

other Java products.

What makes Eclipse such a powerful product isn't just that it is an awesome GUI development tool, which it is. Other

products, such as JetBrain's IntelliJ and Sun Microsystem's NetBeans, are just as good. However, what truly makes the

Eclipse phenomenon so compelling is the sheer number of sophisticated plug-ins available in the marketplace and the

passion behind this platform from the commercial and open-source communities. From hundreds of free plug-ins to a

large and quickly growing commercial plug-in market, the Eclipse community is growing by leaps and bounds. One

such example includes myeclipseide.com, which offers a unique yearly subscription-based model and provides every

plug-in under the sun that you will need for enterprise software development. Also, the Eclipse consortium had more

than 80 members in 2003 and is growing quickly with major players such as Borland, Rational Software, Red Hat,

SUSE, and TogetherSoft. In fact, in early 2005, Borland announced that going forward, their Java development flagship

product, JBuilder, would be based on the Eclipse platform.

A couple of juicy facts you might find interesting are related to Ward Cunningham and Erich Gamma. Ward, the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://eclipse.org
http://eclipse.org
http://myeclipseide.com

inventor of Wiki, co-inventor of CRC cards, and a significant contributor to Extreme Programming, left Microsoft's

Patterns and Practices Team to join the Eclipse Foundation. Erich is the coauthor of the popular Gang of Four Design

Patterns book and the JUnit testing framework. He is one of the key people involved in the JDT Project. It is comforting

to know that the Eclipse foundation is able to recruit such well-respected, innovative leaders in our industry.

In short, the Eclipse community has been growing at a rapid pace, but in my opinion, it is about to experience

exponential growth!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The Eclipse Platform and Projects

The Eclipse platform is an open source, cross-platform, and extensible IDE built using Java. The Eclipse platform is essentially a

framework that provides a set of services that other plug-ins can build on (as depicted in Figure 8.1). Each plug-in is developed to the

same platform, which translates into a set of highly integrated tools.

Figure 8.1. The Eclipse platform and some sample plug-ins (for example, JDT).

Eclipse: A Consolidated Toolbox

The Eclipse platform, combined with the large number of highly integrated plug-ins available, essentially serves as a

consolidated software development environment. For example, there are plug-ins available for UML diagramming,

coding, debugging, database management, unit testing, application server management, documentation, and much

more. You could think of Eclipse as a toolbox, analogous to a carpenter's toolbox, which has many types of tools to get

the job done.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Eclipse comes bundled with the Java Development Tools (JDT), which is of high interest to us, given the nature of this book. However,

Eclipse doesn't stop at Java; plug-ins are available for languages including HTML, C/C++, COBOL, and Eiffel. In addition, you will find

third-party plug-ins for other languages such as PERL, PHP, and Ruby on Rails.

You can also develop your own custom plug-in to extend Eclipse. Although I have not personally done this, others who have suggest that

it is not that difficult to do because you develop the plug-ins in Java. Also, you will typically hear about Eclipse in the context of

development tools, plug-ins are under development for functionality other than programming, such as content management and other

tools, from companies such as webMethods, SAS, Hitachi Software, and many more.

Eclipse Platform Objectives

Let's take a look at the objectives for the Eclipse platform, set by the Eclipse Foundation. It is a good idea to know these because it'll help

tie things together when we see the enormous functionality provided by Eclipse in this chapter. Some of Eclipse's objectives are

To provide a robust platform for highly integrated application development tools

To enable viewing or editing of any content type (Java, JSP, XML, C/C++, Word documents, and others, for example)

To attract a large community of developers to develop plug-ins for this platform

Eclipse Projects

To give you a better idea of the growing scope of the Eclipse Foundation, Table 8.1 shows the Eclipse projects underway at the time of

this writing. Note that every project is overseen by a Project Management Committee (PMC). Each project can be divided into subprojects

with each having a leader. Furthermore, each subproject, in turn, can have one or more components.

Table 8.1. Eclipse Projects (Organized by Topics) at the Time of This Writing

Topic Project(s)

Application Development Application Lifecycle Management Framework

 Model Driven Development Infrastructure

 Eclipse Communications Framework

 Buckminister Component Assembly Project

 Eclipse SDK Platform

 EJB 3.0/Java Persistence API Development Tools (Dali-ORM)

 Task Focused UI (Mylar Project)

 Parallel Development Tools

 Business Intelligence and Reporting Tools (BIRT) Project

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Topic Project(s)

 Voice Tools Project

 Eclipse Web Tools Platform Project

Editors Graphical Editor Framework (GEF)

 Visual Editor (VE)

 Eclipse Web Tools Platform Project (HTML, JSP)

Modeling Generative Model Transformer

 Graphical Modeling Framework

 EMF Modeling Framework

 UML2EMF-based implementation of UML 2.0

Performance and Testing Eclipse Test and Performance Tools Platform Project

Programming Languages COBOL

 AspectJ Development Tools Project

 C/C++ IDE

 Photran project (Fortran)

 JDTJava Development Tools

 Java/JSPEclipse Web Tools Platform Project

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Eclipse SDK Concepts

When people use Eclipse for the first time, they often find it slightly confusing because of their unfamiliarity with the concepts. This was the

case with me, as well. However, I found that I needed to understand only three to five basic concepts about Eclipse to instantly become

productive with this tool. So, let's review these here. Note that I have intentionally provided brief descriptions here because we will look

at these concepts in practice when we set up Time Expression in Eclipse.

Disclaimer: Screenshots of Eclipse in This Chapter

Almost all the screenshots of the Eclipse SDK are taken in 800x600 resolution in this chapter for the sake of legibility.

However, most developers prefer a higher resolution, such as 1024x768. I use 1600x1050, for example. Therefore, the

screenshots here do not do Eclipse justice because I'm unable to show how one would practically use Eclipsethat is, with

lots of editors and views stacked in the workbench at one time.

Workspace

Considering how vital the term workspace is to Eclipse, let's begin with this concept first.

Simply put, a workspace is a directory for your projects. It is essentially the top-level (parent) directory under which your project-related

files (.java files, for example) are organized. In my personal case, I used C:\anil\rapidjava, as you will see later in the chapter. So,

everything under this directory (timex/ and the various subdirectories, that is) is considered part of the same workspace.

Workbench, Perspectives, Editors, and Views

The Eclipse workbench is the first thing we see when we start Eclipse. In other words, it essentially is the Eclipse platform plus some basic

functionality such as management of projects. The actual work, such as editing and viewing, is handled by the plug-ins (the JDT, for

example).

A workbench contains an arrangement of editors and corresponding views; this task-specific arrangement is called a perspective. Figure

8.2 shows a representation of how a user can switch between one perspective to another, using a single click or shortcut key combination

(Ctrl+F8, for example).

Figure 8.2. Diagrammatic representation of the Eclipse SDK.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

[View full size image]

Perspectives

A perspective is a collection of views and editors arranged in the fashion you like. A workbench can consists of several perspectives,

but only one can be visible at time; however, we can quickly switch between perspectives with the click of a button or by using Ctrl+F8

(COMMAND+F8 on Mac OS X). Perspectives provide a nice way to arrange task-specific views and editors of your choice. For example, in

the Debug perspective, it makes sense to have the Breakpoints view, whereas in the Java Browsing view, it doesn't. Note that the views

can be arranged as attached (tiled or stacked as tabs) and detached windows.

There are some predefined perspectives such as Java, Java Browsing, Debug, and others. Furthermore, we can create custom

perspectives. For example, I tend to create my own perspective using an existing perspective (such as Java), altering it by

adding/removing views and then saving it as a perspective named Anil (I know, not the most creative name but it certainly doesn't conflict

with the prepackaged perspective names). Figure 8.3 shows Eclipse using my own custom perspective, and Figure 8.4 shows a predefined

Debug perspective.

Figure 8.3. Custom perspective (Anil).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 8.4. Predefined Debug perspective.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Editors and Views

Editors, as you would expect, allow us to open, edit, save, and close files. By the end of this chapter, we will have editors for plain text,

.java files, .jsp files, XML files, and more.

Views supplement editors by providing read-only information, typically about the file being edited in the editor. For example, the Outline

view provides a list of methods for the Java file being edited. However, for an XML file, you would see the various XML elements and

attributes for the file being edited.

The Eclipse platform, combined with the JDT, comes prepackaged with various views such as Ant, Console, Breakpoints, Package

Explorer, and so on. Others include Bookmarks, Properties, Tasks, Problems, Progress, Call Hierarchy, and many more.

Several editors and views can be grouped together using tabs. For example, Figure 8.4 shows the Console and Task view with tabs

grouped together at the bottom part of the screen.

Project

A project is a collection of your files that you manipulate, such as .java, .xml, and so on. In addition, Eclipse provides the capability to work

with multiple projects of different types (for example, simple Java versus a web application) under the same workspace, each with

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

project-specific configuration versus a default, workbenchwide configuration.

Because we will be setting up Time Expression in Eclipse shortly, we will edit all the Time Expression files from a single place by

navigating the files and directories with the help of the Package Explorer or Navigator views. In other words, we can work with all our .java,

.xml, .properties, .jsp, and other files from a single place.

Plug-ins

Plug-ins are applications (programs) that can easily be installed and used inside the Eclipse platform/workbench. For example, the JDT

itself is a plug-in. However, when many people think of plug-ins, they think mini or simple programs. This is not the case with Eclipse, as

you will most definitely see later in this chapter when we discuss the JDT in-depth and install and use the Eclipse Web Tools Platform

(WTP) set of plug-ins.

Wizards

As we begin to work with Eclipse more and more, you will notice that there are wizards galore in Eclipse! Figure 8.5 shows a partial list of

wizards you see when we select the File, New, Other option (or when we use the OS-specific hot key, such as Ctrl+N on Microsoft

Windows). By the time we are done with this chapter, we will have approximately 100 wizards available to us, including plug-ins for setting

up Tomcat, creating Hibernate configuration and mapping files, working with Spring application context files, managing HSQLDB, and

even others not applicable to Time Expression, such as creating EJBs, web services, and many more!

Figure 8.5. Eclipse wizards.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Installing Eclipse

Now that we have some background information on the Eclipse Foundation, the Eclipse platform, and its architecture, let's have some fun

with Eclipse.

Before you can run Eclipse, a compatible JRE (v1.3 or later) must be installed on your system (see the sidebar Java Runtime

Environment [JRE] Required by Eclipse"). If you already have a compatible JRE installed on your system or you installed it in Chapter 4,

"Environment Setup: JDK, Ant, and JUnit," you should be okay. You may want to run java version on the command line to verify that the

Java VM is installed and that you have the appropriate version.

Java Runtime Environment (JRE) Required by Eclipse

According to the Frequently Asked Questions (FAQ) on the Eclipse website (eclipse.org), if Eclipse does not run on your

system, "the number one reason is that the JRE cannot be located to run Eclipse. You must have a Java Runtime

Environment (JRE) installed on your computer. Eclipse requires version 1.3 or 1.4 of a Java 2 Standard Edition JRE. The

Eclipse SDK does not ship with a JRE." For more information, refer to the Eclipse website.

Before we go through the setup steps, let's take another look at the directory structure (shown in Figure 8.6) that we established in Chapter

3, "XP and AMDD-Based Architecture and Design Modeling," because we will be working with it in Eclipse.

Figure 8.6. Development directory structure for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://eclipse.org

Now, it is time to run Eclipse! The following simple steps should get us up and running with Eclipse within minutes (assuming that you

have the correct JRE installed and a fast Internet connection to download Eclipse).

Let's download the latest version of Eclipse SDK from http://www.eclipse.org/. The version used through this chapter is 3.1.2 (which was

the latest version available at the time of this writing). Note that the prebuilt Eclipse SDK binaries include platforms such as Microsoft

Windows, Linux, Solaris, AIX, HP-UX, and Mac OS X. At first, you might find the eclipse.org website confusing or overwhelming because

there are so many projects and mirror sites; I typically start with the Downloads section, which can be accessed directly from the home

page.

After we have unpacked the Eclipse SDK archive (.zip or .tar.gz, for example), run the Eclipse application from the /eclipse directory.

(Depending on your platform, this executable file will be named eclipse.exe, eclipse.app, or simply eclipse).

Right after the eclipse command, we should see a Select a Workspace prompt similar to what is shown in Figure 8.7. Notice that I have

entered C:\anil\rapidjava for my Windows directory; this is one level above the actually timex directory shown in Figure 8.6. After specifying

the correct directory, click OK to proceed.

Figure 8.7. Select a Workspace prompt.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.eclipse.org/
http://eclipse.org

Next, we see the welcome screen shown in Figure 8.8. Close this by clicking the X next to the Welcome tab or the Workbench icon at the

top-right.

Figure 8.8. Eclipse welcome screen.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Is Eclipse Itself Developed in Java?

One of the things you will notice with Eclipse is how snappy this product's user interface is (unlike older first-generation

Java-based tools). In fact, you might even wonder if it is developed in Java given how fast and responsive this

application is. The short answer is, yes and no. The Eclipse SDK uses the Java-based Standard Widget Toolkit (SWT),

which in turn uses the native operating system's GUI widgets.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Setting Up Eclipse for Time Expression

So far I have provided you with a basic understanding of Eclipse, enough to move forward with setting Time Expression. Now we can

build an Eclipse Project using our existing Ant build.xml file. This is done via the File, New, Project menu option. Figure 8.9, shows the New

Project Wizard screen. Select Java Project from an Existing Ant Buildfile from the options and click Next.

Figure 8.9. The New Project, Select a Wizard screen.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Figure 8.10 shows the next screen where we actually specify our existing Ant build.xml file. This is the big moment for us because after this

step we can begin working with all our existing source code within Eclipse; no more command line! So, we can click the Finish button.

Figure 8.10. The New Java Project, Create a Java Project from an Ant Buildfile Wizard.

Figure 8.11 shows the first screen we should see immediately after the new project has been created, named timex. However, as you might

notice, we have a few (more like, 100) problems as shown in the Problems view. This is related to the way I chose to set up the source and

output directories for Time Expression.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 8.11. Newly created timex project.

[View full size image]

I could have demonstrated a smooth working example here that used Eclipse's default directory structure; however, I intentionally wanted

to demonstrate this because there are good chances you (or the organization you work for) already have a standard way of establishing

your directory structures. Anyway, we can easily fix this problem as explained next.

Let's expand the timex project's file/directory hierarchy tree in the Package Explorer view (on the left side of the screen). Locate the src

directory in the tree and right-click it to show the context menu. Select Build Path, Remove from Build Path, as shown in Figure 8.12.

Figure 8.12. Remove src/ from build path.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

After we do this, the src directory reappears on the list, but with a different icon. Note that we did not actually delete the directory, just

removed it from the build path. Now, we will expand the src directory, locate the java subdirectory underneath it; right-click it and select

the Build Path, Use as Source Folder option from the context menu, as shown in Figure 8.13.

Figure 8.13. Use as Source Folder.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We are almost there. We took care of the source directory; now we need to adjust the output folder for our compiled (.class) files, so we

can use our Ant build.xml file to compile classes and also Eclipse's built-in Builder feature (see the sidebar "Save Compiles Within the Blink

of an Eye!").

Save Compiles Within the Blink of an Eye!

If you have been programming for some time now, you are probably used to the trial-and-error techniquethat is, you write

some code, compile it, fix compile errors, recompile, fix more compiler errors, recompile, run, find runtime errors. Okay,

you get the picture.

Eclipse comes with a built-in builder for compiling your .java files to .class files every time you save your file. This is

perhaps one of the most important, yet least advertised, features of Eclipse (it is a personal favorite of mine). The

compilation is so fast that you won't even know the compilation took place. Pretty cool, huh?

If I press Ctrl+S to save my .java file, I instantly have a .class file generated for me within the blink of an eye (so to speak).

Of course, the compilation takes place only if the source code is without errors (warnings are okay).

To change the default output folder, we right-click the src/java directory in the Package Explorer view and select the Build Path, Configure

Output Folder context menu option, as shown in Figure 8.14.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 8.14. Configure output folder.

[View full size image]

We should now see a screen similar to what's shown in Figure 8.15. Notice that we have changed the default output folder to

build/timex/WEB-INF/classes. This is relative to the workspace we specified earlier (shown in Figure 8.7).

Figure 8.15. Specify output folder location.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Now we are actually ready to use Eclipse for our development! However, let's take care of a couple more cleanup steps. These are

optional, but we don't want to leave any unnecessary remnants lingering out there.

When we changed the source folder to src/java, Eclipse compiled the .java files to its default output folder (timex/bin/, that is). We can

manually delete this subfolder, but let's adjust a configuration item so that Eclipse doesn't create this directory again. To do so, right-click

any entry (file, directory, or project name, for example) in the Package Explorer view and select Build Path, Configure Build Path. Figure

8.16 shows the Project Properties screen for our application, Time Expression. Notice that we have changed the default output folder

(toward the bottom of the screen) to timex/build/timex/WEB-INF/classes. This is the same output folder as the one we chose for our src/java

directory. Again, this is an optional step because we are working only with a single source directory, so the default and source directory

output folder are the same. After this, we can right-click the bin/ directory in the Package Explorer view and safely delete it.

Figure 8.16. Project Properties window.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Also, you might have noticed an entry in the Package Explorer view with a directory name that looks something like

C:/anil/rapidjava/timex/build/timex/WEB-INF/classes; this might indicate (unknown) at the end of the ToolTip when you hover your mouse

over this entry. We can safely remove this; right-click this entry and choose Build Path, Remove from Build Path.

Now Eclipse is fully set up to develop Time Expression!

By the way, I tried this setup on my Mac OS X and Linux and it worked as advertised. Figure 8.17 shows the Eclipse workbench on a Mac

OS X, with the Time Expression project open. Figure 8.18 shows Eclipse on Linux (using bootable Knoppix Linux CD). Impressed yet? We

have only begun; there is much more to come.

Figure 8.17. Eclipse with timex project on Mac OS X.

[View full size image]

Figure 8.18. Eclipse with timex project on Linux (using Knoppix bootable CD).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Java Development Tools (JDT) Features

The JDT plug-in builds on the Eclipse platform by adding robust Java-related capabilities to Eclipse. The JDT is such a core part of the

Eclipse SDK that it is bundled with it.

The Eclipse platform combined with the JDT plug-in provides so many features that it would fill up an entire book. Hence, for the sake of

conciseness, I will list the numerous features provided by plug-ins next, with a brief description of each. The online help bundled with

Eclipse provides more detail on how these features work (the Eclipse help system is covered later in this chapter).

Management of Java projects and files such as .java, .class, .jar, and Javadocs.

Java source editing with keyword/syntax highlighting, truly intelligent content (code) assist, quick fix, import organization, and

more.

A variety of Java views. For example, Figure 8.19 shows a sample of the Java Browsing perspective, which allows us to browse

Java packages, types (classes, interfaces), members, and variables; this is also a great way to browse other jar files (for

example, spring.jar). Other Java views include JUnit, Ant, Package Explorer, and more.

Figure 8.19. Java Browsing perspective.

[View full size image]

Every time we save a .java file, it is instantly compiled to a .class file (see the sidebar "Save Compiles Within the Blink of an Eye!").

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Intelligent quick fix (Ctrl+1) and content assist (Ctrl+spacebar)If there are two keyboard shortcuts you should remember in

Eclipse, these are the ones! Use one of these when you are stuck or are feeling lazy about typing. Try them anywhere and

everywhere while coding, because these keys do too many things to list here. The assistance will be provided based on your

cursor position, in the way of an intelligently narrowed applicable list of choices. For example, Ctrl+spacebar can fill in the

remainder of your line of code, provide a drop-down list of choices, show us the signature of the method we are calling, and

much more. Again, there are too many features to list here, but the Eclipse online help provides detailed information on these

keys.

Generation of code using prepackaged or custom templates (for code snippets), surround code with try/catch, add imports

automatically, and more. Figure 8.20 shows the Source context menu. Generate setters/getters.

Figure 8.20. Source context menu.

[View full size image]

Eclipse JDT provides so many code formatting options that it can overwhelm you at first. If I had to take a guess about how

many customization options are available to enable us to format our code, I would probably say about 100 or more. Figure 8.21,

shows a sample of what I'm referring to. Notice all the options on the first tab; now multiply that by the eight tabs shown on this

screen (you get the picturethere are a lot of options).

Figure 8.21. Java code formatting options.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Compiler warnings and errors are displayed in the left and right side of the margins of the editor windows. Red is for errors and

yellow is for warnings. Figure 8.22, shows an intentional error I generated. The marker on the left margin is the position on the

page level; the indicator on the right margin is the position in the file. Also, notice that the warnings and errors are displayed in

the Problems view.

Figure 8.22. Compiler errors and warnings.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

JDT provides all the debugging features you would expect, such as breakpoints, variable inspection, watch expressions, and

more. Eclipse also provides a hotswap feature if your JRE supports it; this allows us to change code in the debugger and have it

reloaded instantly, without the need to restart your debugging session (a very cool feature!). We will cover debugging in depth in

the next chapter.

The JDT provides reliable renaming of methods or classes and their references across a project. For example, if we rename a

class, Eclipse will attempt to update all references to this class in Java code and XML files.

Powerful searching using Java method signatures and more is another feature provided by the JDT. Figure 8.23 shows the

Search dialog box. Notice that we can do file searches, Java searches, and even plug-in searches. In addition, we have other

options for searching and repeating previous searches.

Figure 8.23. Search dialog box.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The JDT goes beyond syntax highlighting and debugging by providing such features as the capability to add comments with the

word TODO (we can choose other words as well) and have it appear in the Tasks view (Figure 8.24), which shows us every

single TODO item we have in all the source files.

Figure 8.24. TODO comments and Tasks view.

[View full size image]

As I mentioned earlier, Eclipse provides many types of wizards. The JDT-specific wizards include the capability to create classes,

packages, annotations, simple files, and more. Each of these wizards is powerful in their own respect. For example, Figure 8.25 shows the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Class Wizard. Notice how we can specify just about everything we need to create a skeleton class belonging to some package, extending

another class or implementing various interfaces, containing a main method, inheriting constructors from the super class, and more. Now if

Eclipse could only write our business logic, we would all be set.

Figure 8.25. New Java Class Wizard.

[View full size image]

The JDT comes preconfigured with JUnit. The JUnit plug-in provides a wizard and a view to create and test classes. Figure 8.26 shows the

JUnit Wizard. We will use the JUnit view later in this chapter.

Figure 8.26. New JUnit Test Case Wizard.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As you would guess, Ant is an integral part of Eclipse. Figure 8.27 shows the Ant view for running Ant tasks and the Ant editor for editing

Ant build XML files (notice the Ctrl+spacebar-based context help for the XML elements and attributes). Also, the Console view shows the

output of the Ant command with clickable filenames that take us directly to the point of the error!

Figure 8.27. Ant editor and view.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Eclipse's Export feature provides the capability to export many types of files. I like the fact that any exportable files by any plug-ins show

up in one place. Also, export is a term used loosely here because we can even create JAR files using this option. Figure 8.28 shows the list

of files we can export to (in our setup so far).

Figure 8.28. Export options.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Java Scrapbook feature is a very handy feature to experiment with single lines of Java code, as shown in Figure 8.29. You can create

a new Java scrapbook from the File, New, Other wizard (look for Java, Java Run/Debug, Scrapbook Page in the tree) and then execute it

by highlighting your line of code and selecting Execute from the context (right-click) menu or the Run menu (or by pressing Ctrl+U on

Microsoft Windows, for example).

Figure 8.29. Java Scrapbook page.

[View full size image]

The JDT provides extensive code refactoring options, although I must admit this is my weak area in that I have not used these features

extensively. According to the Eclipse online help, "The refactoring tools support a number of transformations described in Martin Fowler's

book Refactoring: Improving the Design of Existing Code, Addison Wesley, 1999, such as Extract Method, Inline Local Variable, etc." The

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

point behind refactoring is to improve the code without impacting the functionality it provides. Perhaps it's a personal preference for me to

come up with my own refactoring ideas rather than trusting software to do it for me, although many of the refactoring options in Eclipse are

simple and harmless to use.

Figure 8.30 shows the Refactor menu items. For example, we can extract (create) an interface class using the concrete methods of a

concrete class. Other options provide the capability to pull up a method to a parent class, rename a package, class, or method, inline

variables, add exceptions, and much more.

Figure 8.30. Refactor menu.

We just went through a lot of features provided by the combination of the Eclipse platform and the JDT plug-in, but as they say, you ain't

seen nothing yet!

There is so much to Eclipse that it would take a few books to cover what's available on the eclipse.org website and elsewhere (and so

much more under development, just waiting to surface). Nonetheless, I will cover a lot by the end of this chapter.

As I mentioned earlier, what makes Eclipse so powerful are the plug-ins available for this platform. So far, we have discussed only one

plug-in, the JDT. I also mentioned earlier that hundreds of plug-ins are available out theresome small and simple, others more complex.

Borland is one example; however, there is a very long list of companies developing plug-ins for Eclipse, including the Eclipse Foundation

itself, as we will see in the next section.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://eclipse.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Installing the Eclipse Web Tools Platform (WTP) Plug-ins

If you thought the JDT was a feature-loaded plug-in, you will be impressed by the variety of plug-ins provided as part of the Eclipse Web

Tools Platform (WTP) Project.

According to the eclipse.org website, "The Eclipse Web Tools Platform (WTP) project extends the Eclipse platform with tools for

developing J2EE Web applications. The WTP project includes the following tools: source editors for HTML, JavaScript, CSS, JSP, SQL,

XML, DTD, XSD, and WSDL; graphical editors for XSD and WSDL; J2EE project natures, builders, and models and a J2EE navigator; a

Web service wizard and explorer, and WS-I Test Tools; and database access and query tools and models." All of this is true and works as

advertised. However, there is more than this because the brief description from eclipse.org does not mention support for managing various

web/application servers, which we will use to start and stop Tomcat later in this chapter.

To install the WTP, follow the instructions provided on the http://www.eclipse.org website to install this plug-in. For example, I was able to

install this using the Help, Software Updates, Find and Install menu option. Figure 8.31 shows how I essentially added a new Remote Site

for the WTP, http://download.eclipse.org/webtools/updates/, and obtained all the plug-ins from there using this Eclipse software update

feature. The process itself is very smooth; however, it is a big download, so it'll take some time to download and install. After the WTP is

installed, we will be prompted to restart Eclipse. Also, after installing the WTP, Eclipse might take a bit longer to load at start, presumably

because the additional plug-ins we installed require extra time to get verified and loaded.

Figure 8.31. Eclipse software update (WTP install shown here).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://eclipse.org
http://eclipse.org
http://www.eclipse.org
http://download.eclipse.org/webtools/updates/

After we have WTP installed successfully, we can select the J2EE perspective from the Window, Open Perspective menu option.

The WTP enables us to work with both static (such as HTML) or dynamic (such as EAR files) projects. For example, you will find editors

for markup languages such as HTML, XML, as well as editors for JSP and JavaScript; you get the features you have probably come to

expect from Eclipse by nowthings such as code assist, templates, and more. However, the WTP is more than just a J2EE content editor. It

also provides powerful data and server tools, as we will see later in this chapter, when we leverage these for HSQLDB and Tomcat.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Using Eclipse for Time Expression

Until now, we have used a variety of tools and technologies from the command line, so it would be nice to get the same or better

functionality, given the toolbox paradigm I used to describe Eclipse earlier in this chapter.

You'll be glad to know that plug-ins are available for each of these technologies. The JDT already tightly integrates views for Ant and JUnit,

so we just need to get the plug-ins for the other technologies. This is relatively simple using the Eclipse software update feature or by

downloading the plug-in as an archive file (.zip and .tar.gz, for example) and installing.

Let's review the various plug-ins applicable to Time Expression.

Prebundled JDT Plug-ins

As I mentioned earlier, the JDT provides several plug-ins, such as a JSP editor, Ant view, and JUnit plug-ins. Also, we looked at a couple

of Ant and JUnit plug-in related screen-shots in Figures 8.26 and 8.27.

Figure 8.32 shows our view file for our Enter Hours screen, enterhours.jsp, being edited. Notice the context help (invoked using Ctrl+spacebar)

for the spring:bind tag library and the integration with the Outline view (to display the JSP elements and attributes).

Figure 8.32. JSP Editor.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

I use Ant within Eclipse only when I want to copy configuration files, build/deploy a distribution, or perform other special tasks I have

defined in our build.xml file. However, for compilation of individual .class files, I rely on JDT's builder because it is so fast and transparent (that

is, it compiles automatically every time I save my .java files). To begin using our build.xml file within Eclipse, we need to add it from the Ant view.

Select Window, Show View, Ant to add the Ant view. From the Ant view, select the Add Buildfiles option and select the Time Expression

build.xml file as shown in Figure 8.33.

Figure 8.33. Adding the Time Expression build.xml.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When it comes to JUnit, I use the JDT integrated support for JUnit extensively. Let's start out by adding the JUnit view using the Window,

Show View, Other menu item (look for Java, JUnit in the list of views). Figure 8.34 shows how we can run the TimesheetManagerTest

class by selecting the Run, Run As, JUnit Test option (available on the Eclipse menu, source code context menu, or Package Explorer).

The results of the test case run are shown in the JUnit view and the command output in the Console view.

Figure 8.34. Sample JUnit test case run.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Although I have discussed a single JUnit test class here, real-world projects typically contain lots of such JUnit test classes (potentially, in

the tens to hundreds).

Data Plug-in (for HSQLDB)

Next we will set up the capability to work with HSQLDB within the Eclipse workbench. Ensure that the HSQLDB server is running as

specified in Chapter 5, "Using Hibernate for Persistent Objects." Next, we will add the Data, Database Explorer view. From the Database

Explorer view, either right-click the Connections icon or the corresponding button on the view's toolbar. Figure 8.35 shows my connection

parameters. I couldn't find a database manager for HSQLDB, but I was able to fake it by using DB2 UDB V8.1, and everything seemed to

work. There is probably at least one or more plug-ins out there for HSQLDB, but I wanted to use the standard plug-ins provided with the

WTP.

Figure 8.35. HSQLDB setup for Database Explorer.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 8.36 shows a variety of things we can do with the Data related plug-ins. For example, as I'm browsing the database objects, I ran a

query against the Employee table and can even generate a DDL script!

Figure 8.36. A variety of features provided by the Data plug-ins.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Servers Plug-in (for Tomcat)

Next, we will set up the capability to work with Tomcat from the Eclipse workbench. Let's begin by adding the Servers view. We can

right-click in the Servers view (or open Server from the File, New, Other list of wizards). On the next screen, we will select Tomcat v5.5 for

your setup; if you are using another server, you can choose it here as well (BEA, IBM, or JBoss, for example). On the screen shown in

Figure 8.37 (part of the New Server Wizard), I noticed a little warning message indicating that Tomcat requires a JDK (versus a JRE), so I

added a new JDK via the Installed JREs button, and after returning to the wizard screen, I selected it from the JRE drop-down list (yes, the

JRE and JDK cross-referencing can get confusing).

Figure 8.37. Add New Server Wizard screen (for adding Tomcat Server).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

After our Tomcat Server is added, we need to tweak an entry. (It sounds easy now, but it took me a while to figure this out.)

Figure 8.38 shows the Server Overview configuration editor (yup, an editor; Eclipse can have any number of content editors and not just for

text, but also for images and other types of content). Next, we will uncheck the Run Modules Directly Checkbox from Workspace option

because we want to use the existing configuration so that our Ant can continue to function. Also, notice the Modules tab toward the

bottom-left part of Figure 8.38; this can be used to configure external modules, both web archives (.war files) and exploded web application

directories (for example, our build/timex directory).

Figure 8.38. Tomcat Server configuration.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Note

Deploying an exploded directory versus a .war file is a better idea during development (versus UAT, for example) because

you can quickly test changes to files such as JSP, HTML, and images without the need to redeploy the entire application

(.war file).

Now we are ready to run Tomcat. Notice the Servers view crammed at the bottom of Figure 8.38. This is where we can stop and start

Tomcat; the status shows as Started and the changes we made to the configuration are Synchronized. We can start, stop, and monitor

Tomcat from this view. We can also start Tomcat in Debug mode, which enables debugging of server-side applications (for example, using

breakpoints, inspecting variables, and so on; debugging is covered in detail in Chapter 9, "Logging, Debugging, Monitoring, and Profiling").

Hibernate Plug-in

Now that we have the plug-ins from eclipse.org installed and set up, we need to go out and get some third-party plug-ins. These can be

installed in the same manner as the WTP plug-inthat is, from the Help, Software Updates, Find and Install menu item or by simply

unpacking an archive into the /eclipse or /eclipse/plugins/ subdirectory (in case you are behind a firewall, for example), depending on how the

archive is packaged by the vendor.

Hibernate provides a plug-in that eases the generation of the hibernate XML configuration and mapping filesa nice feature considering

mapping is one of the tedious jobs of working with ORM technologies.

Hibernate plug-ins can be obtained as a direct archive download or via the Eclipse software update feature, which is my general

preference. Follow the instructions on the Hibernate site (http://hibernate.org/) to obtain this plug-in. At the time of this writing, I was able to

connect to http://download.jboss.org/jbosside/updates/development/ and download the latest plug-ins. After the installation, I had to restart

Eclipse. Figure 8.39 shows some of the Hibernate views (organized inside a perspective named Hibernate Console). These views enable

us to create a hibernate.cfg.xml file, mapping files, test run HQL scripts, and more.

Figure 8.39. Hibernate plug-in views.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://eclipse.org
http://hibernate.org/
http://download.jboss.org/jbosside/updates/development/

The Spring IDE Plug-in

Last, but not least, we will get a Spring plug-in known as the Spring IDE, a subproject of the Spring Framework. One of the fundamental

problems of working with Spring is the heavy use of XML files for configuration. Before you know it, the XML grows and can become a

cumbersome task to edit and maintain, even when you have it split into multiple application context XML files (as recommended by

Spring).

According to the http://springide.org website, this plug-in should be downloaded using only the Eclipse software update feature. Sometime

back, I personally tried this as a direct install (unzip of an archive file) and it corrupted my install, so beware! Follow the up-to-date

instructions on the Spring IDE website to obtain this plug-in. At the time of this writing, I was able to download and install the plug-in from

http://springide.org/updatesite/ within minutes. As expected, I had to restart Eclipse for this new plug-in to take effect.

Note

The Web Standard Tools (WST) project is required by the Spring IDE; luckily, we already installed it.

After this plug-in is successfully created, we need to right-click the timex project from the Package Explorer view and select the Add Spring

Project Nature option (as shown in Figure 8.40). According to the following excerpt taken directly from the Eclipse help documentation:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://springide.org
http://springide.org/updatesite/

Figure 8.40. Add Spring Project Nature.

"Project natures allow a plug-in to tag a project as a specific kind of project. For example, the Java development tools (JDT) uses a 'Java

nature' to add Java-specific behavior to projects. Project natures are defined by plug-ins, and are typically added or removed per-project

when the user performs some action defined by the plug-in."

After we have tagged the timex project as a Spring nature, we need to do the following:

Add the Spring Beans view.

Use this view to add our application context, timex-servlet.xml, file (developed in Chapter 7, "The Spring Web MVC Framework") by

right-clicking the project name (found at the top part of this view).

Right-click an XML element in the Spring Beans view and select Show Graph; the result is shown in Figure 8.41.

Figure 8.41. Spring Beans graph.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We can now navigate using the graph or tree views to navigate our XML file! Beats using just a text-based editor. In addition, the Spring

IDE integrates tightly with other Eclipse views, such as the Problems view, to display validation errors for the Spring application context

files associated with Spring IDE. Also, notice the Outline view in Figure 8.41; it shows a scaled-down version of the diagram for easier

navigation in case your diagrams become large and complex. The Spring IDE plug-in is bundled with online help, which can be accessed

from Eclipse's Help, Help Contents menu.

Other Notable WTP Plug-ins

We looked at a few plug-ins in this section that apply to Time Expression. However, the WTP project provides plug-ins, editors, views,

and wizards for other aspects of JEE application development, such as support for EJB projects, application client projects, web services,

connectors, and much more. These can all be conveniently accessed using the JEE perspective or related views.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

More Eclipse? Yes, Plug-ins Galore!

As I mentioned at the beginning of this chapter, at the time of this writing, a query on google.com for the words "eclipse" and "plug-in"

resulted in millions of hits! Although this isn't an exact indication of the number of plug-ins out there for Eclipse, it should give you an idea

of how active the Eclipse community is.

Eclipse.org Projects

For starters, always look for new plug-ins from the source, as we did with the WTP plug-ins. Also, recall the list of Eclipse projects I

provided toward the beginning of the chapter, in Table 8.1.

Plug-in Directories

There are many plug-ins available on the eclipse.org website for the various Eclipse projects I mentioned earlier in this chapter. In

addition, the following are two Eclipse plug-in directories worth checking out, because they provide a large number of plug-ins, both free

and commercial:

http://www.eclipseplugincentral.com/

http://eclipse-plugins.2y.net/eclipse/

For example, on the eclipseplugincentral.com website, hundreds of plug-ins are organized in the following categories: Application

Management, Application Server, Code Management, Database, Deployment, Documentation, Editor, Entertainment, Graphics, IDE,

J2EE Development Platform, J2ME, Languages, Modeling, Network, Other, Profiling, Rich Client Applications, SCM, Source Code

Analyzer, Team Development, Testing, Tools, UI, UML, Web, Web Services, and XML.

The plugins.2y.net site has even more categories. For example, their categories include "Ant, AspectJ, Bug Tracker, Business Process

Tools, Code Generation, Code Generation/Modeling, Code mngt, Com, CORBA/IDL, Database, Database Persistence, Decompiler,

Deployment, Distribution Package, Documentation, Entertainment, J2EE development platform, Languages, LDAP, Logging, Misc,

Mobile/PDA, Modelling, Network, Obsolete, Patterns, Profiling, Project management, Report, Rich Client, RSS, SAP, SCM, Source Code

Analyzer, Source Code Formatter, Team, Testing, Tomcat, Tools, Tutorial, UI, UI components, UML, Web, Web Service, and XML."

MyEclipseIDE.com

You might have noticed that I haven't mentioned many commercial products in this book. This isn't because I'm an open source fanaticI

use many commercial products for my work. However, open source (and free) products are readily available for anyone to download;

therefore, if you wanted to follow along an example in this book, it is easy to do without paying for a product. However, I have to point out

one unique product and website found at http://myeclipseide.com. This is worth checking out, especially if you want a one-stop solution

for plug-ins you will need for Java development, where everything under the sun (so to speak) can be found at one place.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://google.com
http://eclipse.org
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://eclipseplugincentral.com
http://plugins.2y.net
http://myeclipseide.com

The various categories on myeclipseide.com include "modeling and code generation (UML), web development tools (struts, spring, jsf,

hibernate, DB, tapestry), productivity wizards (Web/EJB projects), application server integration (JBoss, WebLogic, Websphere, and

more), packaging and installation (installer, and so on.)."

MyEclipseIDE.com is not a must-have, especially when projects such as Eclipse's Web Technologies Project (WTP) provide so much

already. Furthermore, you could go out and get other plug-ins, such as the Hibernate plug-in from http://hibernate.org and the Spring IDE

plug-in from http://springide.org. However, if you want one stop where you can find dozens of consistently organized plug-ins from one

site (for a low price) along with support, myeclipseide.com might be for you.

Google.com

Of course, the largest directory in the world currently is google.com. You can find just about anything and everything using google.com

searches. For example, I was able to locate EclipseUML (http://eclipseuml.com) by searching for the words "eclipse" and "uml".

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://myeclipseide.com
http://hibernate.org
http://springide.org
http://myeclipseide.com
http://google.com
http://google.com
http://eclipseuml.com

Eclipse Team Support

The Eclipse workbench comes with a built-in Concurrent Versions System (CVS) client. If you have worked with CVS before, you are most

likely familiar with the CVS servers and various commands. Eclipse provides two perspectives for working in teams: the CVS Repository

Exploring and Team Synchronization perspectives. These perspectives contain a logical arrangement of a variety of views, such as CVS

Repositories and Synchronize.

For example, based on the CVS instructions for the Spring Framework, I was able to connect to the Spring Framework's CVS repository

and browse their CVS directory within seconds from Eclipse (as shown in Figure 8.42)!

Figure 8.42. CVS repository browsing.

[View full size image]

The Synchronize feature enables us to synchronize our local directory with CVS server. For example, I was able to create a new project

and check out the entire Spring CVS directory using Eclipse's Synchronize Wizard. Subsequently, when I edited a sample Spring .java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file, I was able to right-click and get the Team context menu shown in Figure 8.43. Notice the variety of CVS options available here, such

as Update, Commit, and so on.

Figure 8.43. Team context menu.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Eclipse Help System

Eclipse provides an HTML-based help system that is completely searchable. Eclipse also comes bundled with help for the Workbench,

JDT, JEE, and more. In fact, if you have been following along the examples in this chapter, you will see documentation on Spring (as

shown in Figure 8.44), Hibernate, web tools, and more.

Figure 8.44. Eclipse help.

[View full size image]

In addition, Eclipse provides Cheat Sheets, which walk you through an entire process. For example, Figure 8.45 shows how to build a

Simple Java Application, end to end.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Figure 8.45. Eclipse cheat sheets.

You can also use Eclipse to provide context-sensitive Javadocs, as shown in Figure 8.46. You obtain this help by hovering over a method

to see the Javadoc for that given method. Subsequently, we can press F2 if we want to set focus to this window, perhaps to scroll through

this mini help pop-up window. To activate this feature, you might have to attach to the API's source code (as I explain under Tips and

Tricks later in this chapter).

Figure 8.46. Context-specific Javadocs.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Personal Opinion: The GUI Development Tools Battle Has, Only Now,

Begun!

Bear with me while I begin with a bit about my background, so you don't disregard this sidebar as unin-formed babble talk.

In May of 2001, I wrote an article for JavaWorld.com titled "Does Sun Understand GUI Design?" This article was primarily

referring to Java Swing's complexity, overengineered API, and slow performance (some of which are no longer true).

However, I was also commenting on Sun Microsystem's Unix roots which, in my opinion, reflects on the state of Java

tools prior to Eclipse SDK, NetBeans, and commercial products such as JetBrain's IntelliJ IDEA.

Before I offend Unix users, let me say that since 1990, I have worked on more than six flavors of Unix/Linux operating

systems (Solaris, AIX, Irix, AT&T System V, SCO Unix, Red Hat, and others). In fact, I can safely say that almost 100%

of the projects I have personally worked on have involved Unix servers (primarily Solaris) in some form. I've also been

using Unix tools on Windows all along (MKS Tools or Cygwin, for example). Some of my colleagues occasionally

comment about some of the regular expressions I like to use in the Vi editor and Unix shell scripts, which makes their

head hurt when they try to decipher these. In other words, I love the flexibility and power of the Unix command-line tools,

complex regular expressions, shell scripts, and other things that Unix offers (particularly for repetitive tasks that should be

scripted so that they are reproducible). However, I have also been working with GUI platforms such as Microsoft

Windows since version 2.1 (also known as Windows/286 and Windows/386) from the late 80s, Mac OS X, and

X-Windows. So, I'm equally fond of GUI tools because when used properly, these can save enormous amounts of time

by providing a consolidated environment; Eclipse is a perfect example of this. GUI tools also have their limitations at

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

times, which is why all the earlier chapters in this book were based on the command line.

Given my mixed command-line and GUI background, I've always felt that Sun just does not understand GUI, or GUI tools

for that matter, even though the Swing team was supposedly formed with some Apple and Nextstep engineers.

Microsoft, on the other hand, always seems to be one step ahead when it comes to GUI tools, possibly because they

literally invest billions of dollars in GUI-related R and D efforts being a GUI based operating system and applications

company (versus Unix/Linux-based companies that have their roots in command-line interface-based operating

systems).

I want to give you one more perspective on why I think Sun doesn't understand GUI, so bear with me a little longer. A few

years ago, I had the distinct pleasure of having a brief, five-minute conversation with James Gosling at a JavaOne

conference. He sat in a chair next to mine in a press room to check his email (we had a series of computers available for

everyone to check email). So, naturally I had to say something to him (anything) given this rare opportunity of sitting right

next to him. I suggested to him that Sun Microsystems should consider writing GUI (wrapper) tools around the most

widely used Unix utilities on Solaris such as ls, cron, find, grep, and many others. I mentioned that GUI tools were one

key reason Microsoft Windows NT (pre-Windows 200x days) was gaining so much ground. His response was that Sun's

customers "prefer the command line" (Hmmm... how do you respond to such a comment coming from the father of Java,

nonetheless).

Before Java came along, I was used to working on Unix, but also wrote quite a bit of code under Microsoft Windows

using Microsoft Visual C++ and prior to that Borland C++. I could not understand why we had more stable products then

and better debuggers, and not now with a better technology such as Java. Anyway, to end this long story, this is no

longer true. Products such as Eclipse, NetBeans, and IntelliJ have come a long, long way.

To end a very long story (sorry), this is precisely why I'm glad to see the Eclipse Foundation focused on GUI tools.

Finally, an Apache-like foundation focused on GUI tools and a community to write plug-ins, just imagine the possibilities!

The Eclipse phenomenon is something I haven't seen for a long time, and it comes somewhat close to the excitement I

felt when I discovered Java and web programming more than a decade ago. The Eclipse platform levels the playing field

by providing a consistent GUI platform with a variety of robust services, thereby enabling tools vendors to focus on

providing advanced features. The possibilities are endless.

Also, rumor has it that the name Eclipse has a hidden agenda behind it, as in "the Eclipse of the Sun," so is this an attack

on Sun Microsystems? Or is Eclipse competing with Microsoft Visual Studio? To make things more interesting, it has

been a long time coming, but Swing and NetBeans finally look and perform great now!

Of course, JetBrain's IntelliJ is also a factor here...

In short, the battle of the IDEs has just begun!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Tips and Tricks

There are so many tips and tricks for the Eclipse platform that it would not be practical to list them all here! From bookmarks to

drag-and-drop (on Microsoft Windows) to hotswap debugging to simply working effectively, the list goes on. I highly recommend checking

out the Eclipse Help, Help Contents menu item for various tips and tricks, which are well documented.

Shortcut Keys

The following section provides shortcut key examples using Microsoft Windows. If you are using Eclipse on a Unix/Linux-based system or

Mac OS X, these keys might be slightly different. For example, on the Mac OS X, the shortcut key to invoke the File, New, Other wizard

dialog box is COMMAND+N but on Microsoft Windows, it is Ctrl+N. Also, note that the functionality provided by these shortcut keys is

readily available from the main menu bar or context menus.

Two shortcut key combinations I have already mentioned earlier and will reemphasize here are Ctrl+spacebar and Ctrl+1. These work

almost anywhere and everywhere and provide intelligent, context-specific assistance (automatically declaring variables, for example). Use

these as often as you possibly can (in the right context, of course) because they will not only save you enormous typing but also making

your coding almost error-free!

The other key combinations I tend to use include the following:

Ctrl+M for minimizing and maximizing editors and views.

Ctrl+N for creating something new using one of the 100 wizards available in Eclipse.

Ctrl+Shift+spacebar provides hints on a method's parameters.

Ctrl+Shift+M to insert a missing import.

Ctrl+K to repeat the last find and Shift+Ctrl+K to find backward.

Ctrl+Shift+X converts the selected text to uppercase and Ctrl+Shift+Y to lowercase.

Ctrl+Shift+F formats the existing file (based on the preferences).

Ctrl+/ comments a single line of code.

Ctrl+F6, Ctrl+F7, and Ctrl+F8 enable me to cycle through editors, views, and perspectives, respectively (Ctrl+Shift+F6,

Ctrl+Shift+F7, Ctrl+Shift+F8, go in the opposite direction).

Tab and Shift+Tab indent and unindent blocks of code, respectively.

F3 opens the declaration for selected item.

F5 refreshes a view.

Last, but certainly not least, the mother of all keys is Ctrl+Shift+L, which is a shortcut key for the Help, Key Assist menu item; this feature

provides a list of shortcut keys that can be executed right from the list shown in Figure 8.47.

Figure 8.47. Help, Key Assist.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

[View full size image]

Preferences

Eclipse is a highly configurable tool. Figure 8.48 shows a screenshot of the Preferences dialog box accessible via the Windows,

Preferences menu of the Eclipse workbench. There are almost too many configurable items (if that is possible); in fact, this is probably the

reason there is a Filter option at the top of the Preferences window to narrow down the preference choices available.

Figure 8.48. Windows, Preferences menu.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Most views in the Eclipse SDK are also configurable via their own toolbars; some provide more configuration options than others. For

example, the Package Explorer view allows us to change the layout and filter files out from the display (for example, if you want to filter out

the JAR files from the listing or want to see a hierarchical view of the packages versus flat, both of which I personally like to do).

Bookmarks

Bookmarks are almost a must-have in any text editor used for development purposes. Eclipse is no different in this respect. The Edit, Add

Bookmark menu item provides the capability to add bookmarks. The Basic, Bookmarks view allows us to view and go to bookmarks, as

shown in Figure 8.49.

Figure 8.49. Bookmarks view.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Running External Tools and Web Browser

You can easily run external programs using the Run, External Tools menu item. You can also invoke a web browser of your choice from

the Window, Web Browser menu item. For example, Figure 8.50 shows the Run dialog box; notice the various types of programs we can

run and the various tabs to customize the program being run (command-line parameters, for example).

Figure 8.50. Run dialog box.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Local History

Local History allows us to compare and restore from other things from a history of this file. It can be accessed using the right-click context

menu while editing a file.

Reset Perspective

If you accidentally change a predefined perspective by closing windows you didn't want to or by moving stuff around, you can always

get the original state of window sizes and positions back by selecting the Window, Reset Perspective option.

Copying Elements

When we copy a line of code from one file to another, the JDT automatically copies and pastes the necessary imports required for this

code to the destination source file.

Project, Clean

If you think your compiled .class files are out of sync with Eclipse or you are seeing red errors when you shouldn't, you could try running a

Clean option on the wizard from the Project, Clean menu item.

Convert Delimiters

If you are used to working with files on Microsoft Windows and other Unix/Linux-based systems, you might need to convert the line

delimiters. This can easily be done using the File, Convert File Delimiters To menu item.

Eclipse/JVM Startup Parameters

One other thing worth mentioning is that most times Eclipse will be fine out of the box. However, if you run into out-of-memory errors

(for very large projects), you can specify extra parameters to Eclipse and to the Java VM that is running Eclipse (to increase the heap size,

for example). The following is a command-line example of running Eclipse on Microsoft Windows (refer to the help documentation for more

details on the parameters):

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

\eclipse\eclipse.exe -vm "c:\Program Files\Java\jre1.5.0_06\bin\javaw.exe"

 -vmargs -Xmx512m

Refer to the Eclipse documentation for additional options; for example, the refresh option, which performs a global refresh of the

workspace on startup.

Browsing Through Third-Party Source Code

You can browse (and debug) the source code of JAR files by attaching them to the source code file or directory. One way to attach to the

source is by double-clicking a .class file in a JAR file from the Package Explorer view and selecting the Attach Source Code button. For

example, Figure 8.51 shows how I was able to browse the JDK code after attaching the JRE lib in my Package Explorer view to C:/Program

Files/Java/jdk1.5.0_06/src.zip.

Figure 8.51. Browsing third-party source code.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Eclipse Hidden Files

If you experience some completely odd problems with your Eclipse project (which I have never encountered, by the way), you could try

deleting the project from Eclipse and re-creating it. In addition, Eclipse creates some dot (hidden) files and directories created by Eclipse in

the project directoryfor example, .classpath, .project, and .metadata. You can try deleting these, in case there are some project-related

remnants left over, and then re-create your project.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Uninstalling Eclipse

If you ever decide to uninstall Eclipse, you can simply delete the /eclipse directory. (There is no uninstaller, at least for version 3.1.2,

which was used in this chapter.)

If you happen to use the default workspace (that is, you did not specify a workspace during Eclipse startup), you might want to back up

your project files prior to deleting the /eclipse directory because project files belonging to the default workspace are stored under this

/eclipse directory.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

An Unfair Comparison to IntelliJ and NetBeans

The two other popular Java IDEs include JetBrain's IntelliJ and Sun Microsystem's NetBeans. I decided to install each and give them each

about 30 minutes, just to see how quickly I could get up and running with these IDEs compared to Eclipse.

Note

Disclaimer: Let me state explicitly that my opinions here are extremely biased toward Eclipse, given everything I have

mentioned so far in this chapter. So, I'm not entirely sure how much value this section adds because it is somewhat

unfair to judge a product in 30 minutes or less. However, I was hoping to get some first impressions and also to see how

I could re-create a project for Time Expression in other IDEs.

IntelliJ 5.0

First, I decided to try out JetBrain's IntelliJ 5.0 because I had heard so much from several people about IntelliJ being a wonderful product.

The IntelliJ download was very quick and the installation went smoothly. However, the startup wasn't. For some reason, IntelliJ wanted to

act as a server and my firewall program detects that. It took me a while to figure out how to set up a project. The setup of Tomcat was also

not user friendly. Even the JDK setup was somewhat manual. Overall, I found IntelliJ's interface slick, but confusing and slower than

Eclipse. Figure 8.52 shows a screenshot of the Time Expression files in IntelliJ. I did like the split window feature, which allows you see the

same file in multiple windows, similar to Microsoft Word's Window, Split feature, but more powerful. Again, my opinions are extremely

biased toward Eclipse and all I can give you here are first impressions.

Figure 8.52. JetBrain's IntelliJ 5.0.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

NetBeans 5.0

Next, I decided to install Sun Microsystem's NetBeans 5.0. The install was very straightforward. I was also able to create a project for

Time Expression from an existing build.xml file, just like Eclipse does. The integration with Tomcat was also very tight and smoothin fact,

slightly better than Eclipse. There was even a bundled version of Tomcat, but I added a server in NetBeans, which allowed me to point to

the existing install. Given this, I was able to start up Tomcat immediately after configuring it and timex.war was deployed in NetBeans (see

Figure 8.53). I was also able to test my JUnit code instantly with a single configuration.

Figure 8.53. Sun Microsystem's NetBeans 5.0.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

I must say that NetBeans is also a very well done IDE and the overall download, install, build, unit test, and deploy app took under 30

minutes and without reading any online help! Overall, it was fun to use this IDE; there was something very enjoyable and elegant about it,

possibly because everything worked the first time.

Even though NetBeans was set up faster and is a very well-designed IDE, the sheer number of plug-ins available for Eclipse and the

community and marketplace behind it make Eclipse a clear winner and NetBeans a close second. At the time of this writing, there were

more than 1,075 plug-ins on one of the Eclipse directories I mentioned earlier, whereas the NetBeans site listed 46 plug-ins. Also, when I

did a search on google.com for the words "netbeans" and "plugin" (or "plug-in"), I got fewer than, 500,000 hits; as I had mentioned in the

beginning of this chapter, I got millions of hits for Eclipse!

Startup Times

I could see that the Eclipse SDK startup time was faster, but I wanted to get some real test numbers on thisnothing too formal or

extensive, just the number of seconds it took for each IDE to start and have the Time Expression project loaded and available.

I rebooted my PC to ensure that none of the IDE executables were cached in memory to give it a leg up on the others. The startup times

for each IDE were as follows:

Eclipse SDK19 seconds

IntelliJ1 minute, 5 seconds

NetBeans42 seconds

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://google.com

Incidentally, I used an Intel Pentium M processor 750 based machine (1.86GHz/2MB Cache/533MHz FSB) with 1GB of shared memory

(DDR2, 533MHZ) running Microsoft Windows XP Media Center Edition 2005. Also, the startup time shown for Eclipse here included all the

plug-ins we covered in this chapter (without some or all of these plug-ins, the startup time would presumably have been faster).

Again, my views are biased; however, these numbers are not fudged. In fact, I rebooted my machine three times for various reasons to

ensure that I was giving each IDE a fair trial. You may want to conduct similar tests if you are evaluating IDEs and have not made up your

mind.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we learned about the following:

The Eclipse Foundation

The Eclipse platform and projects

Eclipse SDK concepts

Installing Eclipse

Setting up Eclipse for Time Expression

The Java Development Tools (JDT) plug-in

Eclipse Web Tools Platform Project (for Tomcat support, JSP editing, and other JEE support)

Using Eclipse for Time Expression (starting Tomcat and connecting to HSQLDB, for example)

Eclipse team support using CVS

Plug-in directories for both free and commercial plug-ins

Eclipse tips and tricks

Results of a 30-minute comparison to IntelliJ and NetBeans

In this chapter, we covered a lot of material about Eclipse. However, we aren't done with Eclipse just yet. In the next chapter, I will show

you how to leverage Eclipse's debugging features. However, even then, we will have covered only a subset of the Eclipse SDK and the

third-party plug-in market. For example, we will not be covering topics such as the UML2 project or even more importantly, the Visual

Editor framework, which according to the eclipse.org website is a "vendor-neutral, open development platform supplying frameworks for

creating GUI builders, and exemplary, extensible tool implementations for Swing/JFC and SWT/RCP." Swing and SWT, as you know,

provide the capability to develop sophisticated GUI (thick client) applications. If what we have seen in this chapter is any indication of

how powerful Eclipse is for web application development, you can only imagine how good the plug-ins for developing thick applications

will be.

So much is going on in the Eclipse community that it is almost impossible to conceive of what types of products will come out of this

rapidly growing community.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://eclipse.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter.

Websites for competing technologies to ones discussed in this chapter:

Eclipse Community http://www.eclipse.org/community/

Eclipse Directories http://www.eclipseplugincentral.com/, http://eclipse-plugins.2y.net/eclipse/

MyEclipseIDE.com http://www.myeclipseide.com/

Eclipse Technical Articles http://www.eclipse.org/articles/

Eclipse Platform Overview (white paper) http://www.eclipse.org/whitepapers/eclipse-overview.pdf

Blog about Ward Cunningham's departure from Microsoft

http://blogs.msdn.com/edjez/archive/2005/10/17/so_long_Ward.aspx

Article: "Eclipse and HSQLDB: Embedding a Relational Database Server into Eclipse, Part 1"

http://www-128.ibm.com/developerworks/opensource/library/os-echsql/?ca=lnxw961HSQLDB

EclipseCon conference http://www.eclipsecon.org/

Alternative technology websites:

Sun Microsystem's NetBeans http://www.netbeans.org/

JetBrain's IntellIJ http://www.jetbrains.com/

jEdit programmer's text editor http://www.jedit.org/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.eclipse.org/community/
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://www.myeclipseide.com/
http://www.eclipse.org/articles/
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://blogs.msdn.com/edjez/archive/2005/10/17/so_long_Ward.aspx
http://www-128.ibm.com/developerworks/opensource/library/os-echsql/?ca=lnxw961HSQLDB
http://www.eclipsecon.org/
http://www.netbeans.org/
http://www.jetbrains.com/
http://www.jedit.org/

III: Advanced Features
 9 Logging, Debugging, Monitoring, and Profiling

 10 Beyond the Basics

 11 What Next?

 12 Parting Thoughts

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

9. Logging, Debugging, Monitoring, and Profiling

[View full size image]

LOGGING IS AN IMPORTANT ISSUE that sometimes doesn't get the attention it deserves in various projects. Logging can be used for

debugging, troubleshooting, tracing, or audit trail purposes. Logging can range from simple print statements to complex database or

remote logging. Finding a good logging solution is key, preferably one that provides options such as control of output by severity level,

formatting options, and the destination (for example, file or database).

Debugging, on the other hand, is necessary when bugs in a system are discovered, whether we like them or not. Bugs are software

defects. Defects can surface for a variety of reasons, such as logic flaws in the code, wrong requirements, data problems, mismatch with

an external interface (messaging service, for example), wrong versions of dependencies (for example, a third-party JAR file), invalid

hardware/software combinations, and other reasons. The idea behind a defect is to locate the source of the defect and fix it! However,

some defects can be harder to track down than others. Whereas one might take a couple of minutes to detect and fix, others can take

days, typically, depending on the complexity of the system. The worst ones, in my opinion, are ones that are hard to reproduce or are

intermittent in nature. (These drive me crazy!) Defects also vary in severity; some are minor UI aesthetics related and others are severe

show-stoppers that can cause enormous amounts of financial damage to an organization, as a result of unavailable functionality. In short,

a defect is something that fails to meet a customer requirement, and so, when defects surface, we need to find and fix them.

Debugging is typically the process of locating and fixing a defect, although it can sometimes be used to step through code to ensure the

logic works correctly. Locating and fixing defects is perhaps one of the most difficult and frustrating tasks for a software developer. What

can make this even worse is if you are debugging someone else's code.

Aside from logging and debugging, an application can have other design defects related to nonfunctional requirements (performance and

scalability, for example). Monitoring and profiling an application can help meet such requirements by helping discover bottlenecks in an

application related to memory consumption, CPU utilization, garbage collection, and so on. The Java Platform Standard Edition (JSE) 5.0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

provides remote monitoring and management along with a nice GUI console that graphically displays information about the application

being monitored.

In this chapter, I hope to provide you with some guidance on logging, debugging, monitoring, and also a bit on profiling.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

In this chapter, we will cover the following logging and debugging techniques:

Overview of logging concepts

Logging with Jakarta Commons Logging (JCL)

Debugging Java applications using Eclipse

Debugging web user interfaces using Firefox

JMX management and monitoring

Java profilers

Tips and tricks

By the end of this chapter, you should have enough information to apply effective logging and troubleshooting techniques for Java

programs and web user interfaces in your software development project(s).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Logging Overview

I mentioned some uses of logging earlier, so I'll start by summarizing them here. This is sort of the "what" and "why" of logging; I'll

provide the "how" right after.

Logging can be used for the following:

Audit log This is perhaps the most critical component of logging because it is generally used for record-keeping (auditing)

purposes. For example, an organization might require all secure operations to be logged (for example, for compliance with

Sarbanes-Oxley and Basel II regulations in the United States).

Tracing This involves generating information about what an application is doing at a given point. Tracing is typically sent

either to System.out or a file, file being the better practice of the two. Tracing can be used for performance testing, seeing the

flow of an application, and more.

Error reporting This is a common use for reporting errors and exceptions and is typically sent to System.err, although using

System.err for error logging/reporting isn't a good practice. For errors, logging can highly effective for troubleshooting the

cause of a given problem.

Logging can also be saved in a file for later consumption, versus something like GUI-based debugging (discussed later in this chapter),

which requires manual intervention. Also, at times a GUI debugger isn't even availablefor example, when troubleshooting a problem on a

server with faceless applications (that is, ones with no user interface). Also, logging is repeatable because the application can be rerun

to generate fresh logging.

Although I've listed several benefits, following are some downsides to logging:

Logging statements can clutter code and add extra work to development (that is, adding/removing print statements). Many

developers put logging statements in their code but forget to either remove or maintain them, so sometimes the output

messages are no longer valid or needed.

Logging adds some overhead to the application's execution.

Now that we have reviewed some basics about logging, let's look at how we can implement logging in Java.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Jakarta Commons Logging (with Log4j and JDK Logging)

Many developers still use println statements in their Java programs for tracing and debugging purposes. However, logging frameworks

can provide a nice alternative to this because they provide performance benefits and enable us to selectively turn on and off the

messages generated by the logging; in addition, they provide various formatting options and the capability to send the messages to

multiple devices without requiring us to add extra code in your application.

If you have been working in Java for some time now, you have likely heard of Apache's Log4j (logging.apache.org) and the logging

built in to Java Platform Standard Edition Development Kit (JDK version 1.4 or later; java.sun.com). What you might not be aware of is

Jakarta Commons Logging (JCL) API.

Instead of rephrasing the description provided on the commons-logging website (jakarta.apache.org/commons/logging/), I'll quote parts

of it here because it is well written:

"The Logging package is an ultra-thin bridge between different logging implementations...using commons-logging does allow the

application to change to a different logging implementation without recompiling code. Note that commons-logging does not attempt to

initialise or terminate the underlying logging implementation that is used at runtime; that is the responsibility of the application. However

many popular logging implementations do automatically initialise themselves; in this case an application may be able to avoid containing

any code that is specific to the logging implementation used."

As you might guess from this description, JCL supports log4j and JDK logging, and we will use it here because it enables us to avoid

coding to a concrete logging implementation. Also, JCL automatically detects which logging implementation is used underneath the

coversthat is, log4j or JDK.

JCL can be downloaded from the http://jakarta.apache.org/commons/logging/. The only file we technically need out of this package is the

commons-logging.jar file, which needs to be placed in your classpath. Beyond this, we either need JDK 1.4 (or later) or log4j-related files

and configuration. I will demonstrate JDK 1.4-based logging here because it is built in to the JDK. For details on the log4j setup, refer to

the http://logging.apache.org website.

How JCL Works

JCL is a simple API. The two key components are org.apache.commons.logging. LogFactory (a concrete factory class) and the instance

it returns of an object that implements the org.apache.commons.logging. Log interface. What's really nice about JCL is that it requires a

bare minimum of configuration. In most cases, if we have the commons-logging.jar (provided with JCL distribution) in the classpath, JCL

will configure itself!

Furthermore, the default LogFactory provides a nice automatic discovery process of the underlying logging API. It first attempts to locate

log4j.jar in the classpath; if this doesn't exist, it tries to drop back to JDK 1.4 (or later) logging. However, if we are using an old Java

Virtual Machine (JVM), commons-logging will fall back on a default and rudimentary built-in logging wrapper.

Developing with JCL

After we have an instance of the org.apache.commons.logging. Log interface, we can call one of the following methods in it:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://logging.apache.org
http://java.sun.com
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://logging.apache.org

fatal(Object message)

error(Object message)

warn(Object message)

info(Object message)

debug(Object message)

trace(Object message)

These methods also have counterparts, which take a second parameter of type java.lang. Throwable; for example, log.fatal(Object

message, Throwable t).

Let me demonstrate a simple example using JCL. The following code shows the simplest version of the program. I was able to get this

programming running by having commons-logging.jar in my classpath:

import org.apache.commons.logging. Log;

import org.apache.commons.logging. LogFactory;

public class CommonsLoggingTest

{

 private static Log log = LogFactory.getLog(CommonsLoggingTest.class);

 public static void main(String[] args)

 {

 log.fatal("This is a FATAL message.");

 log.error("This is an ERROR message.");

 log.warn("This is a WARN message.");

 log.info("This is an INFO message.");

 log.debug("This is a DEBUG message.");

 }

}

Message Logging Levels

One important thing to note about logging is the setting of a level for the types of messages we want printed. For example, as we see

from the previous CommonsLoggingTest example, there are various methods for the level of logging we want (fatal, for example). The

destination, formatting, and threshold of messages generated by your program can then be tweaked via log4j's log4j.properties file or

JDK's logging.properties file (see the respective sites for details).

It is important to use the various log methods appropriately. For example, if we want to output only a debug message, we can use the

.debug method versus .info or another method. This way, when the output level threshold is in property files set to WARN (in lo4j, for

example), our debug messages won't be printed on the console. Similarly, use the fatal for serious errors because we wouldn't want our

debug messages printing out when the application has been configured to be quiet versus noisy (discussed next).

An application's logging level is a design issue. In other words, you should decide whether you want your application to be noisy versus

quiet; that is, will your application generate only true errors or spew out enormous amounts of trace messages (something I tend to

discourage because I prefer quiet logging). Incidentally, the following are logging levels for log4j and JDK:

log4j DEBUG, INFO, WARN, ERROR, and FATAL (set in log4j.properties).

JDK logging FINEST, FINER, FINE, CONFIG, INFO, WARNING, and SEVERE (set in logging.properties under the JRE lib/

directory or by passing the -Djava.util.logging.config.file parameter to the JVM).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The following lines show the output of CommonsLoggingTest class:

Feb 14, 2006 4:19:55 PM CommonsLoggingTest main

SEVERE: This is a FATAL message.

Feb 14, 2006 4:19:55 PM CommonsLoggingTest main

SEVERE: This is an ERROR message.

Feb 14, 2006 4:19:55 PM CommonsLoggingTest main

WARNING: This is a WARN message.

The reason you do not see the messages generated by the debug and info methods is that I tweaked the level in my C:\Program

Files\Java\jre1.5.0_06\lib\logging.properties file by adjusting this line found in this file: java.util.logging. ConsoleHandler.level = WARNING.

I decided to do a quick test with log4J using Eclipse's Scrapbook feature discussed in Chapter 8, "The Eclipse Phenomenon!"

(incidentally, this is a very useful feature).

First, I copied log4j-1.2.11.jar and log4.properties to my classpath. This is all we need to do to switch from JDK logging to log4j, using

commons-logging. Then I evaluated the following single-line expression in a scrapbook page:

org.apache.commons.logging. LogFactory.getLog(CommonsLoggingTest.class)

 .fatal("This is a FATAL message.");

Notice that I'm still using the commons-logging API, not log4j or JDK logging calls, thus enabling me to decouple my code from the

underlying logging framework. The output of the scrapbook page looked like this:

2006-02-17 10:25:50,654 FATAL [CommonsLoggingTest] - This is a FATAL message.

My log4j.properties (located in my classpath) looked like this (notice I'm using only the stdout appender, and not logfile):

log4j.rootLogger=WARN, stdout

log4j.rootLogger=WARN, stdout, logfile

log4j.appender.stdout=org.apache.log4j. ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j. PatternLayout

log4j.appender.stdout.layout. ConversionPattern=%d %p [%c] - %m%n

log4j.appender.logfile=org.apache.log4j. FileAppender

log4j.appender.logfile. File=timex.log

log4j.appender.logfile.layout=org.apache.log4j. PatternLayout

log4j.appender.logfile.layout. ConversionPattern=%d %p [%c] - %m%n

Sample Logging in TimesheetListController

Let's try some sample logging in Time Expression. For example, let's slightly alter the code in the

TimesheetListControllerTest.handleRequest method, as shown here:

List timesheets = timesheetManager.getTimesheets(employeeId);

Log log = LogFactory.getLog(TimesheetListController.class);

log.info("Returning " + timesheets.size() + " rows.");

return new ModelAndView(VIEW_NAME, MAP_KEY, timesheets);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Now let's also tweak the log4j.properties file we looked at previously, as follows:

log4j.rootLogger=INFO, stdout

The output of the log.info call shows something like the following:

2006-02-17 10:52:15,648 INFO [com.visualpatterns.timex.controller. TimesheetListC

 ontroller] - Returning 4 rows.

A Note About Formatters

Both log4j and JDK logging provide formatters to output your message in a variety of formats, from simple text output to XML format

logging (java.util.logging. XMLFormatter, for example) to custom pattern-based layout (org.apache.log4j. PatternLayout, for example).

We can also write custom formatters. This is a feature worth investigating further because you can customize the output to the way you

need it and configure the new formatter in the respective configuration files without changing your code.

Using Logging for Spring and Hibernate

If you run into problems with Hibernate or Spring, you can turn the logging level up (that is, DEBUG for log4j and FINEST for JDK

logging). This will probably produce more messages than you want to see; however, it can be very helpful, particularly with Hibernate,

which shows you the database-specific SQL it generates (behind the scenes).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Debugging Java Applications Using Eclipse

GUI-based debuggers are excellent tools for detecting and fixing bugs because, among other things, they allow us to step through code

and inspect variables. However, another feature often overlooked is that debuggers can also help you think about how your code is

organized when you are stepping through the code; this can help you improve the stability of the code by allowing you to imagine the

various ways your code could potentially break.

The Eclipse Java Development Tools (JDT) comes bundled with a debugger that provides stable and robust GUI-based Java debugging (it

is quite impressive, really).

Java IDEs have indeed come a long way, in that they have robust features, a stable debugging environment, local as well as remote

debugging capabilities, all the features of typical GUI debuggers, and some new and exciting ones such as Eclipse's Hotswap, which

allows us to fix code on-the-fly (explained later).

I wrote my first-ever article about Symantec's Café (precursor to Visual Café) back in August of 1996 (for Dr. Dobb's Journal). Since then, I

worked with Visual Café and Borland's JBuilder for a short while but found these IDEs to be clunky and their debuggers to be somewhat

unstable. (What puzzles me the most is that I was using debuggers that enabled step-through-code style debugging almost 15 to 20 years

ago with languages such as C/C++; so why it has taken so long for Java debuggers to get to this point is beyond my comprehension.)

The Eclipse JDT debugger is quite promising as far as its feature set and its consistency and stability are concerned. So let's take a look

at some of its features here. If you have not read Chapter 8, I encourage you to do so prior to reading this section, because I'll assume that

you have some understanding of the Eclipse platform and the JDT.

For starters, let's look at how we begin the debugging process in Eclipse. Eclipse enables us to debug various types of Java programs.

Figure 9.1 shows some of the options available to us. Now let's look at the various concepts and features of the JDT debugger.

Figure 9.1. Eclipse's debug context menu.

JDT Debugging Concepts and Features

The JDT debugger enables us to detect, diagnose, and fix our bugs nicely. We can debug programs running locally or remotely (if remote

debugging is supported by the remote JVM). The debug client runs inside Eclipse, whereas the remote debugger server (assuming you

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

are doing remote debugging) runs inside the same JVM your server program is running in. I will demonstrate local debugging here but give

you pointers for remote debugging as well, which is similar to local debugging, after you have the remote server configured (a relatively

simple step). Let's review some basic JDT debugger concepts next.

The following is a list of debugging features provided by the JDT. Most of these features are available from the context menu (for the

source code you are editing), Eclipse's Run menu, within one of the Debug views, or even by using shortcut keys. Hence, I will cover only

the features and not point out where you can access them within Eclipse, because there are multiple ways of accessing them.

Debug Perspective and Views

For starters, Eclipse provides a Debug perspective that conveniently organizes a set of views for us. Also, when we begin debugging

a program, Eclipse automatically switches to this perspective. Some of the related views include debug, expressions, variables,

breakpoints, console, and a few others.

Breakpoints

Breakpoints are location(s) in your program where we want execution of the program to suspend, giving us time to inspect the variables or

change your code. Breakpoints can be set at specific lines of code (I tend to use Ctrl+Shift+B on Windows XP to toggle a breakpoint; you

can also do this by double-clicking or right-clicking on the left side of the editor window). This is all we need to do to set a breakpoint.

However, there might be times when we want a breakpoint to be effective only under certain conditions, so let's look at that next.

After a breakpoint is set, we can set a hit count so that the program suspends at that breakpoint only after some number of hitsthat is, the

number of times that code has been executed. (This is done from the breakpoint's context menu.) We can also set conditional breakpoints

(using the breakpoint's properties). For example, we might want the program to stop at the breakpoint only if a variable equals a certain

value (as demonstrated in Figure 9.2). One thing I should point out is that I personally almost never use the hit count and conditional

breakpoint features.

Figure 9.2. Setting conditional breakpoints.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

One last type of breakpoint you can set is by catching exceptions, as shown in Figure 9.3. This is done using the little "J!" toolbar

button in the Breakpoints view.

Figure 9.3. Java exception-based breakpoints.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Stepping Through Code

After we have our breakpoints set and our program launched (using the Run, Debug option, for example), we can begin debugging our

code by stepping through it. When a breakpoint is hitthat is, the program suspends at a certain line of codewe can either step into a

method call, step over it, or return out of the current method and back into the calling method (that is, one level up in the call stack). We

can even use step filters (from Windows, Preferences, Java, Debug) to selectively step into methods.

Instead of stepping through every single line of code, we can set multiple breakpoints and resume execution of our program and have it

automatically continue until the next breakpoint (effectively skipping all the steps between the two breakpoints).

Variables

Inspecting variables is one of the most important aspects of GUI-based debugging. After your program hits a breakpoint and suspends,

you can look at the values of all the variables that are in scope (for example, local variables in a given method or class you are

debugging). You can also watch expressions; for example, something like "periodEndingDate != null" can be added as an expression

using the Watch view; this would appear as true in the Watch view if periodEndingDate does not equal to null.

The one very powerful feature of working with variables is that we can also change their values. By changing the value of a given

variable at a specific line of code, we can alter the entire flow of the debugging session on-the-fly. This feature complements the Hotswap

feature (discussed shortly), which provides the capability to change code on-the-fly and continue debugging.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

One last feature worth pointing out is that you can display the value of a specific variable by selecting it in the source code and choosing

Display from the context (right-click) menu.

HotswapFixing Code On-the-Fly!

This is such a cool and powerful feature that it almost makes me drool (well, not quiteI do have a life outside of work).

Suppose we have stopped at a line of code triggered by a breakpoint and immediately realize the cause of the bug and want to fix it. Well,

that's exactly what we should do! Immediately after we save the file (by pressing Ctrl+S, for example), Eclipse will recompile your class and

reload the method in the same debugging session without the need for restarting the entire debugging session! How cool is that?

What excites me about this feature is that it is almost instantaneous and the debugger automatically positions your current line to the

beginning of the method you are in, essentially restarting the debugging session but just from the beginning of the method, not the entire

call stack.

Note that the Hotswap feature requires JRE 1.4 or later.

Remote Debugging

Eclipse enables us to debug remote programs as long as the remote server supports this feature. For example, I started Tomcat outside

of Eclipse, on Windows XP, using the catalina.bat file using the following commands on the command line (notice the two environment

variables that need to be set in advance):

set JPDA_ADDRESS=8000

set JPDA_TRANSPORT=dt_socket

catalina jpda start

Incidentally, JPDA stands for the Java Platform Debugger Architecture (architecture for remote debugging; java.sun.com). After starting

Tomcat, I was able to connect to it using the Run, Debug, Remote Java Application (right-click New) option.

Other

You should browse through the various options available in the debug-related views. You will find several toolbar options in these views

that might pleasantly surprise you. One feature is the copy stack option available in the Debug view via its context menu; this can help in

various ways (emailing the stack to a colleague, for example). This feature essentially copies the call stack to the Clipboard as plain text,

as shown in the sample excerpt.

TimesheetListControllerTest.testShowForm() line: 45

NativeMethodAccessorImpl.invoke0(Method, Object, Object[]) line:

 not available [native method]

NativeMethodAccessorImpl.invoke(Object, Object[]) line: not available

DelegatingMethodAccessorImpl.invoke(Object, Object[]) line: not available

Method.invoke(Object, Object...) line: not available

TimesheetListControllerTest(TestCase).runTest() line: 154

TimesheetListControllerTest(TestCase).runBare() line: 127

TestResult$1.protect() line: 106

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://java.sun.com

TestResult.runProtected(Test, Protectable) line: 124

TestResult.run(TestCase) line: 109

TimesheetListControllerTest(TestCase).run(TestResult) line: 118

TestSuite.runTest(Test, TestResult) line: 208

TestSuite.run(TestResult) line: 203

RemoteTestRunner.runTests(String[], String) line: 478

RemoteTestRunner.run() line: 344

 RemoteTestRunner.main(String[]) line: 196

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Debugging Web User Interfaces Using Firefox

There are plenty of tools available in the market to debug Java applications. However, debugging a client-side JavaScript application

isn't all that easy. Mozilla's Firefox browser aims to change some of this. For example, I have used the following two highly rated

extensions (available from addons.mozilla.org or via Firefox's Tools, Extensions menu).

JavaScript Debugger

This extension (code name Venkman) is extremely useful for debugging JavaScript (in web-based user interfaces). This provides many of

the features you would expect from a GUI debugger, such as stepping through code, inspecting variables, and more. Figure 9.4 shows a

screenshot of this debugger.

Figure 9.4. Firefox JavaScript debugger extension.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://addons.mozilla.org

Web Developer

The Firefox Web Developer extension is loaded with 50 or more utilities and is probably one of the best-written extensions I have seen for

developers; it is no wonder this extension consistently gets a 5 out of 5-star rating on the Firefox extensions site.

I mainly use the Form and Resize menus only because I haven't gotten around to trying the others, which include features for working with

CSS, validating links, showing comments, displaying information about every single element on the page, and much more!

For example, I use the resize menu to resize my screen to 800x600 resolution to ensure that my UI is usable in this resolution. The

indispensable Form menu shows information about form fields and much more.

Other Firefox Extensions

Although I have demonstrated a couple of Firefox extensions here, there are many more where these came from. For example, at the time

of this writing, there were more than, 1,000 extensions on the Firefox website. Figure 9.5 shows one more example of such extensions,

called Tamper Data. This extension allows us to change (tamper with) header and POST requests of a given page. This can be great for

security testing, for instance. Visit the addons.mozilla.org website to see other extensions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://addons.mozilla.org

Figure 9.5. Firefox Tamper Data extension.

[View full size image]

JavaScript Console

One other useful feature in Firefox worth mentioning is its JavaScript console (accessible from the Tools menu). This has helped me catch

several errors with my user interfaces. It even also allows us to evaluate single-line JavaScript expressions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Debugging TimesheetManagerTest End-to-End (Browser to Database)

As I mentioned earlier, debugging can be a painful experience at times. It would be nice if we could simply tell the computer what the

problem is and have it fix the bug for us. Considering that's not possible today, we have to find ways to make this experience slightly more

pleasant, and Eclipse does a good job.

Being able to completely debug my server-side code (web and database, for example) is perhaps my favorite feature related to debugging

in Eclipse. As we discussed Chapter 8, Eclipse has plug-ins galore. One of these is the Data related plug-in that is part of the Web Tools

Platform (WTP) Eclipse project. Combining this with the built-in server-side debugging features makes for a very powerful concept! Let's

look at an example of what I'm referring to.

Figure 9.6 shows a screenshot of Eclipse. Here I'm stepping through TimesheetManagerTest.java, inspecting the various memory

variables, viewing the output in the Console view, viewing the test results in the JUnit view, andare you ready?watching the data in the

database change (by manually refreshing it) right in front of my eyes (as I step over the timesheetManager.deleteTimesheet method) using

the Data Output view. Now, that's cool!

Figure 9.6. Consolidated debugging of Time Expression in Eclipse.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

On the client side, I like using some of the extensions I mentioned earlier, such as the JavaScript debugger, JavaScript console, and Web

Developer. For example, Figure 9.7 shows a screenshot of our Enter Hours form with the field names, sizes, and other information

displayed. This extension has helped me find field truncation errors because my HTML input text filed was too small, for example.

Figure 9.7. Firefox Web Developer extension.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

JMX Management and Monitoring

Java Platform Standard Edition (JSE) 5.0 provides built-in remote monitoring, management, and a console to monitor applications

that run using JSE 5.0 or later versions. These tools can be used to view the resource utilization of Java applications. For example, this

can help with detecting memory issues, class loading and garbage collection, controlling JDK logging levels, and managing an

application's Managed Beans (MBeans).

I decided to monitor Tomcat with Time Expression deployed in it. First, I had to set the CATALINA_OPTS environment variable as follows:

set CATALINA_OPTS=-Dcom.sun.management.jmxremote

After setting this environment variable, I started Tomcat from the command line. We could just as easily do this with Tomcat, within

Eclipse. After starting Tomcat, I launched the JConsole utility provided with the JDK, as follows:

c:\program files\java\jdk1.5.0_06\bin\jconsole

Figures 9.8 and 9.9 show monitoring of a local instance of Tomcat using JConsole. For details on JMX-based management and monitoring,

refer to the java.sun.com website.

Figure 9.8. JSE 5.0's JConsole application (monitoring local Apache Tomcat and timex.war).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://java.sun.com

Figure 9.9. JSE 5.0's JConsole application (monitoring local Apache Tomcat).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In the next chapter, we will develop our own JMX bean (with the help of the Spring Framework) and monitor it using the JConsole

application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Java Profilers

Java profilers have been around for almost as long as Java has. Among other things, profilers allow us to analyze the heap for memory

usage and leaks, CPU utilization, trace objects and methods, determine performance bottlenecks, and much more. A variety of open

source profilers are available out there, as well as commercial ones (for example, YourKit profiler at yourkit.com and Quest JProbe

Suite). Some run as standalone Java programs, others can be deployed to a servlet container, and yet others are available as Eclipse

plug-ins.

The JMX monitoring I discussed previously is robust; however, it requires JSE 5.0 and might not provide the type of application-specific

coverage and profiling you are looking for. So, if you are looking for an open source profiler, the following website lists a dozen or so

open source Java profilers: http://www.manageability.org/blog/stuff/open-source-profilers-for-java/view/.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.manageability.org/blog/stuff/open-source-profilers-for-java/view/
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Debugging Tips

The following are some soft tips, some more obvious than others, but you might find one or more useful, so I'll list them here:

If you have a bug you just cannot track down, walk away from the problem and return to it later or the next morning.

Always try to reproduce the problem. For example, I often request that my customers provide a snapshot of the data they are

using in a test environment so I can re-create it in the development environment. This snapshot can easily be obtained using

database tools that allow you to import/export data (Aqua Data Studio is one such tool; aquafold.com). Also, ask the

customer to re-create the problem for youthat is, what action was taken and what state was the application in when the

problem occurred.

Get a second pair of eyes to look at your problem. There is nothing like having someone walk up to you and tell you the

problem within a second because of bringing a fresh perspective, whereas you might be heads down and too close to the

problem (the can't-see-the-forest-for-the-trees syndrome). If you are using Extreme Programming, this is one of the side

benefits you get from pair programming (details at extremeprogramming.org).

Use a process-of-elimination technique. That is, in your mind, separate the code that works and the part that doesn't. If

possible, physically separate the code that works from the code that does not. Debugging smaller snippets of code is much

easier than a complex system.

Determine whether any of your dependencies are causing the problems. For example, has an external API or interface

changed? Is the data bad? Has the application server or database version changed? Is it a hardware problem?

Program defensively by checking for valid input values. A nice way to do this is by using assertions introduced in J2SE 1.4

(details available at java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html). Another option is to check for valid values manually

and throw a java.lang. IllegalArgumentException exception for invalid values.

Use new Exception().printStackTrace() in your code to print the stack without actually throwing an exception. This can be

helpful if you want to know where something came from.

Try to always write simple toString() methods in your classes. This can help significantly when you are printing objects.

Personal Opinion: Bug Prevention Techniques

Bugs are a normal part of our lives as software developers. Here are a couple of suggestions to help you prevent bugs.

For starters, there is no substitute for printing out your own code and walking through it on paper, away from the

computer. This is perhaps one of most effective practices, but requires a bit of patience. Many organizations take this

one step further by doing code walkthroughs. Extreme Programming handles this via its pair programming.

Another good option is to walk through your code using a GUI debugger. You don't have to use a debugger just for

debugging; you can also use it to verify that your code is working as you expect it to.

However, in my opinion, one of the best ways to reduce bugs is by developing software in smaller chunks. In other

words, for each iteration, two weeks in length, we have minimal requirements up front in the form of high-level and

low-level requirements. For the high-level requirements, you could do some initial UI sketches (for a user interface

application), domain modeling, user stories, and so on. These are typically done at the beginning of a release. At the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://aquafold.com
http://extremeprogramming.org
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

beginning of each iteration, you get detailed requirements in the form of acceptance tests. Given this approach, there is

a lot less that can go wrong. Furthermore, when you factor in the test-first approach (recall the "Writing Unit Test and

Actual Code in Same Sitting" sidebar from Chapter 7, "The Spring Web MVC Framework") combined with refactoring

as and when needed, your code is bound to be more solid at the end.

Iterative development using short and fixed cycles (two fixed-week iterations, for example) combined with active

stakeholder participation can help reduce some of the pressures of time-sensitive software delivery; this is possible

because the customer sees progress on a regular basis and is likely to be more flexible and understanding when it

comes time for missed deliverables. This reduction of time-sensitive pressure can also help you write more stable code

and not just something you throw over the wall, so to speak.

Finding bugs is no fun. I sometimes feel like it is similar to looking for a real-life tiny bug that is hiding in a big room

filled with lots of stuff.

By doing true iterative development (from requirements through deployment) and having smaller-size fixed-iteration

lengths (two weeks being ideal), you are likely to prevent bugs and enjoy coding a lot more!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Summary

In this chapter, we covered the following:

Overview of logging concepts

Logging with Jakarta Commons Logging

Debugging Java Applications using Eclipse

Debugging web user interfaces using Firefox

JMX management and monitoring

Java profilers

Tips and tricks

We are just about done with this book. However, we have some advanced features to cover in the next chapter. So, let's move forward

with that.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Java open source profilers http://www.manageability.org/blog/stuff/open-source-profilers-for-java/view/

Eclipse SDK http://www.eclipse.org/

Extreme Programming http://extremeprogramming.org/

Firefox extensions https://addons.mozilla.org/

Jakarta Commons Logging (JCL) http://jakarta.apache.org/commons/logging/

JDK logging http://java.sun.com

JMX monitoring and management http://java.sun.com

Log4J http://logging.apache.org/

Simple Logging Facade for Java (SLF4J) http://slf4j.org/

Software debugging, testing, and verification (article) http://www.research.ibm.com/journal/sj/411/hailpern.html

Eclipse TPTP http://www.eclipse.org/tptp/home/downloads/quicktour/v41/quick_tour.html

YourKit Java Profiler http://www.yourkit.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.manageability.org/blog/stuff/open-source-profilers-for-java/view/
http://www.eclipse.org/
http://extremeprogramming.org/
https://addons.mozilla.org/
http://jakarta.apache.org/commons/logging/
http://java.sun.com
http://java.sun.com
http://logging.apache.org/
http://slf4j.org/
http://www.research.ibm.com/journal/sj/411/hailpern.html
http://www.eclipse.org/tptp/home/downloads/quicktour/v41/quick_tour.html
http://www.yourkit.com/
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

10. Beyond the Basics

WE HAVE COVERED A LOT OF foundational material and now it is time to go beyond the basics in this chapter. This is the last chapter

with code examples; the next chapter will provide some ideas for further research and reading.

So let's look at a few new, advanced, and cool features in this book to begin wrapping things up.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

What's Covered in This Chapter

In this chapter, we will look at some beyond-the-basics type features of the various technologies we covered earlier in the book. I have

decided to follow the same order that I introduced these technologies in the earlier chapters. In this chapter, we will cover the following

material:

Recently added Java features

Additional built-in and external Ant tasks

JUnit custom suites

Additional Hibernate features

Other Spring Framework features

Integrating Hibernate with Spring

The Displaytag tag library and writing custom tag libraries

Sample refactoring of our sample application

Other important considerations such as transaction management, security, exception handling, clustering, and several others

A simple Ajax example

Note

The complete code for the examples used in this chapter can be found within this book's code zip file (available on the

book's website).

Note that this chapter provides very brief descriptions of the features mentioned here. I have taken the approach to demonstrate more by

using code over detailed explanations. Also, many of the features mentioned here are covered in detail by their corresponding reference

documentation, which I have provided links to.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Recently Added Java Features

Let's begin with the Java Platform Standard Edition (JSE) Development Kit (JDK), because this is where we began our hands-on work

back in Chapter 4, "Environment Setup: JDK, Ant, and JUnit."

JDK 1.5 (also known as JSE 5.0) introduced some new features that aim to enhance the Java languages. Let's look at some of these

features here; if you are already familiar with these features, you can skip this section.

Backward Compatibility with JDK 1.4 for Time Expression

I intentionally did not use any of these new features in our sample application, Time Expression, because I wanted it to

provide backward compatibility with JDK 1.4 in case your organization has not adopted JDK 1.5 yet. Also note that I used

Eclipse's Window, Preferences, Java, Compiler option to maintain compatibility with JDK 1.4. This is a very handy

feature, which I encourage you to investigate if you aren't already familiar with it.

The complete code for the features discussed next can be found in a file named DemoNewJavaFeatures.java in this book's code zip file. I

will provide only brief descriptions here because the examples are simple, and ample documentation is available for these on the

java.sun.com website.

Static Import

Since JSE 5.0, it is possible to use static members directly. For example, something like Integer. MAX_VALUE can be used as follows:

import static java.lang. Integer.*;

System.out.println(MAX_VALUE);

Generics

In previous releases, we could insert any type of object in a class from the Collections framework; then we had to cast objects retrieved

from the Collections framework. This provided somewhat unsafe operations because the compiler couldn't check for type safety. Now we

can avoid this by doing something similar to what's shown nextnotice how I can simply use the get method without the need for casting:

ArrayList<String> arrayList = new ArrayList<String>();

arrayList.add("Testing");

System.out.println(arrayList.get(0));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://java.sun.com

Furthermore, we add only objects of type String to this ArrayList. For example, the following code would cause a compilation error:

arrayList.add(new Integer(1));

Enhanced for Loop

The for loop has been greatly simplified since JSE 5.0. To iterate through a collection class, instead of using the old style, for (int i=0; i <

c.size; i++), we can do the following:

public static void demoForLoop(Collection<Integer> c)

{

 // using new style for loop

 for (Integer i : c)

 System.out.println(i);

}

This not only unclutters the code slightly but can also help reduce common errors caused by invalid checking of index variables (for

example, the variable i in this example).

Autoboxing

This is a nice feature and in my opinion should have been supported in Java all along. As you might know, we cannot put primitive data

types (for example, int) in collections classes. With this new feature, we can add a number into something like an ArrayList, as shown here,

without the need to use new Integer(1):

ArrayList<Integer>list = new ArrayList<Integer>();

list.add(1);

Enums

The simple example provided next does not demonstrate the power of enums in Java:

enum BookName { RAPID, JAVA, DEVELOPMENT };

for (BookName bookName : BookName.values())

 System.out.println(bookName);

The following description taken directly from the java.sun.com website does more justice to this feature:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com

"Java programming language enums are far more powerful than their counterparts in other languages, which are little more than glorified

integers. The new enum declaration defines a full-fledged class (dubbed an enum type)... it allows us to add arbitrary methods and fields

to an enum type, to implement arbitrary interfaces, and more. Enum types provide high-quality implementations of all the Object methods.

They are Comparable and Serializable, and the serial form is designed to withstand arbitrary changes in the enum type."

Varargs

Varargs provide the capability to pass variable arguments in methods. Before, we had to do this using something like an Object array.

Now, we can use ellipses(...) to do this, as shown here:

public static void demoVarargs(Object... args)

MessageFormat.format(

 "I''m working on {0}"

 + " on {1}"

 + " at {2} hours.", args);

The code that calls our demoVarargs method looks as follows:

demoVarargs("Rapid Java Development", new Date(), 1800);

Furthermore, JDK classes such as MessageFormat also accept variable arguments, as demonstrated in this example.

Other Features

There are other features (annotations, for example) and enhancements to the API and JVM that I have not covered here; however, details

and tutorials on these can readily be found on the java.sun.com website. Furthermore, my simple examples do the new features justice. As

we can see from Figure 10.1, Java is a huge platform; it is no wonder there are hundreds of books on Java and entire books on single

subjects such as Java Security APIs, JDBC, and others.

Figure 10.1. Java Platform Standard Edition 5.0

(source: java.sun.com).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
http://java.sun.com

Also, at the time of this writing, J2SE 6 beta was announced, which provides new/enhanced security features, integrated web services,

enhanced JMX support, improved GUI, and more. Visit the java.sun.com website for details.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Ant Tasks

We used Ant throughout the book, including within Eclipse. Although we have already looked at some very useful and robust features of

Ant, let's explore a few more Ant tasks here, demonstrated in our antextras.xml file. Some of these are built-in tasks, others are

considered external tasks in that they require you to place one or more JAR files (libraries) in the <ant-home>/lib directory (ant-home

implies the Ant's install directory; for example, C:\apache-ant-1.6.5).

As you will see from some of these tasks, Ant is one of those beautifully designed tools because of its simplicity; yet it has

enormous power. It is much more than a build tool, as I will demonstrate next.

For additional information on these and other tasks not mentioned here, visit the ant.apache.org website. This site also provides

information about writing your own custom Ant tasks.

CVS

As the name implies, this task enables us to work with CVS. This does require you to have the CVS executable in your path. For

example, I downloaded TortoiseCVS from the tortoisecvs.org website and was able to use the cvs.exe found in this program's directory

(on Linux, Unix, and Mac OS X systems, you might already have CVS prein-stalled). The following XML demonstrates how this task

works; here I was able to download the Spring framework spring module using Ant:

<cvs cvsRoot=":pserver:anonymous@cvs.sourceforge.net:/cvsroot/springframework"

 package="spring"

 dest="/temp"

/>

Exec

This task enables us to run external programs; for example, the following code runs the date command:

<exec command="date"/>

Get

The Get task enables us to fetch a file using HTTP GET as demonstrated here:

<get src="http://visualpatterns.com/comics/funny.gif"

 dest="funny.gif"

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://ant.apache.org
http://tortoisecvs.org

 verbose="true"/>

Sleep

As you might guess, this task allows us to pause processing by a specified amount of time, as demonstrated here using 2 seconds:

<sleep seconds="2"/>

FTP

This is a very powerful task because it enables us to use FTP directly from the Ant XML file. For example, while working on this book, I

used it to back up my book-related files and Time Expression files to an FTP server, automatically using the Microsoft Windows

Scheduled Tasks feature!

<ftp server="mirrors.kernel.org"

 action="get"

 remotedir="/gnu/chess"

 userid="anonymous"

 password="guest@guest.com"

 verbose="yes"

 binary="yes">

 <fileset file="README.gnuchess"/>

</ftp>

FTP is an external task and requires the following files to be present in the <ant-home>/lib directory:

Jakarta Commons Net (http://jakarta.apache.org/commons/net/;commons-net <version>.jar)

Jakarta-ORO (http://jakarta.apache.org/oro/;jakarta-oro<version>.jar)

Mail

This task enables us to send mail using SMTP. It also allows us to attach files using the <fileset> element. This makes for a very

powerful combination because we could use this to send emails after a build is complete, for example (particularly useful in a automated

continuous build/integration environment). The following is a simple example of how this task can be used:

<mail tolist="friend@somehost.com"

 subject="Hello!"

 from="me@myhost.com"

 mailhost="myhost.com"

 user="myuserid"

 password="mypassword"/>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This feature requires mail.jar (part of the JavaMail API) and activation.jar (part of the JavaBeans Activation Framework) present in the

<ant-home>/lib directory. Both of these can be found on the java.sun.com website.

Tasks Galore!

I've mentioned only a few Ant tasks that I thought you might find useful. There are literally hundreds of Ant tasks available, everything

from vendor-specific tasks to general ones such as Gzip, Tar, and many more. Visit the ant.apache.org website to learn about some of

these tasks and how to write your own custom tasks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
http://ant.apache.org

JUnit

Up to this point in the book, we have been using single test suites to test just the methods that begin with the word "test." We also

looked at how to run all test classes in a batch from a particular directory using Ant. Now let's take a look at how to create custom test

suites and reuse fixture code.

Custom Test Suites

JUnit allows us to build our own test suites. Furthermore, suites can contain other suites, which makes for a powerful concept despite

JUnit's simplicity. The following code excerpt from our AllTests.java file (in the timex/ directory) demonstrates how to build custom suites.

TestSuite modelTestSuite = new TestSuite("Model Tests");

modelTestSuite.addTestSuite(TimesheetManagerTest.class);

TestSuite controllerTestSuite = new TestSuite("Controller Tests");

controllerTestSuite.addTestSuite(TimesheetListControllerTest.class);

TestSuite fullSuite = new TestSuite("All Tests");

fullSuite.addTest(modelTestSuite);

fullSuite.addTest(controllerTestSuite);

return fullSuite;

Test Fixture Code

When we write unit test classes, it is a good idea to move test "fixture" code to a parent class, which in turn can extend the

junit.framework. TestCase class.

A fixture is a set of objects (for example, test data) that might be used by one or more test cases. The benefit of a fixture is that it helps

us avoid redundant setup and teardown code. For example, on past projects, I have moved the JDBC connection code, the Spring

application context-loading code, and various other common code to a parent class. See

junit.sourceforge.net/doc/cookbook/cookbook.htm for details on fixture code.

For our sample application, our fixture code has been moved up to the constructor of a parent class named TimexTestCase, as shown

here:

protected TimexTestCase()

{

 FileSystemResource res =

 new FileSystemResource("src/conf/timex2-servlet.xml");

 springFactory = new XmlBeanFactory(res);

 departmentManager = (DepartmentManager)

 springFactory.getBean("departmentManagerProxy");

 employeeManager = (EmployeeManager)

 springFactory.getBean("employeeManagerProxy");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://junit.sourceforge.net/doc/cookbook/cookbook.htm

 timesheetManager = (TimesheetManager)

 springFactory.getBean("timesheetManagerProxy");

 applicationSecurityManager = (ApplicationSecurityManager)

 springFactory.getBean("applicationSecurityManager");

}

Note that I have set up the fixture code in a constructor. You could also set this up in the JUnit setUp method. Alternatively, if you are

using JDK 1.5 or later, you can use annotations to initialize your fixtures (visit the junit.org website for details on this feature).

Now, classes such as TimesheetManagerTest can extend our new TimexTestCase class instead of directly inheriting TestCase, as

shown in this example:

public class TimesheetManagerTest extends TimexTestCase

By having common fixture code in the TimexTestCase parent class, all subclasses can have instant access to precreated and fully set

up objects (thanks to Spring's dependency injection). This enables the subclasses to focus on implementing the unit tests to pass user

acceptance tests, versus spending time setting up fixtures for each test case.

For additional details on unit testing, test fixtures, test suites, and related topics, visit the junit.org website.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://junit.org
http://junit.org

Hibernate

Although we covered a lot of ground on Hibernate in Chapter 5, "Using Hibernate for Persistent Objects," there is a lot more to

Hibernate, which is the very reason there are entire books written on this technology. However, a couple of other features you might find

useful are discussed next.

Native SQL Queries

Most relational databases provide ANSI-SQLcompliant features; however, they also tend to go further by providing their own custom

extensions, which might not be supported by HQL. To take advantage of such native SQL features, we can use Hibernate's

Session.createSQLQuery method as demonstrated by the following code, which uses HSQLDB's datediff built-in function:

String sql = "select datediff(`dd', NOW, ?) AS daysleft"

 + " from timesheet";

Integer valueObject = (Integer)session.createSQLQuery(sql)

 .addScalar("daysleft", Hibernate. INTEGER)

 .setDate(0, DateUtil.getCurrentPeriodEndingDate())

 .uniqueResult();

if (valueObject != null)

 daysLeft = valueObject.intValue();

Interceptors

Interceptors, as you might guess, intercept a request. Perhaps the following description from the Hibernate reference documentation

best describes the use of Hibernate interceptors: "The Interceptor interface provides callbacks from the session to the application

allowing the application to inspect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One

possible use for this is to track auditing information."

To use Hibernate interceptor, we must either implement all the methods defined in the org.hibernate. Interceptor interface or

alternatively, subclass the convenient org.hibernate. EmptyInterceptor concrete class and override only the methods we need to, as

demonstrated by the following code excerpt.

public class AuditInterceptor extends EmptyInterceptor

{

 public void afterTransactionCompletion(Transaction tx)

After we have written an interceptor class, we can either activate it for a given session using the Session.openSession(Interceptor

interceptor) method or activate it at the Configuration level, as shown here:

sessionFactory = new Configuration()

 .setInterceptor(new AuditInterceptor())

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 .configure().buildSessionFactory();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The Spring Framework

On one hand, we dedicated two chapters to the Spring Framework, so you might be wondering why more Spring? The short and simple

answer is that although technologies such as Hibernate are robust, they also have a single focus (object-relational mapping, for example).

However, the Spring Framework is such a large framework and is loaded with so many features that it is difficult to cover everything about

Spring even in a small book. So, let's look at some more examples of using Spring here.

Scheduling Jobs

It is not uncommon for many applications to have requirements for scheduled jobs to run, perhaps for batch processing, to send data to

downstream applications or generate CPU-intensive reports at the end of the day. To facilitate the scheduling of jobs, many companies

use schedulers such as Unix/Linux CRON, Computer Associate's Unicenter AutoSys, Microsoft's Scheduled Tasks feature, and so on.

Open Symphony's Quartz system (opensymphony.com) provides the capability to schedule jobs within Java programs, and the Spring

Framework provides support for this product (and JDK timers). The Quartz API is much more robust than JDK timers because it provides

powerful scheduling features such as CRON-like expressions (discussed next).

You might recall from Chapter 2, "The Sample Application: An Online Timesheet System," that the business requirements for our sample

application, Time Expression, require a reminder email to be sent on Fridays at 2 p.m. Our two filesReminderEmail.java and

timex-servlet.xmlcombined provide this functionality. ReminderEmail.java will be discussed in the next section. However, let's look at the

code excerpt from timex-servlet.xml that schedules the job.

<!-- Spring job scheduling -->

<bean id="reminderEmailJobDetail"

 class=

 "org.springframework.scheduling.quartz. MethodInvokingJobDetailFactoryBean">

 <property name="targetObject" ref="reminderEmail" />

 <property name="targetMethod" value="sendMail" />

</bean>

<bean id="reminderEmailJobTrigger"

 class="org.springframework.scheduling.quartz. CronTriggerBean">

 <property name="jobDetail" ref="reminderEmailJobDetail" />h

 <property name="cronExpression" value="0 0 14 ? * 6" />

</bean>

<bean

 class="org.springframework.scheduling.quartz. SchedulerFactoryBean">

 <property name="triggers">

 <list>

 <ref bean="reminderEmailJobTrigger" />

 </list>

 </property>

</bean>

Notice the 0 0 14 ? * 6 value; this is a CRON-like expression that indicates that the job should be run at 14:00 hours (or 2 p.m.) on Fridays

(6 for the sixth day of the week). Also, visit quartz.sourceforge.net for detailed documentation on the Quartz API.

Another notable configuration item is how we tell Spring which target method in which target object to invoke for us, as shown next:

<property name="targetObject" ref="reminderEmail" />

<property name="targetMethod" value="sendMail" />

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://opensymphony.com
http://quartz.sourceforge.net

This feature requires Open Symphony's quartz.jar, available on the opensymphony.com website. In the case of Time Expression, we would

need this to be installed in the timex/lib directory.

The one issue we face with running jobs inside a web or application server is if the server is clusteredthat is, there is more than one

instance of the server. (Clustering is discussed later in the chapter.) As you might guess, the job will run on all instances (servers) in the

clustered environment. To get around this problem, in the past, I have used a database technique to manage this job concurrency issue.

This technique uses a table named ObjectLock with a column name isLocked. The isLocked column can be used to simulate a job lock;

this can then be checked by the jobs to determine if the job is already running (that is, locked).

Spring Mail Support

As I mentioned earlier, our business requirements dictate that a reminder email be sent out to all employees who have not submitted a

weekly timesheet. To implement this feature, we will use a simple mail-sending API provided by the Spring Framework, instead of using

something like JavaMail directly. Note that Spring uses JavaMail for this mail support.

Our two files, ReminderEmail.java and timex-servlet.xml, combined provide this functionality. The following is the excerpt from the

timex-servlet.xml file:

<bean id="mailSender"

 class="org.springframework.mail.javamail. JavaMailSenderImpl">

 <property name="host" value="acme.com" />

 <property name="username" value="myuserid" />

 <property name="password" value="mypassword" />

</bean>

<bean id="reminderEmailMessage"

 class="org.springframework.mail. SimpleMailMessage">

 <property name="from" value="me@me.com" />

 <property name="subject" value="Reminder: Submit Timesheet" />

 <property name="text"

 value="Please don't forget to submit your timesheet. Thank you!" />

</bean>

<bean id="reminderEmail"

 class="com.visualpatterns.timex.job. ReminderEmail">

 <property name="employeeManager">

 <ref bean="employeeManager" />

 </property>

 <property name="mailSender">

 <ref bean="mailSender" />

 </property>

 <property name="message">

 <ref bean="reminderEmailMessage" />

 </property>

</bean>

The following method from ReminderEmail.java shows the actual code, which demonstrates how a list of emails is retrieved from the

database (using one of our model classes from Chapter 5) for sending the email to various employees:

public void sendMail()

{

 List list = employeeManager.getHourlyEmployees();

 if (list == null || list.size()< 1)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://opensymphony.com

 return;

 String emailAddresses[] = new String[list.size()];

 Employee employee;

 for (int i=0; i < list.size(); i++)

 {

 employee = (Employee)list.get(i);

 emailAddresses[i] = employee.getEmail();

 }

 message.setTo(emailAddresses);

 SimpleMailMessage threadSafeMailMessage =

 new SimpleMailMessage(message);

 mailSender.send(threadSafeMailMessage);

}

This feature requires mail.jar (part of the JavaMail API) and activation.jar (part of the JavaBeans Activation Framework) are present in the

timex/lib directory. Both of these can be found on the java.sun.com website.

JMX Support

We looked at the Java Management Extensions (JMX) technology in the previous chapter. Although this technology is primarily used for

managing servers currently, in my opinion it can easily be used to monitor business aspects of an application. For example, we could

monitor how many users have logged on to the system for a given day, how many invoices were processed for an accounting system, how

many claims were processed for an insurance system, and so on. This can be used not only to monitor the health of the application, but

also to provide a comfort level that everything is operating in a business-as-usual fashion.

Spring's JMX support enables us to automatically register plain JavaBean objects. In our case, this is accomplished via two files: one is

timex-servlet.xml and the other is a simple JavaBean class (TimexJmxBean.java) that tracks how many users signed into Time Expression

and how many timesheets records were fetched.

The following is a code excerpt from timex-servlet.xml:

<bean id="timexJmxBean"

 class="com.visualpatterns.timex.util. TimexJmxBean" />

<bean id="exporter"

 class="org.springframework.jmx.export. MBeanExporter">

 <property name="registrationBehaviorName"

 value="REGISTRATION_IGNORE_EXISTING" />

 <property name="beans">

 <map>

 <entry key="Time Expression:name=timex-stats"

 value-ref="timexJmxBean" />

 </map>

 </property>

</bean>

The following code excerpt shows an excerpt from the TimexJmxBean.java:

public class TimexJmxBean

{

 private static int signInCount;

 private static int timesheetsFetched;

 public int getSignInCount()

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://java.sun.com

 return signInCount;

Figure 10.2 shows our JMX Bean in the JConsole application (bundled with JSE, 5.0). Again, this is a great way to monitor, right from your

desktop, the health and status of applications running on a remote server! In my opinion, this provides a great view for developers versus

larger and much more robust tools, such as HP's OpenView or Computer Associate's Unicenter related products, which are intended for

use by operations departments.

Figure 10.2. JConsole with TimexJmxBean.

[View full size image]

More Spring

Again, Spring is such a large framework and so loaded with features that I could cover only the ones applicable to our sample application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

New Tag Libraries

At the time of this writing, the most current version of the upcoming Spring Framework was M4 (or RC1). This version introduced

several new tag libraries to ease working in JSP. Some of the new tags include form:form, form:input, form:password, form:hidden,

form:select, form:option, form:radiobutton, form:checkbox, form:textarea, and form:errors.

The tag libraries mentioned here were still unstable and I was requested by the Spring Framework team to not cover these in detail until

they became stable.

Visit the springframework.org website for the latest documentation and downloads.

Support for Web Services, JMS, JTA, EJB, DAO, RMI, JDBC

Spring also provides support for remoting protocols such as the Java Remote Method Invocation (RMI), Web Services (using JAX-RPC),

Java Connector Architecture (JCA), DAO (Data Access Object) support for various object-relational mapping (ORM) products other than

Hibernate (JDO and iBATIS, for example), and Java Database Connectivity (JDBC), EJB, Java Message Service (JMS), Java Transaction

API (JTA), and more.

Startup Classes

You might be familiar with the concept of startup classes or servlets in web and application servers. Spring doesn't explicitly have the

notion of startup classes. But this is easily done using the depends-on attribute for the bean element. Most of the objects are automatically

created in the correct order because Spring resolves the dependencies.

However, if you have independent classes such as the HibernateUtil class, the depends-on attribute can come in handy for ensuring that

those objects get instantiated beforehand, so they are prepared to be used by the objects that need them.

Other

Another notable feature is Spring's capability to load an external properties file, as shown in this example:

<bean id="placeholderConfig"

 class=

"org.springframework.beans.factory.config. PropertyPlaceholderConfigurer">

 <property name="location" value="WEB-INF/classes/pas-servlet.properties"/>

</bean>

After the properties file is loaded, it can be used to replace bean-related attribute values, as shown here:

<property name="url" value="${db.url}" />

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://springframework.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The Spring and Hibernate Harmony

The Spring Framework provides first class integration with Hibernate. Some of the benefits of integrating these two technologies include

ease of testing, consistent data exceptions (for example, DataIntegrityViolationException), and one key benefit for our specific needs, declarative

transaction management in light-weight containers! (For details on the benefits of the Spring and Hibernate integration, refer to the Spring

Reference Documentation on the springframework.org website.)

Now let's look at how we can leverage Spring to provide us declarative transaction management features, thereby shifting the burden to

the Spring container and allowing us to focus on business logic (declarative transaction management is discussed in detail later in the

chapter).

We will also see how using declarative transaction management will cut down the lines of code in some of our model package classes to

almost half!

Configuring Transaction Management in Spring

Until now, we have been looking at the Time Expression under the timex/ directory. However, this book's code zip file also contains a

refactored version of this application under a timex2/ directory; incidentally, this is also the code base that demonstrates the Spring and

Hibernate integration, so we will analyze some of the files under this directory next.

The Java code refactoring is discussed in Appendix B, "Refactoring Done to Sample Application." Here, we will walk through the changes

we made to our timex-servlet.xml file, now renamed to timex2-servlet.xml (found under the timex2/ directory).

Reconfiguring Our Sample Application

Figure 10.3 shows how our controller classes (in timex/) use the manager classes directly; for example, notice how our EnterHoursController class

uses DepartmentManager directly. This direct approach is further demonstrated in the following XML configuration from our original timex-servlet.xml file:

<bean name="enterHoursController"

 class="com.visualpatterns.timex.controller. EnterHoursController">

 <property name="departmentManager">

 <ref bean="departmentManager" />

 </property>

Figure 10.3. Graphical view of timex-servlet.xml.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://springframework.org

By using the manager classes directly, we had to implement our own transaction managementin other words, programmatic transaction

management.

Now, let's look at how we will work with our manager classes indirectly; that is, via transaction proxy bean classes.

Figure 10.4 shows a Spring IDE graph for the EnterHoursController and related beans as they are defined in our refactored timex2-servlet.xml file.

Notice how the EnterHoursController class now goes through a proxy bean named departmentManagerProxy (a Spring TRansactionProxyFactoryBean class). This

proxy bean provides us two primary benefits:

Management of Hibernate sessions so we don't have to worry about closing the Hibernate session manually.

Declarative transaction management inside light-weight containers with the capability to scale down to single database

transactions or scale up to global Java Transaction API (JTA) based transactions. Spring even provides special transaction

manager support classes (for example, WebLogicJtaTransactionManager) for products such as ObjectWeb's Java Open Transaction

Manager (JOTM; jotm.objectweb.org), BEA's WebLogic application server (bea.com), and IBM's WebSphere application server

(ibm.com).

Figure 10.4. Graphical view of timex2-servlet.xml.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://jotm.objectweb.org
http://bea.com
http://ibm.com

Now let's review the code behind the graph shown in Figure 10.4.

Less and Cleaner Java Code!

One of the key benefits of declarative transaction management I mentioned earlier is that the burden of transaction management is shifted

to the container. This also translates into reduced code, which in turn enables us to focus on business logic more than low-level

plumbing-type coding such as transaction management. This feature has been available in Enterprise JavaBeans for sometime now, but

as I mentioned earlier, by using Spring, we get the same facilities of enterprise transaction management in light-weight containers such as

Apache Tomcat.

The following original code excerpt shows our saveTimesheet(Timesheet timesheet) method from the existing Time Expression's TimesheetManager class

(found under the timex/ directory). This uses Hibernate's programmatic transaction management.

Session session = HibernateUtil.getSessionFactory()

 .getCurrentSession();

session.beginTransaction();

try

{

 session.saveOrUpdate(timesheet);

 session.getTransaction().commit();

}

catch (HibernateException e)

{

 session.getTransaction().rollback();

 throw e;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Note

Appendix B demonstrates the code changes discussed in this section.

The same code can be reduced to the following single line of code using Spring (demonstrated in the TimesheetManagerImpl1 class under the

springhibernate/ directory):

this.sessionFactory.getCurrentSession().merge(timesheet);

Alternatively, we can extend Spring's HibernateDaoSupport support class, which enables us to reduce our Java code even further by eliminating

the getSessionFactory and setSessionFactory methods. Furthermore, the Hibernate exceptions are automatically translated into a consistent data

exception hierarchy.

HibernateDaoSupport provides a method named getHibernateTemplate that provides methods typically found in Hibernate's Session interface, as shown

here:

getHibernateTemplate().merge(timesheet);

Our three manager classes, DepartmentManager, EmployeeManager, and TimesheetManager, have now been refactored (in the timex2/ directory) to extend the

HibernateDaoSupport class. As a result, these classes combined have 126 fewer lines of code now! Table 10.1 shows the comparison of the

number of lines of code in these three class files using both types of transaction management.

Table 10.1. Lines of Code for Programmatic Versus Declarative Transaction Management

File Programmatic Declarative

DepartmentManager.java 39 22

EmployeeManager.java 66 36

TimesheetManager.java 166 87

TOTAL 271 145

If only three simple classes can cut down so much code, imagine how many fewer lines of code we would have in a typical real-world

enterprise Java application with many more classes in this category (that is, service layer).

Although HibernateDaoSupport provides some benefits, there are also some minor drawbacks to consider, including the following:

It tightly couples Hibernate and Spring, so if Hibernate provides an upgrade that Spring doesn't support, we would have to wait

for the Spring Framework to be updated.

Because Java supports only single inheritance, after we extend HibernateDaoSupport, our only shot at extending another class is lost;

of course, we could extend our own custom class, which in turn could extend HibernateDaoSupport to get around this limitation.

Nevertheless, the benefits discussed earlier would appear to outweigh the minor drawbacks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Unit Testing Our Integrated Code

Now that we are using a new style of transaction management in the timex2/ related refactored code, we also need to use these classes

differently in our unit tests. For example, to use one of our manager classes, we must now load the proxy bean instead, as demonstrated

in this code excerpt from our TimexTestCase class:

FileSystemResource res =

 new FileSystemResource("src/conf/timex2-servlet.xml");

springFactory = new XmlBeanFactory(res);

departmentManager =

 (DepartmentManager)springFactory.getBean("departmentManagerProxy");

Interface-Based Approach

Incidentally, there is another project bundled in this book's code zip file, under the springhibernate/ directory (see filenames in Appendix A,

"Downloadable Code for This Book"). This project demonstrates two things:

How to configure and code using interfaces with implementation classes.

How to force a org.springframework.dao. DataIntegrityViolationException exception to see how Spring's consistent data exception works and also

how the Spring Web Framework can redirect the user to a view (dberror.jsp, in our case) for a given mapped exception.

One thing to note about this demo: Because it uses an interface-based approach (versus the class-based approach used in Time

Expression), we do not need to use the proxyTargetClass attribute, as we do in our timex2-servlet.xml file.

<bean id="departmentManagerProxy"

 class=

 "org.springframework.transaction.interceptor. TransactionProxyFactoryBean">

 <property name="proxyTargetClass" value="true"/>

Figure 10.5 shows a graphical view of the Spring application context file, springhibernate-servlet.xml, used in this demo. Notice that the proxyTargetClass

attribute is not used in the proxy classes.

Figure 10.5. Graphical view of springhibernate-servlet.xml.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Note

There is one feature of Eclipse worth pointing out here. Notice on the left side of Figure 10.5 how Eclipse enables us to

work with multiple projects in the same workspace; in this case, we are working with our three projects: springhibernate, timex,

and timex2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

JSP Tag Libraries

We have already used several tag libraries in this book, primarily in Chapter 7, "The Spring Web MVC Framework," where we

discussed the Spring Web MVC Framework. These tag libraries include the spring:bind library, JSTL, and others. One of my favorite tag

libraries is Displaytag, so let's look at that next.

Displaytag

Displaytag, according to its website (displaytag.sourceforge.net), "is an open source suite of custom tags that provide high-level web

presentation patterns which will work in an MVC model. The library provides a significant amount of functionality while still being easy to

use."

I've used this tag library before and love its simplicity and robustness. For example, in fewer than 20 lines of JSP code, we could

generate a sophisticated HTML table using data from a database via JDBC. We will use it to convert the HTML table on our Timesheet

List screen, which we originally generated using a combination of JSTL's c:forEach and c:out tags. The key benefit for our sample

application is the capability to sort the list and also export it to a PDF file, CSV file, or other formats, if needed.

The following code excerpt from our refactored timesheetlist.jsp file (found under timex2/) shows how the Displaytag library works:

<%@ taglib prefix="display" uri="http://displaytag.sf.net/el" %>

<display:table name="timesheets" id="timesheet" defaultsort="1"

 requestURI="timesheetlist.htm"

 cellpadding="5" cellspacing="0"

 export="false" class="tableborder">

<display:column property="department.name" sortable="true"

 title="Department"/>

</display:column>

This tag library can be downloaded from displaytag.sourceforge.net along with documentation on additional features of Displaytag. As

explained on the web, this has several dependencies. Follow the instructions on the website to install it for our sample application.

Writing Custom Tag Libraries

Although many tag libraries are available on the web, at times you will need to write a custom tag library that is specific to your project. In

the past, I have had to write a custom tag library to hide certain buttons on a screen based on the authorization level of the user.

Our PayPeriodCheckTag.java file shows a complete and functional custom tag library used for Time Expression. This tag library is a

simple demonstration of what tag libraries can be used for. This particular tag library checks the current date against the period starting

and ending dates. If the current date is outside this start and end date range, the Save button is not displayed on the screen because the

user is only allowed to update the current pay period's timesheet.

The following snippet from PayPeriodCheckTag.java shows how we extend the javax.servlet.jsp.tagext. TagSupport class and provide a

custom tag library.

public class PayPeriodCheckTag

 extends TagSupport

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://displaytag.sourceforge.net
http://displaytag.sourceforge.net

{

 private Date checkDate;

 public int doStartTag() throws JspException

 {

 boolean includeText = (DateUtil.isInCurrentPayPeriod(checkDate));

 if (includeText)

 return TagSupport. EVAL_BODY_INCLUDE;

 return TagSupport. SKIP_BODY;

 }

The following code shows an excerpt from the supporting tag library descriptor (TLD) file, timex.tld.

<shortname>timex</shortname>

<tag>

 <name>periodcheck</name>

 <tagclass>com.visualpatterns.timex.util. PayPeriodCheckTag</tagclass>

 <attribute>

 <name>checkDate</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

This code excerpt from our enterhours.jsp file shows how the timex:periodcheck tag is used to either show or hide the Save button.

<%@ taglib prefix="timex" uri="/WEB-INF/timex.tld"%>

<timex:periodcheck checkDate="${command.periodEndingDate}">

 <input name="save" type="submit" value="Save">

</timex:periodcheck>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Refactoring

Throughout this book, I have stressed refactoring, so it would only make sense that I practice what I preach. Indeed, a lot of the code has

been refactored between Chapter 5 and this chapter.

As I mentioned earlier, refactoring is not a new concept; what is relatively new is the term itself, which was coined by Martin Fowler

(refactoring.com). Refactoring is the process of improving the internal implementation of a code without impacting (or minimally

impacting) the external interface. This is something developers do daily and have been doing for years; now we just have a common

term to express this practice.

Appendix B shows some of the code that was refactored over the course of Chapters 5, 7, and this chapter. This reflects how things work

in real life! In other words, we refactor code over a period of time as we discover better ways to improve it.

Examples of Refactoring in Our Sample Application

The following are a few examples of the type of refactoring I did to the Java and JSP code of Time Expression. Allow me to reemphasize

that refactoring is not rocket science or an earth-shattering technique, so some of these might seem simple or obvious ways of improving

code, but they demonstrate the very nature of refactoringthat is, improving code.

Note

Appendix B demonstrates many of the refactoring-related code changes mentioned next.

Java Refactoring Examples

The following are a few Java code-related refactoring examples for Time Expression:

Programmatic to declarative transaction management As we discussed previously, integrating Hibernate with Spring required

significant refactoring to our three manager classes.

Extract superclass The refactoring.com website lists "Extract Superclass" as a refactoring type; the definition is as follows:

"You have two classes with similar features. Create a superclass and move the common features to the superclass." We did

just this for our JUnit parent test case class named TimexTestCase (discussed earlier).

Move method I moved the getCurrentPeriodEndingDate from TimesheetListController to DateUtil because I needed this

method in multiple places and it made sense to put it in a common utility class. This is referred to as Move Method on

refactoring.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://refactoring.com
http://refactoring.com
http://refactoring.com

Move class I originally placed ReminderEmail in the util package; however, I ended up moving it to the job package because

that was a more appropriate place for this class.

Removed unused variables Thanks to Eclipse's warning about unused Java elements, when we got to Chapter 8, "The

Eclipse Phenomenon!" I realized I had some unused variables and import statements. I removed many of these without

impacting the external interface of these classes or methods.

JSP Refactoring

The following list describes some JSP-related refactoring I had to do.

Moved error message for JSP in a common include file Because I was duplicating the display of error and status messages, I

moved it to a common file named includemessages.jsp and included it in the files that required it (for example, enterhours.jsp,

timesheetlist.jsp, and signin.jsp).

Changed to displaytag Upon discovering a better way to display and sort HTML tables, I moved all the code to the Displaytag

library instead of using JSTL. This also demonstrates a key benefit of the MVC design patternthat is, we were able to change

the view without impacting the model.

Refactor Mercilessly but...Save a Code Snapshot

You might have heard the term refactor mercilessly; this is one of the principles of extreme programming (extremeprogramming.org). I

tend to agree with this but would also caution you to save a snapshot of your code either in a source code repository such as CVS or

keep a copy of your working code in a separate directory. This enables you to roll back to your working code if your refactoring doesn't

work out as you had hoped. For example, there was a point in this book where I extensively refactored some code to give something

new a try. However, it didn't work out as I planned, so I was able to quickly revert to the previously saved snapshot of code. Eclipse's

Local History option (discussed in Chapter 8) can also be used to restore your previous code.

Online Refactoring Catalogs (refactoring.com and agiledata.org)

Refactoring doesn't just happen with code, it can also be done at the database level.

For code-related refactoring, visit refactoring.com; it has a growing catalog of refactoring techniques (almost 100 at the time of this

writing).

For database-refactoring techniques, check out agiledata.org. This, too, boasts a long list of common database-refactoring techniques

(almost 70 at the time of this writing).

You might find that you are already using many of these refactoring techniques.

A Note About Refactoring in Eclipse

As we discussed briefly in Chapter 8, Eclipse provides several Java code refactoring options.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://extremeprogramming.org
http://refactoring.com
http://agiledata.org
http://refactoring.com
http://agiledata.org

For example, for the Spring and Hibernate integration demo (in the springhibernate/ directory) we discussed earlier in the chapter, I used

Eclipse's Extract Interface refactoring menu option and was able to have Eclipse automatically create an interface file for me and have

the concrete classes implement this interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Other Considerations

We have covered a lot of ground in this book and in this specific chapter, but it is practically impossible to cover everything about

developing robust and secure applications in one book. However, the following sections provide a brief overview of additional items to

consider when designing and developing solid applications. Note that I have covered most of these considerations at a conceptual level

here.

Transaction Management

A transaction is series of operations that must be successful or the system should be placed back to its original state. The simplest

example of this is perhaps two tables in the same database: one parent and one child. If we delete records from the parent table, we must

also delete the children records. However, if the child record delete fails, we must roll back the transaction and restore the database to its

original state. Although this is a single database example, the same concept applies across databases.

Ensuring transactional integrity is a vital part of any enterprise application. Typically, transaction management is handled in two ways:

programmatically or declaratively. Whereas programmatic transaction management provides control to the developer in the code,

declarative transaction management allows us to control the transaction demarcation points and isolation levels by manipulating XML

(configuration) files. Also, whereas programmatic transaction management is static in nature (because it needs to be coded in),

declarative transaction management is more dynamic in nature because it can be postponed to the time of deployment.

Declarative transaction management plays a large role in enterprise distributed computing these days because transaction management

no longer applies only to single databases (local transaction) because organizations tend to store information across databases (global

transaction).

Note

We already saw examples of programmatic transaction management using Hibernate in Chapter 5 and declarative

transaction management using Spring earlier in this chapter. This book's code zip file contains demonstrations of both

types of transaction management.

The programmatic transaction management code and configuration can be found under the timex/directory (the

declarative transaction management code using Spring can be found under timex2/).

Declarative transaction management shifts the burden of transaction management to the container (an EJB container, for example) and

enables the developer to focus on the business logic. Furthermore, it can unclutter code a bit because there is no transaction

management code mixed in with the business logic. As we discussed earlier in this chapter, the Spring Framework provides support for

declarative transaction management without requiring your applications to run in an EJB container; in other words, your application can run

inside a servlet container such as Apache Tomcat. To understand how declarative transaction management works, let's look at some

related concepts next.

Enterprise transactions typically conform to the ACID properties; that is, atomicity, consistency, isolation, and durability. ACID transactions

ensure that a series of operations are either successful or are left in a pretransaction statein essence, an all-or-nothing proposition.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Atomicity ensures that all operations in a transaction are successful or the system is restored to its original state. Consistency ensures that

all transactions transition data from one state to the other consistently. Isolation means that transactions are isolated from other

transactions until transactions are committed. Durability indicates that after all transactions have been successfully committed, the

changes are permitted.

The following are some additional terms related to enterprise transaction management.

Demarcation This is a way of marking the boundaries for a given transaction. It also enables grouping of transactions, which

can participate in a broader global transaction. In a distributed environment, you could contain transactions within transactions

(known as nested transactions).

Transaction isolation level This is the level of separation of one transaction from others. In other words, it specifies how much

work one transaction can see of another transaction. Although different technologies use different terms for isolation levels,

some of the Spring Framework contains the following levels: ISOLATION_READ_COMMITTED,

ISOLATION_READ_UNCOMMITTED, ISOLATION_REPEATABLE_READ, and ISOLATION_SERIALIZABLE. Note that

ISOLATION_READ_UNCOMMITTED is the lowest isolation form, because dirty read/writes can occur, but it provides faster

performance. ISOLATION_SERIALIZABLE, on the other hand, is the highest and safest form and accordingly impacts

performance because of the extra safeguards.

Transaction propagation This implies whether a group of code should run within its own transaction or participate in an existing

transaction, which might have already begun prior to reaching that code. For example, Spring supports the following

transaction propagation types: PROPAGATION_MANDATORY, PROPAGATION_NESTED, PROPAGATION_NEVER,

PROPAGATION_NOT_SUPPORTED, PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, and

PROPAGATION_SUPPORTS.

Again, declarative transaction has been supported by EJBs for some time now; however, the Spring Framework makes it possible to get

this enterprise-level transaction management even in a servlet container and not force us to use an EJB container. So, if we wanted to

unclutter the code in Time Expression, we could convert to using Spring's declarative transaction management support and remove all

Hibernate programmatic transaction management code. For additional information on Spring's declarative transaction management code,

refer to the springframework.org website.

Application Security

Application security is a huge topic in itself that can take several books to cover. However, let's review some application security concepts

in the context of our sample application, which would include the following: authentication, authorization, and encryption (see Figure 10.6).

Figure 10.6. Application security concepts (authentication, authorization, encryption).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://springframework.org

Authentication

This includes user-level authentication and application-level authentication. Authentication is a process of verifying user credentials

to ensure that users are who they claim they are. In Time Expression, user-level authentication is a simple sign-in screen where the user

provides credentials (for example, id and password). Application-level authentication is the credentials required for the application to

connection to the database. In real-world projects, this can also include connections to an LDAP server and Java Message Service (JMS)

server, for example.

Authorization

Authorization controls access to features based on the user's role (or type). For example, in Chapter 2 we defined various types of roles in

our user stories, such as Employee, Manager, Executive, and Accounting. Each of these roles would have different types of access; for

example, employees could not pay themselves.

Encryption

Encryption in the context of our sample application could occur in two places: the wire protocol and the configuration files. For the wire

protocol, using HTTPS (port 443) is typically enough to protect the data being transferred over the wire, and even if the data was being

hijacked over the wire, it would be encrypted. Encryption can also happen in configuration files. If you do not want the application-level

passwords (for example, application-level database user id and password) stored in clear textyou could use an algorithm such as SHA or

MD5 to store passwords as encrypted strings in your configuration files. By the way, this can be done using the Java Cryptography

Extension (JCE). Visit the java.sun.com website for details.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://java.sun.com

Other

As I mentioned previously, security is a big topic and there are many types of books dedicated to this subject. However, I have provided a

concise list on how to secure web applications in Appendix D, "Securing Web Applications."

Exception Handling

Exceptions come in two flavors: unchecked or checked. Unchecked exceptions (for example, java.lang. NullPointerException) do not need

to be caught by the code, whereas checked exceptions (for example, java.io.IOException) do require the code to either catch the

exception or throw it up the call chain using the throws statement. There are also errors (for example, OutOfMemoryError) that are

generally difficult to recover from.

Deciding when to have your application's exception-handling code as one or the other requires some careful thought. I recently read the

following line in Sun's Java Tutorial (at http://java.sun.com/docs/books/tutorial/):

"If a client can reasonably be expected to recover from an exception, make it a checked exception. If a client cannot do anything to

recover from the exception, make it an unchecked exception."

Another reason to catch an exception and rethrow it, as either itself or repackaged as a new exception, is in case you want to do some

central logging or send out alert notifications (for example, email or pager).

A Hypothetical Exception-Handling Scheme

Given the preceding considerations, we can see that the application exception-handling approach might vary from application to

application. Figure 10.7 portrays how our sample application could use handling exceptions:

Figure 10.7. Sample exception handling for Time Expression.

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://java.sun.com/docs/books/tutorial/

com.visualpatterns.timex.modelAny exceptions that occur in the model package (for example, database errors) could be

repackaged as class ModelException and rethrown as an unchecked exception. Similarly, the job package could contain a

JobException class and the util package a UtilException class. If we wanted to, we could even define more specific exceptions

such as IllegalTimesheetHoursException, but I typically use one exception class per package (just a personal preference).

com.visualpatterns.timex.controllerAny exception occurring in the controller package could be checked and a user-friendly error

message displayed to the UI. For instance, this might include UI data validation parsing related exceptions (for example,

caused by Integer.parseInt).

One last note about exceptions is that many projects tend to hide exceptions using the following type of code; this typically is not a

recommended approach, but there might be times where this approach is valid if the exception truly can be ignored:

try { // some code that causes an exception ... }

catch (Exception e) { e.printStackTrace(); }

Handling Exceptions Using the Spring Web MVC Framework

The Spring Web MVC Framework provides a convenient and practical exception-handling scheme. More specifically, Spring allows us to

configure exception class names to views; this enables us to handle unexpected exceptions somewhat gracefully by displaying a

formatted web page.

The following code excerpt from our springhibernate-servlet.xml file (under the springhibernate/ directory) demonstrates how the

org.springframework.dao. DataIntegrityViolationException exception can be mapped to our view file, dberror.jsp (discussed earlier in this

chapter).

<bean id="exceptionResolver"

class="org.springframework.web.servlet.handler. SimpleMappingExceptionResolver">

 <property name="exceptionMappings">

 <props>

 <prop key="org.springframework.dao. DataIntegrityViolationException">

 dberror

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The following code excerpt from our dberror.jsp view file demonstrates how Spring passes the exception object via the request's session

attribute named exception and we print its stacktrace:

<%

 Exception ex = (Exception)request.getAttribute("exception");

 if (ex != null)

 ex.printStackTrace(new java.io. PrintWriter(out));

%>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Clustering

According to webopidia.com, clustering is defined as "two or more computers together in such a way that they behave like a single

computer. Clustering is used for parallel processing, load balancing and fault tolerance."

Clustering can apply to everything from application servers to databases to networking devices and more. In the world of Java, clustering

is typically used to achieve stability and reliability in enterprise applications. For example, on the scalability front, this can mean HTTP

session and component failover.

Entire articles have been written on this subject, but let me provide some minimal guidelines here for clustering your Java applications:

Serialize the objects that we want to provide failover for (for example, a user object established after a login session).

Clustering can be done only for Java primitive types and Serializable objects.

Do not use static variables to hold information, because this will not get replicated or will be applicable to only one instance of

the server. For example, using singleton on one server won't get us the same information on another server. This is

perhaps one reason the Spring Framework doesn't advocate the use of Singleton objects and instead recommends having

Spring handle singletons for us.

Limit the quantity of data in components that need to be failed over. This can impact performance of the application server,

for example, because it needs to replicate this information across multiple instances.

Clustering in application (and web) servers is done for in-memory persistent data. For example, your data that is persistent in

the database but not in memory won't get replicated by a web/application server.

In general, strive for simplicity when designing the classes you want clustered.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://webopidia.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Multithreading

In the Java Platform Enterprise Edition (JEE) world, multithreading is typically not recommended because the application server is the

only program that is supposed to have control over the threads within the JVM to ensure a stable application server environment.

However, at times you may need multithreading in your JEE application. Isolating this multithreading to a single class where we can

control the threading is a better design than, for example, multiple classes implementing their own threading. Regardless of how

multithreading is designed/used for an application, careful thought should be given to synchronization, blocking, and other related issues.

JSE 5.0 introduced the java.util.concurrent package, previously developed by Doug Lea (note for pre-J2SE 5.0: use Doug Lea's

backward-compatible distribution, which can be found at http://gee.cs.oswego.edu/dl/). This is a clean way to use multi-threading in your

enterprise applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://gee.cs.oswego.edu/dl/

A Note About Java GUI (Thick Client) Applications

We did not look at building thick client applications at all in this book because our application had a web user interface. Currently, there is

an implicit war going on between Java's Swing and IBM's SWT (Standard Widget Toolkit). Swing is the reference GUI toolkit for JSE,

and SWT is a graphics library available with the Eclipse platform. Both of these technologies are cross-platform technologies.

SWT is a thin wrapper around the native operating system's GUI widgets, and it has a higher-level interface named JFace. In contrast,

Swing renders its own look-and-feel and tries to closely match it with the native operating system's look-and-feel.

Both of these technologies have their pros and cons. For example, if you read online articles on this subject or browse through

messages in various online discussion forums, you will get the sense Swing is over-engineered and slower than SWT. On the other

hand, by choosing SWT, you are committing to the Eclipse platformsomething certainly worth considering. My personal general

impression tends to be that if you are developing a GUI application only for Microsoft Windows, SWT appears to be a better choice.

However, if you sell or distribute your application to external customers, Swing might be a better choice. Again, this is my personal

opinion. You should investigate these technologies further if you have a need for this type of functionality.

Another factor to consider for GUI applications is the Java Web Start technology from Sun, which allows applications to be launched with

a single click, independently of a web browser. The application can also be launched through desktop shortcuts, making launching the

web-deployed application similar to launching a native application. The application itself is cached locally, so if there are no updates to

the application, it is run instantly. Otherwise, an updated version can be downloaded from the network (this is made possible by Java's

Network Launching Protocol specificationJNLP for short).

For details on SWT, visit the eclipse.org website. For Java Swing and Web Start technologies, visit the java.sun.com website.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://eclipse.org
http://java.sun.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Configuration Management (CM) Environments

You might have noticed the following lines in our Ant build.xml file.

<property name="env" value="local"/>

<property file="local.properties"/>

Although local.properties is our default properties file, this can easily be substituted with another filefor example, test.propertiesusing a

command such as the following (on the command line):

ant -Denv=test

This provides the capability to use different files for different deployment environments. For example, Figure 10.8 demonstrates how we

could have the same architecture across different environments, from development through production and everything in between, using

unique host/server names for our web server and database server in each environment.

Figure 10.8. Our sample application in different environments.

[View full size image]

Using external files versus embedding everything in the Ant build file provides us the advantage of saving password and other

information in a separate, presumably smaller and simpler, properties file versus a big build.xml file. For example, I have come across the

following environments in many companies.

Local Individual development on a personal computer

Dev Integrated team-based development on a server

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Test Used for functional testing (also known as quality assurance, or QA)

User-acceptance testing (UAT) Also known as staging area and used for user testing

Production Live deployment of the application

For smaller projects, one or two of the preceding environments can be eliminated. For example, if the project uses smaller iterations

(two-week fixed cycles, for example) or has a small team (two to four developers), the integrated development environment can be used

for functional testing. Alternatively, the UAT and Test environments could be combined into one. So pick and choose the environments that

best suit your needs. In short, our Ant file can accommodate various environments by having different property files and using the Denv

parameter I demonstrated.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Asynchronous JavaScript and XML (AJaX)

Ajax is a web technology that enables us to make pages interactive. Ajax is a powerful concept for two reasons. First, it provides a richer

experience to the user because the entire page does not need to be reloaded. Second, it shifts some of the burden to the client because

the browser requests only a subset of the screen (for example, updated stock quotes or alerts) instead of reloading the entire page.

I have provided an extremely simple example in this book's code zip file (files rapidjava-ajax.html and rapidjava-ajax.jsp). Although this

example doesn't truly demonstrate the power of Ajax, it should give you ideas on what we can achieve with this technology. Ajax

essentially uses the JavaScript XMLHttpRequest object combined with the <div> HTML tag to provide dynamic updates to only a section

of the page.

For introductory information on AJaX, http://en.wikipedia.org/wiki/AJAX might be a good website to start with. However, many books and

articles are available on this subject and online search engines such as Google can also turn up many links on this subject.

Also, check out DWR (Direct Web Remoting), an open source framework available at http://getahead.ltd.uk/dwr/. According to the

website, "DWR is Easy Ajax for Java." The website further explains that DWR "is a way of calling Java code on the server directly from

Javascript in the browser." Note, I have not worked with DWR personally.

One last note about AJaX. What I have demonstrated in my examples is extremely basic. The power of AJaX comes in when little

portions of the web UI can make requests to individual services from a collection of services on the backend, in other words,

Service-oriented architecture (SOA)[md]this makes for a very powerful concept!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://en.wikipedia.org/wiki/AJAX
http://getahead.ltd.uk/dwr/

Javadoc and Comments

Considering how much emphasis I placed on the code (and physical database structure and data) being the long-lasting artifacts, it is

important to add documentation to our code! Developers need to be able to understand other developers' code, and having Javadoc and

comments for complex code is a big help. Always think from the perspective of someone else; imagine in your mind other persons

working with your code and how you can make their job easier. However, you also need to find the right balance in the amount of

documentation you provide; I tend to do minimal Javadoc in my codejust enough to give them information about given classes, methods,

variables, and most important of all, complex logic.

In light of this, you will notice that all our code has comments in them. Also, you will notice it has minimal comments, again everything in

moderation, not too much and not too little. By having these comments, I can run the JDK javadoc command against my Java code to

generate comprehensive documentation on the code for our sample application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Entire System in One WAR File!

One last and cool thing to note is that the Time Expression deployable web application archive files (timex.war and timex2.war) contain

100% of the Time Expression system (as depicted in Figure 10.9). Recall that these WAR files can be built using our Ant build.xml script

or Eclipse's export feature (see Chapter 8 for details).

Figure 10.9. timex.wara fully self-contained system.

The cool aspect is that this war contains all our Java source code and compiled classes, static and dynamic web files, the dependencies

(third-party libraries), job scheduling capabilities, and even a relational database!

The point I'm trying to make is that this is the power of Java. There are very few languages that you can do this in.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Summary

In this chapter, we covered the following topics:

Recently added Java features

Additional Ant built-in and external tasks

JUnit custom suites

Additional Hibernate features

Other Spring Framework features

Integrated Hibernate with Spring

The Displaytag tag library and writing custom tag libraries

Sample refactoring of our sample application

Other important considerations such as transaction management, security, exception handling, clustering, and several others

A simple Ajax example

Well, this just about wraps up this book! In the next chapter, I will provide you with some guidelines on what you can look for next.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Agile data (database refactoring and more) http://agiledata.org/

Apache Ant http://ant.apache.org/

Displaytag tag library http://displaytag.sourceforge.net/

JUnit Fixture Code http://junit.sourceforge.net/doc/cookbook/cookbook.htm

Hibernate http://hibernate.org/

JUnit testing framework http://junit.org

Martin Fowler's refactoring website http://refactoring.com/

Spring framework http://springframework.org/

Sun's Java website http://java.sun.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://agiledata.org/
http://ant.apache.org/
http://displaytag.sourceforge.net/
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://hibernate.org/
http://junit.org
http://refactoring.com/
http://springframework.org/
http://java.sun.com/
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

11. What Next?

WE HAVE COVERED A SIGNIFICANT AMOUNT of material up to this point in the bookenough to build complete, robust, and

enterprise-ready Java applications. However, hundreds of books are available on Java technology, primarily because there are lots of

Java-related technologies out there to learn about. Given this fact, it was practically impossible to cover everything, so let's look at

potential areas you might want to investigate further.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

What's Covered in This Chapter

In this chapter, I will give you some suggestions on areas to investigate further, including the following:

Complete the Time Expression application

XP and AMDD-based software development

Java platform

Ant

JUnit

Hibernate

The Spring Framework

Eclipse SDK

Logging, debugging, monitoring, and profiling

Getting help

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Complete the Time Expression Application

If you have read this book end-to-end, you have invariably realized that we finished only a subset of the functionality defined in our

fictional business requirements from Chapter 2, "The Sample Application: An Online Timesheet System." The user stories I picked were

based on following two reasons:

Being able to enter hours electronically seemed like a good start and something real world users would want in the first

couple of iterations.

These user stories worked nicely from a demonstration perspective, in that I was able to show how to build both, form and

noform, screens.

A great way to learn more about the various technologies covered in this book is to work with the code presented here and to complete

the remainder of the application. For example, we finished the first five user stories from Table 2.2 in Chapter 2. You could try completing

the remaining user stories. If you decide to do this and come up with innovative ideas, I would love to hear about them. (My contact

information can be obtained on visualpatterns.com.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

XP and AMDD-Based Software Development

In Chapters 2 and 3, we discussed Extreme Programming (XP) and Agile Model Driven Development (AMDD) methods. If this

style of working appeals to you, you could try incorporating it in your projects. For details on these, visit agilemodeling.com and

extremeprogramming.org. Also, I have provided cheat sheets on these methods in the appendixes section.

Another related website I mentioned earlier is refactoring.com, which contains a growing catalog of code-related refactoring techniques.

Also, agiledata.org has a list of database techniques including both database refactoring and agile data modeling. This is an area that is

gaining momentum.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://agilemodeling.com
http://extremeprogramming.org
http://refactoring.com
http://agiledata.org

Java Platform

Java technology is constantly evolving and you frequently see new releases being introduced by Sun Microsystems on the java.sun.com

website. I covered only a few of the newer features, but considering that Java is an entire platform, there is a lot more to learn there. You

could spend some time learning about the new language features and APIs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Ant

As I mentioned in earlier chapters, Ant is a wonderful tool that comes loaded with builtin tasks. However, there are lots of external tasks

available on the Net and you can also write your own. I would highly encourage you to explore Ant a bit further. Visit

http://ant.apache.org/ for more details.

Also, look into continuous integration (martinfowler.com). This is a concept that is quickly becoming popular, and tools such as

CruiseControl (cruisecontrol.sourceforge.net) are facilitating this concept.

One other notable product is Apache's Maven (maven.apache.org). This aims to automate and simplify the build process and has been

gaining a lot of momentum recently.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://ant.apache.org/
http://martinfowler.com
http://cruisecontrol.sourceforge.net
http://maven.apache.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

JUnit

JUnit is a pretty straightforward framework, so on one hand, I have provided you more than enough information to do unit testing. On the

other hand, several other tools and utilities available on the junit.org website might be worth checking, such as various mock objects,

JSystem, JUnit PDF Report, and many others.

I would also encourage you to explore the Test-Driven Development (TDD) approach, which advocates writing tests first. This method of

working takes some getting used to, but after you do, you will probably want to continue working only in this fashion. Again, give this

approach some time because initially you might feel that you are spending more time writing tests; but if you factor in the amount of time

you spend unit testing your code and fixing defects reported by your testers or users, you will begin to see why this approach can

actually save you time. Also, this technique works best if you write small chunks of code (for example, smaller methods and classes

versus big and complex ones).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://junit.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Hibernate

We looked at some of the core functionality provided by Hibernate, enough to help you build a complex application using Hibernate.

However, as I indicated earlier, entire books have been written on this subject. Also, for legacy or complex applications, you probably

want to include the more complex techniques provided by Hibernate. For example, you could investigate the following features of

Hibernate a bit further:

Component mapping

Bidirectional associations

Inheritance mapping

Performance improvements

Stored procedures

Caching

For details on these and other Hibernate features, visit the hibernate.org website.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://hibernate.org

The Spring Framework

Even after dedicating Chapters 6, 7, and part of Chapter 10 to the Spring Framework, I have probably covered only half of the Spring

Framework (if that). There is a lot more to Spring. Here are some features of Spring you might want to investigate further:

Aspect-Oriented Programming (AOP) features

Remoting support for the following technologies: Java Remote Method Invocation (RMI), Web Services (using JAX-RPC),

Java Connector Architecture (JCA), Enterprise JavaBean (EJB), and Java Message Service (JMS)

Database-related support for Data Access Object (DAO) objects, ORM support (for Hibernate, JDO, iBATIS), and Java

Database Connectivity (JDBC)

Transaction support for Java Transaction API (JTA)

Spring Portlet MVC framework (support for JSR-168 Portlet API)

Integration of the Spring Web MVC Framework with a site composition technology such as Apache Tiles

(struts.apache.org/struts-tiles/) or decoration technology such as OpenSymphony's SiteMesh (opensymphony.com)

Spring subprojects (including Web Flow, Acegi security, BeanDoc, and Rich Client support)

New tag libraries introduced in Spring

Other (Spring's support for JEE such as JMS, EJB, and more)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://struts.apache.org/struts-tiles/
http://opensymphony.com

Eclipse SDK

As I mentioned in Chapter 8, "The Eclipse Phenomenon!" the Eclipse platform is growing at a marvelous pace! So there is certainly a lot

to check out in this area. For example, new or enhanced plug-ins are being introduced literally every week from various sources. Be sure

to visit the eclipse.org website often and also visit the various plug-in directories if you are looking for specific plug-ins.

As for the core Eclipse SDK platform (including the bundled Java Development Tools), here are some suggestions on what to investigate

next:

Code style formatting This feature in Eclipse provides extensive customization for the way you like your code formatted. This

option is available from the Windows, Preferences menu item.

Tips and tricks Be sure to view the online help for the various plug-ins (for example, JDT). You will find a long list of tips and

tricks in here that can save you some time and enhance your user experience when working in Eclipse.

Refactoring support Eclipse's refactoring is already robust but it is likely to continue improving. Also, these refactoring

techniques are based on some of the concepts available on refactoring.com, which has a growing catalog of refactoring

techniques, so Eclipse is bound to increase its support for some of the newer refactoring methods.

Writing Eclipse plug-ins isn't exactly rocket science, so you might want to investigate this option. Custom plug-ins do not have to be for

technical or development needs only. I personally know of a project related to computer forensics that was developed using the Eclipse

Standard Widget Toolkit (SWT) and deployed as Eclipse plug-ins.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://eclipse.org
http://refactoring.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Logging, Debugging, Monitoring, and Profiling

We looked at logging, debugging, monitoring, and profiling techniques in Chapter 9, "Logging, Debugging, Monitoring, and Profiling."

However, I merely scratched the surface with the material I covered.

Logging can be used minimally for simple tracing and debugging, or it can be used for security-related audit-trail logging locally. Writing

your own custom logging extensions using JDK logging or log4j logging is relatively simple, so you could write logging classes for various

types of tasks. Also, logging can be done at a local level or remotely, which opens up some interesting opportunities.

Debugging is somewhat of an art because developers like to approach this in different ways. Whereas some developers debug using

print statements, others enjoy GUI debugging. If you like GUI-based debugging, investigate the Eclipse debugger further. We

covered a lot of the basics of Chapter 8enough to get you debugging in Eclipse effectively. However, when you begin working with

the Eclipse debugger (if you don't already), you will likely find unique ways of debugging using watch expressions, conditional

breakpoints, and more.

We looked at extremely basic monitoring techniques in Chapters 9 and 10. This is a whole world in its own and requires an in-depth look

into the Java Management Extensions (JMX) technology. Visit java.sun.com for details on this technology.

I briefly discussed profiling Java applications in Chapter 9. Profiling requires much more investigation if your application has a need for

performance tuning. For example, Sun's NetBeans IDE has a wonderful profiler and the Eclipse SDK has profiler plug-ins available for it.

As I mentioned in Chapter 9, a lot of open source Java profilers are also worth a look.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Getting Help

When working with any technology, you will invariably run into technical difficulties. This can be frustrating, so any assistance you can

get to help with troubleshooting the problem is welcome. Here are a couple of suggestions on where to get help for the technologies we

covered.

Online Discussion Forums

The Spring Framework discussions forums (forum.springframework.org) have come in handy for me personally when I was stuck on a

problem and needed help. In fact, the core Spring developers frequently answer questions in these forums. I have even had Rod

Johnson (founder of Spring) answer my questions personally!

The Hibernate discussion forums (forum.hibernate.org) have been equally helpful, although from time to time, I have found that you get

terse responses from the founders of Hibernate. (I wish this wasn't the case, but it is.) Nevertheless, there are plenty of other Hibernate

users willing to help.

Also, Eclipse had public newsgroups accessible via the eclipse.org website.

Javadoc and Source Code

Although both Spring and Hibernate have good reference manuals, there are times when you need information about these frameworks.

As I stressed at the end of the previous chapter, adding Javadoc is very important because the code is one of the artifacts that lasts and

is always current, considering that is what the users are typically working with. The Spring Framework and Hibernate seem to follow this

logic, hence you will find lots of documentation in their Javadocsmore than you might expect. If you cannot locate the information in the

reference documentation, there is a good chance you will find it in the Javadocs for these APIs.

One additional source of documentation, although not an optimal one, is to browse through the source of open source technologies

such as Spring and Hibernate. Most open source technologies either bundle the source with their distribution or provide a separate

download for it. This can also come in handy with tools such as Eclipse, which allows you to attach to a source code folder when you are

debugging through your code. Debugging isn't the only reason you might want to attach to their source code in Eclipse; at times, you

might want to browse the source code behind these APIs to understand how they work behind the scenes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://forum.springframework.org
http://forum.hibernate.org
http://eclipse.org

A Quick Note About Code "Quality" Tools

One other area that I personally have not worked extensively with, but am beginning to look into, can be best described as code quality

tools (or static code analysis tools). These tools help you verify the quality of your codefor example, code adherence to standards, dead

code, unit test coverage of code, and so on. Some tools in this area worth checking include the following:

Checkstyle (checkstyle.sourceforge.net)

Clover (www.cenqua.com)

Cobertura (cobertura.sourceforge.net)

PMD (pmd.sourceforge.net)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://checkstyle.sourceforge.net
http://www.cenqua.com
http://cobertura.sourceforge.net
http://pmd.sourceforge.net

Summary

In this chapter, we looked at areas to investigate further for the following topics:

Complete the Time Expression application

XP and AMDD-based software development

Java platform

Ant

JUnit

Hibernate

The Spring Framework

Eclipse SDK

Logging, debugging, monitoring, and profiling

Getting help

Well, this pretty much wraps up this book! Be sure to investigate the appendixes section, which contains refactored code examples,

cheat sheets, cool tools, and more!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Recommended Resources

The following websites are relevant to or provide additional information on the topics discussed in this chapter:

Agile Data http://www.agiledata.org/

Agile Modeling http://www.agilemodeling.com

Ant http://ant.apache.org/

Apache Tiles http://struts.apache.org/struts-tiles/

Checkstyle checkstyle.sourceforge.net

Clover www.cenqua.com

Continuous Integration http://www.martinfowler.com/articles/continuousIntegration.html

Cobertura cobertura.sourceforge.net

Eclipse SDK http://eclipse.org

Extreme Programming http://extremeprogramming.org

Hibernate Framework http://hibernate.org

Hibernate discussion forums http://forum.hibernate.org/

HSQLDB database engine http://hsqldb.org/

Hub for Spring Framework resources http://www.springhub.com/

Java Technology http://java.sun.com

JUnit http://junit.org

Maven http://maven.apache.org/

OpenSymphony Sitemes http://www.opensymphony.com/sitemesh/

PMD http://pmd.sourceforge.net/

Spring Framework http://springframework.org

Spring Discussion Forums http://forum.springframework.org/

NetBeans IDE http://netbeans.org

Visual Patterns http://visualpatterns.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agiledata.org/
http://www.agilemodeling.com
http://ant.apache.org/
http://struts.apache.org/struts-tiles/
http://checkstyle.sourceforge.net
http://www.cenqua.com
http://www.martinfowler.com/articles/continuousIntegration.html
http://cobertura.sourceforge.net
http://eclipse.org
http://extremeprogramming.org
http://hibernate.org
http://forum.hibernate.org/
http://hsqldb.org/
http://www.springhub.com/
http://java.sun.com
http://junit.org
http://maven.apache.org/
http://www.opensymphony.com/sitemesh/
http://pmd.sourceforge.net/
http://springframework.org
http://forum.springframework.org/
http://netbeans.org
http://visualpatterns.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

12. Parting Thoughts

I HOPE YOU ENJOYED THIS BOOK and found it useful. Given the intended size of the book, I couldn't cover everything I wanted to.

However, my intention was to show you enough to build a completely functional application along with a good knowledge of advanced

features.

1,400 Hours in 4 Months!

A lot of blood and sweat went into this book (mine and others who helped me). You might be interested in knowing that

this book was written over approximately 1,400 hours in less than 4 months! (No exaggeration. I averaged 14- to

15-hour days, nonstop for weeks.) That's more hours than some people work in 9 months of normal work weeks. It

was a crazy schedule but we did it to have the book out by the 2006 JavaOne conference (Moscone CenterSan

Francisco, California).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

My Near Future Plans

This book was both a happy and a sad event for me because this will most likely be my last significant publication about Java after

exactly a decade of writing about this wonderful technology (28 articles and 2 chapters in a Java book). Although I plan to continue

consulting around Java technologies for a long time to come, I'm shifting my writing and speaking focus toward modeling techniques

using agile methods. I also hope to collaborate with others on special projects, particularly with some innovative people I have the

distinct pleasure of knowing.

In the upcoming months, I will be researching visual ways of improving the use of software methodologies and various diagramming

methods. I'm convinced there is a better way to model than UML. I'm also convinced that there are visual ways to teach (us) developers

bare-bones software processes that provide some structure that makes managers and executives happy, yet allows us to do what we

enjoy mostcode! I hope to present this balanced approach in the near future.

Note

In the coming months, I will be building a global virtual community composed of people from various parts of the

worldthis process has already begun. Our objective will be to research better modeling and unique visual process

techniques (see Appendix I, "Visual Patterns Research," for more details).

If you are interested in joining this virtual community, contact me via visualpatterns.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

The Future, Agile Methods, Java Technology

I have recently embraced the Extreme Programming (XP) and Agile Modeling (AM) methods (as you probably sensed in this book). After

years of using big requirements up front (BRUF) and big design up front (BDUF), I'm thoroughly enjoying this new and natural-feeling

style of working, probably because they help me no longer feel guilty about not doing enough documentation or keeping it up-to-date

throughout the project life cycle!

As for Java, it is thriving and still a dominant technology! I definitely see it remaining that way for at least a few more years because Java

runs on everything from mobile phones to electronics to appliances to desktops to small and large servers (with a long list of supported

operating systems). Remember, Java is a platform and not merely a language!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Cheers!

In summary, I hope you found my personal opinions throughout the book bearable and the objective material valuable enough to adopt

some of the techniques I demonstrated. If you are interested in staying in touch, please visit my site, visualpatterns.com. Once again,

thank you from the bottom of my heart for reading this book. Best of luck!

Anil Hemrajani

2006

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com

IV: Appendices
 A Downloadable Code for This Book

 B Refactoring Done to Sample Application

 C Java Code Conventions

 D Securing Web Applications

 E Sample Development Process Cheat Sheet

 F Agile Modeling Values, Practices, and Principles Cheat Sheet

 G Extreme Programming (XP) Cheat Sheet

 H Cool Tools

 I Visual Patterns Research

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

A. Downloadable Code for This Book

THIS SECTION CONTAINS A PARTIAL LIST of files found in this book's downloadable code zip file, bookcode.zip, available at the

book's website. Many of these files (.java and .xml, for example) are referenced throughout this book.

Note

The bookcode.zip contains three project directories within it: timex/, timex2/, and springhibernate/; these are described

in detail in this appendix.

The remainder of this appendix provides a list of files found in the bookcode.zip file. At the top-level directory, you will find the following

file, which provides further instructions on the three web applications in bookcode.zip:

rapidjava/README.txt

Note

The complete sample code described throughout this book is available on the Sams website. For convenient access to

the book's page, register your book at www.samspublishing.com/register, enter this book's ISBN (without the

hyphens), and then click SUBMIT. When the book's title is displayed, click the title to go to a page where you can

download the code.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.samspublishing.com/register

Third-Party Libraries Shared Directory

The following third-party JAR files are used by the three web applications described in this appendix. These are picked up by the Ant

build.xml scripts for each of these three projects and bundled in their respective deployable WAR file.

Note

I typically have the lib/ directory underneath the specific project (for example, rapidjava/timex/lib/); however, to reduce

the size of the bookcode.zip file, I had the three projects share this one lib/ directory because each of these projects

required almost the same set of external JAR files.

rapidjava/lib/activation.jar

rapidjava/lib/antlr-2.7.6rc1.jar

rapidjava/lib/asm-attrs.jar

rapidjava/lib/asm.jar

rapidjava/lib/cglib-2.1.3.jar

rapidjava/lib/commons-beanutils-1.7.0.jar

rapidjava/lib/commons-collections-2.1.1.jar

rapidjava/lib/commons-lang-2.1.jar

rapidjava/lib/commons-logging-1.0.4.jar

rapidjava/lib/displaytag-1.1.jar

rapidjava/lib/displaytag-export-poi-1.1.jar

rapidjava/lib/dom4j-1.6.1.jar

rapidjava/lib/ehcache-1.1.jar

rapidjava/lib/hibernate3.jar

rapidjava/lib/hsqldb.jar

rapidjava/lib/itext-1.3.jar

rapidjava/lib/javax.servlet.jar

rapidjava/lib/jstl.jar

rapidjava/lib/jta.jar

rapidjava/lib/junit.jar

rapidjava/lib/log4j-1.2.11.jar

rapidjava/lib/mail.jar

rapidjava/lib/quartz-1.5.1.jar

rapidjava/lib/spring-hibernate3.jar

rapidjava/lib/spring-mock.jar

rapidjava/lib/spring.jar

rapidjava/lib/standard.jar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Sample Application Directory (rapidjava/timex/)

The following files are related to the sample application named Time Expression, introduced in Chapter 2, "The Sample Application: An

Online Timesheet System." These files can be found under the rapidjava/timex/ directory.

Ant Files

antextras.xml

build.xml

local.properties

timexhsqldb.xml

HSQLDB Database Files

data/timexdb.lck

data/timexdb.log

data/timexdb.properties

data/timexdb.script

Configuration/Java Source

src/conf/log4j.properties

src/conf/messages.properties

src/conf/springtest-applicationcontext.xml

src/conf/timex-servlet.xml

src/conf/timex.tld

src/conf/web.xml

src/java/com/visualpatterns/timex/controller/EnterHoursController.java

src/java/com/visualpatterns/timex/controller/EnterHoursValidator.java

src/java/com/visualpatterns/timex/controller/HttpRequestInterceptor.java

src/java/com/visualpatterns/timex/controller/MinutesPropertyEditor.java

src/java/com/visualpatterns/timex/controller/SignInController.java

src/java/com/visualpatterns/timex/controller/SignInValidator.java

src/java/com/visualpatterns/timex/controller/SignOutController.java

src/java/com/visualpatterns/timex/controller/TimesheetListController.java

src/java/com/visualpatterns/timex/job/ReminderEmail.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

src/java/com/visualpatterns/timex/model/AuditInterceptor.java

src/java/com/visualpatterns/timex/model/Department.hbm.xml

src/java/com/visualpatterns/timex/model/Department.java

src/java/com/visualpatterns/timex/model/DepartmentManager.java

src/java/com/visualpatterns/timex/model/Employee.hbm.xml

src/java/com/visualpatterns/timex/model/Employee.java

src/java/com/visualpatterns/timex/model/EmployeeManager.java

src/java/com/visualpatterns/timex/model/hibernate.cfg.xml

src/java/com/visualpatterns/timex/model/Timesheet.hbm.xml

src/java/com/visualpatterns/timex/model/Timesheet.java

src/java/com/visualpatterns/timex/model/TimesheetManager.java

src/java/com/visualpatterns/timex/test/AllTests.java

src/java/com/visualpatterns/timex/test/DemoNewJavaFeatures.java

src/java/com/visualpatterns/timex/test/HibernateTest.java

src/java/com/visualpatterns/timex/test/SimpleTest.java

src/java/com/visualpatterns/timex/test/SpringTest.java

src/java/com/visualpatterns/timex/test/SpringTestMessage.java

src/java/com/visualpatterns/timex/test/TimesheetListControllerTest.java

src/java/com/visualpatterns/timex/test/TimesheetManagerExtras.java

src/java/com/visualpatterns/timex/test/TimesheetManagerTest.java

src/java/com/visualpatterns/timex/util/ApplicationSecurityManager.java

src/java/com/visualpatterns/timex/util/DateUtil.java

src/java/com/visualpatterns/timex/util/HibernateUtil.java

src/java/com/visualpatterns/timex/util/PayPeriodCheckTag.java

src/java/com/visualpatterns/timex/util/TimexJmxBean.java

src/java/com/visualpatterns/timex/view/enterhours.jsp

src/java/com/visualpatterns/timex/view/signin.jsp

src/java/com/visualpatterns/timex/view/timesheetlist.jsp

src/web/index.jsp

src/web/rapidjava-ajax.html

src/web/rapidjava-ajax.jsp

src/web/includes/timex.css

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Refactored Sample Application Directory (rapidjava/timex2/)

The following files are related to the material discussed in Chapter 10, "Beyond the Basics." These files can be found under the

rapidjava/timex2/ directory.

This listing provided next lists only files impacted as a result of refactoring done to the sample application (see Appendix B, "Refactoring

Done to Sample Application," for details); the other files found under timex2/ are similar to the files described for timex/ in this section.

antextras.xml

build.xml

local.properties

timexhsqldb.xml

src/conf/timex2-servlet.xml

src/java/com/visualpatterns/timex/model/DepartmentManager.java

src/java/com/visualpatterns/timex/model/EmployeeManager.java

src/java/com/visualpatterns/timex/model/hibernate.cfg.xml

src/java/com/visualpatterns/timex/model/TimesheetManager.java

src/java/com/visualpatterns/timex/test/TimesheetManagerTest.java

src/java/com/visualpatterns/timex/view/dberror.jsp

src/java/com/visualpatterns/timex/view/enterhours.jsp

src/java/com/visualpatterns/timex/view/includemessages.jsp

src/java/com/visualpatterns/timex/view/signin.jsp

src/java/com/visualpatterns/timex/view/timesheetlist.jsp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Spring-Hibernate Integration Demo Directory (rapidjava/springhibernate/)

The following files are related to the Spring and Hibernate integration section in Chapter 10. These demonstrate two styles of using

Spring's support API for Hibernate (for example, to leverage Spring's declarative transaction management support).

conf/springhibernate-servlet.xml

conf/web.xml

build.xml

src/controller/TimesheetSaveController.java

src/model/Timesheet.hbm.xml

src/model/Timesheet.java

src/model/TimesheetManager.java

src/model/TimesheetManagerImpl1.java

src/model/TimesheetManagerImpl2.java

src/view/dberror.jsp

src/view/timesheetsave.jsp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

B. Refactoring Done to Sample Application

THE FOLLOWING CODE, CONFIGURATION, AND SCRIPT excerpts show a few simple examples of how the sample application in

this book was refactored as it was being built incrementally.

Note

The book's code zip file contains two project directories for our sample application: timex/ and timex2/. The latter

contains much of the refactored code discussed next.

Because you have both versions, you can compare the two code bases to see how refactoring works in the real world.

Remember, it isn't about being perfect the first timejust good enough. Get everything working first; then optimize your

code later. This is what refactoring is all aboutcontinuous design and redesign, by improving code as necessary,

versus trying to perfect everything up front.

For details on the concepts and types of refactoring, visit refactoring.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://refactoring.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

SignInController.java: JMX Monitoring

The following lines of code were added for JMX monitoring purposes:

import com.visualpatterns.timex.util. TimexJmxBean;

 private TimexJmxBean timexJmxBean;

...

 timexJmxBean.setSignInCount(timexJmxBean.getSignInCount() + 1);

...

 public TimexJmxBean getTimexJmxBean()

 {

 return timexJmxBean;

 }

 public void setTimexJmxBean(TimexJmxBean timexJmxBean)

 {

 this.timexJmxBean = timexJmxBean;

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

TimesheetListController.java: JMX Monitoring

The following lines of code were added for JMX monitoring purposes:

import com.visualpatterns.timex.util. TimexJmxBean;

...

private TimexJmxBean timexJmxBean;

...

 timexJmxBean.setTimesheetsFetched(timexJmxBean.getTimesheetsFetched()

 + timesheets.size());

...

public TimexJmxBean getTimexJmxBean()

{

 return timexJmxBean;

}

public void setTimexJmxBean(TimexJmxBean timexJmxBean)

{

 this.timexJmxBean = timexJmxBean;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Manager Classes: Spring-Hibernate Integration

In Chapter 10, "Beyond the Basics," we discussed the Spring and Hibernate integration. By leveraging and using Spring's declarative

transaction management support, we were able to reduce the lines of code in our Manager classes significantly. The refactored code can

be found under the rapidjava/timex2/ directory.

For example, the following is the original method in our TimesheetManager class (found in timex/) to save a Timesheet object:

public void saveTimesheet(Timesheet timesheet)

{

 Session session = HibernateUtil.getSessionFactory()

 .getCurrentSession();

 session.beginTransaction();

 try

 {

 session.saveOrUpdate(timesheet);

 session.getTransaction().commit();

 }

 catch (HibernateException e)

 {

 session.getTransaction().rollback();

 throw e;

 }

}

This code was reduced to just one line! The new saveTimesheet method can be found under timex2/ and looks like this:

public void saveTimesheet(Timesheet timesheet)

{

 getHibernateTemplate().merge(timesheet);

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

timesheetlist.jsp: Switch to Include File and Displaytag

To centralize the JSP code that displays error and status messages, we moved it to includemessage.jsp:

<%@ taglib prefix="display" uri="http://displaytag.sf.net/el" %>

...

<%@ include file="/WEB-INF/jsp/includemessages.jsp" %>

...

Furthermore, to gain sorting capabilities in our web user interface, we switched from JSTL's C:forEach to Displaytag tag library. This not

only demonstrates refactoring, but also the benefit of the Model-View-Controller (MVC) design patternthat is, our view code changed but

the model was not affected:

<display:table name="timesheets" id="timesheet" defaultsort="1"

 requestURI="timesheetlist.htm"

 cellpadding="5" cellspacing="0"

 export="false" class="tableborder">

<display:column sortable="true" title="Period Ending"

 href="enterhours.htm"

 sortProperty="periodEndingDate"

 paramId="tid" paramProperty="timesheetId"

 class="tdcenter">

 <fmt:formatDate value="${timesheet.periodEndingDate}"

 type="date" pattern="MM/dd/yyyy"/>

 </display:column>

 <display:column sortable="true" title="Hours"

 sortProperty="totalMinutes" class="tdright">

 <fmt:formatNumber value="${timesheet.totalMinutes / 60.0}"

 pattern="0.00"/>

 </display:column>

...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

enterhours.jsp: Swith to Include File and Timex Tag Library

Added timex taglib to check for current period. Also moved status and error messages to includemessage.jsp.

<%@ taglib prefix="timex" uri="/WEB-INF/timex.tld" %>

<timex:periodcheck checkDate="${command.periodEndingDate}">

<input name="save" type="submit" value="Save">

</timex:periodcheck>

...

<%@ include file="/WEB-INF/jsp/includemessages.jsp" %>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

*Test Classes and TimexTestCase

Most of our earlier *Test classes looked something like the following code snippet from our original TimesheetManagerTest class:

public class TimesheetManagerTest extends TestCase

{

 TimesheetManager timesheetManager = new TimesheetManager();

 public static void main(String args[])

Now, instead of extending the JUnit TestCase class directly, we extend the TimexTestCase class (in the timex2/ directory), as shown next:

public class TimesheetManagerTest extends TimexTestCase

{

 public static void main(String args[])

The benefit of this approach is that we can put all the fixture code in a parent class (such as TimexTestCase), so the test subclasses can

focus on the unit tests versus fixture code (visit junit.org for details on fixture code).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://junit.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

DateUtil.java: New Method

Added new method for use with timex tag library.

public static boolean isInCurrentPayPeriod(Date checkDate)

{

 Date weekStartDate = getDateWithZeroTime(getCurrentPeriodStartingDate());

 Date weekEndDate = getDateWithMaxTime(getCurrentPeriodEndingDate());

 return (!checkDate.before(weekStartDate) && !checkDate

 .after(weekEndDate));

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

timex.css: New Styles

Added some new styles.

thead { background-color: #D0D6EA;}

.tableborder { border: thin; }

.tdright { text-align: right; }

.tdcenter { text-align: center;}

.even { background-color: #F1F8FE}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

timexhsqldb.xml: Bad Data Defect Fix

Fixed passwords in SQL INSERTS because of a discovered defect in test data (not code). Chapter 3, "XP and AMDD-Based

Architecture and Design Modeling," has an acceptance test that indicates "The password must be between 8 and 10 characters." The

original passwords were fewer than 8 characters, thereby not allowing a user to log in.

INSERT INTO Employee (employeeId, name, employeeCode,

 password, email, managerEmployeeId)

 VALUES (2, 'Ajay Kumar', 'H', 'visualpatterns', 'akumar@acme.com', 3);

INSERT INTO Employee (employeeId, name, employeeCode,

 password, email, managerEmployeeId)

 VALUES (3, 'Teresa Walker', 'M', 'agilestuff', 'twalker@acme.com', 4);

INSERT INTO Employee (employeeId, name, employeeCode,

 password, email)

 VALUES (4, 'Tom Brady', 'E', 'superbowl', 'tbrady@acme.com');

It is important to note that defects are not always code related; they can also be related to bad data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

C. Java Code Conventions

THE FOLLOWING ARE SOME OF THE GUIDELINES I like and use from the Code Conventions for the Java Programming Language

prescribed by Sun on the java.sun.com website. (Note:There are many more conventions recommended by Sun, so be sure to visit this

website.)

All source files will have a beginning Javadoc comment.

The first line of code in the source file will be the package statement followed by any import statements.

Package names should begin with a lowercase top-level domain name (for example, com. or edu.).

Class and interface names should be nouns and should use a mixed case with each word being capitalized (for example,

EmployeeHours).

All class files should have the following in the order listed here:

Have a Javadoc for the class.

List variables as follows: static variables, instance variables (public, protected, no access specified, and then

private).

List methods as follows: constructors and then methods (methods should be grouped by functionality, not scope).

Method names should be verbs and should use a mixed case with each word being capitalized, except that the first letter is

lowercase (for example, getHoursWorked).

Variable names should be verbs and should use a mixed case with each word being capitalized, except that the first letter is

lowercase (for example, hoursWorked). Variables should start with alphabets. One-character variables (for example, i, j, or k)

should be avoided and used only for temporary variables (for example, in a for statement).

Try to make all class variables nonpublic and accessible only via methods.

Constants should be all uppercase, with words separated by an underscore (for example MAX_WORK_HOURS).

Try to use numeric values as constants (for example, int MAX_WORK_HOURS=24;).

Try to initialize local variables where they are declared.

Avoid lines longer than 80 characters.

Each line should contain only one statement.

If-else, for, while, do, and switch statements should always use braces.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://java.sun.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

D. Securing Web Applications

THE FOLLOWING ARE A FEW GUIDELINES on how to secure web applications. For further reading on this subject, visit the owasp.org

website.

Validate browser input (parameters, special characters, SQL injections) on the server side, not just the client side (that is,

JavaScript). If you are working directly with JDBC, consider using java.sql. PreparedStatement versus a java.sql. Statement.

Don't use a shell (Runtime.exec) in your web-related code; this is almost certainly an open invitation to hackers.

Do not store sensitive data anywhere (databases, files, and so on). If you absolutely must store this information, store it in

encrypted form.

Don't allow direct access to any system resourcefor example, files, databases, classes, or programs. Turn off directory

browsing on all web servers. Don't use real filenames and/or directories (for example, hide JSP files under WEB-INF).

Use HTTPS versus HTTP for sensitive data such as username, password, financial data, health information, and secure

government information.

Require strong user ids and passwords (for example, six- to eight-character minimum, special characters in password, and so

on).

Hidden HTML fields are not hidden; anyone can view the HTML code in the browser, so keep this mind.

Disable accounts, either temporarily or permanently, after three failed attempts.

Do not store clear-text passwords (for example, app id/password in config files).

Log all or only suspicious activity.

Use industry standard, well-tested security protocols over a custom, home-grown solution.

POST is slightly better than GET to hide sensitive data (for example, the browser's address bar, access logs). Suggestion:

Conduct security testing with Firefox Tamper Data extension.

Have source code reviews. Your colleagues might be able to see something you have missed.

Beware of cross-site scripting (XSS); a hacker can use this technique to hijack personal information about your users.

Last, but not least, be paranoid! There really are people out there trying to guess passwords, hack, and so on; always remain

vigilant about security! Think like a hacker; assume the hacker knows as much or more than you, and have regular security

audits. Remember, you cannot entirely avoid security threats; however, you can manage and control them. More importantly,

there are automated crawlers looking for security holes. When a hole is found, a human can move in for the kill.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://owasp.org

E. Sample Development Process Cheat Sheet

THIS FOLLOWING IS A SAMPLE (and simple) development process cheat sheet. For details, you can either refer to Chapter 2, "The

Sample Application: An Online Timesheet System," or Chapter 3, "XP and AMDD-Based Architecture and Design Modeling," in this book,

or review the extensive material provided on the extremeprogramming.org or agilemodeling.com websites.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://extremeprogramming.org
http://agilemodeling.com
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Project Initiation

Informal business need/problem discussions

Project kickoff

Define problem statement (for example, essential use cases or shall statements)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Exploration Phase

Explore business domain concepts (develop domain model).

Develop basic prototypes and storyboard (for user interface applications).

Define scope (what's included/deferred in next release).

Define user stories for next release.

Do informal whiteboarding of architecture and so on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Planning

Develop release plan for next release/version of system.

Define glossary of common business terms.

Develop iteration plan for next iteration.

Define system conventions (naming, code check-in/integration, and more).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Incrementally Build Software in Iterations

Develop software in increments using 2-week iterations; use iteration 0 (or cycle, 0) for environment setup and

proof-of-concept.

Have an iteration planning meeting before each iteration to pick the user stories that will be developed in the next iteration.

Get best-guess estimates from developers, based on chosen stories for iteration.

Users provide acceptance tests as detailed requirements; developers implement these as unit tests.

Let developers design and develop the system with user available for Q&A, as needed.

Deploy production-ready code every two weeks after it has passed the user acceptance tests.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

F. Agile Modeling Values, Practices, and Principles

Cheat Sheet

Source of information on this page: www.agilemodeling.com

Values

Communication, simplicity, feedback, courage and humility.

Practices Principles

CORE PRACTICES: CORE PRINCIPLES:

Active Stakeholder Participation Model with a Purpose

Model with Others Maximize Stakeholder Investment

Apply the Right Artifact(s) Travel Light

Iterate to Another Artifact Multiple Models

Prove It with Code Rapid Feedback

Use the Simplest Tools Assume Simplicity

Model in Small Increments Embrace Change

Single Source Information Incremental Change

Collective Ownership Quality Work

Create Several Models in Parallel Software Is Your Primary Goal

Create Simple Content Enabling the Next Effort Is Your Secondary Goal

Depict Models Simply

Display Models Publicly

SUPPLEMENTARY PRACTICES: SUPPLEMENTARY PRINCIPLES:

Apply Modeling Standards Content Is More Important Than Representation

Apply Patterns Gently Open and Honest Communication

Discard Temporary Models

Formalize Contract Models

Update Only When It Hurts

REALLY GOOD IDEAS:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.agilemodeling.com

Values

Refactoring

Test-First Design

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

G. Extreme Programming (XP) Cheat Sheet

Source of information on this page: extremeprogramming.org

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://extremeprogramming.org
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Overview

Customer lists the features that the software must provide.

Programmers break the features into standalone tasks and estimate the work needed to complete each task.

Customer chooses the most important tasks that can be completed by the next release.

Programmers choose tasks and work in pairs.

Programmers write unit tests.

Programmers add features to pass unit tests.

Programmers fix features and tests as necessary, until all tests pass.

Programmers integrate code.

Programmers produce a released version.

Customer runs acceptance tests.

Version goes into production.

Programmers update their estimates based on the amount of work they've done in release cycle.

Rules and Practices

Planning Coding

User stories are written. The customer is always available.

Release planning creates the schedule. Code must be written to agreed standards.

Make frequent small releases. Code the unit test first.

The Project Velocity is measured. All production code is pair programmed.

The project is divided into iterations. Only one pair integrates code at a time.

Iteration planning starts each iteration. Integrate often.

Move people around. Use collective code ownership.

A stand-up meeting starts each day. Leave optimization until last.

Fix XP when it breaks. No overtime.

Designing Testing

Simplicity. All code must have unit tests.

Choose a system metaphor. All code must pass all unit tests before it can be released.

Use CRC cards for design sessions. When a bug is found, tests are created.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Rules and Practices

Create spike solutions to reduce risk. Acceptance tests are run often and the score is published.

No functionality is added early. Refactor whenever and wherever

possible.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

H. Cool Tools

WE ALL HAVE OUR FAVORITE TOOLS and utilities we like to use to work rapidly.

Listed next are ones that either I have used personally or that were recommended by various friends and colleagues. These were all free

(at the time of this writing), unless otherwise noted here. Of course, all the products covered in this book (for example, Eclipse) qualify for

cool tools, as well.

Like all free software, use at your own risk!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Cross-Platform Tools

7-Zip File archiver with high compression ratio

http://www.7-zip.org/

Aqua Data Studio (Java) Slow, but good for data import/exporthttp://aquafold.com/

ArgoUML UML design toolhttp://argouml.tigris.org/

CruiseControl Framework for a continuous build processhttp://cruisecontrol.sourceforge.net

CVS Source configuration managementhttp://www.nongnu.org/cvs/

DbVisualizer Database toolhttp://www.minq.se

FreeMind Mind-mapping softwarehttp://freemind.sourceforge.net/

Gaim Multi-protocol instant messaging (IM) clienthttp://gaim.sourceforge.net/

Image Manipulation Program http://gimp.org/

JAR Class Finder Eclipse plug-in utility for finding JAR files containing a given

classhttp://www.alphaworks.ibm.com/tech/jarclassfinder

J text editor (Java) http://armedbear-j.sourceforge.net/

KDiff3 Compare/merge two or three text input files or directorieshttp://kdiff3.sourceforge.net/

Mozilla Firefox plug-ins Hundreds of useful plug-ins for Firefox browserhttps://addons.mozilla.org/extensions/

Netbeans Fully featured Integrated Development Environment (IDE)http://www.netbeans.org/

Nvu Web Authoring Systemhttp://nvu.com/

OpenOffice Complete office applications, comparable to Microsoft Officehttp://www.openoffice.org/

Poseidon (community edition) UML design toolhttp://gentleware.com

SQuirreL SQL Client Manage JDBC compliant databaseshttp://squirrel-sql.sourceforge.net/

Sun Java Studio Enterprise IDE with integrated UML toolhttp://developers.sun.com/prodtech/javatools/jsenterprise/

TkCVS (includes TkDiff) Graphical interface for CVS and Subversion configuration management

systemshttp://www.twobarleycorns.net/tkcvs.html

Vim GUI text editor mimics Unix 'Vi'http://www.vim.org/

vnc2swf Screen recording toolhttp://www.unixuser.org/%7Eeuske/vnc2swf/

XEmacs Text editor and application development systemhttp://www.xemacs.org/

Yahoo widgets http://widgets.yahoo.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.7-zip.org/
http://aquafold.com/
http://argouml.tigris.org/
http://cruisecontrol.sourceforge.net
http://www.nongnu.org/cvs/
http://www.minq.se
http://freemind.sourceforge.net/
http://gaim.sourceforge.net/
http://gimp.org/
http://www.alphaworks.ibm.com/tech/jarclassfinder
http://armedbear-j.sourceforge.net/
http://kdiff3.sourceforge.net/
https://addons.mozilla.org/extensions/
http://www.netbeans.org/
http://nvu.com/
http://www.openoffice.org/
http://gentleware.com
http://squirrel-sql.sourceforge.net/
http://developers.sun.com/prodtech/javatools/jsenterprise/
http://www.twobarleycorns.net/tkcvs.html
http://www.vim.org/
http://www.unixuser.org/%7Eeuske/vnc2swf/
http://www.xemacs.org/
http://widgets.yahoo.com/

Microsoft Windows-Based Tools

AppRocket keyboard launchpad (for Windows) http://www.candylabs.com/approcket/ (trial version, but too cool not to mention

here)

ReplaceEm Windows text search-and-replace program (Probably the easiest, fasted installing, and the most intuitive program

of its kind I have come across.)http://www.orbit.org/replace/

MWSnap Snapping (capturing) images from selected parts of the screenhttp://www.mirekw.com/winfreeware/mwsnap.html

Textpad Powerful, general purpose editor for plain-text fileshttp://www.textpad.com/

FileZilla FTP client and serverhttp://filezilla.sourceforge.net/

PrimoPDF Convert to PDF from any application via printinghttp://www.primopdf.com/

Cygwin Linux-like environment for Windowshttp://www.cygwin.com/

Sysinternals Advanced system utilities for Windowshttp://www.sysinternals.com/

WinMerge Visual text file differencing and merging toolhttp://winmerge.sourceforge.net/

Whiteboard Photo (limited version) Image capturing softwarehttp://www.polyvision.com/

ExamDiff Visual File Comparison Toolhttp://www.prestosoft.com/ps.asp?page=edp_examdiff

TortoiseCVS CVS client integrated with Windows Explorerhttp://www.tortoisecvs.org/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.candylabs.com/approcket/
http://www.orbit.org/replace/
http://www.mirekw.com/winfreeware/mwsnap.html
http://www.textpad.com/
http://filezilla.sourceforge.net/
http://www.primopdf.com/
http://www.cygwin.com/
http://www.sysinternals.com/
http://winmerge.sourceforge.net/
http://www.polyvision.com/
http://www.prestosoft.com/ps.asp?page=edp_examdiff
http://www.tortoisecvs.org/

Mac OS X-Based Tools

Vim (Vi IMproved) for Mac OSX http://macvim.org/OSX/

Adium Instant messaging application; can connect to AIM, MSN, Jabber, Yahoo, and morehttp://www.adiumx.com/

Grab It Build part of Mac OS X

Quicksilver (for Mac OS X) http://quicksilver.blacktree.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://macvim.org/OSX/
http://www.adiumx.com/
http://quicksilver.blacktree.com/

Linux-Based Tools (KDE)

It is difficult to recommend a few cool tools for a platform that comes loaded with so many cool utilities. Furthermore, some of the

cross-platform tools recommended in this section also run on Linux. Nevertheless, here are a few recommended to me by colleagues.

Some K Development Environment (KDE) utilities that you might want to check outKonsole, Klipper, KEdit, KPrinter, Kate, Kompare,

KFind, KSnapshot, KRuler, K3B, KAlarm, KTimer, KInfoCenter, KWiFiManager, and KSayIt.

Pollix Live CD (based on Knoppix, which boots directly from the CD; no install!)Pollix is loaded with programming tools such as Eclipse,

NetBeans, Python, and others; http://moe.tnc.edu.tw/%7Ekendrew/pollix/.

Other Linux utilities include locate, expect, and wish.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://moe.tnc.edu.tw/%7Ekendrew/pollix/
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

I. Visual Patterns Research

MANY ORGANIZATIONS, LARGE AND SMALL, need custom software applications built for their business because off-the-shelf

software often doesn't meet their needs. These custom software applications are built in-house, off-site, or using a combination of the

two. This appendix discusses some of the problems our industry currently faces with custom software development. The research and

development project I have recently launched on my website, visualpatterns.com, addresses some of these problems (described next).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com

The Problem

Because building software isn't the core business of many of these organizations, they end up facing issues and challenges associated

with building complex software.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

The Past: How We Have Been Kidding Ourselves

In the past, many projects have approached software development in a serial fashionthat is, completing each phase of a software

development life cycle (for example, requirements, architecture, design, coding, testing) in its entirety before moving on to the next phase.

Furthermore, many of these projects estimate the time frames to complete a project based on these big, up-front efforts, which is similar to

looking into a "crystal ball." To make matters worst, most organizations attempt to keep the big documentation (produced up front)

up-to-date throughout the life cycle but are almost never able to keep it current as the project progresses. This method of working results

in failed or challenged projects, as reflected in Figure I.1.

Figure I.1. Project resolution history

(source: standishgroup.com).

[View full size image]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://standishgroup.com

The Standish Group further claims that the larger a project gets, the higher it is at risk of failing, as reflected in the numbers shown in

Figure I.2.

Figure I.2. Success by project size

(source: standishgroup.com).

Furthermore, many applications build in features that are either never used, rarely used, or only sometimes used (as shown in Figure I.3);

this results in more expensive software and wasted efforts.

Figure I.3. Feature usage within deployed applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://standishgroup.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

The Future: Agile Methods

According to the Standish Group, the top 10 factors for a project's success are shown in Figure I.4.

Figure I.4. The CHAOS Ten project success factor

(source: standishgroup.com).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html
http://standishgroup.com

Note

Most of the stats provided in this document are taken from the Standish Group International, Inc. Although these are

taken from one source, they match what I have experienced over my 20 years in Information Technology (IT).

Many of the problems outlined earlier in this document can be solved using newer, truly iterative style methodologies.

In 2001, 17 methodologists came together to unify their methodologies under one umbrella. They jointly defined the term Agile

(agilemanifesto.org, agilealliance.com). The remarkable thing about this event was that these 17 methodologists agreed on a common

set of principles (see story at martinfowler.com/articles/agileStory.html).

Some of the underlying values of the various Agile methods are the following:

Be customer focused In short, satisfy the customer. Develop only what is requested, nothing more, nothing less.

Embrace change In today's fast-paced world, change is bound to happen. Users should be able to change the system (they

are paying for it). So it is better to accept this fact and embrace it.

Iterative development Develop working software in small chunks (for example, two-month major release with two-week

iterations resulting in production-ready code). Favor building software in increments with continuous enhancement (via

refactoring) versus big requirements and design up front (BRUF/BDUF).

Motivated people Build projects around a motivated staff; give them the environment and space they need to get the job done.

Communication This is the key to success, and accordingly, users, developers, testers, and other stakeholders must

communicate well. Also, favor face-to-face communications (versus emails, for example).

Measure of progress Use working software (code, database) as a measure of progress versus documentation and project

plans.

Sustainable development Project stakeholders (users, developers, testers, and so on) must be able to maintain a constant

pace of software development (see iterative development above).

Simplistic elegance Favor high-impact business features versus overengineered or cool technical solutions.

Continued efficiency Capture lessons learned, good design, best practices, templates, checklists, glossary, and the like.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://agilemanifesto.org
http://agilealliance.com
http://martinfowler.com/articles/agileStory.html
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

My Perspective

In my opinion, which is based on the Agile values previously mentioned combined with, 20 years of experience in IT, some current

issues with software development include big requirements, big design, and terminology. These are discussed next.

BRUF and BDUF

In the Agile community, big requirements up front and big design up front are often referred to by their acronyms, BRUF and BDUF,

respectively.

The idea of getting all the requirements done up front (waterfall method) and locked down is insane and an archaic style of developing

software. Some release level requirements should be done up front. The remaining (more detailed) requirements can be obtained at the

beginning of an iteration in the form of acceptance tests (which are incidentally coded into unit tests).

Similar to BRUF, trying to get all the architecture and design done up front is unreasonable because you will invariably discover better

ways of developing the system at hand after developers begin coding. Some architecture/design in Cycle 0 (Jim Highsmith) is a good

idea, but it should be kept to a minimum, requiring minutes to hours of discussion depending on the complexity of the system (but

certainly not many days or weeks). Furthermore, keeping BRUF and BDUF documents up-to-date throughout the software life cycle is a

task many organizations attempt but invariably fail to keep current.

Terminology

This is a personal pet peeve of mine because I find this to be an issue that many technical people are ashamed to admit is an issue.

When you have acronyms galore, redundant terms (store, persist), or ambiguous terms (pessimistic locking, immutability), it not only

causes problems among the technical staff, but also is an ineffective way of communicating with the users.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/11021536.html

Join the Community?

In the coming months, I will be building a global virtual community composed of people from various parts of the worldthis process has

already begun. Our objective will be to research better modeling and unique visual process techniques to address some of the problems

discussed in this appendix.

If you are interested in joining this virtual community, contact me via visualpatterns.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://visualpatterns.com

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

<id> element (Hibernate)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

acceptance tests

accessors

Acegi Security System for Spring

ACID

activation.jar

active stakeholder participation

Agile methods of software development

Agile Model Driven Development (AMDD) 2nd 3rd

Agile modeling

 overview

 practices

 principles

 values

AJaX (Asynchronous JavaScript and XML)

AMDD (Agile Model Driven Development) 2nd 3rd

Ant 2nd 3rd 4th

 build.xml file

 comprehensive example

 simple example

 in Eclipse 2nd 3rd

 elements, defined

 properties, defined

 running test suites

 targets

 in build.xml file

 defined

 tasks

 in build.xml file

 CVS

 Exec

 FTP

 Get

 JUnit

 Mail

 Sleep

AOP (Aspect-Oriented Programming)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AOP module (Spring)

Apache Maven

Apache Tomcat

 monitoring

 Servers plug-in (Eclipse)

 servlet containers, installing

application context XML file (Spring Web MVC), creating

application flow map 2nd

application security

 authentication

 authorization

 encryption

 web applications

ApplicationContext class (Spring Framework)

architecture [See also design.]

 artifacts 2nd

 end-to-end flow diagram

 free-form architecture diagram 2nd 3rd 4th

 for sample application (Time Expression)

 up-front design

archive files [See WAR files.]

artifacts 2nd

Aspect-Oriented Programming (AOP)

assert methods (JUnit)

associations (Hibernate)

Asynchronous JavaScript and XML (AJaX)

attaching source code 2nd

audit logs

authentication

 application security

 in sample application (Time Expression)

authorization

autoboxing (JSE 5.0)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1261

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

BackOnline

backward compatibility (JDK 1.4) in sample application (Time Expression)

bad data defect fix, refactored sample application (Time Expression)

batch test, SimpleTest example (JUnit) as

BDUF (big design up front)

BeanFactory class (Spring Framework)

beans in Spring Framework

Beck, Kent

bidirectional relationships

binding to custom command objects

bookcode.zip files

 refactored sample application (Time Expression) files

 sample application (Time Expression) files

 Spring-Hibernate integration

 third-party JAR files

bookmarks (Eclipse)

breakpoints, JDT debugging

brief use cases

browsing source code 2nd

BRUF (big requirements up front)

bugs

 prevention techniques

build directory

build.xml file (Ant)

 comprehensive example

 simple example

business objects, Spring Web MVC Framework and

business requirements for sample application (Time Expression)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

cardinality

cascading

cascading style sheet (CSS)

casual use cases

class design [See design.]

class diagrams

 application flow map and

CLASSPATH files (Hibernate)

Clean option (Eclipse)

clustering

CM (configuration management)

Code Conventions for the Java Programming Language

code quality tools

code refactoring [See refactoring.]

collaboration, wiki software

command objects

 custom command objects, binding to

 in Spring Web MVC Framework

comments, Javadoc and

compatibility, backward compatibility with JDK 1.4 Time Expression

compilation in Eclipse

concurrency control (Hibernate)

Concurrent Versions System [See CVS, ; client for Eclipse.]

configuration

 Spring Web MVC Framework 2nd

 transaction management (Spring Framework)

 interface-based approach

configuration files (Hibernate)

configuration management (CM)

connection pooling (Hibernate)

constructor-based dependency injection

context module (Spring)

continuous integration

controller class in Spring Web MVC Framework

 defining 2nd

 reviewing code 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1261
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1170
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1169

 unit testing

 view files without

controllers 2nd

conventions, Java code

converting delimiters in Eclipse

copy stack option, JDT debugging

copying Eclipse elements

core module (Spring)

CRC cards

Criteria interface (Hibernate)

cross-platform tools

CRUD columns, extending application flow map

CSS (cascading style sheet)

Cunningham, Ward 2nd

custom command objects, binding to

custom property editors 2nd

custom software development [See software development methodologies.]

custom test suites

customer expectations, prototypes and

CVS

 Ant tasks

 client for Eclipse

CVS Repository Exploring perspective (Eclipse)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

DAO (Data Access Objects) 2nd

DAO module (Spring)

Data plug-ins (Eclipse)

Data Transfer Objects (DTO)

data types

 in database for sample application (Time Expression)

 Hibernate

database locking (Hibernate)

Database Manager

database records

 deleting

 as objects in Hibernate

databases [See also Hibernate.]

 Hibernate support for

 HSQLDB

 bundling in WAR file

 creating database

 Database Manager

 persistent and in-memory modes

 SqlTool

 starting server

 importance of

 ORM (Object-Relational Mapping)

 cascading

 in-memory versus persistent objects

 mappings

 object identities

 relationships

 persistence, Spring DAO module

 sample application (Time Expression)

 data types

 DDL script

 denormalization

 developing Timesheet table with

 naming conventions

 passwords in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 unused columns in

DataStore interface

DateUtil.java file

Davidson, James Duncan

DDL script for sample application (Time Expression)

Debug perspective, JDT debugging

debugging

 Eclipse JDT

 guidelines for

 JDT

 breakpoints

 copy stack option

 Debug perspective and views

 Hotswap

 remote debugging

 stepping through code

 variables

 TimeSheetManagerTest

 web user interfaces with Firefox

 extensions

 JavaScript console

 JavaScript debugger

 Tamper Data

 Web Developer

declarative transaction management 2nd

defects, bad data defect fix in refactored sample application (Time Expression)

delcarative transaction management (Spring Framework and Hibernate)

deleting database records

delimiters, converting in Eclipse

demarcation, enterprise transaction management

denormalization of database for sample application (Time Expression)

DepartmentManager.java file

dependency injection pattern 2nd

deployable archive files [See WAR files.]

deployment, hot deploying WAR files

design [See also architecture.]

 acceptance tests

 application flow map 2nd

 artifacts 2nd

 class diagrams

 CRC cards

 MVC (model-view-controller) design pattern

 package diagrams

 refactoring

 sample application (Time Expression)

 directory structure 2nd 3rd 4th 5th

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1066

 end-to-end development steps

 filenames

 test first design

 UML diagrams

 up-front design

detached objects

developing JCL

development methodologies [See software development methodologies.]

development tools, list of

dialect classes (Hibernate)

directives, JSP taglib directives

directories for Eclipse plug-ins

directory structure for sample application (Time Expression) 2nd 3rd 4th 5th

discussion forums

DispatcherServlet class (Spring Web MVC)

 configuring

displaytag

dist directory

documentation

 browsing source code

 Javadoc

domain models

 CRC cards

 sample application (Time Expression) 2nd

downloading Spring Framework

DTO (Data Transfer Objects)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Eclipse 2nd 3rd

 Ant in

 bookmarks

 browsing source code

 Clean option

 compilation in

 converting delimiters

 copying elements in

 CVS client

 Data plug-ins

 debugging

 breakpoints

 copy stack option

 Debug perspective and views

 Hotswap

 remote debugging

 stepping through code

 variables

 editors

 external tools

 finding available plug-ins

 help system

 Hibernate plug-in

 hidden files

 installing

 JDT plug-in

 JUnit in

 local history in

 online discussion forums

 perspectives

 resetting

 platform

 plug-ins

 preferences

 project list

 projects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 rapid growth of

 refactoring

 in sample application (Time Expression)

 plug-ins for

 setup

 Servers plug-in

 shortcut keys

 Spring IDE plug-in

 startup parameters

 startup time

 uninstalling

 views

 web browsers

 wizards

 workbench

 workspaces

 WTP plug-in

Eclipse Foundation

 project list

Eclipse IDE [See Eclipse.]

editors (Eclipse)

EJBs (Enterprise JavaBeans)

 Hibernate and 2nd

elements (Ant), defined

Employee.* files

encryption, application security

end-to-end development steps for sample application (Time Expression)

end-to-end flow diagram

Enter Hours screen (sample application) 2nd 3rd

Enterprise JavaBeans (EJBs)

 Hibernate and 2nd

enterprise transaction management

enterprise transactions

Entity-Relationship (ER) diagram

enums (JSE 5.0)

environment setup, importance of

ER (Entity-Relationship) diagram

error reporting

examples [See sample application (Time Expression).]

exception handling

 example

 Hibernate

 Spring Web MVC Framework

Exec (Ant tasks)

exploration phase (software development methodologies) 2nd

Export feature (Eclipse)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

extensions (Firefox)

external tools (Eclipse)

Extreme Programming (XP) 2nd

 overview

 rules and practices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

filenames for sample application (Time Expression)

files

 hiding

 sample code for book

 refactored sample application (Time Expression) files

 sample application (Time Expression) files

 Spring-Hibernate integration

 third-party JAR files

Firefox

 debugging web user interfaces

 extensions

 JavaScript console

 JavaScript debugger

 Tamper Data

 Web Developer

fixture code

fixtures

for loop (JSE 5.0)

form screens

 defined

 Enter Hours screen example

formal use cases

formatters, logging

Fowler, Martin 2nd

free-form architecture diagram 2nd 3rd 4th

FTP (Ant tasks)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Gamma, Erich 2nd

generics (JSE 5.0)

Get (Ant tasks)

getHibernateTemplate

glossary for sample application (Time Expression)

google.com for Eclipse plug-ins

Gosling, James

GUI development tools

guidelines for debugging

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

handler mapping in Spring Web MVC Framework 2nd

help system (Eclipse)

Hibernate 2nd 3rd

 advantages of

 associations

 CLASSPATH files

 configuration files

 connection pooling

 Criteria interface

 data types

 database records

 deleting

 as objects

 databases supported

 developing Timesheet table (Time Expression sample application)

 dialect class

 EJB 3.0 and 2nd

 exception handling

 HibernateUtil.java helper class

 installing

 interceptors

 locking objects

 logging

 mapping files

 naming conventions

 sample program setup

 native SQL queries

 object states

 online discussion forums

 running test suites with Ant

 sample program setup

 Session object

 SessionFactory object

 Spring Framework and

 declarative transaction management 2nd

 unit testing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Spring-Hibernate integration

 files for

 refactored sample application (Time Expression)

 Transaction object

 transactions

 unique object identifier

Hibernate plug-in (Eclipse)

Hibernate Query Language (HQL)

HibernateDaoSupport

HibernateUtil.java helper class

hiding files 2nd

horizontal mapping

hot deploying WAR files

Hotswap, JDT debugging

HQL (Hibernate Query Language)

HSQLDB

 bundling in WAR file

 creating database

 Data plug-ins (Eclipse)

 Database Manager

 persistent and in-memory modes

 SqlTool

 starting server

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

IBM, SWT (Standard Widget Toolkit)

IDE (Integrated Development Environment), SDK versus

ideal days in user stories

in-memory mode (HSQLDB)

in-memory objects, persistent objects versus

injection [See dependency injection pattern.]

installing

 Eclipse

 Hibernate

 servlet containers

 Spring Framework

 WTP plug-in (Eclipse)

Integrated Development Environment (IDE), SDK versus

IntelliJ 5.0

interceptors

 Hibernate

 Spring Web MVC Framework

interface injection

interfaces, usage of

IoC (inversion of control) [See dependency injection pattern.]

iteration plans 2nd

iteration-level artifacts

iterative development 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Jakarta Commons Logging [See JCL.]

Jakarta Commons Net

Jakarta-ORO

JAR files (Spring Framework)

Java

 code conventions

 Microsoft versus

Java classes, Hibernate sample program

Java Connector Architecture (JCA)

Java Development Kit [See JDK.]

Java Development Tools [See JDT.]

Java GUI

Java IDEs

Java Message Service (JMS)

Java Networking Launching Protocol (JNLP)

Java Platform Enterprise Edition (JEE) 2nd

Java Platform Standard Edition [See JSE; ; JSE 5.0.]

Java profilers

Java Runtime Environment (JRE), Eclipse requirements

Java Scrapbook feature (Eclipse)

Java Transaction API (JTA)

Javadoc

 comments and

JavaScript console (Firefox)

JavaScript debugger (Firefox)

JavaServer Pages Standard Tag Library (JSTL)

JCA (Java Connector Architecture)

 JCL (Jakarta Commons Logging)

 developing with

 formatters

 message logging levels

JDK (Java Development Kit) 2nd 3rd 4th

JDK logging

JDT (Java Development Tools)

 debugging

 breakpoints

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1565

 copy stack option

 Debug perspective and views

 Hotswap

 remote debugging

 stepping through code

 variables

 plug-in (Eclipse)

JEE (Java Platform Enterprise Edition) 2nd

JetBrain's IntelliJ 5.0

JMS (Java Message Service)

JMX

 management

 monitoring 2nd

 support in Spring Framework

JNLP (Java Networking Launching Protocol)

jobs, scheduling in Spring Framework

Johnson, Rod

JRE (Java Runtime Environment), Eclipse requirements

JSE (Java Platform Standard Edition)

JSE 5.0 2nd

 autoboxing

 enums

 for loop

 generics

 static import

 varargs

JSP

 refactoring

 tag libraries

 displaytag

 writing custom

 taglib directives

JSTL (JavaServer Pages Standard Tag Library)

JTA (Java Transaction API)

JUnit 2nd

 assert methods

 custom test suites

 in Eclipse

 plug-in 2nd

 SimpleTest example

 as batch test

 running

 test first design

 test fixture code

 test runners

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

keyboard shortcuts for Eclipse

Kiczales, Gregor

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

lib directory

libraries [See tag libraries.]

Linux-based tools

load factors in user stories

local history in Eclipse

local.properties file

locking objects (Hibernate)

log4j

log4j.properties

logging 2nd

 audit logs

 disadvantages of

 error reporting

 formatters

 Hibernate

 JCL [See JCL (Jakarta Commons Logging).]

 JDK logging

 log4j

 message logging levels (JCL)

 Spring

 TimesheetListController

 tracing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Mac OS X-based tools

Mail (Ant tasks)

mail support (Spring Framework)

mail.jar

maintenance phase (software development methodologies)

Managed Beans (MBeans)

management

 declarative management

 declarative transaction management

 enterprise transaction management

 JMX

 transaction management

many-to-many relationships

mapping files (Hibernate)

 naming conventions

 sample program setup

mappings

Maven

MBeans (Managed Beans)

McNealy, Scott

message logging levels (JCL)

methologies [See software development methodologies.]

Microsoft, Java versus

model-view-controller (MVC) design pattern 2nd [See also Spring Web MVC Framework.]

 application flow map 2nd

ModelAndView object in Spring Web MVC Framework

models (MVC) 2nd

modules (Spring)

 AOP module

 context module

 core module

 DAO module

 ORM module

 web module

 web MVC module [See Spring Web MVC Framework.]

monitoring 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1942

 JMX

Mozilla Firefox [See Firefox.]

multiplicity [See cardinality.]

multithreading

mutators

MVC (model-view-controller) design pattern 2nd [See also Spring Web MVC Framework.]

 application flow map 2nd

myeclipseide.com for Eclipse plug-ins

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1942

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

naming conventions

 of database for sample application (Time Expression)

 Hibernate mapping files

NetBeans 5.0

newsgroups

nonform screens

 defined

 Timesheet List screen example

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

object identities

object states (Hibernate)

object-oriented (OO) programming

Object-Relational Mapping [See ORM.]

objects

 database records as (Hibernate)

 Eclipse platform

one-to-many relationships

one-to-one relationships

online discussion forums

online refactoring catalogs

OO (object-oriented) programming

Open Symphony

OpenOffice.org

optimistic locking

ORM (Object-Relational Mapping) 2nd

 cascading

 in-memory versus persistent objects

 mappings

 object identities

 relationships

ORM module (Spring)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

package diagrams

passwords in database for sample application (Time Expression)

PDM (physical database model) [See also database for sample application (Time Expression).]

persistence of databases (Spring DAO module)

persistent mode (HSQLDB)

persistent objects

 in-memory objects versus

perspectives (Eclipse)

 resetting

pessimistic locking

physical database model (PDM)

plain old Java objects (POJOs)

 Spring Framework and

planning phase (software development methodologies) 2nd

plug-ins (Eclipse) 2nd 3rd

 Data plug-ins

 finding available

 Hibernate plug-in

 JDT plug-in

 for sample application (Time Expression)

 Servers plug-in

 Spring IDE plug-in

 WTP plug-in

points in user stories

POJOs (plain old Java objects)

 Spring Framework and

portlets

preferences in Eclipse

preventing bugs

problem statement for sample application (Time Expression)

profiling

project initiation phase (software development methodologies)

project list (Eclipse Foundation)

project natures

project scope [See scope (of project).]

projects (Eclipse) [See also sample application (Time Expression).]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1665
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1770

properties (Ant), defined

PropertyEditor class (Spring Framework)

PropertyEditor class (Spring Web MVC)

prototypes, user interface prototypes

 customer expectations and

 sample application (Time Expression)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Rational Unified Process (RUP) 2nd

records [See database records.]

refactor mercilessly

refactored sample application (Time Expression)

 files for

refactoring 2nd 3rd

 Eclipse 2nd

 examples

 JSP

 online refactoring catalogs

 refactor mercilessly

 test first design and

relational databases, ORM (Object-Relational Mapping) versus

relationships

release plans 2nd

release-level artifacts

releases (software development methodologies) 2nd

remote debugging (JDT)

Remote Method Invocation (RMI)

requirements, business requirements for sample application (Time Expression)

ResourceBundle class (Spring Web MVC)

RMI (Remote Method Invocation)

running

 SimpleTest example (JUnit)

 test suites with Ant

runtime technologies, list of

RUP (Rational Unified Process) 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

sample application (Time Expression)

 architecture and design

 acceptance tests

 application flow map 2nd

 artifacts 2nd

 class diagrams

 CRC cards

 directory structure 2nd 3rd 4th 5th

 end-to-end development

 end-to-end flow diagram

 filenames

 free-form architecture 2nd 3rd 4th

 package diagrams

 authentication in

 binding to custom command objects

 business requirements

 database

 creating in HSQLDB

 data types

 DDL script

 denormalization

 naming conventions

 passwords in

 unused columns in

 DateUtil.java file

 Eclipse in

 plug-ins for

 setup

 Enter Hours screen 2nd 3rd

 files for

 JDK 1.4 backward compatibility

 logging

 refactoring

 files for

 Sign In screen

 software development methodologies 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 suggestions for completing

 Timesheet List screen 2nd

 Timesheet table, developing with Hibernate

sample code for book

 refactored sample application (Time Expression) files

 sample application (Time Expression) files

 Spring-Hibernate integration

 third-party JAR files

scheduling jobs (Spring Framework)

scope (of project)

scope definition

SDK (Software Development Kit), IDE versus

security

 application security

 authentication

 authorization

 encryption

 web applications

 authentication in sample application (Time Expression)

 hiding files

serial methods of software development

Servers plug-in (Eclipse)

servers, starting HSQLDB server

servlet containers, installing

Session object (Hibernate)

SessionFactory object (Hibernate)

setter-based dependency injection

shortcut keys for Eclipse

Sign In screen (sample application)

SimpleTest example

singleton classes, Spring Framework and

sizing in user stories

Sleep (Ant tasks)

small releases

snapshots, refactoring

Software Development Kit (SDK), IDE versus

software development methodologies

 Agile methods

 applying to sample application (Time Expression) 2nd

 architecture and design

 acceptance tests

 application flow map 2nd

 artifacts 2nd

 class diagrams

 CRC cards

 directory structure for 2nd 3rd 4th 5th

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 end-to-end development

 filenames for sample

 free-form architecture 2nd 3rd 4th

 package diagrams

 refactoring

 UML diagrams

 up-front design

 BRUF and BDUF in

 exploration phase 2nd

 iterative development 2nd

 maintenance phase

 planning phase 2nd

 project initiation phase

 scope

 serial methods

 terminology as problem in

 usage in book

 XP and AMDD overview

software development projects [See sample application (Time Expression).]

software technologies [See technologies.]

source code, browsing 2nd

Spring BeanDoc

spring bind tag library

Spring Framework 2nd 3rd 4th 5th

 ApplicationContext class

 BeanFactory class

 beans

 benefits of

 configuring transaction management

 interface-based approach

 dependency injection pattern

 downloading

 Hibernate and

 declarative transaction management 2nd

 unit testing

 installing

 JAR files

 JMX support

 loading external properties

 logging

 mail support

 modules

 AOP module

 context module

 core module

 DAO module

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ORM module

 web module

 web MVC module [See Spring Web MVC Framework.]

 online discussion forums

 PropertyEditor class

 scheduling jobs

 startup classes

 subprojects

 tag libraries 2nd

 Web Services

Spring IDE for Eclipse 2nd

Spring Portlet API

Spring Rich Client

Spring Web Flow 2nd

 Spring Web MVC Framework

 benefits of

 command objects

 configuration 2nd

 controller class

 defining 2nd

 reviewing code 2nd

 unit testing

 controllers

 custom command objects, binding to

 Enter Hours screen (sample application)

 exception handling

 handler mapping

 interceptors

 ModelAndView object

 PropertyEditor class

 ResourceBundle class

 servlet containers, installing

 tag library

 testing

 Timesheet List screen (sample application)

 validation in

 validators

 view files 2nd

Spring-Hibernate integration

 files for

 refactored sample application (Time Expression)

SQL queries (Hibernate)

SqlTool

src directory

Standard Widget Toolkit (SWT)

starting HSQLDB server

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

startup classes (Spring Framework)

startup parameters (Eclipse)

startup time, Eclipse versus IntelliJ versus NetBeans

static code analysis tools

static import (JSE 5.0)

stepping through code (JDT debugging)

storyboards 2nd

subprojects of Spring Framework

suites (JUnit)

Sun Microsystem's NetBeans 5.0

SWT (Standard Widget Toolkit)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

tag libraries

 JSP

 displaytag

 writing custom tag libraries

 Spring Framework 2nd

 Spring Web MVC Framework 2nd

Tamper Data (Firefox)

targets (Ant)

 in build.xml file

 defined

tasks (Ant)

 in build.xml file

 CVS

 defined

 Exec

 FTP

 Get

 JUnit tests as

 Mail

 Sleep

TDD (test-driven development) 2nd

Team Synchronization perspective (Eclipse)

technologies

 development tools, list of

 list of

 runtime technologies, list of

 swapping out

terminology in software development methodologies, as problem

test first design

test fixture code

test runners in JUnit

test suites

 with Ant

 custom test suites

test-driven development (TDD) 2nd

testGetByEmployeeId() method

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

testing [See also unit testing.]

 Spring Framework

 Spring Web MVC Framework 2nd

testSaveSingle() method

third-party JAR files, sample code for book

Time Expression [See sample application (Time Expression).]

timesheet example [See sample application (Time Expression).]

Timesheet List screen (sample application) 2nd

Timesheet table (sample application), developing with Hibernate

Timesheet.hbm.xml file

Timesheet.java file

TimesheetListController, logging

TimesheetManager.java class

TimesheetManagerTest.java file

 debugging

Tomcat

 monitoring

 Servers plug-in (Eclipse)

 servlet containers, installing

tools

 cross-platform tools

 Linux-based tools

 Mac OS X-based tools

 Windows-based tools

tracing

transaction isolation level, enterprise transaction management

transaction management

 configuring in Spring Framework

 interface-based approach

 Spring Framework and

Transaction object (Hibernate)

transaction propagation, enterprise transaction management

transactions (Hibernate)

transient objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle2068

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

UAT (user-acceptance testing)

UI flow diagrams [See storyboards.]

UI prototypes [See user interface prototypes.]

UML diagrams [See also class diagrams; ; package diagrams.]

unidirectional relationships

uninstalling Eclipse

union mapping

unique object identifier (Hibernate)

unit testing

 controller class in Spring Web MVC Framework

 SimpleTest example

 as batch test

 running

 Spring Framework and Hibernate

 test first design

 TimesheetManagerTest.java file

use case analysis

use cases, user stories versus

user interface prototypes

 customer expectations and

 sample application (Time Expression)

user stories

 sample application (Time Expression)

user-acceptance testing (UAT)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1115
file:///C:/DOCUME~1/ADMINI~1/LOKALA~1/Temp/Sams.Agile.Java.Development.with.Spring.Hibernate.and.Eclipse.May.2006.chm/0672328968/.html#iddle1250

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

validation in Spring Web MVC Framework

validators in Spring Web MVC Framework

varargs (JSE 5.0)

variables (JDT debugging)

vertical mapping

view files in Spring Web MVC Framework 2nd

view resolvers (Spring Web MVC Framework)

view technologies, Spring Web MVC Framework and

views (Eclipse)

views (MVC) 2nd

 JDT debugging

Visual Patterns website

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

WAR files

 bundling HSQLDB in

 hot deploying

web applications, securing

web browsers in Eclipse

Web Developer (Firefox)

web framework, Spring Framework and

web module (Spring)

web MVC module (Spring) [See Spring Web MVC Framework.]

Web Services (Spring Framework)

Web Tools Platform [See WTP plug-in (Eclipse).]

web user interfaces, debugging with Firefox

 extensions

 JavaScript console

 JavaScript debugger

 Tamper Data

 Web Developer

website maps [See storyboards.]

whiteboard architecture diagram for sample application (Time Expression)

wiki software

Windows-based tools

wizards (Eclipse) 2nd

workbench (Eclipse)

workspaces (Eclipse)

writing custom tag libraries

WTP plug-in (Eclipse)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

XP (Extreme Programming) 2nd

 overview

 rules and practices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

	Agile Java Development with Spring, Hibernate and Eclipse
	Table of Contents
	Copyright
	Forewords
	About the Author
	Acknowledgments
	Preface

	Part I: Overview
	Chapter 1. Introduction to Agile Java Development
	What's Covered in This Chapter
	Technologies Used in This Book
	Software Development Methodology Used in This Book
	Summary
	Recommended Resources

	Chapter 2. The Sample Application: An Online Timesheet System
	What's Covered in This Chapter
	Business Requirements
	Software Development Methodology
	Applying XP and AMDD to Our Sample Application
	A Note About Wiki Software
	Summary
	Recommended Resources

	Part II: Building the Sample Application
	Chapter 3. XP and AMDD-Based Architecture and Design Modeling
	What's Covered in This Chapter
	Design Approach and Artifact Choices
	Free-Form Architecture Diagram
	From User Stories to Design
	Exploring Classes Using CRC Cards
	Application Flow Map (Homegrown Artifact)
	UML Class Diagram
	UML Package Diagram
	Directory Structure
	Sample File Names
	End-to-End Development Steps
	Acceptance Tests
	Other Considerations
	Summary
	Recommended Resources

	Chapter 4. Environment Setup: JDK, Ant, and JUnit
	What's Covered in This Chapter
	Java Platform Standard Edition Development Kit (JDK)
	Directory Structure
	Ant
	JUnit
	SimpleTest: Making the Tools Work Together
	Test First Design and Refactoring
	Summary
	Recommended Resources

	Chapter 5. Using Hibernate for Persistent Objects
	What's Covered in This Chapter
	An Overview of Object-Relational Mapping (ORM)
	Design of Our Sample Database
	Where HSQLDB and Hibernate Fit into Our Architecture
	HSQLDB
	Working with Hibernate
	Other Hibernate Features
	Summary
	Recommended Resources

	Chapter 6. Overview of the Spring Framework
	What's Covered in This Chapter
	What Is Spring?
	Spring Packaging for Development
	Spring Packaging for Deployment
	Overview of the Spring Modules
	Where Spring Framework Fits into Our Architecture
	Benefits of Using Spring
	Fundamental Spring Concepts
	Spring Subprojects
	Summary
	Recommended Resources

	Chapter 7. The Spring Web MVC Framework
	What's Covered in This Chapter
	Benefits of the Spring Web MVC Framework
	Spring Web MVC Concepts
	Spring Setup for Time Expression
	Developing Time Expression User Interfaces with Spring
	Cascading Style Sheet (CSS)
	Timesheet List Screen: A No-Form Controller Example
	Enter Hours Screen: A Form Controller Example
	Views with No Controllers
	Spring HandlerInterceptors
	Our Sample Applicationin Action!
	New Tag Libraries in Spring Framework 2.0
	A Word About Spring Web Flow and Portlet API
	Summary
	Recommended Resources

	Chapter 8. The Eclipse Phenomenon!
	What's Covered in This Chapter
	The Eclipse Foundation
	The Eclipse Platform and Projects
	Eclipse SDK Concepts
	Installing Eclipse
	Setting Up Eclipse for Time Expression
	Java Development Tools (JDT) Features
	Installing the Eclipse Web Tools Platform (WTP) Plug-ins
	Using Eclipse for Time Expression
	More Eclipse? Yes, Plug-ins Galore!
	Eclipse Team Support
	Eclipse Help System
	Tips and Tricks
	Uninstalling Eclipse
	An Unfair Comparison to IntelliJ and NetBeans
	Summary
	Recommended Resources

	Part III: Advanced Features
	Chapter 9. Logging, Debugging, Monitoring, and Profiling
	What's Covered in This Chapter
	Logging Overview
	Jakarta Commons Logging (with Log4j and JDK Logging)
	Debugging Java Applications Using Eclipse
	Debugging Web User Interfaces Using Firefox
	Debugging TimesheetManagerTest End-to-End (Browser to Database)
	JMX Management and Monitoring
	Java Profilers
	Debugging Tips
	Summary
	Recommended Resources

	Chapter 10. Beyond the Basics
	What's Covered in This Chapter
	Recently Added Java Features
	Ant Tasks
	JUnit
	Hibernate
	The Spring Framework
	The Spring and Hibernate Harmony
	JSP Tag Libraries
	Refactoring
	Other Considerations
	Clustering
	Multithreading
	A Note About Java GUI (Thick Client) Applications
	Configuration Management (CM) Environments
	Asynchronous JavaScript and XML (AJaX)
	Javadoc and Comments
	Entire System in One WAR File!
	Summary
	Recommended Resources

	Chapter 11. What Next?
	What's Covered in This Chapter
	Complete the Time Expression Application
	XP and AMDD-Based Software Development
	Java Platform
	Ant
	JUnit
	Hibernate
	The Spring Framework
	Eclipse SDK
	Logging, Debugging, Monitoring, and Profiling
	Getting Help
	A Quick Note About Code "Quality" Tools
	Summary
	Recommended Resources

	Chapter 12. Parting Thoughts
	My Near Future Plans
	The Future, Agile Methods, Java Technology
	Cheers!

	Part IV: Appendices
	Appendix A. Downloadable Code for This Book
	Third-Party Libraries Shared Directory
	Sample Application Directory (rapidjava/timex/)
	Refactored Sample Application Directory (rapidjava/timex2/)
	Spring-Hibernate Integration Demo Directory (rapidjava/springhibernate/)

	Appendix B. Refactoring Done to Sample Application
	SignInController.java: JMX Monitoring
	TimesheetListController.java: JMX Monitoring
	Manager Classes: Spring-Hibernate Integration
	timesheetlist.jsp: Switch to Include File and Displaytag
	enterhours.jsp: Swith to Include File and Timex Tag Library
	*Test Classes and TimexTestCase
	DateUtil.java: New Method
	timex.css: New Styles
	timexhsqldb.xml: Bad Data Defect Fix

	Appendix C. Java Code Conventions
	Appendix D. Securing Web Applications
	Appendix E. Sample Development Process Cheat Sheet
	Project Initiation
	Exploration Phase
	Planning
	Incrementally Build Software in Iterations

	Appendix F. Agile Modeling Values, Practices, and Principles Cheat Sheet
	Appendix G. Extreme Programming (XP) Cheat Sheet
	Overview

	Appendix H. Cool Tools
	Cross-Platform Tools
	Microsoft Windows-Based Tools
	Mac OS X-Based Tools
	Linux-Based Tools (KDE)

	Appendix I. Visual Patterns Research
	The Problem
	The Past: How We Have Been Kidding Ourselves
	The Future: Agile Methods
	My Perspective
	Join the Community?

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

