

The Enterprise and Scrum
by Ken Schwaber

Publisher: Microsoft Press

Pub Date: June 13, 2007
Print ISBN-10: 0-7356-2337-6
Print ISBN-13: 978-0-7356-2337-8

Pages: 176

Overview

From a leader in the agile process movement, learn best practices for
moving agile development with Scrum from the skunk works (small
team) to the shop floor (the enterprise). Managers get case studies
and practical guidance for managing the change processes for applying
Scrum in the enterprise.

Introduction

This book is for those who want to use Scrum throughout their
enterprise for product development. Right now, you might have
pockets within your enterprise that use Scrum, and they are more
effective than elsewhere. You are at least partially convinced that
using Scrum throughout the enterprise might be a way to make the
whole enterprise more effective, but you could use some help in
figuring out how to do so. This book is for you.

There are many reasons why your enterprise can't develop and deploy
products and systems as rapidly, inexpensively, and with the quality
that you would like. You and your staff probably can already list many
of them. Scrum won't solve them. Scrum is simply a tool that will
relentlessly and ruthlessly expose them. As you try to build product
within the Scrum framework, every time one of these impediments is
reached, it will be exposed in a somewhat painful way. You can then
prioritize it and systematically eliminate it. When the impediments are
mostly gone, Scrum is a framework that will enable the product
development you desire. And it will continue to be your watchdog
against any new impediment or old impediments returning home for a
visit.

I've gathered quite a few experiences and stories as I've worked with
enterprises adopting Scrum. In this book, I've organized them into
guidance in the areas that are most problematic. Sometimes this is
descriptive; other times I relate the guidance through stories. It is OK
that there is no guidance in the other areas. The enterprise should
figure out what is likely to work best for itself and try to use it. To the
extent that an approach doesn't work, change it and change it again
so that it works better and continues to work better.

Scrum does not prescribe. Scrum includes general guidelines about
how to do development and principles to be applied when these
recommendation are insufficient. What does this mean? This means
that people have to learn to think differently. We want rules to follow,
but life and product development are too complex for a single set of
rules to suffice in all circumstances. You have to rely on decentralized
decision-making, because there probably isn't one answer for every
team any more than there is for every enterprise.

The first three chapters lay out the plan for adopting Scrum. The next
two chapters provide insights into some habits that impede adoption
and how some enterprises have coped with them. The remaining

chapters provide techniques for solving some of the knottier issues.
These will help you, but your enterprise's adoption will be different
from anyone else's adoption. The only common ingredient is people,
for better and worse. When people rise to the occasion and work
heroically in teams, nothing is better. When they prefer to lay back,
play politics, and undercut each other, nothing is worse. You'll get to
see both, because Scrum will relentlessly expose everything as you
proceed.

Not every enterprise that tries to adopt Scrum will succeed. At times,
you and your people will hate Scrum. However, don't shoot it. It is
only the messenger. To the extent that you and your enterprise
succeed, though, you will always know where you stand. You will know
what you can do and can't do. Sometimes such transparency let's us
see things that aren't what we wish to see. However, I find knowledge
preferable to uncertainty and ignorance. The goal is for you and
everyone in your enterprise to wake up looking forward to coming to
work, and for your competitors to wish they had never woken up.

Part I: Adopting Scrum

This first section describes how an enterprise can adopt Scrum.
Learning to use Scrum would be pretty simple and straightforward if
we didn't have habits to do things differently. Fitting it into our
enterprises, also, would be pretty straightforward if we already weren't
organized and acculturated to do things differently.

Changing enterprise habits and culture is required to get the benefits
of Scrum. In this section, we assess whether those benefits are of
enough value for you to go through the effort. Then we look at how to
initiate an enterprise transition project. This project uses Scrum to
optimize your enterprise's ability to build and deploy products. We
then look at some of the changes that an enterprise encounters to get
the benefits.

The chapters in this section are briefly described in the following list:

• Chapter 1, "What Do We Have to Do to Adopt Scrum?" describes
how to assess whether Scrum has enough value to your
enterprise for you to proceed.

• Chapter 2, "Scrum qua Scrum," describes steps to initiate Scrum
within your enterprise.

• Chapter 3, "The First Year," describes the first year of adopting
Scrum.

• Chapter 4, "Against Muscle Memory—The Friction of Change,"
describes some of the most entrenched habits that impede
productivity.

• Chapter 5, "Enterprises in Transition," describes some adoption
projects at several enterprises. Read these in anticipation of and
preparation for your enterprise's transition, for which guidance is
provided in Section 2.

Chapter 1. What Do We Have to Do to Adopt Scrum?
In this chapter:

Scrum Requires a New Enterprise Culture 4

Prove to Yourself That It Is Worth the Effort 5

Assess the Type of Change That Will Occur 5

Caveats 7

Consider Scrum as part of the game of product and software
development. Scrum lays out the playing field and rules for the game.
Your enterprise has the players for the game. They go on the field and
start playing against the competition. If they are skilled, it shows. If
they don't yet work as a team, don't understand the rules, or have any
other flaw in their capabilities, it is painfully obvious. Everyone on the
team knows what improvements are needed—more coaching, more
training, better teamwork.

When Scrum is used throughout an enterprise, we have an enterprise-
wide game of product development. Coordination is more important
than it would be if just a single team was playing, and it's harder to
achieve. (Keep in mind that a single department could have 100
teams.) Again, though, Scrum helps everyone understand what needs
to be improved. Every time product development occurs, Scrum
rewards excellence and exposes inadequacies.

Scrum adoption has two aspects. First, Scrum is rolled out. You teach
everyone how to play the game of product development using Scrum.
You teach them how to work together in small teams. This stage takes
six to twelve months. The second aspect is everyone in the enterprise
improving their game so that they are the best possible enterprise of
teams working together. During this time, we improve skills,
teamwork, and everything needed for excellence. Every time we play
Scrum, we can clearly see how good we've become and what we need
to do to get better. To get really, really good requires three to five
years of continued improvement through using Scrum in an enterprise.
Staying really good and perfecting skills is an ongoing endeavor.

Your use of Scrum will expose every reason why your enterprise has
trouble building products. Scrum will keep exposing the problems until
they are fixed. Scrum does this within the simple framework of
building increments of software, iteration by iteration, or Sprint by

Sprint. The rules, roles, and time-boxes of Scrum are few and simple.
Whenever they cause a conflict with existing practices, an impediment
has been encountered and made visible. The enterprise has to choose
whether to change to remove the impediment or to give up on some of
the benefits.

Scrum Requires a New Enterprise Culture

The Scrum paradigm embraces change, unpredictability, and
complexity as inescapable constants in all product development. This
complexity and unpredictability renders detailed long-term predictive
plans meaningless and a waste of money. With Scrum, a vision of a
project's value is projected in a baseline plan. The project moves
forward, Sprint by Sprint, toward the vision. Increments are inspected
every Sprint. Adaptations are then made to the project to optimize the
likelihood of realizing the value.

Adventure Works, a game producer in San Diego, was the first in its
industry to benefit from Scrum. Joris Kalz, Adventure Works' CTO,
attended one of the very first Scrum certification sessions in 2003.
Enthusiastically, he went back to Adventure Works and adopted the
Scrum paradigm. His story is one of insight, persistence, and hard
work. The Adventure Works story is one of culture shock and then
redemption.

The product that was developed using Scrum was Vosod. It began to
emerge in high-quality, regular increments. Joris adopted a
sustainable pace of work, one of Scrum's practices. Everyone worked
eight-hour days. Some people might look at that practice and think,
"Oh, that means developers get out of working hard for the company!"
Quite the contrary—a sustainable pace yields higher productivity and
quality products.

Adventure Works was owned by a Japanese company. The Scrum
practice of eight-hour workdays was unacceptable to the senior
members of the Japanese management. They demanded longer hours,
and the 12-hour work days that were normal prior to Scrum were
restored. Defects rose 60 percent over the next several Sprints, more
than offsetting the delivery of increased functionality. Joris restored
Scrum's eight-hour workdays. When the Japanese managers in San
Diego drove by the offices night after night, they again saw empty
parking lots and darkened offices. This was intolerable to them. They
reported to headquarters that employees at Adventure Works were
indifferent and lazy. They recommended selling the company. The

delivery of increments of high-quality software was good, but that was
insignificant compared to the perceived sloth and cultural conflict.

The Japanese parent company sold Adventure Works to its American
management in a management buyout. The parent company was glad
to get rid of it. Two months later, Vosod was completed and ready to
ship. Adventure Works sold Vosod to a game publisher for twice the
price of the buyout. Did it make sense for the Japanese owners to sell
the company when they did? Of course not, but the twisting paths of
change often don't make sense. People and culture are involved—
people who have feelings, beliefs, perceptions, and vested interests
that cloud their perceptions.

Prove to Yourself That It Is Worth the Effort

The effort required to adopt Scrum is huge, and only enterprises with
compelling reasons will make the effort. Your reason for adopting it
might be unacceptable costs, missing functionality, inability to deliver
software, customers going to other providers, developers leaving,
lengthening release cycles, or your enterprise's increasing inability to
compete. Another compelling reason is Scrum offers a significantly
better way of building products.

Before you attempt an enterprise-wide adoption, you must believe that
your enterprise has serious problems to fix and that Scrum is the tool
to help you. The first step in gaining this belief is to use Scrum on
several projects. Scrum is simple enough to understand from books
(some of which are listed in Appendix B), but some initial ScrumMaster
and Scrum training might be helpful. (Scrum terminology is fully
defined in Appendix B.) Such training is available through
www.scrumalliance.org. Select some high-value, high-risk initial work.
Conduct a combined iteration planning meeting (called a Sprint
Planning Meeting) and training session. Then start Sprinting. Conduct
at least three Sprints. You will see value. You will clearly know the
progress of a project and be able to easily accommodate changes. In
addition, you will see increased productivity.

You have now seen Scrum's value on some simple projects. Now go
for the jugular. Select another project—one that is difficult or one that
the enterprise is having problems with. Prove to yourself that Scrum
solves some of your most knotty problems. Identify several pieces of
important functionality, which is enough to get going. This is the basis
of the Product Backlog. Form a Scrum team and have them Sprint
several times. When they've done that, the functionality should have

the desired security characteristics, performance capabilities, and user
experience as the finished product. Extrapolate the cost of the
functionality in the third Sprint to get an estimate for the entire
project. You have to wait until the third Sprint for people on the team
to know each other and the system they are developing well enough to
get a meaningful extrapolation.

If you are concerned whether a commercially available package works
as claimed, subject it to the same process. Have Scrum teams build
several pieces of high-value, tricky functionality in the package. Get
early information on whether the package works as you need it to
work.

Formally train people in Scrum for these projects. Courses are offered
by the Scrum Alliance (www.scrumalliance.org) that will help them
gain the needed skills. Just like in baseball, a little coaching helps a
novice rapidly gain skills and technique.

Assess the Type of Change That Will Occur

You should now be convinced that Scrum can help your enterprise
reach its goals. Before you proceed with adopting Scrum, however,
you should consider the types of changes that other enterprises have
gone through. These changes have repeatedly been more extensive
than other enterprises anticipated because everyday practices are
exposed as impediments. You can expect the following changes and
challenges:

Staff turnover will occur. Twenty-percent turnover is common. Some
people say, "I don't like this. I just want to come to work, be told what
to do, and go home at the end of the day not worrying about it."
We've changed the ground rules with Scrum. People are asked to
commit to solving problems in teams. Some people might not want
this type of work.

The third through ninth months of the change will be particularly
difficult. Problems and dysfunctions that have always existed in your
enterprise will be highlighted at this stage. They haven't been fixed yet
because they are particularly entrenched or difficult. Solutions have
been hard to devise or achieve. When Scrum again highlights them,
others on the project might wonder why they ever embarked on the
Scrum process. At this point, look back and observe the progress that
has been made. Projects are moving forward, software is being
delivered, risks are being identified and removed, and people are

working together. You will have the courage to continue moving
forward only by looking back at the progress made.

Conflict will occur. Expect conflict. Conflict is a sign of change. People
have different opinions about how things should be done. A new way
of operating must be conceived. Because many enterprises discourage
conflict, people might not be skilled at resolving conflict. People need
to be trained to resolve conflicts.

Product management's job will change and will be harder. Product
managers and customers are now Product Owners. They are
responsible for managing the projects, Sprint by Sprint, to maximize
value and control risk. They are accountable to senior management for
the success or failure of the project. They are the single, wringable
neck. If members of senior management want to find out how a
project is doing, they will call the Product Owner. They will no longer
call engineering or a project manager.

Engineering is accountable for quality. The engineering organization is
responsible for figuring out how to build and deploy a quality
increment every Sprint. The quality will be the same as that needed in
the final product. The ScrumMaster will not allow them to lower quality
to increase productivity.

Compensation policies need to change. Scrum is about team heroics,
not individual heroics. The majority of the enterprise's bonus and
incentive funds need to be allocated based on the team's performance
rather than the individual's performance. If a team does really well,
reward everyone on the team.

Jobs will change. Some existing jobs will disappear, and people will
fulfill new roles. For instance, a project manager might become a
ScrumMaster. A functional manager will no longer have a function to
manage and might become a ScrumMaster or Product Owner. Career
paths become far less important than contribution to the team and the
enterprise.

Management's primary responsibility will shift from command to
servant leadership.[1] Managers are responsible for the performance of
their area of the enterprise. Their usual tactics are to direct and
command. They figure out what needs to be done and tell people who
work for them to do it. This hierarchically decomposes until the bottom
person is actually doing the work. With Scrum, management's
responsibilities remain the same, but the philosophy and techniques

change. Managers will lead and serve their staffs to achieve their
goals. They will remove impediments. They will guide, train, coach,
mentor, and get their people to do the best they can. Their role is very
much like a parent: to grow their people so that they are mature and
self-managing These attributes are best learned through study and
experience, not by being told what to do.

[1] James Autry, The Servant Leader (Three Rivers Press, 2004)

[1] James Autry, The Servant Leader (Three Rivers Press, 2004)

Management turnover will occur. Management is going to be asked to
go through significant changes. (See the change details in the
preceding paragraph.) They will do extremely difficult work over the
next several years. Some managers won't want to. Up to 20 percent of
them might leave as they find that they don't like the new way of
working and managing.

More people might not be the answer. When we want more work done,
we often hire more people. This is well documented as an ineffective
approach.[2] Adding people to productive teams or diluting the ranks of
existing skilled people by spreading them among new teams reduces
both measured productivity and quality. In my experience, Scrum's
self-managing teams generate at least 50-percent productivity
improvement in the first year of use, and more thereafter. Focus on
implementing Scrum, not adding more people.

[2] Frederick Brooks, The Mythical Man Month (Addison Wesley, 1995)

Caveats

You probably have tried to implement new processes before. Please
remember that Scrum is less a process than a tool for you to build
processes appropriate to your enterprise. Like any tool, there are right
ways and wrong ways to use it. Two caveats that you should keep in
mind when using Scrum are as follows:

Do not change Scrum. Scrum isn't a process that you modify to fit
your enterprise. Instead, it exposes every dysfunction in your
enterprise while you build products. It is your canary in a coal mine.[3]
Whenever people change Scrum, it's because they have run into a
problem, dysfunction, or conflict that they do not want to face and fix.
Instead, they change Scrum so that the problem remains invisible and

remains deadly to your enterprise. If you allow this to happen, you will
have just lost Scrum's primary benefit.

[3] Coal miners placed canaries in the mines they worked in because canaries are
more sensitive to carbon monoxide than people. When a canary died, it was time to
get out of the mine.

Do not wait. This book contains recommendations, such as starting
Scrum projects or having meetings. Do not wait to get things in place
before starting. Start immediately. Once you've started, the most
important impediments to remove are identified in the heat of the
moment—the impediments that you wanted to "get in place" prior to
starting. There is a tendency in enterprises to wait, to plan, to
overthink. Scrum forces you to act, to build things of value, and to
look in the mirror and see your dysfunctions. Acta non verba.

If you have thought about these changes, considered their impact on
your enterprise, and still want to proceed, the next chapters are for
you.

Chapter 2. Scrum qua Scrum
In this chapter:

Scrum Kickoff Meeting 11

You decided to proceed. Excellent! First, I'll describe the adoption
process. Then I'll describe the kickoff meeting for initiating it.

You use three types of Scrum teams to adopt Scrum. The first type is
a single Scrum team responsible for managing the adoption. This team
is called the Enterprise Transition team, or ETC. The second type of
Scrum team is responsible for doing the adoption work and causing
the enterprise to change. These teams are called Scrum rollout teams.
The third type of Scrum team builds products for the enterprise using
Scrum. They are called Scrum development teams. These teams are
fully described in the Scrum literature. All of these teams use the
Scrum process to achieve their goals. We'll cover the first two in some
detail in this chapter.

An enterprise's senior management is the ETC Scrum team. The most
senior executive in the enterprise is the Product Owner. A Scrum
Product Owner is responsible for directing the work of a Scrum team.
He or she does so from a list of work, the Product Backlog, that always
directs teams to do the highest value work next. This is the person
who can cut through organizational, departmental, and personal
conflicts for the good of the whole enterprise. The Product Owner's
stakeholders are everyone in the enterprise. The ETC team
ScrumMaster holds ETC together and keeps it going using Scrum. He
or she is the person responsible for the Scrum process being used
correctly. He or she must be a full-time, respected, and capable
person within the enterprise who has a deep knowledge of the
enterprise. He or she must have determination to make Scrum
adoption happen and an ability to work with people. The rest of the
ETC team consists of the heads of development, human resources,
administration, and finance. If this is an enterprise that develops
products and sells them externally, the heads of product management,
marketing, and sales are included in the team. If this is an enterprise
that uses the products internally, the head of the business units that
use the products and cause them to be built are included in the team.

The ETC Scrum team commits to a goal every iteration, or Sprint. The
team members then work with each other and do whatever is

necessary to reach that goal. The goal of the team transcends the
goals of any individual team member. Individual success of top
executives transcending team success can result in the failure to
change the enterprise. The ETC Scrum team can succeed in
transforming the enterprise through the use of Scrum only if its
members work together to reach the project goals. Change can't
happen without this type of teamwork, from the top management
levels of the enterprise through every Scrum team. Team members
need to trust each other to effect change, and they need to be ready
to openly have conflict to reach the best solutions possible. An
excellent primer for this type of team work is The Five Dysfunctions of
a Team by Patrick Lencioni (Josey-Bass, 2002). This book is an easy
read that I recommend for the members of any Scrum team, but
especially the ETC Scrum team.

A prioritized list of work that needs to be done drives the adoption.
This list is called the Transition Product Backlog (TPB). TPB is a type of
Product Backlog, but its product is a changed enterprise. TPB items are
defined by the ETC team and also arise from Scrum development
teams, as they encounter impediments. The highest priority item in
the TPB is to kick off some product development projects using Scrum.
Do this immediately, without any delay. The rest of the TPB is the
work required to adopt Scrum. Some of it rolls Scrum out to all
projects and programs. Some of it is organizational, engineering, and
product management changes. Some of it is the work needed to
remove impediments, resolve conflicts, and make changes.

The ETC Scrum team creates Scrum rollout teams to perform the tasks
related to the enterprise change called for by the highest priority TPB
work. Rollout team members might come from management or other
sources. Team members don't have to work full time on the rollout
team. However, their availability and competence will dictate the pace
of the Scrum adoption and enterprise change. Each team appoints its
own ScrumMaster. One member of the ETC team will be the Product
Owner for each team during each Sprint.

Figure 2-1 shows the organization of ETC.

Figure 2-1. Enterprise transition project organization

The ETC Sprints are two weeks long. At the start of a Sprint, a rollout
team selects high-value TPB items. The goal of the Sprint is for the
rollout team to remove these impediments and to create enterprise
change that optimizes productivity and effectiveness. These Sprints
are shorter than Sprints for Scrum development teams, whose Sprints
are normally one-month long. The shorter length allows the ETC team
to more closely monitor enterprise changes and their impact. Each
Scrum rollout team has a daily Scrum. The ETC Scrum team also has a
daily Scrum in which it provides guidance and help to the rollout
teams. ScrumMasters on development projects might also come to the
ETC daily Scrum to ask for help in removing important impediments to
their team's progress.

Scrum rollout teams can either be ongoing or formed by the ETC
Scrum team prior to a Sprint Planning Meeting. These rollout teams
meet with the ETC team at the Sprint Planning Meeting. An upcoming
rollout TPB is described, and the Sprint is started. High-priority TPB
items might have to be divided into segments so that they can be
done within a single Sprint. All rollout Sprints start and end on the
same day to synchronize the work involved.

A Sprint Review is held at the end of every Sprint. Tangible changes
are demonstrated. Sometimes a rollout team might have nothing to
demonstrate. This might mean that the wrong people were on the
Sprint or they weren't spending enough time on the problem. Possibly,
the problem was too difficult to solve as stated or in the current
conditions. If this is the case, the ETC team should restructure the
TPB, the rollout team, or both and then try again.

The Scrum adoption process is formally initiated with a Scrum kickoff
meeting.

Scrum Kickoff Meeting

A kickoff meeting initiates the Scrum adoption and the ETC project
that is responsible for its success. This meeting lasts three hours and
is attended by the probable ETC team members, as defined earlier. An
agenda for this meeting has the following items:

• Review Scrum Ensure that everyone present understands Scrum.
• Describe adoption process Management learns how ETC will work

and how it will cause the Scrum adoption to occur.
• Make decision Management at the meeting decides to proceed

with Scrum.
• Establish ETC Scrum team Formally define the ETC Scrum team

composition, meeting times, and meeting places.
• Kick off the first Scrum projects Identify the first Scrum projects

for the rollout. They should be numerous, be across the
enterprise, require rollout and integration, and place stress on
the enterprise. They will start building product immediately while
identifying impediments to product development.

• Establish initial Transition Product Backlog items Identify the
highest-priority work. These items usually include developing an
enterprise Product Backlog, developing and implementing
integration facilities, and selecting and training ScrumMasters.

• Identify Scrum rollout teams Identify probable team members to
be on the first Scrum rollout teams, and assign someone on the
ETC team to notify them of their participation and the meeting
schedules.

• Schedule the first Sprint Planning Meeting Set a date to kick off
the first Sprint with a Sprint Planning Meeting. Sooner is better
than later.

• Close the meeting

A more detailed agenda for a kickoff meeting is shown in Appendix C,
"Example Scrum Kickoff Meeting Agenda."

Chapter 3. The First Year
In this chapter:

The First Month 13

The Second Month 15

What If? 17

The Third Month and Beyond 18

We've looked at why and how to adopt Scrum for your enterprise. This
chapter lays out a probable timeline for the first year of the Scrum
adoption. The first month will be the most hectic, and you'll feel a
desire to wait until this is planned more thoroughly. Don't. The
problems that erode productivity and effectiveness in your enterprise
won't wait—they will continue to hurt. The adoption may not be
perfect, but it is self-correcting. And, while it perfects itself, the
problems are being addressed.

The First Month

The time has come to conduct the first ETC Sprint Planning Meeting.
The time and date for this meeting were established at the Scrum
kickoff meeting, described in Chapter 2, "Scrum qua Scrum." Since the
kickoff meeting was held, members of the ETC team have formed
Scrum rollout teams for the first Sprint. These teams and the full ETC
team participate in the Sprint Planning Meeting.

The Transition Product Backlog (TPB) presented at the first Sprint
Planning Meeting, which lists the first work to be done, will most likely
consist of at least the following items:

• Communicate to everyone in the enterprise why Scrum is going
to be used and how it will be rolled out. Communicate this often
and in every way possible (handouts, company meetings,
departmental meetings, and video conferences).

• Communicate how Scrum will affect the enterprise and the
people within it.

• Provide Scrum training to everyone in the enterprise, and inform
them the reason for the adoption, what is planned, and what is
expected of them. Emphasize that Scrum is not a new
methodology, but instead is a workout process to improve the
enterprise.

• Provide a way for people to ask questions and resolve issues
about Scrum and its impact on them.

• Establish preconditions that must be met before a project can
use Scrum. These preconditions can be separated into minimum,
median, and optimum phases so that projects can start prior to
everything being in place. Create TPB items to fulfill these
preconditions.

• Identify the first projects to use Scrum.
• Identify the Product Owner, ScrumMaster, and teams for these

projects. (All projects start with one team.)
• Define Scrum metrics and the mechanisms for gathering and

managing with them.
• Begin creating an enterprise Product Backlog.
• Identify likely ScrumMasters.
• Assess compensation policies to encourage teamwork.
• Define Scrum project reporting requirements.
• Establish a Scrum Center.

Some of these items are described in more detail in Appendix D,
"Initial Enterprise Transition Product Backlog."

The Sprint Planning Meeting lasts less than one day. It will be over
when, according to Scrum rules, the Scrum rollout teams have met
with the ETC Product Owner, selected and committed to a backlog for
the first Sprint, and figured out a plan (Sprint Backlog) for fulfilling
their commitments. Figure 3-1 illustrates the Scrum implementation
process.

Figure 3-1. Scrum adoption process diagram

The process shown in this figure will be used, Sprint after Sprint, to
adopt Scrum throughout the enterprise. The TPB will grow as the work
required to adopt Scrum becomes better known and as the
impediments and changes are identified. Depending on the
determination of the enterprise and the leadership from the ETC team,
the adoption will occur more or less quickly, and more or less painfully.
Scrum adoption is a project to change the enterprise's processes, the
people who use the processes, and the culture that surrounds the
processes.

An example of this is Ford Motor Company, which is attempting to
change its process for scheduling car manufacturing. Leading the
project is Mark Fields, who understands the difficulty of implementing
change. Mark had a sign created and placed in Ford's Way Forward
war room on which is written: "Culture eats strategy for breakfast."[1]

[1] Wall Street Journal, January 23, 2006

The adoption has started. The first rollout Sprints are underway.

The Second Month

By the start of the second month, many new Scrum development
projects have been started. A deadly sin is to put off starting projects
until they are perfectly staffed, formed, and planned and have a
Product Backlog in place. Immediately start the first Sprint for the
projects most important to the enterprise. Suddenly, product
increments are being built by Scrum teams. At the same time, every
reason that you had for not immediately starting the projects can be
identified as an impediment. Put these impediments in the ETC
Transition Product Backlog, and fix them. Meanwhile, the Scrum
development teams are building software. Never wait for perfection;
you can be adequate and still use Scrum. You won't necessarily have
everything perfectly in place, but that's OK because you don't know
what this journey consists of and where it will take you. But you'll be
well armed because you are using Scrum to guide your journey.

The ScrumMaster is responsible for removing or fixing anything that
makes his or her team less productive than it could be. Some of these
things can be fixed by the ScrumMaster. But the ScrumMaster might
not have the authority, knowledge, or scope to fix others. The
ScrumMaster takes such problems to the ETC team's daily Scrum.

There, the impediments are either quickly resolved or are put in the
TPB for prioritization and later resolution. The unresolved impediments
noted by the ScrumMaster are placed on the TPB along with those
uncovered by the ETC team, as shown in Figure 3-2. While teams are
using Scrum to build products, ETC is directing the work that will make
them more productive.

Figure 3-2. Scrum rollout

As the enterprise uses Scrum to build products, conflicts arise between
current practices and the way Scrum works. Scrum is a highly
optimized process for developing products, with a side benefit of
making visible anything that gets in the way of doing so. Scrum
exposes every dysfunction in the enterprise. Most of these are known
and old culprits that have been tolerated. Now they are glaringly
obvious and must be removed. These conflicts are put in the TPB.

The TPB frequently changes as new challenges and unexpected work
are encountered. The ETC team continually reviews and reprioritizes
the TPB to reflect these changes. It forms and reforms Scrum rollout
teams every Sprint to do the next priority in the TPB—this is the
process of adoption.

Sources of Transition Backlog Impediments

Many enterprises use the waterfall process to build products. In this
process, requirements are thoroughly gathered at the start of the
project. These requirements are progressively decomposed into
architectures, designs, code, tested code, and documentation. Each

part of the decomposition is done by experts in that function. The work
of one function is communicated to another through documentation
and artifacts. One would think that waterfall habits would be only in
the development organization. However, waterfall habits form
everywhere in an enterprise. Customers are accustomed to the
waterfall approach of development. The human resources department
is accustomed to setting up career paths and job descriptions that
match waterfall processes. Finance is used to funding and monitoring
waterfall projects. As you use Scrum, the differences between Scrum
philosophies, practices, and habits and those of the waterfall approach
will create conflict. The way people think about and do their work will
have to change.

These impediments never stop arising. As top-priority impediments are
fixed, new impediments become visible. As people come and go in the
enterprise, new impediments arise. As market needs change or any
other stress hits the enterprise, new impediments become visible and
hurt productivity.

The following list describes some ways to identify impediments on an
ongoing basis:

• Brainstorming Get any group of people in a room. They can
readily identify current problems. This is true for senior
managers, middle managers, project managers, and developers.
The things that are wrong prior to using Scrum will also be
wrong when Scrum is used. The difference is that the wrong
things will be more painful, difficult, and frequent because they
run counter to Scrum practices. For instance, if there are more
active projects than developers, it will be very difficult to form
full-time Scrum teams. To solve this particular problem, start
only Scrum projects to which people can be assigned full time.

• Scrum Development Projects When a Scrum development
project is underway, the team and Product Owner will run into
impediments. These impediments are reported to the
ScrumMaster at least as often as the daily Scrum planning
session, the Daily Scrum. If the ScrumMaster or team can't
resolve these problems on their own, they will be put in the TPB
to be solved.

• Conflict When Scrum projects get going, conflict occurs as
people and organizations disagree on the best way to do their
work. If not rapidly resolved, conflicts become conflagrations
that destroy productivity. For instance, if an analyst is
accustomed to always writing a specification and giving it to the

programmer to code, this might no longer be needed or
productive when they are members of the same team.

What If?

The Scrum adoption project, led by the ETC team, might encounter
impediments in its operation and its Scrum rollout teams might fail to
deliver committed changes. Sometimes this is because the rollout
teams don't consist of the right people. In these cases, you should
inspect team composition. Is there adequate authority and domain
knowledge on the team? Do people know how to go about the work?
Sometimes people on the Scrum rollout teams are delegating the work
to subordinates or aren't participating at all. They feel that the change
is then someone else's problem. However, the people on the Scrum
rollout teams commit to making change. They are the ones who do the
work to bring about the change, and they cannot delegate that work to
anyone else or blame anyone else for the commitment not being met.
If they aren't willing to do the work, they aren't the right people to
have on the team. Remove them, and reformulate the team with the
right people.

Maybe the change targeted by the Sprint is too big. If this is true, ask
the rollout team to deconstruct the change into actionable pieces.
Then have the team select a TPB item and initiate another Sprint.

Sometimes, there are too many important changes to be made. This is
the same problem that many Product Owners have: too much work
and too little capacity. Focus first on prioritization. Are the most
important things being done first? Then focus on team composition. Is
there a way to add productive people to these teams? Then focus on
progress. Even though there are still many things to improve, look
back and savor the changes already made. Then exercise patience and
restraint. It took years to build these impediments, bad habits, and
dysfunctions. It will certainly take years to remove them.

Regardless of which impediments you encounter, keep pressure on the
rollout teams to deliver. Posting the TPB where it is visible to the
entire enterprise helps. Under mounting pressure, teams will
reorganize to become more productive.

The Third Month and Beyond

Take a step back and look at all the things that aren't going well; look
at all the problems that you and your enterprise are struggling with.

Separate these problems into two columns: problems that Scrum has
brought in, and problems that always have been there and Scrum is
highlighting. In most adoptions, the second column contains almost all
the problems you are struggling with.

Scrum affords complete transparency. Everything is visible. You are
made fully aware when the productivity, the progress toward goals,
the competence of people to do their jobs, the willingness of people to
work together toward enterprise or project goals, and the ability of
engineering to build completed products on time is less than you
desired or expected. Before you started adopting Scrum, you might
have suspected what the problems were that undercut these intangible
enterprise assets, but now it's obvious that these suspected problems
are reducing your enterprise's ability to build and deploy competitive
products.

At this point in the adoption cycle, many people in your enterprise are
probably advising you to change Scrum because it needs some
tweaking to be compatible with your enterprise. My advice is this:
Don't Do It. The rules, roles, and time-boxes of Scrum are few and
simple. The practices and structure of Scrum uncover problems that
are sometimes ugly and difficult to solve. The normal tendency is to
change the aspect of Scrum that made the problems visible. Everyone
will then feel better and can proceed with their work just as they
always have. Unfortunately, if you change Scrum, the very reason why
their work is less productive than it could be will again be obscured.
Whenever I visit an enterprise that is adopting Scrum, I look for these
deviations from standard Scrum practices. In every instance, I have
found an enterprise problem that everyone wanted to continue to
ignore.

As changes are made by the ETC team, accommodations between old
ways of doing business and the new might be sought. For instance,
some parts of a project might still be using the waterfall process while
other parts are using Scrum. However, care should be exercised to
ensure these accommodations are temporary and don't become a
permanent way of doing business.

Some enterprises have thought of modifying Scrum terminology to be
more compatible with the enterprise's current practices. The hope is
that the impact of the change can be softened. Unfortunately, what
usually happens is that everyone in the enterprise sees this as a signal
that the inclination to change isn't a serious one. For instance, if
ScrumMasters are still referred to as a Project Managers, they will

usually continue to believe that they are responsible for the success of
the project and have authority to tell people what to do. The
terminology of Scrum is abrasive to standard terminology and unusual
so that everyone knows that a change is underway and that things are
going to be different.

Some problems might require changing the way the enterprise does
business. For instance, sales people might be accustomed to asking
engineering people to whip up a quick prototype to help close a sale.
This always seemed to work and not bother anyone. With Scrum,
however, you can clearly see the impact of this approach on a project's
progress at the Sprint Review. Because of the extra time and effort
needed to fulfill off-the-cuff requests, the team probably won't finish
everything that it committed to. You might have to come up with
another mechanism for accommodating these sales requests. Now that
you can quantify the cost to the enterprise of the interruption, you
might even want the sales people to cost-justify prototypes in terms of
costs, anticipated benefits, and probabilities.

Solving some of these problems requires more than one attempt.
Scrum makes it obvious when a solution to a problem isn't perfect or
when a problem changes and a solution needs to be rethought. Don't
try for perfection in a solution; "good enough" is truly good enough to
set the enterprise in the direction of perfection.

You and your management team will have to plot and scheme to come
up with the best tactics. Exercises that help people understand the
reasons for or benefits of a change to their daily work often help.
Visiting other people or enterprises that have successfully adopted
Scrum is often enlightening. You might need to devise and adopt
metrics to encourage and track change. Be careful for unanticipated
consequences these metrics might have on other areas, though. Your
tactics will not always work. Expect that you will need to make many
attempts. Expect that the solution might take some time to emerge.

The remainder of the book will provide you with some insights, tactics,
and further information for adopting Scrum. As you have already
realized, this adoption is really about optimizing your enterprise, and it
will go on forever.

Chapter 4. Against Muscle Memory—The Friction of
Change
In this chapter:

Waterfall Thinking 21

Command and Control 23

Commitment to Defying the Laws of Nature 24

Hiding Reality 26

Summary 27

If you find yourself saying that your group's developers have satisfied
over 29 percent of their customers with successful projects,[1] they are
probably relying on best practices, outstanding skills, cutting-edge
quality, and a legacy of habits that form intellectual muscle memory.
Muscle memory is a deep habit our muscles develop by working
together. When the enterprise uses Scrum, the developer's muscle
memory is inappropriate and damaging.

[1] Jim Johnson, My Life Is Failure, The Standish Group International, Inc., 2006,
p. 2

Expect muscle memory to exert itself. When a project is going well,
everyone is happy with Scrum. However, when stress, a problem, or
an unexpected failure occurs, everyone tends to throw away Scrum
and revert to their muscle memory. Teams don't want to self-manage.
They want to be told what to do. Managers don't want to let teams
self-manage. They want to command the teams in all matters, down to
the minutest detail. Teamwork is dumped for individual heroics.
Quality is abandoned. Everyone draws on what they think has worked
best in the past.

Four major muscle memories hinder Scrum's potential to effect
change. They undercut the effort to build products better. Let's look at
them.

Waterfall Thinking

The waterfall process emerged from project managers' wishes to
overcome complexity with predictability. It has been the predominant
development process used over the last 25 years. Waterfall is taught

in universities, it's described in most process books and other
literature as the correct approach, and the Project Management
Institute has formalized it. Every project manager knows waterfall
deep in his or her bones and feels it is correct. Habits accrued from
waterfall development are embedded in enterprises. I call this "the
tyranny of waterfall"; it is inescapable. Even people who don't know it
as the waterfall process think of it as the "right" way or "the way we've
always done things."

When some people are asked to use Scrum, they are profoundly
uncomfortable. It goes against the grain and feels risky. They reply,
"Yes, but..." because their trained response is to prefer the waterfall
practices. For instance, requirements are handled very differently with
Scrum. About 50 percent of a typical project is spent developing
requirements, architecture, and design. During the same project, 35
percent of the requirements change and over 65 percent of the
functionality described by the requirements is never or rarely used.
Regardless, in waterfall, all requirements, architecture, and
infrastructure are fully detailed before the team builds functionality.

Scrum views requirements and architectures as inventory. Inventory is
a liability because if some requirements change or aren't used, the
time spent to understand them or design for them is a waste. The
Product Backlog, which lists the requirements of Scrum, only has to be
defined in time for a Sprint Planning Meeting; the work to fully
understand it is performed only as the Sprint that transforms it into
product occurs. Requirements are developed and architecture emerges
in the Sprint for which the Product Owner requests them. To someone
steeped in waterfall thinking, this practice is imprudent, risky, and
reckless. To develop code from incomplete requirements, they know, is
just asking for trouble. A waterfall architect told a Scrum architect that
the only way to build a solid architecture was to think it through up
front, before any code was built. The second architect said he thought
that building it as requirements emerged might create a more stable
architecture because it would be proven, piece by piece.

Let's look at the implications of another waterfall habit, functional
specialization. The Product Owner discusses the Product Backlog with
the Scrum team. Together, the team members discuss the
requirements and create designs, code, tests, and documentation. A
waterfall traditionalist believes, however, that only a designer can
design, only a programmer can code, only a quality assurance (QA)
person can test, and only a technical writer can write documentation!

I was attending a Sprint Review Meeting. The Scrum Team had
selected five items from the Product Backlog for the Sprint. Only one
item was finished. The team members said that the QA (testing)
people on the team hadn't completed their testing. However, a Scrum
team is cross-functional. The entire team is responsible for building
completed pieces of functionality every Sprint. It wasn't the QA people
who didn't finish the testing—the Scrum team didn't finish the testing.
Scrum counts on everyone chipping in their best effort to do the work.
When functional expertise is necessary, the people with those skills
take the lead, but anyone can do the work.

Trey Research (TR), our first hypothetical company, develops acoustic
products. TR was ready to introduce a new radio. Thousands were in
the warehouse ready for shipment. Dr. Trey is the founder and CEO.
As Dr. Trey read the user manual in his office, his frown got deeper
and deeper. Finally, he called the technical writing manager, Matthias
Berndt. Dr. Trey said he was very disappointed in the documentation;
it was unusable. Berndt agreed, but said that it accurately reflected
the way the radio worked. Dr. Trey kept his calm as he asked Berndt
to go to the warehouse, open a radio box, and see if it worked the way
the user documentation indicated. Two hours later, Berndt appeared in
Dr. Trey's office with an open box and the user manual. Berndt said,
"Much as I hate to say this, Dr. Trey, the manual accurately reflects
the radio's operation."

Dr. Trey lost his temper. He asked Berndt how he could have let such
a terrible radio be built. Didn't Berndt know that the radio was
unacceptable? Berndt agreed, but he said that he had nothing to do
with the radio until after it was built. Dr. Trey grew even more
troubled and asked, "You mean, even though you've worked here 23
years and know our radios inside out, you don't have anything to do
with their design? You only document them after they are built?"
Berndt confirmed this. This dysfunctional approach was the impetus
for TR to adopt Scrum. Now everyone on a cross-functional team at TR
designs the radios. Dr. Trey knows that if the radio's design doesn't
meet the approval of the engineers, technical writers, and testers, it
shouldn't be built.

Command and Control

Workers are best able to figure out how to do their work, not their
managers. The work is complex and has unexpected nuances. If
workers are bound by someone else's instructions, they aren't free to
do the work the best way possible.

Attendees at the Certified ScrumMaster class examine the productivity
of self-management through an exercise. First, a contained space of
approximately 400 square feet is established. Chairs, tables, and other
obstacles are liberally sprinkled throughout the space Everyone is
placed in a pair, each pair consisting of a boss and a worker. The
exercise is for the bosses to get their workers to take 60 full steps in
two minutes using the commands of start, stop, left, right, faster, and
slower. At the end of two minutes, about 50 percent have gone 60
paces. The rest have gone fewer paces. In the second part of the
exercise, pairs are broken up. Everyone is a worker who manages his
or her own activities. Each is free to use the previous commands or
come up with more appropriate commands. Everyone is asked to take
60 full steps and then stop. Everyone is done within one minute. The
self-management of the second exercise has doubled productivity. And
because managers are now also workers, productivity has quadrupled.

Certified ScrumMasters know that self-managing Scrum teams are
more productive. The front 10 percent of their mind is sold on self-
management. But the back 90 percent knows that they are still in
charge. If anything goes wrong, they will step in and tell the team
what to do. We have been trained that this is the best way to
absolutely make sure things go right. The command and control habit
is very difficult to discard.

It takes time for Scrum teams to gel and start performing. Some
teams require more support than others. The ScrumMaster is
responsible for teaching self-managing teamwork to the team. For
instance, if the team comes to the ScrumMaster saying, "This Product
Backlog item is too large for one Sprint! What do we do?", it isn't told
the answer. Instead, the ScrumMaster leads the team through the
process of figuring out how to deconstruct the backlog. The
ScrumMaster teaches; the team learns and finishes the exercise. The
next time a similar situation arises, the team will know how to act
independently. The moment the ScrumMaster tells the team what to
do and how to do it, he or she exerts command and control. In
command and control, the ScrumMaster believes he or she is
responsible for productivity and problem solving. In self-management,
the manager thinks that he or she is responsible for teaching the team
self-management and problem solving.

One project that I initiated included more than 50 developers. New
development had to be done in conjunction with maintenance of the
existing system. A reasonably good Product Backlog was in place. I
spent several days reviewing employee files and resumes, as well as

talking with the managers, trying to decide the best team composition.
After those several days, I had a headache. So I called all the
developers into the room. The Product Owner reviewed with the
developers the upcoming project and the Product Backlog. I described
the rules for composing Scrum teams and determining their size. We
then asked the developers to organize themselves into teams. We told
them the teams didn't have to be permanent but they should give it
their best shot. Within four hours, they had formed their own teams.
The teams created agreements among themselves about how the
teams would cooperate. During the next Sprint, several team
members shifted to other teams. At the end of that Sprint, the
developers told us they were pretty happy with the team composition.
They asked if they could continue to change as needed, however. We,
of course, gave permission—we didn't have any better ideas!

Commitment to Defying the Laws of Nature

I live in Boston and frequently work in New York City. In just 45
minutes, the Delta Airlines shuttle can take me from Boston's Logan
Airport to New York's LaGuardia Airport. I sometimes pack more than
one meeting into a day because of this convenience.

One day, I was up first thing in the morning and down to New York for
a meeting. I got back to LaGuardia by 2:00 P.M. to catch the 2:30
shuttle to Boston. I had an end–of-day meeting in downtown Boston at
4:30 P.M. This schedule would have worked, except LaGuardia was
fogged in and all the afternoon flights were delayed or canceled. I
went over to the Hertz counter. I told the Hertz clerk that I needed to
be in Boston in 90 minutes and wanted a car. She looked at me
strangely. Apparently, my need couldn't be met. The laws of the road,
the top speed of the cars available, and the distance between Boston
and New York City made my requirement pitiable and impossible to
satisfy. The laws of physics thwarted my wishes.

Now consider a Product Owner at TailSpin (our next hypothetical
company) who has met with her Scrum team prior to the first Sprint.
She handed out a presentation with 12 bullet items. She told the team
the 12 items had to be done and the release needed to ship within six
months. The team looked blankly at the Product Owner and told her
that, even without knowing more details about the project, it was
impossible to do. The Product Owner answered, "If we don't deliver
these features by then, we cannot sell the product, so it has to be
done." Just like me in New York, this Product Owner needed something
that wasn't possible.

Business runs on commitments. When you make a commitment to
someone else, you have given your word. The other person arranges
his business accordingly, counting on you to do what you say. This
understanding is based on trust and is a tremendous source of
efficiency. Let's give ourselves a short test on commitment. Read the
following exercises and see if you can commit to fulfilling the other
person's needs.

• Someone asks you to commit to having some item built for
them. She asks you for the date on which it will be finished and
for the price that it will cost. You spend some time with her
trying to understand exactly what she wants, but the details are
elusive. Also, you are going to have to handcraft this thing. You
aren't sure of the exact skills of your workers or their
availability. Also, the flu has been sweeping the town, and it
could hit your team. The technology for building this item has
worked so far, but a new release is coming out with mixed
reviews. The person asking for the commitment also tells you
that she might need to change some things along the way. Do
you commit?

• Someone tells you that he wants a product by a specific date.
You must do this thing because he has already committed the
product by this date to somebody else. He wants you now to
back up his commitment with your commitment. You aren't sure
exactly what the whole commitment is, but the other person has
power over your career and salary. Do you commit?

Of course, it is impossible to openly commit in either circumstance.
You just don't know. You might feel that you have no choice but to
commit in the second instance, but you had better have some tricks up
your sleeve in case you get in trouble.

Pressuring someone to commit to an outcome regardless of what he or
she believes is possible is a bad habit. If the person under pressure is
honest, she won't promise anything. If she is cornered, she might
make an undeliverable commitment. Neither alternative—a lack of
commitment or a false commitment—is helpful if you need something
to happen. Our muscle memory tells us that we can ask our
engineering team for a commitment. The engineering team's muscle
memory is to provide one, regardless of the circumstances. Where the
waterfall process is in vogue, we have no choice but to do so. But we
have other options when Scrum and iterative, incremental processes
are used. These Scrum alternatives are presented in depth in Chapter

9, "The Relationship Between Product Management/Customer and the
Development Team."

Hiding Reality

Our next hypothetical company is Coho, one of the largest resellers of
cars in Europe. Senior management was rolling out Scrum to improve
its ability to introduce new capabilities to customers. In the first Sprint
of the first project, the Scrum teams delivered more functionality than
they had committed to. Everyone, from senior management to the
customers, was excited and pleased.

For the second Sprint, the Scrum teams committed to a large amount
of Product Backlog. Two weeks into the Sprint, the teams realized they
were in trouble. When the teams got together, they all had the same
story: the functionality was significantly more complex and difficult
than the first Sprint. Of the 24 pieces of functionality the teams had
committed to, they figured that they might complete 7 or 8. After the
way everyone had cheered them on at the first Sprint Review, they
feared what would happen if only 33 percent of their second Sprint
were done. The teams decided the only way they could deliver
everything was to drop testing and refactoring; they would just slap
the new functionality on top of the old. They figured that by
committing to far less for the third Sprint they would have time to go
back and fix it all.

One of their ScrumMasters asked them what they were doing. The
ScrumMaster realized that Scrum is about empirical progress and
transparency, so the Product Owner always knows what is going on
and can make the best decisions. Wasn't the approach the team
decided to take hiding things from the Product Owner? Weren't they
pretending that things were done when they weren't? The teams, after
expressing their fears that the Product Owner might fire all of them,
went to the Product Owner and showed him where they were and what
problems they were running into. The Product Owner looked at them
and said, "I knew you overcommitted. I was going to ask you what
was going on. I hoped maybe you knew something that I didn't. Well,
I'm really glad you came to me." The Product Owner and teams
reduced the commitments to match their new findings and proceeded,
Sprint by Sprint, to build a great new system.

When I discuss this kind of fear at courses I teach, the attendees' own
fear is palpable. The soon-to-be Scrum users don't think that
transparency, or truth, is acceptable where they work. They tell me

that they will be fired if they tell the truth. Truth isn't what their
customers want to hear. They tell me their customers will find
someone else who will lie to them if they don't. I have seen this in
class after class for five years. People in product development think
that their customers want to hear news only if it is good news and
would rather hear a lie than the truth. "Lying" is a harsh word. But
what else do you call saying that something is true when you know it
not to be true? What else do you call misleading someone with
information or holding back information that would have led them to
better decisions? The Product Owners want to believe in magic, and
the developers support the belief by lying. "Can you do this project by
this date?" "Sure, no problem."

The developers are aware of the complexities that cause changes to
their original estimates. They are aware that the customer is unhappy.
If a project manager is approached by a customer 60 percent of the
way through a project and asked how the project is going, the project
manager doesn't really know. She knows that some things are going
well. She also knows that some things are not going so well. She also
knows that she hasn't checked up on some things that could prove
critical. However, saying "I don't know" is unacceptable, so project
managers have learned to say, "Right on," "Right on target," "Piece of
cake," or anything equivalent that will get the customer to go away
and leave them to try to get everything on time, on cost. Basically,
they lie. It is simpler than exposing all the nuances and complexities
that add up to "I don't know."

Project managers might also believe that lying saves time. But
because Scrum relies on transparency, misrepresentation undercuts
the entire application of Scrum. If the Product Owners do not know
exactly where things stand at any point in time, they will be unable to
make the best decisions possible about how to achieve their goals.
They need the best information possible, whether they view it as good
or bad.

Summary

The iterative, incremental nature of Scrum causes change within the
enterprise. The enterprise must adapt to monthly project changes, not
just change at the very end. A project produces potentially usable
increments of the whole system every month. Teams produce
complete pieces of that increment daily. This frequency of completed
work causes change.

Dysfunctional behavior that was hidden becomes visible. Problems
caused by the dysfunctional behavior are magnified. As you solve the
dysfunctional behavior, don't think that the solution is complete. For
25 years, every habit described in this chapter has provided better
solutions to people in your enterprise than anything else has. Now
these people are going to try something better, something that even
feels right. But when the problems of product development and
management arise, your people are going to feel naked. They haven't
accrued muscle memory in these new ways yet. So, because it feels
safe—just for now—they return to these habits, the old-reliable habits.
Your enterprise and its people will take four steps forward, three steps
back, two steps forward, one step back. They will continually progress,
but they will bemoan their inability to ignore and transcend old habits.
Scrum, however, won't them let ignore the consequences of these
habits.

Chapter 5. Enterprises in Transition
In this chapter:

Contoso 29

Humongous 32

Woodgrove Bank 35

Litware 37

Enterprises that see value in Scrum decide to move forward. This
chapter presents cases of companies that have moved forward with
Scrum. (I have changed the real names of the companies and people
involved to fictitious names.) These were courageous enterprises,
motivated by insight and need. No enterprise in its right mind would
wholeheartedly start using Scrum otherwise. Adopting Scrum in an
enterprise is like looking into the abyss, girding oneself for an epic
journey, and then making the plunge. What will be discovered and
have to be conquered is different in each enterprise; what is common
is the courage to start and then persist. Most enterprises that have a
compelling need to change take the easy way out—they hire
management consultants, buy another business to distract
themselves, or reorganize. Scrum is soul-searching by examining
failures and dysfunctions, not based on philosophical whim. It is a
perilous journey, but probably the only one worth making, because it
is the serious business of self-improvement. It is taking a hard look in
the mirror every day, every month, and doing something about what
one sees.

Every enterprise that uses Scrum plots a different course. The people
are different. The problems are different. The urgency of the problems
is different. The only commonality is Scrum as a tool for change. We'll
look at enterprises I've had experience with to illustrate some lessons
that can help your enterprise effectively implement Scrum. In all of
these examples, the companies saw value first and then plunged into
Scrum adoption.

Contoso

Contoso builds value-added card products, such as gift cards issued in
various dollar amounts. Customers include retailers, banks, insurance
companies, and malls. It has a sophisticated core system, featuring a
value-added card template that lets customers define the specific

features of their value-added card. The developers at Contoso
customize the template to uniquely brand and sell the cards to
consumers. Contoso's ability in the past to rapidly create sophisticated
products had made it a marketplace leader. For instance, if your
company wanted to sell someone a value-added card that let them buy
only certain products made by specific manufacturers during a certain
date range, Contoso could easily handle this. The value-added product
would be specified, and a fixed-price, fixed-date contract would be
signed between your company and Contoso. The project to develop it
would typically last four or so months. Contoso's business model is to
at least break even on these projects. The profit is generated by the
transaction fees collected when consumers start using the value-added
cards.

Situation

Contoso customers were angry. A significant number of projects to
build customized value-added cards were late or didn't deliver exactly
what the customer wanted. The project team would look at the
specifications in the contract, work with the account manager for that
customer, and develop what it thought was correct. The newer
contracts had some sophisticated features requiring changes in the
core product, which often took longer than the contract allowed.
Everyone worked a lot of overtime, over and over, to minimize the
damage. However, the damage was accumulating. An increasing
number of customers were unhappy. Staff turnover at Contoso was
nearing 50 percent per year. An employee survey of the development
organization indicated that only 15 percent of employees were pleased
to be working there.

New challenges arose. Existing customers envisioned more products
for the upcoming holiday season; they insisted on putting severe
penalties for late delivery into the contracts because these products
were useless if delivered after the holidays. A further challenge was
that success with one value card in one marketplace caused everyone
else to want to provide a card with even more sophisticated
functionality. Contoso was overwhelmed. The number of new contracts
far exceeded its capacity to deliver. Contoso's development
organization couldn't keep up. Contoso's success was in danger of
unraveling. Competition arose as Contoso struggled to meet its
commitments.

Experienced developers were burnt out and leaving. Contoso couldn't
hire and train new developers fast enough to meet the demand.

Contoso investigated the possibility of using offshore development
organizations to add just-in-time capacity. The vision was to train key
people in an offshore company, and they would then train the rest of
their organization. As volume rose, the offshore organization would
supply more and more people until demand was met. It was a perfect
solution—extensible resources on demand. Except, it didn't work. The
offshore companies took too long to come together, and it was difficult
to synchronize changes to core functionality. Even more chaos and
dissatisfaction ensued.

Application of Scrum

Senior management at Contoso had read several papers about Scrum
and were hopeful that it would help. Their back was against the wall,
and they were ready to try anything. As they said, it couldn't get any
worse.

Contoso had a mature process improvement organization. It had
previously performed a value-chain study, which is a Lean Thinking[1]
practice that identifies wasteful practices, on the customer change
request process. Over 30 steps for handling any change request were
identified. They simplified the process to five steps.

[1] James P. Womack and Daniel T. Jones, Lean Thinking (Free Press, 2003)

In an appalling move contrary to everything that I've ever said,
Contoso adopted Scrum whole hog. Within two weeks, the process
improvement organization had converted all existing work to Scrum. It
formed new Scrum teams, appointed ScrumMasters, and found
Product Owners. It gave overview courses. There were 29 new Scrum
teams, 29 new ScrumMasters, and 29 new Product Owners.

The process improvement organization was a top-down, command and
control, metrics-driven group. It implemented metrics to monitor the
progress of Scrum projects. The VP of the process organization met
daily with all senior management to review impediments, progress on
contracts, and trends in the metrics. Problems were really, really
transparent. Fixes were rapidly devised and deployed. Plus,
productivity more than doubled within the first three months of
adopting Scrum.

Outcome

An employee survey after just two months of using Scrum showed
over 85 percent of the employees pleased to be working at Contoso.
Employees were even recruiting their friends. More products were
being completed on time with the functionality the customer needed.
Many customers were shifting from punishing fixed-price, fixed-date
contracts to short, two-page time and material contracts. The
customers felt so in control of the product development and the risks
involved that they trusted their ability to stay in charge of the
development. The customers would "hire" a team for six months to
build the product they envisioned. If the team got done earlier, the
customer would have the team return for the next product. One
customer had a fixed-price, fixed-date contract that called for delivery
within six months. When Contoso delivered in six months, the
customer wasn't ready for the product. The customer had hedged its
bets, assuming that Contoso would probably be late.

Additional Comments

Contoso became the marketplace leader for value-added cards,
outperforming all its competitors. Its accomplishments attracted the
attention of a much larger financial products company, TailSpin.
TailSpin saw two opportunities. Contoso would fit nicely into its
portfolio. Also, TailSpin was having increasing trouble building its own
products. Its management hoped to learn from Contoso expertise.

Contoso was a piece of coal that became a gem, and it was then was
acquired by TailSpin and turned into coal dust. TailSpin thought of
people as resources to solve problems rather than people to be
enabled. Because TailSpin viewed its employees as plug-and-play
components, the company tried mixing in cheaper offshore "resources"
on projects. Productivity was cut in half, quality dropped, and
communications with the offshore vendors went bad. Customers went
from joyously managing time and material contracts to again
demanding fixed-price, fixed-date contracts.

In one telling episode, TailSpin misinterpreted the idea of collocated
team space. TailSpin thought collocation was to save money, so it
collocated the entire development organization in one room. Desks
were pushed next to each other in rows until over 200 developers
were crammed into one room. The developers called this a
Scrumeteria, since it reminded them of a high-school cafeteria.

People make Scrum work. They are presented with problems, they
make commitments, and they creatively excel in solving the problems.
Scrum happens bottom-up. But if top management doesn't understand
and lead, the enterprise will not be able to sustain the productivity and
creativity provided by its employees.

Humongous

Humongous is one of the nation's largest bank-based financial services
companies, with assets of approximately $96 billion. It provides retail
and commercial banking, consumer finance, and investment banking
products and services to individuals and companies.

Situation

Humongous' Information Technology (IT) organization consists of over
1,000 people with a new development budget of over $100 million.
The development organization had trouble reliably delivering systems
that satisfied its internal customers. As a remedy, the Senior VP of
development acquired and rolled out a major, modern methodology,
Really Improved Process (RIP). Its rollout was planned and executed
by the Software Development Support Center within two years.
Unfortunately, nothing improved and the internal customers remained
unhappy. As a next step, the Senior VP met weekly with each project
manager in his conference room to review key project metrics. Project
managers realized that any slips could result in career damage.

The Senior VP was replaced by Mark Bebbington, a seasoned
professional who had successfully used Scrum on many critical
projects. He summed up the situation by noting that the users hated
IT. Users had turned to buying packages. Mark decided that Scrum
was appropriate at Humongous. Scrum's philosophy of personal
accountability and empowerment with creativity were needed.

Application of Scrum, Phase 1

Mark didn't "roll out" or "implement" Scrum. He understood that it isn't
a methodology. People have to want to use it for their projects to be
successful. Mark decided that he would use the "osmosis" approach.
He focused only on projects where both the user and the project team
wanted to use Scrum. Their successes would become visible and
others would follow. Mark provided Scrum training to his management
and to project managers and users who expressed interest. He also

trained the Software Development Support Center so that it could
support any project that decided to use Scrum.

At the same time, Mark decided to make Humongous a more
hospitable place for software development. He started removing any
outstanding problems or impediments. He initiated a transition Scrum.
His management listed and prioritized the major problems with
software development at Humongous. This list became the transition
Product Backlog, with Mark as the Product Owner. He then started
Sprints, staffed by his entire management team, to remove these
impediments. As impediments were identified in Scrum projects, they
were added to the Product Backlog. Creating these transition Scrum
teams became on ongoing process.

Mark also set preconditions for any project that wanted to use Scrum.
For instance, a project had to have a full-time staff, a committed
Product Owner, and a willingness to use collocated space. When a
project met these criteria, the Software Development Support Center
trained and supported it.

Outcome, Phase 1

After 18 months, several critical projects were vividly successful using
Scrum. A new system for all Humongous tellers had even been
presented to the Board of Directors. It was an impressive model of
development and user collaboration.

However, Scrum's roots weren't very deep at Humongous. The skill
level of most developers was low with regard to Scrum. Although the
developers were using the vocabulary, many thought that attending a
Daily Scrum was what Scrum was all about. Then they would tell
others that they were "Scrumming." Many customers hadn't bought
into Scrum. They still liked giving their requirements to development
and not having any more responsibility for the project. IT management
also largely hadn't bought into Scrum. They mouthed the words and
said the right things. But they continued to behave as they always
had. To paraphrase their attitude, "I really know how to manage, and
I'm going to stick with what has worked before."

Despite top executive support within the IT organization and a fertile
environment, Scrum had not become the normal way for software to
be developed within the company. Most employees were still
comfortable with their jobs and the way things had always been done.
They saw Scrum as something that would pass, just like all the other

novel approaches seen over the years. However, whenever a customer
had a critical project, the customer was demanding that the
Humongous development teams use Scrum. These projects set a
benchmark within the user community for anyone who had an urgenct
request and cared to devote time to it.

Situation, Phase 2

In this phase, Mark now has some capital to work with. Some users
are extremely pleased with IT. The attitude of the Board of Directors
has become positive. Some developers are very productive and work
to make their users happy with the best solutions possible. Everyone
knows Scrum, and the vocabulary is widely used. The question Mark
now faced is how to use this capital of goodwill to expand the
beachhead.

Application of Scrum, Phase 2

Mark decided to shift from osmosis absorption of Scrum to something
more dramatic and visible. Mark's organization supports five major
groups within the bank. Henrik Jensen is the head of one of these
groups, consumer banking. He decided that he had enough evidence
to require all his people to use Scrum. Mark talked with the head of
Henrik's IT group. He agreed to go from cosmetic change to real
change using Scrum to do all of Henrik's projects.

To make this change happen, Mark and Henrik got everyone together
and set the ground rules. Everyone was expected to use Scrum fully,
and overall results were expected to improve. The Software
Development Support Center would now focus all of its support,
training, consulting, and coaching to projects in this one group. All
projects would be subjected to "Scrum audits" by the Software
Development Support Center to determine correct Scrum usage.

The Software Development Support Center pulled together metrics to
include "smells" that are intangible, but telling. For instance, if a team
isn't collaborating during the Daily Scrum and the project can't be
clearly understood by an outsider, self-management isn't occurring. If
the team and the Product Owner aren't collaborating during the Sprint
Review, the Scrum steps of inspection and adaptation aren't occurring.
If the Product Owner is surprised during the Sprint Review, he or she
isn't working closely enough with the team. If an up-to-date Product
Backlog burn-down chart and Product Backlog isn't posted at the
Sprint Review, the Product Owner isn't managing the project. The

Software Development Support Center decided that the primary metric
it would measure would be surprises. Any surprises would be
indicators of incorrect use.

Outcome, Phase 2

Mark and Henrik have changed their organizations, and progress is
being made. After the consumer banking division begins its adoption of
Scrum, the enterprise will have another group starting down the right
path.

Additional Comments

Scrum helped Humongous achieve some critical successes and avoid
some potentially devastating failures. The entire enterprise became
more competitive and profitable as a result of using Scrum. However,
it isn't nearly as competitive and profitable as it could be. Projects still
waste time writing requirements documents. They are far less
productive than possible. They are producing lower quality
functionality than desirable. However, the beachhead is in place, and a
better way to build software is evident to both developers and users.
The leaders now must continue to lead.

Woodgrove Bank

Woodgrove Bank is a very large, innovative financial services
company. By parsing credit profiles and closely assessing risks,
Woodgrove Bank has extended credit to market segments largely
ignored by its competition. By offering flexible credit products with
rewards, Woodgrove Bank has built one of the largest card-holder
bases and card assets in the world. By dynamically tracking the profile
of each of its customers, the bank provides services that maximize
revenues. For instance, if you call support for any reason and your last
payment has been no more than three days late and your overdue
amount is less than 10 percent of the total due, a 30-day high-interest
deferral plan is offered to you.

Over the last seven years, Woodgrove Bank's ability to create
innovative functionality in its credit products has slowed. At first, it
seemed to just take longer than usual to add some new features.
Eventually, new features started breaking other parts of the credit card
system that had previously worked. The relationship between IT and
the business degraded as IT was unable to deliver what was needed

on time. Maintenance grew to consume over 40 percent of all
development costs.

Woodgrove Bank's credit card processing was its best money-maker.
The profits were incredible. Unfortunately, other financial institutions
noticed this. They started emulating the credit card products that
previously had been Woodgrove Bank's undisputed domain. Worse, the
other financial institutions were now able to add more features to their
credit cards faster than Woodgrove Bank could.

Three years ago, Woodgrove Bank decided that it had to rewrite its
core credit card processing application to be more stable and
amenable to new functionality. The Mobius Project, a 30-month project
to rebuild core credit card processing capability, was initiated under a
waterfall process. This was a very complex effort, and the compressed
project schedule didn't help the process.

During this project, the competition kept eating away at Woodgrove
Bank's market share. The developers were pressured to get the project
done. The new system was tremendously important. Woodgrove Bank
successfully transitioned to the new credit card processing system in
2006, having successfully survived Mobius's tight project schedule and
a high-risk implementation strategy.

Application of Scrum

In 2004, the CIO set a goal of cutting time-to-market in half by the
end of 2005. As part of that effort, the CTO and a small group of
internal consultants looked into Scrum as a way to help solve this
problem. Several projects were started using Scrum, and the value
was obvious to the entire enterprise.

In 2005, more difficult projects were piloted using Scrum. They were
still screened, though, and selected only if they looked like good fits.
They were stacked with top-notch employees to see whether Scrum
projects would work under ideal conditions. As these projects
succeeded, larger and more complex projects were piloted with
continued success. An Agile Center of Excellence was formed. Program
offices run by Scrum champions began the process of organizational
change. One group started seven teams concurrently on the same
platforms and had great success. Throughout the year, training staff in
Scrum and selling the idea to the rest of Woodgrove Bank continued.
To ramp up more quickly, outside consultants were relied on to help
Woodgrove Bank avoid pitfalls.

In 2006, the CIO set a goal to have more than 50 percent of the entire
IT portfolio delivered using Scrum. This goal was successfully met by
the third quarter. An underlying goal was to cement Scrum as a way of
thinking and conducting business. To make Scrum part of the culture,
the CIO conducted frequent open space meetings and regular
informational meetings. Top-notch trainers were contracted to get
projects going and to mentor the team members throughout. Scrum
was used on all types of projects from very large, complex, and
interrelated work to entire pipelines of enhancements and defect fixes.

Best of all, the relationship between internal customers and IT was
significantly repaired. The motivation for using Scrum shifted from
stopping the bleeding to leveraging it to create competitive advantage
for Woodgrove Bank. Scrum was coupled with Lean Thinking
techniques to create a weapon used when competing with the very
large competitors in Woodgrove Bank's space. One of the biggest
areas of growth for Scrum was in work outside of IT. Operations,
marketing, compliance, and many other teams began leveraging what
IT learned by adopting Scrum for all complex projects. Even
advertising campaigns used Scrum.

Woodgrove Bank also made the transition away from relying on
external consultants and experts. The bank began using internal
consultants and ScrumMasters to support new teams. Woodgrove
Bank now employs a formal mentoring program, where experienced
coaches work with new ScrumMasters. Certified coaches are also
plugged into the community to encourage continued learning and
growth. The mentoring program and focus on community has enabled
Woodgrove Bank to rapidly scale its use of Scrum while maintaining
the level of quality in the teams. Regular community events are used
to share experiences and keep everyone on the same page.

Lean Thinking and Scrum are being partnered as Woodgrove Bank
goes forward. Lean Thinking value stream mapping is used proactively
to identify areas of waste that can be removed. Scrum is used to
manage the projects as well as empirically identify further areas of
waste and other impediments.

Litware

Litware is a typical independent software vendor (ISV). It has been
selling products to software developers for over 20 years. Its revenues
are around $100 million per year. Litware releases new versions of its
products annually. Product marketing prepares a marketing

requirements document that carefully itemizes all new functionality
and requirements. These are prioritized as "must have," "should
have," and "nice to have." The program management office prepares a
detailed plan that, when followed, results in an appropriate new
release. The creation and validation of this plan requires two to three
months to complete. Then work starts.

Situation

Release 3.51 was typical. The 120 developers began analyzing the
requirements document and designing the new release. At the same
time, though, new requirements began to appear. The plan was
updated.

By the fifth month, everyone was getting a familiar sinking feeling.
There was too much work left to meet the scheduled release date. The
developers started simplifying the design. By the seventh month, as
more changes kept arriving, the developers started to work long hours
and weekends. Everyone was feeling pressured and worried. To
increase productivity, the developers also stopped redesigning the
code to handle new functionality. They instead "plastered" new code
on top of existing code. Unit testing disappeared along with code and
design reviews. "Alpha release" was shortened to one week to fit in
some last-minute functionality. The developers didn't have time to fix
all the reported bugs.

In the end, release 3.51 was three weeks late. It didn't contain all the
last-minute requirements and was of marginal quality. Nevertheless,
the developers were proud that they had moved it out the door. They
could now start to lead a normal life, see their families, and fix some
of the most egregious bugs.

On the Monday following the release, Litware's CEO called for a
meeting with everyone in the development group. He surprised
everyone by telling them that they were not getting a bonus this year.
They were flabbergasted. They had worked their hearts out and
forgone a normal family life for at least four months! But the CEO
reminded them that the release had been late and didn't have
everything that had been asked for. Already the customers were
complaining about the poor quality. The CEO then paused, looked at
the haggard developers and said, "By the way, you look pretty bad.
Maybe you should take better care of your health."

Application of Scrum

The development group at Litware selected Scrum for its practice of
sustainable pace. They reasoned that if they weren't going to get a
bonus, at least they wouldn't be worn out after the next release! No
enterprise had ever selected Scrum for such an unflattering reason.
The VP of Development, Stan Hatz, had no problem selling Scrum to
the CEO and management. Everyone had been so dissatisfied with the
process for release 3.51 that they said, "It couldn't get any worse!"

I worked closely with Stan throughout the Scrum implementation at
Litware. There were days when Stan and I despaired of ever
undertaking the project. Every problem that had been ignored to date
suddenly was visible, big, and ugly. Stan could continue forward only
when he looked back at the progress already made. We also noticed
that every problem we encountered had been at Litware long before
Scrum was known. When we implemented Scrum, however, they
became evident. For example, the development group at Litware had
previously struggled to get a release shipped by the scheduled date.
Scrum demanded that they have a full increment every Sprint.
Everything that had made this difficult to do yearly was now difficult
monthly.

At the end of just one Sprint, however, the developers were able to
show management functionality that was potentially shippable.
Everyone wanted to build on this success, so their willingness to work
through the problems increased. Problems were seen in terms of their
impact on this monthly progress, rather than as isolated events that
could be ignored. For instance, if the daily build of software wasn't
successful, other daily builds might not be successful. And by the end
of the Sprint, nothing might be available for viewing and shipping. The
feedback was immediate, and the consequences were tangible and
near-term.

Outcome

As Litware's management watched release 4.1 emerge, Sprint by
Sprint, they saw an opportunity. The user conference was coming up.
The user conference was a great social event, but it hadn't been very
useful for real product information because no real product was
available. Usually, marketing would present screen mock-ups and
prototypes of what the upcoming release might look like. This time
they had a partially developed product actually working, and the
functionality was of the highest value to the customers and prospects.

Why not show them the actual product? A contingent from the
development enterprise was invited to demonstrate the partial release
at the user conference.

The customers were ecstatic. They were thrilled to be asked their
opinion based on real functionality. The developers were delighted to
collaborate with marketing and customers about what to do next. The
entire experience was extremely gratifying and reinforcing for
everyone involved.

At the user conference, one of Litware's largest customers, Woodgrove
Bank, had been impressed by some of the functionality in release 4.1.
The Litware salesman handling the bank's account, Danny Forte,
reported to the VP of Sales, that Woodgrove Bank wanted to buy more
copies of Litware's new release 4.1 if Litware would just add a couple
of additional pieces of functionality. Then Woodgrove Bank would be
willing to license an additional $14 million dollars worth of product.

Fourteen million dollars isn't much money to huge enterprises, but the
opportunity to add it to the $100 million annual revenue at Litware
was very compelling. It was so compelling that the Vice President of
Sales talked to the CEO, who told Stan to make it happen. Stan then
told the developers, "Make it happen, no matter what." In the software
industry, this means to build the additional functionality into the
product and keep the same date. Just do it.

Three weeks before the scheduled release date, I visited Litware to
check up on its progress. When I got off the elevator at the
development floor, I knew something was wrong. There was no noise.
A characteristic of an enterprise using Scrum is community, people
working together on ideas, collaborating over different approaches,
sharing in work. No noise was not good noise.

In the work areas, the team members all had their heads down at their
workstations, looking grim. There was no joy, no excitement, no
sharing. I gathered a group of the developers and asked what was
going on. They replied that the overtime was killing them. I asked how
this could be since Scrum called for a sustainable pace. They told me
that the additional $14 million dollars from Woodgrove Bank would
make the financial year. Without the new functionality for Woodgrove
Bank, the target release date was December 1. With the new
functionality, the release date should have changed to January 15, but
it had been ordered to be done by the target date. Stan had told them
to do whatever it takes.

Development velocity is a measure of the developer's ability to turn
requirements into shippable functionality across time. A significant
increase in development velocity was required to build this new
Woodgrove Bank functionality by the initial release date. Velocity
increases are gradual, the result of better development tools and
practices, and of better teamwork. How could the velocity have
increased so quickly? The developers told me what I suspected. They
increased their velocity by working nights and weekends and reducing
the amount of work by cutting quality.

I became irritated. I asked the developers how this was different from
release 3.51, when they were exhausted, the product was shabby, and
the dates and functionality were missed. Had they forgotten? The
developers said that they hadn't forgotten, but Stan had told them to
do it, so they had no choice.

I knew Stan well by this time and was surprised. When I went to see
him, he was stunned. He hit his forehead with his hand and said, "I
absolutely forgot! When the CEO and VP of Sales came to me, I knew
that we needed to do it for the business, so I reverted to old form. My
old habits took over, and I did what I used to do. Now we are building
this release with poor quality and exhausted developers just like
before."

Stan decided to get the developers back on the track to building a
quality product at a sustainable pace. Because the sale to Woodgrove
Bank was critical, he asked the developers to include it as quality
functionality! We then calculated the new delivery date for release 4.1.
It was eight weeks after the initially planned date, including time to
restore lost quality and build the new functionality.

Stan called the CEO to confirm the new schedule. Adding $14 million
dollars to that year's revenues was attractive, but was the cost of the
eight-week delay acceptable? A meeting was set up for the next day
with the CEO, the VP of Sales, the VP of Marketing, and the Chief
Financial Officer (CFO). In the meantime, Stan and I calculated the
cost of the release's delay. Including additional development costs,
delayed maintenance revenues, and several customers that we might
lose, the probable cost was $5 million dollars.

At the meeting, the VP of Sales started by saying, "I may not be a PhD
in Mathematics, but $14 million dollars looks at lot larger than $5
million dollars. Let's do it! Right, Danny?" He looked over at the
Woodgrove salesman. But, Danny wasn't meeting his eyes. When a

salesman doesn't meet your eyes, it is a very bad sign. So, he again
asked, "Right, Danny?" Danny looked up and said, "Well, I don't
actually have a signed contract yet."

The VP of Sales at that point asked to reconvene the meeting the next
day. When we got back together, Danny wasn't with us. (He was no
longer with Litware.) It turned out that he not only didn't have a
contract, the person he had been dealing with didn't have the
authority to sign a contract. Worse, the budgeting period when funding
could occur was six months later! Danny was behind in sales for the
quarter and had been overeager at the user conference. He had
detected a Woodgrove Bank manager's interest in release 4.1. The
manager had indicated that he wanted some more functionality. Danny
had figured that if he could get it, he would then have a lever to get
the manager to sign for more products. The $14 million dollars was
simply a projection based on a hypothesis to support Danny's need to
hit sales targets.

Why not? To Danny and the VP of Sales, it cost nothing to demand the
functionality. They never saw the direct correlation between these
demands and the product quality, which got worse release by release.
They never correlated these demands with the turnover and generally
poor morale in the development enterprise. They figured that the
development enterprise always had slack. They always had been able
to fit more into a release in the past. So why not ask for more again?

Additional Comments

Two major changes occurred from using Scrum, both causing ripple
effects far beyond their immediate point of impact. First, customers
and prospects were able to see release 4.1 early and evaluate major
pieces of it. They responded to this change enthusiastically, thinking of
additional uses for the product within their enterprises.

Second, the sales force saw the customers and prospects responding
differently. They saw sales opportunities because excited customers
could mean additional sales. When more sales revenues were seen as
possible, everyone reverted to form and fell back on the habits of
release 3.51 and before. Management told the developers to do what it
takes to build more functionality within the same time period.
Consequently, the quality of the product and staff suffered. Only when
reminded of their "muscle-memory" behavior did they rationally
evaluate the reality of the opportunity.

Increments of software were produced every month, and the
customers were able to see them at the user conference. What could
be better? But every change has two sides, and we tend to focus on
the good side. The opportunity provided to Danny was one of the
unanticipated, negative consequences. In our haste and eagerness to
only see the good, we sometimes miss or ignore the negative parts of
change.

Part II: Start Using Scrum for Enterprise Work

New processes and practices are demanded as your enterprise
removes dysfunctions and problems identified with Scrum. When
Scrum is used in a single project, these changes are isolated. When
the enterprise adopts Scrum, these changes are widespread. Section 2
lays out some processes, practices, and techniques that will help you
adopt Scrum at an enterprise level. None of them are new. They are
just different from the way work is currently done. The types of
practices described are noted in the following list of chapters in this
section:

• Chapter 6, "Organizational Practices," covers practices for
organizing the work of the enterprise.

• Chapter 7, "Engineering Practices," addresses integrating
enterprise work regardless of the technologies, architectures, or
processes used.

• Chapter 8, "People Practices," describes what changes are
needed for people to successfully use Scrum in self-managing,
cross-functional teams.

• Chapter 9, "The Relationship Between Product
Management/Customer and the Development Team," looks at
the new relationship that is formed between Product Owners and
development teams. This is the mother of all changes. If it
doesn't succeed, you don't accrue Scrum's benefits.

Several caveats apply to these changes. This section consists of
proven practices and processes. You probably will have to refine them
for your enterprise. Let the people who are going to do the work define
and refine the new practice or process. If you define it for them, they
will feel that they can't continually modify them to meet new
circumstances. Second, don't plan a perfect process or practice. Just
come up with one that seems appropriate. Any shortcomings will
immediately be detected by Scrum. You can then refine it. Enterprises
often try to get it perfect before starting. During this time, they could
have been building product.

Chapter 6. Organizational Practices
In this chapter:

#1: Organizing Enterprise Work 46

#2: Organizing Enterprise Work for a High-Technology Product
Company

46

#3: Organizing Enterprise Work in Other Enterprises 51

#4: Organizing Enterprise Work for New Systems that Automate
an Enterprise Operation

52

#5: Organizing the Complexity of Multiple Views 54

#6: Organizing Work to Optimize Software Product Family
Architectures

55

When your enterprise uses Scrum, you can monitor all development
every Sprint. You can redirect enterprise work to take advantage of
new opportunities and maximize enterprise return on investment
(ROI). The entire enterprise can change course quickly. To be able to
do these things, you must have all your enterprise's work in a single
Product Backlog. Creating such a backlog can take over one year and
is very difficult. Once it's done, however, you'll wonder how you
managed previously. Without an integrated picture of all of the
enterprise's work, it is impossible to assess progress and perform
impact analyses.

In this chapter, I'll explain how to create such an enterprise Product
Backlog. An overview is presented in the "#1: Organizing Enterprise
Work" section. The enterprise Product Backlog structure is somewhat
different for high-technology product enterprises than it is for an
enterprise that deploys technology to make its operations more
competitive. We'll look at high-technology Product Backlogs in the
"#2: Organizing Enterprise Work for a High-Technology Product
Company" section. In "#3: Organizing Enterprise Work in Other
Enterprises," we'll look at creating a Product Backlog for other
enterprises.

Another Product Backlog variant is organizing work when a new
enterprise operation, including systems that automate it, is being
developed. This scenario is discussed in "#4: Organizing Enterprise
Work for New Systems that Automate an Enterprise Operation."

A Product Backlog is the work of the company. Many views of this
work are often required. The "#5: Organizing the Complexity of
Multiple Views" section shows how to correlate and manage multiple
views. The information in this section will help you handle some
complexities of maintaining multiple views.

Finally, we'll look at how to organize work if your enterprise is using a
software product family architecture to optimize reusability in "#6:
Organizing Work to Optimize Software Product Family Architectures."

#1: Organizing Enterprise Work

Scrum seems to organize work into Product Backlogs. But how do I
organize my entire enterprise's work into a Product Backlog and what
are the benefits of doing so?

We can organize all of an enterprise's development work into an
enterprise Product Backlog. To create an enterprise Product Backlog,
create an enterprise view of all projects and programs. These views
are top-down decompositions that organize the Product Backlog by
enterprise product architecture, organization, or programs. If the
enterprise sells high-technology products, use a product decomposition
that consists of the following information: product family, product,
features, function, and task. If the enterprise uses technology to
automate its products, like a financial institution does, use details of
the organizational structure. The rest of this chapter presents ways of
creating these views and linking them to each project's Product
Backlog. As we correlate and link the detailed Product Backlog of
Scrum projects to the enterprise view, the enterprise Product Backlog
starts taking form. We then fill in the enterprise Product Backlog as
more projects are started. You must eventually identify, organize, and
prioritize all current and planned work.

To the degree that all the work of the enterprise is in an enterprise
Product Backlog, you can track the progress of every program,
release, and project through burn-down charts. For any area of
interest, a burn-down chart tracks progress toward a release goal
across time. With burn-down charts, you can assess the impact
various projects and programs have on each other and on the
enterprise. You probably will be unpleasantly surprised. Programs that
you thought were well underway might be behind. You might find that
splitting people across many projects has slowed overall work rather
than allowing the enterprise to take on more. You will get a lot of
information, some confirming your hopes and others dashing them.

You will, however, have solid information with which to manage the
enterprise.

#2: Organizing Enterprise Work for a High-Technology Product
Company

My enterprise builds products that we sell to external customers.
Scrum organizes work into Product Backlogs. How do I organize my
enterprise's work? In particular, if I have an opportunity to do
something new, how do I quickly reorganize to do so?

A Product Backlog can represent all known development work for an
enterprise's products. The products decompose into features,
functions, activities, and tasks, reflecting the product structure and
terminology. A Product Backlog defines the changes that are needed at
this lowest level. This decomposition can be aggregated into product
families and all of the enterprises' development work, as shown in
Figure 6-1.

Figure 6-1. Enterprise Product Backlog
Product
Family Product Feature Function Activity Backlog ID
Personal
Finances

Corporate
Taxes

Personal
Taxes

WhirlWind
Deluxe

Personal
Information

About
You

 Filing Status
 Personal

Information

 Location

Mailing
Address/Phone

User must be
able to type in
different format
telephone
numbers C413

 State of
Residence

A product or system architecture consists of modules or components at
the lowest level of decomposition. One or more of these components
will be changed to satisfy a Product Backlog item. We can organize a

separate Product Backlog for product functionality common to more
than one product. This Product Backlog's structure reflects the
system's architecture, as shown in Figure 6-2. Overall prioritization for
the good of the enterprise is mandatory. The Product Owner of the
common functionality has to be someone with return on investment
(ROI) responsibility for all enterprise products.

Figure 6-2. Common infrastructure Product Backlog of
requirements

Aspect Activity Task Module ID
SPF
Prty

SPF
Size

CI
Prty

CI
Size

Screen
User
Interface Controls

Formatted
Numeric
Entry

Domestic
Telephone
Number C413 72 2 61 1

Business
Logic

Data Base
Controls

Data Base

Let's look at how we could respond to a customer requiring enhanced
functionality in the Corporate Taxes product family. We estimated the
effort to make the enhancement at 100 points of work. (A point of
work is an arbitrary measure.) The customer needs it within six
months. We are in the fifth month of our enterprise's annual plan.

An enterprise burn-down chart shows the annual baseline plan, as
shown in Figure 6-3.

Figure 6-3. Burn-down of baseline roadmap plan

We assess progress against the plan. The plan is maintained in an
enterprise Product Backlog. The measurement is against the most
current plan, which is usually different from the baseline plan. In the
fifth month, we can compare the currently planned functionality
against that which has already been delivered, as shown in Figure 6-4.

Figure 6-4. Burn-down of enterprise actual vs. plan

The difference between the two plans represents the degree to which
the enterprise is ahead of or behind plan. Figure 6-4 shows that we
are behind our plan and behind on our commitments.

At the end of the fifth month, the plan committed us to have 1214
points of work left. Instead, there are 1320 points of work left to be
completed. If we add the new 100 points of work requested in the
Corporate Taxes product line, the planned versus actual measurement
becomes worse, as shown in Figure 6-5.

Figure 6-5. Burn-down of actual vs. plan with new work
added

The planned work is the bottom trend line. The actual work left without
the additional work taken into account is the middle trend line. The top
trend line shows actual work remaining if the new work is committed
to. All of these trend lines have been projected to year end to show
the probable gap between planned and actual work.

To take on the additional Corporate Taxes enhancements, we need to
decommit to other work. We could increase costs through additional
new hires, but productivity drops as new people are brought on board
and increases only after six or so months. We need to find some other
work that we can defer. First, let's add the new work to the Corporate
Taxes part of the Product Backlog. It is the fifth row of Figure 6-6. We
then estimate and prioritize it compared to all other work in the

enterprise's Product Backlog. For Scrum estimation techniques, see
Mike Cohn's recent book, Agile Estimating and Planning (Prentice Hall,
2004). The prioritized enterprise Product Backlog (summarized) looks
like Figure 6-6.

Figure 6-6. Enterprise Product Backlog with new work
Enter
prise

Product
Family Product Feature

Functio
n Activity Backlog

I
D

Doma
in

Prt
y

Siz
e

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

State of
Residenc
e Item 5

90 33

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

Mailing
Address/
Phone Item 3

82 47

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

Mailing
Address/
Phone Item 4

73 33
 Corporate

Taxes

New work

72 100

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

State of
Residenc
e Item 7

65 29

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

Mailing
Address/
Phone Item 2

63 52

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

Mailing
Address/
Phone

User must
be able to
type in
different
format
telephone
numbers

C
4
1
3

Comm
on 62 20

 Corporate
Taxes

 Committed
work

42 432

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

State of
Residenc
e Item 8

21 82
 Personal

Finances
 Committed

work

12
104

8

Personal
Taxes

WhirlWin
d Deluxe

Personal
Informat
ion

About
You

State of
Residenc
e Item 6

11 58

We need to accommodate 206 new points of work (100 new points of
work added to the current shortfall of 106 points). We can decommit

lower priority work. The first item to put on hold is the lowest priority
in the bottom row: Personal Taxes, State of Residence, Item 6. The
remaining 148 points of work to be deferred (206 needed less the 58
points of Item 6) has to come from the Personal Finances product, the
next lowest priority. Its entire workload has 1048 points of work
planned for the year.

When we drill down and look at the burn-down for the Personal
Finances product line, it is ahead of plan. We then drill down into its
work to see where we can free up some effort while minimizing the
impact. In Figure 6-7, we drill down to look at just the work for
Personal Finances.

Figure 6-7. Personal Finances actual vs. plan

The Personal Finances work is ahead of schedule. At the end of the
fifth month, we had planned to have 217 points of work left, but only
160 remain. We are 57 points ahead of plan. We might be able to use
this capacity for the new work in the Corporate Taxes product line.

Drilling down in the Personal Finances work, we can see which specific
areas are ahead of plan. Then we can assess whether the people doing
that work are skilled and capable of helping the Corporate Taxes
product. If they are, we might be able to redeploy them. We will ask
the Product Owner of the Personal Finances product line whether he or
she can form a new team that can be reassigned for four months.

This exercise took care of the new work and enabled us to get the new
customer's business. We assessed the enterprise's ongoing work to
identify excess capacity. We could do the same thing every month to
detect shortfalls and slippages.

As priorities change and new opportunities occur, we can realign our
work to maximize enterprise ROI. The Product Owners at every level of
the enterprise are able to track their work against their commitments.
We can shift the enterprise to take advantage of new opportunities
while assessing and then tracking the impact.

#3: Organizing Enterprise Work in Other Enterprises

My company uses our Information Technology organization to develop
software for my line operations. This software makes the operations
more effective. How does the management of these operations use
Scrum, or do I leave this to the Information Technology department?

Product Owners are the managers of their operations. They define
work to enhance their products in the Product Backlog. The
development work can be to enhance automated systems or manual
operations. Training and implementation work is also part of the
Product Backlog. The Product Backlog is sorted by System and Priority
to organize work within the Information Technology (IT) organization.
IT teams are formed based on Product and System identifiers.

We can use the following example of a banking enterprise to see how
to do this. A bank sells financial products to its customers. It is
organized into lines of business (LOB). Each line of business consists of
operations that sell and service financial products. These operations
are automated through internal systems. For instance, a bank can
have a Trust LOB, a Commercial Banking LOB, and a Consumer
Banking LOB. Within the Consumer Banking LOB is a Teller operation,
a Loan Creation operation, and so on. These are serviced by a Product
Development and Management department that devises the various
financial products. Each operation is supported by one or more
computer systems. As new products are conceived, the operations and
systems supporting them must be developed or enhanced. The Product
Backlog, or requirements, to do so are organized by LOB, operation,
activity, and task. Figure 6-8 represents such a decomposition.

Figure 6-8. Financial enterprise Product Backlog

Ente
rpris
e

Line of
Busine
ss

Oper
atio
n

Produc
t Activity

Syste
m

Com
pone
nt

Requirem
ent

Prt
y

Siz
e

Bank Trust

 Corporate

Banking

 Consumer

Banking Teller Mortgage

Savings Deposits Teller31 C524

Customer
can make a
deposit
across
accounts 33 13

C325

Customer
can perform
deposit
themselves
using new
automated
teller
terminal 42 21

 Withdrawals
 Checking
 Platfor

m IRA
Filing
Status

401K

Personal
Information

 Mortgage Location
 Personal

Loan

 Savings
 Checking

#4: Organizing Enterprise Work for New Systems that Automate an
Enterprise Operation

We are building a new system for a division in our enterprise. It will
replace a patchwork, older system. How can the work be directed by
the Chief Operations Officer of that division so that it makes sense to

her, while being organized and prioritized in a way that makes sense
from a systems architecture viewpoint?

Data is the business of some enterprises, such as credit reporting,
encyclopedias, news, and mapping. These enterprises acquire, format,
and sell data. Enterprises sometimes need to build entirely new
systems for these type of operations. The managers of these
operations need to correlate and prioritize developing a new business
operation with building new systems to automate it.

The business operation is organized into several primary functions.
The data is acquired. The data is continually groomed to provide
additional value through new relationships and attributes. The data is
managed for accuracy and quality. The data is extracted for sale to
customers. Some extracts are periodic, while others are continuous. At
the lowest level of the business operation, activities and tasks are
performed. These tasks are manual, manual with automated assist, or
completely automated. The automated system is organized as an
architecture that has nonfunctional attributes such as performance,
scalability, security, and workflow.

The person who runs this operation is the Product Owner. He or she is
responsible for overall profitability and the long-term investment in the
new system. He or she is responsible for prioritizing the development
to support a phased, secure implementation as well as for meeting
technical dependencies. As an example of technical dependencies, the
workflow framework might be essential to have in place prior to
implementing acquisition and editing functionality. The intersection of
operational and systems decomposition is shown in Figure 6-9. The
Product Backlog work occurs at the intersection.

Figure 6-9. Intersection of operational and system views
in a Product Backlog

[View Full Width]

The Product Backlog item "Display areas to be selected" is part of the
operation's Data Management function. It is used by the supervisor of
the Referential Integrity section to frequently inspect and check data
referential integrity. The new system has a component, CSetup04
(which is part of Subsystem TDX01-05 and System TDX01), to
automate this.

The operational viewpoint also uses Product Backlog items to describe
work to enhance a work activity, including creating documentation and
retraining. It includes columns that reflect operational implementation
priorities and efforts. The systems view includes a column for the
effort to build the component and the priority in which it will be
developed. The systems view also includes Product Backlog items for
systems that provide infrastructure used by the other systems, such
as workflow. Other work, such as constructing distributed development
environments and upgrading the production environment, have their
own Product Backlog items. This Product Backlog is prioritized
according to the most logical sequence for developing the system.

#5: Organizing the Complexity of Multiple Views

I've seen how to create several views of an enterprise Product
Backlog. But there are some complexities you haven't discussed. Can
you describe how to handle them?

Product Backlog is a prioritized list of work. We can relate it to three
areas: its occurrence in a product or system, its occurrence in
improving a business operation, and its occurrence in systems
architecture. We can then create complex views by intersecting these
relationships. Figure 6-9, seen in the previous section, shows an
example of several views of a Product Backlog. It shows the
relationship of a business operational view (Divisions, Departments,
Sections, Subsection, Activities, and Tasks columns) to the work in a
Product Backlog (Product Backlog column), which is then related to the
systems architecture view (System, Subsystem, Module, and
Component columns).

Product Backlog items range from small to big. Small items usually
relate to fine-grained business operations, system architectural
components, or product tasks, as shown in Figure 6-9 earlier. As the
items increase in size, the corresponding items they relate to increase
in size. For instance, a Product Backlog item referred to as
"Automatically flow applications from investigation to acceptance and
notification" relates to subsystems, business activities, and product
themes. It is large and high level.

Modules or components are often used by more than one operational
task or product activity. The Product Backlog item to change a
component then has to be entered one time for each time it automates
the task or activity. However, it is estimated for only one of the
occurrences. All occurrences inherit the highest priority need and are
scheduled accordingly. Sometimes multiple occurrences of a Product
Backlog item are indicated in one column in the spreadsheet.

#6: Organizing Work to Optimize Software Product Family
Architectures

Some enterprises develop products and families of products. Some of
the functionality is product specific, but other parts are shared among
all products. How is this work organized with Scrum?

Many enterprises have more than one product. They often separate
common functionality into a component infrastructure library to

simplify defining new products or enhancing an existing product. When
products are developed, some components are unique to the product,
but other components might already be in the infrastructure, reducing
overall development time and costs. If some potentially common
functionality isn't already in the infrastructure, it is developed there to
reduce the costs for future products. By keeping the infrastructure in
good shape and well cataloged, new product development is simplified.

The role of the Product Backlog needs to be extended to address this
common infrastructure. The Product Backlog usually just lists
requirements of work to be done for a product. Now the Product
Backlog will reflect the structure of the entire product family. The
product family decomposes into products, features, functions, and
activities, as shown in Figure 6-10. When something new is needed,
the requirement is added. Some Product Backlog requirements will be
satisfied by components or databases in the common infrastructure.
Figure 6-10 demonstrates this by using the "Common" designator in
the Domain column. If this is an existing component that needs
enhancing, the ID for the existing component is recorded. When the
Product Backlog is sorted by requirement priority and requirement, it
starts with a prioritized list of work to be done.

Figure 6-10. Software product family Product Backlog of
requirements

Product Feature Function Activity Backlog ID Domain
Prt
y

Siz
e

WhirlWin
d Special

Personal
Informatio
n About You

 Filing Status
 Personal

Information

 Location

Mailing
Address/Phon
e

User
must be
able to
type in
different
format
telephon
e
numbers

C41
3

Commo
n 72 2

 State of
Residence

Figure 6-10. Software product family Product Backlog of
requirements

Product Feature Function Activity Backlog ID Domain
Prt
y

Siz
e

 Multiple
Residence

 Other State
Income

 Occupation

Phone Listing
Option

User
must be
able to
type in
different
format
telephon
e
numbers

C41
3

Commo
n 72 2

 Create User
ID

 Hurricane
Katrina

 Special
Situations

 Dependent
s Dependents

 Import
Informatio
n

Import from
Last Year

 Dependent

s

 Import
Your
Informatio
n

 Federal
Taxes Income

Wages and
Salary

The common infrastructure supports all products. It has its own
Product Backlog. This is organized by aspect. This backlog is populated
with maintenance work and all work requested for each Product Family
and Product, as shown in Figure 6-11.

Figure 6-11. Common infrastructure Product Backlog of
requirements

Aspect Activity Task Module ID
SPF
Prty

SPF
Size

CI
Prty

CI
Size

Screen User
Interface Controls

Formatted
Numeric Entry

Domestic
Telephone
Number C413 72 2 61 1

Business
Logic

Data Base
Controls

Data Base

The Product Owner for all product families prioritizes the infrastructure
Product Backlog. Only this person can evaluate all product family
priorities against each other and against the need to maintain and
sustain the common infrastructure. This priority is maintained in the
Common Infrastructure (CI) Prty column. The relative size of the work,
as evaluated by the infrastructure teams, is maintained in the CI Size
column. This work might be different in size than that estimated by the
Product Team. Note that the duplicate Product Backlog requirements
from Figure 6-11 have been merged into one.

Chapter 7. Engineering Practices
In this chapter:

#1: Multilayer System Work Organized by Functionality 60

#2: Integration of Multiple-Layer Systems 63

#3: Integrating the Work of Scrum Teams and Teams Not Using
Scrum

66

Summary 68

Development work happens in individual Scrum teams. These teams
are often part of a larger project. Only when their work is integrated
with that of other teams is it of use to the enterprise. To track the
impact of individual teams on a project, you must integrate work
frequently. Practices for doing so are presented in this chapter.

Scrum requires that all work be integrated at least once per Sprint. To
accomplish this, teams usually must integrate their work with other
teams at least daily, and preferably continuously. Frequently,
integrating each team's work is difficult and your engineering
organization probably can't do it, yet. To integrate each team's work,
you have to change the way development is organized. You have to
change the technology that you use to test and build products. Your
organization's overall engineering skills have to improve. When these
requirements were discussed in one enterprise I had worked with, the
group manager told his management team that he wanted this done
within two months. This demand led to a lively conversation about how
hard this change was going to be.

Some of these changes are local to the developer and his or her Scrum
team. However, most enterprises need significant, sustained
improvements throughout. Products are complicated, despite the best
architectures. You have to be tough-minded to build increments of
these products frequently. You have to be merciless to know where the
development stands every day. Engineering organizations frequently
tell me what they can't do within Scrum: "We can't regression test
everything within the Sprint window!!" and so forth. That is the wrong
answer. The right answer is, "We can't do that now. We'll figure out
how to do it."

Let's look at solutions to the engineering problem of frequently
integrating work. I'll use examples from my experiences in the field,
again substituting fictitious company names for the real ones.

#1: Multilayer System Work Organized by Functionality

How do we organize to develop an enhancement that includes new
front-end functionality and enhanced back-end infrastructure
functionality?

A company called Wingtip develops and markets Internet
infrastructure software. Wingtip adopted Scrum in mid-2005. Within
six months, all of its development projects used Scrum. Teams were
organized to own specific functionality. Every team was instructed to
select work for a Sprint only if it could completely test it, design it
properly, and complete the user documentation. This was Wingtip's
definition of a "done" increment, which was deployed monthly.

As part of a new release of Wingtip's advertising product, customer
reporting functionality was going to be enhanced by the advertising
development team. The team selected a Product Backlog item to allow
a customer to display all ad types over a variable time period on one
screen. Customers currently had to scroll among multiple screens and
manually tally the counts. The work consisted of changes to the user
screens, business logic, and database.

The ad server had most of the business logic and all the databases. It
was part of Wingtip's infrastructure that supported all Wingtip's
products. Existing ad server capability retrieved usage by hour and
day for each usage type. To support enhanced reporting, the
infrastructure had to be enhanced to maintain more time frames of
usage. It also had to be able to aggregate counts for multiple ad
types, which required additional database fields. Once the
infrastructure was so enhanced, the front end could make a single
request across the Internet with the variable for that account, time
period, and ad types.

The infrastructure team was a separate team that maintained and
enhanced only the infrastructure. There were only eight people who
could do this in all of Wingtip, and they were on this team. This
constrained other teams because nobody else was allowed to work on
the infrastructure. The advertising development team told the
ScrumMaster that it needed people from the infrastructure team.
Unfortunately, the people they needed were booked for months. The

team had to proceed without them with a localized solution that didn't
require any infrastructure changes, as shown in Figure 7-1.

Figure 7-1. Localized solution

At the Sprint Review, the advertising team demonstrated the screen.
The functionality was very slow. Because the infrastructure couldn't be
changed yet, multiple requests were made to the infrastructure ad
server for data, which the front end then accumulated. The advertising
team mimicked the ad server in the front end.

The advertising team had developed the following localized solution:

Code View: Scroll / Show All
Set up variables with account number and time period.
Set up a variable with all known ad types.
Pull the first ad type from a string of all ad types.
Request the count for that ad type, account, and day.
Aggregate the count in a counter.
Continue making requests across the Internet until the string with ad
types is depleted.
Continue making requests across the Internet to the ad server until the
time period is fulfilled.

Although this functionality worked, the team had devised a local
solution that was far too slow to ship. The Product Owner asked the
ScrumMaster to figure out how to get the needed help from the
infrastructure team. The ScrumMaster devised the following enterprise
solution. Teams could only build an increment that encompassed all
necessary layers, including the infrastructure. If infrastructure support
wasn't available, the team had to do other Product Backlog items first.

Another field was added to each team's Product Backlog to indicate
dependencies on the infrastructure layer. In the following example, the
use of "Infrastruct" in the Domain column indicates this dependency:

Feature Function Activity Backlog ID Domain Prty

Administer Monthly
Billing

Display ad
counts

Allow a customer to
display all ad types
over a variable time
period for his or her
account on one
screen

C213 Infrastruct 22

The work the infrastructure team had to do was added to the
infrastructure Product Backlog, as shown in the next table. Other work
was prioritized to be done before the ad server team's work.

Aspect Activity Module Backlog Source
ID

Prty Size

Advertising Reporting Ad
aggregation

Allow a customer to
display all ad types
over a variable time
period for his or her
account on one
screen

C213 42 8

A functional team and the infrastructure team would try to synchronize
their work to the same Sprint, when they could work together, as
shown in Figure 7-2. If the infrastructure team got the work done in an
earlier Sprint, the functional team could make commitments to the
overall functionality. Otherwise, the functional team had to defer its
dependent work. It had to wait until the other team was available.

Figure 7-2. Enterprise solution—Teams build functionality
across all required layers

Prior to the team selecting the "Display ad counts" Product Backlog
item, the advertising team talked to the Product Owner for the
infrastructure team. The people it needed were unavailable for the
next two Sprints. The advertising team had to select lower priority
Product Backlog for these Sprints. When the infrastructure people were
available in the third Sprint, all layers—including infrastructure—were
modified to provide a completely usable piece of functionality.

When the team completed the aggregation functionality, its localized
code looked like the following:

Set up variable with account number, time period, and "all types"
indicator
Request count from ad server

This solution required only two transmissions across the Internet, and
it had adequate performance. One transmission made the request, and
the other received the results. All the logic for determining what data
was required, retrieving the data, and then aggregating it was placed
at the ad server.

A Scrum technique for handling external dependencies arose from this
situation. Whenever a team cannot do an increment because they
have an external dependency, they cannot commit unless—and only
unless—the other people or teams are also at the Sprint Planning
Meeting. These external teams or people have to commit also.
Otherwise, the external parties might be interested parties, but they
certainly are not committed parties.

When an infrastructure team provides functionality for multiple
products, who prioritizes its work? Each product's Product Owner will,
of course, lobby for the urgency of his or her work. One solution is to
integrate all the Product Backlogs into an enterprise Product Backlog.
The burn-down and progress for each individual product can be
tracked. The burn-down and progress for a family of products that is
dependent on shared functionality can also be tracked. A Product
Owner who is responsible for overall profitability prioritizes the
infrastructure Product Backlog to maximize enterprise profits and
reduce risks.

#2: Integration of Multiple-Layer Systems

How does an enterprise organize its work when it is developing an
overall product with many functions and features but the work is
divided according to the various architectural layers of the product?

Many products are architected into layers. Even a simple Web
application has interface, logic, and persistence layers. In our
example, Wingtip tied their layers together with teams that developed
functionality across all layers. Sometimes this doesn't work and other
approaches are devised. When devising these, keep in mind that any
approach has to meet at least two criteria. First, we have to know
where we are in a project at any time. Second, we have to be able to
release a completed increment as often as possible.

Fabrikam produces an Internet-enabled alternative to cable and
satellite TV. Fabrikam markets its products to telephone companies
with large-scale DSL offerings. Fabrikam delivers its functionality
through five layers. The first layer collects and stores all entertainment
material. A second layer maintains customers and account information.
These layers are located in common Fabrikam server facilities. The
third layer packs, transmits, and unpacks entertainment from the
Internet. The next layers are on the TV-top control box. The fourth
layer manages programming and storage of entertainment. The fifth
layer is for selecting and playing programs. Each of the layers was
developed by separate organizations at different geographic locations:
one layer in Israel, another in the UK, two layers at different locations
in the United States, and one layer in China. Each layer had its own
Product Owner and Scrum teams. The product and its layers are
shown in Figure 7-3.

Figure 7-3. Fabrikam product layers

The fifth-layer team presented its progress at its Sprint Review in
California. The team showed excellent progress in developing
functionality on its layer. Not only was the functionality powerful, but
its arrangement was elegant and intuitive. The other layer teams also
presented their layers at their respective locations. They were all
progressing according to the schedule. The Fabrikam Vice President
was pleased with the progress.

After the Sprint Reviews, the ScrumMasters for all the layers had a
conference call with me. They asked if, within the rules of Scrum, they
could discontinue the Scrum of Scrums. They felt that the meetings
weren't fruitful. They felt that very little information was shared that
everyone was interested in. The geographical dispersion and time
differences made these meetings even less worthwhile. Scrum of
Scrums are short, daily Scrum meetings at which an engineer from
each team working on an integrated product gather to share the status
of their teams. This meeting helps teams keep track of progress
between parts of the product so that they can more closely monitor
any dependency or timing problems. I wondered why this wasn't
important to the teams building the various parts of the Fabrikam
products. Didn't they need to know each other's progress? When
queried, the ScrumMaster for the fifth layer said that the progress of
other layers wasn't important to his team. His team's Product Backlog
and Sprint Reviews were only for his layer. I asked how his teams
knew if its increment integrated with the other layers. He replied that
they had very detailed specifications that they were developing to.

The interface design for each layer had changed since the project
began. Unfortunately, teams at each layer were still building to the
original and now out-of-date interface specification. Each layer was
progressing, but nobody knew whether their increments integrated to
form a complete product. Such a check would have exposed any
integration discrepancies and allowed for corrective work. The
participants in the daily Scrum of Scrums should have been tracking
any changes from the original specification.

The Product Backlog is often decomposed by layers: architectural,
functional, and geographical—or a mix of all of these. There has to be
an overall Product Owner. He or she can delegate decomposed Product
Backlog management to other Product Owners. In large projects, there
might be four or five layers of Product Backlog decomposition. Each
has a Product Owner reporting to the overall Product Owner. At any
time, the combined Product Backlog dynamically describes the
progress in developing a complete product.

The Fabrikam Product Backlog was combined into one Product Backlog,
structured into the five layers. The Vice President became the overall
Product Owner. By tracking the combined burn-down and trend lines,
he could manage overall product development. However, as things
currently stood, the various layers were unlikely to work together. The
Vice President asked for a solution so that he could view an integrated,
potentially shippable product as frequently as possible.

The teams at each layer built their own layer at least daily to see
whether it still fit and worked together with other layers. The top
engineers of the various levels met and reasoned that an integration of
builds from all the layers could solve the problem. Overall product
integration could then be checked and tested. This integration of
efforts is shown in Figure 7-4.

Figure 7-4. Frequent integration of layers

They took the following steps:

• They agreed to have a sixth level, an integration layer. The
integration layer team was made up of people from each of the
five other layers.

• The integration team implemented integration hardware and
software. It pulled the builds from each layer daily and tried to
integrate them into a single build.

• The integration team developed tests that ran through all layers
and tested the integrated functionality. The tests exercised the
layers as they would be operated when an end user tried to
operate the TV.

• Integration failures were reported to the team working on the
layer that had caused the failure. This team had to resolve the
problem before moving forward with any more development.

• A rule was instituted that all five layers had to work as an
integrated product at the end of each Sprint. If they didn't, none
of the layers was done or could be demonstrated.

The work was added to the overall Product Backlog. It took two Sprints
before an integrated product could be demonstrated. Incompatibilities

and divergences from product specifications were exposed and had to
be fixed.

Scrum's inspect and adapt techniques require a full, integrated
increment. If the increment being inspected isn't complete, the
adaptations might well be wrong. At Fabrikam, Scrum pointed out
nobody was tracking the overall product development. The integration
deficiencies wouldn't have been apparent otherwise until near the end
of the project.

When products consist of more than five layers, integration is more
difficult and takes longer. If the product consisted of features whose
development cycles varied, the integration also might have been
harder. For instance, hardware's build cycle is usually several months.
If the hardware for Fabrikam's TV-top control unit was part of the
development, another integration technique would have been needed.

The Wingtip example mentioned earlier provides insights into how to
organize work in an enterprise for feature-driven development.
Fabrikam provides insights into how to organize work within an
enterprise for architectural-layer-driven development. These are only
two of the many possibilities.

#3: Integrating the Work of Scrum Teams and Teams Not Using
Scrum

A product is being developed by many teams. Some teams use Scrum.
Other teams use a waterfall process. Other teams are developing
hardware and use a proprietary process. How can all these teams be
managed, and how can the Scrum teams fit their work in?

Trey Research develops audio products. A project was started to build
a new radio. A Product Requirements Document (PRD) and plan were
developed. Of the many teams formed, one hardware team and one
embedded software team were responsible for building the handheld
remote controller (remote). The hardware requirements were
specified. The hardware would be a per-unit cost for every unit
shipped. The cost of the software was a one-time cost. Accordingly,
the hardware capability was minimized to save money. Commodity
hardware was selected.

The hardware team was using its own milestone-driven process as it
worked from the PRD. The milestones were a design document, a
hardware breadbox, a prototype, and then the finished product. The

breadbox was a large-scale, crude imitation of the remote controller.
The breadbox contained buttons and controls that would generate the
types of interrupts that the remote could expect and should handle. It
provided a test environment for the embedded software and could be
used to verify every Sprint's increment of functionality. However, the
breadbox delivery milestone was three months into the project.

The software team used Scrum. The Product Owner and the team
extracted the Product Backlog from the PRD that addressed software
functionality. During the first three months, the software team
completed three Sprints. It built a simulation layer to the specifications
of the remote on a PC. Once the breadbox was delivered, development
done on the PC would be tested on the breadbox.

In the fifth month of development, a competitor introduced a radio
with more remote functionality than the Trey Research remote. In
response, the goals for the Trey Research remote were expanded. The
Product Manager rewrote the PRD and briefed both the hardware and
software teams. She then worked with the software team to update its
Product Backlog.

The hardware team figured to have a new design specification done in
two months. A breadbox would be ready in three months. The
prototype would be ready within six months. Until the new design
specification was available, the software team couldn't detail the
functionality of the simulation layer on the PC. The software team also
wasn't sure whether all the new capabilities could be handled on the
selected commodity hardware.

The more complex the product is, the more change and
miscommunication can be expected. Scrum's answer is to require
integration of all product components as frequently as possible,
minimizing later rework. Integration should occur at least once per
Sprint, and the integrated product is demonstrated at the Sprint
Review. Sometimes other teams aren't using Scrum. Then the Scrum
teams are required to integrate as often as possible to the best
possible representations of the other parts of the system. These
representations can be simulation layers, which are built by Scrum
teams using the best available designs from the other, non-Scrum
teams. Whatever is possible must be devised and used to minimize
later rework.

Until the breadbox was ready, the software team had to build a
simulation of the remote's new functionality and interrupt structure as

best as it understood it. The team's starting point was the PRD and the
Product Owner. The software team selected several enhanced
functions and several new functions for the first Sprint. It refactored
the design to broadly take the anticipated changes into account. It also
ensured that the previously developed functionality continued to work.

By the end of the first month, the hardware team had partial
specifications ready. For the second Sprint, the software team selected
some more new Product Backlog. The team also selected several
previously "done" items from the first Sprint. In the second Sprint, it
expanded and refactored previous work to the new design information.
It made detailed changes to the simulation layer. It then tested the
previous "done" items to ensure they still worked. By the end of the
second month, the hardware team had the design specifications done.
During the third Sprint, the software team first rebuilt the simulation
layer to reflect the new design. It then completely refactored and
redeveloped previously done work to the new design. The software
team tested it against the simulation layer.

At the end of the third month, the breadbox was done and delivered to
the software team. If this were a perfect world, the breadbox and
simulation layer on the PC would operate identically. To see whether
this was true, the team and Product Owner placed the following new
items on the Product Backlog for the fourth Sprint:

• Test functionality that worked on the simulation layer to see
whether it also works on the breadbox. Rectify any discrepancies
between the environments to the correct design. Correct the
functionality if needed.

• Work with the engineering team to resolve overall discrepancies
between the design and breadbox.

• Update the simulation layer accordingly.
• Continue to develop functionality for the rest of the Product

Backlog.

During the fourth month, the hardware team was busy building the
prototype. The software team continued Sprinting, but discovered that
the commodity hardware was no longer adequate. The CPU was too
slow and the memory too limited. The software team negotiated with
the Product Owner and the hardware team to procure new hardware.
This introduced new work for the hardware team. It had to revise the
design, the breadbox, and the prototype. Completed work had to be
revised to take into account the changed hardware performance and
characteristics.

The software team revised the Product Backlog. It now had to simulate
the new memory and CPU capabilities on the PC. It had to retest all
completed functionality in this environment. The design documents
were revised, and the breadbox with the more capable hardware was
rebuilt. All completed work again had to be retested.

The solution just described required the software team to retest its
work against the best possible representation of the completed
product. Every time the design changed, these representations had to
be changed for retesting. The rework was limited to that functionality
and the design completed when the change occurred.

If the entire product was software, several teams could be developing
functionality using Scrum. The rest of the project teams could develop
functionality using a waterfall methodology. In that case, a simulation
layer could be built by the Scrum teams from the initial waterfall
architecture and design documentation. It would be enhanced as the
waterfall design changed. However, no complete integration could be
accomplished until the end of the waterfall, when overall integration
testing could begin. The real software from the waterfall parts of the
project then would replace the Scrum teams' simulation layer.

Summary

We've looked at some practices for integrating enterprise-wide Scrum
engineering in this chapter. There are many other variations that
might be required. Each variation should bring you closer to rapid
development and release of functionality. You have to devise these
solutions yourself, based on Scrum principles, best engineering
practices, and common sense.

Start with an increment a month. Figure out what has to be done to
make it shippable. Then reduce the length of the Sprint. Keep reducing
the length. The solutions aren't as hard to figure out as they are to
implement. You will know if the solution works by asking, "Have we
moved our enterprise closer to being able to ship yesterday's work
today?" If not, revise the solution and try again. You have a long row
to hoe. Start now.

Chapter 8. People Practices
In this chapter:

#1: Organizing People to Do Enterprise Work 70

#2: Team Creation 73

#3: Team Work 75

#4: How People Are Managed 76

#5: Functional Expertise 80

#6: Compensation 81

#7: Extra Managers 81

#8: Teams with Distributed Members 82

#9: Scarce Skills Needed by Many Teams 83

For the last 30 years, product management and development have
been driven by predictive and functional practices. Because Scrum is
radically different, the way people work with it is different. When you
view the Scrum people practices recommended in this chapter, you
might at first be taken aback. You might wonder how these practices
could make sense. Your reaction isn't because current practices make
sense or even work. They are just your current way of doing things. If
you consider that they are the basis of your current problems with
product management and development, changing them doesn't seem
so unreasonable. When you consider the practices in this chapter,
consider them on their own merit. Then, separately, consider the steps
to adopt them.

Why are people willing to make the changes Scrum requires? We ask
people to move out of a comfort zone into the unknown. They make
the changes as a tradeoff to have work that is creative and enjoyable.
It is an exchange for doing work in a way that makes sense. Moving
out of your comfort zone is the cost for having customers who can't
wait to get your products. It provides the reward of the joy of fulfilling
work. To many, it is a fair trade.

This chapter addresses how Scrum teams do the enterprise's work, top
to bottom. Chapters 6 and 7 described new ways to organize your
work. Now we'll look at how you can form, care for, and feed the
teams of people who will do the work.

#1: Organizing People to Do Enterprise Work

How do we organize our people to do our enterprise's work using
Scrum?

Your enterprise's work can be organized, top to bottom, into a single
Product Backlog. The organizing mechanism is a top-down
decomposition of products, system architectures, or business
operations. Figure 8-1 shows product decomposition by product,
function, activity, and task.

Figure 8-1. Enterprise work organization, product
decomposition

[View full size image]

People are organized in Scrum teams to mirror the organization of
work. In Figure 8-1, a Scrum team exists at each node in the
decomposition. Each Scrum team at each node is committed to its
work. It is also responsible for directing and successfully integrating
the work of its lower level nodes every Sprint. The work of any node is
organized and prioritized at the next level up.

The bottom-most node is where most development occurs. Most
Product Backlog requirements selected for Sprints relate to this level.
All other levels are integration or infrastructural development levels.
For instance, a component "Enter Telephone Number" is done at a
node at the lowest level, such as 1.1.1.1. During a project, a Scrum
team might be responsible for completing a Product Backlog item to
change this component.

Product activities, such as "edit," consist of multiple modules.
Activities, as outlined in Figure 8-2, are the next level of organization
for the enterprise's work, people, and management.

Figure 8-2. Activity-level organization

At the Activity level, an Integration Scrum team is responsible for
managing all the work in its lower nodes. The lower levels are directed
by the Activity-level Product Backlog, which is managed by the
Activity-level Product Owner. For example, in Figure 8-2, the
Integration Scrum team at node 1.1.1 is responsible for managing all
the work of the Scrum teams at nodes 1.1.1.1, 1.1.1.2, and 1.1.1.3.
The Integration Product Owner decomposes the Product Backlog for
each of the Component-level Scrum teams. There is a Product Backlog
for the node at 1.1.1. It is parsed to minimize dependencies and
assigned to teams at the nodes of 1.1.1.1, 1.1.1.2, and 1.1.1.3.

The Integration-level Scrum development team doesn't develop
functional software. It develops facilities to integrate, build, and test
the work of the lower level Scrum teams. It builds infrastructural
facilities to integrate these functions. The Integration-level
development team also develops integration tests to confirm that all
development at lower level nodes works. A general rule is that if any

integration fails, the levels below must fix that integration prior to
doing any new work. The Integration Scrum Team at 1.1.1 must
demonstrate the integrated increments of the Scrum teams at 1.1.1.1,
1.1.1.2, and 1.1.1.3 at the Sprint Review. To do so, it must pull
together the work of the Scrum teams at 1.1.1.1, 1.1.1.2, and 1.1.1.3
as frequently as possible, but no less than once per Sprint.

Integration-level teams can use the same ScrumMasters, Product
Owners, and Scrum development team members. Sharing between the
Component level and Integration level should be minimized to avoid
task-switching overhead during actual development work. Sharing
between Integration levels has fewer conflicts.

An organization of work at the Product level might look like Figure 8-3.

Figure 8-3. Product-level organization
[View full size image]

At the Product level, a Product Owner is responsible for maintaining an
overall Product Backlog. For a specific release, he or she organizes a
subset of the overall Product Backlog into a release Product Backlog.
This Product Backlog is decomposed to pieces owned by lower node
Product Owners. For instance, the Product Backlog owned by the
Product Owner at the Integration Scrum Team of node 1 contains all

the Product Backlog owned by the Product Owners at nodes 1.1 and
1.2. The Product Owner at node 1.1 contains all the Product Backlog
owned by the Product Owners at nodes 1.1.1 and 1.1.2. This structure
continues to the lowest level nodes. Product Owners, top to bottom,
are responsible for the accuracy and timeliness of their part of the
Product Backlog. To assist them, we usually have several people
develop and groom the Product Backlog in some automated tool such
as Microsoft Office Excel. These people can come from the old Project
Management Office.

The ScrumMaster on the Product-level team at node 1 is responsible
for enforcing the rules and mechanisms of Scrum at that level and all
lower levels. He or she ensures an integrated, tested build at the
Product level for the Sprint Review at each level of nodes—Product,
Function, Activity, and Task. The Product Owner plans, composes,
distributes, and tracks work from his or her level down. The overall
Product Backlog is owned and managed by the Product Owner on the
Integration Scrum team at node 1. The higher the level is, the harder
the Product Owner's and ScrumMaster's job is. The responsibility of
Product-level jobs usually requires someone with Vice President–level
or Director-level title and authority. Corresponding levels of
responsibility and authority are required at higher and lower levels.

Daily Scrums are held at the lowest level nodes, such as 1.1.1.1.
When multiple levels of Daily Scrums are conducted, this level is called
S1. The higher level Daily Scrum of Scrums are called S2, S3, S4, and
so forth and are held at each level. If there are more levels, they are
numbered accordingly, but the bottom level node is always S1. Daily
Scrums for levels above S1, also called Daily Scrums of Scrums, are
meetings between representatives of all next-lower level teams to
discuss the following four points:

• What did each team do yesterday?
• What will each team do tomorrow?
• What were other teams counting on our team finishing that

remains undone?
• What is our team planning on doing that might affect other

teams?

These Daily Scrum of Scrums meetings are working sessions that often
last longer than 15 minutes. Their purpose is to uncover and remedy
any dependency and integration issues between teams as rapidly as
possible.

At the component level (S1) and activity level (S2), the Daily Scrums
are indeed held daily. The attendees are people who are familiar with
the engineering content of their area and can discuss tradeoffs with
each other. At the Feature level, the S3 Scrums might be held every
third day. At the Product level, the S4 Scrums are held weekly. At the
Product Family level, the S5 Scrums are usually held no more often
than monthly. If the higher levels are held too often, the amount of
information passing from top to bottom and back, or churn, can
overwhelm the entire process.

#2: Team Creation

How do I organize my people into Scrum teams?

The Product Owner and ScrumMaster are the first people on a Scrum
team. They are responsible for selecting the Scrum development team
members. To optimize the productivity of the team, the developers are
selected based on three variables:

• People who have successfully worked together previously
• People who understand the product or business domain
• People who know how to use the selected technology

The team is also selected based on what constitutes a "done"
increment. For instance, if user documentation is part of an increment,
the team should have a technical writer.

These people can be selected from other, lower priority work teams.
Or these people can be selected from something called the bench. The
bench is where unassigned Scrum team members wait for work. They
might be on the bench because their work has been completed or they
were asked to leave their Scrum teams.

In a brand new Scrum adoption, we line up the Product Owners and
ScrumMasters by the return on investment (ROI) and priority of their
work and let them choose their teams from the bench. When no more
people are left on the bench or nobody wants the remaining people,
we stop forming teams. At the start of a release cycle or project, the
Product Owners can form new teams based on the priority of their
Product Backlog. They can stay with their existing teams, reformulate
their teams, or get new teams. We, of course, first make them aware
that productivity will significantly drop as a team reforms and
renormalizes. Whenever possible, leave teams intact.

It is easy to think too much about who should be on a team. The best
way to identify who should be on a team is for the team to make the
decision itself. I ran into a situation that taught me this lesson.

Woodgrove Bank is a large financial institution whose primary service
is banking. Woodgrove Bank had regional origins but had been
growing through nationwide acquisitions of other banks. The teller
systems in the acquired banks were different from Woodgrove Bank's
teller system. All the teller systems were difficult to use. Woodgrove
Bank formed a project to create a new teller system, Teller4U. A
development group of 45 people was formed. The entire team reported
to the vice president of development, Jack Creasey.

The Product Owner, Scott Culp, wanted frequent releases of Teller4U.
Jack and Scott agreed that five releases in the first year would be
appropriate, and that Scrum would be the best process to deliver
them. Each release would be used by a prototype banking team to
provide rapid feedback. In addition, the development group was using
CVS, an easy-to-use, but limited source-code management system.
CVS's weakness was that it didn't support simultaneous multirelease
development very well.

Jack devised a way for the 45 developers to build the five releases
within one year using CVS. Unfortunately, when I visited the teams,
they hated the approach. They complained that it was inefficient, still
only allowed two simultaneous copies of CVS, and wasn't working.
When I discussed this with Jack, he asked me to devise a better
process than his. He had wracked his brain, and it seemed pretty good
to him. Then we remembered self-management. The people who do
the work are supposed to figure out how to do it. We asked them to
use Scrum. They were supposed to figure out how to do Teller4U from
within the teams.

Jack and I met with all 45 developers. Jack reminded them that they
were self-managing. This meant that they were to come up with the
best team structure and internal processes for developing Teller4U
using Scrum. The developers looked at us carefully. They were sure
that they were being set up to take the blame. We ignored their looks.
We then told the developers that we would be back in two hours to
hear their approach for building the next release.

What if this didn't work? What if the developers weren't able to figure
out how to do their work? What if 45 people were too many for self-
management? What if we came back and they had done nothing for

the two hours? Our expectations were low. We feared that no more
than five or six of the lead developers would be in the conference room
when we returned.

Much to our surprise, all 45 developers were in the conference room
when we returned. The developers had also invited Scott and his
manager of the prototype team into the meeting. The white boards
were covered with schematics and the conference table littered with
paper. The prototype team manager started by telling us that she
wanted only two releases that year. She said that five releases were
far too many to really work through, since they would be refining and
testing various workflows as they tested each release. One of the lead
developers then told us that they had figured out how to use Scrum to
generate the two releases that year. In particular, one person from the
prototype team would be on each Sprint team to help them make the
best design decisions.

Jack asked how they were going to use CVS to do this. Speaking for all
the developers, a lead developer told us that was none of our
business. The team was self-managing and had figured out something
that should work. If it stopped working because of an unexpected
problem, they would be responsible for revising the approach so that
they could deliver their commitments. We either trusted them to
manage themselves or we didn't.

Jack and I left the conference room with Scott. We were treated to
increments of Teller4U functionality every month, and two more
releases that year. The project is now in its second year and doing
fine.

#3: Team Work

The people in my enterprise aren't used to working in teams all the
time. What can I do to prepare them?

Every Scrum team, regardless of its level in the enterprise, will go
through the steps of forming, storming, norming, and performing.[1]
This process is shown in Figure 8-4.

[1] Tuckman, Bruce W. (1965) "Developmental sequence in small groups,"
Psychological Bulletin, 63, 384–399.

Figure 8-4. Bruce Tuckman's Team Formation Model

When done formally and properly, the first step—formation—simplifies
all subsequent steps. It arms the team for upcoming problems. The
formation activity can be facilitated by the Human Resources
Department or some other source of team-building expertise. During
this activity, the team develops an identity, a way of working together,
and a way to resolve conflicts. Use exercises based on real-life
problems the team can expect to encounter. For example, I usually
have a team work on how it will develop requirements and acceptance
tests. The team members usually expect that the analyst will do the
first requirements and the tester will do the testing. There are
alternatives, but it is important for the team to figure out its first
steps. At the end of the formation activity, the team should have a
team name, it should have a definition of Sprint and Daily Scrum
"done," as well as having formed rules of etiquette and engineering
rules. The team should discuss and tentatively formalize their Sprint
process for turning Product Backlog items into something "done."

The team also needs to be trained in how to resolve its inevitable
conflicts. When the team starts Sprinting, it develops product. As it
does so, professional conflicts about how to do so and personal
conflicts about who does what will arise. This is the storming phase of
the Tuckman model. The team will use its knowledge of conflict
resolution to come up with agreements in the norming phase of the
model. If the team is unable to do so, it draws again on the Human
Resources Department or any other externally established source of

help. These new agreements will be the basis of its ability to perform
in the performing phase.

The performing phase is not permanent. Disagreements and conflict
can be expected in the complexity of product development. The team
will repeatedly fall back into the storming phase and need to come up
with new norms of operation.

I remember walking toward a team room one day. The team had been
working together for six weeks. As I approached the room, the lead
analyst and lead engineer emerged from the room, yelling at each
other and calling each other names. They then fled in separate
directions before I could ask what was going on. I entered the team
room and found the rest of the team shocked and withdrawn. The
team's productivity was now zero. I asked what had happened.
Apparently, before Scrum was adopted, the analysis group always
wrote the functional specification and gave it to the engineers. The
engineers then took liberty with the specification and wrote the system
as they saw fit. The analysis group decried this, and the engineering
group ignored them. This was a long-standing conflict in the
enterprise. When we put people from the analysis and engineering
group together on the team, they brought the problem and all the
tension of it with them. The problem had now bubbled up and stopped
the team dead in its tracks. Adequate training in conflict resolution or
an external resource to help them could have resolved the conflict
before it got out of hand.

#4: How People Are Managed

How do I manage people to meet enterprise objectives? Who is
responsible for what? How do I ensure that things get done?

Scrum teams manage themselves, from the top to the bottom of the
enterprise. You don't manage them to do things. You set goals. The
teams manage themselves to build the Product Backlog and reach the
goals. You inspect the results at the end of every Sprint and adapt
accordingly.

To understand how to do this, let's consider a one-Scrum team
company. The team reports to you, the CEO, to build and deploy
product. The team consists of one Product Owner with one Product
Backlog of work, one ScrumMaster, and a development team of eight
developers. You manage the Product Owner and the ScrumMaster. The
team is a single entity and manages itself. (All Scrum teams are self-

managing.) However, it is answerable to the Product Owner for
building the product. It is answerable to the ScrumMaster for following
the Scrum process.

Your enterprise is successful. The product sells. Prospects clamor for
more. Customers demand enhancements. You need to build more
products quickly. You ask the existing Scrum team to add more people
as rapidly as it can. It further decomposes and rearranges the Product
Backlog so that subsets of it can be assigned to new teams. It figures
four new Scrum teams can be immediately added.

All the Product Owners on the new teams will report to the initial
Product Owner, who is responsible for optimizing overall return on
investment and competitiveness. All the new ScrumMasters will report
to the ScrumMaster on the original team, who will ensure that
everyone knows how to use Scrum and does so. The new Scrum teams
manage themselves. The initial Scrum development team is
responsible for the work of all new Scrum teams. It has to be
consistent and integrate into one high-quality product. The team
devises an architecture within which more teams can work on
individual pieces without stepping on each other. The team devises a
set of coding and design standards to ensure consistency. The team
also sets up a common development environment.

In Figure 8-5, each new Scrum team—such as 1.1, 1.2, and 1.3—has a
nucleus of one person from the original Scrum team. He or she works
with the new team's ScrumMaster and Product Owner to hire the rest
of the developers. He or she is responsible for teaching the new people
how systems are developed in your enterprise. New Scrum teams can
be formed until at least one developer is left on the original Scrum
team. The original team consists of these remaining developers and
the original Product Owner and ScrumMaster. This team now becomes
an Integration Scrum team, responsible for the work of all subordinate
nodes.

Figure 8-5. Example of an Activity-level organization

The enterprise continues to succeed. More and more people are hired.
They are interviewed and hired by the Product Owner, ScrumMasters,
and Scrum development team, such as at 1.1. The Scrum team at 1.1
forms lower level Scrum teams, such as 1.1.1 and 1.1.2. Each new
team consists of a Product Owner, ScrumMaster, and development
team. The new Scrum development teams are seeded with people
from the parent node, such as 1.1. As the enterprise fleshes out, it
looks like Figure 8-6.

Figure 8-6. Example of a Product-level organization

The Product Owner at the very top of the hierarchy, node 1, is
responsible for overall Product ROI and success. The ScrumMaster at
node 1 is responsible for Scrum being used effectively throughout the
enterprise. This ScrumMaster is also responsible for overall enterprise
change. At each node in the hierarchy, the Scrum development teams
report to the Product Owner to find out what work to do, and to the
ScrumMaster for instructions on following the Scrum process and
facilitating change.

The ScrumMaster is responsible for teaching the Product Owner how to
most effectively manage the work of the Scrum team using the
Product Backlog, Sprint Planning Meeting, and the Sprint Review
Meeting. He or she teaches the Product Owner how to maximize ROI
and meet their objectives through Scrum. The ScrumMaster is also
responsible for improving the lives of the development team by
facilitating creativity and empowerment. He or she is responsible for
improving the productivity of the development team in any way
possible. Also, the ScrumMaster is responsible for working with teams
to improve the engineering practices and tools so that each increment
of functionality is potentially shippable. When people aren't fulfilling
their roles, the person held accountable is the ScrumMaster. He or she
hasn't taught the team how to do their work.

The development teams are responsible for managing themselves.
Every Sprint, they evaluate their processes for opportunities to
improve them. They are required to follow all the conventions,
architectures, and standards devised by the original Scrum team. As
these evolve, the development teams are responsible for staying
conversant with them and continuing to follow them. They are also
responsible for integrating their work with all higher levels at least
once a Sprint.

Sometimes the new hires don't work out. When they degrade team
performance or productivity, the team is responsible for removing
them. The team tells them that they are no longer needed. The
"purged" person goes to the bench. They can be selected from the
bench by another team looking for new members. If they are on the
bench too long, Human Resources is responsible for placing them
elsewhere in the enterprise. Teams are very reluctant to remove
anyone, however. They are a social group that tends to be very
forgiving and caring.

Offsetting team reluctance to remove team member is the Product
Owner's need for productivity. If the Product Owner's development
team isn't productive enough, the anticipated return on investment
can't be achieved. He or she then meets with the ScrumMaster to
replace or reformulate the existing team. On one project I was
involved with, the ScrumMaster removed four members of a seven-
person team and productivity soared. When this isn't possible, the
Product Owner might have to cancel the project.

Sometimes people on the development team or the Product Owner
won't or can't comply with Scrum. The ScrumMaster must replace
them. They must be removed before they drag down the entire team,
process, and enterprise. The tactics for removing a Product Owner are
often sticky. However, the absence of a Product Backlog or Product
Backlog burn-down is a compelling reason to do so. Worse, creation of
irrelevant or off-target increments, Sprint by Sprint, with no correction
is appalling. The ScrumMaster is responsible for teaching the Product
Owner how to do his or her job. If the raw material is weak, the
ScrumMaster can't let failure to comply with Scrum persist for more
than two Sprints.

Sometimes ScrumMasters are ineffective. They don't teach the Product
Owner how to manage the Product Backlog. They don't teach the team
how to self-manage. They continue to use command-and-control
techniques. They should be removed by the ScrumMaster they report

to. Sometimes Scrum development teams are ineffective. They can't
build enough product to meet the Product Owner's needed return on
investment. The Product Owner should either work with the
ScrumMaster to reformulate the team or cancel the project.
Sometimes the Product Owners don't meet the return on investment
required by the Product Owner they report to. That Product Owner
should replace them.

A Scrum reporting structure for an enterprise is shown in Figure 8-7.

Figure 8-7. Scrum reporting relationships
[View full size image]

The Product Owners report to each other, up through the hierarchy of
nodes. At each node, the Scrum development team reports to the
Product Owner regarding what work to do and the ScrumMaster for
instruction on conforming with the Scrum process. This reporting
relationship is unusual because the team manages itself. The Product
Owner is only responsible for telling the Scrum development team
what to do at the start of every Sprint in the Sprint Planning Meeting.
The Product Owner doesn't manage or review the individual team
members. He or she inspects the team's work only at the Sprint
Review. The Scrum development team similarly reports to the
ScrumMaster for compliance with the Scrum process. ScrumMasters

report to the ScrumMaster at the next higher node, up through the
hierarchy of nodes.

#5: Functional Expertise

My development organization has different functional skills, such as
systems architecture, usability engineering, programming quality
assurance, and technical writing. People with these skills used to be
managed by a functional manager. Now these functional managers are
ScrumMasters, Product Owners, or Scrum development team
members. How do I ensure that the functional skills are kept at the
highest levels?

I recommend that you set aside a part of every employee's time to
pursue activities that are outside their current Scrum teams and that
benefit the enterprise. I recommend an allowance of 20 percent of
their time. Let the people coalesce into interest groups where they
work together. Some of this time can be spent working with peers in
sustaining and enhancing functional expertise. Some of the work can
be researching and prototyping new ideas. The yellow sticky notes of
3M and Gmail at Google were developed in this way. Twenty percent of
everyone's time might seem like a big investment for your enterprise.
If you add up all the time you used to invest in functional
organizations, it will be modest by comparison. Try this approach and
be prepared to be surprised, as Google and 3M were.

People form functional expertise groups around systems architecture,
quality, programming, refactoring, and any other development
expertise. They will define standards, guidelines, and conventions for
such enterprise work. These groups will also define career paths within
that discipline within the enterprise, and criteria and tests for
advancing along the career path. They also might want to be available
as a recruiter and interviewer of new people. These groups emerge
based on mutual interest. These groups self-manage functional
expertise within the enterprise. They do not have a manager.

All of these groups use Scrum. They elect Product Owners,
ScrumMasters, and teams. They spell their work out in a Product
Backlog.

#6: Compensation

How do I compensate and reward people for their work? Does the
team structure change anything?

Two variables control a person's pay. Base salary of an employee is
directly proportional to his or her responsibility and accountability.
Directors earn a higher base pay than supervisors. Lead programmers
earn a higher base pay than junior programmers. The greater the
salary, the more that is expected of them.

The second variable is the performance of enterprise, the big team.
You can reward all teams' performances from a common pot of funds.
The source of the funds is all money that would otherwise have been
allocated to bonuses or individual incentive pay. Use this pot of funds
to reward team performance toward enterprise goals. The incentive
pay is distributed through a team to its members proportionally
according to base salary. If one team member makes $x and another
makes $2x, the team bonus is split so that the person making $2x
gets twice as much of it as the person making $x. This allocation is
based on the assumption that someone with a base pay that is twice
as much as another person has knowledge and skills twice as valuable.
The person who allocates the team bonus is the Product Owner. This
starts at the top of the enterprise and is allocated downward according
to performance.

#7: Extra Managers

I've assigned people to be ScrumMasters, Product Owners, and part of
Scrum development teams. There are still some extra managers. What
do they do?

Almost all the product management and development work is done in
a hierarchy of Scrum teams. Unless remaining staff and managers
have other solid work to do, their idle hands are the devil's workshop.
They interfere with the Scrum teams.

I visited several Wingtip, Inc. teams at their Sprint Planning Meetings.
Strangely, their managers were in attendance. The team members sat
in silence, while the managers investigated the work, asked questions
of the team members, committed the team to the Sprint goal, and
then broke down and assigned the work. No self-management
occurred. The productivity and joy of teamwork was forgone.

I investigated and found that 18 first- and second-level managers
were still unassigned. They didn't want to be ScrumMasters. They still
wanted the prestige and authority of their old jobs. I gathered them
together. I asked them what their responsibilities were regarding the
people who reported to them and who were also in Scrum teams. The

things they told me they were responsible for included ensuring there
was no slack time, that the work was appropriate, and that the people
were doing their work correctly.

Of course, these weren't self-managing teams. Scrum development
team members still reported outside their Scrum team. Worse, until
their managers found other meaningful work, they would continue to
manage the people who still reported to them.

#8: Teams with Distributed Members

The people in some of my teams aren't collocated. What do I do?

If people on a team haven't worked together, they don't trust each
other. They don't know what the other person is likely to do. They
can't anticipate how to work with them.

One company had a team that had members in Lithuania, Finland, the
UK, Pennsylvania, and Alabama. The entire team gathered at
headquarters in Pennsylvania with the Product Owner to plan the
release. They stayed together for the first one or two Sprints of the
release to iron out the highest value and architectural issues. Then the
team members went back to their offices. They continued to use the
same shared development environment. They had their offices
connected all the time by Internet-enabled intercom. Whenever
anyone had a question, he or she would just lean over to the intercom
and ask it of whomever was nearby. If nobody was present, the
employee would use instant messaging or e-mail.

Daily Scrums were still 15 minutes long. Everyone would call in on a
conference call. The call often extended past the Daily Scrum as
design and testing issues were worked out. For each Sprint Review
and Planning meeting, at least half the team would gather again in
Pennsylvania with the Product Owner.

Another company had a team that was evenly split between New York
City and China. They followed the same team practices as the team
just mentioned, but the time-zone differences made the Daily Scrums
hard to schedule. The team decided to form representative teams. One
person in China represented the rest of the Chinese at the Daily Scrum
for the first week. For the next week, one person in New York
represented the rest of the New Yorkers at the Daily Scrum. The
person representing his or her location was then responsible for
communicating with the rest of the team at their location.

I not only have teams with distributed members, but my teams are
distributed in different locations. What do I do?

These teams are required to integrate their work into one
demonstrable increment at least once every Sprint Review Meeting. To
do so, they probably will have to integrate and test their work at least
weekly, and perhaps daily. Integration will require them to work
together through several Sprints to resolve differences and use the
same design. The teams will devise the best mechanisms to do so if
and only if they are held accountable for one integrated increment.
The mechanics of integration across teams are thoroughly discussed in
Chapter 7, "Engineering Practices."

#9: Scarce Skills Needed by Many Teams

Only a few people have certain skills. They are needed by many teams
at once. I know everyone on a team should be full time, but how do I
handle this?

Three Scrum teams had work that originated from the same Product
Backlog. The teams used the same development environment. Every
team needed the same database administrator (DBA) full time for the
next several Sprints. They asked me to tell them what to do. I
investigated the Product Backlog with the Product Owner. Each team's
work was about the same priority as the other teams. Remembering
the wisdom of Solomon, I told the teams to split the DBA's time, 33
percent to each team.

At the next Sprint Planning Meeting, the teams told me that my
solution didn't work. The teams all needed the DBA the same time
during their Sprints. I was embarrassed. My solution hadn't worked. I
wracked my mind for a better solution. Then I remembered that these
teams were supposed to manage themselves. I asked them to spend
the next hour and devise their own solution. At the end of the hour,
the teams had agreed that the DBA would spend most of her time with
the team where her work was most critical. However, she would
mentor and coach several people on the other teams for all their DBA
work. Most critically, they said that no team would commit to any work
unless the DBA was in that team's Sprint Planning Meeting and also
committed. As a result, all three teams had their Sprint Planning
Meeting in the same room at the same time.

The team's solution became a general practice for Scrum teams with
external dependencies. The external dependency can be a scare

resource, another team, or an external vendor. Regardless, a team
cannot commit to Sprint work unless the external dependency is in the
Sprint Planning Meeting and also commits.

People who represent scarce resources often argue that they need to
do their work in isolation, separate from the teams that will use their
work. They argue that they are more effective than if they were on
Scrum teams. Whenever this is done, the scarcity becomes amplified.

Their separation from the people who use their work increases and
miscommunications grow. Mentoring and cross-training disappear. The
best solution is to have them be part of the teams that use their work.
They then might see new solutions that are better than those derived
in isolation. As they work within the team, the team members learn
from them.

Sometimes there just aren't enough resources for the work that is
desired. The teams can't devise clever solutions that fully mitigate the
shortage. Then you have a real constraint that must be addressed by
slowing down the teams to cross-train them. You can hire additional
people, but they too have a learning curve before the constraint is
lessened and removed.

Chapter 9. The Relationship Between Product
Management/Customer and the Development Team
In this chapter:

#1: Shortening the Time to Release Through Managing Value 86

#2: Just Do It 90

#3: The Infrastructure, or Core 90

#4: Accelerators to Recovery 92

#5: The Mother of All Problems 93

Until recently, I viewed this relationship as one of many changes in a
Scrum adoption. I now view it as the most critical change, the lynchpin
of the adoption. If this change is successful, the use of Scrum will
persist and benefits will increase. If this change isn't successful, the
use of Scrum in your enterprise might well unravel.

Many enterprises can't develop and release products as quickly as they
would like. The lengthened release cycle impairs them competitively.
Surprisingly, the cause can be traced to the relationship between an
enterprise's product managers/customers and their developers. This
relationship is deeply ingrained. Product Owners cherish their half of
the relationship. It is the only way they know to get releases done on
time. Developers just do whatever is needed to keep the Product
Owners happy. This relationship changes when you adopt Scrum. The
Product Owner is asked to manage a project to optimize value. The
developers are asked to be open and honest about their progress even
if it disappoints the Product Owner.

In this chapter, I'll present a way you can shorten the time to release
through managing value. The results will not only be faster
development, but higher quality and less expensive development. I'll
then present the impact and consequences of your current customer
and developer relationship on your enterprise. We'll look at something
called the infrastructure and its role in your woes. We'll then explore
some accelerators that might shorten your development cycle in
conjunction with Scrum. Finally, I'll expose the origins of the problem
in the traditional customer and developer relationship so that you can
guard against its recurrence.

#1: Shortening the Time to Release Through Managing Value

We have to commit to delivery dates. The enterprise has promised the
next release to key customers, and we have to deliver on time to keep
them. How do we do that using Scrum?

Scrum introduces the possibility of value-driven development. We
usually control projects through four variables:

1. The functionality we want and the work needed to build it
2. The time for delivering the functionality, or the due date
3. The cost of the project
4. The quality of the functionality

Scrum introduces a fifth variable, value. We can shorten delivery dates
and reduce costs by optimizing the value of the project. We optimize
value by delivering the highest value increments of functionality first.
We stop delivering increments when the value is less than the cost.
We also stop delivering increments when the opportunity value is
greater than the marginal value of the next increment.

A project used to be "done" when all the functionality that we could
think of was delivered. Statistics show that at least 65 percent of this
expensive, hard-won functionality is rarely or never used.[1] Think of
the most common desktop software. Most of the lower menu paths are
rarely or never navigated. Regardless, the vendors paid to build them
and continue to pay to maintain them. For example, suppose the
Product Owner estimates the cost to deliver the release at $1,000,000.
It can be done in 10 months. The entire project has a return on
investment (ROI) of 28 percent. Some of the functionality makes a
significant contribution to the ROI, and other pieces don't. If the
Product Owner knew which functionality were ROI drags, he or she
would not build them. The Product Owner might be able to deliver an
improved ROI by spending only $350,000 and delivering in four
months. This is an example of judiciously managing to optimize value.
This is value-driven release management.

[1] Jim Johnson, My Life Is Failure (The Standish Group International, Inc., 2006)

Optimizing value is straightforward with Scrum. The first step is to
establish a baseline plan representing the functionality to be delivered.
It is organized as an estimated, prioritized Product Backlog. Capacity,
or development velocity, is then estimated. Divide the total work of
the Product Backlog by the monthly capacity. The result is the

estimated number of months for the entire project and the estimated
completion date. Personnel costs are calculated from total utilized
capacity. The project starts toward these goals, and the Product Owner
monitors its progress, Sprint by Sprint. A full description of this
approach is in my earlier book, Agile Project Management with Scrum
(Microsoft Press, 2004).

Sometimes project progress doesn't meet the baseline plan. The
estimates were wrong. The team's velocity was lower then expected.
Changes were needed. The baseline date is in danger. The Product
Owner can monitor this, as shown in Figure 9-1, by tracking the burn-
down of remaining Product Backlog work.

Figure 9-1. Deviation from the baseline plan

At the end of the third Sprint, less work has been completed than
expected. The Product Owner has early warnings of schedule variance.
He or she can adjust everyone's expectations accordingly. This is
similar to an enterprise's financial and sales plans when a forecast
becomes a baseline plan. Everyone synchronizes their work to the
forecast. On a monthly basis, actual results are compared to forecast
and the enterprise adjusts. The actual results might not be what are
desired, but we can take early action. Now we can do the same
adjustment with development projects.

The Product Owner manages value to control a project's end date. By
re-evaluating and restructuring the content of the project, the overall
work can be reduced. He or she prioritizes the functionality as the
Product Backlog changes so that the most valuable work is always the
highest priority. As each increment is done, the Product Owner
evaluates it. When the anticipated value starts reducing ROI, the
project can be stopped. The functionality can then be shipped and the
enterprise can start benefiting sooner than expected.

Relative Valuation with Scrum

It is hard to determine the ROI of individual pieces of functionality. For
instance, how much more revenue will accrue if we spend $270,000 to
develop functionality to import a prior year's tax data? To compensate
for this difficulty, we can use the statistical technique of relative
valuation. We can provide the Product Owner with 1,000 imaginary
Ping-Pong balls. Larger projects get more. We ask him or her to
allocate them among the Product Backlog based on the importance of
each item toward meeting goals of the release. Some items are really,
really important and get most of the Ping-Pong balls. Surprisingly,
most of the Ping-Pong balls go to only 35 percent of the functionality.
The hypothetical Product Backlog demonstrates this in Figure 9-1a.

Figure 9-1a. Product Backlog Value Distribution

PRODUCT BACKLOG VALUE EFFORT

Item 1 80 13

Item 2 75 34

Item 3 75 21

Item 4 74 13

.

Item 28 10 34

Item 29 8 13

Relative valuation of Product BacklogScrum teams turn the Product
Backlog into shippable increments of functionality. We can track the
relative value of the functionality delivered in each increment, counted

in Ping-Pong balls. We can track the accumulated value delivered
across time in a graph, as shown in Figure 9-2.

Figure 9-2. Cumulative value curve

At the start, cumulative value rises slowly as infrastructure and the
development environment are put in place. The cumulative value then
rises quickly as the highest value Product Backlog item is completed.
When lower priority Product Backlog items are delivered, the
accumulation of value slows.

This technique works if the number of Ping-Pong balls, or relative
value, remains constant throughout the project. However, the total
amount of value can increase or decrease as the Product Backlog
changes. The cumulative value delivered for each Sprint must then be
recalculated to a new baseline.

Tip

Here is a formula you can use to help re-baseline the
relative value of all Product Backlog items whenever the
total value changes:

Code View: Scroll / Show All
((new total value/last total value) * old accumulated
value at that Sprint =
new cumulative value at that Sprint)

For example, if the baseline value is 1,000 and we add a Product
Backlog item with a value of 200, the total new value is 1,200. If we
had delivered 200, 380, and 500 points of value in the first three
Sprints, these would be reevaluated to the following:

(1200/1000)*200, (1200/1000)*380, and (1200/1000)*500

The Product Owner can now track both project progress and
cumulative value delivered to optimize the project's value. For
instance, in Figure 9-3, the enterprise wants to start using the product
at the end of month 20. A trend line drawn at month 10 indicates a
later completion date to be likely. The cumulative earned value curve
in Figure 9-2, though, shows the cumulative value slope dropping by
month 10. When the slope is less than 1, it could indicate there is an
opportunity for value-driven development. The Product Owner could
stop the project. In this example, lower value functionality is removed
from the project and the remaining amount of work drops. At the
average velocity, the project can now be completed by month 20. By
directing work to maximize ROI, the Product Owner has met the
enterprise's objectives. He or she has used Scrum to optimize value.

Figure 9-3. Value-driven project

#2: Just Do It

We tried value-driven management. We've massaged the
requirements to eliminate low-value Product Backlog requirements.
We're still not going to hit the date. There is too much to do. In the

past, we've asked development to work harder. We tell them to do
what it takes. They've always come through for me. Is this OK in
Scrum?

What a dilemma! We have a budget. We need to get the release to the
customers on that date, and we can't remove any more requirements
without violating their expectations. Why can't we do what we've
always done—just tell the developers to do it?

Developers can increase the amount of functionality they build if they
reduce the quality of the functionality. Reducing quality is a time-
honored tradition. Why not? As one product manager pointed out to
me, "Quality is intangible!" This tradition operates as follows. We ask
for more functionality or changes. The developers tell us it will take
more time. We say that is too much time. The developers protest. We
escalate to their management. We tell management, "The developers
aren't on board, they aren't part of the team, and they are slacking
off." The manager of the developers then tells them to "do it." And, by
golly, it works! They do it.

The developers reduce quality by eliminating careful construction of
design and logic. They don't review code for flaws. They don't create
or run adequate tests. They work 12 to 14 hours a day and on
weekends. They hack out something that kind of works. Developers
can increase the amount of functionality delivered by a factor of three,
in the short term. Cutting quality usually works for a single project.
However, it should be used only in extreme circumstances. Afterward,
the quality needs to be restored immediately. The cost you can use is
$4 to remediate every $1 of dropped quality. Dropping quality might
seem like a good short-term fix, but it decreases the value of an
enterprise asset. Its repeated use has significant negative effects on
the enterprise.

#3: The Infrastructure, or Core

Even cutting quality didn't do it. We can build new functionality
satisfactorily; however, it takes us much longer to build functionality in
our core products, or infrastructure. How do we arrange this work
using Scrum to meet our deadlines?

Almost every enterprise that I've worked with shares a common
engineering problem. It revolves around the enterprise's "core" or
"infrastructure" or "legacy" product. The core is the heart of all the
software or products for that enterprise. It is the common, basic

functionality of all its products. It is where the common shared
databases, transaction processing, and functionality reside. These
enterprises can rapidly build new functionality. However, much of the
new functionality also requires changes in the core. The problem is
that the core takes a long time to change or modify. For every one
hour spent building new functionality, ten hours have to be spent
enhancing core functionality. Hundreds of developers might be held up
waiting for core functionality changes.

The impact of core functionality on development projects is expressed
in the following exercise. We need to release a new feature to our
customers within three months. Three pieces of functionality are
needed and consist of the following work:

• Function 1: 20 units of work—15 of new code and 5 in the core
• Function 2: 40 units of work—25 in the new code and 15 in the

core
• Function 3: 30 units of work—20 in the new code and 10 in the

core

We have made measurements and know that our ability to build
functionality has the following characteristics:

• New functionality can be built at a velocity of 15 units of work
per Sprint per team. As many teams as desired can be put on
this work because no pre-existing knowledge is needed.

• Core functionality can be built at a velocity of 5 units of work per
Sprint, total. This is the maximum velocity. It can't be increased.
There is nobody else within the enterprise who can successfully
work on the core.

How do we arrange the teams to meet the three-month release date?
Upon inspection, it appears possible. We usually just increase the
number of people working on a project to make a date possible.
However, the core velocity constrains this approach. There is no way
we can make this happen. We can get either function 1 and 3, or
function 2, completed in three months, but no more. We are stuck.

This problem intrigued me. Why was the core development velocity so
low? Why was the core so hard to modify? I found that all cores had
the following common characteristics:

• They were fragile because they were poorly engineered. They
have duplicated code, overly complex code, code plastered on

top of other code, undocumented code, and code that didn't
follow any standards. Documentation is nil or almost useless.
Whenever a change is made to the core, something is likely to
break elsewhere in the core.

• Inadequate tests were available to check that the core product
still worked after modification. When tests were available, they
were rarely automated. Retesting took a very, very long time.

• Only a handful of developers were left that were still competent
to make modifications to the core. Even fewer were willing to do
so. Everyone else had retired, died, or gone on to more
interesting work.

I refer to core products with these characteristics as being "dead." It is
very hard to get life from them. How did the core get this way? The
process is well known to all of us. It is inherent in the traditional
customer and development relationship. That the process builds dead
cores is less well known. Let's look at how this happens.

We visited Wingtip in Chapter 7, in the "#1: Multilayer System Work
Organized by Functionality" section. Wingtip's situation had become
worse since the time of that anecdote, with further deterioration to its
core. Several more core developers had left. However, the competitive
pressure on the advertisement serving product had grown more
severe. Ten Scrum development teams were assigned to add new
functionality in a product road map. The road map called for 160 new
or enhanced pieces of functionality. The teams estimated that 33
percent of all work would have to be done in the core.

I was attending a Sprint Review when I noticed something funny. The
teams were demonstrating functionality without required changes to
the core. They had segregated the approximately 33-percent core
functionality changes into another Product Backlog. This work would
be done later. As a consequence, what was demonstrated couldn't be
adopted and wasn't done.

Only one team was able to demonstrate fully working functionality. It
had developed an application programming interface (API) around the
core. New functionality called on the core through the API. Rather than
modify the core, the team rebuilt parts of the core into the API. The
team even put a new database management system in the API. The
core effectively now existed in two places. This created a conundrum
for any further development. Did just the core have to be updated? Or
did the API have to be updated also? You can imagine the chaos if all
10 teams had followed this approach.

We restructured the Sprint Planning Meeting to make the velocity
constraint of the core more visible. We brought all the Product Owners,
ScrumMasters, and developers for the 10 teams into a large room. We
asked the Product Owners to collectively prioritize all their work. Then,
in priority order, each Product Owner and lead engineer got to form a
team for the next Sprint, including the necessary core developers. As
each team was formed, we asked the people on it to leave the room.
Ten pieces of functionality were selected. Then there were no more
core developers left. No more new teams could be formed. Forty
people remained. If they built new functionality, it would be unusable.
We had them start building test harnesses for the core, hoping to
make it more stable.

#4: Accelerators to Recovery

Scrum seems to have improved the productivity in most parts of
development. But it hasn't improved infrastructure development
productivity. Since almost all of our work involves changing the
infrastructure, how do we improve productivity there? We may not be
able to deliver products any faster if we can't solve this problem.

Many enterprises already have a dying core. You can figure out how
bad the impact of the core on the enterprise is by modeling the
following items:

• The cost and time needed to rebuild the core. (See the
alternative approaches presented next.) The cost and time
depend on the skills and availability of existing core developers
and on the degradation of the core. They also depend on how
good the rebuilt core has to be and what velocity it has to
support.

• The rapidity with which the enterprise is losing market share.
• The tolerance of the enterprise's customer base to the

increasingly poor quality of its products.

The following list details several alternatives to restore life to the core:

• Remediate the core. Restore the quality to the core product.
Form new teams to redesign and refactor the code. Write overall
design information to guide navigation in the code. Develop
automated test harnesses that ensure the core is working. This
approach can be compared to rebuilding a house that has fallen
into severe disrepair. It usually is quicker, cheaper, and safer to
tear it down. Unfortunately, as core functions are remediated,

you will have to make assumptions about how the new code
should work. Many functions use the core and there rarely is a
complete inventory. Because all the usages are unknown, it
might be impossible to devise complete functional tests.

• Strangle the core. As the engineers enhance or fix bugs in the
core, allocate enough time for them to rewrite that area with a
good design and clean, commented code. Bit by bit, the new
code will strangle the design dead code.

• Rewrite the core. Understand what functions the core performs.
Rewrite them from scratch. This approach suffers many of the
problems of remediation. You might never know what has been
done wrong or not done at all until the customers tell you. You
will also have to synchronize any interim changes between the
new and old core.

• Prop up the core. Live with the core longer but with less
damage. Understand as much functionality of the core as
possible. You should document as much design and mapping as
possible. Build automated test harnesses around the core so that
you will know when it breaks. As any piece of core functionality
needs enhancing, rewrite it from scratch. This approach is better
than the first two, but it is still highly risky.

• Drain the pond. Rebuild the core in new technology with good
design and test harnesses. Rewrite pieces of core functionality
one at a time in the new technology. Move known users of the
core functionality to the new core one by one. Assure that each
user of the core functionality works and that tests are in the core
test harness. When all known users of a piece of core
functionality are converted, try turning off that part of the core.
Find the other users, one by one, as they complain.

#5: The Mother of All Problems

How did our enterprise get in this pickle of a dying core? We have
excellent developers. We have a great marketing department. We
have good market share and are loved by our customers. We are
respected in the industry. Where did this come from, and how did it
happen?

The methods of improving the core are expensive, risky, and time-
consuming. You might be shocked. Earlier, in the section "#1:
Shortening the Time to Release Through Managing Value," we looked
at how you can avoid the problem. But how and why did it occur
originally? We have to look at our traditions and habits to fully
understand this so that we don't repeat ourselves.

Most enterprises initiate a project by estimating the cost and delivery
date. Customers provide input by defining everything that they want
done—the requirements. Each step thereafter decomposes customer
requirements into the ultimate product. Changes become more
expensive as the decomposition progresses. If 60 percent of the
project is complete, many of its internal workings are complete. They
are interrelated and depend on each other. A change at the start of a
project might cost one dollar. When the product is in production and
has already been shipped, the same change costs 100 dollars.[2]

[2] Barry W. Boehm, Software Engineering Economics (Prentice Hall, 1981)

An average of 35 percent of the requirements change during a project.
Many of these changes occur late in the project. This puts the
customer in a bind. Development tells them that changes jeopardize
the initial estimated dates and costs. The customers want the changes,
but not if they cause cost overruns or delivery date slippages.

Accurately predicting a date and total cost at the start of a project is
very difficult. The sheer complexity of the requirements and the
changes are unpredictable. The vagaries of the technologies employed
often aren't yet known. The people doing the work cause huge
variances between predictions and actual results. This is a dilemma for
customers who have acquired enough funding to support an expected
cost and date. They expect to get benefits on that date. Customers
become increasingly frustrated as developers resist changes. Project
costs and delivery dates keep changing, always upwards. Developers
are embarrassed to tell customers that things have slipped again
because they couldn't fit an ever-increasing amount of work into the
same size date/cost box.

A dysfunctional relationship between customers and developers arises.
Customers rely on telling the developers to "just do it," while
tolerating modest slippage of cost and date. The developers then have
to do more work in less time. They cut quality so that they can do
more work. The resulting functionality might wind up in the core,
making the core harder to enhance and maintain. Fewer
enhancements can be planned. Longer development cycles are
needed. The enterprise becomes less competitive.

I can tell whether an enterprise is heading toward a dead core.
Decreasing development velocity is the first sign. Teams are able to do
less work in the same time because of lowered quality. A reduced
velocity curve is shown in Figure 9-4.

Figure 9-4. Reduced development velocity

You can track a core dying. You can see in Figure 9-4 that in the fifth
release of a product, the velocity was 18 functional requirements (per
$100,000 expended). The customers and developers developed a
baseline plan. The plan portrayed an estimated completion date. The
customers wanted the release sooner and pressured the developers to
do whatever it takes. The developers accommodated them by dropping
the quality. With lowered quality, the team was able maintain a short-
term velocity of 20 functional requirements per $100,000. They met
the date.

During the sixth release, the development velocity was only 16. The
reduced quality from the fifth release produced product that was
harder to change and more fragile. Work went more slowly. The
customers again became upset and pressured the developers to not let
this slip. The developers dropped quality again and achieved a short-
term velocity of 18.

During the seventh release, the baseline velocity was 14. The
developers were having a hard time making changes and keeping the
core running. Customers felt that the developers must really be
slacking off. The customers pressured them again. This wasn't
pleasant, but what could they do? Also, this had worked the last two
times. So the developers dropped quality again and achieved a short-
term velocity of 16.

The core was getting more and more difficult to modify. It was poorly
designed. It had code slapped on. It didn't have any organized

structure. It didn't follow standards. You can project the pattern shown
in Figure 9-5. Short-term productivity in a project is increased by
dropping quality. As a result, the core quality drops. The next project
takes longer to do the same work. Under time and cost pressures,
quality is dropped again. Each subsequent release has a lower velocity.
The customers are more frustrated because of the lowered velocity.
The pressure to do more is repeated. The result is a vicious cycle that
progressively degrades the quality of the core. The customers become
more frustrated. The developers become more dissatisfied.

Figure 9-5. Velocity trend curve leading to a dead core

You can see how we have built our own dead core—fragile, untested,
and with fewer developers working on it—release by release. Less
functionality can be developed for the same cost in each progressive
release. Enterprises can create dead cores within five years.

Another factor progressively slows velocity. As the product becomes
more fragile, more bugs and defects are found after it is shipped. The
developers have to fix these defects while building the next release.
Increasing effort and cost are spent maintaining each release. This is a
double whammy: the developers have a more difficult product to
enhance, and they also have less time to do the enhancements.
Customer anxiety further increases. Customers increase the pressure
for developers to do more and speed down the slippery slope.

Figure 9-6 depicts the maintenance curve for a dead core.
Maintenance is reasonable at first, but with each progressive poor
quality release, it increases. A maintenance curve such as that shown
in Figure 9-7 presages a dead core. We can suspect that the enterprise

also has the decreased velocity curve of Figure 9-5. We can be sure
that the enterprise embodies a dysfunctional relationship between
customers and developers.

Figure 9-6. Maintenance cost curve

What are the competitive consequences to the enterprise? I graphed
the velocity of enhancing core functionality at several enterprises. I
then graphed the velocity of building new functionality. The graph
looked like Figure 9-7.

Figure 9-7. Velocity of core functionality and new
functionality

In Figure 9-7, the velocity for new functionality averages 20 pieces of
functionality per $100,000. The velocity for core functionality averages
1 piece of functionality per $100,000. All new development could be
constrained to the velocity of core development. To remove the
constraint, we usually can increase the number of core developers.
Unfortunately, very few people in an enterprise know how to work on
the core. There aren't any more people that we can add to the core
team. Once, when this wasn't recognized, the core team was increased
from eight to over 100. The core velocity dropped rather than
increased because the original eight infrastructure developers had to
cope with the other 100 people.

A dead core is not good for an enterprise. Competition can quickly
introduce new, compelling functionality and the enterprise with the
dead core can't respond. As we watch enterprises today, we can easily
name Company A and B. Company A's primary product is an Internet
portal. This company is driving all of its competitors mad. It frequently
introduces sophisticated new functionality. None of its competitors can
match its speed of introduction. I have worked at Company A and at
its competitors. Company A isn't better. Its engineers are no smarter.
However, Company A is relatively new and its code base is still clean.
Its competitors have been in business longer. Their code bases are
close to dead. Unfortunately, Company A is arrogant. It believes it
competes better because it is better. Based on my work at Company
A, I give it another four years before its core is almost dead.

This is also true in the insurance industry. One insurance company,
Company B, is rapidly taking market share from old-line companies. It
rapidly introduces new insurance products. The other companies can't
respond. Company B has a new code base. It also religiously uses
Agile techniques to retain the quality of the code base.

The health of an enterprise rides on resolving this problem. The root of
the change is the relationship between product management and the
development organization.

Part III: Appendices

• Appendix A, "Scrum 1, 2, 3"
• Appendix B, "More About Scrum"
• Appendix C, "Example Scrum Kickoff Meeting Agenda"
• Appendix D, "Initial Enterprise Transition Product Backlog"
• Appendix E, "Scrum Musings"

Appendix A. Scrum 1, 2, 3
In this chapter:

The Science 101

Scrum: Skeleton and Heart 105

Scrum: Roles 106

Scrum: Flow 106

Scrum: Artifacts 109

This appendix summarizes Scrum. Scrum is devised specifically to
wrest usable products from complex problems. It has been used
successfully on thousands of projects in hundreds of organizations
over the last 16 years. It is based in industrial process control theory,
whose mechanisms have been used to create complex products
successfully since time began. Industrial process control theory
employs empirical processes that depend on such little-understood
mechanisms as self-organization and emergence.

The Science

Product development is a complex endeavor. This isn't unusual
because the universe is full of complexity. Most complexities we don't
know about; others we are content to leave alone. Some, like pressure
turning coal into diamonds, take care of themselves. And others we
can use with a level of imprecision such that the complexity doesn't
matter, such as firing a rocket to Mars. However, it is impossible to
ignore the complexity in software development. Its results are
ephemeral, consisting of signals that control machines. The process is
entirely intellectual, with all intermediate products being marginal
representations of the thoughts involved. The materials that we use to
create the end product are extremely volatile: user requirements of
what the users have yet to see, the interoperation of the signals of
other programs with our programs, and the interactions of the most
complex processes yet—a team of people working together.

Because software development is a complex process, there is no
shortage of complexities, and there is no panacea for them other than
hard work, intelligence, and courage. Scrum is not for those who seek
easy answers and simple solutions to complex problems; it is for those

who understand that complex problems can only be met head on with
determination and wit.

Appendix A describes how empirical processes are used to control
complex processes, and how Scrum employs these empirical processes
to control product development projects. When I say control, I don't
mean control to create what we predict. I mean that we will control
the process to guide the work toward the most valuable outcome
possible.

Empirical Process Control

Complex problems are those that behave unpredictably, and the
unpredictable manner in which they behave is unpredictable. Stated
another way, a statistical sample of the operation of these processes
will never yield a meaningful insight into their underlying mathematical
model, and attempts at forming meaningful insight can only be made
by summarizing their operation to such a degree of coarseness as to
be irrelevant to understanding or managing them.

Much of our society is based on processes that work only because their
degree of imprecision is acceptable. Wheels wobble, cylinders shake,
brakes jitter—but all at a level that doesn't meaningfully impede our
use of a car. When we build cars, we fit parts together with a degree
of precision fit for the purpose and acceptable to the eye. We can
manage many processes because the accuracy of the results is limited
by our physical perceptions. When I build a cabinet, the materials
need to be cut and joined with a precision acceptable to the human
eye and suitable for a relatively static daily life.

What happens when we are building something that requires a higher
degree of precision than that obtainable through averaging? What
happens if any process that we devise for building cars is too imprecise
for our customers, and we need to increase the level of precision? In
those cases, we have to guide the process step by step ourselves,
ensuring that the process converges on an acceptable degree of
precision. When the convergence isn't occurring, we have to make
adaptations to bring the process back into acceptable tolerances.

Laying out a process that will produce acceptable quality output over
and over again is called defined process control. When defined process
control cannot be achieved because of the complexity of the
intermediate activities, something called empirical process control has
to be employed.

"It is typical to adopt the defined (theoretical) modeling approach
when the underlying mechanisms by which a process operates are
reasonably well understood. When the process is too complicated for
the defined approach, the empirical approach is the appropriate
choice."

—Babatunde A. Ogunnaike and W. Harmon Ray

Process Dynamics, Modeling, and Control (Oxford Univ. Press, 1994)

We try to use defined processes whenever possible, because with them
we can crank up unattended production to such a quantity that the
output can be priced as a commodity. However, if the commodity is of
such unacceptable quality as to be unusable, if the rework is too great
to make the price acceptable, or if the cost of unacceptably low yields
is too high, we have to turn to and accept the higher costs of empirical
process control. In the long run, making successful products the first
time using empirical process control has turned out to be much
cheaper than reworking many unsuccessful products using defined
process control. Empirical process control has three legs underlying all
of its implementations: transparency, inspection, and adaptation.
Transparency means that the aspects of the process that affect the
outcome must be visible to those controlling the process. Not only
must these aspects be transparent, but also what is being seen must
be known. That is, when someone inspecting a process believes that
something is done, it must be equivalent to their definition of "done."
In product development, asserting that functionality is done might lead
someone to assume that it is cleanly coded, refactored, unit tested,
built, and acceptance tested. Someone else might assume only that
the code has been built. If everyone doesn't know what the definition
of "done" is, the other two legs of empirical process control don't work.
When someone describes something as "done," everyone must
understand what "done" means.

The second leg is inspection. The various aspects of the process must
be inspected frequently enough so that unacceptable variances in the
process can be detected. The frequency of inspection has to take into
consideration that all processes are changed by the act of inspection. A
conundrum occurs when the required frequency of inspection exceeds
the tolerance to inspection of the process. Fortunately, this doesn't
seem to be true of software development. The other factor in
inspection is the inspector. The inspector must possess the skills to
assess what he or she is inspecting.

The third leg of empirical process control is adaptation. If the inspector
determines from the inspection that one or more aspects of the
process are outside acceptable limits and that the resulting product
will be unacceptable, the inspector must adjust the process or the
material being processed. The adjustment must be made as quickly as
possible to minimize further deviation.

An example of an empirical process control is a code review. The code
is reviewed against coding standards and industry best practices.
Everyone involved in the review fully and mutually understands these
standards and best practices. The code review occurs whenever
someone feels that a section of code is complete. The most
experienced developers review the code, and their comments and
suggestions lead to the developer adjusting his or her code.

Complex Software Development

When we build software, we are building a logical set of instructions
that send signals that control a machine in its interactions with other
machines, humans, or nature. The level of precision required for
successful software ranges from the incredible to the truly daunting.
Anything can be complex. When complex things interact, the level of
complexity increases tremendously. I've limited my enumeration of
complexity in software development to the three most significant
dimensions: requirements, technology, and people.

Simple software requirements can happen. A single customer who is
the only person who will use the system can spend so much time with
me that I firmly believe that I understand what he or she wants. If this
customer then immediately dies, the requirements are stable and
simple. No changes, no revisions, no last-minute modifications. A more
common situation is when there are many customers or stakeholders
(those with an interest in the software and how it works) who have
different needs that change and are difficult to articulate. In most
cases, these customers really start to understand what they want only
when you provide them with what you and they think they want.
These are complex requirements because they are not only
ambiguous, but they are tentative and constantly changing.

Simple technology exists, but it is rarely used in software
development. One could define software development projects as the
application of advanced, not necessarily 100-percent reliable,
technology to solve business problems for competitive advantage. To
compound the complexity of technology, more than one piece is

usually employed and the interfaces of the many are far more complex
than the complexity within any single piece.

In Figure A-1, the vertical axis traces requirements complexity and the
horizontal axis traces technology complexity. The intersection of these
complexities defines the level of complexity of the project. Almost all
current software development projects are complex. Those that are
chaotic are unworkable, and some complexities must be resolved prior
to starting the project.

Figure A-1. Complexity assessment graph

The third dimension is the people developing the software. They all
have different skills, intelligence, experience, viewpoints, attitudes,
and prejudices. Every morning when they wake up, each has a
different mood from the prior day, depending on his or her sleep,
health, weather, neighbors, families, and what is anticipated from the
day ahead. Then these people start to work together, and the
complexity goes through the roof. When the third dimension of people
complexity is factored in with the other two dimensions of
requirements and technology, the complexity increases even more. I
believe that the last "simple" project occurred in 1969 when one
person from order processing at Sears Roebuck asked me to sort some
cards and generate a report on an IBM 360/20. Since then, the
complexity of software development projects has only gotten messier.

Scrum addresses the complexity of software development projects by
implementing the inspection, adaptation, and visibility requirements of
empirical process control in a set of simple practices and rules. These
are described in the following sections.

Scrum: Skeleton and Heart

Scrum employs an iterative, incremental process skeleton on which
hang all of its practices. Scrum's skeleton is shown in Figure A-2. The
lower circle represents an iteration of development activities that
occur, one after another. The output of each iteration is an increment
of product. The upper circle represents the daily inspection that occurs
during the iteration, where the individual team members meet to
inspect each other's activities and make appropriate adaptations.
Driving the iteration is a list of requirements. This cycle repeats until
the project is no longer funded.

Figure A-2. Scrum skeleton

The skeleton operates this way: At the start of an iteration, the team
reviews what it must do. Then it selects what it believes it can turn
into an increment of potentially shippable functionality by the end of
the iteration. The team is then left alone to make its best effort for the

rest of the iteration. At the end of the iteration, the team presents the
increment of functionality that it built so that the stakeholders can
inspect it and make timely adaptations to the project.

The heart of Scrum occurs within the iteration. The team takes a look
at the requirements and the technology, and evaluates each other's
skills and capabilities. The team then collectively devises the best way
it knows to build the functionality, modifying the approach daily as it
encounters new complexities, difficulties, and surprises. The team
figures out what needs to be done and determines the best way to do
it. This creative process is the heart of the Scrum's productivity.

Scrum implements this iterative, incremental skeleton through three
roles. I'll provide a quick overview of these people operating within the
Scrum process. Then I'll describe the Scrum artifacts they use in more
detail.

Scrum: Roles

There are only three Scrum roles: the Product Owner, the team, and
the ScrumMaster. All management responsibilities in a project are
divided between these three roles.

The Product Owner is responsible for representing the interests of
everyone with a stake in the project and its resulting product. The
Product Owner achieves initial and ongoing funding for the project by
creating the project's initial overall requirements, return on investment
objectives, and release plans. The list of requirements is called the
Product Backlog. The Product Owner is responsible for using the
Product Backlog to ensure that the most valuable functionality is
produced first and built upon; this is achieved by frequently prioritizing
the Product Backlog to queue up the most valuable requirements for
the next iteration.

The team is responsible for developing functionality. Teams are self-
managing, self-organizing, and cross-functional. A team is responsible
for figuring out how to turn Product Backlog into an increment of
functionality within an iteration, and for managing its own work to do
so. The team members are collectively responsible for the success of
each iteration and the project.

The ScrumMaster is responsible for the Scrum process, for teaching it
to everyone involved in the project, for implementing it so that it fits

within an organization's culture and still delivers the expected benefits,
and for ensuring that everyone follows its rules and practices.

Scrum: Flow

A Scrum project starts with a vision of the system and a simple
baseline plan of cost and time frames. The vision might be vague at
first, stated in market terms rather than product terms. The vision will
become clearer as the project moves forward. The Product Owner is
responsible to those funding the project to deliver the vision in a
manner that maximizes their return on investment. The Product Owner
formulates a plan for doing so, which includes a Product Backlog. The
Product Backlog is a list of functional and nonfunctional requirements
that, when turned into functionality, will deliver this vision. The
Product Backlog is prioritized so that the items most likely to generate
value are the top priority. The Product Backlog is divided into proposed
releases. This is a starting point, and the contents, priorities, and
grouping of the Product Backlog into releases is expected to and
usually does change the moment the project starts. Changes in the
Product Backlog reflect changing business requirements and how
quickly or slowly the team can transform Product Backlog into
functionality.

All work is done in Sprints. Each Sprint is an iteration of one month.
Each Sprint is initiated with a Sprint Planning meeting, where the
Product Owner and team get together to collaborate about what will be
done for the next Sprint. Selecting from the highest priority Product
Backlog, the Product Owner tells the team what is desired, and the
team tells the Product Owner how much of what is desired it believes it
can turn into functionality over the next Sprint. Sprint Planning
meetings cannot last longer than eight hours. They are time-boxed to
avoid too much handwringing about what is possible. The goal is to get
to work, not to think about working.

The Sprint Planning meeting has two parts. The first four hours are
spent with the Product Owner presenting the highest priority Product
Backlog to the team. The team questions him or her about the
content, purpose, meaning, and intentions of the Product Backlog.
When the team knows enough, but before the first four hours elapse,
the team selects as much Product Backlog as it believes that it can
turn into a completed increment of potentially shippable product
functionality by the end of the Sprint. The team commits to the
Product Owner to do its best to complete that amount of functionality.

During the second four hours of the Sprint Planning meeting, the team
plans out the Sprint. It creates a design within which the work can be
done. Because the team is responsible for managing its own work, it
needs a tentative plan to start the Sprint. The tasks that this plan is
composed of are placed in a Sprint Backlog; the tasks in the Sprint
Backlog emerge as the Sprint evolves. At the start of the second four-
hour period of the Sprint Planning meeting, the Sprint has started and
the clock is ticking toward the month-long Sprint time-box.

Every day the team gets together for a 15-minute meeting called a
Daily Scrum. At the Daily Scrum, each team member answers three
questions:

• What have you done on this project since the last Daily Scrum
meeting?

• What do you plan to do on this project between now and the
next Daily Scrum meeting?

• What impediments are in the way of you meeting your
commitments toward this Sprint and this project?

The purpose of the meeting is to synchronize the work of all team
members daily and to schedule any meetings that the team needs to
forward its progress. The team members are inspecting each other's
work in light of the team's commitments, and making adaptations to
optimize their chance of meeting those commitments.

At the end of the Sprint, a Sprint Review meeting is held. This is a
four-hour time-boxed meeting at which the team presents what has
been developed during the Sprint to the Product Owner and any other
stakeholders that wish to attend. This is an informal meeting, with the
presentation of the functionality intended to foster collaboration about
what to do next based on what the team just completed. The Product
Owner and stakeholder inspect the team's work in light of projects
goals, and they make adaptations to optimize their chance of reaching
those goals.

After the Sprint Review and prior to the next Sprint Planning meeting,
the ScrumMaster holds a Sprint Retrospective meeting with the team.
At this three-hour, time-boxed meeting, the ScrumMaster encourages
the team to revise, within the Scrum process framework and practices,

its development process to make it more effective and enjoyable for
the next Sprint.

Collectively, the Sprint Planning meeting, the Daily Scrum meeting,
the Sprint Review meeting, and the Sprint Retrospective meeting
implement the empirical inspection and adaptation practices within
Scrum. Figure A-3 provides an illustration of the overall process.

Figure A-3. Scrum process overview

Scrum: Artifacts
Scrum introduces a few new artifacts. These are used throughout
Scrum and are introduced in the following sections.
Product Backlog
The requirements for the product being developed by the project or
projects are listed in the Product Backlog. The Product Owner is
responsible for the Product Backlog, its contents, its availability, and
its prioritization. Product Backlog is never complete, and the Product
Backlog in the project plan only lays out the initially known and best-
understood requirements.
The Product Backlog evolves as the product and the environment in
which it will be used emerge. Product Backlog is dynamic, in that
management constantly changes it to identify what the product needs
to be appropriate, competitive, and useful. As long as a product exists,
Product Backlog also exists. An example of Product Backlog maintained
on the Scrum Product Management tool, based in a spreadsheet, is
shown in Figure A-4.

Figure A-4. Product Backlog

Backlog
Description

Initial
Estimat
e

Adjustmen
t Factor

Adjuste
d
Estimat
e

Hours of work remaining until
completion

 1 2 3 4 5 6 7

Title Import 25
6

20
9

19
3

14
0

14
0

14
0

14
0

Project
selection or
new

3 0.2 3.6 3.6 0 0 0 0 0 0

Template
Backlog for
new projects

2 0.2 2.4 2.4 0 0 0 0 0 0

Create Product
Backlog
worksheet with
formatting

3 0.2 3.6 3.6 0 0 0 0 0 0

Create Sprint
Backlog
worksheet with

3 0.2 3.6 3.6 0 0 0 0 0 0

Backlog
Description

Initial
Estimat
e

Adjustmen
t Factor

Adjuste
d
Estimat
e

Hours of work remaining until
completion

 1 2 3 4 5 6 7

Title Import 25
6

20
9

19
3

14
0

14
0

14
0

14
0

formatting

Display tree
view of Product
Backlog,
Releases,
Sprints

2 0.2 2.4 2.4 0 0 0 0 0 0

Sprint-1 13 0.2 15.6 16 0 0 0 0 0 0

Create a new
window
containing
Product
Backlog
template

3 0.2 3.6 3.6 3.6 0 0 0 0 0

Create a new
window
containing
Sprint Backlog
template

2 0.2 2.4 2.4 2.4 0 0 0 0 0

Burndown
window of
Product
Backlog

5 0.2 6 6 6 0 0 0 0 0

Burndown
window of
Sprint Backlog

1 0.2 1.2 1.2 1.2 0 0 0 0 0

Display tree
view of Product
Backlog,
Releases,
Sprints

2 0.2 2.4 2.4 2.4 0 0 0 0 0

Display
burndown for
selected Sprint
or Release

3 0.2 3.6 3.6 3.6 0 0 0 0 0

Sprint-2 16 0.2 19.2 19 19 1.2 0 0 0 0

Automatic
recalculating of

3 0.2 3.6 3.6 3.6 3.6 0 0 0 0

Backlog
Description

Initial
Estimat
e

Adjustmen
t Factor

Adjuste
d
Estimat
e

Hours of work remaining until
completion

 1 2 3 4 5 6 7

Title Import 25
6

20
9

19
3

14
0

14
0

14
0

14
0

values and
totals

As changes are
made to
Backlog in
secondary
window, update
burndown
graph on main
page

2 0.2 2.4 2.4 2.4 2.4 0 0 0 0

Hide/automatic
redisplay of
burndown
window

3 0.2 3.6 3.6 3.6 3.6 0 0 0 0

Insert Sprint
capability ...
adds summing
Sprint row

2 0.2 2.4 2.4 2.4 2.4 0 0 0 0

Insert Release
capability adds
summary row
for Backlog in
Sprint

1 0.2 1.2 1.2 1.2 1.2 0 0 0 0

Owner/assigne
d capability and
columns
optional

2 0.2 2.4 2.4 2.4 2.4 0 0 0 0

Print burndown
graphs

1 0.2 1.2 1.2 1.2 1.2 0 0 0 0

Sprint-3 14 0.2 16.8 17 17 17 0 0 0 0

Duplicate
incomplete
Backlog without
affecting totals

5 0.2 6 6 6 6 6 6 6 6

Note capability 6 0.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

What-if Release
capability on

15 0.2 18 18 18 18 18 18 18 18

Backlog
Description

Initial
Estimat
e

Adjustmen
t Factor

Adjuste
d
Estimat
e

Hours of work remaining until
completion

 1 2 3 4 5 6 7

Title Import 25
6

20
9

19
3

14
0

14
0

14
0

14
0

burndown
graph

Trend
capability on
burndown
window

2 0.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

Publish facility
for entire
project,
publishing it as
HTML Web
pages

11 0.2 13.2 0 0 13 13 13 13 13

Future Sprints 39 0.2 46.8 34 34 47 47 47 47 47

Release-1 85 70 65 47 47 47 47

This spreadsheet is the Product Backlog in March 2003, from a project
for developing the Scrum Project Management software. I was the
Product Owner. The rows are the Product Backlog items, interspersed
by Sprint and Release dividers. For instance, all the rows above Sprint
1 were worked on in that Sprint. The rows between Sprint 1 and Sprint
2 rows were done in Sprint 2. Notice that the row "Display tree view of
Product Backlog, Releases, Sprints" is duplicated in Sprint 1 and Sprint
2. This is because row 10 wasn't completed in Sprint 1, so it was
moved down to the Sprint 2 for completion. If I decided that it was a
lower priority after Sprint 1, I could have moved it even lower down
the priority list.
The first four columns are the Product Backlog item name, initial
estimate, complexity factor, and adjusted estimate. The complexity
factor increases the estimate because of project characteristics that
reduce the productivity of the team. The next columns are the Sprints
during which the Product Backlog is developed. When the Product
Backlog is first thought of and entered, its estimated work is placed
into the column of the Sprint that is going on at that time. The
developers and I devised most of the backlog items shown before
starting this project. The sole exception is row 31 ("Publish facility for

entire project, publishing it as HTML Web pages"), which I didn't think
of until some time during Sprint 3.
A burn-down chart shows the amount of work remaining across time.
The burn-down chart is an excellent way of visualizing the correlation
between the amount of work remaining at any point in time and the
progress of the project team or teams in reducing this work. The
intersection of a trend line for work remaining and the horizontal axis
indicates the most probable completion of work at that point in time. A
burn-down chart reflecting this is shown in Figure A-5. The burn-down
chart helps me to "what if" the project by adding and removing
functionality from the release to get a more acceptable date, or by
extending the date to include more functionality. The burn-down chart
is the collision of reality (work done and how fast it's being done) with
what is planned, or hoped for.
Figure A-5. Burn-down chart

The items in the Product Backlog for future Sprints are pretty coarse
grained. The Product Owner hasn't had the team start to work on
these items, so he or she hasn't expended the time to analyze them to
more finely estimate them. Similarly, there are plenty more
requirements for this product. They just haven't been thought through.
This is an example of the requirements for the product emerging. I can
defer building an inventory of Product Backlog until I am ready to
engage a team to convert it into functionality.
Sprint Backlog
The Sprint Backlog defines the work, or tasks, that a team has
specified for turning the Product Backlog it selected for that Sprint into
an increment of potentially shippable product functionality. The team
compiles an initial list of these tasks in the second part of the Sprint

Planning meeting. Tasks should have enough detail so that each task
takes roughly 4 to 16 hours to finish. Tasks that are of longer
estimated time are used as placeholders for tasks that haven't been
finely defined. Only the team can change the Sprint Backlog. The
Sprint Backlog is a highly visible, real-time picture of the work that the
team plans to accomplish during the Sprint. An example of a Sprint
Backlog is shown in Figure A-6. The rows represent Sprint Backlog
tasks. The columns on the right, labeled "Hours of Work," contain the
remaining hours of work for the various days of the Sprint. Once a
task is defined, the estimated number of hours remaining to complete
the task is placed in the intersection of the task and the Sprint day by
the person working on the task.

Figure A-6. Sprint Backlog

Task
Description

Origi
nato
r

Respon
sible

Status
(Not
Started/In
Progress/C
ompleted)

Hours of work remaining until completion

 1 2 3 4 5 6 7 8 9 10 11 12

Meet to
discuss the
goals and
features for
Sprint 3-6

Dani
elle

Daniell
e/Sue

Completed 20 0 0 0 0 0 0 0 0 0 0 0

Move
Calculations
out of Crystal
Reports

Jim Allen Not
Started

8 8 8 8 8 8 8 8 8 8 8 8

Get KEG Data Tom Completed 12 0 0 0 0 0 0 0 0 0 0 0

Analyse KEG
Data - Title

 George In
Progress

24 24 24 24 12 10 10 10 10 10 10 10

Analyse KEG
Data - Parcel

 Tim Completed 12 12 12 12 12 4 4 4 0 0 0 0

Analyse KEG
Data -
Encumbrance

 Josh In
Progress

 12 10 10 10 10 10

Analyse KEG
Data -
Contact

 Daniell
e

In
Progress

24 24 24 24 12 10 8 6 6 6 6 6

Analyse KEG Allen In 24 24 24 24 12 10 10 10 10 10 10 10

Task
Description

Origi
nato
r

Respon
sible

Status
(Not
Started/In
Progress/C
ompleted)

Hours of work remaining until completion

 1 2 3 4 5 6 7 8 9 10 11 12

Data -
Facilities

Progress

Define & build
Database

 Barry/
Dave

In
Progress

80 80 80 80 80 80 60 60 60 60 60 60

Validate the
size of the
KEG database

 Tim Not
Started

Look at KEG
Data on the
G:\

 Dave In
Progress

3 3 3 3 3 3 3 3 3 3 3 3

Confirm
Agreement
with KEG

 Sue Not
Started

Confirm KEG
Staff
Availability

 Tom Not
Started

1 1 1 1 1 1 1 1 1 1 1 1

Switch JDK to
1.3.1. Run all
tests.

 Allen Not
Started

8 8 8 8 8 8 8 8 8 8 8 8

Store PDF
files in a
structure

 Jacquie Completed 8 0 0 0 0 0 0 0 0 0 0 0

TopLink.
Cannot get rid
of netscape
parser

 Richard Completed 4 0 0 0 0 0 0 0 0 0 0 0

Build test
data
repository

 Barry In
Progress

10 10 10 10 10 10 10 10 8 8 8 8

Move
application
and database
to Qual (incl
Crystal)

 Richard Completed 4 4 4 4 4 4 4 0 0 0 0 0

Set up Crystal
environment

 Josh Completed 2 2 2 2 1 1 1 0 0 0 0 0

Test App in
Qual

 Sue In
Progress

 20

Task
Description

Origi
nato
r

Respon
sible

Status
(Not
Started/In
Progress/C
ompleted)

Hours of work remaining until completion

 1 2 3 4 5 6 7 8 9 10 11 12

Defining
sprint goal
required for
solution in
2002

 Lynne In
Progress

40 40 40 40 40 40 40 38 38 38 38 38

Reference
tables for
import
process

 Josh In
Progress

Build
standard
import
exception
process

 Josh In
Progress

 12 12 12 10

Handle
multiple file
imports on
same page

 Jacquie Disregarde
d

20 15 15 15 12 12 12 12 9 0 0 0

Migrate
CruiseControl
Servlet to iWS
6.0
(landcc_7101)
server

 Allen Not
Started

4 4 4 4 4 4 4 4 4 4 4 4

Create web
server for
Qual on
PF1D8

 Allen Completed 1 0 0 0 0 0 0 0 0 0 0 0

LTCS Disk Daniell
e/Geor
ge

In
Progress

12 12 12 12 8 8 8 8 8 8 8 8

Follow thru
with
questions
about KEG
data to
Sue/Tom, re:
Keg, LTO

Jacq
uie

Daniell
e

Completed 10 10 10 10 10 8 8 0 0 0 0 0

Map KEG data
to Active

Jacq
uie

Jacquie
/Allen

In
Progress

50 50 50 50 50 50 50 50 50 50 50 50

Task
Description

Origi
nato
r

Respon
sible

Status
(Not
Started/In
Progress/C
ompleted)

Hours of work remaining until completion

 1 2 3 4 5 6 7 8 9 10 11 12

Tables - see
also #14

Prepare SQL
to import
from KEG
tables to
Active Tables

Jacq
uie

George In
Progress

25 25 25 25 25 25 25 25 25 24 23 22

Increment of Potentially Shippable Product Functionality
Scrum requires teams to build an increment of product functionality
every Sprint. This increment must be potentially shippable, because
the Product Owner might choose to immediately implement the
functionality. This requires the increment to consist of thoroughly
tested, well-structured, and well-written code that has been built into
an executable. It also requires the user operation of the functionality
to be documented, either in Help files or user documentation. This is
the definition of a "done" increment. It takes some development
organizations a while to be capable of building something this "done."

Appendix B. More About Scrum
In this chapter:

Scrum Terminology 113

Scrum and Agile Books 117

Scrum and Agile Web Sites 118

This appendix contains a glossary of key terms used to describe
mechanisms and components of the Scrum process, as well as
additional resources you can consult to broaden your knowledge of
Scrum.

Scrum Terminology

Some terminology is used throughout this book. If you are new to
Scrum and this terminology is unfamiliar, paper-clip this page so that
you can easily refer to these terms.

• adaptation Reconstituting and reprioritizing the Product Backlog
at the end of a Sprint after considering the results of an
inspection and changes in stakeholder needs.

• cross-functional teams A self-managing team that has all the
necessary skills to create a "done" increment.

• Daily Scrum A daily meeting at which the Scrum Development
Team gathers to inspect its progress toward the Sprint Goal and
adapt its work to optimize its chances of building everything it
committed to. The meeting is time-boxed to 15 minutes, during
which each team member answers the following three questions:
"What did I do yesterday?", "What am I going to do today?", and
"Is there anything impeding my work?" The Sprint Backlog is
updated before the end of the meeting to reflect the answers
that team members give to these questions.

• done (Sprint) As in, "This is what we did in this Sprint." The term
defines the contents of an increment and can vary. For example,
some products do not contain documentation, so the definition of
"done" does not include documentation. Some organizations are
incapable of building a complete piece of the product within one
Sprint, so "done" actually describes something that is
incomplete, but nevertheless it is consistently defined across all
Sprits and all teams Sprinting. This approach works because the
definition of partially "done" is known to everyone, and they also

know what is left "undone" at the end of the Sprint and what
remains to be done prior to shipping or using the increment(s).

• empirical process control An experiential method of moving
toward a goal by frequently inspecting progress and making
adaptations to optimize the overall progress.

• finished product Something that is of potential use to the
customer; the customer can be an external consumer of the
system or an internal consumer of parts of the system.

• increment A complete slice, or piece, of the finished product or
system that is developed by the end of an iteration, or Sprint.

• inspection Inspecting an increment at the end of a Sprint, and
adapting the priority and content of the product backlog so that
the next iteration of work optimizes value.

• iteration One of several successive periods of time when all the
work to complete one full slice of the finished product is
performed; a project consists of multiple iterations, also referred
to as Sprints.

• Product Backlog A prioritized list of functional and nonfunctional
requirements and features to be developed for a new product or
to be added to an existing product. The Product Backlog items of
the highest priority are granular enough to be readily understood
by the Scrum Team and developed into an increment within a
Sprint. Lower priority Product Backlog items are progressively
less well-understood and granular. Product Backlog items that
are high risks are labeled as high priority to ensure that they are
understood and removed early in a project. This list transcends
any one release and is constantly emerging and changing.

• Product Backlog burn-down chart A graph of the amount of
Product Backlog work remaining in a project or program across
time. The amount of work is represented by the Y axis, and the
Sprint sequence is represented by the X axis. A trend line of one
or more amounts of work remaining sometimes can be used to
predict when a project will be complete.

• Product Backlog grooming The Scrum Team spends 10 percent
of each Sprint grooming the Product Backlog to meet the
definition of a Product Backlog item and to ensure that it meets
the requirements of the Sprint Planning Prerequisites.

• Product Owner The person who is responsible for what the
Scrum Team builds and for optimizing the value of it. The
Product Owner is responsible for maximizing the value of the
product being developed while minimizing the risk.

• Project or Program The expenditure of funds to turn one or more
pieces of a Product Backlog into potentially shippable
functionality that can be released for use.

• Project or Program Goal The reason why the Project or Program
has been undertaken. When it is fulfilled, the Project or Program
is "done."

• requirements What the system or product must do.
Requirements are subsets of features and functions.

• retrospective A time-boxed meeting of four hours after the
Sprint Review when the Scrum Team reviews the just-finished
Sprint. After reviewing everything that worked well and things
that could be improved, the team defines several changes to
how it will work together for the next Sprint.

• Scrum A process for managing the development and deployment
of complex products that is based in empirical process control
theory and stands on the core practices of iterative
development, which generates increments of product by using
self-managing, cross-functional teams.

• Scrum Development Team The cross-functional, self-managing
team that develops as much of what the Product Owner wants
into an increment every Sprint.

• ScrumMaster The person responsible for ensuring that everyone
on the Scrum Team follows the Scrum process and rules, and
who removes impediments to the success of the Scrum Team.

• Scrum Team The people who work together to build increments
of product every Sprint; the team consists of the Product Owner,
Scrum Development Team, and ScrumMaster.

• self-managing teams A group of no more than nine people who
figure out how to do the work within a Sprint on their own and
within the constraints of enterprise standards, guidelines, and
constraints. The self-managing team can reach out for assistance
or guidance, but none can be given unless the team requests it.

• Sprint A Scrum iteration, normally of a one-month duration.
Shorter durations can be used, but all teams within a project
consistently synchronize their work using the same length
iteration, which does not vary during the project.

• Sprint Backlog The tasks the Scrum Development Team
performs to turn Product Backlog items into a "done" increment.
Many are developed during the Sprint Planning Meeting (How),
but up to 40 percent might emerge during the Sprint. For a
Scrum Development Team to start work on a Sprint Backlog
item, the task must takes 16 hours or less to be completed.

• Sprint Backlog burn-down chart A graph of the amount of Sprint
Backlog work remaining in a Sprint across time. The amount of
work is represented by the Y axis, and the Sprint sequence is
represented by the X axis.

• Sprint Goal The purpose of the Sprint. This is a statement that
provides guidance to the team on why it is building the
increment. The Sprint Goal is a subset of the Project or Program
Goal.

• Sprint Planning Meeting A meeting during which the Sprint
content and the goal of the Sprint are planned. Required
attendees are the Product Owner, ScrumMaster, and
development team. The time-box is eight hours and is
decomposed into "what" and "how" time-boxes.

• Sprint Planning Meeting (Enterprise) A Sprint Planning Meeting
of up to seven Scrum Teams that build a common, integrated
increment. The Scrum Teams review the overall Product Backlog
that they will work from, select Product Backlog items to
minimize, and note dependencies they must remain aware of.

• Sprint Planning Meeting (How) The second four hours of the
Sprint Planning Meeting, during which the Scrum Development
Team figures out how it will turn the Product Backlog selected
during Sprint Planning Meeting (What) into a "done" increment
within the Sprint. The team usually starts by designing the work
and figuring out how to do it and who will do it. As this design
takes shape, tasks to turn the Product Backlog into an increment
are defined. These tasks make up the Sprint Backlog. Most
teams develop 60 percent of all the tasks they will do during a
Sprint during this time-box. The Product Owner is present during
this meeting to clarify the Product Backlog and to help the team
make design decisions. If the team determines that it has too
much or too little work, it can renegotiate the Product Backlog
items that it will work on during the Sprint with the Product
Owner.

• Sprint Planning Meeting (What) The first four hours of the Sprint
Planning Meeting, during which the Product Owner goes over the
highest priority Product Backlog items with the Scrum
Development Team. From these high-priority items, the team
selects as much as it believes it can turn into an increment in the
upcoming Sprint. If the Sprint Planning Prerequisites are well
formed, this meeting usually takes less than the time-box of four
hours.

• Sprint Planning Prerequisites The inputs to the Sprint Planning
Meeting. These include the Scrum Team's capacity for work in
the upcoming Sprint and a Product Backlog decomposed to
include work that is understood and can be completed within one
Sprint. Enough Product Backlog must be decomposed to this
degree of granularity to consume the Scrum Team's capacity.

• Sprint Review Meeting The inspection at the end of the Sprint in
which the Product Owner and stakeholders review the increment
and collaborate with the Scrum Development Team. This is a
working session that leads to the adaptation of the Product
Backlog. This meeting is not a demonstration, and preparation
should be minimized to less than one hour. This meeting is time-
boxed to four hours.

• Sprint Review Meeting (Enterprise) A Sprint Review Meeting of
up to seven Scrum Teams that are building a common,
integrated increment. The Scrum Teams show their increments
and collaborate on the most appropriate adaptations.

• stakeholders People who have a vested interest in a project. All
stakeholders and customers are represented by one person, the
Product Owner.

• time-box A maximum amount of allotted time for accomplishing
a goal or task. All work must be completed within this duration.

• transparency A degree of clarity such that, upon inspection,
everything about the item or process in question can be known.

• transparency (Daily Scrum) A Scrum Development Team
member knows exactly what he or she is inspecting at the Daily
Scrum when another member says, "I did this yesterday,"
because the team has defined what "did" (and "done") means for
the Sprint. For instance, "I did x yesterday," might mean that a
particular function was coded, code reviewed, unit tested,
checked in, built, had the unit test hardness run against it, and
had the acceptance test harness run against it.

• transparency (increment) A term that indicates the Product
Owner knows exactly what he or she is inspecting at the end of
the Sprint because the increment meets the definition of "done"
and the Product Owner understands the definition.

• velocity The average amount of work a Scrum Team removes
from the Product Backlog at the end of each Sprint.

These simple mechanisms are bound together by rules. The rules are
similar to rules used in chess: a knight can move two spaces forward
and one space to the side, but it can't land on another piece from the
same side. A Scrum rule is that the team works only on the Product
Backlog that it has selected for the Sprint; no new work can be added.

Scrum and Agile Books

Many books have been written about Agile techniques in general and
Scrum in particular. The following list is divided into topics to help you
find a title that best suits your particular area of interest.

Scrum Books

• Agile Software Development with Scrum by Ken Schwaber and
Mike Beedle (Prentice Hall, 2001)

• Agile Project Management with Scrum by Ken Schwaber
(Microsoft Press, 2004)

Books on Techniques Used in Scrum for Managing Product
Development

• Agile Estimating and Planning by Mike Cohn (Prentice Hall, 2005)
• User Stories Applied by Mike Cohn (Prentice Hall, 2004)
• Agile Retrospectives by Esther Derby and Johanna Rothman

(Pragmatic Bookshelf, 2006)

Books on Managing in an Agile Enterprise

• The Five Dysfunctions of a Team by Patrick Lencioni (Jossey-
Bass, 2002)

• The Servant Leader by James A. Autry (Three Rivers Press,
2001)

Books on Related Theory

• Lean Software Development by Mary Poppendieck and Tom
Poppendieck (Prentice Hall, 2003)

• Process Dynamics, Modeling, and Control by Babatunde A.
Ogunnaike and W. Harmon Ray (Oxford University Press, 1994)

Books that Provide Insights into Agile

• Extreme Programming Explained by Kent Beck (Prentice Hall,
2004)

• Agile and Iterative Development by Craig Larman (Prentice Hall,
2003)

Books on Agile Software Engineering Techniques

• Working Effectively with Legacy Code by Michael Feathers
(Prentice Hall, 2004)

• Fit for Developing Software by Rich Mugridge and Ward
Cunningham (Prentice Hall, 2005)

Scrum and Agile Web Sites

• Ken Schwaber's Web site, www.controlchaos.com
• Mike Cohn's Web site, www.mountaingoatsoftware.com
• Esther Derby's Web site, www.estherderby.com
• ScrumAlliance Web site, www.scrumalliance.org
• Agile Alliance Web site, www.agilealliance.org

Appendix C. Example Scrum Kickoff Meeting Agenda
In this chapter:

Conduct Kickoff Meeting 119

This appendix contains a Scrum Kickoff meeting agenda from an
enterprise that is in the middle of adopting Scrum. The agenda is
somewhat rigorous, but no more than most Scrum meetings.

Conduct Kickoff Meeting

The Scrum implementation begins with a meeting of senior
management to decide whether to go forward with the use of Scrum
for product development throughout the enterprise. This is a relatively
short meeting. Not much time is needed to determine whether or not
everyone is on board and ready to actively participate. If they are not,
this is not the meeting to use to convince them. This meeting is more
of a kickoff.

The rules at this meeting are as follows:

• All cell phones must be turned off.
• No e-mail or instant messaging can be used.
• No interruptions are allowed for any purposes.
• Anyone late for the meeting or late coming back from a break

has to at least pay a fine and might be excluded from the
meeting, if appropriate.

If everyone can't agree to these rules, it is unlikely that the senior
management group will have the stamina and determination for the
impending change effort. We use the following agenda for the kickoff
meeting:

• Review how Scrum works. The basic Scrum process will be
reviewed to ensure that everyone has the same initial
understandings and uses the same language.

• State the goals of using Scrum and changing the enterprise.
Every project needs to have goals. These goals set a context for
prioritizing project work and within which decisions will be made.

• Review the Enterprise Transition (ETC) project and staffing.
Review how the Scrum implementation project (ETC) will work,

how problems will be detected, how change will occur, and how
Scrum will be used as the process for managing the project.

• Review changes that are likely to happen. Review the types of
changes that can be anticipated within the enterprise.

• Make prerequisite decisions. The following decisions should be
made:

o Decide the date for the first Sprint Planning meeting for
ETC. It should be within one week. It can't be later than
one month from the kickoff meeting.

o Decide who will be the ScrumMaster for ETC. A senior
manager who is well-connected, determined, conversant
with change, and fearless is required.

o Decide who will be the Product Owner for ETC. This needs
to be the most senior executive in the enterprise, the
person who is responsible for the success of the enterprise.

o Decide who will be on the ETC team.
• Decide to go forward. Once the decision to move forward has

been made, the following commitments must be made:
o We, the members of the senior management team, are

responsible for using Scrum to successfully reach our
goals. The senior management team is called the
Enterprise Transition (ETC) project team.

o We will go forward with using Scrum for product
development and changing the enterprise to optimize itself
to take advantage of Scrum.

o There will be an Enterprise Transition project, and it will
follow the Scrum process to reach the stated goals.

o The Enterprise Transition project will be started within one
month.

o The following actions will be completed prior to the start of
the Enterprise Transition project. The responsibility for
completing the work belongs to the Enterprise Scrum team
of senior executives. They cannot delegate their work to
more than one level down.

If these or equivalent commitments can't be made at this time, consider delaying
the project, with the following considerations:

o What do you need to believe that Scrum will help you
achieve your goals?

o What do you need to believe that Scrum is appropriate for
ETC?

o If the competitiveness and effectiveness of your enterprise
isn't paramount, what is?

• Complete the follow-up actions. Once these decisions are made,
the following actions must be initiated and completed within one
month. These are the highest priority items on the initial ETC
transition backlog.

o The ETC team must attend formal Certified ScrumMaster
training.

o A method and the mechanisms for tracking enterprise
change will be defined.

o Additional initial transition backlog items must be
formulated.

o The ETC project must be initiated, as defined in the
following bulleted items.

o Communicate these decisions and what is about to happen
to everyone. And then communicate them again and
again. Communicate any changes. Keep everyone in the
loop. Make these communications face to face.

o Establish an enterprise vehicle, such as a Web site, that
ensures everyone knows about the change.

o Establish a mechanism that allows anyone in the
enterprise to give feedback or suggestions.

o Establish preconditions for development projects that use
Scrum.

o Establish metrics for tracking Scrum projects.
o Establish reporting mechanisms for Scrum projects.
o Establish a mechanism that enables anyone within the

enterprise to add items to the transition backlog.
o Measure morale.

Appendix D. Initial Enterprise Transition Product
Backlog
In this chapter:

Establish Preconditions a Project Must Meet to Use Scrum 123

Establish New Metrics 124

Change Project Reporting 124

Establish a Scrum Center 125

This appendix describes a high-priority transition Product Backlog that
should be addressed once an enterprise has decided to go forward with
Scrum.

Establish Preconditions a Project Must Meet to Use Scrum

Once senior management has decided to roll out Scrum, more people
and projects will want to use it than can be accommodated. It is wise
at this point for certain preconditions to be established. A project must
meet them before it can officially use Scrum. Some of the most
important preconditions are the following ones:

• Full-Time Team The core of the Scrum team must be devoted
full time to the project. Although they sometimes might need the
services of experts who aren't full time, trying to Scrum with
part-time team members only perpetuates bad habits and
undercuts the value that everyone expects.

• ScrumMaster Training The ScrumMaster is supposed to lead the
team and Product Owner through the change. Make sure that the
ScrumMaster receives full Certified ScrumMaster training prior to
the project starting. The ScrumMaster should also connect with
other, more experienced ScrumMasters to mentor him or her.

• Product Owner Training The Product Owner is not accustomed to
managing a project throughout its entirety, Sprint by Sprint, to
maximize the value of the investment. He or she needs Certified
Product Owner training.

• Team Formation Activities The entire team, including the Product
Owner and ScrumMaster, need to form themselves into a team.
There are numerous books and consultants to help you with this
activity. If the Human Resources department is engaged in the
Scrum process, ask it to help with procuring these resources.

• Team Room The team needs a room for its Daily Scrum, and a
full-time room within which they can work. This is not yet
collocated space, which will be provided for them when they
request it.

Establish New Metrics

Scrum metrics are very different from the metrics that most
enterprises use to manage their development projects. Earlier, more
traditional metrics were derived in an attempt to abstract what was
happening in a project that lasted for months and months before
anything was visible. In a Scrum project, team progress is visible
every day within a Sprint at the Daily Scrum and through the Sprint
burn-down graph. And project progress is visible every month through
the Sprint Review and the Product Backlog burn-down graph.

Two primary metrics are used to track a Scrum project:

• Return on investment (ROI) Prior to a project being approved,
the Product Owner must calculate the ROI. As the project
progresses, Sprint by Sprint, this helps management and the
Product Owner evaluate whether the investment is within
bounds. Unacceptable productivity by the development team
could indicate that the project might be better off being
cancelled.

• Productivity The primary measure of productivity is a team's
ability to turn Product Backlog items into shippable product
functionality. We measure this for some financial value (for
example, $100,000) and defect rate (number of defects,
retrospectively determined). Track this metric across a large
number of Sprints and projects. This metric will normalize across
time, and then trends can be tracked. This metric is of little
value for measuring a single Sprint because of local anomalies.

Suboptimal Metrics

There are a large number of other things that can be measured.
Measuring any one of them for very long will tend to produce skewed
behavior by the Product Owner or team, as they optimize to it and
suboptimize other things of value. We tend to implement and use
these metrics only when a problem is detected. The metric then helps
us improve the problem until it is fixed. At that time, remove the
metric.

Change Project Reporting

You currently have methods for tracking a project. Review all the ways
that you do so. Many of them might be appropriate for a waterfall
development process, but they might be inappropriate or not even
available when you use Scrum. Review the mechanisms within Scrum
for tracking progress, such as Sprint Reviews, Product Backlogs, and
burn-down graphs. Keep only those existing reports that add value to
Scrum's techniques. The added value should be greater than the cost
of gathering and reporting the data.

Establish a Scrum Center

An enterprise needs to establish how Scrum will be used, how projects
and teams using Scrum will fit into the organization, and the rest of
the process for using Scrum. A Scrum Center uses this emerging
information to train, coach, mentor, and audit project teams. The
Scrum Center usually consists of trained, experienced ScrumMasters
who are responsible for Scrum's effectiveness within the enterprise.

Every team struggles to get the most benefits from Scrum. The team's
ScrumMaster is responsible for leading them through the transition to
a point where it uses Scrum effectively. However, the ScrumMaster
and team often get so embroiled in their work that they lose
perspective on themselves. For this purpose, having an audit capability
is useful. Someone who knows Scrum and is from outside the team
needs to have a way to measure how well the team is using Scrum.
These measurements are quantifications, which are always dangerous.
Some teams can be doing great but quantify less well than other
teams. The feel, smell, and general sense an expert outsider has of
how the team is doing should confirm, or even drive, the
quantification. Further coaching or mentoring can be provided to
teams that need to improve.

Appendix E. Scrum Musings
In this chapter:

Value-Driven Development 127

Realizing Project Benefits Early 129

Eat Only When Hungry 130

For Customers Only 131

Bidding Work 133

Managing Work 134

A Cost-Effective Alternative to Offshore Development 136

How to Use Scrum and Offshore Development 138

Too Large Teams 139

Virtual Teams Instead of Offshore Development 140

Forming Cross-Functional Teams 142

Cross-Functional Teams and Waterfall 143

Here follow some other thoughts on Scrum topics.

Value-Driven Development

Chapter 9 briefly describes how the Product Owner can use value-
driven development to change the relationship between herself and
the development team while retaining product quality. Let's revisit that
process here and see in more detail how that value is realized.

Scrum introduces the concept of workload management to systems
development. Workload management involves controlling development
of functionality and release dates to optimize the value to the
organization of the system being developed. This is different from
work management, in which the specific tasks involved in building a
system are directed.

Scrum makes workload management possible through iterative,
incremental development. Development occurs in a series of short
iterations of less than one month duration. An increment of
functionality is done by the end of every iteration. The term "done"
here means potentially shippable or able to be implemented. "Done"

means complete—that is, it has been fully tested and includes user
documentation.

Traditional development methodologies fully analyze and design a
system before coding it. Testing usually follows the coding. It is not
until the very end of the project that the system can be implemented.
The opportunities for managing this workload to optimize value are
limited and usually not very considerable. However, Scrum makes it
possible to perform analysis, design, testing, coding, and
documentation in every iteration. This provides management with
many opportunities to do the following:

• Arrange the sequence in which functionality is iteratively
developed so that the most valuable functionality is built first.

• Continue to rearrange the sequence of functionality development
as the project progresses and business priorities change.

• Group increments of functionality into more frequent releases,
allowing the business to realize early and frequent benefits.

Consider a system that will bring the organization $1,000,000 in
benefits in the first two years after its implementation. Using
traditional methods, the system would take one year to develop at a
cost of $400,000. Scrum lets us develop and implement the system's
functionality selectively and incrementally by doing the following:

1. Listing the functionality of the system, with more attention paid
to the highest value and priority functionality

2. Dividing the functionality list into two releases, the first
estimated to be ready six months after development begins

3. Using iterative, incremental development to complete the first
release within six months for $200,000

4. Allowing benefits worth $800,000 to begin accruing after just six
months, with the functionality that will deliver the remaining
value scheduled to be developed during the second iteration

5. Permitting the second implementation to be deferred if it is not
deemed cost effective and the benefits of the first
implementation are deemed sufficient—for example, if the
development cost of $200,000 for the less valuable functionality
would generate only $200,000 in benefits.

In this case, the customer had an opportunity to realize $200,000 in
benefits six months earlier than would otherwise have been possible.
The customer also had the opportunity to choose not to spend an
additional $200,000 for break-even functionality. The time and effort

that would have gone into the second iteration could instead be
allocated to other higher priority projects. The benefits of multiple
releases are somewhat offset by implementation costs.

Strategic and competitive systems are able to gain marketplace
advantage through such incremental strategies. Imagine that your
competition uses traditional development approaches to prepare a
single new release or business capability, but your organization uses
Scrum to produce early and repeated competitive advantages. If this is
the case, your organization is able to capture the advantage more
effectively and thoroughly.

An additional benefit of workload management is inventory reduction.
As in manufacturing, unfinished "raw goods" software inventory is an
undesirable cost. The inventory might need to be reworked if it has
defects. It might never even be used if production costs are too high
or demand for the software evaporates. Yet traditional development
methodologies amass huge inventories of analysis, design, and coding
artifacts even as business changes render them obsolete. The Scrum
approach minimizes the extent to which an organization accumulates
such artifacts. Only artifacts that are necessary to build each
iteration's increment of functionality—the highest priority
functionality—are built.

Workload management is a key new role afforded by Scrum. This role
is referred to as "the Product Owner." This role has responsibilities that
enable an organization to realize the benefits of workload
management. The Product Owner executes the responsibilities of this
role through active management of an inventory called Product
Backlog.

Let's look more closely at Product Backlog. Product Backlog is a simple
list of requirements for the system. Each item on the list is a single
line in length. Functional requirements, such as "the ability to calculate
available credit," are listed along with nonfunctional requirements,
such as "the capacity to handle up to 100,000 simultaneous
transactions with sub-second response time." Product Backlog is often
maintained in spreadsheet format so that it can be easily manipulated
and interpreted.

The Product Backlog is a prioritized list. Items at the top of the list are
those that will deliver the most business value. Business priorities can
change over the course of the project, and consequently the order of
the list can change as well. Dependent functionality, or functionality

that is required to support the highest priority backlog, is of an even
higher priority. An estimate of how long it will take developers to turn
the functionality into an increment of potentially shippable product is
included in each backlog item.

The Product Owner doesn't have to specify all the details of every
entry in the Product Backlog. The Product Owner extracts
requirements from the systems plan, focusing on the highest priority
Product Backlog first. At first, the Product Owner needs to list only as
much Product Backlog as is needed to drive the first probable release.
The lower priority functionality can be itemized and delivered only
when it is deemed to be the highest priority available functionality.
Even then, its development can be deferred if it costs more than it is
worth.

Realizing Project Benefits Early

Keeping with the theme of value, let's look at a few real-world
examples of companies that used Scrum iterative development
principles to increase a project's value.

Any systems development process that provides for early realization of
project benefits and maximized return on investment creates value.
ThoughtWorks develops systems for its customers using Scrum. In a
recent study by Forrester Research, ThoughtWorks customers
identified early realization of benefits as a primary reason why they
were pleased with their relationship with ThoughtWorks (posted at the
ThoughtWorks Web site at
http://www.thoughtworks.com/forrester_tei.pdf).

In the previous section, I mentioned that all Scrum projects use
iterative, incremental techniques. At the end of every iteration, an
increment is delivered that contains all aspects of the final product,
including tested code, documentation, and user help. When the
application calls for more incremental product, this is also included.
For instance, FDA Life Critical applications must have requirements
trace ability, demonstrating how the initial requirements are
implemented in the finished product. This trace ability is included in
every increment delivered at the end of every iteration.

Having inspected an increment of the system at the end of an
iteration, customers can choose to implement the functionality before
they had planned to. TransCanada Pipelines (TCPL) in Calgary, Alberta,
chose to do so after just one iteration. The project was intended to

automate title change feeds from all the provinces and states that
TCPL's pipelines crossed. After the first iteration, the paper feed from
Alberta was automated into an XML feed with a partial database and
change management screens. Because over 30 percent of all changes
were from Alberta, when the customer saw this one feed working, she
chose to implement it immediately. The additional cost of this early
implementation and realization of benefits more than offset the cost of
the implementation.

Scrum development processes create opportunities for customers.
They can implement one or more increments of functionality at any
time. They can also make other investment choices, such as increasing
or canceling funding of the project. When they inspect what the team
has developed at the end of every iteration, they have all the
information they need to justify such decisions.

If good engineering practices have been used to build each increment
of functionality, the cost of implementing it is relatively small. If
marginal engineering practices have been employed, all defects must
be fixed during the implementation cycle. Such increased
implementation costs discourage customers from calling for
implementations. Because of this, part of implementing a Scrum
process is improving the engineering practices of the development
organization. As the preceding examples demonstrate, we want the
customer to be encouraged to call for early realization of benefits.

Eat Only When Hungry

Scrum software development: Eat only that for which you hunger;
maintain only that which you need.

When I go to the window of a fast-food restaurant, I evaluate what I
want to eat in light of how much money is in my pocket. At finer
restaurants, I usually spend whatever what I want costs, because
payment is flexible through the use of a credit card. But, for me, fast
food is still cash only, and my choices are limited by my cash on hand.

In traditional systems development, customers identify what they
want—the requirements of the system—and are told what the cost will
be and the date on which the system will be delivered. In a fast-food
scenario, this is analogous to driving up to the window, ordering, and
then being told to pull over and wait for our food until a specified time.
During that time, we could figure out how to get the money to pay for
the estimated cost.

Imagine buying systems functionality for a variable cost. Scrum lets
customers state the functionality they want and how much money they
want to spend. The functionality is delivered to the customer at the
end of every iteration, during which the team cooks up a way of
delivering the functionality. The customer looks at what was delivered
and decides whether he is satisfied. If the customer wants the
functionality in more depth, he can order more stuff built into the
functionality in further iterations. If the functionality is pretty
complicated (like a sourdough bacon burger cooked medium well, with
the bacon well done and the roll toasted), the functionality might take
several iterations before the first digestible portion is ready. However,
we still let the customer inspect the "food in progress" to maximize the
likelihood that it will be what they hunger for.

Traditionally, we list all the requirements for customer functionality
and deliver all of it. This is like a fixed-price dinner, where we get all
the food even if we are full and sated after only the appetizer. Scrum
lets us state the desired functionality (we are hungry) and then order
requirements a la carte, one at a time, until we are satisfied. Because
the requirements can be prioritized, teams can iteratively deliver only
increments of the requirements that are most appetizing throughout a
project.

Since we are sating the customer by delivering increments of
functionality, the customer can dictate when she is sated, or when she
has spent all that she wants to, and then consume the functionality as
delivered. Customers eat what they hunger for—no more, no less.

This simple analogy, comparing systems development to dining, works
not only at the consumption level, but at the maintenance level. If we
eat in "all you can eat" restaurants, we get fat, have to buy new
clothes, and our health suffers. If we consume fixed-requirements
systems, we have to maintain and enhance all the functionality, even
the stuff that we infrequently or never use.

For Customers Only

Have any of your software development projects surprised you, either
because they failed utterly, didn't come in on time, were of low
quality, or took longer to deliver than you expected? You might want
to take comfort in the knowledge that you weren't singled out and that
anyone else who initiates and funds software development projects is
not better off. Most of you share a common experience. In the political
arena, you would have been "spun." Underlying it all is the thread that

your software development project team worked, at both a conscious
and unconscious level, to keep you in the dark. Even though the team
knew there were problems, it hoped against hope that everything
would turn out all right.

I run a class that teaches project managers to manage projects using
Scrum. Scrum software development requires you, the customer, to
actively collaborate with the development teams to optimize the value
you get from your investment and to get the functionality that you
need to meet your objectives. In this course, there are a number of
exercises to explore how Scrum project managers will facilitate this. In
the exercises, a difficult project is initiated. There are many risks in
the technology as well as difficult choices to be made in how to
support the business goals with the technology. The point of the
exercises is to create a scenario where the development teams actively
collaborate with you to help you minimize your risk while maximizing
your value.

Many people in these courses have excelled. However, a disturbing
number of these project managers are unable to help you understand
your risks and alternatives. Not because they aren't aware of them.
Not because they don't know that the project might not succeed or
meet your expectations. They are unable to help you because they are
afraid to tell you the truth. Even while fully understanding the risks,
these people will tell you that they are absolutely confident that they
can deliver the project on time with what you need. Words like
certainly, positively, no problem, slam-dunk, and without a doubt slip
from their lips even though their minds and experience tell them
otherwise. When I ask them why they mislead you (the customer) and
don't share their true opinions with you, these people that you will
entrust your success and money to say that they don't want to
discourage you, that they want to put a positive spin on things, and
that you wouldn't work with them if they didn't have a positive
outlook. They tell me that you are so dumb that you would select
someone who tells you, "No problem," if they raised the specter of risk
and doubt.

I ask these people how they would feel if they were treated the same
when buying something themselves. Perhaps they enter a restaurant,
a very expensive restaurant, and order a steak. The waiter and the
chef know that the beef is old and that it comes from a herd where
mad-cow disease has been spotted. Yet, they figure that what you
don't know won't hurt you, that your actual chance of becoming ill is
pretty low, and that they probably will be elsewhere if you do become

ill. All of them tell me that they would be furious! I ask them where
they get the nerve for assessing your risks for you and gambling your
money in the face of uncertainty. What I hear back is a combination of
fear, uncertainty, and bad habits.

Except for the newest project managers, the software development
profession has experienced a period of 20 years when it was at least
difficult and many times impossible to tell the customer if the project
would succeed. The customer wasn't being lied to—the project
managers just didn't know. Worse, because of the process used to
manage systems development, project managers didn't have any way
to determine whether a project would be successful or not until well
into the project and into the customer's money. They covered up the
appalling truth that—in light of the low probability of success—only a
desperate person would fund the project.

This has led to a state where many venture capitalists and enterprises
are turning to offshore development. These peers of yours have told
me a number of times that they are doing this not to reduce the cost
of a successful project, but to limit their losses. If the project is going
to fail anyway, it's better to lose $500,000 than $1,500,000.

Scrum provides an opportunity to turn around this unfortunate
situation. Month by month all the project information is available so
that customers can maximize their return on investment and optimize
their risk strategies. But this happens only if the project details aren't
hidden from the customer.

Although it's happening slowly and painfully, and in the wake of a
history of hiding the trust, we are developing project managers who
are confident of what they can and can't do with your project. Look for
them. Don't look for the person who tells you what you want to hear,
even though you know that what you are being promised is
impossible. Don't listen to the project manager who tells you that your
difficult project is "no problem" and that he is "absolutely confident."

Bidding Work

We are often asked for estimates to build a system. Even though the
system is complex, we are prodded with questions like, "What will it
take?" And, to our regret, the estimate—once out of our mouths—
becomes a contract. I had an experience recently where a professional
in another field showed me another way to deliver an estimate, and I
was pleased with his approach.

The exterior of my house needed painting. I called in three painting
contractors, and my experience with them might be of interest to the
Scrum community. The three contractors all came to my house,
apprised it, and provided estimates. The high estimate was $15,000,
the middle estimate was $12,000, and the low estimate was $7,000.
All were fixed-price estimates good for 30 days. No estimate took
more than one hour to prepare, and I walked around the house with
each contractor and answered any questions they had. I was surprised
at the fixed-priced bids, since I knew my house's exterior had some
unique attributes that none of the contractors had encountered
previously.

My house is clad with DryVit, a highly insulating foam-board
construction technique usually reserved for commercial buildings
because of the skill needed to apply it. The DryVit is then covered with
a proprietary sealing polymer and then given a final color coat of
acrylic paint. The paint application has to be carefully applied since it
tends to soak in more than other paint. So I was perplexed and
somewhat uneasy that these contractors thought they could fix-bid
such a complex project. Maybe they thought it was simple?

Twenty days after the last bid was submitted, I was driving home on a
limited-access highway. The speed limit was 55 mph. Suddenly, an
immaculate, white panel truck passed me on the left, going at least 80
miles per hour. As it disappeared, I was able to make out the name on
the side, "Noe Montenegro, Professional Painting." I was impressed.
Here was a guy in a hurry who nevertheless cared about appearances.
When I got home, I looked up his telephone number and asked him to
come over to bid on the job.

Noe was a young, intelligent man. When he came to the house, he
spent time looking at the exterior before even ringing the doorbell.
When I came outside, he asked very penetrating questions about the
exterior, its construction, and its composition. I gave him all the
material and information I had, and he left. The next day he stopped
by and told me that he had been doing some research. The research
had led him to understand the type of acrylic paint required for my
house, as well as the difficulties and complexities of applying it. Noe
said that even though he and his crew were great professional
painters, they had no experience with this type of exterior and were
uncomfortable submitting a fixed-price bid. Noe said that if he tried to
cover his uncertainty with a high bid, it might be too high. Similarly, if
he made incorrect assumptions, he might underbid the work and have
to take a loss.

After talking for a while, we reached an arrangement. I would pay Noe
and his crew $65 per hour plus materials for painting the front of the
house. Then he would give me a fixed-price bid for the rest of the
house, based on his new knowledge and experience. I felt comfortable
with this because if Noe's price was too high or his competence too
low, I was free to not use him after the front of the house was done.
Also, I would have that increment of work done and could build on it
with any other contractor.

When the job was complete, the time and material and fixed-price
remainder of the work cost me $8,500—and that was for excellent
workmanship. Noe even cleaned the windows. I added $1,000 to the
check, as I was thoroughly impressed with his work as well as his
honest approach to bidding on it. I told him that I was going to use
this experience as a story. He just shrugged and said, "Thanks."

Managing Work

I previously discussed how Scrum facilitates workload management by
allowing for frequent, iterative delivery of shippable functionality and
by enabling customers and Product Owners to prioritize direct
development of top value functionality, iteration by iteration.

Who manages the work during each iteration? The Scrum answer is:
the development team! In previous chapters of the book, I've
described how this happens, but I'll describe it in more detail here,
with a focus on work management. The Product Owner indicates what
functionality most needs to be developed. The development team
identifies and organizes the tasks and work necessary to ensure the
result of the iteration is a potentially shippable product. Collaborating
with the Product Owners, the development team determines how much
priority functionality it believes it can cover in the next iteration.

Scrum work management is a shift from traditional project
management practices. These practices call for a project manager to
predict and plan all the work, as well as to assign it to individuals,
track its completion, and make any necessary adjustments along the
way. Scrum work management, instead, follows modern lean
manufacturing practices and engineered process controls used in
complex development environments. Scrum teams have these
characteristics:

• They are cross-functional, containing all the technical and
business domain expertise to take full responsibility for moving
requirements forward to become working product functionality.

• They are limited in size to maximize the speed, content,
accuracy, and bandwidth of communications. Team size is up to
nine people. When there are multiple teams, the teams get
together to synchronize their work on a daily basis.

• They are authorized to organize themselves, to divide and assign
work among themselves.

• They are enabled to add tasks required for the creation of an
increment of functionality as the iteration progresses; they are
not expected to be able to make perfect predictions.

For the duration of the iteration, the team has the authority to manage
itself. Its main goal is to do the best that it can. Applying the
technology to the requirements, the team analyzes, designs, codes,
tests, and documents. At the end of the iteration, the team shows the
Product Owner what it has accomplished. The team uses workstations
to show the Product Owner the functionality it has created. Only real
working functionality counts to the customer; interim artifacts such as
models do not count.

Sometimes the team does less than it has predicted it would be able
to. Sometimes the team implements the selected requirements even
more deeply than it had expected it could. The important thing is that
the team does the best that it can. For one iteration, the team alone
wrestles functionality from complex, sometimes unstable, technology
and from often-changing business requirements.

To many, it might seem risky and even foolhardy to trust the team to
plan and execute its own work. However, this type of Scrum
development has been successfully used in literally thousands of
projects. Two types of productivity occur. First, the project manager
doesn't have to try to tell the team what to do and then keep the plan
up to date as changes are required. Second, the team works more
effectively without having to rely on external authority for any
changes.

The U.S. Marine Corps uses an approach similar to Scrum for battle
situations. In Corps Business by David H. Freedman (HarperCollins
Publishers, 2000), General Charles C. Krulak, the 31st Commandant of
the USMC, describes the new "three block war" that the corps faces
today: "Marines may confront the entire gamut of tactical challenges
within the narrow confines of three continuous blocks." To prepare the

Marines, the actual fighters, for this situation, the USMC both trains
everyone extensively in all potential skills and situations that can be
conceived and then advises the Marines on the context, mission, goals,
and risks of every situation before they are sent in to it. But, from
then on, the Marines are on their own, making their own decisions.
Their officers provide as much tactical information as possible, but the
ultimate decisions come from the soldiers. As General Krulak says, "On
the complex, asymmetrical battlefields of the 21st century, effective
decentralized control and execution will be essential to mission
success."

This same type of decentralized control and execution by Scrum teams
is required to successfully cope with the complex changing
requirements and complex unstable technology required for today's
successful systems. These teams manage themselves based on their
skills and understanding of the technical and business domains.

A Cost-Effective Alternative to Offshore Development

More of my customers have been asking me how to use Scrum to help
them manage offshore development. Because offshore development
undercuts many of the practices that promote Scrum productivity, I
ask them why they don't just increase the productivity of their teams
by thoroughly introducing agility? It seems that offshore development,
with its potential for lower unit costs (dollars per programmer day),
offers management hope that their losses can be reduced. Their
attitude can be stated as follows: "Since the project is probably going
to fail anyway, let's minimize our losses by using lower priced
resources to limit our investment." A more optimistic, Scrum, way of
looking at this problem is to fix the problem at home and increase the
probability of success.

The Scrum process "sweet spot" occurs with teams of seven people,
give or take two. These teams can be extraordinarily productive,
measurements indicating a potential increase of productivity at least
35 times higher than average. I'll describe some of the circumstances
that support a team of this size in achieving this level of productivity.
Many inadvertent practices reduce this productivity, including scaling,
so let's understand how to be as productive as possible before we
introduce scaling—which reduces team productivity for such goals as
quicker time to market.

High-bandwidth communication is one of the core practices of Scrum.
If a team has more than nine people, they tend to need to revert to

written documents and formal models to keep everyone's activities
synchronized. The best communication is face to face, with
communications occurring through facial expression, body language,
intonation, and words. When a white board is thrown in and the teams
work out a design as a group, the communication bandwidth
absolutely sizzles.

Until the late 1990s, many engineering practices promoted formal
documentation of communications, such as formal models,
documentation templates, and computer-aided software engineering
tools. Whenever I don't work directly with team members using face-
to-face communications, however, I reduce the communication
bandwidth and introduce the probability of misunderstandings. As I'm
writing this, I'm trying to formulate ideas, understandings, and
experiences into words. When you read this, you try to understand
what I'm saying within the context of your experiences and current
situation. In the process of narrowing my bandwidth to words, and you
trying to expand the bandwidth from words to your understanding, a
lot is lost. No matter how well I write and you read. And most of us
are not superb writers and readers.

Many Scrum practices are aimed at maximizing communication
bandwidth. These include the following:

• Using modeling tools and techniques only to guide thought
processes while on the path to code. Models are not used to
document, but to ensure the rigor of the thought process.

• Collocating teams so that any team member can readily get face
to face with any other team members to talk through and
diagram a problem.

• Collocating teams in open spaces to maximize the access within
the team. If I want to ask a fellow team member something and
leave my office, go down the hall, look in the teammate's office,
and find that the person isn't there, I have both wasted time and
lost the thread and depth of my thinking. I also interrupt people
who don't need to be interrupted to answer my question. More
than just time was wasted

• Collocating teams in open spaces so that team members can see
each other, see how other teammates are doing and feeling, and
hear when a conversation is occurring in which they want to
participate. Privacy is easily obtained by putting on headphones.

• Keep iterations to 30 days or less. Longer iterations require
communications persistence through such artificial techniques as
documentation or modeling tools. If the time between learning a

requirement and finishing tested code is kept to under 30 days,
the problem and its solution can usually be kept in the mind.

• Keep the team size as close to seven as possible. Seven minds
seem able to attain and maintain a shared mental model of a
system and its representation in design and code without
artificial aides such as documentation. Misunderstandings and
recording time are minimized.

• Use a shared code library and rigorous coding standards so that
everyone on the team can readily read and understand the
system. If modeling documentation is minimized, the code
literally is the design. The code must be easy to read and
unambiguous. Variable naming is just one example of these
standards.

• Use Scrum engineering practices so that the team always knows
the status of development. Test-first development ensures that
the code reflects the design and that the code is tested as soon
as possible. Source code management, continuous integration,
and automated testing suites find errors as quickly as possible.
Refactoring keeps the design simple, elegant, and easy to
debug. Not writing arcane, heroic algorithms keeps code easy to
understand. All of these practices combined mean that when you
think you have a working system, it really is a working system
that is sustainable and maintainable. This is known as an
increment of potentially shippable (implementable) product
functionality.

• Hold short daily status meetings. Face to face, team members
communicate status and problems with each other. At full
bandwidth, the team synchronizes itself daily.

These and other Scrum practices lead to breakthrough productivity.
Every scaling practice will reduce the productivity of these teams in
support of other goals. Our job will be to understand how to
implement these scaling practices as intelligently as possible, so that
we don't throw out the baby with the bath water.

How to Use Scrum and Offshore Development

These comments apply to both offshore development and teams that
are distributed by location and time zone. Offshore development
benefits from the frequent inspection and adaptation provided by
Scrum. There is an opportunity for this at the end of the iteration, at
the iteration review. There is also an opportunity for this at each daily
status meeting, called a Daily Scrum. However, distances and
differences in time zones can make such coordination difficult.

Regardless, frequent inspection and adaptation provide the only
benefit afforded by Scrum to offshore development, so every effort
should be made to comply with these Scrum practices.

One of my customers has five development sites throughout the
United States. This is a reasonable time-zone difference and number of
sites to synchronize through Scrum. However, the customer also has
development sites in Finland and India. They are investigating opening
still another development site in Bejing, China. Each site can readily
have its Daily Scrum to synchronize its activities within a team.

The Scrum process uses a mechanism known as a co-coordinating
status meeting—or Scrum of Scrums, or integration Daily Scrum—
which synchronizes the work between multiple teams. It is held
immediately after the team Daily Scrums, is attended by one member
of each team, and coordinates the work of the teams. At these higher
level coordinating meetings, the team representatives answer the
same three questions that you saw listed in Appendix A. ("What have
you done on this project since the last Daily Scrum meeting?", "What
do you plan to do between now and the next Daily Scrum meeting?",
and "What impediments are in the way of you meeting your
commitments toward this Sprint and this project?") For larger
organizations, multiple levels of this coordination can be used, with
progressively higher levels of staff meeting less frequently than one
day. The time-zone differences make planning a daily synchronizing
meeting extraordinarily difficult for this organization.

Offshore development violates almost every other Scrum practice that
provides high productivity and quality. This isn't unique to Scrum—it's
a problem for any development process. For instance, Scrum uses
incremental development, with each iteration developing a complete
slice of product functionality. Offshore development can be done with
the development of requirements and architecture at the customer
site, and the detailed design, testing, and coding at the offshore site.
Then acceptance testing and the round of bug fixes and change orders
takes place. The customer must fully define all the requirements up
front, building an inventory that might go obsolete as business
requirements change. While the offshore developers design and code
the application, the functionality also might go obsolete and become
unneeded.

Another tenet of Scrum that offshore development violates is the
ability for the customer to steer the project iteration by iteration,
based on an inspection of each iteration's working functionality. The

customer ensures that the top priority functionality is developed first
and might choose not to even have lower priority functionality
developed. Without this frequent collaboration between development
teams and customers, much that the customer doesn't require might
be built regardless and that which is built might not deliver the top
business value.

Still another violation of Scrum productivity practices is the absence of
full-bandwidth communication between all team members. Full-
bandwidth communication ensures that nuances that are difficult to
capture in documentation are captured. The moment communication
occurs through documentation and models, the chance for error
occurs. The larger or more complex the project, the greater the
chance.

Too Large Teams

The optimal size of a Scrum team is about seven people. With this
many people, experts can be combined with non-experts to foster
mentoring. With this many people, it's easier to include all the skills
needed to effectively produce a complete increment of code at the end
of the iteration. One coder, one designer, one tester, one documenter
is already four people, so the number seven is quickly reached. Fewer
people are more effective, with some people even advocating team
sizes of three. In my experience, smaller teams are effective only
when the increment purpose is restricted. For example, the increment
might not include documentation or the design work might be minimal.
Or perhaps the team consists of three truly outstanding individuals
with all the skills needed.

A problem that occurs more frequently is an oversized team. I recently
worked with teams of 14 and 17 people while implementing the Scrum
process. At first, I thought that this might be acceptable; I felt that the
teams would self-organize to make the size work. They did! The teams
almost immediately started dividing themselves into smaller teams. In
effect, the teams said, "You, management, aren't smart enough to
optimize our size, so we are going to optimize it ourselves. You gave
us full authority on how to work within the iteration, and we're going
to do it. We see the right thing to do, and we're going to do it."

It was hard to argue with the creativity these teams demonstrated,
especially when they were right. The teams demonstrated the beauty
of self-organization and emergence. They determined a flaw in the
iteration setup and corrected it themselves.

But what was wrong with an oversized team? When I work with a team
of seven people, I can see them bend forward to start sharing ideas. I
see them exchange thoughts, work through problems, and learn from
each other. When I observed these oversized teams, such an easy
interchange wasn't possible. For starters, the room had to be
oversized to hold all the people. When someone at the far end of the
room would say something, people at the other end of the room had
trouble hearing them. Because the number was so great, side
conversations tended to spring up; this added to the difficulty of
hearing what was being said. So much was being said and so many
ideas were presented that it was impossible for the various team
members to keep track of everything that was going on.

A solution to keeping track of everything could have been
documentation. We could have required agenda, time slots for
presenting ideas, taking meeting minutes, and providing meeting
reports that everyone on the team could read. But that would undercut
the value of face-to-face communications and the immediacy of
intimate interaction. It would also have imposed an overhead on the
entire process—exactly the opposite of what Scrum promotes.

The larger, 17-person team spotted this problem itself and divided
itself into four subteams. These subteams worked on parts of the
functionality that were as orthogonal as possible. Normally, parsing
requirements this way is a ScrumMaster and Product Owner
responsibility, but the team proved to be equal to the task. Because a
perfect orthogonal solution, with perfect cohesion and no coupling, was
impossible, the team—on its own—devised a solution to keep its work
synchronized while minimizing collisions. Each team had its own Daily
Scrum. The team then held a "Daily Scrum of Scrums."
Representatives of each team met daily after the individual team Daily
Scrums to synchronize work between them. They self-organized into
self-coordination.

The teams presented this approach to their management and me—not
for our approval (because they were using Scrum and were fully
authorized to devise their own solutions), but for our information. I
was amazed at their creativity. Not only had the team devised a
workable solution, but also it was the same solution formally
documented in the Scrum methodology for scaling development
projects from the small to the large. Except the team had never seen
the Scrum methodology. Working on its own, the team had reached
the same optimized solution within three days.

Virtual Teams Instead of Offshore Development

I recently read that over 70 percent of all IT organizations are
planning or already engaged in offshore development. I see my share
of this because many of these organizations are turning to Scrum and
the Scrum process for managing complex projects that Jeff Sutherland
and I developed in the early 1990s. Through Scrum's iterative,
incremental development practices and daily status meetings, these
organizations control and coordinate their onshore and offshore
activities.

I am concerned with offshore development from a Scrum values
standpoint. Aside from tilting development practices back to contracts,
documentation, and fixed plans, offshore development reinforces the
tendency toward waterfall practices. The business domain experts are
in one country, while the technology domain experts are in another.
Analysis and high-level design are done in one country, while detailed
design, coding and testing are done in another. The best use of Scrum
teams in offshore development requires that every team works from a
common Product Backlog, has all the skills to build a complete
increment, and performs the complete iteration of all development
activities. Development activities are not parsed among teams;
Product Backlog is parsed among teams.

Certified ScrumMaster sessions are used to improve the skills and
practices of Scrum practitioners who serve as Scrum project managers
(http://www.controlchaos.com/certifiedscrum). At a recent Certified
ScrumMaster session in Milan, Italy, the group kicked around the idea
of Scrum versus offshore development. We were looking for a way to
mitigate the damaging effects of offshore development through Scrum
practices.

The conversation strayed to Open Source, a movement for
collaboratively developing free software. Scrum has practices and rules
for iterative, incremental development of software. Open Source has
practices and rules for collaborative development of software by many
individuals who rarely see each other. The ScrumMasters wondered if
merging the practices of Scrum and Open Source wouldn't lead to a
Scrum solution to offshore development. They wondered if this
solution wouldn't be more flexible and in line with Scrum values than
the manner in which offshore development is usually practiced today.

Open Source values are similar to those embraced by the Scrum
movement (which you can see in detail at
http://www.agilealliance.org):

"The basic idea behind open source is very simple: When programmers
can read, redistribute, and modify the source code for a piece of
software, the software evolves. People improve it, people adapt it,
people fix bugs. And this can happen at a speed that, if one is used to
the slow pace of conventional software development, seems
astonishing.

"We in the open source community have learned that this rapid
evolutionary process produces better software than the traditional
closed model, in which only a very few programmers can see the
source and everybody else must blindly use an opaque block of bits."

—from Open Source Initiative OSI – Welcome, www.opensource.org

One of the largest Open Source sites, SourceForge
(http://www.sourceforge.net) has over 64,000 active projects. Each
project has its project administrator, who ensures the integrity of the
project work to the project vision, ensures the internal product
integrity, and forms and guides teams. This role is similar to that of
the ScrumMaster. Staff for each project is selected by the project
administrator from his or her pool of usual suspects—professionals
who have previously successfully worked on projects with them.
Additional project resources are selected from online Open Source job
posting boards. On these boards, interested individuals can express a
desire to join a project and the project team can select qualified
applicants.

As teams form and move forward, the project administrator serves as
both the Scrum Product Owner and ScrumMaster. The Product Owner
is responsible for setting the project vision and prioritizing the work to
deliver it. The ScrumMaster is responsible for administering the
process for developing the software. The team makes progress based
on individual commitments from team members, who often hold full-
time jobs in addition to their Open Source project responsibilities.

We wondered if the concept of the Sprint Planning meeting and the
Sprint Review meeting would help organize these projects into regular
iterations that incrementally deliver functionality. The Sprint Planning
meeting would allow people to commit for the next iteration based on
availability and skills. The Sprint Review meeting would help the team

figure out its real progress and optimize its commitments and
composition.

As a result of these musings in Milan, the Certified ScrumMasters are
developing a new approach to offshore development, which they refer
to as "Virtual Scrum." This approach will implement many of the ideas
expressed above, fusing Open Source and Scrum into a Scrum
approach to offshore development. The offshore development can
either be rapid and focused, using full-time teams, or the development
can be asynchronous with part-time teams located in various places
around the world.

Forming Cross-Functional Teams

A cross-functional team consists of people from all the disciplines
necessary to accomplish the work. The entire team, not specific
individuals, is responsible for the success or failure of the effort. Scrum
development teams are cross-functional. They are responsible for the
creation of an increment every iteration. If the increment isn't
successful, the team has failed—not individuals in the team. For
instance, if user documentation is part of an increment, the team
collectively is responsible for that user documentation being completed
as part of the increment. If it isn't there, it isn't the fault of the
documentation person on the team; it is the fault of the entire team.

As the team moves forward during an iteration, its members plan and
work together. They lay out the tasks that each of them will perform
to successfully build the increment. People with particular expertise
take a lead role in that part of the increment construction, such as the
people with design expertise taking a lead in how to describe the
increment's user interface. The technical writer will take a lead role in
figuring out the work for building the user documentation. However, it
is the responsibility of the team as a whole to complete all the work
and for the completeness of the entire product.

I recently saw a team where the technical writer felt he was behind
and letting the team down. He felt this way because the user
documentation wasn't complete at the end of the iteration. He felt
guilty and was working overtime and weekends to make up for this.
This course of action was wrong and represented an incorrect
understanding of the nature of a cross-functional team. He is only a
member of the team, and the team is responsible for building the
entire increment, documentation included. If overtime was needed to
build user documentation, everyone on the team should have been

working it. Then everyone on the team should have discussed how to
avoid that crunch during the next iteration and how to start addressing
the documentation component of the product earlier in the iteration to
avoid the last-minute crunch.

Cross-functional teams usually have to be built. Most organizations
don't already have them. Building such a team is difficult because it
usually cuts across several embedded understandings. The first
understanding is that there are areas of functional expertise, such as
analysis, design, programming, testing, and documentation. People
who follow a career path in each functional area are the experts and
are expected to be the only people who perform this type of work.
Others are deemed not capable of performing work outside their area
of functional expertise. To exacerbate this problem, most organizations
are accustomed to using a waterfall methodology for software
development. The analysts analyze the problem and describe it; then
the designers use the analysis to create a design, the programmers
take the result of the design and create code, and so forth. The
consequence of this is that when a cross-functional team is formed
from people with such a functional orientation, they operate as a mini-
waterfall within the iteration.

The analyst starts the process, performing the analysis of the problem.
While the analyst is analyzing, the others try to find things to keep
busy until it is their turn to act. One by one, each gets a waterfall turn
to apply their expertise. Finally, the technical writer gets to start the
documentation, usually with no time left.

I help teams become cross functional by asking the analyst how the
other team members can help. The analyst is surely the expert, but
how can the analyst direct the others. By directing the others to do
analysis, the whole process is sped up, everyone is aware of the
results of the analysis, and the need for analysis artifacts is minimized.
If this shared work occurs throughout the iteration, the progress is
more rapid and cross-functional training occurs. Everyone pitches in.
The time-box of the iteration helps the team realize the benefits of this
approach, since a strictly partitioned functional and waterfall approach
usually fails to deliver a completed increment within the time-box.

Cross-Functional Teams and Waterfall

I was teaching a class on how to be a Scrum project manager recently.
These classes are called "Certified ScrumMaster" classes. Attendees
discuss how to implement Scrum into their environment. Most of the

time is spent discussing the unique difficulties that are expected in the
attendee's organizations. The topic of greatest interest at this class
was cross-functional teams.

Scrum is iterative, producing an increment of product functionality that
is potentially shippable at the end of each iteration. The people who do
the work to create this increment are the people who make up the
Scrum team. These teams are small, consisting of no more than nine
people. This team is considered the heart of the Scrum process, and
they are orders of magnitude more productive than traditional
software development teams. Drawing from the principles of lean
manufacturing, the teams are empowered to figure out how to do their
work themselves, and then they proceed to do it. That is, they rely on
creativity to generate productivity. After all, who knows better how to
do the work than the people doing it?

Scrum teams are cross-functional. This means that the team consists
of people with all the skills necessary to create an increment of
functionality every iteration. In many instances, this means that
people with analysis, design, testing, coding, and technical writing
skills are put together into the team. The team selects how much work
it can handle for the iteration, and then proceeds to build that
functionality.

The greatest impediment to teams working together is the legacy of
the waterfall process. A team that is used to waterfall development
works in fits and starts. The analyst does the analysis and creates a
requirements document. The designers then take over and write up
the specifications document. The coder then writes the code. The
tester tests the code. And, when everyone else is done, the technical
writer starts on the online help and documentation. While each person
does his or her work, the rest of the team sits around, waiting, doing
busy work, or cleaning up previous increments.

The project managers tell the team members that they should act
cross-functionally—that they should forgo the tradition of waterfall.
The team might try to work together in this way, but tradition
undercuts their efforts. The analyst thinks, "I'm really the only
qualified person to do this, and if I don't clearly document the
requirements, everyone else on the team will make mistakes!" Not
only that, but the analyst has a functional manager and a career path
that rewards how well she does this analysis. Even the modeling
processes and tools reinforce waterfall, starting at the high level and
gradually decomposing into code.

How do we get the teams to operate cross-functionally, as a team
rather than as a group of individuals working in a sequential waterfall?
What can management do? The answer is hard to accept: do nothing.
We often think that teams consist of primitive individuals without the
intelligence to figure things out on their own, that they must be told
what to do. If we flip this belief and rely on the native intelligence and
maturity of the individuals that make up the teams, they almost
always come through. It is hard to wait for this self-organization to
occur, but patience has its rewards.

The team starts the first iteration in waterfall mode and is
disappointed at how little it can accomplish. Usually, at the end of the
iteration the coding is incomplete and no testing or documentation has
been done. The team thinks about this and realizes that it would be
more efficient if the analyst were responsible for analysis but used
everyone on the team as his or her "legs" to get it done. By doing so,
the tester is aware of what must be tested early in the iteration as well
as helping with the actual analysis. Also, since everyone is doing the
work, no documentation is needed because they are already aware of
the requirements. And this proceeds from analysis to design, from
design to coding, and so forth. The entire team is responsible for the
results of the iteration; functional specialists teach everyone how to
help with their area of expertise, magnifying the productivity of the
team. Consequently, everyone on the team becomes cross-trained and
can fill in for one another.

Most project managers are used to telling people what to do. If a
problem exists, they study it and direct people to fix it. Self-
organization is much more difficult. We must wait for it to occur, and it
can't be hurried. Sometimes we can help team members have insights
through anecdotes, metaphors, or just conversation, but we can't
make a team do something as complicated as cross-functional work by
directing it to do so. The project manager can help the team get to this
point by questioning it: "Gee, would you be able to do the analysis
faster if everyone on the team helped, with you directing?" But the
project manager can't tell the team to be cross-functional; the team
must realize how to do this and do it themselves.

About the Author

Ken Schwaber co-developed Scrum with Jeff Sutherland sixteen years
ago. Since then he has run his own software company using Scrum
and helped many others use Scrum. He is a signatory of the Agile
Manifesto, and founder of the Agile Alliance and Scrum Alliance. Ken
has been in the software business for over 35 years. He lives in
Lexington, Massachusetts.

Quotes

"Scrum is changing our internal currency, the actual words we use to
assess engineering investments—instead of talking about hours
worked, actual hours vs. planned hours, number of commitments
achieved, project FTE, etc., we're talking about business value
delivered. The most startling consequence, as Ken points out, is that
Product Management is now reporting the status of projects, rather
than engineering. Adopting Scrum continues to be a painful,
impediment-exposing process—but we're delivering more business
value at a faster rate than ever before."

Pat McDevitt
VP, Global Engineering
Tele Atlas

"This is the book I wish I'd had at my side when Yahoo! was first
starting to use Scrum. It's the insider's guide to the profound
transformation that Scrum can help an enterprise achieve. Anyone
considering Scrum for the organization they work in should consider
this book."

Pete Deemer
Chief Product Officer, Yahoo! Research and Development
India

	The Enterprise and Scrum
	Introduction
	Part I: Adopting Scrum
	Chapter 1. What Do We Have to Do to Adopt Scrum?
	Scrum Requires a New Enterprise Culture
	Prove to Yourself That It Is Worth the Effort
	Assess the Type of Change That Will Occur
	Caveats

	Chapter 2. Scrum qua Scrum
	Figure 2-1. Enterprise transition project organization
	Scrum Kickoff Meeting

	Chapter 3. The First Year
	The First Month
	Figure 3-1. Scrum adoption process diagram

	The Second Month
	Figure 3-2. Scrum rollout
	Sources of Transition Backlog Impediments

	What If?
	The Third Month and Beyond

	Chapter 4. Against Muscle Memory—The Friction of Change
	Waterfall Thinking
	Command and Control
	Commitment to Defying the Laws of Nature
	Hiding Reality
	Summary

	Chapter 5. Enterprises in Transition
	Contoso
	Situation
	Application of Scrum
	Outcome
	Additional Comments

	Humongous
	Situation
	Application of Scrum, Phase 1
	Outcome, Phase 1
	Situation, Phase 2
	Application of Scrum, Phase 2
	Outcome, Phase 2
	Additional Comments

	Woodgrove Bank
	Application of Scrum

	Litware
	Situation
	Application of Scrum
	Outcome
	Additional Comments

	Part II: Start Using Scrum for Enterprise Work
	Chapter 6. Organizational Practices
	#1: Organizing Enterprise Work
	#2: Organizing Enterprise Work for a High-Technology Product Company
	Figure 6-3. Burn-down of baseline roadmap plan
	Figure 6-4. Burn-down of enterprise actual vs. plan
	Figure 6-5. Burn-down of actual vs. plan with new work added
	Figure 6-7. Personal Finances actual vs. plan

	#3: Organizing Enterprise Work in Other Enterprises
	#4: Organizing Enterprise Work for New Systems that Automate an Enterprise Operation
	Figure 6-9. Intersection of operational and system views in a Product Backlog

	#5: Organizing the Complexity of Multiple Views
	#6: Organizing Work to Optimize Software Product Family Architectures

	Chapter 7. Engineering Practices
	#1: Multilayer System Work Organized by Functionality
	Figure 7-1. Localized solution
	Figure 7-2. Enterprise solution—Teams build functionality across all required layers

	#2: Integration of Multiple-Layer Systems
	Figure 7-3. Fabrikam product layers
	Figure 7-4. Frequent integration of layers

	#3: Integrating the Work of Scrum Teams and Teams Not Using Scrum
	Summary

	Chapter 8. People Practices
	#1: Organizing People to Do Enterprise Work
	Figure 8-1. Enterprise work organization, product decomposition
	Figure 8-2. Activity-level organization
	Figure 8-3. Product-level organization

	#2: Team Creation
	#3: Team Work
	Figure 8-4. Bruce Tuckman's Team Formation Model

	#4: How People Are Managed
	Figure 8-5. Example of an Activity-level organization
	Figure 8-6. Example of a Product-level organization
	Figure 8-7. Scrum reporting relationships

	#5: Functional Expertise
	#6: Compensation
	#7: Extra Managers
	#8: Teams with Distributed Members
	#9: Scarce Skills Needed by Many Teams

	Chapter 9. The Relationship Between Product Management/Customer and the Development Team
	#1: Shortening the Time to Release Through Managing Value
	Figure 9-1. Deviation from the baseline plan
	Relative Valuation with Scrum
	Figure 9-2. Cumulative value curve
	Figure 9-3. Value-driven project

	#2: Just Do It
	#3: The Infrastructure, or Core
	#4: Accelerators to Recovery
	#5: The Mother of All Problems
	Figure 9-4. Reduced development velocity
	Figure 9-5. Velocity trend curve leading to a dead core
	Figure 9-6. Maintenance cost curve
	Figure 9-7. Velocity of core functionality and new functionality

	Part III: Appendices
	Appendix A. Scrum 1, 2, 3
	The Science
	Empirical Process Control
	Complex Software Development
	Figure A-1. Complexity assessment graph

	Scrum: Skeleton and Heart
	Figure A-2. Scrum skeleton

	Scrum: Roles
	Scrum: Flow
	Figure A-3. Scrum process overview
	Figure A-4. Product Backlog
	Figure A-6. Sprint Backlog

	Appendix B. More About Scrum
	Scrum Terminology
	Scrum and Agile Books
	Scrum Books
	Books on Techniques Used in Scrum for Managing Product Development
	Books on Managing in an Agile Enterprise
	Books on Related Theory
	Books that Provide Insights into Agile
	Books on Agile Software Engineering Techniques

	Scrum and Agile Web Sites

	Appendix C. Example Scrum Kickoff Meeting Agenda
	Conduct Kickoff Meeting

	Appendix D. Initial Enterprise Transition Product Backlog
	Establish Preconditions a Project Must Meet to Use Scrum
	Establish New Metrics
	Suboptimal Metrics

	Change Project Reporting
	Establish a Scrum Center

	Appendix E. Scrum Musings
	Value-Driven Development
	Realizing Project Benefits Early
	Eat Only When Hungry
	For Customers Only
	Bidding Work
	Managing Work
	A Cost-Effective Alternative to Offshore Development
	How to Use Scrum and Offshore Development
	Too Large Teams
	Virtual Teams Instead of Offshore Development
	Forming Cross-Functional Teams
	Cross-Functional Teams and Waterfall

	About the Author
	Quotes

