
User-Centered Agile Methods

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

User-Centered Agile Methods

Hugh Beyer

www.morganclaypool.com

ISBN: 9781608453726 paperback
ISBN: 9781608453733 ebook

DOI 10.2200/S00286ED1V01Y201002HCI010

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON HUMAN-CENTERED INFORMATICS

Lecture #10
Series Editor: John M. Carroll, Penn State University

Series ISSN
Synthesis Lectures on Human-Centered Informatics
Print 1946-7680 Electronic 1946-7699

www.morganclaypool.com

Synthesis Lectures on
Human-Centered Informatics

Editor
John M. Carroll, Penn State University

Human-Centered Informatics (HCI) is the intersection of the cultural, the social, the cognitive, and the
aesthetic with computing and information technology. It encompasses a huge range of issues, theories,
technologies, designs, tools, environments and human experiences in knowledge work, recreation and
leisure activity, teaching and learning, and the potpourri of everyday life. The series will publish
state-of-the-art syntheses, case studies, and tutorials in key areas. It will share the focus of leading
international conferences in HCI.

User-Centered Agile Methods
Hugh Beyer
2010

Experience-Centered Design: Designers, Users, and Communities in Dialogue
Peter Wright and John McCarthy
2010

Experience Design: Technology for All the Right Reasons
Marc Hassenzahl
2010

Designing and Evaluating Usable Technology in Industrial Research: Three Case Studies
Clare-Marie Karat and John Karat
2010

Interacting with Information
Ann Blandford and Simon Attfield
2010

Designing for User Engagement: Aesthetic and Attractive User Interfaces
Alistair Sutcliffe
2009

Context-Aware Mobile Computing: Affordances of Space, Social Awareness, and Social
Influence
Geri Gay
2009

iv

Studies of Work and the Workplace in HCI: Concepts and Techniques
Graham Button and Wes Sharrock
2009

Semiotic Engineering Methods for Scientific Research in HCI
Clarisse Sieckenius de Souza and Carla Faria Leitão
2009

Common Ground in Electronically Mediated Conversation
Andrew Monk
2008

User-Centered Agile Methods

Hugh Beyer
InContext Design
www.InContextDesign.com

SYNTHESIS LECTURES ON HUMAN-CENTERED INFORMATICS #10

CM& cLaypoolMorgan publishers&

www.InContextDesign.com
www.InContextDesign.com

ABSTRACT
With the introduction and popularization of Agile methods of software development, existing re-
lationships and working agreements between user experience groups and developers are being dis-
rupted. Agile methods introduce new concepts: the Product Owner, the Customer (but not the user),
short iterations, User Stories. Where do UX professionals fit in this new world? Agile methods also
bring a new mindset—no big design, no specifications, minimal planning—which conflict with the
needs of UX design.

This lecture discusses the key elements of Agile for the UX community and describes strategies
UX people can use to contribute effectively in an Agile team, overcome key weaknesses in Agile
methods as typically implemented, and produce a more robust process and more successful designs.
We present a process combining the best practices of Contextual Design, a leading approach to
user-centered design, with those of Agile development.

KEYWORDS
agile, agile development, scrum, xp, extreme programming, usability, usability engi-
neering, HCI, UX, user experience, user-centered design, customer-centered design,
human-centered design, iterative design, design, design methods, methodology, user in-
terface design, user research, project management, user experience project management,
human factors, prototyping, contextual inquiry, contextual design, user data collection,
interactive design

To Karen Holtzblatt, a great collaborator

ix

Contents

1 Introduction . 1

2 Common Agile Methods .3

2.1 Scrum . 3

2.2 XP . 6

3 Agile Culture . 9

3.1 There is Only One Team . 9

3.2 The User Is on the Team . 10

3.3 Plans and Architectural Work are a Waste of Time .10

3.4 Face-to-Face Communication is Better Than Documentation12

3.5 Short Sprints are Good. Shorter Sprints are Better . 12

3.6 Continual Feedback Guides the Project . 14

3.7 How These Values Go Wrong in Practice . 14

4 Best Practices for Integrating UX with Agile . 17

4.1 Get User Feedback from Real Users in Context .17

4.2 A Phase 0 to Define System Scope and Structure . 19

4.3 UI Design Done One Iteration Ahead . 21

4.4 Validation Done One Iteration Behind . 22

4.5 Parallel UX Stream . 22

4.6 Programmer/Designer Holiday . 23

4.7 Architectural Spikes for Difficult Issues . 24

4.8 UX as a Full Team Member . 24

5 Structure of a User-Centered Agile Process . 27

5.1 Phase 0: Project Definition . 27

x CONTENTS

5.1.1 Contextual Inquiry and Affinity Diagrams . 28

5.1.2 The Affinity Diagram . 30

5.1.3 Work Modeling . 30

5.1.4 Personas .33

5.1.5 Visioning . 34

5.1.6 Storyboards .36

5.1.7 User Environment Design .38

5.1.8 Paper Prototyping . 39

5.2 The Release Planning Session . 41

5.2.1 Writing User Stories .41

5.2.2 Estimating Cost .42

5.2.3 Planning the Release . 43

5.3 Running Sprints .44

5.3.1 Sprint Planning . 45

5.3.2 Working with Development . 46

5.3.3 Sprint Interview Preparation . 46

5.3.4 The Sprint Interview . 47

5.3.5 The Interpretation Session . 47

6 Structuring Projects . 49

6.1 Jumping on a Moving Train . 49

6.2 System Extension . 50

6.3 Major New Release . 51

7 Conclusion . 55

Bibliography . 57

Author’s Biography . 61

1

C H A P T E R 1

Introduction
Agile methods have transformed how developers think about organizing the development of a
project. Rather than months (or years) of development, followed by months of field test leading
up to a release, agile methods organize development into short iterations with continuous testing
and a flexible release date. The agile approach promises to produce more useful and more reliable
software, more quickly, and with better control than traditional development. Incorporating strong,
user-centered techniques in agile development can only make the project stronger. But the origins
and perspectives of agile methods are different from those of user-centered design, and this leads to
confusion. It is the objective of this monograph to show how the two can be brought together into
a powerful project development approach.

Several different approaches to agile development are currently popular: XP, Scrum, Feature
Driven Development (FDD), and Crystal are a few. All these agile methods share core elements:
short, well-defined iterations that deliver real user value; tight team processes for efficient develop-
ment; minimal documentation of specifications; and continual feedback from stakeholders to validate
progress. Agile methods also introduce a new development culture—values and attitudes that agile
teams are expected to adopt. These include doing design up front is bad, internal documentation is
bad, while face-to-face communication and collaboration are good.

To operate successfully in this new environment, the people doing user research, user inter-
face design, and usability work need to understand the agile culture. Much of this culture can be
helpful and supportive of working with end-users and incorporating user interface design into the
development process. But there are elements of the culture, especially as it tends to be adopted by
new teams, that make designing the user experience more difficult.

Most teams are still new to agile development, so no one is sure exactly how to behave. No
one knows when an agile value should be treated like a rigid rule and when it should be taken as
a guideline to be balanced against other concerns. When adopting agile methods, some teams take
the process to extremes; others, more cautious, adopt only a few elements of agile development and
see few benefits as a result.

In this monograph, we discuss the relationship between user-centered design and agile devel-
opment, and we provide guidance through the competing claims and attitudes. We start with some
description of agile processes as they now exist. In these sections, we cover the theoretical definitions
of the approach provided by experts but also discuss the way we have seen processes and attitudes
adopted in the real world, both in new and more experienced teams. Agile processes have not been
adopted exactly the same way everywhere; we try to give readers a sense of how agile might look
in the teams they encounter. Readers new to agile development will find an orientation here to the

2 1. INTRODUCTION

agile approach and should get some insight into how agile can both hinder and invite more in-depth
involvement from the people designing the user experience.

We then provide a framework for understanding how agile development fits into the overall
structure of a project, from deciding what to build through delivery. We provide an overview of
Contextual Design (CD), a user-centered design process co-developed by the author which supports
this range of activities, and show how user-centered design integrates with agile development. We
end with some examples of different project structures.

A word on terminology: Throughout this monograph, we use “UX” (user experience) to refer
to those roles involved in understanding users and designing the right system to support them.
Activities of the UX team include user research and analysis, high-level design of the system as
experienced by the users, specification of system behavior, high-level interaction design and screen
layout, and testing proposed or completed designs with users (prototyping and usability test).

We refer to the user-visible design of the system itself as the user interface (UI).This is a general
term covering both behavior and look. We use “visual design” for the design of the appearance of
the product—detailed layout, color, and graphics. The skills required for visual design overlap those
needed for UX design but are not identical—some very good UX professionals do not have the
graphic design skills to create a good-looking UI, and some good visual designers know all about
graphic design and layout but do not interact with users directly.

We will be careful of our use of the terms “user,” “customer,” and “stakeholder.” UX profes-
sionals are used to making distinctions between these roles, but they are often blurred in the agile
community. We prefer to reserve user or end-user for the person who interacts directly with the
product or system to produce a desired result. Indirect users depend on the results of the system even
if they do not use it directly.

Customers are the people who derive value from the system: users’ management, the purchaser,
possibly the IT department that has to maintain the system,and anyone else who has a say in adopting
the system. (Watch out. The agile community sometimes uses “customer” to mean “user”—but this
is an important distinction to maintain.)

Stakeholders are people in the development organization who depend on the system being
correct. Management of the development team, the product owner, and the marketing team are all
potential stakeholders.

Finally, we are not making a clear distinction about the type of product being created, whether
it is an internal business system, a web site, a software product for sale, or a consumer product. Most
of the issues and most of the processes are the same regardless of what is being created, and both
agile development and user-centered design have been used for all types of product. Where it is
necessary to make a distinction, we call out the difference explicitly.

3

C H A P T E R 2

Common Agile Methods
Though agile development is a new movement in the industry, iterative development has a long
and successful history. Agile enthusiasts point to the development of the space shuttle avionics in
the 1970’s, developed iteratively because of the “high risk” involved1. The initial development of
WordPerfect in the 1980’s was a classic agile project, as people in the company described it to us:
Alan Ashton and Bruce Bastian developed the word processor for the city of Orem, Utah. They
could sit with their users to discover problems, code fixes and enhancements in the afternoon, and
give the secretaries a new version to try the next day. And Boehm described a “spiral model” of
development in 19882.

Agile methods are popular now because they solve problems both for developers and for man-
agement. Developers created the methods because they felt powerless and out of control. Schedules,
they felt,were dictated to them, requirements and project scope were changed throughout the project,
and often, when the project shipped, users rejected it. Breaking the project into short sprints, freezing
requirements during the sprint, and getting feedback throughout each sprint are ways of controlling
the chaos of software development experienced by engineers

At the same time, management likes agile development because it gives them insight and
control of a software project. Instead of waiting for months or years, only to discover that the final
product is still months or years away, management gets a readout every few weeks. Management
can always know exactly what is being worked on in a sprint and when that sprint will be done. Any
problems come to light quickly.

The two most common agile methods in practice, at least in the United States, are Scrum and
XP. We will briefly describe these two methods to provide background to the following discussion.

2.1 SCRUM

Scrum as defined to support product development dates back to 1986 but was described as a software
development process by Schwaber and Beedle 3 . Scrum retains its roots as a product development
framework, focusing more on project management and less on the specifics of coding procedures.

There is a lot of institutional support for Scrum—people can get trained and certified as
“ScrumMasters,” and it is easy to find Scrum coaches and Scrum training. As a project management
framework, it is easy to understand and adopt. All this has made the approach quite popular.

Key elements of Scrum:

4 2. COMMON AGILE METHODS

The product owner. The customer representative on a Scrum team is referred to as the product
owner. Often played by the product manager or a marketing person, the product owner is the one
person who defines what the project stakeholders need. It is up to the product owner to find out
what the stakeholders and the end-users actually need, reconcile requirements, and communicate
them to the team in a useful way. It is also up to the product owner to protect the team from churn
caused by stakeholders changing their minds. This is allowed, but new requirements can only be
thrown at the team at the beginning of a sprint.

Scrum explicitly defines the product owner as the single person who needs to be satisfied. If
the deliverable is not successful but matches what the product owner asked for, the failure is solely
that person’s fault. This is a way of protecting the team from conflicting requirements imposed by
different groups.

The team. All members of a Scrum team are equally committed and responsible for producing
results. When describing commitment to the team, Scrum practitioners tell a story about a pig and
a chicken who considered starting a restaurant. “We could serve ham and eggs,” said the chicken. “I
don’t think that would work,” said the pig. “I’d be committed, but you’d only be involved.”

In the same way, Scrum team members are expected to be fully committed to the team—their
success is tied to the team’s success. Only these team members get a say in team decisions. Others,
who are interested in the team’s results but who are not themselves on the line, are considered
“chickens”—they get to express an opinion but not make the decision.

The team is guided by a key individual, the ScrumMaster. This is the one who manages the
process, runs the daily stand-up meeting, and runs the planning meetings to determine the product
backlog and sprint backlog. The ScrumMaster may be a new role in the organization or may be
played by the project manager—but not if the project manager is playing the product owner role.
One person cannot play both roles.

The sprint. Development in Scrum is organized into sprints. Sprints are usually a month long,
though some teams use shorter sprints. There is a cultural value in the agile community in favor of
shorter sprints. This value is stronger in XP than in Scrum, but there is enough cross-fertilization
that it affects Scrum teams as well.

A sprint starts by choosing user stories to implement in that sprint, choosing only as many
stories as can be completed by the end of the sprint. Stories are chosen, tasks are defined to implement
those stories, and team works starts. Stories and tasks are usually tracked using sticky notes on a
wall so that they are visible to the entire team. They may be tracked online as well or only online,
especially if the team is distributed.

Scrum defines several project management tools to track progress during a sprint, for example,
(burn-down charts) which are maintained by the ScrumMaster and posted in prominent places. Each
day starts with a stand-up meeting of the whole team to share progress and plan activities of the
day. Participants stand, rather than sit, to encourage a short, focused meeting. A common format is

2.1. SCRUM 5

for each team member to report on what they have done, what they plan to do this day, and what is
getting in their way.

At the end of the sprint, there is a review of the work done in that sprint with the product owner
and stakeholders.This is a short walkthrough—no more than four hours. In theory, at this point, the
team’s direction is re-evaluated, stories are reprioritized, and new stories may be written to respond to
the feedback. In practice, many teams focus more on implementing the stories from the backlog than
on rethinking project direction—and management often reinforces this more traditional mind-set.

At the end of the sprint, the team also reflects on its own processes, identifies problems, and
discusses changes to make their process for the next sprint.

The backlog. Scrum projects start with product and sprint backlogs. Each backlog item is a unit of
work to be completed within a sprint. User stories are the primary backlog items. At the beginning
of the project, the team develops and prioritizes the product backlog; at the beginning of each sprint,
the team chooses the items to implement for the sprint backlog.

Scrum does not define how the product owner knows what user stories to put on the backlog.
The overall design or structure of the system is not represented explicitly, and agile practitioners
generally do not value such a representation. There is usually no attempt to tie user stories together
to show how a whole task or work process might be supported (though some teams do use large
stories called “epics,” which then need to be broken down into manageable chunks). Instead, the
product owner is expected to capture individual system requirements as stories; the design will emerge
from the code through iterative development. In practice, the backlog items are often derived from a
Product Requirements Document (PRD) written by the product owner using traditional methods.

User stories. Each element of the desired solution is described in a user story. The story is written
on an index card or sticky note. (Paper cards are used in theory; however, in practice, many teams
use spreadsheets or special-purpose tools.) The story is not intended to be a full description of the
feature—rather, it captures enough about the feature to remind everyone what the feature is. It is
assumed that when a coder starts work on the feature, their first step will be to talk to the product
owner and find out what to do, including what exact UI to implement, if the story requires a UI.

User stories must be small enough to be implemented within a single sprint, which means
the product owner has to consult with developers to ensure they are not too large. Large, complex
stories must be broken down into smaller stories, ideally, in such a way that each smaller story still
makes sense when it is implemented on its own. User stories usually capture a single feature, though
a single story may collect a few closely-related features.

One common format for writing stories is to write them in the form “As a [user role], I want
[a feature] so that I can [achieve some goal].”

6 2. COMMON AGILE METHODS

Example 2.1 Sample user stories.

As a network manager, I want a single view of the whole network so that I can identify
and manage network problems.

As a salesperson, I want to capture customer information quickly so I can keep a history
of my interactions with this customer.

2.2 XP
Much of the basis of XP came out of work at Chrysler Comprehensive Compensation. This was an
internal project where both users and developers were both part of the same company. Reflecting
this history, XP tends to assume that end-users really are local and really can be on the team. XP
also tends to assume that delivering frequent updates to customers is not a problem: that building
and shipping a release is quick and easy, and that rolling out an implementation to all customers is
easy. Extreme Programming Explained 4 is a good, readable introduction to XP.

The elements of XP most relevant to our discussion are the following:

The customer. XP assumes that a real, experienced, end-user can be a full team member. They refer
to this person as the “customer,” somewhat confusingly for UX practitioners. The XP customer is
empowered to decide what is or is not useful in the product. At the high level, they determine the
priority of features and set the order of implementation (working with developers to make sure the
order makes sense technically). At the low level, working with developers and UX designers, they
define the detailed system design, look, layout, and interaction to meet their needs.

In practice, XP teams recognize that real, dedicated end-users are hard to come by as team
members. Most teams also recognize that end-users are not designers and cannot necessarily make
good UI decisions. So, on most XP teams, the customer is a role played by one person or a team of
several internal people, usually including the product owner or project manager, business analysts if
any, and key stakeholders on the business side if an IT system is being developed5. UX professionals
are usually included on the customer team as well.

The result is that the customer role on an XP team is usually played by neither user, customer,
nor stakeholder, as we have defined them. Yet they are tasked with representing all three perspectives
to the team and reconciling them where they conflict.

The release planning game. It is typical of XP to call release planning a game: XP values highly
interactive and highly interpersonal interactions over formal documents and structured interactions.
In the release planning game, the XP customer arrives with user story cards describing everything that
they think is needed in the next release of the product. Developers then estimate the implementation
time required for each story.

The result of the release planning game is a rough estimate of when the project will be
completed, based on the total implementation time of the selected stories and team’s measured

2.2. XP 7

capacity. XP emphasizes tracking how much work a team can do in a sprint (the team’s velocity)
and using the measure to limit the work they commit to. Stories can be added or removed from the
release to change the delivery date.

Iterations. In XP, sprints are referred to as iterations. Each iteration starts with iteration planning
and ends with customer acceptance (both described below).There is a strong cultural prejudice in the
XP community towards shorter iterations. Two weeks is typical, and working in one-week iterations
gives a team bragging rights. XP provides few tools for tracking progress during an iteration—
iterations are too short to need much project management.

Every user story accepted for implementation during an iteration must be entirely completed
within that iteration, including passing all unit and customer acceptance tests. There is a strong
cultural value against counting any progress towards implementing a story if it is not completely
done and passing all tests. In practice though, many teams do not entirely live up to this value.
Exactly what is considered “done done” tends to be an ongoing debate.

Iteration planning. Each iteration starts with an iteration planning session. This is a face-to-face
meeting in which the team selects the stories to be implemented during an iteration. The XP
customer chooses the stories most important to provide value. In theory, every iteration provides real
customer value, so that as soon as the first iteration is complete, the team already has a system that
the customer could pick up and use. In fact, it takes more than one or two weeks to make a useful
product, so teams focus on producing a baselevel that builds and runs correctly.

The team uses their velocity to decide how many stories to select. If they can implement
40 points in an iteration, once they have selected stories adding up to 40 points, no more work can
be planned into that iteration. Once stories are selected, the developers break down the stories into
tasks that can be done by different people on the team.

Any rework has to be done during iterations. Rework includes bug fixes and functionality
changes, for example, if an implemented feature turns out to be unacceptable to users. There are
several ways to handle rework. Some teams treat it as overhead: they reserve something like 20% of
their story points, planning to spend that time on rework and bug fixes. Other teams (and this is
the author’s preference) plan rework using story cards. Every item of rework gets its own card and
its own time estimate. The XP customer is responsible for prioritizing rework against implementing
new stories.

Because rework and new user stories can be introduced at any point, in response to user
feedback, some new XP teams go overboard. They tell management that they cannot say what
they will build or when it will be completed because everything is iterative now6. A business needs
predictability, so this phase is usually not allowed to last long, but it does create difficulties in trying
to work with such a team while it lasts.

In practice, many teams have difficulty scheduling rework at all. Feeling pressure to get as
much functionality done as fast as possible, they do not feel they can reserve time for rework or
move existing stories out to do rework. The team is focused on getting stories off the backlog list.

8 2. COMMON AGILE METHODS

Revisiting “done” stories slows that down. When this happens, there is really only one shot at getting
a story right—once it is implemented, changing it is hard.

Acceptance testing. XP culture is strongly test-driven, and it values automated testing highly.Teams
are expected to do nightly builds and run their entire suite of unit tests nightly; test-driven design,
in which the tests are written first, is an approved practice.

These attitudes spill over to customer acceptance testing. Teams want customer acceptance
tests to be automatable and, ideally, defined along with the user stories.These automated acceptance
tests can show whether the implementation meets the technical requirements defined by the user
story.Actual acceptability—whether the system is useful to and usable by end-users—is not addressed
by XP except through the involvement of the XP customer. But XP teams generally recognize that it
is important to know whether the implementation meets the needs of actual users. Quality Assurance
groups test the whole product at the end of each iteration, often as team members. Usability testing
may also be performed at the end of an iteration or afterwards.

Development practices. XP defines a number of development practices intended to support rapid
development with little documentation. Pair programming, test-driven development, collective code
ownership, and the nightly build are a few of these. Though these are important, they have little
impact on how UX people fit into an agile team, and we will not discuss them here.

Because Scrum and XP address slightly different problems, they dovetail with each other
fairly easily. Scrum provides the overall project management; XP provides more detailed guidance
on running development. This is how many teams use them together.

However, XP practices are difficult and disruptive to the daily lives of developers. They may
be valuable, but they require discipline to implement. Scrum, on the other hand, structures project
management but makes fewer demands on developers. Therefore, when teams are new to agile
development, they often adopt the backlog and sprints from Scrum but do not really change their
development practices. UX professionals need to recognize how far along a development team has
progressed in agile adoption in order to understand the best way to integrate with that team.

9

C H A P T E R 3

Agile Culture
When agile methods are brought into an organization, they create confusion and uncertainty, as does
any organizational change. This is a natural part of the learning process of incorporating, adapting,
and institutionalizing a new way of working. To be successful, UX professionals need to learn the
language and attitudes of agile development.The new values and culture will make some established
ways of working more difficult, but properly understood, they also open up opportunities for better
integrating UX into the development process.

The following agile cultural values have the potential to interfere with the working relationship
between UX professionals and software developers. By understanding the value and its intent, UX
professionals can leverage the value to promote user-centered development within an agile team.

3.1 THERE IS ONLY ONE TEAM

The whole team is responsible for the whole team’s work. No one can deny responsibility. If one part
of the project has a problem, it is everybody’s problem. The team needs to work tightly together,
ideally, co-located in a single room. There should be no special skills or ownership; everyone on the
team should be able to work on any part of the product. (This value is stronger on XP teams than
on Scrum teams.)

But it is hard for a team to be as cohesive as agile methods envision. Often, a team must be
distributed for practical or business reasons. Many team members, especially the UX experts, cannot
be dedicated to a single team full-time, instead being spread across multiple projects. And there are
special skills which take time to develop, and which tend to be concentrated in just one or a few
team members—including, of course, the skill of UX design.

Since agile methods started as methods for developing code, teams are often uncertain how
non-coders fit into the agile team. Sometimes, UX expertise is simply ignored, under the assumption
that the team’s product owner can provide all the user interface knowledge required. Sometimes UX
professionals are explicitly assumed to be part of the customer team, supporting the product owner.
It has been known for teams to go to the other extreme, treating UX professionals as full team
members—but then, believing that all team members should be interchangeable, want them to learn
to code, and want coders to design UIs.

The UX leverage point. UX professionals can use this “one team” expectation to their advantage.
They should be recognized as full team members, albeit part-time if necessary—they should partic-
ipate as pigs (committed) not chickens (involved). As team members, UX people need to educate

10 3. AGILE CULTURE

the team on what UX is all about and what is needed to design a reasonable user interface. If there
is no time to complete a UI design task, shared ownership suggests this is a problem for the whole
team, not only that of the UX designer. Conversely, simple UIs may need to be designed by other
team members with the UX designer’s guidance, leaving the UX designer to focus on those central
or complex UIs where their expertise makes the most difference.

3.2 THE USER IS ON THE TEAM

The user or user representative is assumed to be a full member of the team. Scrum makes this the
responsibility of the product owner. Other teams define a customer team, which may include more
than one person. The customer team is responsible for representing the user, prioritizing work to
ensure the team delivers real value, and making decisions about what will or will not work for the
user—including helping to define low-level functionality and UI details.

Originally, agile methods simply assumed the real user could be on the team, and many agile
teams are still unclear as to what that means. They do not appreciate the distinction between an
end-user, a purchaser, and an internal stakeholder, and they do not understand why the distinction
matters. Some teams even claim that for their purposes, the distinction does not matter: if they have
met the requirements of the internal stakeholder or product owner, they have done their job, whether
or not the end-user is happy.

Agile methods tend to overlook the real issues getting in the way of collecting valid end-user
feedback. They tend to assume that users can say what they want if asked; that users can articulate
their tasks, motives, and goals; and that users can devote extensive time to guiding developers—none
of which are true. They tend to assume that if the team meets the requirements of stakeholders or
purchasers, the system will work for end-users—not recognizing their different points of view. And
they do not define how to handle development for a market when there is no dedicated user at all.
Agile methods do not define how people playing the customer role on the team can learn what the
real end-user needs and how they can accurately represent those needs to the developers.

The UX leverage point. The expertise of UX professionals is particularly valuable here. By now,
most product teams have learned that they need help understanding their users and their users’
needs. Adopting agile methods makes that understanding even more critical. The UX contribution
can be to provide the methods and expertise for building detailed user knowledge so that a team can
operate effectively even without a real end-user dedicated to the team.

3.3 PLANS AND ARCHITECTURAL WORK ARE A WASTE OF
TIME

From the agile perspective, the world changes. Requirements change. Management goals change.
Therefore, if you spend months working on a design, it is highly likely that most of that design will
never be implemented as envisioned. It is better to do something small and get it done quickly, get

3.3. PLANS AND ARCHITECTURAL WORK ARE A WASTE OF TIME 11

feedback, and build on it with no overall plan, rather than spend a lot of time on a plan that will
never be implemented.

Because agile methods assume that in a changing world up-front plans are a waste of time,
they tend to denigrate any sort of up-front planning or design activity. It is not apparent to them
that end-user work practice is quite stable—that how people do their jobs and the goals they must
accomplish change very little over time. It is not apparent that fundamental requirements are stable
in consequence. It has been the experience of developers that every time users are shown a system
that implements the requirements the developers were given, the users ask for something different.
This makes it look like the requirements have changed. It is not apparent that the users were unable
to articulate their real needs in the first place.

Agile methods do not address ideation, deciding what problems the product is to solve, or
designing an approach to solve them. Agile processes start with story cards, which define the basic
behavior of the product; however, they do not define how those story cards are generated. Agile
development methods do not define how to invent an integrated experience to support users’ work
with a cohesive system.

Most agile experts understand this while many developers new to agile do not. The result is
a mismatch between the problem and the method: teams attempt to get the requirements right by
sitting in a room with the product owner and writing story cards, without any explicit design of the
whole system.

Agile methods have no specific techniques to support any part of designing the user interface:
the organization, structure and layout of the user interface into windows, pages, or screens; the
particular design of user interaction elements such as buttons, pulldown menus, direct manipulation
and so forth; and the details of graphic design that defines the appearance of these elements.

So, “pure” agile methods have no way to develop a complete understanding of users and their
needs; no way to invent and structure a coherent solution; and no way to design a consistent user
experience, interaction paradigm, and appearance across the product.

While experts understand this,new and enthusiastic agile teams tend to assume all the methods
that apply to writing code will apply just as well to UI design. So they suggest solutions drawn from
agile development: Why not pair a coder with a UI designer to develop screens together? Why not
design an entire screen in the same one-week iteration as the code is written? Why not implement
the UI first and test it with end-users afterwards?

The UX leverage point. This is another problem solved by UX techniques. There is a growing
recognition in the agile community7;8 that much of the ideation work should happen before the
development work gets started. Sometimes called a Phase 0, sometimes treated as a requirements
definition phase that precedes development, this is when UX designers should contribute by under-
standing users, representing user work practice and tasks, and designing the appropriate information
architecture, function and high-level structure to meet users’ needs.The goal at this point is to design
and validate the core of the proposed system so that user stories can be written with confidence that
these stories define a successful product.

12 3. AGILE CULTURE

It is also possible for the UX team to run a parallel stream to the iterative development process.
This frees research and design tasks from the strict timebox of individual sprints, allowing the UX
team to maintain design coherence while still participating in the work of the sprints.

3.4 FACE-TO-FACE COMMUNICATION IS BETTER THAN
DOCUMENTATION

In a changing world, thorough documentation takes too long to write, is obsolete as soon as written,
and does not communicate well anyway. It is difficult and cumbersome to write in human language
a complete description of how a function is to behave. Once written, it provides no value to the
customer. It still has to be translated into code. And there is no way to show that the description is
correct or useful.

The agile value says it is better to have the people who know what is needed (the user) talk
directly to the people building the product (the developer) during development. That way, all the
nuances of the function can be discussed and agreed upon. It is better to define the function once,
in code, and have the user immediately verify that the implemented behavior is what they intended.

But, as discussed above, the user usually cannot be on the team and cannot devote the time to
detailed discussions of every system function, so daily face-to-face interaction is often impossible.
Furthermore, even if it were possible, users cannot reliably articulate their needs or provide feedback
on unfamiliar design ideas.

The UX leverage point. The UX team member has the skills to understand users’ needs in depth
and to translate those needs into specific system behavior.This suggests a close working relationship
between the UX designer and the developers on the team. It should be the norm to have daily
discussions with one developer or another on how to implement the UI for a story. In addition, UX
professionals may also need to let go of some of their own documentation, relying more on sketches
and discussions and less on fully-rendered UI designs.

3.5 SHORT SPRINTS ARE GOOD. SHORTER SPRINTS ARE
BETTER

The work of an agile team is structured sprints. Each sprint ends with building a complete version
of the product. In theory, this baselevel could actually be delivered to users, tested by the users, and
their feedback used to reprioritize the work of the next sprint.

Agile methods assume useful work can be started and completed within a single sprint, and
agile teams tend to believe that shorter sprints are better than longer ones. At the same time, agile
methods dictate that each sprint should deliver real customer value.

Taken too literally, this is, of course, impossible. For most interesting projects, a single two-
or four-week sprint cannot deliver useful value. It will take many such sprints before a product has
accumulated enough features to be of practical use.

3.5. SHORT SPRINTS ARE GOOD. SHORTER SPRINTS ARE BETTER 13

So most teams compromise. Perhaps, the initial sprints can, at least, be installed and run at
customer sites even if they are not useful. Early sprints may deliver a reasonable user interface with
severe limitations of function or some useful function with a bare-bones user interface.The function
may work in the simplest case, but not yet deal with all the real situations that will be required of
the final product.

Where needed function takes longer than a sprint to implement, it is broken into multiple
stories. Each story by itself must work technically, but it might not be useful to real people. UX work
may need to be broken up in the same way and may need to be separated from the implementation
work for the same function so that the UX work can be done an iteration ahead.

Though we have discussed the compromises teams make to deal with problems of real projects,
it is useful to keep the underlying reason for the short sprints in mind: It should be possible, at the end
of any sprint, to decide the project is over and that the work done to date will ship. A project should
work towards achieving shippable code in as few sprints as possible, to give themselves flexibility in
the rest of the project. And even from the first sprint, all function that is present should work. The
code should be production quality and bug-free—no putting off bug fixing to the end of the project.

The name for this is technical debt : work that has been put off but that must be done eventually
before the product can ship. Another sort of technical debt is architectural work, such as code
refactoring (restructuring the function and interface of several modules to simplify their interaction).
The code may work correctly now, but if it is getting more and more complex, it will become
impossible to continue to extend it. Sooner or later, the technical debt must be repaid by taking time
to do the refactoring work.

The UX leverage point. UX professionals should insist the team apply these same standards to the
UI. At the end of a sprint, the UI should be UI-bug free. All user interfaces should be operational,
acceptably usable, conformant with standards, and representing the company’s brand. Failure to
maintain the UI at this level in each iteration is as unacceptable as failing to maintain the code at
this level because it equally prevents the product from being shippable.

With this perspective, the entire team has a stake in ensuring that the UX work is done as
part of the sprint. If there is not enough time to do user interviews and prototypes in the same sprint
as the implementation, it is acceptable to break the UX work into a separate story. This is just an
extension of techniques agile teams already use to break down larger stories into manageable chunks.

Putting off usability testing or losing control of design coherence across the UI because the
different parts are being iterated independently is just another form of debt—call it design debt. Just
like technical debt, design debt will need to be paid eventually, or the quality of the product will
suffer. To limit design debt, one of the ongoing UX activities must be to maintain an architectural
view of the entire product and make sure that it stays consistent, coherent, and usable. This is the
UX equivalent of code refactoring.

14 3. AGILE CULTURE

3.6 CONTINUAL FEEDBACK GUIDES THE PROJECT
One reason for short sprints is to start providing real value as soon as possible. The other is to get
feedback on each sprint as it is developed. This feedback ensures that the project stays on track—
that each sprint is getting closer to a useful product. Short sprints reduce the lag between the time
a decision is taken and when that decision is tested and proven to be correct. Ideally, a two-week
sprint means all decisions will be tested within two weeks at most. The team can never get more
than two weeks off track.

Within a sprint, developers expect to work with the user (or representative) to decide exactly
how to implement a story—how the feature is to behave, what the UI should look like, and what
special cases must be accounted for. At the end of each sprint, the sprint, itself, is tested with
stakeholders to ensure it meets their needs.

Unfortunately, it is rare that developers can meet with the end user throughout the sprint.
Additionally, the feedback session at the end of a sprint is usually a “show and tell” or demo, a quick
walkthrough of the product with comments and reactions collected and recorded. Such a review
can do two things: it provides a sense of closure and celebration for the development team; and it
can reveal basic miscommunications and glaring errors in the team’s work. But it cannot ensure that
the system actually works for its users. Stakeholders may sign off, but there is no guarantee that the
project will be successful.

The UX leverage point. It is the UX team member who has the skills to get real user feedback
into the iterative process. Real validation of the work requires that the team test the product with
users in their own work context, working through examples of their own work tasks9. Developers,
in general, do not have the skills or aptitude for this kind of work. UX people do, and they can do it
on behalf of the team.

Within the sprint (or the sprint before implementation), UX designers define the precise user
interface for a new feature either on behalf of the product owner or as part of the agile customer
team. This low-level design can and should be tested with users before being implemented. Some
developers feel this testing is unnecessary because with short sprints, a design can be coded and put
in front of users very quickly. But we have already seen that actually revising a completed feature
is hard for many teams; and for all teams, we should maintain the value of a minimal lag between
design and validation. If UX designers can design, test, and iterate a screen design directly with users
faster than it can be developed and iterated in code, this is just another way of reducing the lag.

3.7 HOW THESE VALUES GO WRONG IN PRACTICE
The values driving agile development result in an effective approach to software development.Unfor-
tunately,product development is more than just coding.Real-world organizations impose constraints
that agile methods do not address. And new teams, lacking experience in agile development, are
prone to compromise the very aspects of agile methods that matter most. (Chung and Drummond 10

offer some stories to illustrate how this happens.)

3.7. HOW THESE VALUES GO WRONG IN PRACTICE 15

We often see development teams new to agile that have no real user presence on the team, and,
indeed, that have no real user feedback of any sort. In a typical scenario, the product manager does his
or her best to represent the user needs to the team, but the resources available to them are limited.
They may contribute to writing user stories, but it is likely they wrote a Product Requirements
Document (PRD) first because that’s what they are used to.That PRD is produced using traditional
methods—not including field research—and often represents the perspective of managers or buyers,
rather than the detailed needs of end-users.

In the product planning meeting, the team writes user stories by reading through the PRD
and pulling stories out of it. These stories may be prioritized with input from the product manager,
but development teams have been prioritizing their own development for a very long time, and it
is easy to fall back into those ways. The UX or Usability group, being busy, is often not involved at
this stage.

Once the product planning meeting completes, that defines the product. Agile development
may envision replanning at the end of each sprint, but everyone knows that management will hold
the team responsible for implementing the user stories derived from the PRD.

The team then works in sprints, usually of a month each, pulling user stories off the backlog
and implementing them. There is no real attempt to implement the unfamiliar and difficult coding
disciplines that ensure quality (test-first design, pair programming, automated testing, and so on).
The stand-up meeting that should start the day drags on too long, so it is abandoned. Bugs are
tracked on a separate bug list, but fixing them is treated as a side activity, and they accumulate over
time.

The UX team is usually spread far too thin; each UX designer is assigned to several product
teams. They rush from team to team, trying to sketch reasonable designs for the team’s user stories
in the time they have. There’s certainly no time for customer visits, prototyping, or information
architecture.

At the end of each sprint, the team builds a baselevel and shows a demo to the product
manager and other stakeholders. There is no attempt to check whether the baselevel delivers useful
value to users, and there is no commitment to reworking stories anyway. There is no real attempt to
reevaluate the user story backlog; the team just chooses the next set of stories to work on and starts
on it.

Though many teams have implemented agile methods successfully, we see situations like the
above scenario far too often. UX designers trying to fit in to such a team are adding additional
complications to a process that is already broken. It is no surprise if the result is painful. We can do
better.

17

C H A P T E R 4

Best Practices for Integrating
UX with Agile

Fundamentally, agile development comes down to this: develop in short iterations and test progress at
each iteration with real user feedback.However, getting that real user feedback is not possible without
the skills and techniques developed by the UX community. Integrating UX with agile development
is not only possible, it is critical to the success of agile methods.

Already, we are seeing best practices emerge for such a combined process. These practices are
being implemented in agile companies across the industry and provide a baseline for a workable
development process. Many of these practices are identified in Martin, Biddle and Noble’s survey11

of agile teams across multiple companies. They reveal elements that must be included in a successful
integrated approach. These best practices enable a team to address the potential weaknesses of agile
development directly by:

• Providing space for understanding the user and envisioning a coherent solution;

• Collecting real, end-user feedback during sprints;

• Supporting real iteration—reworking the design in response to user feedback.

4.1 GET USER FEEDBACK FROM REAL USERS IN CONTEXT
For reasons we discuss below, the experience of the UX community shows there is no substitute for
talking to the actual end-users of a proposed product or system directly, in their own workplace.
Originally, agile methods tended to finesse this need by specifying a customer or product owner role
and leaving it undefined how the role was to function. This bias came from the history of some early
agile projects. They were internal systems for internal users, and it was in fact not too difficult to
walk over to a user, sit down beside them, and talk about how the system should be changed.

But, on most projects, it is no longer so easy. It is important to for the organization to recognize
that there are real problems getting in the way of good user feedback and to recognize the limitations
of the mechanisms that projects often use. UX people need to know how to talk to the organization
about the need to augment existing methods with user research. The following points are familiar
to UX professionals, but we have found they can be new to even quite senior agile developers.
Goguen12, Greenbaum and Kyng13, and Wixon and Ramey14 discuss these and other issues in
collecting good user feedback in more depth.

18 4. BEST PRACTICES FOR INTEGRATING UX WITH AGILE

Users are not good at articulating what they do. This is the problem of tacit knowledge: users
have internalized the details of how they work. When asked questions about what they do, what
problems they have, and what they need, the details of their own work are hard for them to recall.
So the requirements they give are inaccurate and incomplete.

Users want to be helpful. Agile methods attempt to overcome the problem of tacit knowledge by
delivering early and often. When users attempt to use the system to do their own work, they discover
and report on problems.

But users tend to assume that to be helpful, they should respond to the system they were
given. They may report on some minor inconvenience in that system; they are much less likely to
explain that what they really need is another system entirely, or that the bulk of their work is spent
on another task, or that what they are really doing is collecting and preparing all their data in a
spreadsheet and then using the designed system just for data entry.

Users are not available as team members. Real users have real jobs. It is not reasonable to expect
them to attend a daily meeting or to be interrupted every minute for questions about the details of a
UI. Often, a business organization will insulate users from persistent developers by appointing user
representatives to act as an interface. But the more they interface with developers, the less they do
the real job. Some organizations establish business analysts, but generally, business analysts focus on
defining business rules, processes, and data elements. They do not usually have interaction design
skills. When making a product for a market, users are not even in the same company. And, of course,
whether internal or external, users are often not located anywhere near the development team.

Surrogate users aren’t. Product development organizations typically handle this problem either by
putting surrogate users on the team or using marketing methods to find out more about them.There
is real value in both methods, but by themselves, they are incomplete.

Surrogate users are never a good stand-in for real end-users. The managers of end-users
describe how they wish the work was done, or how they think it ought to be done, not how it
actually is done in their organizations. A new system may intentionally change and simplify the
work practice, but if the team does not understand the real issues and real workarounds—which are
often invisible to management—they cannot account for them in the new design.

Hiring users away from their organizations to be on the team full time has been tried but is
also of limited value. Intentionally or not, they tend to take on the perspectives and values of the
development team. “We found out our users representatives were being too nice to us,” was one
team’s comment that tried this15.

Product owners as defined by Scrum also do not make good user surrogates. They may be
responsible for representing all the stakeholders of a system, including end-users, the customer who
makes the purchase decision, and the internal stakeholders. But they are not any of these people and
need mechanisms for understanding them and their needs just as much as any other project team
member.

4.2. A PHASE 0 TO DEFINE SYSTEM SCOPE AND STRUCTURE 19

Marketing methods do not collect design data. Product development organizations attempt to use
marketing methods such as surveys and focus groups to define products. But these methods provide
high-level information about attitudes and desires. They do not reveal how users do work, define
what system they need, or what such a system should do. Neither do they provide low-level detail
about the requirements of system function and behavior such as how a task is structured, interactions
within a work group, detailed steps users perform, how they collaborate in accomplishing a task, or
the context and constraints on how the work is done. Marketing methods are good at collecting
sales points and market requirements; they do not collect design data.

So, any effective user-centered agile process must include real user research: finding out who
the end-users are and how they work; analyzing the tasks they do and the strategies they use to
achieve those tasks; getting quick feedback on design ideas and on system baselevels to determine
whether the project is on track; and testing designs against success criteria. The process must also
support discovering the requirements of the users’ management and purchasers and of internal
business stakeholders.

Online data collection is incomplete. In this age of web-enabled apps, it is easy to instrument the
apps themselves and use the data collected to guide development. Different versions of a design can
be posted and usage data compared; click-throughs and pause times can be measured. Quick surveys
can be popped up to collect data in the moment.

But although this kind of data may usefully augment field research, it is limited in the same way
as more traditional market research methods. A survey can gather data on questions the designers
thought to ask and that the user is aware enough of to respond to—but much of work practice is
tacit. An instrumented app can report on what the users did but not why, or what they were trying
to accomplish, or what the larger work task was. Any data collected this way will start from the
assumption that it is the right app. The team will not discover that there are other opportunities
they do not know about.

4.2 A PHASE 0 TO DEFINE SYSTEM SCOPE AND
STRUCTURE

Much of the agile community, especially from the coding side, is driven by a strong skepticism of any
sort of up-front planning. “Big Design Up Front” (BDUF), they call it. Also: YAGNI (“You Ain’t
Gonna Need It”), meaning that most of the big plans you have in your head will never turn out to be
useful or relevant once you get to the point of implementing them. Business direction will change,
user requirements will change, or the evolution of the design itself will make your idea irrelevant.

But successful projects that have significant user interfaces and have a significant impact on
how users work have found that some level of up-front design is necessary16. (The Martin, Biddle,
and Noble paper11 refers to this as BPUF—Big Picture Up Front.)

Practically, projects discover the need for BPUF as soon as they sit down to write story
cards. Suppose a team is developing an online newsreader. Think about the questions that must be

20 4. BEST PRACTICES FOR INTEGRATING UX WITH AGILE

answered before a story card can be written: What are the possible news sources? How should they
be represented to the user? How should they be organized? Can the system organize them or must
the user be able to, or both? What should the first screen contain? Should it show all new news
items, or should it prioritize, and if so how? The questions are almost endless.

And each story card the team writes captures an element of a design that they never thought
through, never represented in any concrete way, and which impacts the user’s world in ways that are
completely implicit and undesigned.

In theory, any problems will be resolved through iterations with the user. That is what agile
is all about: keep iterating and fixing until the product works.

In fact, these problems cannot be entirely solved through iterations. As mentioned above,
even in the best possible scenario, users will only renovate on what they are given. Unless a system is
completely hopeless, they will not throw it out and tell the developers to start again with something
different. So only about 20% of the overall system can be changed. The base assumptions and core
structure are simply not amenable to stepwise change within practical product timelines. To counter a
common argument heard in agile circles: it is true that evolution produced humans from single-cell
proto-organisms using nothing but stepwise refinement. But evolution had millions of years to do
it. Product teams do not.

And in the real world schedule limitations will be determinative. Any engineering project will
only tolerate reworking the same design element so many times. Any product or business manager
will only tolerate so much deviation from the initial project scope. Most agile projects struggle to get
any rework time into their schedule at all. Once a user story is implemented, there is no time to go
back and rework it in the project plan.The rework could be written into a new story and reprioritized
at the next sprint planning meeting, but then some other committed story would go unimplemented.
Unless the problem is a real show-stopper, that reprioritization is unlikely to happen.

Furthermore, iterating an existing solution will inevitably focus on fixing problems with that
solution. What if the real opportunity is not in fixing problems with the current solution but rec-
ognizing that a different approach is needed? For example, the spreadsheet was invented when Dan
Bricklin recognized that computer technology could be applied to the problem of manipulating ac-
counting (paper) spreadsheets. Calculator technology existed at the time, but no amount of stepwise
iteration would be likely to lead from number manipulation to an electronic spreadsheet.

If a team gets past writing user stories without any big-picture design, the next point where
they will feel the lack of it is during sprints. In theory, a developer can go to the user and ask detailed
questions about how a story should be implemented. In practice, this theoretical user is a product
owner or a UX designer.

The programmer might ask: “What is more important to show: breaking news, or a story the
user is actively following? What should be pushed to the top of the page?” If our user surrogate were
honest, the answer would likely be, “Darned if I know.” Unless they have worked with users in the
field, how can they possibly answer such a detailed question correctly? The actual answer they give is
usually something like, “Do it this way, that should work.” This is a guess, dressed up in professional

4.3. UI DESIGN DONE ONE ITERATION AHEAD 21

language. Without a solid understanding of the users to back it up, one of agile development’s core
drivers—immediate feedback—is broken.

Instead, problems with the design for a user story are not discovered until the story is imple-
mented, built into an iteration, and shown to users. Even if the problem is discovered, and often it is
not, a great deal of work has already gone into a wrong implementation. This rework is unnecessary.

Finally, but equally important in this day of sophisticated user interfaces, designing a co-
herent and consistent user experience across the whole product means that the entire UI must be
designed together. If one part is changed, the impact of the changes on the whole system must be
considered. This is very different from implementation design, so developers tend not to appreciate
how important it is. When designing code, the goal is to separate each module from every other, so
that each module of code can be modified and reimplemented without affecting any other module.
Sometimes, this separation breaks down, and the relationship between modules has to be re-thought
and several modules re-implemented together. This code refactoring is considered a major task, more
difficult than ordinary coding.

For all these reasons, an effective agile process will make room for some high-level, up-front
user research and high-level design, tested and iterated with users. This is often called a phase 0,
or sprint 0. (We prefer the former name, as it better communicates the scope of the work.) User
research grounds the agile customer team in the real user work practice, culture, goals, strategies,
and issues. The high-level design sketches a systemic response to the user work practice, within the
defined scope for the project, meeting the business needs of the organization. It also defines the
groundwork for the user experience, defining consistent layout and interaction paradigms across the
system.

This design, itself, even though high-level and provisional in its details, needs to be tested and
iterated with customers. This realizes another core agile value discussed above: reduce the time lag
between when a decision is made and when it is validated4. With a validated high-level design in
hand, user stories can be written in confidence that they make sense and will deliver a system the
user wants. We will discuss the structure of a phase 0 in Chapter 5, below.

4.3 UI DESIGN DONE ONE ITERATION AHEAD

It is hard for developers to appreciate how much work goes into a good UI design. Accordingly,
processes designed by and for developers—as most agile processes are—often do not allow enough
time for UX work to be done. Many agile proponents do not understand why it is hard to design
the UI for a component, test it, do the graphic rendering, and communicate it to the developer, all
within a few days, while still leaving enough time for the component to be coded, integrated, and
tested within a two-week sprint.

Successful agile teams usually give the UX designers room to breathe by having them start
on a component design one or more sprints ahead of coding. This way the UX team gets the whole
of a sprint to do their UI design and user testing. The testing can and should be iterative with

22 4. BEST PRACTICES FOR INTEGRATING UX WITH AGILE

users—which means that the resulting design is refined with users, even if there is little time to
rework stories in the development process.

Then in the following sprint, the UX team member can communicate the detailed UI to
the developer, who gets the whole of that sprint to do the implementation. Meanwhile, the UX
designers, in parallel, start on the UI design of stories for the iteration after that17.

4.4 VALIDATION DONE ONE ITERATION BEHIND

Agile methods tend to be structured as though the last thing that has to happen is integration testing.
Code a story, unit test it, integrate it into the code base, show it to the product owner, and it is done.
Quality Assurance (QA) or User AcceptanceTesting (UAT) is given a role in the process, but that role
is limited by the short sprints. Generally, QA can do a reasonable job within the iterations by working
closely and incrementally with developers as stories are checked in; generally, user acceptance testing
cannot. A short presentation at the end of the sprint (as described, for example by Schwaber18) is
not a realistic acceptance test.

Doing real user testing necessitates, first, bringing real users in or going out to them. It requires
walking through the product with the user’s own real-world examples. It requires that all the stories
for the iteration be completed so that the interaction between new features can be investigated, It
demands time to understand the implications of the users’ feedback, which is always more complex
than pass/fail. And it requires time to rework the parts of the system that have problems.

Realistically, it is very hard to do all this within an already-short sprint without making the
iteration too short to do useful work. Even if such testing were possible, it does not require the whole
team, and they need something to do while it is going on.

So, successful agile projects have found it effective to do their real testing with users one
sprint behind the implementation. The sprint completes and the internal QA and UAT processes
confirm that, to the best of the project team’s ability to determine, they have correctly implemented
the stories of that sprint. Then, during the following sprint, UX people can take that baselevel to
customers, walk through real examples with it, and bring back problems and fixes to be addressed
in the following sprint.

This practice also supports large-scale agile projects. In such efforts, the product of an agile
team is, itself, just a component in a larger system. Time is needed to integrate the components
from all the development teams and do integration testing. All this work can also be easily done one
iteration behind19.

4.5 PARALLEL UX STREAM

As mentioned above, ensuring the user experience of a product is coherent and consistent is a full-
time job. Unlike refactoring, which is a special case, the UX team always needs to be concerned with
overall consistency. Furthermore, there are usually larger constraints on the UI of the product. An
individual agile team may be only implementing one part of a larger system. It may be implementing

4.6. PROGRAMMER/DESIGNER HOLIDAY 23

one product in a suite or one component of a product. The UI for their team part, must be coherent
within itself and also within the larger product or suite. It must also conform with whatever standards
or guidelines the company mandates.

So, the UX team needs to maintain a larger focus than just the product delivered by the team.
They are always looking at both the design of individual screens and at the larger system they are a
part of. Maintaining this wider focus is very hard in the time-compressed world of agile development.
There is barely enough time to get the tasks of the sprint done; looking at larger architectural issues
is usually the first thing to be traded off.

To make sure the wider focus is not lost, many organizations find it useful to create a separate
UX stream. This stream is not part of any agile development stream—it runs in parallel to them, but
synchronizes with them at key points.This stream addresses inconsistencies across the whole system
and feeds fixes to those inconsistencies back into the agile development streams as new stories. This
UX stream can do additional user research, design, and iteration without being tied to the particular
schedule and deliverables of any one development stream. This stream maintains the whole-system
coherence of the design.

4.6 PROGRAMMER/DESIGNER HOLIDAY

One of the best practices Martin, Biddle, and Noble11 identified in the agile world is the idea
of a programmer’s holiday. Agile experts recognize that there is never enough time during focused,
intense sprints to do all the architectural work and refactoring necessary to keep the code base clean
and maintainable. Technical debt tends to build up over time despite the team’s best efforts. They
also recognize that the pace demanded by short sprints becomes exhausting over time. When you
eliminate the natural down time created by project planning and field test, there is just no letup in
the pace of project work.

So a programmer’s holiday dedicates an iteration to code cleanup. Each developer can choose
what to work on, whether refactoring a badly-implemented module, addressing bugs, or doing
large-scale restructuring that affects whole subsystems.

Such a holiday can be useful to the UX team as well, especially if there is no parallel UX stream.
This can be an opportunity to step back and look at the overall coherence of the UI: whether the basic
structure holds up and whether it is appropriate to the user tasks. If there is a need for large-scale
restructuring of the UI, affecting several screens all at the same time, this is an opportunity to do
that kind of cleanup.

A team working in two-week sprints might schedule such a holiday once a quarter or so,
often enough to stay on top of things but not so often that it interrupts development significantly.
A team working in one-month sprints might devote half a sprint to the holiday, committing to half
the normal amount of work for that sprint.

24 4. BEST PRACTICES FOR INTEGRATING UX WITH AGILE

4.7 ARCHITECTURAL SPIKES FOR DIFFICULT ISSUES

Architectural spikes allow the development team to address a difficult or risky development problem.
They might devote a whole sprint to studying a technology problem, prototyping alternative so-
lutions, running load tests, and making sure that they have understood the risks and settled on an
optimal solution. Such spikes happen early in development, to get the most important project risks
out of the way early.

But not all project risks come from implementation concerns. Challenging UI problems
may well pose as much risk to the success of a product. Consider Microsoft’s ribbon interface, for
example, new with Office 7. Would the ribbon be intuitive for new users? Would it be frustrating for
experienced users? Could it present all the many functions of an Office product coherently? Would
users get lost navigating multiple ribbons?

Use architectural spikes to address UI problems, too. When a team identifies a UI problem
as a key risk, it is appropriate to devote an iteration to addressing that risk. Remember, the risk is
the whole team’s problem. The team can use the time to brainstorm alternatives, mock them up,
and test them with users to verify that they actually work as implemented. This can be critical: not
only did the ribbon have to work intuitively in theory, it had to be possible to actually put the Office
products’ real functions into the ribbon in a sensible way.

4.8 UX AS A FULL TEAM MEMBER

The discussion to this point has tended to treat the UX designers as separate from the development
team. But one key agile principle is that everyone is on the team, and the team is co-located. Being
on the team means that every team member is responsible for the success of the whole product.
Everyone, including the UX designers, is a pig, not a chicken. It means that they participate in the
work of implementing user stories and they are present for the daily meetings. It also means that if
they are stuck or behind, it is the team’s problem, not just theirs.

This principle creates a tight, cohesive team when all the team members are developers. When
some team members—like UX designers—have very different skill sets, it is less obvious how to make
it work well. It is easy to move around developers to address coding problems (and agile principles
such as “no code ownership” are intended to make it still easier). Having a UX person help with a
coding problem or having a developer help with a UI problem is more problematic.

It is also common for UX designers to be shared across multiple projects. Ideally there would
be one or more UX people assigned to a project, and when the user interface is a success factor for a
product, this should absolutely be the case. In the real world, the UX professional is usually juggling
the demands of several projects at once.

The UX part of the organization also has its own focus that transcends individual projects:
for example, developing common UI standards across the company, ensuring that the company’s
branding and image comes through in product UIs, ensuring that the company’s UX professionals
stay up to speed on the latest developments, and cross-fertilizing across UX professionals. A UX

4.8. UX AS A FULL TEAM MEMBER 25

professional always has a dual allegiance: to the team they are on and to the UX community they
are a part of.

Successful UX team members act like full team members. They are co-located with the team
they support if at all possible. If they support multiple teams, they have a desk in each team’s
development room, and they do the work there as much as possible. They are present for the daily
meetings unless they have a conflict; when multiple teams have their meetings at the same time, they
choose which meeting to attend based on what is happening in each project. They do work based
on story cards, generally, as UX tasks associated with a particular story.

As full team members, UX people can draw on the team’s resources. Just as a programmer
can say, “I’ll need to work with a database expert for this story,” the UX person can say, “I’ll need
someone to come with me on this paper prototyping customer visit,” or even, “This is a simple,
non-critical UI. Can we agree the developer will design something basic which I can just look at as
a sanity check, while I spend my time on this other critical UI task?”

27

C H A P T E R 5

Structure of a User-Centered
Agile Process

Given the above best practices and what is known to work in both the user-centered and agile
domains, it is possible to construct an overall approach to design and development that makes agile
development truly user-centered—or, conversely, that makes user-centered development agile.

This approach makes room for coherent design by preceding agile development with a phase 0
for user research and user experience design. With a sound understanding of the user under their
belt, the team can then write good user stories and go into agile development sprints confident that
they know what problem they are solving and have an initial direction for solving it.

In the rest of this section, we will show how each of these parts of development can be
structured to include both the UX perspective and the user iterations on which agile methods
depend. For user-centered techniques, we rely on Contextual Design (CD), co-developed by the
author and Karen Holtzblatt20. For agile techniques, we draw on the agile best practices described
in Chapter 4 above and include concepts from both Scrum and XP.

Sprint Sprint Sprint

Phase 0: Initial
user research,

visioning, paper
prototype testing

Release
planning

Figure 5.1: The basic structure of agile development. Coding starts when the basic goal and structure
of the project is set in phase 0. This phase may be anywhere from 2-8 weeks, depending on the scope of
the project.

5.1 PHASE 0: PROJECT DEFINITION
Few projects start with a completely blank slate. Existing products and systems provide the context
for any new development. An existing product may need an additional feature or may need to support
an additional role. The competition may have come out with a new feature, and the company may
be scrambling to catch up. An internal system may need to support a redefined business process. A

28 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

business may be struggling with too many standalone tools and may be looking to integrate them.
(See Section 6.3 for a discussion of how to deal with larger scopes—new product development and
large-scale projects.)

In each case, development starts with a general idea of the scope of the system, but so far, with
no detailed agreement on the specific tasks to be supported, how those tasks are to be supported, or
what the requirements on the system are. The team is not yet ready to write user stories—there is
not yet agreement on what they should say, and the customer team do not yet know enough about
the user to provide trustworthy guidance.

Starting the project with a phase 0 gives the team a chance to organize themselves, find
out about their users, and understand the kind of solution they should build. This is the process
for building the BPUF—the Big Picture Up Front—which becomes the basis for iteration during
sprints.

5.1.1 CONTEXTUAL INQUIRY AND AFFINITY DIAGRAMS
The first step is to discover how users approach their work. This study of work practice—how people
structure and perform the jobs they do—is essential to designing effective systems21;22;23. And the
best practice for understanding work practice is Contextual Inquiry (CI).

In a Contextual Inquiry, project team members interview users in their workplaces, watching
them work and talking to them about what they are doing and why. If the project is building a
consumer product, the team interviews consumers in their home, cars, stores, or other life contexts,
observing the life task the new product will address. At this point, the primary focus is not on design
at all. The focus is on how people perform the work, what they are trying to accomplish, how they
go about it, and what gets in their way.

Any kind of field research needs some training, but that is no reason for limiting this work to
UX professionals. Developers and other team members can be trained to assist, and even untrained
engineers can go along as observers. This supports the agile “one team” value, promotes cross-
fertilization across team members, and ensures all team members understand the users’ problems at
a visceral level.

The contextual interview. The first principle of CI is to observe the work directly, as the user
works. For traditional office work, this means going to the user’s office and sitting with them,
watching the user interact with online systems and with paper files and forms. The interviewer can
see the informal notes and cheat sheets the user has created to help track the job and the piles
the user creates to organize and stage a job. He or she can see the use of Excel to do the real
organization and calculation before loading up the results into the official tool. Interruptions and
informal communication happen while the interviewer is there, revealing tacit aspects of the work
that might otherwise remain unarticulated. If the task requires moving around, the interviewer goes
with the user, running up and down halls, driving to remote sites, crawling through access tunnels,
or riding bicycles to get around a huge assembly plant (all real examples, by the way).

5.1. PHASE 0: PROJECT DEFINITION 29

If the design is for a consumer product, the interview is conducted wherever the life task is
performed: in the home or car, in public, while commuting or shopping.

Nor is the interviewer constrained to only the events that occur during the interview. Retro-
spective accounts give the interviewer a way to recover detailed task information about events in the
recent past. Together, the interviewer and user replay a specific event of interest, using artifacts and
probing questions to reveal the detailed steps of the task. In this way, the interviewer can learn about
and capture the details of important tasks and situations whenever they happened, as long as it is
within the recent past.

Throughout the interview, interviewer and user engage in a discussion of what the user is
doing and why, and what the implications are for the project’s design direction. These discussions
reveal the user’s intents and strategies (more tacit knowledge) that underlie their actions.

Note that the interviewer does not focus on problems and issues in the work, though those
are certainly revealed in the interview. Unlike a usability test, which explicitly focuses on identifying
problems, the goal of a CI is to understand the whole work practice. This understanding allows the
team to envision solutions that transform the user’s work rather than merely fix existing problems.
For example, CIs of work practice in offices during the 1990s revealed that users tended to collect
phone, calendar, rolodex, and day-timer style personal organizer together on their desks.This implied
that these tasks—communication, identifying contacts, and organizing schedule and tasks—went
together in the work practice. They made a natural whole. This recognition anticipated by years the
introduction of combined email, address books, calendars, and task organizers in products such as
Outlook.

CIs give interviewers the understanding of the users they need to represent users on the team:
knowledge of the users’ tasks and needs and, critically, the gut feel for what design alternatives will
work for this population and what will not. Internalized knowledge and gut feel are valuable, but
knowledge has to be captured and externalized if it is to be the basis of design. That is done in
interpretation sessions.

The interpretation session. Data from any sort of field research tends to be unwieldy. The inter-
viewer’s notes are lengthy and unstructured, transcripts are difficult to create and hard to understand,
and videos, if used, are cumbersome to manipulate. Interpretation sessions give the team a way to
deal with field data.

In an interpretation session, the team reviews each interview by going through the interviewer’s
notes of the interview in detail. The interviewer retells the story of the interview from beginning to
end, in order. The rest of the team captures key information which has design relevance. Individual
observations are captured in a list to be printed later on sticky notes and used in the affinity. The
work practice of the user is captured in work models (described in Section 5.1.3 below). By the end
of the interpretation session, all important information from this user is written down and ready to
be used.

From the agile perspective, it important to note that these notes (and, indeed, the affinity and
work models as well) are used by the agile customer team to understand the customer. This is not an

30 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

example of documentation created by one group to be passed off and consumed by another, which
would be anathema to an agile team. This process enables the agile customer to understand who the
user really is, what their work practice is, and consequently, what the project might do to help them.

U02-20 U02 ensures that everyone in the house knows that she is making her shopping list
and that they had better get their requests to her

U04-15 Husband and wife share responsibility for tracking household needs

U07-18 U07 likes specialty stores because they carry things he can’t find elsewhere, but
sometimes they don’t have enough turnover to keep goods from getting stale

Figure 5.2: Sample affinity notes.

5.1.2 THE AFFINITY DIAGRAM
So far, the team has focused on each user individually. But products support whole markets, not
individual users. Even internal systems support roles and job positions, not the individuals who
happen to be doing those jobs at the moment. So it is important for the team to be able to see the
common structure of work practice, independent of individual users without losing the variation
that exists across users.

Affinity diagrams have come to be widely used as a method for organizing large amounts of
unstructured data. An affinity diagram is built from the user data collected through CI and it reveals
key issues across all users studied: key elements of the work practice, user objectives and how they
are achieved, pain points, workarounds, tools used, and so forth. The team builds an affinity from
their observations after interviewing users.

An affinity is built from the bottom up by first grouping similar observations, labeling them,
then building larger groups out of these small groups. It is not built by starting with large classifi-
cations or by sorting notes into predefined categories. The result is that the structure of an affinity
reflects the weight of the data, with less influence coming from the team’s preconceived ideas. This
is essential to push insight; the team discovers new ideas and perspectives by how the data comes
together.

An affinity can be built by the team in one or two days.

5.1.3 WORK MODELING
The affinity collects and organizes issues across all users studied, but it does not show the structure of
work practice coherently.There is no place on the affinity wall that does a task analysis, for example—
that shows the steps users perform to accomplish a task. There is no organized representation of the
physical environment where the work happens, or the artifacts people use to accomplish it.

Work models are the appropriate tool to show the structure of work practice.They drive design
thinking by suggesting how different design approaches will or will not support the work. Work

5.1. PHASE 0: PROJECT DEFINITION 31

Figure 5.3: A section of an affinity showing how individual observations (the yellow stickies) are grouped
to reveal design implications. Photographs taken during interviews may also be incorporated into the
affinity.

models are built during the interpretation sessions from the data collected in Contextual Inquiries.
Like the affinity, they are consolidated across users to show the common structure of work.

Contextual Design defines five types of work models, but phase 0 for an agile project usually
depends primarily on sequence models. That is because the larger context of the project has already
been defined through marketing research, business process redesign, or existing systems that are
being revised. Models that help to understand the larger context are not needed in a more focused
project. (If your project is not so focused, Contextual Design20 describes all the models and how to
do concepting and ideation in a user-centered way.)

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00286ED1V01Y201002HCI010&iName=master.img-003.jpg&w=412&h=332

32 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

The sequence model. Specific tasks are analyzed and represented with sequence models, and nearly
every project will want to build them. Sequence models show the common structure of each relevant
task users perform. They show the high-level structure of the task, the different strategies used,
intents the users are trying to achieve, and the problems getting in the way of the work.

Sequence models are built from current work practice, but their importance is precisely be-
cause they help keep designers from getting stuck in the current way of doing things. Incremental
development runs the risk of focusing on incremental fixes, eliminating pain points one by one
without ever looking at the overall structure of the task or thinking about a radical redesign of how
it is supported.

Sequence models show the many tedious steps required to achieve a user’s intent. They show
how different strategies imply different intents and suggest how a different approach in the system
would allow users to achieve their intents more directly. They show how whole tasks have been
created merely to overcome system constraints and suggest how those tasks might be eliminated. By
looking at the whole task together, they move the team from thinking about point fixes to systemic
solutions.

Sequence 1: Monitoring incoming customer email

U1-1-1 Intent: Be sure priority customers and sales opportunities are handled quickly

U1-1-2 Trigger: Realize that mail hasn’t been checked over an hour

U1-1-3 Go to tech service mail box and scan the senders and subjects

U1-1-4 Set priorities for how to work through the email

U1-1-5 See a request for a recommendation for replacement part

…

Figure 5.4: A partial sequence model showing how the steps of the sequence are captured. Only the
exact steps done by this user when this particular event occurred are recorded.

The artifact model. People create artifacts to help them do their work. They may keep a list of
contact numbers on a piece of paper by their computer; they may use a spreadsheet to calculate
discounts and then circumvent the tool in the system that is supposed to calculate discounts for
them. Each artifact offers insight into how the user approaches their work and what they need to
support it. Each artifact offers details for how to get that support right: Exactly what information
does the user keep for each contact? How are they calculating the discount, and how is that different
from what the system would have done?

When artifacts are important to the users’ work, it may be useful to capture them. Sometimes
an artifact suggests that the system must do something and do it a certain way, such as calculate a
discount a certain way. Other artifacts provide the exact details needed to implement a story, such

5.1. PHASE 0: PROJECT DEFINITION 33

as the specific contact information needed by users. Even if the details are not written into the
story—and since stories are high-level, they may not be—developers will come asking what to do
in the implementation and the UX designer needs to be ready with an answer.

Upper left corner /
top of camera

Shutter release button area

usage:
 - First and second fingers placed
 here to support camera.

intent:
 - Keep camera steady while taking
 shots or manipulating controls

usage: - Index finger used to zoom when zoom is co-locked w/shutter
 - Index finger held over/on button . - stabilizing camera body
 - Index finger depresses to take picture

intent:
 - Be prepared to take shot quickly. - Stabilize camera body to get good shot
 - Take pictures.
 - Zoom quickly and take photos with same finger.

Upper right corner /
back of camera

Lower right corner /
bottom of camera

Lower left corner /
bottom of camera

Bottom right corner /
front of camera

Front of camera
below shutter

- Second finger here
for support/stability

usage:
 - Fingers placed
 here to support
 front of camera.

usage:
 - Thumb placed here to
 support camera body.

intent:
 - Stabilize camera to avoid
 shaking when depressing
 Shutter, looking through
 LCD or zooming.

usage:
 - Thumb placed here to stabilize camera.

intent:
 - Keep camera stable during operation

usage:
 - Thumb goes here -on bottom
 of camera

intent:
 - Support camera body
 - Steady camera when
 taking a shot.

Figure 5.5: An artifact model showing the important aspects of the artifact (a digital camera) and
information about how it is used.

5.1.4 PERSONAS
Personas are a popular way of representing a project’s user population. Unlike affinity and work
models, which give the team a way to see the structure of their users’ work, personas are primarily a
communication mechanism to give stakeholders insight into who the users are. As such, they break
the agile value of “no documentation for the sake of documentation,” yet teams have found them
so useful as a concrete touchstone for understanding their users that it is often worthwhile to create
them.

34 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

Personas are characterizations of the different types of users as though they were real individ-
uals. In projects operating without a good grounding in user research, personas are built by capturing
stakeholders’ impressions of who their customers are. But when a project has started with extensive
user research, as outlined above, personas can and should be based on the actual users studied.

Since no actual individual is a perfect characterization of a type, information from actual
users is combined to produce a single persona. Those aspects of the persona which are common and
relevant are collected from different actual users to present a full picture of the persona. At the same
time, details which are idiosyncratic or distracting are left out.

Personas can be used to ground communication throughout development. Initially, user stories
can be written to support the specific personas: “As Anna, the lightweight project manager, I want
to…” During iterations, referring to specific personas reminds the team of how roles, tasks, and
attitudes combine in real people to ensure the design takes all a user’s needs into account. Because
personas are written as though the people are real, they are easy to deal with. They do not appear to
be an abstraction.

Al Johnson’s time is stretched thin at his small manufacturing firm. Not only is he its full-time financial director,
he’s also the only one who can act as an HR expert in the firm. As a result, he is forced into the position of
working on HR issues for which he is ill-trained.

Recently, for example, an employee got sick just before a planned vacation. Does his time out qualify as sick
leave or vacation time? Another employee wanted to take vacation right before her maternity leave started,
leaving a big hole in the staffing of this small firm. Should this request be honored?

•

•

•

•

•

•

•

“We think we are a modern employer”
Al Johnson is the finance director at a small manufacturing firm.
He’d really prefer to spend 100% of his time overseeing finances
and operations but he usually needs to devote almost half his time
to HR issues. He’s not trained for it and has no particular HR
expertise, and the laws are so complex that though they try to treat
their people well, Al constantly worries about whether his firm is at
risk. He tries to keep on top of the latest updates in HR law and
regulations, but there’s so much information it’s easy to miss things.

Al Johnson, Reluctant HR Expert

And yet the firm wants to treat their employees well. For example, they have generous flex-time policies and
participate in Britain’s bike-to-work program. Al worked extra hard to make sure the pregnant employee, a
recent Iraqi immigrant, understood the process and her rights.

Keeping on top of HR law and best practices is an ongoing headache for Al. He subscribes to an HR news
services, but they send much too much information and very little of it is relevant to his specific situation. It is
easy to miss important issues—it was his factory manager who noticed and told Al about the last increase in
minimum pay.

Al does work with an external HR firm to augment his own knowledge. But he often doesn’t think to bring them
into a problem right at the beginning, which reduces their effectiveness.

•

•
•
•
•
•

Figure 5.6: A persona. All the details in this persona are actual data from customer interviews.

5.1.5 VISIONING
Creating a system vision—a high-level concept of what the system is to do—is a necessary precursor
to writing user stories.To see why, consider a typical story that might be written to support a network

5.1. PHASE 0: PROJECT DEFINITION 35

monitor role: “As a network monitor, I want to see a warning when a communications line reaches
90% of capacity so I can prevent network outages or slowdowns.”

“No,” someone might say. “The system should rebalance network traffic on its own.”
“No,” another team member might reply.“I don’t think the system can do that.But we shouldn’t

bother the network monitor with warnings they can’t do anything about. They’ll be overwhelmed.”
Who is right? The traditional answer from agile methods is: the agile customer or the product

owner, and the team should defer to them. But that is not good enough for us. We need to say how
those roles develop the understanding so that they can give an accurate, trustworthy answer. As we
showed above, the people representing users to the team are rarely the actual end-user. Even if they
were, end-users themselves might not know how to give a trustworthy answer. How should they
know if they would be overwhelmed or not?

In the section on paper prototyping (Section 5.1.8 below), we will take up the question of
how to decide what the right answer is. For now, notice that each speaker has a very different idea of
what the system should do, how it should be structured, and how extensive the support it provides
users should be. Should the system be automatic, doing much of the work for the operators, or not?
Should we expect the users to be sitting in front of a screen all day looking for problems, or will they
be distracted with other work?

These are the basic questions that define the system—its scope, its desired impact on the work
practice, the basic function and structure to be provided, and the details of its behavior—and they
need to be resolved before release planning. Often they are not, and the result is that the release
planning meeting is not just about writing story cards. Participants have to design the whole system,
in their heads, with no process support and no way to see the whole thing at once, and then write
the results of their implicit design on story cards. This makes for a difficult meeting.

Instead, the BPUF (Big Picture Up Front) best practice suggests going into release planning
after first sketching out an overall understanding of what the system is and what it is to do. The
Contextual Design way to do this is with a product vision built together as a team, after collecting
and analyzing user data with contextual inquiries, building an affinity, and creating work models.

A vision is built cooperatively by the whole team, including the product owner, UX designers,
and developers. The only constraint is that everyone in the vision must also “walk the data:” review
the data in detail and together.This is necessary to ensure that everyone’s ideas respond to the actual
user data, rather than just repeating their own prejudices and misconceptions.

The vision, itself, is drawn on a flip chart, written in pen.The team describes how the user will
do their work in the context of the new system, inventing features as they go to improve the work
process. They naturally structure the system into coherent parts, each supporting a set of end-users
(often referring to personas) and a set of work tasks. As in a brainstorm, the team does not evaluate
while visioning; any problems are overcome through further visioning.

A team will always do several visions, exploring different approaches to the problem.Then the
team can evaluate.They look at each vision in turn, decide what works and what does not about each

36 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

vision, and then consolidate the visions, eliminating those aspects that are infeasible or unnecessary,
and bringing together the parts that work into a single, coherent view of the system.

This visioning process fits well into the agile approach and mindset. It is a quick process.
Visioning can be done in one to three days, depending on the scope of the project and the number
of visions. The documentation created is exactly the documentation needed by the team to do the
work: the drawing of the vision on the flip chart. And letting the vision be hand-drawn ensures that
it remains a sketch—a big picture—and keeps the team from over-focusing on the details.

5.1.6 STORYBOARDS
It is possible to write user stories directly from the vision. Each element of the vision can be captured
in one or more user stories, which can be prioritized and used to drive agile development. But the
vision itself has not yet been validated. Any stories based on the vision will need to be tested and
iterated with users, usually needing several iterations to get it right. The lag between creating the
vision and testing it, possibly many sprints later, will be long.

It is better to test and iterate the vision with users right away. This puts off the start of agile
development but ensures that the initial stories reflect users’ real needs. Less rework will be needed
during sprints to respond to users’ feedback.

In Contextual Design, the vision concept is tested by mocking it up in paper and iterating
it with users. Users can respond effectively to a concrete user interface; it is much harder for them
to respond to an abstract concept. A quick, high-level user interface design provides a concrete
representation of the vision that acts as a communication device between designers and users.Detailed
UI design can safely be put off until the development sprints.

However, jumping directly from the vision to UI design can leave holes. The task flow in the
new system must be coherent and convenient for users. Unless task support is designed directly, some
activities may not be supported or some sequences of steps may not flow well in the system. These
problems will be discovered and fixed during prototyping iterations, but that is a slower and more
cumbersome process than getting them right up front. Storyboards help the team discover and fix
such problems sooner.

A storyboard lays out how the user accomplishes a specific task in the proposed system. Like
laying out a storyboard for a movie, each storyboard cell shows how a step in the task is done. It
shows the users involved, the UI screens they interact with, the data that appears on those screens,
the actions they take, and any system behavior that is triggered by the user’s actions or by other
events. Each storyboard ensures that the task is coherent, that it can be performed smoothly and
efficiently from start to finish, and that it takes into account any human processes, offline systems,
and external systems the user may have to use along the way.

Each storyboard covers a single task and case. For example, a storyboard might show how the
people monitoring a network are alerted to and respond to an emergency such as a power outage.
Another storyboard might show how they would respond to a different kind of emergency, such as
a hacker attack, which would exercise different elements of the system. Other storyboards would

5.1. PHASE 0: PROJECT DEFINITION 37

Figure 5.7: A vision: hand-drawn in a short interactive session with the team. It shows how users interact
with the new system and do work outside it to accomplish their tasks.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00286ED1V01Y201002HCI010&iName=master.img-007.jpg&w=411&h=495

38 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

cover other tasks. Usually 6-12 storyboards are enough to cover the main work practice of a typical
system. A storyboard typically takes no more than a few hours to create.

Figure 5.8: A storyboard, showing how the interaction between user and system is represented. (A
camera is being designed in this storyboard.)

5.1.7 USER ENVIRONMENT DESIGN
Storyboards keep specific tasks coherent, ensuring that it is possible to go from step to step of the task
in the system. But thinking only about individual tasks tends to create systems that are collections of
wizards, each focused on supporting one task one way. Good systems are like houses: collections of
rooms or spaces, each supporting a range of activities, each connected to other spaces in the house
in ways that make sense for the work people do. Houses support many life tasks, many unforeseen
by the architect; good systems do the same.

The User Environment Design (UED) gives the Customer Team a way to represent, at a high
level, the structure of the system as experienced by the user. It does not show details of appearance

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00286ED1V01Y201002HCI010&iName=master.img-008.jpg&w=411&h=303

5.1. PHASE 0: PROJECT DEFINITION 39

or implementation; instead, it just shows the places in the system and how they connect. It is like a
floor plan for a software system or the site map for a web site.

Focus Areas are the places in a UED. Like the rooms of a house, they are experienced as a
coherent place. They will be implemented as a coherent part of the UI such as a screen, page, or
pane. Each Focus Area has a purpose, the work that it is intended to support. Each Focus Area
provides function, describing what the system shows and does for the user in that place and what
commands the place makes available to the user to invoke system behavior. In addition, each Focus
Area provides access to other Focus Areas, allowing the user to move through the system.

Building a UED for a typical agile project takes 2-3 days.

Figure 5.9: A partial UED showing the core of an email system.

5.1.8 PAPER PROTOTYPING
A key problem for any sort of user-centered design, including agile methods, is how to get accurate
feedback from users. Users are not designers. They do not normally articulate their work practice
and cannot envision how a proposed change would affect them on a day-to-day basis. How can they
know how to advise the development team? An agile process allows the team to do the wrong thing
and fix it more quickly—but we would like to do the right thing in the first place.

40 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

Paper prototyping provides an answer that has been widely and successfully used24. Rather
than describe a solution, show it. Rather than ask users how they like it, ask them to work with it.
Rather than give them a task to do, ask them to do their own task in the prototyped system.

Prototyping can validate the system concept—that it is something people want, can refine
the overall structure of the system, can ensure that the right functions are provided, and can refine
the detailed behavior of individual functions. The prototype represents the system as a whole, so
it helps to keep the design coherent across the system. User stories tend to break the system into
independent bits, so this coherent view is especially important to maintain in an agile project.

Paper prototypes are quick to build. A designer can have a simple UI mocked up in half a day
or so. Paper is easy to transport and, once at the user’s workplace, easy to work with. Paper prototypes
are also easy to modify. When user or designer suggests a change, they can mock up the change and
put it into the prototype immediately. The user can experience it and decide whether they like it as
well as they thought they would.

A paper prototyping session is run as a partnership between the designer and user. The first
thing the designer does is find out about the details of the user’s work and modify the prototype so
that it represents the user’s own data and situation. By using their own known information as clues
for how the system is structured, the user can respond to it as though it were real, Therefore, they
can pursue their own work tasks in the system, with the designer bringing out new system elements
as needed. When there is a glitch, user and designer discuss the problem and decide together on a
fix, which they implement (in paper) immediately.

Paper prototyping is done at two stages in an agile process: first, during phase 0, paper proto-
typing is used to validate the vision. Any vision represents a guess on the part of the team—a good
guess, based on data, but a guess nonetheless. By mocking it up and testing it in paper, the team
can reduce the lag between the time the design was created (the visioning session) and when it was
validated by users.Two rounds of paper prototyping are enough to give the team the confidence that
the stories they write are reasonable and valuable solutions to user problems.

However,paper prototypes and user stories alike are rough,high-level descriptions of solutions.
They do not specify exactly how an interface will look or the detailed layout and interaction. Nor,
by agile principles, should they. YAGNI (You Ain’t Gonna Need It) advises that if you design too
far ahead, you are likely to design features that will never be used. So instead, the detailed design
is done immediately before implementation, using the best practice of designing one sprint ahead
of implementation. That gives the UX designers enough time to work out and iterate the details
with users before the developers come asking how a story is to be done. This UI testing is also done
with paper prototypes, which are now more highly rendered, closer to the actual UI. If two rounds
of prototyping were done during phase 0, a single round of prototyping is generally enough during
sprints.

5.2. THE RELEASE PLANNING SESSION 41

5.2 THE RELEASE PLANNING SESSION
Agile development starts with a release planning session. Together, but driven by the product owner
or customer representative, the team writes user stories to represent the key elements of the release.
UX designers and others who participated in user research during phase 0 with them act as the
customer representative. They should act directly in that role on the team, and support the product
owner with their knowledge of user work practice.

5.2.1 WRITING USER STORIES
Each user story captures an element or feature of the design. Stories are written on cards for the
same reason that visions are written on flip charts: to keep the team from over-specifying and over-
designing. All that will fit on a card is a simple, high-level description of the function or behavior.

The team writes stories by walking through their design (as represented by their vision, UED,
or prototype), identifying each design element, and writing a story card to capture that element. A
user story should provide value to the user; if several functions work together to provide desired user
behavior, they may grouped into a single user story.

User stories are written from the user’s point of view to emphasize the value that the card
will deliver. Take the example user story, “As a network monitor, I want to see a warning when a
communications line reaches 90% of capacity, so I can prevent network outages or slowdowns.” This
specifies the feature, ties it to value, and specifies which users will be supported by the card. It does
not specify every detail: how the warning is to be delivered, whether the warning will be delivered no
matter what the user is currently doing, or how to show the warning so users have enough context
to interpret it immediately.

The level of detail written in the card depends to some degree on the confidence of the
UX designers. The number 90%, for example, indicates that the designers believe, based on their
iterations with users, that 90% is the right threshold. If they were less confident or less specific in their
knowledge they might leave the precise threshold open, to be determined later through additional
customer work. Either way, inquiries and testing with customers may change the threshold once this
card is selected for implementation.

Story cards are intended to deliver practical user value, and also to be entirely implemented
within a single sprint. This means that complex functions will be split across several stories so that
each is small enough to fit in a sprint. This is to be expected. It may well be that the part of the
function specified on a single card may not be in itself enough to satisfy users, but it should be
complete and implementable by itself.

Returning to our example, the initial story card might specify only that the warning must be
given, no matter how. The implementation team would be expected to implement it in the simplest
fashion possible, getting the underlying mechanism in place but with no effort expended in the user
presentation. The team might implement a simple alert box.

Additional story cards would be written to complete the function. One might specify a visual
icon to appear on the network map. Another might specify that hovering over that icon reveals

42 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

additional details. Another, that clicking on the icon would bring up a troubleshooting tool. Another,
that when the network map is not visible a sliding pane will fade in and after a moment fade out in
the lower-right corner of the screen. Each story is separately implementable and separately testable
(though all depend on the initial story being implemented first).

Implementation teams new to agile development may find this approach awkward. It requires
that they revisit the same function and same section of code several times over several sprints. This
runs counter to traditional development practice.Traditionally, developers would want to implement
all related functionality at once, create, get into, and get out of that module, and not have to revisit
it later in development.

The upside of the agile approach to implementation is flexibility and predictability. Each story
is small enough to be reliably estimated; if the estimation is off, since the story is small, it will be
off by hours or a few days, not by weeks or months. And it allows the team to change course. For
example, if it turns out that, once implemented, users like the network map so well that they leave it
up all the time, the story about showing alerts in a separate pane might not need to be implemented
at all. The time this story would have taken to implement can be allotted to other, more important
stories.

5.2.2 ESTIMATING COST
As story cards are written, the team estimates the cost of implementing them. This may be done in
“ideal programmer days,” the number of days a programmer would take if they had no interruptions
and could concentrate only on this one task. This is a useful way for a new team to start with
estimating stories. By referring back to real (if ideal) time, the team has a conceptual framework for
assigning a number.

But experienced teams often find it more convenient to assign “points” to stories. A point has
no unit, no real-world reference. But a story estimated at 4 points can be implemented in half the
length of time required for a story of 8 points, and it will take twice as long as a 2-point story. An
experienced team has estimated and implemented enough stories so that they can look at a new one
and score it by comparing it with work they have done in the past.

Again, this seems odd from the perspective of traditional development. It works in agile
teams because they measure progress in terms of velocity: the number of story points the team can
implement in a single sprint. That number is tracked from sprint to sprint and the team assumes it
will not change by much next time round. The team commits to implement specific stories in an
iteration, and as long as the points for those stories add up to no more than their velocity, the team
can be reasonably confident they can get all the stories done.

A brand new team, of course, has no measure of velocity to go on. For such a team, estimating
by ideal programmer days for the first few iterations lets them use their gut feel to come up with a
reasonable number. Velocity can be initially estimated by taking the total programmer-days available
in an iteration and scaling back in the usual way to account for meetings and overhead. After a few
iterations, the team’s measured velocity can take over.

5.2. THE RELEASE PLANNING SESSION 43

UX designers should be ready to discuss the implementation cost of UI design. Remember
that the cost includes all work not yet done to finish the story, including work to be done by the UX
team. So a story card that refers to a complex part of the UI needing extensive UX work should have
that work factored into its implementation cost.

5.2.3 PLANNING THE RELEASE
Once stories are written and estimated, they can be organized into sprints. Each sprint needs to make
sense in several possibly conflicting ways. It should be implementable, which implies that if other
stories implement necessary features or underlying modules, they should be scheduled first. Each
sprint should support user testing, providing a coherent user interface. Risky stories depending on
unknown or tricky technology should be implemented early so the risk can be eliminated or mitigated
as soon as possible. High-priority stories, the ones most important to customer and stakeholders,
should be implemented early.

In addition, of course, the total story points of each sprint must be less than the velocity. In
fact, the team should allow a buffer of 20% or so in sprints following sprint 1, or else plan regular
programmer’s holidays. There will be bugs to fix; there will be rework to do in response to user
feedback. If this time is not planned from the beginning, it will cause chaos later in the process.
Either there will need to be extensive reprioritization at each sprint planning session to incorporate
rework into the development stream, or the rework will be put off (increasing technical debt), or the
team will have to overwork.

It is often useful for a sprint to have an organizing theme: a sprint might implement all
monitoring with a bare-bones UI or might provide remote access throughout the system.

The first two sprints should be planned carefully, with the exact stories chosen. The following
sprints can be organized more roughly. Careful planning of the entire release is generally coun-
terproductive; too much might change before later sprints are started. Therefore, once users have
experienced initial baselevels, the priority of following stories has a possibility to change: the business
might change direction, rebalancing priorities or changing the delivery date; or the velocity of the
team might change.

The release is a trade-off between function and date. Each sprint takes a fixed, known time; the
velocity is known or estimated and determines the number of story points in each sprint. Therefore,
the team can calculate how many sprints will be needed to deliver the critical function for the release.
That sets the release date. UX designers should be prepared to argue for features to include in the
release to support users’ work practice. The business and marketing people may have requirements
for what must be in the release for business reasons, and those are legitimate considerations. But it
is the UX designers (and any other team members who gathered data with them) who understand
the real impact of the proposed system on the end-users.

The release date can be adjusted by moving stories between releases; where a function has
been split across stories, the stories that make the function more elaborate might be moved out of
the release altogether to make room for more important stories. What must not happen is to jam

44 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

more stories into the sprints. This is a hard discipline for newly agile organizations. The traditional
dynamic often has management pushing developers to “do more,” insisting on an unrealistic delivery
date for business reasons. The agile tools help reveal that this is planning that creates chaos: it is
planning for the team to execute at a speed the team knows and can demonstrate it cannot achieve.

This release plan should not be taken as cast in stone. It shows how the team can deliver
certain functionality by a certain date, but it is expected that as the team learns more about its users
and as users learn more about how the new system will affect their work, the plan will change. Each
sprint planning session may change story priorities, rewrite stories, and introduce new stories. This
is expected, and one of the reasons agile teams deliver useful results.

If any stories are critical to the business for external reasons, it is up to the team to know
and represent those constraints. The team is in close contact with its users via continual testing and
feedback. Any adjustments the team makes along the way should meet user needs more precisely.
On the other hand, management may have made commitments to important customers. Product
marketing may feel that the product must have a certain feature to compete in the marketplace,
whether or not that feature is actually useful. (This happens more often than you might think.)
Or other parts of the organization—manufacturing, or training—might be gearing up in parallel,
expecting and depending on certain features to be present. Such commitments to stakeholders other
than the end-user must be understood by the team, so they can be honored.

5.3 RUNNING SPRINTS

With the release plan in place, agile development proceeds in a series of sprints. Each sprint im-
plements a set of user stories. Where these stories define user interaction, the visual design has not
yet been done—rough wireframes and paper prototypes are enough to test the concept. Any further
design is put off until needed.

To give the UX designers time to develop final UIs and test them with users, the best practice
is to work one sprint ahead of developers and test one sprint behind. So in sprint 1, the UI people
develop and test the final screen appearance for a user story; in sprint 2, they work with development
to implement it; and in sprint 3, they test the implementation to ensure nothing was lost in the
translation.

The first sprint may be treated specially. Often, there is a fair amount of work necessary
to get the team up to speed. On the implementation side, such activities include defining the
development practices, putting together an automated build and test mechanism, and deciding on
and implementing a source code control system. On the UX side, there are detailed interaction
designs and final visual designs to work out and test for the initial user stories. So, the first sprint
may not deliver actual user value, but it may put all the building blocks in place for the project. This
is especially important for a new team that has to set up its tools and procedures for the first time. It
is also important for the UX team, who need to provide detailed visual designs to developers before
the developers start coding.

5.3. RUNNING SPRINTS 45

Table 5.1: The UX work on a story interleaves with development of the story, with design done
one sprint ahead of implementation and user testing one sprint behind.

UX Team Development Team

Sprint 1 Design UI for story 1; prototype and
iterate with users

Put development system in place;
implement low-UI stories

Sprint 2 Design & iterate UI for story 2
Consult on implementation of story 1

Implement story 1

Sprint 3 Test implementation of story 1 with
end-users
Consult on implementation of story 2
Design & iterate UI for story 3

Implement story 2

Once the team is in the swing of iterative development, they repeat the same pattern over and
over again, as follows.

5.3.1 SPRINT PLANNING
The team meets to plan the work for the sprint. This starts with the set of stories identified during
release planning, but this is the time to consider whether that plan still makes sense. Do these stories
still reflect the next most important, useful, and risky set of stories remaining to do? Is there other
work, unforeseen when the project started, that should be planned? In that case, stories need to be
written, estimated, and prioritized into the schedule. Is there rework to do, either bugs to fix or
redesigns to implement, based on user feedback? Then stories need to be written and prioritized
into the schedule. The specific stories for the current and the next sprint need to be determined.

Then most teams will write task cards for each of the stories in the current implementation.
It is a useful discipline to mandate that no one does work unless it is to implement a task card.
(And task cards are only created to implement user stories, so all work provides customer value.)
Task cards can represent implementation tasks, such as, writing code and designing databases. They
can represent UX tasks: user tests, paper prototypes, and UI design. They can represent tasks to be
performed by other members of the team, such as documentation and QA.

The UX team needs task cards for the stories in the last, the current, and the next sprints.
Their task cards for stories in the current sprint specify UI design tasks: doing low-level layout and
visual design to support developers before they start coding the story.

But the UX team also needs to look ahead to the next sprint. They write task cards to start
UI design on those stories: taking the high-level design from vision, storyboards, and UED, and
designing the final layout and look for this UI. If several paper prototype rounds were done in
phase 0, they may design and test the finished UI directly; otherwise, they may need one or two

46 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

rounds of paper prototypes first. These designs are tested with users during the current sprint for
implementation in the next.

And the UX team also writes tasks for the work completed in the last sprint, to take working
code and test it with users to ensure the final implementation actually works for people.

5.3.2 WORKING WITH DEVELOPMENT
During the sprint, developers implement stories. The UX team has three jobs running in parallel
reflected in the three types of task cards. First, they support the developers. They provide detailed
UI designs and consult with developers on detailed behavior and look. Remember, in an agile team,
these consultations are where the real decisions are made and the detailed behavior is communicated.
There is no functional specification; UX designers work with the developer during the sprint to say
exactly what they want. It is up to the UX people to be tightly tied into the development team,
providing guidance and answering questions as they come up. Daily discussions between developers
and UX designers are usual.

The UX team also runs customer visits throughout the iteration to bring real user feedback
into the development process. These visits accomplish the dual purpose of testing work done in the
previous iteration and doing low-level design for work to be done in the next iteration. The team
does this by running a customer interview that combines contextual inquiry and paper prototyping.

5.3.3 SPRINT INTERVIEW PREPARATION
Before the interview, UX team members identify which elements of the work done in the prior
sprint need user feedback. Ideally, all UIs would be tested with users; in practice, teams are often
making trade-offs in the use of limited resources. If a UI is straightforward or similar to what users
have now, the team might decide that it is not sufficiently important to spend time on. But parts of
the UI which are new, tricky, introduce new interaction paradigms, or depend on the exact behavior
or look of the UI elements should be tested in the running code. For these parts of the UI, this is
where the rubber hits the road: does the implementation conform well enough to the design that
it actually works as expected? Or did the translation to running code introduce enough glitches or
changes that usability of the system is affected?

The UX team also looks at the stories to be implemented in the next sprint and evaluates
where the trouble spots are. Which stories implement UIs that were not thoroughly tested, or that
could not be well prototyped in paper because they are too interactive, or that depend strongly on
the detailed visual design for success or failure? Or are they new stories for user tasks which were
not covered by the initial research at all? The UI design for these stories will need to be started and
tested with users before the next sprint starts.

To test the UI for these stories, the UX team develops the final, fully-rendered visual design
and then chooses how to prototype it with users. If interactivity is not a problem, they may print
the rendered UIs and show them to users on paper. Otherwise, they build a more or less complex
online prototype ranging from a simple flat image to a fully interactive prototype. Remember, this

5.3. RUNNING SPRINTS 47

is a team responsibility. It is reasonable to collaborate with a developer to build a more interactive
prototype than the UX team member could build on their own. That is just part of the cost of the
story.

5.3.4 THE SPRINT INTERVIEW
The interview is run as follows: The interviewer introduces themselves and their focus to the user.
They tell the user which elements of the system they want to test and what tasks the prototype
supports. Then the interviewer gets an overview of the user’s work, enough to get oriented and
understand how to introduce the prototype. During this initial introduction, the interviewer plans
how they will run the interview and what they will cover.

If the team needs to test a new design, the interviewer goes into paper prototyping mode.
Sometimes the prototype really will be in paper, though more detailed and exact than the prototypes
developed during phase 0. If so, the interviewing process is similar: walk through the user’s own real-
world examples, discuss how the prototype supports the user in doing the work, revise and modify it
on the fly as problems are discovered. An online prototype, of course, is less flexible. But the interview
still follows specific past events, replaying them using the prototype system. Interviewer and user
discuss any issues and how they might be fixed. The interviewer can sketch solutions if significant
changes are being made.

If the team needs to test parts of the previous iteration, they make the running code available,
either on a laptop or through a web interface. The interviewer brings up the code for the user and
then proceeds as for an online prototype except that now the interaction is real. The user interacts
directly with the system, getting a feel for such issues as lag time, ability to recognize UI elements,
interactivity, and so forth.

It is possible that the team needs to understand a work task, either because it is new to the team
or because they need additional detail. If the user does the task, the interviewer moves into CI mode.
Using observation of ongoing work and inquiry to build retrospective accounts, the interviewer
discovers how the task has been done by this user. This data is captured in the interviewer’s notes
for interpretation and analysis by the team in a later interpretation session.

A typical session may incorporate all three styles of interview.The interview should be planned
for two hours, which is enough time to investigate a range of issues but not so much that it becomes
hard to get users to commit the time.

5.3.5 THE INTERPRETATION SESSION
As with CIs and paper prototype interviews, the data from the interview is analyzed in an interpre-
tation session. The UX team and any part of the full project team that is interested goes through the
events of the interview, in order. The team writes notes to capture issues and also validations.

Afterwards, the team evaluates the results of the session. Any notes about a proposed design—
a design for a story that has not yet been implemented—are used to change the design and, eventually,
produce a revised prototype. Notes identifying issues in the last sprint are more complicated. The

48 5. STRUCTURE OF A USER-CENTERED AGILE PROCESS

team redesigns the interface to solve the problem and writes a story card to represent that fix. The
story card will be prioritized in the next sprint planning session.

This is the preferred method of handling rework. Some teams prefer to do rework through the
bug fix process, treating UI problems as bugs to fix. This can work, but tends to bury UI problems
with the rest of the bugs, and it breaks the rule of doing no work without a user story to justify it. In
truth, large bug lists are a danger sign on an agile project. They represent technical debt; worse, any
priority 1 bugs on the list mean that the system is not, in fact, ready to ship at the end of the sprint.
It is better to prioritize fixing them into the next sprint, even if other user stories have to be put off.
And it is better not to add to them with UI changes that could be handled through the user story
process.

Note that this way of working requires continual customer visits throughout the sprints.This is
inevitable if user feedback is to drive iterative change. An effective customer team will have someone
charged with recruiting users and planning visits. Many teams find it simplest to plan these visits
ahead of time, on one or two fixed days of the week. Then, rather than scrambling to set up a user
visit once they have something to test, the team scrambles to finish their prototypes in time for
the next visit. The first approach creates delay waiting for users to respond and arrangements to be
finalized. The second encourages progress, as designers work to get enough in place to make the
visit productive.

49

C H A P T E R 6

Structuring Projects
In this final section, we discuss typical project situations and how they might appropriately be
handled. We start with simpler situations and work back up to the large, complex projects.

6.1 JUMPING ON A MOVING TRAIN
UX practitioners are likely to find themselves dropped into a project that is already using an agile
methodology. The team may have at least a few sprints under their belt and may be following agile
methods more or less faithfully. The challenge for the UX practitioner is to help them improve how
they work with their customers and better integrate the UX work.

In this case, it is neither possible nor desirable to stop and do all the pre-work of phase 0.
Instead, UX designers should move towards greater user involvement through a series of steps,
without disrupting ongoing development.

1. Do User Tests in the Users’ Workplace. If the team is not currently working directly with
actual end-users, start setting up field visits with users. Arrange them so that you can see users
do real work and understand the real work context. These visits can be planned ahead, as
discussed above, and the exact focus of the interview adjusted to reflect project needs.

Initially, use the interviews to prototype UIs that will be needed in this sprint or the next, so
that the user data directly informs the development process. This makes them easier to justify
to a possibly skeptical team and management: “We’ve planned this story into this sprint. I
want to test it out with customers to get the UI details right.”

If the team currently brings users in to test product iterations, move at least some of these
sessions out to the field. Use the customer visits to run hybrid interviews, where part of the
visit supports detailed design of new UIs and part provides user test and feedback of completed
implementations.

2. Work Towards Designing a Sprint Ahead. Look at the stories to be implemented in the next
sprint, according to the release plan. Start work on the UX design for those stories. Mock them
up and get some user feedback before the sprint starts. If a design is well thought out, make
your prototype detailed and test the look and interaction; if it is a new design for a task you
understand less well, make a rough prototype and test the basic concept and function. Spend
part of the interview getting feedback on paper prototypes of stories for the next sprint and
part getting feedback on stories for the current sprint. Since users’ work hangs together—it is
not split into neat little boxes, as user stories are—this is natural and easy to do.

50 6. STRUCTURING PROJECTS

3. Start Gathering Work Practice Data. Typically, organizations collect two kinds of user data:
marketing requirements of wish lists and desires and the results of usability tests. Once field
interviews are happening, the team can start collecting actual work practice data. Start with
observational notes and sequence models for tasks of interest to the project.These are straight-
forward to capture and can be quickly consolidated. Use the initial part of the interview as
a more general CI to capture this data; then move into a feedback session on the design or
implementation to be tested.

4. Use a Project Break to Step Back. After collecting work practice data during a few iterations,
the UX team will have enough to be worth stepping back and evaluating the overall direction
of the project compared with the needs of the users. Either between releases or during a
programmer’s holiday, consolidate the work practice data, building models and an affinity
diagram. Build a User Environment Design of the system as implemented to date and extend
it using the stories not yet implemented. Walk through the data and UED, to identify where
the project is failing to address important work issues or where the proposed implementation
seems problematic. The UX team designs fixes, tests them with users (perhaps using rough
paper prototyping), and writes stories to capture these changes.

6.2 SYSTEM EXTENSION
When an existing product or system is being extended with new features, a phase 0 gives the team
the opportunity to learn about the new tasks to be supported: how they are structured, what strategies
users adopt, and what issues get in their way? Contextual interviews and sequence models help the
team gain this understanding.

Example 6.1 Typical problem statements extending an existing system to cover a new task, to add
a new feature set, or to implement a new technology.

“Users need to track and report metrics in our call center tool.”

“Users need to be able to save searches, and use searches to set up alerts in our information

library.”

“Users need to organize and track their research as a project.”

The team conducts interviews with users performing the task using their current method, with
whatever technology they have. During interpretation sessions, the team captures sequence models
as well as notes for the affinity and consolidates sequence models to represent the task.

This coherent view of the task leads to design insight. It leads the team to understand how the
task as a whole can be better supported and how different approaches in the system can help users
achieve their goals more directly. The team (including the UX designers, developers, and interested

6.3. MAJOR NEW RELEASE 51

stakeholders) conducts a visioning session to explore the different options and settle on a single
approach.

Because this is a new task, it is likely to need new user interfaces to support it, rather than simple
fixes to existing interfaces.These new interfaces are designed and tested using paper prototypes.Since
they are new, designers cannot assume they are just about right the first time, so doing a few rounds
of paper prototypes with users before iterative development starts ensures that the team has truly
understood the user needs and has a workable solution. User stories are written based on the vision
and final prototypes.

This process works when there are a small number of tasks to support (1-3), and a limited set
of user roles doing those tasks (1-4). Interviews need to be run with at least three representatives of
each role to understand the range of approaches to the task.

6.3 MAJOR NEW RELEASE
When a project is planning a new product or release with significant new function, the project should
start with a strategic design to understand the domain and envision an overall solution. Such a project
may make a significant change to work practice, may design whole new systems and interfaces, and
may affect several roles and tasks. In this case, the limited scope of a phase 0 is not enough to
understand the market, the problem domain, and the range of potential solutions.

Significant new function implies multiple overlapping new UIs supporting multiple tasks,
which interact with each other in ways that are not yet well understood. It implies multiple roles—
4-6 are typical. The team needs to use the full range of research and design tools to understand the
practice and design the solution concept. Here is a rough description of how such a project can be
structured. Fuller details on each part can be found in Contextual Design20.

Example 6.2 Typical problem statements indicating the need to start with a strategic design phase.

“We need to be the next iPhone in our domain.”

“We are purchasing a new enterprise software system and need to tailor it to support our

business.”

“We need to revamp our product to deal with a changing market.”

The team needs to understand the work practice and the design more thoroughly. They will
need to start with a robust user research process.The team should start with 15-30 CIs to understand
the work practice, looking at the tasks and work context to be addressed by the next version. They
build an affinity and sequence work models to represent the issues and the tasks as they are currently
done. If whole workgroups or multiple workgroups are to be supported, they will probably want a
flow model and may want other work models from Contextual Design as well.

52 6. STRUCTURING PROJECTS

Table 6.1: Supporting a new release with an 8-week phase 0.This structure gathers data
from 12 users, supporting 3-4 roles. If your organization will not tolerate spending 8
weeks on phase 0, this can be scoped back by reducing the number of interviews (and,
therefore, the number of roles that can be supported) or by eliminating one or both
rounds of paper prototype testing. Just remember, if you eliminate these rounds, you can
expect to need more iteration with users during the sprints.

Mon Tues Wedns Thurs Fri

Wk 1
AM

2 parallel
customer
interviews

2 parallel
customer
interviews

2 parallel
customer
interviews

2 parallel
customer
interviews

Data cleanup
and planning

PM 2 interp
sessions

2 interp
sessions

2 interp
sessions

2 interp
sessions

Wk 2
AM

2 parallel
customer
interviews

2 parallel
customer
interviews

Build affinity Build affinity Build affinity

PM 2 interp
sessions

2 interp
sessions

Wk 3
AM

Consolidate
models

Consolidate
models

Walk affinity
and models

Vision Vision

PM

Wk 4
AM

Storyboard Storyboard Storyboard UED UED

PM

Wk 5
AM

UI design UI design UI design Build paper
prototypes

Build paper
prototypes

PM

Wk 6
AM

2 prototype
interviews

2 prototype
interviews

Resolve design
issues

Redesign Redesign

PM Interpret both Interpret both

Wk 7
AM

Build paper
prototypes

Build paper
prototypes

2 prototype
interviews

2 prototype
interviews

Resolve design
issues

PM Interpret both Interpret both

Wk 8
AM

Redesign Redesign; final
cleanup

Write user
stories

Write user
stories

Release
planning

PM

Wk 9
AM

Start sprint 1

PM

6.3. MAJOR NEW RELEASE 53

They respond to the data with a visioning process,doing multiple visions with the whole project
team and key stakeholders as necessary, and capturing their approach with a single consolidated
vision. This vision covers, at a high level, the whole of the work practice to be transformed by the
solution.

Then, because the work practice is more complex and the interaction between task and system
is more involved, the team uses storyboards to work out the interaction between user and system.The
storyboards are brought together in a User Environment Design to show the system’s structure: how
function is organized into coherent screens, with access between them, supporting all the different
tasks users may be engaged in.

The high-level system structure captured in the UED is tested by developing rough UIs,
prototyping them in paper, and testing them in two rounds of user interviews. In the experience
of the authors, two rounds of testing resolves fundamental issues of basic structure and function.
(Detailed UI design can be done by individual work streams.)

At this point, the overall solution is designed.The high-level function and structure are known.
The solution is coherent and consistent, providing integrated support to the whole of users’ work
practice. From this high-level solution, individual work streams can be defined. Each of these work
streams is its own agile project. Each work stream has limited scope, can be implemented by a team
of 5-15 people, and has a well-defined deliverable. Each work stream does the work described in
Chapter 5: an abbreviated phase 0 to work out the details of their component, release planning to
define their specific stories, and sprints validated and iterated with users. Phase 0 can be abbreviated
because the component builds on the data and design from the strategic project, but they are likely
to need detailed task information and low-level UI design.

The key point here is that a large, strategic project needs more process support than a simple
system change. Agile methods excel at taking a well-defined product of limited scope and producing
useful working software quickly. But when the scope is very large, research, design, and planning
work needs to precede agile development to create a coherent system.

54 6. STRUCTURING PROJECTS

Sprint Sprint Sprint Release
planning

Strategic design:
Initial user research,

ideation, concept
testing

Phase 0 for
component

Ongoing UX stream for cross-system
coherence

Interaction
Architecture

planning

Sprint Sprint Sprint Release
planning

Phase 0 for
component

Scope
development

effort;
plan parallel

streams;
define

roadmap

Figure 6.1: The structure of a large-scale agile project. Strategic design and planning sets direction and
defines parallel work streams on different components. Each component does detailed design based on
user data followed by agile sprints. A UX stream maintains coherence across the entire development
effort.

55

C H A P T E R 7

Conclusion
Every ten years or so, a new enthusiasm sweeps through the software development community.
Structured Design, Object-Oriented Design, the Rational Unified Process, and now agile Develop-
ment have all had their day.The fads come and go, but each one leaves behind a valuable residue that
becomes part of the permanent toolkit: programmers still structure code according to the principles
of structured design, developers still organize function into self-contained objects, and when the
agile boom passes, we can expect that software projects will still organize development in short,
well-defined sprints each delivering testable user value. The current enthusiasm over agile methods
may be a fad, but agile, iterative development is probably here to stay.

Agile development and user-centered design are a natural fit. Agile development assumes an
intimate connection to users, and user-centered design assumes rapidly iterating designs with users.
To the extent that there is a disconnect between the two, it has more to do with the widely different
history and provenance of the two methods rather than any inherent incompatibility.

UX professionals should be—and, we are confident, will be—critical members of any agile
team. Where that has not yet happened, what is most needed is an understanding on both sides of
the attitudes, values, and skills of the other. Once UX professionals understand the commitment
of agile development to the customer and the flexibility of agile development to change, they can
open up to the just-in-time, low-overhead style of agile teams. And once developers understand the
advantages of user research and prototyping in the field, they will be able to see how doing some of
this work up front can make agile development, itself, faster and more problem-free.

57

Bibliography

[1] Madden W. and Rone K Design, Development, Integration: Space Shuttle Primary Flight Soft-
ware System, CACM 27 9, Sept 1984, 914–925. DOI: 10.1145/358234.358254 3

[2] Boehm B. “A Spiral Model of Software Development and Enhancement,” IEEE Computer.
21(5), 61–72. DOI: 10.1145/12944.12948 3

[3] Schwaber K. and Beedle M. Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River, NJ, 2001. 3

[4] Beck K. eXtreme Programming Explained: Embrace Change, second edition. Addison-Wesley,
2004. 6, 21

[5] Martin A., Biddle R., and Noble J. “XP Customer Team: A Grounded Theory” in Proceedings
of the Agile 2009 Conference (Agile 2009) , pp. 57–64. IEEE Conference Publishing Services,
2009. DOI: 10.1109/AGILE.2009.70 6

[6] Victor B. and Jacobson N. “We Didn’t Quite Get It” in Proceedings of the Agile 2009
Conference (Agile 2009) , pp. 271–274. IEEE Conference Publishing Services, 2009.
DOI: 10.1109/AGILE.2009.22 7

[7] Fuqua A. M. and Hammer J. M. “Embracing Change: An XP Experience Report” in
Fourth International Conference on Extreme Programming and Agile Processes in Software
Engineering. (M. Marchesi and G. Succi, Eds.), Springer-Verlag, Genoa, Italy, 2003.
DOI: 10.1007/3-540-44870-5_36 11

[8] Kollmann J., Sharp H., and Blandford A.“The Importance of Identity and Vision to User Ex-
perience Designers on Agile Projects” in Proceedings of the Agile 2009 Conference (Agile 2009)
, pp. 11–18. IEEE Conference Publishing Services, 2009. DOI: 10.1109/AGILE.2009.58
11

[9] Kyng M. “Designing for a Dollar a Day,” in Proceedings of CSCW’88: Conference of Computer-
Supported Cooperative Work (pp. 178–188). Portland OR. New York: Association for Com-
puting Machinery. DOI: 10.1145/62266.62281 14

[10] Chung W. and Drummond B. “Agile @ Yahoo! From the Trenches” in Proceedings of the Agile
2009 Conference (Agile 2009) , pp. 113–118. IEEE Conference Publishing Services, 2009.
DOI: 10.1109/AGILE.2009.41 14

http://dx.doi.org/10.1145/358234.358254
http://dx.doi.org/10.1145/12944.12948
http://dx.doi.org/10.1109/AGILE.2009.70
http://dx.doi.org/10.1109/AGILE.2009.22
http://dx.doi.org/10.1007/3-540-44870-5_36
http://dx.doi.org/10.1109/AGILE.2009.58
http://dx.doi.org/10.1145/62266.62281
http://dx.doi.org/10.1109/AGILE.2009.41

58 BIBLIOGRAPHY

[11] Martin A., Biddle R., and Noble J. “XP Customer Practices: A Grounded Theory” in Pro-
ceedings of the Agile 2009 Conference (Agile 2009) , pp. 33–40. IEEE Conference Publishing
Services, 2009. DOI: 10.1109/AGILE.2009.70 17, 19, 23

[12] Goguen J. “Formality and Informality in Requirements Engineering,” Proceedings of the IEEE
International Conference on Requirements Engineering, IEEE CS Press, Los Alamitos, CA
1996. DOI: 10.1109/ICRE.1996.10005 17

[13] Greenbaum J. and Kyng M. Design at Work: Coöperative Design of Computer Systems. Hillsdale,
N.J.: Lawrence Erlbaum Associates, 1991. 17

[14] Wixon D. and Ramey J. Field Methods Case Book for Product Design. John Wiley & Sons, Inc.,
NY, NY, 1996. 17

[15] Beyer H., Holtzblatt K., and Baker L. “An agile customer-centered method: Rapid Con-
textual Design” in Proceedings of the XP/Agile Universe Conference 2004, pp. 50–59. Springer
Berlin/Heidelberg, 2006. DOI: 10.1007/b99820 18

[16] Takats A. and Brewer N.“Improving Communication between Customers and Developers” in
Agile 2005. (M. L. Manns and W. Wake, Eds.), IEEE Computer Society, Denver, Colorado.
DOI: 10.1109/ADC.2005.30 19

[17] Sy D. “Adapting Usability Investigations for Agile User-Centered Design” in Journal of Us-
ability Studies, Volume 2, Issue 3, May 2007, pp. 112–132 22

[18] Schwaber K. Agile Project Management with Scrum. Microsoft Press, Redmond, WA, 2004,
p. 137. 22

[19] Maples C. “Enterprise Agile Transformation: The Two-Year Wall” in Proceedings of the Ag-
ile 2009 Conference (Agile 2009) , pp. 90–95. IEEE Conference Publishing Services, 2009.
DOI: 10.1109/AGILE.2009.62 22

[20] Beyer H. and Holtzblatt K. Contextual Design: Defining Customer-Centered Systems, Morgan
Kaufmann Publishers Inc., San Francisco, (1997). 27, 31, 51

[21] Whiteside J., Bennett J., and Holtzblatt K. “Usability Engineering: Our Experience and
Evolution,” Handbook of Human Computer Interaction, M. Helander (Ed.). New York: North
Holland, 1988. 28

[22] Seaton P. and Stewart T. “Evolving Task Oriented Systems” in Human Factors in
Computing Systems CHI ‘92 Conference Proceedings, May 1992, Monterey, California.
DOI: 10.1145/142750.142900 28

http://dx.doi.org/10.1109/AGILE.2009.70
http://dx.doi.org/10.1109/ICRE.1996.10005
http://dx.doi.org/10.1007/b99820
http://dx.doi.org/10.1109/ADC.2005.30
http://dx.doi.org/10.1109/AGILE.2009.62
http://dx.doi.org/10.1145/142750.142900

BIBLIOGRAPHY 59

[23] Johnson P. 1988. “Task-related knowledge structures: analysis, modeling and application.” In
Jones, D.M. & Winder, R. (eds), People and computers IV : proceedings of the fourth conference
of the British Computer Society Human-Computer Interaction Specialist Group, University of
Manchester,5–9 September 1988.Cambridge;New York:Cambridge University Press,c1988.
28

[24] Snyder C. Paper Prototyping: The Fast and Easy Way to Design and Refine User Interfaces. 2003,
Morgan Kaufmann Publishers, San Francisco, CA 40

61

Author’s Biography

HUGH BEYER
Hugh has more than 25 years of experience building and designing applications, systems, and tools.
He is co-founder and CTO of InContext Design, a company bringing user-centered design to
development teams since 1992. Hugh was one of the pioneers working with Agile teams to bring
a strong user interaction design focus to Agile development efforts, reconciling careful UX design
with the fast iterations and minimal up-front planning core to Agile approaches.

Before co-founding InContext, Hugh acted as lead developer and architect in a range of
systems at Digital Equipment Corp. His domains of experience include object-oriented repositories,
databases, and integrated software development environments. Since starting InContext, Hugh has
overseen the design of applications from desktop to web to mobile, and from enterprise to small
business to consumers in the wide variety of industries supported by InContext.

He holds a B.S. degree in Applied Mathematics from Harvard.

	Introduction
	Common Agile Methods
	Scrum
	XP

	Agile Culture
	There is Only One Team
	The User Is on the Team
	Plans and Architectural Work are a Waste of Time
	Face-to-Face Communication is Better Than Documentation
	Short Sprints are Good. Shorter Sprints are Better
	Continual Feedback Guides the Project
	How These Values Go Wrong in Practice

	Best Practices for Integrating UX with Agile
	Get User Feedback from Real Users in Context
	A Phase 0 to Define System Scope and Structure
	UI Design Done One Iteration Ahead
	Validation Done One Iteration Behind
	Parallel UX Stream
	Programmer/Designer Holiday
	Architectural Spikes for Difficult Issues
	UX as a Full Team Member

	Structure of a User-Centered Agile Process
	Phase 0: Project Definition
	Contextual Inquiry and Affinity Diagrams
	The Affinity Diagram
	Work Modeling
	Personas
	Visioning
	Storyboards
	User Environment Design
	Paper Prototyping

	The Release Planning Session
	Writing User Stories
	Estimating Cost
	Planning the Release

	Running Sprints
	Sprint Planning
	Working with Development
	Sprint Interview Preparation
	The Sprint Interview
	The Interpretation Session

	Structuring Projects
	Jumping on a Moving Train
	System Extension
	Major New Release

	Conclusion
	Bibliography
	Author's Biography

