
M A N N I N G

Lightweight tools and agile strategies

MICHAEL HÜTTERMANN

Agile ALM

Agile ALM
Lightweight tools and

Agile strategies

MICHAEL HÜTTERMANN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Technical editor: Robert Aiello
Manning Publications Co. Development editor: Sebastian Stirling
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Typesetter: Marija Tudor
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN: 9781935182634
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

 To my wife and kids

http://www.manning.com/AgileALM

vii

brief contents
PART 1 INTRODUCTION TO AGILE ALM 1

1 ■ Getting started with Agile ALM 3

2 ■ ALM and Agile strategies 34

PART 2 FUNCTIONAL AGILE ALM... 59

3 ■ Using Scrum for release management 61

4 ■ Task-based development 92

PART 3 INTEGRATION AND RELEASE MANAGEMENT 117

5 ■ Integration and release management 119

6 ■ Creating a productive development environment 170

7 ■ Advanced CI tools and recipes 191

PART 4 OUTSIDE-IN AND BARRIER-FREE DEVELOPMENT 247

8 ■ Requirements and test management 249

9 ■ Collaborative and barrier-free development with
Groovy and Scala 297

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxv

PART 1 INTRODUCTION TO AGILE ALM........................ 1

1 Getting started with Agile ALM 3
1.1 Agile ALM at a glance 5
1.2 Evolution of software engineering: moving to Agile ALM 7

SCM and the first ALM trial balloons 8 ■ The dawn of
ALM 13 ■ Becoming Agile: Agile ALM 15

1.3 Building blocks of Agile ALM 17
Stakeholder focus 17 ■ Views on releasing and Agile ALM 19
Service orientation, SaaS, IaaS, PaaS 19 ■ Task-based and
outside-in 21 ■ Configuration, customization, and
plug-ins 22 ■ The polyglot programming world 23 ■ Open
source culture 24 ■ Open technology and
standards 25 ■ Automation 26

1.4 Comprehensive Agile ALM with lightweight tooling 26
Toolchains and accidental complexity 27 ■ Agile ALM
tools 28 ■ Effective and efficient tooling 29
ix

CONTENTSx
1.5 Example use case 30
1.6 Summary 33

2 ALM and Agile strategies 34
2.1 The Agile and project management 36
2.2 Agile strategies 40

Version control and a single coding stream 40 ■ Productive
workspaces 42 ■ Continuous integration 43 ■ Component
repository 50 ■ Quality, standards, and release cycles 51

2.3 The process pitfall, the illusion of control 53
Effectiveness and efficiency 54 ■ Agile ALM and configuration
items 54 ■ Agile ALM as change enabler 57

2.4 Summary 57

PART 2 FUNCTIONAL AGILE ALM 59

3 Using Scrum for release management 61
3.1 Getting started with Scrum release management 62
3.2 Implementing Scrum release management 68

The release 68 ■ The release duration 70 ■ The release
content 72 ■ Progress and size of working units 74
Release commitments 75 ■ Synchronization points 76
Feature teams, component teams, caretakers 78 ■ Delivery slots,
frozen zone, and code freeze 79 ■ Staging software 81
Quality gates 83

3.3 Release planning vehicles 84
Release calendar 84 ■ Release screenplay 85

3.4 Supporting strategies with Subversion 86
The one-medium approach 86 ■ Hooks 88 ■ Flow and
locking 90

3.5 Summary 91

4 Task-based development 92
4.1 Prerequisites for task-based development 93

Coordinating changes 93 ■ Using changesets 94
Associating changesets with tasks 95

CONTENTS xi
4.2 Our first toolchain—JIRA, FishEye, Bamboo,
and Mylyn 97
Managing tasks with JIRA 99 ■ Working on tasks with Eclipse
and Mylyn 103 ■ Tracking source changes with FishEye 105
Build view with Bamboo 107

4.3 Trac bug tracking and project management 109
Installing Trac 111 ■ The wiki 113 ■ Timeline and
sources 114 ■ Roadmap and tickets 115

4.4 Summary 116

PAET 3 INTEGRATION AND RELEASE MANAGEMENT 117

5 Integration and release management 119
5.1 The integration and release management function 120
5.2 Maven feature set 124

POMs and dependencies 125 ■ Inheritance and
aggregation 127 ■ Lifecycles, phases, and goals 128
Maven and testing 130 ■ Maven ecosystem 131

5.3 Maven component repositories 132
Managing sources and binaries in conjunction 135
Artifactory’s enterprise component repository 137 ■ Using
Subversion to serve a simple Maven repository 145

5.4 Releasing with Maven 150
Creating the branch and preparing the release 152 ■ Creating
the release 157 ■ Testing the release 158 ■ Useful Maven
plug-ins for releasing 160 ■ Using cryptography with
Maven 161 ■ Maven assembly 162 ■ Tooling beyond
Maven and outlook 167

5.5 Summary 169

6 Creating a productive development environment 170
6.1 Congruent builds and workspace management 171

Workspace management and the VCS 171 ■ Workspace
management and integrating code 172 ■ Workspace
management and running tests 173 ■ Workspace management
and dependencies 174 ■ Workspace management and
bootstrapping the development 177

CONTENTSxii
6.2 Using Mockito to isolate systems 177
Isolation and dependency injection 178 ■ Mocks in test-driven
development 180 ■ The flavor of behavior-driven
development 182 ■ Other handy features of Mockito 182
Antipatterns 184

6.3 Interfacing application containers with Cargo 185
6.4 Remote builds with TeamCity 187
6.5 Summary 190

7 Advanced CI tools and recipes 191
7.1 Integrating other artifact types: Cobol 193

Preconditions and basic thoughts 194 ■ FTP communication
with Ant 195 ■ FTP communication with Java 199

7.2 Integrating other artifact types: .NET 201
Using MSBuild to build .NET projects 202 ■ Using TeamCity
to trigger .NET builds 203

7.3 Configure: building (web) apps for multiple
environments 207
Multiple artifacts with assemblies 208 ■ Applying different
configurations 210 ■ Using a distribution profile and
executing the example 212

7.4 Building, auditing, and staging with Jenkins 213
Jenkins and triggering jobs 214 ■ Jenkins dashboard and
Jenkins jobs 215 ■ Auditing with Jenkins and Sonar 218
Running build fragments in Jenkins only 225 ■ Injecting build
numbers into applications 227 ■ Jenkins, Artifactory, staging,
and atomic deployment of Maven artifacts 229

7.5 Using Git and git-svn bridge for feature branch–driven
CI 238
Feature branching comes to the rescue 241 ■ The Lone Ranger
problem and how the git-svn bridge can fix it 243

7.6 Summary 246

PART 4 OUTSIDE-IN AND BARRIER-FREE DEVELOPMENT 247

8 Requirements and test management 249
8.1 Collaborative tests 251

Data-driven tests 253 ■ Acceptance tests 254

CONTENTS xiii
Ubiquitous language 255 ■ Executable specifications 256
Behavior-driven development 256

8.2 Acceptance testing with TestNG, Selenium, XStream, and
Excel 259
TestNG and the data-driven approach 259 ■ Data-driven
testing with XStream 262 ■ Testing the web UI with Selenium,
TestNG, and XStream 264 ■ Data-driven testing with
Excel 270

8.3 Acceptance testing with Fit, TestNG, and FEST 272
The application 272 ■ The specification 273 ■ Gluing the
tests and processing the document 276 ■ Running tests with
Ant 278 ■ Running tests with Maven and adding to a Maven
site 280

8.4 BDD in FitNesse with GivWenZen 283
Testing with GivWenZen 285 ■ GivWenZen and Java
PropertyEditors 290 ■ Adding further scenarios 293
Creating scenarios 295

8.5 Summary 296

9 Collaborative and barrier-free development with
Groovy and Scala 297
9.1 Agile and polyglot with Groovy 298

Low ceremony and scripting 301 ■ Domain-specific
languages 302 ■ Testing with easyb and Spock 303
Groovy Maven ecosystem 305

9.2 BDD with specs2 and Scala 306
Scala/specs2 307 ■ Specs2 forms 313 ■ Scala build
ecosystem 315

9.3 Summary 315

index 319

preface
Welcome to Agile ALM. This book has three main goals. The first is to describe Agile
Application Lifecycle Management (ALM) in practical terms and to provide a plan for
rolling out Agile strategies and best-of-breed tools. The second purpose is to explain
how to create ALM toolboxes based on standard tools used in advanced, real-world
cases. The third goal is to give you some guidance on how to choose the best tools, use
them correctly, and integrate them while applying Agile strategies. These three goals
are the focus of this book.

 In these pages, I have tried to present all the information you’ll need to implement
Agile ALM. I hope the book will also help you understand and put into practice the
“tool chains” needed for automating builds, tests, and continuous integration for your
applications, so you’ll be able to deliver quality applications without wasting time on
repetitive tasks or hunting for the right set of strategies and tools.

 The book starts with an overview of Agile ALM and then takes you deeper into the
details. First, we’ll look at toolsets at a higher level and then dive into the essentials
you’ll need in order to achieve success. It’s worth noting that while some version-
specific information is bound to change over time, the overall approach of this book
will remain relevant, even as tools and strategies mature and evolve. The tool explana-
tions are timeless because they focus on basic concepts and how to use the tools,
rather than on details that will change from version to version.

 You will learn how to integrate tools that are effective and flexible enough to
accompany the entire development process and yet, can be arranged seamlessly in an
open architecture. You will also learn how to look at the tool infrastructure as a mash-
xv

PREFACExvi
up so you can change and replace individual facets on the fly. The tools discussed in
the book are free for the most part. In rare cases, where no free tool is available to
achieve a specific task, or when the paid alternatives have worthwhile features, I’ll
introduce commercial tools. Still, most of the products described in the book are
moderately priced.

 Although ALM strives to be language-agnostic, the tools we’ll look at in the book
are Java-focused, for two reasons. First, Java engineers represent the largest target
audience of this book. Second, as in most heterogeneous system environments, you
will find one leading system that integrates subsystems. Java is one of the leading, if
not the leading language and platform to influence other platforms (like .NET).

 This book serves as a bridge between new innovative approaches to development
like Scrum, BDD, and Scala and more traditional approaches, such as bridging the
abstract Scrum template to traditional functional and technical release management,
or to continuous integration with Scala and Cobol. This book doesn’t promote any
one set of solutions. Rather, it serves as an explanation and a reality check for differ-
ent technologies; this can be useful to more conservative companies and adopters.

 I have tried to find a balance between high-level management overviews (along
with basic explanations) and technical details (with many hands-on examples). I hope
that this combination will succeed in making this book a comprehensive “one-stop
shop” for you.

acknowledgments
This book is based not only on my own expertise and experience, but also on com-
monly accepted best practices. With the goal of encompassing a wide range of ideas,
including a variety of opinions, and maximizing quality, I reached out to a number of
contributors as well as external reviewers as I wrote the book. The people I reached
out to are the masterminds, founders, and power users of the tools and concepts cov-
ered in this book.

 I would like to acknowledge and thank the following people, in no particular
order: Julian Simpson, “The Build Doctor,” for feedback on continuous integration;
Prof. Dr. Michael Stal, principal at Siemens, for technical editing of the Scala chapter;
Rainer Wasgint for providing the Siemens ALM field report and for discussing ALM;
Radoslaw Holewa, Scala professional, for contributing the BDD/Scala section; Vaclav
Pech (JetBrains), Groovy expert, for summarizing what Groovy is great for; Stephen
Berczuk, author and SCM expert, for proofreading and technical editing; Lisa
Crispin, author and testing expert, for proofreading and giving feedback; Simon Tiff-
ert, development lead, for his contribution in the context of acceptance testing,
including Excel, TestNG, and XStream; René Gielen, Struts 2 PMC chair, for contribut-
ing a Maven-related section and a section about the Git/SVN bridge; Heinrich
Freiherr von Schwerin (Logica), Paul Lajer (Logica), Matthias Zieger (Microsoft),
Sven Lindenhahn (T-Systems), Thomas Ferris Nicolaisen, Simon Brandhof (Sonar-
Source), and Reinhard Borosch (IBM) for their feedback and for inspiring me; Mat-
thias Weßendorf (Kaazing), for contributing the Maven releasing use case, which
shows how a big project is released using Maven (derived from MyFaces’ releasing
xvii

ACKNOWLEDGMENTSxviii
process); JFrog, especially cofounder and tech lead Yoav Landman, for supporting me
with their product Artifactory, discussing the releasing of Maven artifacts in general,
and proofreading; Atlassian, especially Jon Silver and Don Brown for feedback, proof-
reading, and support; and Szczepan Faber for writing about Mockito and mocking in
general. Also, a big thanks to Szczepan for the discussions, feedback, and ideas for
chapter 5. Thanks to Max Antoni for his Maven contribution; Anne Horton, author,
for ideas about the Hudson/Jenkins and continuous integration sections; JetBrains,
for inspiration and support; Hadi Hariri (JetBrains), .NET expert, for his .NET contri-
bution; Jonas Borgstrom and team for feedback on the section on Trac; Eric Torre-
borre, founder of Scala specs2, for editing and proofreading and supporting the
migration of the Scala/specs chapter from specs to specs2; Brett Porter, author and
committer to Maven, for technical editing and proofreading; Wesley Williams
(founder of GivWenZen) for his contribution; Matt J. Duffy and Greg Bates, from
“Oxford Editing,” Roswell, Georgia, USA, for editing (on my behalf) and pointing me
to the roundup; and Craig Smith for carefully proofreading the final manuscript.

 At Manning, special thanks to Michael Stephens for guiding me through the
detailed publishing process, Bob Aiello for his technical edit of the manuscript, Andy
Carroll for his expert copyediting, and to many others who worked behind the scenes.
Also, thanks to the following reviewers who read the manuscript at various stages of
development: Andy Dingley, Christian Siegers, Michele Galli, Tariq Ahmed, Balaji D.
Loganathan, Brad Gronek, Ben Ogden, Justin Tyler Wiley, Amos Bannister, Chris-
tophe Bunn, Dave Nicolette, Lasse Koskela, Robert Wenner, Benjamin Day, Deepak
Parasam, Deepak Vohra, Carlo Bottiglieri, and Darren Neimke.

about this book
This book is divided into four parts. Part 1 gives an overview of Agile ALM and sets the
stage for parts 2 through 4. Part 2 deals with the functional aspects of ALM, including
functional release management and task-based development. Part 3 discusses integra-
tion management and releasing, and includes dependency management and techni-
cal releasing with Maven, productive development environments and tools, and
additional recipes for continuous integration. Part 4 explains my view of outside-in
development for barrier-free development and testing.

 In addition, the book contains many examples. Chapter 1 gives pragmatic explana-
tions and a field report from Siemens, where ALM is used. Subsequent chapters
deliver details and numerous examples that implement the principles presented in
the first chapter.

Roadmap

Here’s a more detailed outline of the material we will be exploring.
 In part 1, I provide the basics of what Agile ALM is, including its benefits and fea-

tures. I also talk about Agile in general. Chapter 1 sets the stage and gives you a feel
for what Agile ALM is. Chapter 2 introduces Agile including the message of the Agile
manifesto and how it relates to ALM, and discusses Agile strategies (such as continu-
ous integration). All the other chapters discuss and implement the building blocks
illustrated in chapters 1 and 2.

 In part 2, we’ll focus on the functional, high-level part of ALM. Chapter 3 details
how to implement the general management template called Scrum and how to bridge
xix

ABOUT THIS BOOKxx
Scrum to more traditional environments. It also provides strategies and tools for
supporting the functional release of software. Examples of supporting vehicles are
version-control hooks and release calendars.

 Scrum can be thought of as an easy, compact, abstract framework. Although I also
explain Scrum at a high level, I focus on the details of how to implement Scrum in
real life. This is rarely covered elsewhere. Most books on Scrum are too high level to
help you learn the essentials for successfully implementing these excellent Agile prac-
tices. Finally, chapter 4 discusses task-based development, illustrating two toolchains
(including how you can orchestrate them freely). The first is based on JIRA, Bamboo,
Mylyn, and FishEye, and the second is based on Trac. Although Trac is quite useful on
its own, it can be combined with tools like Mylyn or Hudson/Jenkins. This chapter
gives an overview of these tools.

 With part 3, we leave the functional, high-level features of ALM and dive into its
more technical aspects. This part is about integration management and the technical
aspects of releasing software. As I’ll explain, ALM is about iteratively integrating arti-
facts, building and testing them, and providing software releases that are high quality
and free of defects. Maven is one of the market leaders in providing a comprehensive
lifecycle and release process. In chapter 5, we’ll discuss some of Maven’s important
features, especially dependency management and how it helps to host component
repositories in different flavors. Here, I’ll also show how you can use Maven in tradi-
tional environments without rolling out a full-fledged repository manager. We’ll dis-
cuss Artifactory as one of the major full-fledged repository managers. Finally, we’ll go
through a complex real-world releasing process showing Maven in action. As you can
see, all these topics provide valuable, advanced, best practices. Maven is a major back-
bone for the rest of the book. Subsequent chapters use or discuss Maven in some
form.

 Chapter 6 deals with productive development environments. Major topics include
strategies and tools for enabling congruent builds as part of an advanced “workspace
management” environment, as well as methods for integrating and working with arti-
facts on developers’ desktops. Other facets of this chapter cover Mockito (for mock-
ing), Cargo, TeamCity (for remote runs), and Maven’s archetype feature. All these
concepts and tools can help improve the productivity of development environments.

 Chapter 7 delivers tools and recipes for advanced continuous integration. We’ll
review the basics, and then dive into advanced scenarios, including strategies and
tools for continuous integration. The first section of this chapter covers concepts and
tools for integrating languages that have suboptimal native build management inte-
gration (we’ll look specifically at Cobol). Afterward, we’ll look at how to integrate
Microsoft .NET artifacts. You’ll see that you don’t need to buy Microsoft products to
integrate .NET apps continuously and that you can use TeamCity (or Hudson/Jen-
kins) and Subversion to build and store assets. This also helps to unify the toolchain
while integrating many different languages and platforms.

ABOUT THIS BOOK xxi
 Another section of chapter 7 is about configuration and staging, which can be a
big challenge in software projects. We’ll discuss how to configure an application for
different target environments without rebuilding the software and how to deploy
Maven modules in an automatic, consistent way. We’ll also talk about feature branch-
ing with Subversion and Git (to show how to bridge two VCS technologies) and discuss
two popular continuous integration servers. The first is Hudson/Jenkins. You’ll see
how to use it for building software, auditing (together with Sonar), and staging Maven
artifacts. The second is TeamCity, and we’ll discuss .NET integration and demonstrate
how easy it is to incorporate the use of cloud computing.

 The last part of the book is about “outside-in development” as well as collaborative
and barrier-free development and testing. Chapter 8 looks at an Agile ALM approach
to requirements management and test management. Here, you’ll learn about collab-
orative tests (where users, customers, testers, and developers work hand in hand), and
we’ll go through many advanced scenarios and toolchains. Starting with a basic data-
driven infrastructure, we’ll optimize the solution by managing data with XStream and
Excel, to the point of writing acceptance tests. Further sections provide other views
and possible solutions, using Fit and FitNesse. We’ll also use GivWenZen for behavior-
driven development (BDD).

 Chapter 9 discusses polyglot platforms and the details of collaborative and barrier-
free development. Here, we’ll discuss Groovy and BDD with Scala and specs2. I’ll show
the potential of barrier-free development using Java, Scala, and Groovy.

Who should read this book?

This book contains advanced strategies and real-world scenarios for using Agile ALM
tools. It’s targeted to advanced users, but motivated beginners will also benefit. If
you’re a beginner, I’ll lead you through the Agile ALM cosmos, teaching you about
Agile ALM and providing brief explanations on how to get started with the various
tools I’ll discuss. If you aren’t familiar with a particular tool (or a concept) yet, you’ll
get all the necessary introduction, along with pointers to further resources.

 From a project management perspective, this book is for developers, testers, devel-
opment leads, technical project managers, (technical) release managers, and all IT
people who want to improve the development process. People with Java skills, espe-
cially those who already use or plan to use the tools introduced here, will benefit the
most from this book.

 The book will be most useful for the IT professional who wants to become familiar
with Agile ALM, as well as for future users of the tools seeking advice for advanced use
and best practices of applying Agile strategies.

Source code downloads

The most up-to-date source code for the book can be found here: http://huettermann
.net/alm/. Code and tools that are mentioned in this book have different hardware
and software requirements. Please consult the how-tos inside the downloadable

http://huettermann.net/alm/
http://huettermann.net/alm/

ABOUT THIS BOOKxxii
source code, the respective sections in the book, and the resources for the specific
tools for further details. The source code is also available from the publisher’s website
at www.manning.com/AgileALM.

 The publisher and author have taken great care in the preparation of this book,
but we make no expressed or implied warranty for the code and text due to any errors
or omissions that might be contained in the book, in spite of our best efforts. An
errata list will be posted on the publisher’s website after publication and updated for
as long as the book is in print.

About the title

It was a long journey to decide on the final book title. My first ideas for the title
included terms like “configuration management” or “open source ALM.” But neither
of these was quite right. ALM is more than configuration management—although it is
based on the discipline called software configuration management. In addition, while
this book covers the best-of-breed lightweight tools, not all of them are open source.

 The final title, Agile ALM, along with the subtitle, Lightweight Tools and Agile Strate-
gies, best expresses the message of this book. It covers Agile strategies and lightweight
tools through the complete software application lifecycle. What the title also suggests
and the book explains in detail is that software development is not a unidirectional
“fire and forget” activity. Rather, software development is done in cyclic loops, with
iterations and increments, across all project phases, from requirements engineering
to delivery, gaining feedback from users who work with the delivered software, to
again start the loop.

 When I submitted the manuscript to Manning in March 2010, the term “Agile
ALM” was rarely used in the IT scene. Now, after the early access version of this book
has been available for over a year, the expression “Agile ALM” is widespread. But the
term is often used without a clear understanding of what Agile ALM really means. This
book delivers a definition of Agile ALM and puts together the requirements that tools
should implement in order to label themselves “Agile ALM” tools. Today, many tool
vendors describe their products with words like “Agile,” or “ALM,” or both, to indicate
that the tool supports application lifecycle management in an agile way.

 In this book, “Agile ALM” is used only in an editorial sense with no intent to
infringe on any trademark.

What this book doesn’t do

This book will not teach you all the tools from scratch nor all facets of these tools. For
instance, if you’re new to Maven (which, as noted earlier, is a backbone for Agile
ALM), you should consider consulting a dedicated resource on that tool, such as one
of the many books on Maven that explain the tool from scratch. I also don’t explain
all strategies and concepts at every step. For instance, if you’re interested in Scrum,
you may want to consult books dedicated to Scrum. This book isn’t meant to include

ABOUT THIS BOOK xxiii
detailed end-to-end descriptions of tools that are already discussed in other books
dedicated to those subjects.

 You probably will not use all the tools discussed in this book. Maybe you already
use some of them, or you may prefer other tools. It’s not possible to cover all the avail-
able tools in these pages, but the tools that are covered here are (or are likely to
become) de facto standards, and most are already in widespread use. The individual
choice of tools will depend on local conditions, personal preferences, and how your
team operates. One could make arguments for or against each category of tool pre-
sented in this book, as well as for or against the tools I chose to cover, depending on
context. From an Agile perspective, we want to find the “sweet spot” where we have all
the tools we need for local conditions, and nothing more.

 What’s true for tools is also true for platforms and languages. This book is based on
Java, although many examples show how to bridge to other platforms and languages.
As with tools, it’s not possible to cover all available platforms and languages.

 Although most of the tools discussed in the book are open source and freely avail-
able, some tools are commercial, and worth the investment. Examples of commercial
tools are the excellent products from Atlassian, such as JIRA and Bamboo, which you
can use for setting up a task-based development toolchain, and TeamCity, which I dis-
cuss for running remote builds.

 This book doesn’t provide comparisons of tools. I take a different
approach—instead of being tool-centric, I take a use case–driven approach. I show
how to implement all major aspects of Agile ALM with specific tools, similar to a cook-
book. In most cases, I discuss only one tool, but sometimes I use more than one in
conjunction, or I integrate one with others. In all cases, I focus on best-of-breed solu-
tions or toolchains for rolling out Agile ALM, but there are always other options you
could use.

Author Online

Purchase of Agile ALM includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/AgileALM. This page pro-
vides information on how to get on the forum once you are registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking him some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

ABOUT THIS BOOKxxiv
About the author

A Java Champion, Michael Hüttermann (SCJA, SCJP, SCJD, SCWCD), is a freelance
developer, architect, coach, author, and tutor for Java/JEE, ALM/SCM, and agile soft-
ware development. He speaks at international conferences and was the responsible
stage producer of the tooling track of Agile 2009. He is the founder and driver of the
Java User Group Cologne, a java.net JUGs Community Leader, a member of Agile Alli-
ance, on the board of the JetBrains Academy, a committer to FEST, and a Java contrib-
utor. Michael has written numerous articles and two German books: Agile Java-
Entwicklung in der Praxis (O’Reilly, 2008), and Fragile Agile (Hanser, 2010).

 Further information about the author, including ways to contact him, can be
found at http://huettermann.net.

about the cover illustration
On the cover of Agile ALM is “A habitant of Brgud,” a hamlet on the eastern side of the
peninsula of Istria in the Adriatic Sea, off Croatia. The illustration is taken from a
reproduction of an album of Croatian traditional costumes from the mid-nineteenth
century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croa-
tia, in 2003. The illustrations were obtained from a helpful librarian at the Ethno-
graphic Museum in Split, itself situated in the Roman core of the medieval center of
the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
The book includes finely colored illustrations of figures from different regions of Cro-
atia, accompanied by descriptions of the costumes and of everyday life.

 In this region of Croatia, men wear black woolen trousers and jackets that are dec-
orated with embroidered trim. The figure on the cover is wearing a vest and short
jacket over a white linen shirt, black trousers, and a flat black hat that completes the
outfit. The color and style of the embroidery, thin blue piping in this case, indicate
the town or village of the costume’s origin.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxv

Part 1

Introduction to Agile ALM

Welcome to Agile ALM. In this part of the book, I will illustrate the basics
of what Agile ALM is, from my point of view, including its benefits, history, and
building blocks. We’ll also talk about Agile in general and how Agile strategies
can enrich application lifecycle management.

 Chapter 1 sets the stage and gives you a thorough introduction to what Agile
ALM comprises. Chapter 2 introduces Agile and Agile strategies. You’ll learn
how Agile can foster your project management and how Agile strategies (includ-
ing continuous integration, component repository, and productive workspaces)
can help to streamline your development process. You’ll also learn how Agile
ALM can counteract the illusion of control by operating as a change enabler.

 After reading this part of the book, you’ll be ready to explore Agile strategies
in more detail and to learn how you can implement these strategies with light-
weight tools.

Getting started with
Agile ALM
This book is about Agile application lifecycle management (ALM) and brings
together the best of two worlds, Agile and ALM. I’ll discuss ALM as a way to develop
and release software in a coherent, integrated way, spanning all development
phases, artifact types, roles, and business units. Bringing ALM and Agile together
and using the right tools leads to a modern, efficient way of developing software.
Consequently, you’ll reduce costs, boost your productivity, and accelerate your
team’s collaboration. And you can make developing software a lot more fun.

Agile ALM enriches ALM with Agile strategies. In my opinion, ALM is based on
software configuration management (SCM). SCM, in turn, is based on basic version
control (see figure 1.1).

This chapter covers
■ An introduction to Agile ALM
■ The evolution in software engineering

leading to Agile ALM
■ The aspects of ALM that are covered

in this book
3

4 CHAPTER 1 Getting started with Agile ALM
Agile ALM

■ Helps overcome process, technology, and functional barriers (such as roles and
organizational units).

■ Spans all artifact types as well as development phases and project roles.
■ Uses and integrates lightweight tools, enabling the team to collaborate effi-

ciently without any silos.
■ Makes the relationship of given or generated artifacts visible, providing trace-

ability and reproducibility.
■ Defines task-based activities that are aligned with requirements. This means

that the activities are linked to requirements and that all changes are traceable
to their requirements.

Agile ALM can be used with all kinds of process models and methodologies, including
traditional ones, such as waterfall or spiral models. There are also ALM approaches
that can hardly be called Agile or that are based on large-scale commercial tools; these
can be difficult and expensive to implement. Agile ALM focuses on driving the process
through people and not merely through tools. Where tools would be of benefit, such
as continuous integration server, they should be lightweight and primarily open
source. The Agile ALM approach results in processes and lightweight toolchains that
are flexible, open to change, and high quality. This approach helps to make the ALM
more Agile and leads to what I call Agile ALM.

 This chapter introduces the concepts that are essential to understanding Agile ALM,
including the evolution of software engineering with its migration to Agile ALM. I’ll also
discuss the essential impact that SCM (and version control) has had on ALM, including
some of the first pilot projects to use Agile and ALM together. In addition, I’ll explain
my view that SCM is the basis of ALM and how these practices help develop ALM today.
Many Agile books make the case that one doesn’t adopt Agile practices, but rather one
becomes Agile. It’s important to establish an effective ALM through people, culture, pro-
cesses, and tools. This chapter will also focus on open source and lightweight tooling
along with the building blocks of Agile ALM. That’s not to say that some large-scale com-
mercial tools aren’t worth using, but they won’t be the focus of this book.

Version control

So�ware configura�on management

Applica�on lifecycle management

Agile applica�on lifecycle management

Figure 1.1 Agile ALM
enriches ALM with Agile
strategies. ALM is heavily
inspired by and based on
configuration management,
which in turn is based on
version control.

5Agile ALM at a glance
 It’s essential to take a stakeholder focus in any Agile effort; one must consider the
role of releasing code in Agile ALM as well as the service orientation and application
architecture. I place a strong emphasis on task-based development and the Agile ALM
premise of aligning work to the customer’s requirements (including setting up the
most effective toolchain for a given context). I’ll also explain one approach called
“outside-in,” which takes the customer’s point of view in some specific (and impor-
tant) ways. We’ll consider the importance of configuration, customization, plug-ins,
and our ever-growing, multilanguage, polyglot world, including my view that we can’t
forget the existing legacy systems that are often valuable to the organization. But first,
let’s take a step back and consider Agile ALM at a glance.

1.1 Agile ALM at a glance
ALM describes the coordination of development lifecycle disciplines, including the
management of requirements, changes, configurations, integrations, releases, and
tests. These functions span development phases, including requirements definition,
design, code, test, and run, as shown in figure 1.2.

ALM is aligned with the engineering process, spanning development phases. This
results in releases that are functionally and technically consistent. ALM also manages
the relationships between various artifact types, including requirement documents,
coding artifacts, and build scripts that are used or produced by the engineering pro-
cess. By organizing, linking, and referencing activities and artifacts, you can track the
development progress as a whole. Through the use of integrated toolchains, ALM
helps you to overcome the biggest challenge in the software creation process: the
technological and functional barriers that make it difficult to implement a transpar-
ent and consistent development process.

Requirements
management

Build management

Change
management

Release
management

Configura�on
management

Integra�on
management

Test
management

Define

Design
Code

Test

Run

Applica�on lifecycle management

Figure 1.2 ALM bridges
the development
disciplines and phases of
requirements definition,
design, code, test, and run.

6 CHAPTER 1 Getting started with Agile ALM
ALM is a task-based approach in which all activities are linked to requirements, and
the relationships between all artifacts are visible; therefore, artifacts can be traced to
the requirements they are based on.

By using an Agile ALM approach, you’ll gain from improved productivity that helps
keep costs down, reduces time to market, and improves return on investment (ROI).
All stakeholders have easy access to the information they need and can collaborate
efficiently. They have real-time visibility and participation in the process lifecycle. This
means that the technical infrastructure is aligned with business and business value. It
also means that, through interactions between business and technical personnel,
questions can be answered quickly in a user-friendly way. That leads to concrete, posi-
tive business outcomes.

Agile ALM’s integrated approach leads to the protection of software assets,
improved reuse, better requirements traceability, cleaner code, and improved test
results. A high level of automation, seamless integration, and service orientation leads
to a successful project and better team awareness.

 An Agile ALM enriches a traditional ALM with Agile values and strategies. With a
focus on communication and collaboration, ALM processes already have the prerequi-
sites to support Agile software development. An Agile ALM has its major focus on
human interaction (“peopleware”), increasing their communication and interactions
by implementing Agile strategies (like continuous integration) and always weighing
value and effort. The Agile approach uses lightweight tools as needed, based on con-
crete requirements. In this book, I will refer to large, bureaucratic, heavyweight sys-
tems as being monolithic, as discussed later in this chapter. A nonmonolithic approach
uses open standards and helps to implement an Agile software development process.
Agile ALM can also support other kinds of development processes.

 In summary, Agile ALM consists of the following four major fundamentals:

1 Collaboration—All team members are aware of what others are doing. That way,
choices can be made that best facilitate the progress of the entire project. This is
achieved by focusing on personal interactions, the outside-in (customer-focused)
development approach, and task-based development supported by tools.

Agile ALM

The Agile ALM approach

■ Is the marriage of business management to software engineering
■ Targets processes and tools working together seamlessly, without silos
■ Covers the complete software development lifecycle, including requirements

management, coding, testing, and release management
■ Enriches ALM with Agile strategies
■ Is based on software configuration management and version control
■ Is based on a set of tools, enabling a team to collaborate efficiently

7Evolution of software engineering: moving to Agile ALM
2 Integration—Achieving business targets requires an enterprise infrastructure to
integrate roles, teams, workflows, and repositories into a responsive software
delivery chain. People must be connected wherever they are located (distrib-
uted, collocated) and must have the assets they need to get the information
they seek. Integration occurs at several levels, including developer builds and
integration builds, and is seamlessly maintained with comprehensive testing
throughout the lifecycle.

3 Automation—The streamlining of the full lifecycle is heavily based on end-to-end
automation.1 For example, all of the steps in a build, including preparing the
build system, applying baselines to source control systems, conducting the build,
running technical and functional tests as well as acceptance tests, packaging, and
deploying and staging the artifacts, are automated with the appropriate tools.

4 Continuous improvement—You can improve only what you can see and measure,
so building and delivering software that minimizes manual work is a require-
ment for easily identifying where you are in your process. Comprehensive test-
ing, regular retrospectives (where you discuss what went well and what needs
improvement), project transparency, and project health (balancing work to
eliminate work peaks) allow you to improve continuously.

To better understand ALM and its features and benefits, it’s helpful to look at the his-
tory of software engineering in the context of ALM. We’ll now take a quick tour
through the evolution, from the pragmatic approach to software configuration man-
agement to ALM.

1.2 Evolution of software engineering: moving to Agile ALM
Software engineering has always focused on improving quality and productivity. This
may involve reusing well-defined requirements or software components. Many compa-
nies spend years developing applications and continuously extend their portfolio with
new ones. By repeatedly implementing the same requirements instead of reusing exist-
ing assets (which exist because you’ve implemented the same requirements before)
and not using strategies for tracking artifacts (such as builds, test results, packages), the
development team will be ineffective and inefficient. Developing software in a subop-
timal way leads to poor quality, missed customer needs, and late arrival to the market.

 From a technical view, without any comprehensive strategy for managing artifacts,
integration is often a game of roulette that involves changing an existing application
rather than merely transferring a set of changes into another stable and well-known sys-
tem state. This is why technology professionals have worked hard to improve the appli-
cation-development process and have tried to find answers to these common questions:

■ How can I accelerate activities and exclude error sources?
■ How can I improve communication in the team?

1 The end-to-end process, its people, and its processes are sometimes called the “value stream.”

8 CHAPTER 1 Getting started with Agile ALM
■ How can I significantly improve the quality of my software?
■ How can I keep in touch with the current state and quality of the developed

software?
■ Which tools fit my requirements and basic conditions best?
■ How do the single building blocks of my infrastructure interact with each other?
■ How can I set up a flexible infrastructure to secure the assets of my company?
■ Which changes (requirements, bugs) are implemented in which artifacts?
■ Which changes are provided in which builds/releases?

In order to appreciate this effort, we need to review software configuration manage-
ment and its essential practices.

1.2.1 SCM and the first ALM trial balloons

Software engineering, from a historical perspective, is a young discipline. In the early
stages, software development was seen more as a factory process and not as a complex
activity aimed at implementing business objectives. In recent decades, software devel-
opment has been evolving, initially to make life easier for developers and finally to
answer internally and externally driven needs for productivity and quality.

THE BASICS OF SCM

Running an unreliable, fragmented development process doesn’t empower a team to
track and improve their work continuously. This is where software configuration man-
agement (SCM) can help. SCM helps improve the development process by tracking
and controlling changes in the software. These processes are commonly implemented
using version-control systems (VCS). SCM makes changes in the VCS visible, and it adds
meta-information to the system to track why the change was made. Above all, baselines
(identifying a specific version of the code suitable for release) and change-sets (linked
to artifacts or work items) provide traceability to the development process and accel-
erate release management.

 The following are the goals and values of SCM:

■ Identifying and administering configuration items
■ Controlling, versioning, and resolving conflicts for artifacts of any type (which

impact the release) that may change over project time
■ Documenting changes of all configuration items and their degree of maturity
■ Supporting branching and merging
■ Configuring software for use (deployment) on different target environments
■ Performing functional auditing, reproducibility, traceability, and controlling

configuration item dependencies
■ Minimizing bad builds and detecting them early
■ Reducing communication mistakes
■ Providing a history of builds and releases in order to investigate issues
■ Defining processes and tools
■ Eliminating redundant tasks and streamlining processes

9Evolution of software engineering: moving to Agile ALM
■ Improving efficiency while orchestrating, packaging, and distributing software
■ Establishing access control
■ Saving time and money and satisfying the customer

Using SCM, you can track incremental changes and compare and analyze stable base-
lines of the software. The SCM focus is primarily on physical changes as opposed to
business objectives, as illustrated in figure 1.3.

Software configuration management

Software configuration management consists of four major functions:

■ Configuration identification—Select and identify all configuration items and
establish baselines on them so you can then control, audit, and report changes.

■ Change control—Control changes to configuration items.
■ Configuration audit—Ensure correctness, completeness, and consistency of

baselines by examining the baselines, configuration items, and related pro-
cesses.

■ Status accounting—Report on the status of all configuration items throughout
their lifecycle.

Configuration items

Configuration items refers to produced or consumed (used) artifacts or to (environ-
mental) artifacts that created final artifacts. Depending on the point of view and the
context, artifacts go by different names, products or deliverables (project manage-
ment) or deployment units (software architecture), for example. The rules for identifying
a configuration item may vary and depend on individual requirements. As a basic rule
of thumb, a configuration item is any item delivered to a stakeholder. Examples include
coding artifacts, design documents, user manuals, requirements, technical specs,
test cases, build scripts, and so on.

TestRequirements Design Development

Build/Deploy/Config

Release

Figure 1.3 Development phases
like design and development are
often unreliable with unpredicta-
ble results, tools, and data.
Phases are isolated and only
loosely linked, as illustrated by
the dotted lines in the figure. SCM
activities like build/deploy are
orthogonal to the phases and span
them. They are often not reliable.

10 CHAPTER 1 Getting started with Agile ALM
THE DEVELOPMENT OF SCM

In the early years of software development, the main challenges related to the fact that
a team worked on software and data concurrently. Classic problems included the fol-
lowing:2

■ The double maintenance problem, which arises from keeping multiple copies
of software

■ The shared data problem, arising from many people simultaneously accessing
and modifying the same data

■ The simultaneous update problem, arising from multiple people changing a
piece of software at the same time

Database management systems and version-control software help us manage the daily
challenges of software development, and the solutions are found in almost every proj-
ect toolchain in use today. Yet the challenge of accelerating the development process
and improving software traceability and quality remained difficult to achieve.

SCM strategies were developed and refined to further optimize the engineering
process.3 Over the years, it became increasingly clear that this wasn’t enough. Focus-
ing on only the technical view didn’t improve the quality of software development.

 Tracking the progress of the development efforts, and the changes on artifacts,
including source code, design, and requirements documents, isn’t always easy because
it usually requires working with manual lists and accessing multiple data repositories.
What makes implementing SCM even more difficult is the amount of manual work
required, particularly for validating the current status of the software at any given point.

 Technical release management is an explicit time-consuming activity. The solution
was to focus on automating every aspect of SCM, from application builds to release
packaging and deployment. For example, development managers need procedures
for continuous auditing and change tracking. The release management process

(continued)

For a detailed discussion of configuration items, and configuration management in
general, see the following sources: Alexis Leon, A Guide to Software Configuration Man-
agement (Artech House, 2000); Mario E. Moreira, Software Configuration Management
Implementation Roadmap (Wiley, 2004); Mario E. Moreira, Adopting Configuration Man-
agement for Agile Teams (Wiley, 2010); Larry Klosterboer, Implementing ITIL Configu-
ration Management (IBM Press, 2008); A. Mette and J. Hass, Configuration Manage-
ment Principles and Practices (Addison-Wesley, 2003); Bob Aiello, Configuration Man-
agement Best Practices: Practical Methods that Work in the Real World (Addison-
Wesley, 2010).

2 See Wayne Babich, Software Configuration Management (Addison-Wesley, 1986), 9ff.
3 See Stephen Berczuk with Brad Appleton, Software Configuration Management Patterns (Addison-Wesley, 2003).

11Evolution of software engineering: moving to Agile ALM
should be implicit, integrating across artifact types and development phases, with uni-
form or highly integrated tools and data repositories.

 As a result of improved procedures for continuous auditing and change tracking,
developers found themselves with a more integrated approach that was free of com-
mon obstacles. Instead of each organizational group suboptimizing its own work, bar-
riers between areas were broken down and all stakeholders worked as a team for the
company.4 I refer to this approach as being “barrier-free.” Figure 1.45 shows that SCM
became more and more an implicit task embedded in all development phases. At this
point, it becomes more appropriate to talk not only about SCM, but also about man-
agement of the application lifecycle (ALM).

THE TEST PHASE There are many situations that warrant a separate testing
phase, as shown in figure 1.4; other situations don’t. In many projects and
companies, the test activities can be part of the release/build/deploy/config
block or part of the development block.

ALM features and activities are implicit throughout the entire lifecycle, meaning that
all phases of the process include ALM features and activities now, instead of taking an
orthogonal approach, as in the first evolution step. Early approaches to ALM resulted
in significant improvements, but these early efforts were not always successful because
many roles had their own tools, which were not integrated with the tools used by other
team members. For example, there are many tools that are specific to requirements

4 See W. Edwards Deming, Out of the Crisis (The MIT Press, 1982), pp. 62–65.
5 Compare Carey Schwaber, The Changing Face of Application Life-Cycle Management (Forrester Research Inc.,

2006).

Test

Requirements
Design

De
ve

lo
pm

en
t

Release/Build/
Deploy/Config

ALM

Figure 1.4 The first evolution of SCM
toward an approach that can be called
ALM spread over phases and synchro-
nization. Unlike the design in figure
1.3, single phases now contain
aspects of ALM but often have
disparate data stores and processes,
and there are challenges to sharing
data and knowledge.

12 CHAPTER 1 Getting started with Agile ALM
engineering but that don’t integrate well with other toolsets. In addition, many devel-
opment teams grow attached to their specific tools and find it difficult to switch to
using one integrated toolchain. The toolchain is often compared to a Swiss army
knife, which has many clever tools but may not be completely effective for a specific
task. As a result of all these issues, the wrong tool infrastructure may sometimes have
slowed teams down instead of speeding them up! Additionally, some tools have their
own proprietary data-storage approach, so tools were often not integrated and their
database repositories can’t share related information.

 To span separate roles and phases, it’s necessary to synchronize data among the
various tools. This results in a more complex technical solution. Another idea to
improve tracking software development is to set additional tools (such as a tool that
aggregates the individual outcomes of other tools, or a dashboard) or manual activi-
ties on top of the infrastructure. In this way, information could be extracted or col-
lected and offered at a central entry point.

 In summary, the combined complexity and the missing “single point of truth”
increases costs and may lead to inaccurate information. Tools that aren’t aligned
properly may lead to unneeded complexity. The lack of integration and collaborative
features leads to a lack of transparency because requirements can’t be traced through-
out the lifecycle. All of these points make it a lot harder to align tools and processes.

 Let’s summarize the key issues in how ALM was commonly organized before the
next evolutionary step occurred:

■ Alignment of tools, roles, and organizational borders—The approach was mainly
aligned at organizational borders and roles. As a result, there often was a single
tool for each role or business unit. For example, let’s consider a big integration
project that has a central build/config/release business unit. In another busi-
ness unit, the test management runs in isolation, starting its main activities only
after the software is released. The isolated tool used by test management may
enable writing test cases and tracking tests, but it isn’t integrated into the other
part of the toolchain; the organization may even have different accounts for
those tools and micro workflows.

■ Suboptimal collaboration—Another point where the toolchain wasn’t balanced
was in the lack of collaboration between team members and interaction fea-
tures with other tools. For example, among the available (commercial) tools,
none had a central wiki in which different users could discuss topics and
exchange information. None enabled a shared view on information collected
from multiple units, phases, or roles. This is like having a software application
open on your desk in multiple isolated windows with no way to see the informa-
tion as a whole or in different views.

■ Lack of transparent processes—If you analyze how the workflows in companies
and projects are implemented with tools—how the processes are imple-
mented—you’ll see that there are many proprietary scripts that drive and con-
figure each tool, but that those individual tools are connected in clumsy and

13Evolution of software engineering: moving to Agile ALM
often proprietary ways. Single scripts can be versioned, but the whole integration
itself can’t be versioned or managed explicitly. This is suboptimal, because the
companies’ processes are part of their core assets, and you can’t improve any-
thing that you can’t identify, describe, and measure.

■ Unreliable data synchronization—Tools and workflows extract information out of
the development process, but tools often have their own proprietary data-storage
mechanisms. Using a collection of unrelated tools (for instance, a requirement-
tracking tool and a test tool) can quickly lead to a data-integration nightmare.
Many tools have an open API to facilitate the sharing of data, or specific features
that will handle data integration programmatically (for example, import/export
via XML), but the results of programmatic synchronization are often cumber-
some and error-prone, increasing the complexity significantly. The lesson
learned is that just because you have a requirement-tracking tool and a test tool
doesn’t necessarily mean there is an ALM connection between these tools.

We need to consider these key issues, which have certainly impacted ALM.

1.2.2 The dawn of ALM

Years of experience with implementing software development lifecycles (SDLC) made
many people realize there had to be a better approach. These improvements have
evolved into what we call application lifecycle management (ALM) today. ALM is
implicit in every phase of the lifecycle and impacts all roles, organization units, and
development engineering phases, as shown in figure 1.5.6

6 Compare Carey Schwaber, The Changing Face of Application Life-Cycle Management (Forrester Research Inc.,
2006).

Requirem
ents

Release/Build/
Deploy/Config

D
esign

Test

D
ev

el
op

m
en

t

Figure 1.5 ALM is an implicit, pluggable
hub: barrier-free engineering without
redundant activities or redundant data.
We now have neither orthogonal (as in
figure 1.3) nor fragmented ALM aspects
(as in figure 1.4).

14 CHAPTER 1 Getting started with Agile ALM
All phases (and the stakeholders in those phases) should be involved with the com-
plete ALM. All stakeholders have connection points to the uniform, comprehensive
information hub. Let’s look at three major facets of modern ALM:7

■ ALM is both a discipline and a product category. There are many vendors selling full-
fledged ALM suites, and others claim they have them in their portfolio. Light-
weight, open source tools are also available and are often much easier and
more cost-effective to implement. ALM doesn’t rely on using any specific ALM
tools suite. Your work with ALM should start with the concepts and ideas behind
it, such as traceability, automation, and reporting. Also, ALM activities should be
strictly based on the requirements of “task-based development,” which we’ll dis-
cuss later.

■ ALM keeps lifecycle activities in sync. ALM doesn’t introduce any specific new meth-
ods of developing software. It’s more about introducing a supportive and
implicit discipline to reduce complexity, keeping the people and processes in
sync.

■ ALM integrates tools. ALM isn’t only about tools and using them but also about
picking the right tools, using them effectively, and, above all, integrating them.
Integration implies a barrier-free chain of tools that share a high-level workflow
and consolidated data sets.

These aspects of the ALM approach led to the following key benefits:

■ Traceability of relationships between artifacts—Created artifacts such as documenta-
tion, requirement documents, tests, build scripts, change requests, and source
code (for example, changesets) are synchronized and traced automatically. A
unified view of them is provided to gain continuous insight into the current sta-
tus of the development process; this clarifies which requirements were imple-
mented where and which were tested with what results.

■ Automation of high-level processes—Technical people have been talking about
automation for years, and continuous integration and other development-cen-
tric strategies are gaining momentum. ALM has continuous integration, but
that’s not all. When we talk about ALM, we also talk about high-level processes
and workflows (such as those for releasing software) that are automated. These
workflows should be unique and barrier-free across tools and organizational
units. This is an evolved step in integration. ALM deals with maximizing busi-
ness value, efficiency, flexibility, and the protection of company assets. This can
be achieved only through a high-level approach that connects business and
technology.

■ Visible progress of development efforts—Often there’s a big gap between the real sta-
tus of the development and the view available to managers and developers. This

7 Also see Carey Schwaber, The Changing Face of Application Life-Cycle Management (Forrester Research Inc.,
2006).

15Evolution of software engineering: moving to Agile ALM
gap often increases the higher you climb up the management chain. Fre-
quently, the technical staff reports an overly optimistic view of the current soft-
ware development status. Managers also do that when they report to their
superiors, as they are eager to show they have reached forecasts, objectives, or
milestones. But the end result is ugly: Deadlines are missed because risk man-
agement was removed from the process, and a lack of transparency conceals
progress right up to the end. The goal of ALM is to collect the relevant informa-
tion, transform that information into knowledge, and generate high-level
insight into problems and progress. ALM circumvents old processes that
extracted the view manually; communicated it personally; or generated project
reports, status meetings, and the like. Instead, the ALM system provides the
information continuously.

Obviously, there’s a huge benefit to adopting an effective ALM. It’s also essential to
understand that one must become Agile in order to truly be successful in implementing
Agile ALM.

1.2.3 Becoming Agile: Agile ALM

Agile teams produce higher quality work, deliver results more quickly, and are more
flexible, allowing them to respond to changes in requirements (as those requirements
are understood by all stakeholders), and making them more likely to create a greater
(and often a quicker) return on investment (ROI). The dominance of single large
projects is gone. In recent years, IT projects have become smaller and smaller. It’s
increasingly important to deliver low-cost solutions quickly, in small to midsize proj-
ects, or to use scoped milestones in big projects.

 It’s also important to set up an efficient, lightweight infrastructure in order to gain
the benefits of knowledge and synergies. There’s no “one size fits all” infrastructure
for an ALM, mainly because every company
and every project has its own basic condi-
tions and culture. A plain-process or tool-
centric approach obscures the fact that soft-
ware is made by and for human beings, and
therefore requires constant oversight by a
human being. ALM can provide that over-
sight. This is one of the ways in which ALM
helps to provide structure for Agile.

 In this book, we’ll also focus on the pro-
cesses and tools that play a major role in sup-
porting the ALM, but in the center of an Agile
ALM project, people, culture, processes, and
tools are important for establishing stability,
or what I will refer to as steadiness. Figure 1.6
illustrates these relationships, with tools and

Culture

People

Tools

Processes

Steadiness

Figure 1.6 Pyramid of steadiness: People
and culture own and drive the processes and
tools. All four aspects are important.

16 CHAPTER 1 Getting started with Agile ALM
processes at the top of the steadiness pyramid. People are the foundation of the steadi-
ness pyramid, followed by culture. You don’t want to use tools that will force you to prac-
tice specific processes. It needs to be the other way around: You identify and define the
processes and decide on the tools to help you in applying those processes. To take the
full path, you identify and define your goals as a first step and then use the processes
best suited to achieving those goals.

 Culture is heavily affected by former projects, historical events, and the collective
experience and knowledge of the company. Though it’s hard, culture must change if
the organization is going to succeed with software development in the long run. Per-
suasion doesn’t work. Management has to commit to delivering high-quality software
by building in learning time and providing support for studying new practices and
processes that will work better. They need to provide the right intrinsic motivators,
such as autonomy and ability to innovate. The development team has to commit to
building high-quality software. The development team needs to understand the defi-
nition of quality, and management needs to value quality preferably over time, scope,
and cost. As people start to understand, they’ll be allowed to “do things right,” and
then they’ll be motivated to choose and learn the tools that best fit the process.
Choosing the tools and the process is the easy part—it’s easy to implement a frame-
work like Scrum. But it’s hard to flesh it out with a real commitment to quality and to
business–technical collaboration.

 All of this means that if you want to change a software development aspect in your
company, you need both a bottom-up and a top-down approach. At the bottom level,
you should persuade people to support the goals that you have articulated. It’s much
easier to overcome resistance to change when you have support from the key stake-
holders, such as an experienced programmer who recommends or already uses a spe-
cific tool (often an open source tool). Relying on the opinions of experienced people
is better than having a bureaucracy deploy large, cumbersome tools. At the top level,
you also need a strong commitment from management to change processes or tools,
because people become attached to using certain processes and tools and won’t want
to change without good reason.

 Generally, stability is an advantage, so there should always be good reasons for
changing something that’s successfully in place. But developing software is about
change, and Agile addresses exactly that. It can be hard to change to an Agile environ-
ment, so it’s imperative to focus on selecting the tools best aligned to your flexible
processes (not the other way around). These tools should have an open architecture,
be simple to use, interchangeable, extensible, and interoperable.

 Being flexible and agile in the classic sense requires an openness to change. Addi-
tionally, an integral, continuous risk management and review process is needed to
quickly identify issues and their potential consequences. Modern software develop-
ment consists of managing change and understanding all development activities as a
defined and traceable process. Agile helps with change and risk management, inde-
pendent of the overall development process you are using. Agile also focuses on the

17Building blocks of Agile ALM
importance of transparency and on alignment with business value, as illustrated in
figure 1.7.

 We’ll learn more about concrete Agile strategies in chapter 2 and we’ll discuss
lightweight, primary open source tools throughout the rest of this book. Right now,
we’ll look at the building blocks of Agile ALM. This information will give you the nec-
essary preparation for subsequent chapters.

1.3 Building blocks of Agile ALM
What exactly is Agile ALM and what value does it add? In this section, we’ll consider that
question in the context of software releases and service orientation. We’ll also discuss
how important it is to be focused on the stakeholders’ needs and to use a task-based
approach. We’ll consider configurable, pluggable systems and standards. Finally, we’ll
talk about what it means to use and cope with “polyglot” environments, with their many
languages and technologies, and how to apply open source methods and automation.
The tools we’ll cover in this book will enable you to implement and support these build-
ing blocks. Tools are important, but it’s also important to start with a stakeholder focus.

1.3.1 Stakeholder focus

Developing a software application isn’t just about writing code. Once developed, code
must be tested, approved, and deployed to the live environment where it must be
maintained. Many programmers will expect their code to migrate to the live environ-
ment as soon as it’s completed to see that their deliverables are used, whereas others
understand that the release will be promoted when it’s tested and approved.

INTERDISCIPLINARY ROLES In this book, the developer is a person who not only
develops or programs code but also has an interdisciplinary skill set. Develop-
ers are skilled in coding, but they should also know how to test, configure,
and ship features. As a consequence, some people don’t like to see the word

ALM

People

Risk

ChangesTransparency

Business
value

Figure 1.7 Transparency,
people, changes, risk, and
concrete business value are
essential factors that
influence software
engineering and that should
be stressed in an ALM project.

18 CHAPTER 1 Getting started with Agile ALM
developer used for programmer. They argue that everyone involved in deliv-
ering software is a developer, including the testers. The DevOps movement
(the word is a blend of development and operations) similarly brings devel-
opment and operations together regarding communication, collaboration,
and integration. All developers—programmers, testers, database administra-
tors (DBAs), and other people on the team—need to take responsibility for
quality and for ensuring that all testing, configuration, and deployment activ-
ities are completed at the same time as the coding takes place.

Depending on their role within the organization, each person may have a different
focus.8 For instance, a developer should usually work in an isolated environment (with
an IDE) and then commit code only if it won’t break the build for the rest of the team.
Continuous integration (CI) provides immediate feedback to developers if code com-
mitted to the trunk can’t successfully build. The release manager needs to have a clear
overview of the status and must know whether the latest code (on the trunk) will build
successfully and pass all relevant unit and automated tests. The release manager
should also be kept advised on the state of QA testing and should know the current
version in production. Production operators prefer an automated deployment pro-
cess, where they can control the environment variables and flawlessly release a specific
baseline of the code (or revert back if necessary). Finally, the CIO and CEO of a corpo-
ration (among other senior managers) want to see an automated and repeatable pro-
cess with an audit trail.

ALM consists of several steps, including traditional versioning, and ends with
deployment, always weighing the importance of the underlying business (the target
domain). All those aspects are important for individual stakeholders, as outlined in
table 1.1.

8 In The Art of Project Management (O’Reilly, 2005), Scott Berkun talks about three different perspectives: the
business perspective, the technology perspective, and the customer perspective (chapter 3).

Table 1.1 Stakeholder focus in an Agile ecosystem

Why . . . Developer Production* Management Customer

Versioning? Keep track of the changes Easily revert to a
prior version

No loss of data Reliability

Continu-
ous integra-
tion
process?

Concentrate on developing
software
Early feedback
Integrate with code from
others

Get high-quality
production code

Fewer errors
Repeatable pro-
cess
Faster and shorter
release cycle

Early feedback
Working software

Automated
build?

No loss of valuable time Everything is
coordinated by a
script

Prevents mistakes Fast feedback
cycles

* For example, deployment, delivery, maintenance

19Building blocks of Agile ALM
* For example, deployment, delivery, maintenance

We need to consider all stakeholders and their interests in an Agile environment
(stakeholder focus). We also need to consider both the functional and technical views
of release management.

1.3.2 Views on releasing and Agile ALM

Agile ALM can be split into a functional view and a technical view.
 The goal of a functional view of ALM is to assign and track the implementation of

requirements. Effective release management is at the core of successful Agile ALM,
and this can be implemented with the help of Agile process frameworks like Scrum.
Even if you don’t use an overall Agile process model, applying Agile strategies can still
improve the development process.

 On the other hand, a technical view of ALM deals with integrating components
(integration management) and increasing productivity by improving the develop-
ment process, such as with continuous integration and installing productive develop-
ment environments. A technical process and infrastructure hub enables automatic
building and releasing, and incorporates testing, quality auditing, and integrating
requirements.

 In chapter 3, we’ll discuss the functional view by implementing Scrum. In the same
chapter, we’ll bridge the gap between the functional and technical views.

Agile ALM also places a strong value on understanding the impact and value of the
service orientation.

1.3.3 Service orientation, SaaS, IaaS, PaaS

Providing a service on demand (or Software as a Service—SaaS) isn’t new. There have
been a number of successful SaaS systems, including customer relationship manage-
ment (CRM) systems such as www.Salesforce.com, which introduced this approach
long ago. Today, there are many successful SaaS services, including several from
Google: Gmail, Google Docs, and Google Calendar.

 SaaS applications are often hosted on the providers’ web servers to be used when-
ever the customer needs the service, and the vendor usually provides an API with a

Automated
deploy?

Guarantee that production
will receive the quality code
Consistent and reliable pro-
cess for deployment

No manual inter-
vention reduces
risk

Increases the pos-
sible release cycle
frequency and pro-
ductivity

High quality

Process? Easier to build code for the
test or production environ-
ment

Automate pro-
duction deploy-
ment
Reduce rework

Answers questions
of who, when, why,
and what
occurred?

Comprehensive
view
Bridging technol-
ogy and business

Table 1.1 Stakeholder focus in an Agile ecosystem (continued)

Why . . . Developer Production* Management Customer

20 CHAPTER 1 Getting started with Agile ALM
well-defined interface to make these services available. Normally, the functionality can
be used by web services through a service-oriented architecture (SOA). With this
approach, you distinguish business services from technical, isolated services. Techni-
cal services, for instance, encapsulate data (data access). The SOA approach intro-
duces producers of services and consumers of those services. Reusing services and
assets can help improve productivity. A repository of services on a consumer level is as
important as a repository of technical components on a detailed, technical level. We’ll
look at this in more detail in our discussion of component repositories.

 Besides SaaS, Infrastructure as a Service (IaaS) is also relevant today. A popular
example is Amazon Web Services (AWS), a set of web services, and Elastic Cloud Com-
puting (EC2), a big pool of hardware that can be used dynamically. A standard use
case is to install your own images on those remote computers to extend processing
power. Meanwhile, IaaS has become easy to use (a commodity). For instance, tools
provided by VMWare provide a service to set up and roll out full images of computer
systems and virtual machines.

 Finally, Platform as a Service (PaaS) focuses on a platform that itself (the runtime
environment) is hosted and scaled dynamically. An example of this is the Google App
Engine, which lets you deploy and run your own applications.

 Cloud computing is an example of IaaS that can also include PaaS and SaaS. Cloud
computing describes scaled, configured, and dynamically provisioned infrastructure.
The cloud can be publicly accessible on the internet, private (internally accessible), or
a hybrid of the two. One cloud computing scenario in an Agile ALM context is to run
agents (slaves) of a build agent in the cloud, adding additional, temporary power to
your build grid as needed.

 I refer to SaaS, IaaS, and PaaS collectively as (X)aaS. They are affected by Agile
ALM, and vice versa. Although outsourced, the hosted items should be included in the
ALM and not treated separately, though this isn’t mandatory. You can use (X)aaS with-
out any ALM in mind.

Agile ALM does comprise slicing services, focusing on core expertise while reduc-
ing costs and delivering reproducibility. You need to know which services and assets
your project or company has in order to decide what you could add to this service
“zoo” with an (X)aaS. This doesn’t depend on the scope: On a business level, you ben-
efit from knowing your services and the functions that they provide.

 You may think this is obvious, but many companies don’t know what functionality
they have built up over the years. Identifying the services while starting with (X)aaS is
a big value to begin with. You can’t distribute a service into the cloud if you don’t know
which services you have. The same is true on a more technical level. You can garner
huge benefit by identifying the components and their dependencies. Many companies
don’t know which technical assets they have, nor do they know the asset dependencies.
They set out a big package of deployment units containing a nontransparent object
meshwork without knowing if those units are necessary in that context. This is a use case
where a build and release tool, such as Maven, can help to identify what units you have
in your technical portfolio, including specific versions and dependencies.

21Building blocks of Agile ALM
1.3.4 Task-based and outside-in

Working in a task-based way means that, first, all activities are based on specific require-
ments or tasks, often called work items. Task-based also means tracing each task and
the changes it creates, and this becomes even more appealing if you span the tracing
over all roles, phases, and organizational units, including production. When are you
close to the maximum of improving your process? When the production crew (and
any other stakeholders) not only host final deployment units, but also know exactly
which units are based on which sources. Additionally, you will know which sources
were touched because of which changes were requested. This doesn’t depend on lan-
guages, systems, and organizational barriers.

 You can link requirements and defects to coding items, and vice versa. This refer-
encing makes it much easier to validate that the work is done to plan and that the plan
is getting done. This end-to-end referencing provides much more scale than using the
plain story cards that are used by some Agile approaches, although this may be suffi-
cient in many circumstances too. A common method is to add a ticket number to the
check-in command so tools can cross-reference requirements with coding artifacts. An
essential method is using change-sets. A change-set is a group of changes made to the
system but processed as an atomic unit. Consider the different changes a developer
must make to implement a new feature. Instead of checking in each change sepa-
rately, they can be checked in as a single atomic transaction. This way, the system can
verify that all changes are traced to their respective requirements and can update the
status of the baseline.

 A basic premise of Agile ALM is that work should be aligned to the customer’s
requirements. One approach to doing this is called outside-in. Too often, work isn’t
based on specific customer requirements, and sometimes requirements aren’t defined
at all or aren’t tracked through the process. Other times, the technical staff and the
customer, may be speaking different languages in defining the requirements of the
software. The outside-in approach takes the right focus and it leads to a different
approach in measuring success; it values customer satisfaction and other soft attri-
butes. Its main drivers are as follows:9

■ Understanding your stakeholders and the business context
■ Mapping project expectations to outcomes more effectively
■ Building more consumable software, making systems easier to deploy and use
■ Enhancing alignment with stakeholder goals continuously

In this way, the customer requirements are implemented in the software development
system.

 Another important approach is known as a balanced scorecard, and it has much in
common with outside-in. The customer (internal or external) requests a job and
wants the job completed in a way that meets the business requirements. The customer

9 See Carl Kessler and John Sweitzer, Outside-in Software Development (IBM Press, 2008).

22 CHAPTER 1 Getting started with Agile ALM
pays for functionality, not for technical solutions, design patterns, or prefactoring pat-
terns on their own. The customer is interested in the resulting software and values
working software more than comprehensive documentation. An unfortunate conse-
quence of this approach is that you may deliver the software late. If you can deliver the
product only when it’s completed, the customer will expect that the release has been
rigorously tested and is production-ready. Failing to communicate the status of the
software and the development of the requirements to the customer is a missed oppor-
tunity at best, and will likely result in poorer quality software, as measured by the many
bugs that will be detected late in the process. The outside-in approach is driven by
communicating the status of the software to the customer early, which enables you
and the customer to make decisions sooner rather than later.

 You should communicate with the customer and the whole team in real time by
setting up a task-based infrastructure. With the help of this infrastructure, all stake-
holders, including the developer (in his workspace), the project or release manager,
and the quality team, are kept informed about the implementation progress. The
most important stakeholder—the customer—is also able to get honest answers about
the project’s current status.

OUTSIDE-IN AND BALANCED SCORECARD (BSC) There are parallels between the
outside-in and balanced scorecard (BSC) approaches. Robert S. Kaplan intro-
duced BSC as a strategic performance management and controlling tool. It
also values nonfinancial measures and adds them to project reporting. BSC
has four perspectives: financial, customer, internal business, and innovation/
learning.

In chapter 4, I’ll describe task-based development, and in chapter 8, I’ll explain col-
laborative development and testing and provide a concrete implementation of out-
side-in. Acceptance tests and behavior-driven development (BDD) are properties of
collaborative testing. Part 4 covers this major aspect of Agile ALM.

1.3.5 Configuration, customization, and plug-ins

The days of proprietary, heavyweight, monolithic tools that constitute the one-size-fits-
all solution are ending. Tools that can be orchestrated and configured according to
individual needs are the new trend. They provide features in an open, standardized way
(for example, as a service), but they can also be configured and extended as needed.

 Tools don’t have to be reimplemented or extended programmatically to fit to the
latest project needs. Continuous reimplementing is a nice business strategy for tool
vendors, because it generates steady sales revenue, but companies change their minds
and therefore require flexibility. Tools nowadays can be reconfigured extensively with-
out touching the sources and without needing upgrades or replacement. Customiza-
tion is easy enough that the project members can implement it on their own, without
requiring a long learning curve.

 Moving away from a more monolithic infrastructure, we can turn to a development
system involving fine-grained modules. Application suites are customized as needed,

23Building blocks of Agile ALM
and functionality is added where necessary with the help of plug-ins. These plug-ins
may be part of the tool vendor’s product portfolio, or they may come from a third-
party institution or from the open source community. The overall tool integration
infrastructure is evolving into what is known as a mashup, which refers to a toolset that
combines data, user interface, and other functionality from two or more sources to
create a new service.

 Other key issues with monolithic infrastructures include the effort users have
exerted to personalize an application to their needs and how many UI controls they
must use to access their data. Today, role-based applications with complex dashboard
functionalities are state of the art. Dashboards can be configured and customized to
individual needs, and they offer many customization features out of the box, without
the need to contact the vendor. Dashboards offer views on aggregated data and allow
you to zoom in to get more details.

1.3.6 The polyglot programming world

We have already discussed the need to provide integrated access to the requirements
and tests. But what happens with all those coding artifacts, themselves? Many big com-
panies still use Cobol, for example. Others use only Java. To protect company assets,
businesses integrate their legacy applications or partially enrich them with new tech-
nologies and components, such as providing new, more convenient user interfaces.
Also, those different language sources have to be developed and should be managed
in an integrative fashion. To enable that, integrated development environments
(IDEs) support more and more development with different coding types. You can
store all of those artifacts in one version-control system (VCS).

SOME WORDS ABOUT LEGACY CODE Legacy code can sound pejorative, but leg-
acy code, written in older languages, such as Cobol, may be an essential com-
pany asset. Billions of lines of Cobol code were created, and applications
based on Cobol do their job continuously, and are still extended with new
Cobol code. For other people, legacy code means code written by someone
else last week. A third meaning of legacy code is code that neglects to include
significant test coverage. For a detailed discussion of legacy code, see Michael
Feathers, Working Effectively with Legacy Code (Prentice Hall, 2004).

Challenges in software development can be complex and individual. Having the
choice of using a special programming language to solve a specific problem can be
valuable. You can be more effective when you have an open landscape where you can
use the technology and programming language best fitted to your task.10 Whatever
technology you use, it should be the best fit for the task.

 For example, it could be better to write a neat file by copying scripts with the Ant
tool than to set up a full-fledged Java application. Or you might use a dynamically

10 See Andrew Hunt and David Thomas, The Pragmatic Programmer (Addison-Wesley Professional, 1999).

24 CHAPTER 1 Getting started with Agile ALM
typed language like Groovy to write tests easily, or a statically typed language like Scala
to enhance your software system, because it can be smoother to use these languages
than Java, even though all these languages (Groovy, Scala, and Java) compile to byte-
code and share the same JVM runtime environment. We look at Groovy and Scala in
chapter 9, but the point isn’t that you need to learn new languages, but rather, that
you may have to cope with multilanguage environments.

 In The Productive Programmer (O’Reilly, 2008), Neal Ford defines polyglot program-
ming as “building applications using one or more special-purpose languages in addi-
tion to a general-purpose language” (p. 169). In this book, we’ll talk about how you
can integrate different artifact types in a continuous integration context. Further-
more, we’ll discuss and look at examples of how to use and integrate other languages
to accomplish special tasks within the overall process.

1.3.7 Open source culture

Development tends to rely more and more on lightweight, primary open source tool-
ing, which supports using Agile strategies. Companies have learned they can’t cope
with time and cost pressures by focusing only on heavyweight processes and tooling.
Lightweight tools can help here, and we’ll discuss and integrate a lot of them in this
book. But lightweight, open source tooling can require a cultural rethink within the
company to overcome the tendency to resist change. Don’t be afraid to change pro-
cesses and tools where needed. Keep your solution aligned to your requirements as
they evolve. Many tools don’t evolve rapidly enough, others are evolving rapidly, and
new tools are continuously entering the field.

 With a lightweight toolchain, you should watch the market continuously and
acquire new tools with better features as they become available. There are many open
source tools available, but only successful open source products have a broad support-
ive community. If the community is supportive and the products are powerful, as well
as easy to use, they’ll maintain a leading market position by attracting more people to
invest time in further developing the product.

 If new open source competitors surpass a former market leader, it can be danger-
ous to ignore this development. A good approach is to be flexible in your decisions, to
continuously monitor the market, and to focus on the tool mainline consisting of de
facto standards and popular tools.

 Buying commercial tools also requires you to watch the market. But once you’ve
bought an expensive tool, you’re often stuck with it for a long time. Another problem
is that all vendors of commercial products claim their products are the best. Running
an open source culture means being open-minded and preferring open, flexible solu-
tions that can replace approaches and tools quickly with new and better ones. It also
means you should constantly evaluate whether what you did yesterday still works best
today and experiment with alternatives.

25Building blocks of Agile ALM
1.3.8 Open technology and standards

We’ve already talked about how Agile ALM facets and services should be orchestrated
on demand, driven by the specific needs of a project. Tools have their interfaces, and
ALM encourages the seamless integration of tools without barriers. Now the question is,
how can we integrate those tools efficiently across different vendor products to provide
services for the customer? For instance, it’s pretty common to have multiple indepen-
dent databases in your infrastructure. The minimum solution is to have open standards,
such as internet protocols, to connect them. Integration shouldn’t be done via data
import/export routines, though; rather, data should be integrated where it’s located.

 What standards address these kinds of questions? The Open Services for Lifecycle
Collaboration (OSLC, http://open-services.net) is a community-driven effort, mainly
sponsored by IBM, to improve the integration of lifecycle tools. Members of the alli-
ance are commercial vendors of ALM tools and other stakeholders, including IBM,
Oracle, Accenture, Shell, Citigroup, Siemens, and many others. Commercial vendors
drive the OSLC, which is aligned with feature-rich tools (like the IBM Rational product
family), but the program is tool-category agnostic, meaning that it also encompasses
open source tools.

 The OSLC program established special interest groups working on individual ALM
areas, including change management, requirement management, and software con-
figuration management, providing public descriptions of interfaces for integrating
these features. The interfaces are specified in a REST web service style.

 The OSLC Open Source Project aims to encourage the creation of other compo-
nents and contributions that can help support the OSLC community’s goals. As part of
the project reference implementations, sample code and test suites for testing OSLC
service provider implementations are provided.

 In this book, we’ll discuss the concepts and solutions for ALM with lightweight, pri-
marily open source tools and how to integrate them seamlessly. One benefit of choos-
ing best-of-breed, lightweight, open source tools is that integrating them is often
easier than integrating monolithic commercial tools. I call this the “Agile way.” It’s
also based on technology standards, but without any cross-tooling interface standards.

OSLC has had a slow beginning. Although first specifications have been finalized,
many are still in development, and the community is growing continuously. A promi-
nent implementation of OSLC is available with IBM’s Jazz platform (http://jazz.net).
It’s based on OSLC, extending it with its own Jazz Integration Architecture. IBM wants
to further integrate its single Rational products with the help of that approach,
including Rational Requirements Composer (a requirements management tool) and
Rational Quality Manager (test management), and incorporate them with Rational
Team Concert.

 The impact of OSLC on Agile ALM development has to be monitored. Some people
have reservations about big, traditional product vendors and their motivations. The
question that many people will ask is, will OSLC have any significant influence on
open source or commercial tools at all, or is it a “founder’s toy”? If the latter is true,

26 CHAPTER 1 Getting started with Agile ALM
then only the original participants will benefit from this latest attempt at creating
open standards.

1.3.9 Automation

Automation is the use of solutions to reduce the need for human work. “Automation
can ensure that the software is built the same way each time, that the team sees every
change made to the software, and that the software is tested and reviewed in the same
way every day so that no defects slip through or are introduced through human error.”11

In software development projects, a high level of automation is a prerequisite to quickly
delivering the best quality and getting feedback from stakeholders early and often.

 Automating the most error-prone, repetitive, and time-consuming activities is most
essential. Additionally, automation is necessary in all areas where you are interested in
objective, reproducible results. Another good impulse to start with automating is if
some parts of the process aren’t transparent for the team. You should automate parts of
the process that you don’t understand so far; you can only automate what you under-
stand and are able to describe. Finally, automation helps in areas where manual work
is annoying—good developers have always automated repetitive aspects of their work.

 A system can be evolved to have a high level of automation if the process is based
on the building blocks of Agile ALM, as they are illustrated in this book. Continuous
improvement should be part of your process. For improving the level of automation
(and for improving anything in general), self-reflection is essential. You can best
improve what you measure, and to measure something, you need a process that deliv-
ers results in a reproducible way.

1.4 Comprehensive Agile ALM with lightweight tooling
Complexity can take many forms. Organizational aspects create complexity, such as
team size, distributed development, or antipatterns such as entrenching people. Tech-
nical and regulatory specifications are basic conditions that also influence complexity.

 Small teams with low organizational or technical complexity can completely self-
organize and choose the tools they want. But a loosely managed infrastructure may be
unmanageable as soon as complexity increases. To improve awareness across the team
in complicated scenarios, it’s necessary to use leading tools and their powerful fea-
tures. High demands for traceability and full automation, as well as for accelerating
knowledge sharing, can only be fulfilled using integrated toolchains consisting of best-
of-breed tools while driving an end-to-end approach.

 A focus on integration occurs as complexity increases. Communication becomes
more difficult, as does extracting knowledge from information and aggregating
information from data. To reproduce and audit the full process at its most complex
point, you should use a comprehensive end-to-end approach that includes all stake-
holders, workflows, and configuration items. Tools that are seamlessly integrated will
immediately add considerable value to the system. Understanding the overall process

11 Andrew Stellman and Jennifer Greene, Applied Software Project Management (O’Reilly, 2006), p. 165

27Comprehensive Agile ALM with lightweight tooling
and the status of both the project and the artifacts becomes a necessary part of coordi-
nating the work.

 In software development projects, an end-to-end approach delivers the best results,
where you automate and integrate activities across phases, including building, devel-
oping and testing, releasing, deploying, and staging (configuring) artifacts with
appropriate tools. Figure 1.812 shows the increasing importance of tools in the context
of organizational and technical and regulatory drivers.

1.4.1 Toolchains and accidental complexity

The benefits of an integrated end-to-end tooling approach extend beyond coping
with the complexity itself; it must minimize accidental complexity. Accidental complexity
is that which is nonessential to the specific task to be performed. Whereas essential
complexity is inherent and unavoidable, accidental complexity is caused by the
approach chosen to solve the problem. An effective toolchain helps reduce complex-
ity by providing traceability to show what has changed, when it was changed, who
changed it, and who approved the change for promotion. A good toolchain also accel-
erates communication (for example, transparency and visibility) expressing the cur-
rent state of the software, and it’s the communication vehicle for all stakeholders.

 The toolchain is both the glue that holds together the various components and
phases of the application lifecycle and the oil that lubricates the smooth and efficient
interaction of those components. It delivers an automated workflow, drives a continu-
ous stream of activity through the development lifecycle, and efficiently coordinates
and streamlines development changes.

VENDORS There are many proprietary, commercial (and expensive) tools
and tool suites on the market, such as AccuRev AgileCycle, CollabNet

12 Inspired by and derived from Scott Ambler, Collaborative Application Lifecycle Management with IBM Rational
Products (IBM Redbooks, 2008), p. 41, Figure 2-14.

Organiza�onal drivers
Team size
Organiza�onal distribu�on
Entrenched process, people, policy

Technical and regulatory drivers
Applica�on complexity
Compliance
Governance

Pragmatic
tooling

Best of
breed
tooling

Focus on
tool
integration

End2End
tool focus

Figure 1.8 Interdependency of
complexity and tool usage: In
complex environments, it’s
essential to use an integrated
toolchain that glues together
the best-of-breed tools to serve
all stages of development in an
end-to-end approach. Each
circle must build on the
previous one, so the end-to-end
focus needs to be integrated,
best-of-breed, and pragmatic.

28 CHAPTER 1 Getting started with Agile ALM
TeamForge, codeBeamer, MKS Integrity, Synergy, IBM Rational Team Con-
cert, PDSA Agile ALM, Rally ALM, Visual Studio Team, and Borland Manage-
ment Solution that can help (or that claim to help) implement an (Agile)
ALM. Others, such as StarTeam and DOORS, provide support for single
aspects in the overall process.

Chains of lightweight tools help you to deliver solutions across development phases,
addressing even more stakeholders and keeping businesspeople and developers on
the same page. Lightweight tools offer the features you need based on your project’s
requirements. They are customizable and straightforward to use, they have an open
architecture, they’re mostly free or moderately priced, and they can be easily inte-
grated with other tools. My definition of Agile ALM results in processes and toolchains
that are flexible, open to change, and high in quality. But always keep in mind that
Agile ALM isn’t only a product category, but also a discipline and a mental approach.
Working with Agile ALM should start with values and people as well as the concepts
behind it.

FREE AND OPEN SOURCE TOOLS This book doesn’t strictly distinguish between
free software and open source software, and it contrasts both to commercial
software. There are many possible variations and license models, but in this
book, I use open source in its classic sense: when the sources of the tool are
available and the tool is free. We’ll discuss lightweight and primarily open
source tools. Open source tools covered in this book are considered to be
lightweight too; some lightweight tools covered here aren’t open source and
cost money, but they’re cost-effective and low-priced in comparison to fea-
ture-rich products from big traditional vendors. Examples of lightweight
commercial tools are those from Atlassian, such as JIRA. Consult the individ-
ual tool licenses for the details on each tool.

1.4.2 Agile ALM tools

Some software development tools are too heavy, are monoliths, or offer functionality
you seldom use. Often these tools are pretty expensive and difficult to roll out. Depend-
ing on your particular requirements, commercial, feature-rich tools or one-stop-shop
tool suites may be a good fit for you, but these tools aren’t the focus of this book.
Recently, the ALM space saw a surge of integration with Agile concepts. Tool vendors
understand more and more that it’s crucial to become agile in order to cope with con-
tinuously changing requirements and contexts. This results in more and more compa-
nies using the term “Agile ALM” to describe their ALM suites. The origins of this book
are different. Here, Agile strategies are introduced and implemented by lightweight
tools. Chains of integrated tools lead to tailored, orchestrated ALM solutions.

 An Agile ALM tool is one that fosters an Agile process. There’s no strict checklist to
categorize whether a tool is an Agile ALM tool, but the tool must enable you to
become Agile—the tool must help the team do its job better, aggregating and provid-
ing information in an integrated, interdisciplinary way. An Agile ALM tool must add

29Comprehensive Agile ALM with lightweight tooling
value to the system and improve the collaboration of the stakeholders. In my opinion,
an Agile ALM toolchain must implement the essential Agile ALM strategies discussed
in this book.

 Some organizations use Agile ALM single-point solutions; others feel more comfort-
able with an orchestration of single tools. Both scenarios have their advantages and
drawbacks. Too much complexity is a potential risk for both cases; the goal should be
to minimize the accidental complexity. Relying on lightweight toolchains can dramati-
cally improve flexibility because you can easily replace small units of the overall infra-
structure without touching other parts. Many companies experience their best results
(as the ratio of minimized complexity and optimized flexibility) while driving an open
source culture. This means they use a mashup of configurable tools that offer exactly
the features that are needed to solve a given task, and they evolve the infrastructure
incrementally. Configurability, service orientation, and an open architecture (such as a
plug-in system) can help to decrease complexity and increase flexibility. For “ready to
go” tool suites, configurability is even more important. The market doesn’t offer an
Agile ALM tool suite that could serve as a golden hammer for all projects without having
any configuration capability. Using a comprehensive one-stop-shop solution that can’t
be customized or extended as needed leads directly to “shadow processes” or retrofit-
ting your process to work with the tool, which is a pretty bad approach.

 There are Agile ALM tools or tool suites that cover (or claim to cover) many devel-
opment phases. But it’s not mandatory for a single tool to span all phases. Agile ALM
tools can’t and shouldn’t automate everything. For example, consider build scripts:
Tools should be able to trigger existing build scripts. But it’s not the one-stop-shop
Agile ALM tool suite that compiles the code; rather, it’s the underlying solution that’s
already in place and successful.

1.4.3 Effective and efficient tooling

The process of picking the right tool should be aligned with your particular require-
ments. You may find that an out-of-the-box suite fits best to your individual context.
Alternatively, you might prefer to orchestrate individual tools in a flexible way, where a
single tool focuses on a special task and is able to easily integrate with the overall tool
infrastructure. A toolchain that spans different development phases is sometimes
called software development lifecycle (SDLC) tooling. Integration management inte-
grates the work of your team and leads to technically and functionally consistent soft-
ware. From a tool perspective, an Agile ALM tool integrates with other tools. An
isolated, standalone tool, acting as a silo and satisfying only a minor subset of your
stakeholders, will probably neither accelerate collaboration nor improve the time to
market of your software product. You can also use tools successfully without connect-
ing them to an overall Agile ALM ecosystem. Additionally, there are many great tools,
market leaders in their field, whose users would never hit on the idea that they’re
using a tool that could be an essential part of an Agile ALM toolchain. I’ll cover exam-
ples of those tools throughout the book.

30 CHAPTER 1 Getting started with Agile ALM
Figure 1.9 gives an overview of the tools, languages, and platforms we’ll discuss and
integrate in this book. Lightweight tools are used throughout the complete develop-
ment chain. In terms of languages and platforms, we’ll mainly talk about Java, but
we’ll also discuss Cobol, Scala, Groovy, and .NET.

 Normally, there’s one leading tool that drives the process. It’s the central entry
point, which is generally also responsible for the workflow or that acts as a central
dashboard. Building and releasing a software product involves many complex pro-
cesses, roles, and deliverables, which need to be managed so they fit together, and
streamlining these processes is a major effort, particularly when there are many peo-
ple involved. An Agile ALM solution manages not only the simple versioning of your
source code files, but it also facilitates support for continuous integration and build
management. An Agile ALM solution also enables you to deploy the end result, and it
offers approval processes and can manage complex runtime dependencies. Agile ALM
tools have much more flexibility than the first-generation library tools that once
enabled you to pump out a single software version at a time to a target library.

 In modern Agile settings, the whole lifecycle is managed and tracked. With effec-
tive and efficient tooling, it’s much easier to determine which requirements are
already implemented in which artifacts and which bugs can be traced to specific arti-
facts. The artifacts can be compiled and deployed as a repeatable process. Continuous
integration and audits can show the status of the development and provide synchroni-
zation points. But this doesn’t happen manually—a toolchain should be used to con-
nect and integrate both functional and technical release management.

 In order to understand Agile ALM more clearly, let’s consider an example use case.

1.5 Example use case
Let’s look at an example Agile ALM use case. Before committing a change to the cen-
tral VCS, the developer runs a private build on his desktop. This developer build is

TestNG Mockito

Maven

Hudson/Jenkins

Eclipse

Subversion

JIRA
Artifactory

FEST

Selenium

Fisheye

Bamboo

Scala

Java

Groovy

Cobol

.NET

Trac

TeamCity

Excel

XStream

Fit/Fitnesse

Cargo

specs2

Mylyn

MSBuild
AntEC2

Sonar

FindBugs

Checkstyle

PMD

GivWenZen

Cobertura

GreenHopper

Figure 1.9 Agile ALM
integrates platforms, tools, and
languages, all driven by people
(illustration ©iStockphoto.com/
sellingpix).

31Example use case
comparable to a nightly build (in continuous integration), which is often the same as
an integration build. The difference is that the developer build runs in a local, isolated
environment instead of the shared integration environment.

 The required versions of identical, properly sliced component dependencies or
transitive component dependencies are used, and if necessary they’re replaced with
mocks. Component developers include in their workspaces only those external com-
ponents that are necessary to do their work. The external components are included as
clean dependencies, which means that binaries, rather than sources, are included in
their development environments. The dependencies are tested at a central place and
are provided via a central component repository.

 During the private builds, tests are run, including unit tests, component tests, func-
tional tests, and smoke tests. The integration builds also run these tests, but they
enrich them with more detailed integration tests.

NOTE A smoke test (or sanity test) is a first test made to provide some assurance
that the system won’t catastrophically fail. In an IT project, a smoke test could
be an automated test that starts the application and simulates a first user
interaction by opening a visual control on the user interface.

The changes from multiple developers are integrated continuously and automatically.
Each version of the build is the basis of later releases and distributions.

 The build is completely configurable and can produce multiple versions that run
on different target environments, including Windows and Linux machines. But be
aware that even early in the process you should use environments (including operat-
ing systems) that match those you’ll use in production.

 This task-based build process overlaps different phases and roles. The developer
codes according to tasks that are tracked and assigned. Part of the application is a
bouquet of languages that are either company assets developed with commonly used,
mainstream programming languages or targeted languages chosen to solve a specific
programming task. For testing, Groovy and Scala are used, and all the tests are inte-
grated into a seamless infrastructure without any cross-media conversations or fric-
tion losses.

Builds

A build is a standard repeatable and measurable compilation and packaging process
done automatically. The specific steps of this process may vary. Some argue building
means compiling. Others may include a preparation of the system, working on base-
lines in VCSs, compiling sources, running different sorts of tests, and packaging and
distributing the configuration items. Build can also refer to the greater automation flow,
including static code analysis, unit testing, and deployment. The output (the deliver-
ables) of this process is often called a build.

32 CHAPTER 1 Getting started with Agile ALM
 The status of the software is always visible across the system. The toolchain is highly
integrated and connects all developers and customers. In addition to the technical
release infrastructure, the functional release management slices work items into more
fine-grained tasks and assigns features to releases.

 We’ll discuss the different aspects of this example use case throughout the rest of
this book.

Field report: “ALM at Siemens CT”
By Rainer Wasgint, program manager at Siemens Corporate Technology

At Siemens Corporate Research and Technologies, we’re addressing cross-business
sector topics and applied science and sharing best practices. Within the Global Tech-
nology Field (GTF) System Development Technologies, we’re looking for the top tools
and technology to give our development teams the best possible support. Over the
last several years, we could clearly see software development infrastructures moving
away from ad hoc toolchains and toward carefully considered, well-managed, and in-
tegrated solutions, now called ALM. For us, this meant finding an integrated solution
that offers seamless project support to increase efficiency and provide transparency
within the development process; impact analysis of potential changes and the iden-
tification of the involved parties; and project status reporting, including dashboarding
for customers or upper management.

For example, when we were faced with the task of meeting the CENELEC/EuroNorm
regulatory quality standards for motors, we needed a process and toolchain that was
adaptable to different kinds of environments, ranging from small, colocated develop-
ment teams to large, worldwide distributed project teams. It also needed to be appli-
cable to different project processes, from heavyweight processes like RUP or the V-
Model to Agile approaches.

To support such a huge range of potential ALM solutions, our approach is to implement
scenarios based on a “meta-model” specific to each project. The meta-model de-
scribes the interconnection of the involved disciplines and the associated develop-
ment artifacts like requirements, models, tests, and configurations. This allows us
to control the resulting interaction paths in a structured manner. Rather than claim
overall completeness for every thinkable relation, the model focuses on the informa-
tion needed for traceability, impact-analysis, and the automation of tasks within ALM.

An optimal instantiation of this meta-model requires a flexible and configurable inter-
action between the software development tools used. Today, mainly interface-based,
plug-in, or middleware-bus-based approaches dominate the markets, and unfortunate-
ly, there is no major standard for intertool communication and data exchange. We see
a promising movement toward service-based and on-demand tools built on open stan-
dards, such as the Open Services for Lifecycle Collaboration (OSLC), which is com-
munity hosted and driven by IBM Rational to develop a specification for vendor-
independent tool integration.

33Summary
1.6 Summary
In this chapter, you learned about challenges common to software development. You
saw how this prompted the evolution in software engineering that led to Agile ALM.
You also learned what Agile ALM is for and what its features are.

 The evolution of software engineering has moved from a cumbersome, frag-
mented approach to a more comprehensive, lean, integrated, crosscutting discipline
that supports the whole development process. ALM evolved from software configura-
tion management; it’s a comprehensive activity spanning the entire development
lifecycle, from requirements engineering to maintenance and production, iterating
over those phases continuously. It can be understood as a continuous, comprehensive
task that incorporates several management disciplines, including build management,
release management, configuration management, test management, quality manage-
ment, and integration management. This integrated approach is called applied change
management. The goal is to provide high-quality, functionally and technically consis-
tent software. Integration also means the ALM infrastructure provides a single view of
the truth as opposed to multiple views.

 Using Agile strategies, Agile ALM enriches ALM with further features like people-
ware and transparency. Agile ALM is agnostic concerning process models, develop-
ment categories (product versus project development), and project types (from
greenfield to ongoing maintenance projects). It’s also agnostic concerning tools and
is applicable to both open source and commercial products. In this book, we’ll focus
on lightweight, primarily open source toolchains.

 The remaining chapters provide more details on the different aspects of ALM and
on how to implement them with lightweight tooling using Agile strategies. In chapter
2, we’ll take a deeper look into Agile in the context of the ALM, and I’ll describe my
preferred Agile ALM approach.

ALM and Agile strategies
Everyone’s doing it Agile today. Few will admit that they’re not working in an agile
way in its classic sense. But what about Agile software development? It comes in
many varieties. Agile is a value system that emphasizes important aspects of software
development, including communication and open, respectful collaboration, allow-
ing errors and failures to be treated as valuable learning experiences. Agile pro-
motes a safe-to-fail environment, where you can fail quickly and learn from your
mistakes. Everybody makes mistakes; most of them are a result of initiatives based
on poorly understood facts. Blaming people for mistakes eliminates their motiva-
tion to pursue innovation and leads to “management by fear.” People who are
afraid of expressing ideas won’t ask questions and will act defensively.

 Having motivated people is essential to further development; without them,
your project will be stuck and will likely be a failure. Therefore, management must
be careful to lead their teams by example, through coaching, and by improving
basic work conditions. Management by numbers, management by objectives, or

This chapter covers
■ Agile strategies within the context of an ALM
■ The Agile ALM approach that we’ll implement

throughout the rest of the book
■ A discussion of the process pitfall
34

35
management by walking around doesn’t work. Instead, prefer management through
conversation, socializing, and leadership. Teamwork and leadership are much better
when they promote education and improvements, provide a learning process (in
which the team members lose nothing by admitting to weakness), and recognize the
contributions of all people. “Everyone on the team has some unique contribution.”1

Enable people to have pride of workmanship. When there are issues, leadership
shouldn’t judge; rather, it should investigate possible causes and offer assistance dur-
ing the daily work.2

 Agile focuses on honest, open communication, including a pragmatic view of
requirements that have proven to be effective. Management needs to create an envi-
ronment that is conducive to productive and efficient work. Management by destruc-
tive criticism won’t work!

A DEFINITION OF AGILE “You accept input from reality and you respond to it.”
—Kent Beck

Clear communication is essential in any project. Agile helps to facilitate clear commu-
nication and honest and open assessment of everything, from understanding user
requirements to testing software.

Agile is a term applied to different process models. On the one hand, there are
pure Agile models, such as Scrum, Extreme Programming, and DSDM (www.dsdm
.org).3 On the other hand, there are models that can implement an Agile approach,
like the Rational Unified Process. Finally, Agile is also used to describe strategies that
incorporate an Agile approach. Figure 2.1 illustrates these three dimensions as fea-
tures of the Agile ecosystem.

 In this book, I don’t dictate any specific process model for developing software.
You can use rich, full-fledged models like waterfall, spiral, or a hybrid type. The point
is that you can enrich your current processes where it makes sense for you by using

1 Gerald M. Weinberg, Quality Software Management, vol. 3 (Dorset House, 1994), p. 265.
2 In Out of the Crisis (MIT Press, 1982), W. Edwards Deming lists 14 points for management that, in his opinion,

lead to improved quality, increased productivity, and better team morale.
3 For a detailed discussion of different Agile approaches, see Jim Highsmith, Agile Software Development Ecosystem

(Addison-Wesley, 2002).

Agile processes
Agile strategies

Agile values

Figure 2.1 The Agile
ecosystem: Agile
processes, values,
and strategies

36 CHAPTER 2 ALM and Agile strategies
Agile strategies. Furthermore, these strategies aren’t dependent on any specific tools
(though I will recommend some). Think of Agile as a value system, a set of strategies,
and a toolbox.

In this chapter, we’ll gain more insight into Agile strategies. Chapter 3 will introduce
an implementation guide for Scrum, an Agile management discipline for functional
releasing. This management framework is abstract enough that you can adapt it for
many different, individual process flavors. We’ll implement Scrum and make it con-
crete. Using the tools discussed later in this book, you’ll implement those strategies.

2.1 The Agile and project management
Project management in an Agile environment requires an approach that can handle the
frequent changes that exist in iterative development. Agile project management pro-
vides transparency and traceability in an environment that thrives on constant change.
Everything the team does must add value to the system. The process must be open to
changes and be highly organized and disciplined. Continuous cooperation and aware-
ness are indispensable for responsibility, permanent reflection, and synchronization.

 The Agile project management process is based on the magic barrel (also known
as the magic square; see figure 2.2) and its four pitchers: quality, time, resources/
costs, and scope (functionality and number of features). The total volume is limited,
which means that features, resources, and time are also limited; in practice, you must
save for quality. Agile projects invest much more in quality than traditional projects
do.4 Their high investment in quality is a fixed constant. Their investments in time
(mainly in a time-boxed project where the times are fixed) and resources5 are fixed
constants as well, but the scope is variable.

The waterfall

In 1970, Winston W. Royce published an article in which he described the “waterfall
model.” In the scope of software development, people often think about the waterfall
model as a sequential chaining of phases, including design, implementation, and
maintenance. They contrast it to the Agile approach, claiming they’re completely dif-
ferent, but this isn’t the case. Royce claimed that this static, sequential phase ordering
wouldn’t work. He recommended iterations, but this is often ignored when talking
about the waterfall model.

What can we learn from that? First, don’t believe everything others say. Second, don’t
think Agile is reinventing the world. And third, please don’t think Agile is chaotic program-
ming where we all do what we want without documentation or orderly control of changes.

4 “The typical steps we take to deliver a product in less time result in lower quality.” Tom DeMarco and Timothy
Lister, Peopleware, 2nd ed. (Dorset House, 1999), p. 137.

5 “Adding manpower to a late software project makes it later,” Brooks’s law, in Frederick P. Brooks, The Mythical
Man-Month (Addison-Wesley, 1995), p. 25.

37The Agile and project management
Software produced in an Agile way is designed, created, tested, and delivered in con-
tinuous iterations. An iteration is a collection of one to many increments of executable
software. An iteration must follow a strict, well-defined process with the required disci-
pline for all participants. The Agile approach is also based upon the fact that custom-
ers often don’t know all their requirements up front. If customers don’t have a
complete set of requirements up front, developers often don’t have all the informa-
tion they need to write the code, or even to estimate the amount of time needed to
create the application.

The Agile approach differs from the traditional approach of developing software. The
Agile approach uses Agile values, processes, and strategies, all of which are sometimes
viewed from the traditional perspective as an excuse for programmers to abandon

Increments and iterations

Increments and iterations are basic concepts in Agile projects:

■ An iteration is a mini-project that may result in an increment of the software.
Iterating starts with an idea of what is wanted, and the code is refined to get
the desired result.

■ An increment is a small unit of functionality. Incrementing allows you to build a
better understanding of what you need, assembling the software piece by piece.

Although using both in parallel delivers the best results, this isn’t required. You can
increment more effectively when requirements are more stable (or you want them to
be more stable) or better understood. Iterating allows a better response to changing
or unclear requirements.

The Scrum Agile methodology uses both iterations and increments. Each iteration de-
livers a fully functional increment—a set of shippable features delivered to the end
user. Although increments and iterations are highlighted by the Agile ecosystem, many
other more traditional process models include these two basic approaches. Both in-
crements and iterations have been around for years. In 1971, one year after Royce
talked about iterations in his waterfall model, Harlan Mills from IBM wrote about the
concept of incremental development in Debugging Techniques in Large Systems.

Resources Scope Time Quality

Figure 2.2 The magic barrel. The limited
content of the barrel is allocated among four
pitchers. If one pitcher is full, then another
pitcher will have less liquid. In Agile projects,
the quality pitcher is filled to some
reasonable amount, with the rest being
balanced among the three other pitchers.
(Illustrations ©iStockphoto.com/dja65,
©iStockphoto.com/thebroker.)

38 CHAPTER 2 ALM and Agile strategies
project design and management. Table 2.1 lists some common practices used in Agile
projects and briefly describes the Agile approach. The third column identifies com-
mon misunderstandings from the traditional viewpoint.

Table 2.1 Common Agile practices and associated misunderstandings

Practice Agile approach From the traditional perspective

Software
development

Treats software development as an
information process.

Software development is a manufacturing
process.

Communication Encourages and requires continuous
interaction and feedback; the whole
team is collocated.

Project members focus on their individual
tasks first and often rely on documents
more than on communication.

Courage Encourages an open atmosphere. There’s a fear of missed deadlines and
misunderstandings with customers.

Collective
ownership

Specifies that program code and doc-
uments are owned and maintained by
the team.

People feel responsible for only their piece
of work.

Integration Uses continuous integration to get
early feedback and increase quality.

Integrations are rare, late, and felt to be a
waste of time.

Test-driven
development

Treats testing as of great value for
design, code, and quality.

Tests are considered a waste of time.
Many tests are done manually.

Customer
involvement

Encourages customer participation. The customer is often seen as the con-
tracted party.

Refactoring Accepts temporary suboptimal, prag-
matic design; design is maintained
and improved continuously.

Errors aren’t allowed; created artifacts are
supposed to run perfectly at once.

No overtime,
sustainable
pace

Follows regular working schedules
that can be sustained over time.

Regular overtime is necessary to deliver on
time while planning aggressively.

Iterations Slices software into handy and conve-
nient iterations.

No iterations are necessary; the work
focuses on a single release, mostly a big
bang release.

Stand-up
meeting

Institutes daily structured exchanges. Big, long, infrequent project meetings are
used. The allocation of people and amount
of time are often excessive.

Documentation Uses documentation only where nec-
essary, and when it adds value.

Documentation is considered an important
artifact, written according to standards. In
reality, it’s seldom read.

Team Treats the team as important, as a
collection of individuals having their
own strengths and characteristics.
The team should be cross-functional.

The individual expert is in focus. Work is
done in isolated islands of knowledge.

39The Agile and project management
All projects address these practices in one way or the other.
 The “Manifesto for Agile Software Development” (Agile Manifesto, at agilemani-

festo.org) lists four value pairs, where one value is more important than the other.

■ Individuals and interactions over processes and tools
General approach—Projects and software development involve human beings.

Software is developed by and for people; IT is a means to an end. The necessity
of processes and tools is accented because a methodical process and the use of
tools are essential, but individuals and interactions are even more important.

ALM approach—Often people are frustrated when using a comprehensive
release or even a lifecycle management approach, because the usage is typically
combined with process formalities that are too complex and overloaded. Fre-
quently, tools that provoke a rigid process are used, which isn’t necessary. ALM
processes and tools should support the work and not vice versa. Knowing and
understanding the process will drive the need for a tool and its usage. The ALM
infrastructure ought to be lightweight and support interactions. But while indi-
viduals and interactions are the primary consideration, processes and tools are
also important.

■ Working software over comprehensive documentation
General approach—Although documentation of the software is important, a

working program is more vital to the customer. Clients can’t run their business
by creating documentation; they must be able to run a working software system.
Software doesn’t lie; you can document something that is missing in the soft-
ware, but you can’t simulate executable software functionality just by document-
ing it. Documentation has to be created in those areas where it adds additional
value. The software is self-contained, describing the system and keeping it main-
tainable for the future (which is often the task of good documentation).

ALM approach—ALM automates the creation of software artifacts (and config-
urations). It can be based on “executable knowledge” instead of traditional doc-
uments. Rather than documenting processes, the processes are converted to an

Standards Uses standards, where necessary,
that are understood and agreed on by
the team.

The work involves a strict process, with
many heavyweight standards, often for the
sake of having standards.

Quality Is inherent in everything that the team
does.

Quality is the first goal to be skipped when
time and money get short.

Change Considers change as a normal part of
project work.

Change is more condemned than encour-
aged.

Table 2.1 Common Agile practices and associated misunderstandings (continued)

Practice Agile approach From the traditional perspective

40 CHAPTER 2 ALM and Agile strategies
executable infrastructure. At any time, and starting early, executable software
has the priority.

■ Customer collaboration over contract negotiation
General approach—Relying on contracts in business is standard. But custom-

ers and software developers are sitting in the same boat: Both parties want an
optimal solution. Intensive collaboration, continuous exchanges, and active
customer involvement are essential during the development.

ALM approach—ALM can organize expectations and divert the communica-
tion and interactions of all stakeholders into coordinated communication and
process channels. A targeted process and effective tooling make the project’s
status visible at any time. ALM delivers synchronization points and serves as a
communication vehicle.

■ Responding to change over following a plan
General approach—It’s important to deliver milestones at regular intervals. A

fixed, rigid plan can suggest there’s a certain security where none exists.
There’s often a mismatch between an officially described process and the real
one used every day. Changing basic conditions and new insights are part of
daily business in software development, and the process must be open to
change. Change management is implicit in Agile projects.

ALM approach—ALM makes change easier. ALM methods and tools facilitate
development in a vital, enduring way. Synchronization points support identify-
ing basic conditions as they change.

Agile values impact the entire application lifecycle and transform the way an organiza-
tion operates in many important ways. In the next section, I’ll give some examples of
how to implement Agile strategies.

2.2 Agile strategies
Here, I’ll describe a set of basic Agile strategies that demonstrate standard approaches
to implementing ALM processes. The strategies don’t say anything about tooling; they
describe concepts and best practices. The strategies will be detailed later in the book
and implemented with specific tools.

2.2.1 Version control and a single coding stream

First, it’s important to store your artifacts in a version-control system (VCS), but which
types of artifacts you store there depends on the project context and the requirements:

■ Coding artifacts should be stored in the VCS. Although this sounds obvious, it’s
not always the case. Many projects, for example, patch their applications in
production without having those changes under source control. In addition to
source code, tests and build scripts need to be versioned.

■ I recommend that you externalize (and version) your runtime configuration
settings. It’s best practice to control all variable configuration values externally

41Agile strategies
from the application so they can be changed easily without recompiling the
application.

■ It’s wise to place documents, such as use cases (written in Word, for example),
into a version-control repository so that you can benefit from versioning and
accessing change history.

Although common VCS tools like CVS or Subversion weren’t invented to run as file
servers, it’s possible to store binary artifacts, such as Word documents, in them. Sub-
version is better equipped for this task than CVS, because it handles binaries more effi-
ciently. This avoids the ugliness of storing documents on a central, shared file
structure, which are then replaced randomly, with no history tracking or traceability.
Using a VCS for documents is vastly superior to another common mechanism for shar-
ing information: that of sending your documents by email and not having a central
place to hold them. Unfortunately, this practice is often the norm.

 Additionally, you should set up one central repository to store your assets, to avoid
having multiple places where documentation might be located (for example, VCS, a
file sharing server, and Notes in parallel).

 When you check your artifacts into VCS, you’ll have to decide how to arrange the
files in the system and decide who works on which stream and why. The rule of thumb
here is that you shouldn’t open any additional streams for longer than necessary. If
you’re branching in your VCS, you should close the branch as soon as possible. But con-
sider all developer check-ins and integration processes on one developing stream as
synchronization points. This is also valid for distributed version-control systems like Git.

 Keeping branches in use for too long is a bad practice.6 The longer you wait to
incorporate changes from one codeline to another, the more effort it takes to merge
those lines and the more error-prone the effort will be. To facilitate progress, it’s
important to integrate code streams frequently. You should have one stream (for
instance, a head or trunk) as the leading stream in your development.

 There’s no one-size-fits-all solution, though. Using branches is a good way to pre-
pare releases (and to incorporate bug fixes on this stream after releasing). In an Agile
context, you may only put a label (a tag) on a special source version (a baseline) while
continuing to develop on the main code stream (the head/trunk). Then, if you find a
bug that must be fixed in a release already promoted to production, you can create a
bugfix branch, based on the existing tag or based on a given revision number (with
Subversion). You can create these branches when needed. This makes the most sense
when your velocity and release frequency are high.

 In some environments, branches are often used as feature branches (for develop-
ing features or whole products or variants) or developer branches (with developers
working on their own streams). In such environments, it can be obligatory to use sev-
eral streams in parallel.

6 See Kent Beck, Extreme Programming Explained, 2nd ed. (Addison-Wesley, 2005), p. 67.

42 CHAPTER 2 ALM and Agile strategies
2.2.2 Productive workspaces

Although frequent integration is essential to rapid coding, developers need control over
how they integrate changes into their workspaces so they can work in the most produc-
tive way. Avoiding (or delaying) the integration of changes into a workspace means that
the developer can complete a unit of work without having to deal with an unexpected
problem such as a surprise compilation error. This is known as working in isolation.

 Developers should always verify that their changes don’t break the integration
build by updating their sandbox with the most recent changes (from others) and then
performing a private build prior to committing changes back to the VCS. Private work-
spaces enable developers to test their changes before sharing them with the team. The
private build provides a quick and convenient way to see if your latest changes could
impact other team members.

 These practices lead to highly productive development environments. If the qual-
ity of the checked-in code is poor (for example, if there are failed tests or compilation
errors), other developers will suffer when they include these changes to their work-
spaces and then see compilation or runtime errors. Getting broken code from the VCS
costs everyone time, because developers have to wait for changes or help a colleague
fix the broken build, and then waste more time getting the latest clean code. This also
means that all developers should stop checking in code to VCS until the broken build
is fixed. Avoiding broken code is key to avoiding poor quality.

 Developers test their isolated changes, and then, if they pass the tests, check them
into the VCS. But an efficient flow is only possible when the local build and test times
are minimal. If the gap between making code changes and getting the new test results
is more than 20 to 30 seconds, the flow is interrupted. If the tests aren’t run frequently
enough, the quality decreases. Decreased quality, in turn, means that broken builds
aren’t fixed immediately, and this becomes a vicious circle.

 You can optimize test roundtrips by categorizing tests. Run smoke tests and unit
tests in your private workspace, and then run comprehensive integration tests on a
dedicated machine. It’s important to automate the build process and provide a quick
and easy procedure for building the code as a complete baseline. Do this by creating a
build in the local sandbox or calling a dedicated build engine for a private build (per-
haps using the same platform designated for the official production build).

BUGS There are always bugs in the system. This is normal. Tests can’t guar-
antee the correctness of an application or ensure that it’s bug-free. Tests can
only find single bugs, and good testing should come as close as possible to
finding all of them.

Having a local environment means the developer has their own local resources, such
as a (local) server, or that their own database (or database scheme) enables testing.
The local environment doesn’t need to be physically on their desktop; it can also be
on a central server (like an individual database scheme), but it must be reserved for

43Agile strategies
the developer’s individual use. A one-time investment in database schemes and similar
tools increases productivity and application quality.

 Furthermore, it’s important to aim for a congruent build by comparing the devel-
oper and the integration views. Although the developer is working with a private build
(which may use dummies and mocks), the build system itself should be identical to
the central integration build. This helps avoid the “but it works for me!” syndrome
and dramatically improves the start-up time for new peers. Most important, bugs can
be identified and fixed quickly. The longer it takes to find them, the more expensive
they’re to fix when they’re found.

 This doesn’t necessarily mean that the build on the developer’s desktop (distin-
guished from the build system) will be identical to the one on the central build sys-
tem. Because you want quick feedback, not all tests may run on the desktop—perhaps
only the smoke tests. Or you may use mocks to simulate subsystems or components on
the desktop but run full tests without mocks on a central integration machine. It’s
important to have a fast feedback loop on the developer’s desktop, and if it isn’t fast
enough, the developer runs the tests too infrequently (or skips tests altogether) and
the quality decreases. That can become a self-defeating process. Chapter 6 describes
concepts and tools you can use to set up productive workspaces.

2.2.3 Continuous integration

Continuous integration (CI) includes code integrations that are run at least on a daily
basis. The word continuous, as used in this context, denotes a repeatable process that
occurs regularly and frequently. The word integration means that individually devel-
oped pieces of code that are stored in a source code repository are checked out as a
whole; then they’re compiled, packaged, tested, inspected, and deployed with build
results integrated into web pages, or sent out as an email, or both.

Continuous integration

“Continuous integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily—leading
to multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. Many teams find
that this approach leads to significantly reduced integration problems and allows a
team to develop cohesive software more rapidly.”—Martin Fowlera

“The value of continuous integration is to reduce risks, reduce repetitive manual pro-
cesses, generate deployable software at any time and at any place, enable better proj-
ect visibility and establish greater confidence in the software product from the
development team.”—Paul M. Duvall et al.b

a. Martin Fowler, “Continuous Integration,” http://martinfowler.com/articles/continuousIntegration
.html.

b. Paul M. Duvall et al., Continuous Integration (Addison-Wesley, 2007), pg. 29.

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

44 CHAPTER 2 ALM and Agile strategies
There are numerous reasons why CI is effective. The more often the code is inte-
grated, the faster it’s to figure out exactly what caused a bug. That’s because there are
far fewer sources of errors to examine, debug, and resolve. For example, it’s quicker
(and much easier) to find the cause of a bug if there are only two changes to examine
since the last integration rather than 50. In addition, it’s easier to eliminate bugs (by
first identifying the root cause) while the change is still fresh in the developer’s mind,
and they can remember exactly what they did, why they did it, and how they chose to
implement it. Another reason CI is effective is that when multiple changes are inte-
grated together, their combined impact can result in unpredictable bugs or, even
worse, serious bugs that then get delivered to the customer. CI not only offers the pre-
ceding advantages, it’s also “essential for scaling lean and agile development,” as dis-
cussed by Craig Larman and Bas Vodde.7

 The relationship between the effort of integration and the amount of time
between integrations is exponential: As the number of days between integrations
increases, the effort required to fix bugs skyrockets exponentially. Waiting another
day to perform an integration build doesn’t translate to merely one more day of
effort, but often to several more (see figure 2.3).

Figure 2.3 The integration effort spent on repairing errors increases exponentially.8

7 Craig Larman and Bas Vodde, Practices for Scaling Lean & Agile Development (Addison Wesley, 2010), chapter
10.

8 This illustration isn’t based on an empirical study. Data is based on experience of the author and others.

45Agile strategies
CONTINUOUS INTEGRATION IN A NUTSHELL

Although project setups may differ slightly among teams or projects, the basic process
of CI usually stays the same: A CI server captures all information needed to run a build
and provides a general build environment, including the Java Virtual Machine (JVM),
related runtime properties, and so on. The CI server executes a job definition to trig-
ger project builds, which are reproducible based on a project’s build management sys-
tem. The build scripts should also be versioned and are separated from any IDEs; the
CI server will continuously execute the build scripts, such as every time code is com-
mitted to the VCS.

 Building and integrating software as soon as a developer checks in their changes is
called continuous build. An integration build is the build that is created by a central build
server. An integration build can be more complex than local builds that are triggered
in developers’ workspaces because it integrates more systems and runs more tests. In
some environments, all that is needed is a nightly build. CI ensures that a given revi-
sion of code in development will build as intended or fail (break the build) if errors
occur. The CI build acts as a “single point of truth,” so builds can be used with confi-
dence for testing or as a production candidate. An integration build may consume
artifacts from a component repository and create artifacts and publish them to the
component repository. CI should include all artifact types (configuration items),
including coding artifacts, build scripts, database scripts, test cases, and so on.

 Whether the build fails or succeeds, the CI makes its results available to the team.
Reporting (dashboarding) ensures that the developers are notified about broken
builds. The developer may receive the information by email, RSS notification, instant
messaging (IM), IDE integration, or any other suitable notification mechanism. A
build history provides an archive of former builds and their results. Reporting also
contains generated documentation. With each build, documentation can also be cre-
ated (such as API documentation, project site, and release notes) that reflects the
recent state. Manually created documentation may be necessary (for instance, a user
guide) but it should be minimized. Continuously updating manual documentation is
error-prone and time-consuming. Worse, if the documentation doesn’t correspond to
the software, it quickly becomes useless.

 You can implement “build-staging” according to your corporate standards. For
example, validating special quality requirements on higher build stages prevents code
from being promoted before it’s ready. The initial staging area is the developers’
workspaces.

 After one experience with a development process incorporating CI, many develop-
ers tend to agree that it can potentially add value to their processes. Various positive
effects can be triggered by incorporating CI into the development process. Each revi-
sion of the project source code that passes the CI build can be considered a release
candidate, or at least a demonstrable product state, because the integration has proven
to be successful. The team members may have reduced turnaround times, because
they aren’t required to do full builds and testing all the time. They can concentrate on
verifying (unit) tests for the specific pieces of work that they’re implementing in a

46 CHAPTER 2 ALM and Agile strategies
task-based way, while the CI systems take the long-running builds and tests for the
whole project. Most modern IDEs provide features that can help the developer with
partial builds and isolated in-place tests.

 Reduced turnaround times and the certainty of completing a working task
increase the developers’ sense of accomplishment as well as their productivity and
motivation. This helps to keep the whole team focused on the feature tasks.

 Before CI, most software projects had a dedicated integration phase. Integration
was a painful part of the project, where developers did nothing but make their code
work with that of their colleagues. Can you see what’s wrong with this picture? First,
the developers might think of code they wrote as their own. But the real owner of the
code is the person who pays for it. Second, the developers could spend months doing
nothing but merging many code branches together, delivering no value to the cus-
tomer. That’s staggering: stopping a project to make all of your developers’ work com-
pile. Continuous integration can eradicate this problem. By considering a project to
be green if the code compiles and passes tests, or red if either or both fail, it’s easy to
make “keeping the build green” the norm.

 Humans focus on improving their craft and not merely on improving their tools.
Tools come in handy, but they can also come at the cost of maintaining one’s disci-
pline. It’s all too easy to install a CI tool and then say that you’re “doing” continuous
integration. You’re doing continuous integration if the team makes it a high priority
to fix the build frequently and if your developers want to add their builds to your CI
server. You are probably not doing continuous integration without some form of test-
ing strategy (although you may start rolling out basic CI by automatically compiling
and packaging software on a central machine). Proving that your code compiles isn’t
enough of a safety net for your developers.

AUTOMATIC TESTING AND INSPECTIONS

CI installs testing—particularly automatic testing—as part of the development process.
Testing isn’t a downstream activity; rather, the team’s development and testing activi-
ties are integrated. In his book Succeeding with Agile, Mike Cohn says that testing at the
end doesn’t work. For him, it’s hard to improve the quality of an existing product with
testing at the end. Mistakes continue unnoticed, the state of the project is difficult to
gauge, feedback opportunities are lost, and testing is more likely to be cut.9

 Tests can be divided into functional tests and technical tests (unit, module, and
component tests). Those test categories should be linked and reported on together.
Unit tests make sure that modules, functions, and methods behave as they should.
Functional tests ensure you’ve developed the right feature. Unless you can surround
pesky regression bugs with tests, you’ll have no confidence that the code is working
and the required features are implemented.

 Before you fully implement CI, your teams must possess the discipline to maintain
tests and guarantee that the project’s build is working and up-to-date. Automating

9 Mike Cohn, Succeeding with Agile (Addison-Wesley, 2010), pp. 308–310.

47Agile strategies
tests is the prerequisite to entering short development cycles, getting early feedback,
and creating high-quality software. Testing must begin on the developers’ worksta-
tions and lead into technical integration tests and to functional system tests. Pre-
check-in tests should be applied before changes are checked into the version control.
If a test case fails, that’s an opportunity to build a first quality gate, which is a defined,
special milestone during development, where special quality requirements are met.
You can also think about using smoke tests or sanity checks to run basic operations on
the application. They can check whether the application can be started or if the main
functions are addressable.

 If you detect a failure condition, an Agile approach is to write a new test that vali-
dates whether these errors do occur. It’s interesting to measure the test coverage and
to monitor the results. You can also introduce a quality gate that fails automatically
when the coverage isn’t good enough. It can be helpful to establish a build threshold
that tolerates defects to some degree.

 Metrics and audits should also be measured continuously. Some people claim that
cycle time is the only valuable metric. Cycle time is the total time from the beginning to
the end of your process; for example, from the definition of the scope of the release
to the delivery of the software.

 A continuous inspection analyzes the design and code and points to quality
defects. This avoids long, manual review sessions. A prerequisite for a continuous
inspection process is to have an open atmosphere and a transparent and collaborative
project setting.

 It’s important to understand that quality doesn’t come from inspection but from
improving the process. Defects cost twofold: Somebody makes them and gets paid,
and then another person (or even the same one) is paid to repair the defects. Measur-
ing something doesn’t improve the thing you’ve measured. Merely inspecting some-
thing won’t build quality: “You cannot inspect quality into a product.”10 If suboptimal
quality is the norm, this can only be addressed by improving the process.

CONTINUOUS DELIVERY AND DEPLOYMENT

CI also includes continuous delivery and deployment. Continuous delivery11 is an essen-
tial part of release management that addresses the “last mile” to provide the runnable

10 W. Edwards Deming, Out of the Crisis (MIT Press, 1982), p. 29.

Software craftsmanship

Driving an Agile ALM isn’t enough for successful software delivery. Agile ALM is the
backbone of your software development. The quality of the product does depend heav-
ily on the quality of the software and the job the developers do. Software craftsmanship
emphasizes the coding skills of the developers. For details, see Clean Code: A Hand-
book of Agile Software Craftsmanship by Robert C. Martin.

11 See J. Humble and D. Farley, Continuous Delivery (Addison-Wesley, 2011).

48 CHAPTER 2 ALM and Agile strategies
(functional) release to the user. A change may result in a release and may start the
whole release process. But no changes are applied to the production system without a
process; most of the changes will be staged along the full staging path. The process
and the infrastructure must enable the team to promote every change to production,
if you want to do that.

 Often there’s a mismatch between how technical people perceive what constitutes
“available” and the perception of the final customer—the user of the application. Soft-
ware is only available for use when it’s installed and distributed; it’s not available if it’s
only packaged or deployed but can’t be used. The software is available for use only if
it’s deployed on a system, the users have permission to work on the application, the
database is available, and so on.

 Specifications or versions of software in the developer’s workspace can’t replace
versions of software available on dedicated test environments. Late binding “big
bang” integrations are a bad idea—it’s always best to release and deliver early and
often. This can only be achieved by automating the delivery process. The more fre-
quently the software is built and integrated, the more the process of delivery becomes
a routine job (a repeatable process). If building and integrating doesn’t become a
daily routine, the people involved become worried about quality and delivery
becomes more infrequent.

CI is a virtuous cycle. Once you’ve invested in the initial setup, your CI system will
grow with your software hand in hand. Integration becomes a routine job, not a pain-
ful dedicated activity that’s postponed downstream. The easier your CI is to use and
the better optimized the CI process is, the more it will be used, the more it will be
optimized, and the more it will be accepted. If you institute only heavyweight down-
stream integration, you’ll experience a downward spiral; project members will proba-
bly have reservations against CI and will fail to integrate as much as necessary.
Frequent deployments provide direct, timely feedback loops—a requirement for con-
tinuous improvement.

 It’s important that the technical target environment (the system to which you
deploy) be similar, or ideally identical, to the final production system. This will help
you detect errors quickly. Deployment should always be automated and should be part
of the continuous development process. Preferably you’ll have one unified deploy-
ment script for deploying the application to different target environments. A precon-
dition for this is to decouple deployment and configuration. The deployment scripts
should be self-testing to automatically verify their own output. The deployment
should be started easily by executing one script (instead of numerous manual steps).
Setting up a centralized machine to deploy your application to multiple target envi-
ronments can further accelerate productivity.

CONWAY’S LAW

Why does CI (and ALM as a whole) sometimes have acceptance issues in companies?
One explanation may be found in Conway’s law: “Organizations which design systems
. . . are constrained to produce designs which are copies of the communication

49Agile strategies
structures of these organizations.”12 For example, consider a software application that
has three development teams—developers, operations/deployment engineers, and
QA. The system will likely have three subcomponents (or subsystems). Using the
premise of Conway’s law, the coupling between these three components and the qual-
ity of the interfaces between them can be predicted by the quality of the communica-
tion between the three teams. What implications does this have for CI? At least in
bigger companies or projects, setting up integration and continuous integration
requires strong cross-functional communication, synchronization, and uniformed
solutions. Integration also means integrating across different organization borders
and roles; for instance, development, deployment, and testing.

 The software passes through the hands of these three distinct teams, and all these
teams have individual problems and concerns. In the worst-case scenario, these con-
cerns can lead to “empire-building,” where a team attempts to acquire resources
(more money, more employees) in order to increase its influence outside its areas and
expand its size and power. Besides that, teams can have competing objectives. Con-
sider the example of an operation crew that gets a higher bonus if the applications
running in production have fewer bugs. An obvious (and counterproductive) maneu-
ver would be to prevent applications from going into production at all. Rejecting new
application versions and sending them back to development due to poor quality (even
if it’s not that bad) would improve that team’s situation, netting the higher bonus.
The operation team profits, but the whole company will suffer, as does the customer.

 When you set up a cross-functional process, you must often address worries over
losing power, competence, influence, and control. What could be worse for a huge
testing department than to have a continuous process make them redundant? Agile
aims to address these worries. Agile will overcome these reservations and focus on
those invisible facets of software development. A strong management commitment to
the chosen approach and shared objectives are needed to roll out a CI process and an
ALM in general.

SYNCHRONIZATION AND CONTINUOUS IMPROVEMENT

ALM drives a comprehensive approach to software development. Whenever a devel-
oper commits changes, the system builds the software, the tests are run, and the cus-
tomer reviews the deployed test version—this type of communication is known as
synchronization. But you shouldn’t apply CI that’s strictly shaped to technical artifacts
(such as sources and tests), although artifacts are good bases for communication,
because synchronization isn’t limited to artifacts. A comprehensive ALM approach
also includes synchronization on other levels. Besides artifacts, clearly discussing tools
and processes is also important. But tools and processes can’t substitute for personal
communication and interactions because software is made by and for humans. The
technical infrastructure should accelerate communication by condensing the infor-
mation and transforming information into knowledge.

12 Mel Conway, “How do Committees Invent?” http://www.melconway.com/research/committees.html.

50 CHAPTER 2 ALM and Agile strategies
 Key characteristics of Agile releasing are continuous reflection (improvement of
the process), detection of process defects, and improvement of processes. Adaptation
of your process and how you work is only possible if you know where you stand at any
given moment. If you don’t know where you stand—and without CI it’s hard to
know—trying to improve your process is like shooting in the dark. Setting up CI helps
you to increase quality, detect issues early, and deliver software more frequently.

 To build and integrate software continuously, it’s best to create a repository to
store essential artifacts and facilitate code and component reuse.

2.2.4 Component repository

Component repository is a logical expression. Physically, a component repository can
be the same as a sources repository (for instance, Subversion). Alternatively, a compo-
nent repository may be hosted by a VCS, a file system, or a database. In contrast to tra-
ditional version control (source repositories, like CVS, Subversion, Git), a component
repository contains the binary versions that are the build result of sources (see figure
2.4). In Java those binary versions are the standardized deployment units, like JAR,
WAR, and EAR.

 In an Agile ALM context, it’s mandatory to manage sources in a VCS to enable con-
current modifications and provide a reproducible version history. It’s common for
companies to have essential artifacts hosted in a couple of different repositories. In
the best scenario, a single access repository contains the components your project or
company uses, but this isn’t necessarily the repository that the sources are housed in.
You may choose to use more than one repository.

Minimizing media versus using a component repository

Using many different repositories in parallel, such as CVS, Subversion, file servers,
and so on, inhibits efficiency. It’s important to make the locations transparent so you
don’t know, and don’t need to know, where exactly the assets are stored. On the one
hand, it’s wise to reduce channels and mediums if possible. On the other hand, it
can be wise to use a component repository.

It’s often efficient to store deployment units and their versions and dependencies in
a medium other than a VCS. It’s even more efficient to store derived artifacts be-
side the original sources (because you don’t want to build the software on all envi-
ronments again). In some situations, you must store binaries due to reproducibility
reasons: Sources have a reproducible context by applying tagging in a VCS. Binaries
also have a context that is resolved at build time, such as version ranges or dynam-
ic properties.

Which approach you choose will depend on your specific requirements. For many proj-
ects, it’s helpful to host the sources and their deployment units in two different
locations.

51Agile strategies
Often it’s necessary to reproduce software that’s running on different machines. It
can therefore be useful for a central release department to label final versions of the
software and put the build artifacts into a build archive. This ensures binary integrity,
which means that for each versioned software state, the same deployment units are
delivered to each target environment (there’s no recompilation for further environ-
ments). Such a component repository can also protect company assets and boost reus-
ability, as well as minimize the number and complexity of dependencies. Additionally,
the artifacts in the component repository can be included as binary dependencies.
Chapter 5 details this concept and implements it with tools.

2.2.5 Quality, standards, and release cycles

Productivity increases as quality improves, because less rework is necessary and waste
(parts of the solution not needed to solve the given problem or to implement the
requirements) is reduced.13 Simpler solutions lead to better quality, and quality
improvements lead to lower costs, a better competitive position, and happier people

Labels should be sticky

Sources that are tagged with a VCS tag are labeled. A label is a snapshot that illustrates
which state the software is in at the time. This approach is also known as creating a
baseline. Suppose you use version 1 of a product that has the label 1.0b12. The twelfth
build was the last successful one and was chosen to be the one for delivery to the
outside world. It’s not the twelfth version of 1.0b1.

Don’t move or change labels once they’re set, keep them. If you change parts of the
system after labeling, label them again. You should never work with moving targets,
sometimes called floating labels.

13 See W. Edwards Deming, Out of the Crisis (MIT Press, 1982), chapter 1.

Developer 1

Developer 2

Developer 3
Distribu�on
management
server

Version
management
server

Update and check-in

Provide and include ar�facts

Figure 2.4 Version
management servers store
sources, and distribution
management servers store
binary artifacts

52 CHAPTER 2 ALM and Agile strategies
on the job. In Peopleware, Tom DeMarco, and Timothy Lister state that “we all tend to
tie our self-esteem strongly to the quality of the product we produce—not the quantity
of product, but the quality” (p. 19), and they list “quality reduction of the product” as
one of the negative “teamicide techniques” (p. 133). They also talk about having a
“cult of quality” to foster team building (p. 151).14 Quality begins with the intent,
which is fixed by management and is pursued by the whole team. Quality can vary in
different contexts. Gerald M. Weinberg states that “quality is conforming to some per-
son’s requirements.”15

 You need an identifiable process to be able to improve on your process. Therefore,
having a systematic release process is always a good idea. For fast release cycles, devel-
oping and releasing is the top priority; it’s necessary to aim for the best quality and to
work according to the highest standards. Features and quality must be balanced.
Refactoring to improve the design of the code without changing its functionality can
help to improve existing code16—don’t provide functionality at the expense of techni-
cal debt and poor quality!

 The quality can be kept high by running tests frequently and automatically check-
ing metrics (audits). Rules for designing and coding shouldn’t only be described on
paper, but also they should also be available as executable media. The integration
build should run tests and audits to ensure that the quality requirements are fulfilled.

 If the build fails, it’s referred to as being broken. If a build doesn’t fulfill the require-
ments, it’s possible to break it automatically. In contrast to measurable tests and
audits, nonfunctional requirements (such as usability) can’t be tested automatically.

14 Tom DeMarco and Timothy Lister, Peopleware (Dorset House, 1999).
15 Gerald M. Weinberg, Quality Software Management, vol. 1 (Dorset House, 1992), p. 5.
16 See Martin Fowler, Refactoring (Addison-Wesley, 1999).

Lean software development

Lean software development, inspired by the success of the Toyota production system,
claims to “stop the line” when defects are detected. If we transfer the picture of an
assembly line being completely stopped when a bug is found on the staging ladder
(not on the developer’s workspace, because it’s isolated), we have a CI landscape
and builds that aren’t passed through if standards are ignored or the quality falls below
the requirements.

A second major message of the Lean approach is to create “just in time” releases
and to avoid waste. The Lean approach is articulated in seven principles: eliminate
waste, amplify learning, decide as late as possible, deliver as fast as possible, em-
power the team, build integrity in, and see the whole. For further details, see Lean
Software Development, Implementing Lean Software Development, and Leading Lean
Software Development (by Poppendieck and Poppendieck, Addison-Wesley).

53The process pitfall, the illusion of control
Results of tests and audits, as well as the verification of standards, should be handled
according to fixed rules. Merely watching how tests fail, and then deploying the soft-
ware anyway (perhaps after removing failed tests from the test suite), doesn’t increase
quality. Here, quality gates and a zero tolerance approach are the best practices for
stopping the release when defects are detected. Otherwise, bugs will result in higher
costs and missed deadlines.

 In addition, an enterprise Agile ALM process as a whole should be standardized. It
has to be carefully architected, with nonnegotiable elements. It should provide a man-
datory framework that’s capable of weaving together different elements to support
each project’s unique requirements.

 Frequent releasing of software enables fast feedback, better measurability, and a
meaningful picture of the software’s status: “It forces you to get really good at doing
releases and deployments.”17 Only built, integrated, and deployed software gives you
an idea of what the software accomplishes and what it doesn’t. The content of the
release should be fixed before starting it. The dates should also all be fixed and pub-
lished in a publicly accessible release calendar. Consequently, time, (high) quality, and
resources (people) are three cornerstones of the releases that are fixed, constant, and
balanced with your individual requirements. It’s the number of features that should
be variable: At the end of the release, if the implementation of features isn’t finished
or if tests fail, the features should be postponed for a future release. Short iterations
and time-boxing are ingredients of good risk management. In a dynamic environ-
ment, individually chosen release lengths are a good way to keep requirements and
basic conditions stable. Chapter 7 illustrates auditing with tools.

2.3 The process pitfall, the illusion of control
There’s a conflict between having too much lifecycle management process and not
having enough. This conflict can be named the process pitfall. An Agile approach
advances and demands feedback and communication. The release management pro-
cess should be effective, efficient, and targeted. In practice, though, many projects suf-
fer from not having enough process.

 To resolve this conflict, you need to focus on priorities, including the root cause of
the process pitfall. Often, more process is introduced in order to address the problem
of the illusion of control. Introducing too many rules or wrong process rules could
suggest control that doesn’t truly exist. In the worst case, you have a described process
and a real process in parallel. Or you have a rigid process that dramatically decreases
productivity. ALM and its major facet, release management, must be a balanced set of
processes and tools aligned with your individual requirements.

17 Michael T. Nygard, Release It! (The Pragmatic Bookshelf, 2007), p. 326.

54 CHAPTER 2 ALM and Agile strategies
2.3.1 Effectiveness and efficiency

Effectiveness is doing the right thing, and efficiency is doing the right thing correctly.
After consulting on a significant number of projects, I’m left wondering why some
teams don’t grasp this distinction.

 If you have issues (or better, challenges), try a root cause analysis to detect the orig-
inal evil. If you find it, you can think about possible improvements. Mostly, they all
have pros and cons, so decide wisely which way to go. Choose only a few pain points,
sign up for the actions, and track them over your next development iteration to
ensure you complete them successfully. If you dig into challenges deep enough, you’ll
usually find communication defects inside the team. This is what Agile is all about:
Communication and interaction are more important than processes and tools, as the
Agile manifesto says. If you can solve the people issues, yet still see room for improve-
ment, proceed to the processes.

 Defects in processes are often a problem. For example, it’s not possible to config-
ure a workflow system to cover your processes unless you know what the processes are.
If they’re not described, identify and describe them. Sometimes, processes don’t exist
at all. Set them up; don’t be satisfied if the whole team speaks about the task of “daily
business.” If you’re managing the processes, and you know the requirements, then,
and only then, can you think about tooling. There’s no point in buying a full-fledged
commercial ALM suite or using some of the great tools I’ll introduce in this book if
you don’t know your requirements (and consequently can’t determine whether the
tools fulfill them).

 You can work with prototypes, evaluation versions of tools, or a “release 0.0/zero”
for setting up infrastructure. These provide good ways to get early feedback and gain
some valuable experience. But always remember that you should stay flexible. It’s
often better to use a collection of lightweight, integrated tools that are de facto stan-
dards on the market and that do the best job in their domain. You can integrate and
decouple your infrastructure while remaining quite independent and flexible.

 If you want to kick-start your development of new components, you may decide to
use a build tool, such as Maven, that provides component and build management and
a neat archetype feature. If you want to integrate your system continuously, add a
build server to your infrastructure. You may want to add tests and audits later. Little by
little, you can extend your infrastructure in a requirement-based, focused way. And if
you’re not satisfied with one decision, you can replace one tool while still sticking with
the other ones.

 Managing the identification of configuration items is also important in ensuring
your process matches your requirements.

2.3.2 Agile ALM and configuration items

ALM deals with the management of tasks and artifacts. Controlling artifacts is only pos-
sible if the artifacts are identified: Without determining which artifacts affect the
release and the project and without putting the artifacts into the ALM system, it’s not

55The process pitfall, the illusion of control
possible to control the artifacts or perform status accounting (to ensure completeness
and provide a consistent version) and audits. Additionally, setting up an efficient ALM
is only possible when processes and tools are optimally chosen, integrated, and stan-
dardized.

 Identifying assets, controlling configuration items, and performing status account-
ing and audits are major tasks of traditional software configuration management
(SCM). In an Agile ALM, you’ll find the best fit to implement the traditional activities
of a SCM—pure Agile projects implement SCM facets in an implicit way. There should
be an SCM-aware expert on every Agile team or a traditional build manager or a (tech-
nical) release manager can drive the daily SCM needs of the business. This depends on
how you slice your roles.

SCM is mainly about access to project artifacts. This includes not only tracking arti-
fact versions over time, but also controlling and managing changes to them. Whereas
in traditional SCM scenarios, you track every artifact, in an Agile ALM scope, you’ll
focus on final deployment units and important artifacts, including documents that
influence the project (like requirement documents). For example, the Agile
approach tracks EARs, WARs, and JARs independent of their contents (their packages
and classes). The sources themselves are stored in the VCS. You won’t store artifacts
that you can generate out of other artifacts (unless you have good reason) or docu-
ments that won’t change over time or that are written by multiple users (such as meet-
ing minutes). See figure 2.5.

 From an underlying SCM point of view, an Agile ALM focuses on aggregating and
documenting the most important parts of the software necessary for release. For
example, if you want to integrate further components or subsystems into your enter-

Ar�facts
Physically exis�ng files

Created manually Created automa�cally

Project plans,
mee�ng

minutes, ...
Code, tests, ... Code libraries

Generated
documenta�on

Version
management

Distribu�on
management

No config
management

No config
management

Applica�on

Figure 2.5 Artifacts in configuration management: Artifacts that are updated
continuously and are of special interest are put into configuration management. Sources
and tests are put into version control; libraries are put into distribution management.

56 CHAPTER 2 ALM and Agile strategies
prise SCM, you need basic information about these components, including their
deployment units. Table 2.2 collects some of the major components in an SCM check-
list. This is a much leaner approach than is promoted by traditional SCM. Depending
on your particular situation and requirements, the checklist can be implemented in a
smart way. If you use Maven, for instance, some of the checklist items are covered out
of the box (such as documenting deployment units). Tools like Maven can help you
define your SCM in an executable medium. This means, for instance, you have XML
definitions that can be executed reproducibly.

Traditional SCM requires listings of configuration items and checklists. This can be
necessary in an Agile context, too, but it’s usually handled automatically by the ALM
tools. But there are many possible usage models.

 Release notes should be created automatically. You should also be able to audit the
system automatically. For example, the JIRA issue and project tracking tool can be
used to derive release notes based on a specific time interval or version number. Map-
ping sources to requirements to generate a list of what you’re looking for is an effec-
tive way to create documentation automatically, along with applying active impact
management with Mylyn or FishEye. Acceptance tests (for example, creating and run-
ning tests with the Fit tool) can also be part of this documentation.

 Tests and audits (metrics) can be applied automatically as part of the continuous
integration system. You can base these audits on tools like Checkstyle and Cobertura
and your testing on Selenium, FEST, or something similar. Track your components in
a component repository, where the system puts them continuously. If you already use
Maven, you’re familiar with this; if this is completely new for you, don’t panic. Either
way, this book will give you valuable tips.

Table 2.2 Approaching SCM in an Agile way: the SCM checklist

Group Item Details

Overview Configuration elements Complete list of all configuration elements, including scripts,
database elements, deployment units, properties.

System Deployment diagram Deployment units (and their versions), packaging types, pro-
tocols, technical information (like a version of an application
server), dependencies between configuration elements,
nodes.

System Infrastructure Database elements (users, DDL), technical users, permis-
sions, security.

System Test environments For all subsystems, mapping to other test environments
where needed.

Build Build system System must provide its deployment units in a reproducible
way (build must be provided by component development
team).

57Summary
 Agile ALM minimizes overhead while maximizing benefit. It also acts as an enabler
for change. We’ll discuss this next.

2.3.3 Agile ALM as change enabler

All systems try to achieve stable states (panta rhei18). Being flexible in software develop-
ment doesn’t mean chaotic drifting, but rather, being able to change and transform
from one stable state to another. Any substantial improvements must come from an
action on the system.19 This is management’s responsibility of management and the
ALM system can improve management’s ability to know what’s happening (meta-mea-
surement20) and can improve insight into the best decisions.

 The importance of lifecycle management will continue to grow. In this time of dis-
tributed, heterogeneous system landscapes, legacy systems that must be integrated,
systems and components in many different versions, and (transitive) dependencies on
different platforms, following a systematic release management approach has become
a precondition to providing high-quality software in constant, short intervals. Agile
ALM is the catalyst that enables the daily work of all project stakeholders. It also helps
track and control the artifacts that were created during the project activities.

 Agile ALM acts as a change-enabler. During the development of complex systems,
change is a constant companion of the development process. Instead of being excep-
tional, changes are more and more the norm. A high percentage of projects miss their
project goals because they don’t grant enough space for changes in the process. Mod-
ern software development understands that changes are a major part of the project.
They’re part of the process of aligning the current activities with the valid require-
ments and basic conditions at any time (a process of continuous adaptation).

 In the extreme approach, defects (bugs) and all kinds of functional and nonfunc-
tional requirements are handled like a coordinated set of changes to the system. Fol-
lowing this paradigm, software development is the process of identifying and
processing changes. ALM is evolving to be the hub of reproducibility and is the change
enabler.

2.4 Summary
In this chapter, you learned about Agile and what Agile means in the context of ALM.
We discussed continuous integration in detail and considered many aspects of the Agile
ALM, concluding with Agile ALM being a change enabler. In the rest of the book, we’ll
implement an Agile ALM with lightweight tools and apply those Agile strategies. In the
next chapter, we’ll use Scrum to bridge functional releasing to technical releasing.

18 Meaning “everything flows,” here: it flows from one stable state to another.
19 See W. Edwards Deming, Out of the Crisis (MIT Press, 1982), chapter 11.
20 Gerald M. Weinberg, Quality Software Management, vol. 2 (Dorset House, 1993), chapter 12.

58 CHAPTER 2 ALM and Agile strategies

Part 2

Functional Agile ALM

Part 2 of this book focuses on the functional aspects of Agile ALM by discuss-
ing (functional) release management and task-based development.

 Chapter 3 covers the functional release management aspect of Agile ALM. It
details how to implement the general management framework, Scrum, and how
to bridge Scrum to more traditional environments. It also details strategies and
tools that support the functional releasing of software.

 Chapter 4 is dedicated to task-based development. We’ll track changes by
linking requirements to software artifacts throughout the complete develop-
ment process. After you’ve learned the necessary prerequisites, we’ll explore
example toolchains that help to implement this strategy.

 Once you’ve finished this part of the book, we can leave the functional, high-
level aspects of Agile ALM and focus on its more technical aspects.

Using Scrum for release
management
If Agile ALM is about creating and tracking software, in which phases do you create
the software? Using functional release management, you set up a guideline for how
and when you’ll provide releases and how you’ll assign content to them. Together,
functional release management and technical release management support and
enable the development.

 In this chapter, we’ll talk about the release as the central unit in the develop-
ment process. After covering the basics and core aspects of functional release man-
agement, we’ll talk about vehicles that can support you in communicating your

This chapter covers
■ An implementation guide for Scrum
■ An introduction to the functional view of ALM:

core facets of functional releasing
■ Best practices of how to integrate functional

and technical release management
61

62 CHAPTER 3 Using Scrum for release management
general release approach. I’ve based my release management approach on Scrum.1

This method is popular, in part because it’s simple and easy to implement.
 Many teams say they’re working in an Agile way, but they’re only constantly planning

and replanning, releasing something every two to four months. No one has ever clearly
defined Agile release management, which has allowed a lot of dysfunctional projects to
call themselves Agile.2 Many projects use Scrum to support their release management.
Scrum doesn’t provide a full definition of release management; rather it’s a rough man-
agement template—a framework, as discussed in the free Scrum primer and later in
this chapter—and relying solely on the template increases the probability of complete
failure. Many important details aren’t described in Scrum at all.

 With respect to lifecycle management, this chapter fills out the parts that are miss-
ing from what I call “textbook Scrum.”3 I’ll also cover the basics of Scrum and put
Scrum into context, as well as show you additional strategies to extend Scrum for Agile
ALM. We’ll implement Scrum and bridge from this approach (and its functional
release management) to technical release management.

3.1 Getting started with Scrum release management
Figure 3.1 shows an example ALM
lifecycle that starts with require-
ments management and then
immediately begins the release
management function followed by
design, development, version, and
build management. The release
management collects functional
and technical requirements to be
implemented in a given iteration.

Figure 3.1 Software engineering goes
through a workflow cycle: requirements
management kicks off the development
process. Requirements belong to releases.
Release management triggers the design/
development of software, which in turn
creates the artifacts implementing the
requirements. Those implementations are
then put into version and build
management and are provided in releases.

1 See the free Scrum primer at www.scrumalliance.org/resources/339.
2 Unfortunately, a lot of dysfunctional projects call themselves Scrum as well.
3 For me, the term “textbook Scrum” (or “Scrum by the book”) refers to how Scrum was initially described by

Ken Schwaber and Mike Beedle in the book Agile Software Development with Scrum (Prentice Hall, 2001).

63Getting started with Scrum release management
This approach drives the design and development of the software, which in turn
creates and modifies the configuration elements.

 The artifacts created include source code, binaries, configuration files, documen-
tation, and test cases, which are all put into version control. It’s important to trace
requirements to the baselines that are approved for release. Requirements and
changes are constantly being prioritized and assigned to iterations (and eventually
releases); this is often handled by a specific change management function or by a
release management function that’s also responsible for monitoring and tracking
releases. Acceptance testing, supported by tools and ultimately by the customer or
their representative, determines when the release is ready to be promoted. From
there, new requirements are determined, prioritized, and approved, which starts the
lifecycle again from the beginning.

How are common project phases, like defining requirements, creating the design, and
the development (see figure 3.1), organized in process frameworks? As an example, we’ll
take a brief look at the rational unified process (RUP), which consists of four phases:

■ Inception phase—Developing the core idea. By reviewing and confirming the
core business drivers, the product feasibility is established and the project scope
is defined.

■ Elaboration phase—Defining the majority of use cases and system architecture.
This is where risks are identified and a schedule is set up.

■ Construction phase—Implementing a system that fulfills the requirements neces-
sary to enter the transition phase.

■ Transition phase—Ensuring all requirements are met to satisfy the stakeholders.
Besides completing the software, documentation is also created. Often this
phase starts with a beta release and ends with a software retrospective.

RUP is a popular iterative framework, and it has been successfully used in both small
teams and large-scale development efforts.

 This approach is valid for all kinds of development processes. Agile projects go
through these common project phases as well, in an incremental and iterative way by

Releases, iterations, versions, sprints, and baselines

In Scrum (as described in books by Ken Schwaber), iterations are called sprints. The
outcome of a collection of sprints, delivering a significant version of the software (such
as a feature set that has value for the customer), is called a release. A common ap-
proach is to decouple the sprints from the releases (which have value for the customer).

A version is an arbitrary snapshot of the software. Releases are also versions, but
not every version is considered a release. Important versions of the code are often
called releases to indicate that the exact versions of the source code have been iden-
tified (often by a tag or version label). Releases are reproducible baselines of the code
that can be built, packaged, and released to the customer.

64 CHAPTER 3 Using Scrum for release management
defining requirements, designing the solution, implementing the requirements, and
testing the solution. Although the Agile process uses an iterative approach involving
different phases, it can be uneven and you can even slice the development process up
into different processes that serve their primary stakeholders. One example of this is
that Scrum is often used to manage the development process itself, whereas the over-
all process, including defining requirements and delivering increments, is managed
by using a different process approach.

 As a crosscutting discipline, release management acts as a progress-monitoring
unit using different tools and data. The progress monitoring is mainly based on the
information in the version-control system (VCS), where the artifacts are securely
stored. Continuous build management delivers executable software increments that
are configured and deployed in test environments.

Heavyweight release-management approaches traditionally isolate phases or views.
ITIL (IT infrastructure library) is one example. ITIL is a helpful collection of publica-
tions and a de facto standard for describing processes, roles, and tools. In its most
recent version, it gives more weight to the creation of software, the management of
knowledge, and the alignment of business needs, and not merely to managing soft-
ware in production. ITIL has its origins in the management of infrastructure.

 Scrum can also be used as a complete process framework. It offers a flexible skele-
ton that’s open enough to accommodate changes that will occur during the develop-
ment of software.4 Although it’s often limited to the construction of software itself,

Scrum as a comprehensive end-to-end approach

Scrum can be used as a comprehensive process framework covering all the major
phases of the application lifecycle, from collecting requirements through to design, de-
velopment, testing, and implementation. Scrum doesn’t provide a lot of detail, so it’s
common to supplement it with best practices or guidance from other process models.

One popular framework is itSMF’s IT infrastructure library (ITIL), which provides com-
prehensive guidance on all aspects of IT service management. In its volume on tran-
sition, ITIL provides a rich framework for implementing change and release
management. You could also supplement your Scrum framework with guidance from
the Capability Maturity Model Integration (CMMI), CobiT (Control Objectives for Infor-
mation and related Technology), or even software development standards from the
IEEE (Institute of Electrical and Electronics Engineers) or ISO.

Scrum release management includes an approach to assigning features to release
iterations and burn-down charts that make it much easier to monitor progress. All of
these process frameworks and industry standards help provide a common set of ter-
minology that facilitates effective communication.

4 “The only thing you know about a plan is that things won’t go according to it.” Kent Beck and Martin Fowler,
Planning Extreme Programming (Addison-Wesley, 2001), p. 95.

65Getting started with Scrum release management
Scrum, as part of a comprehensive end-to-end approach, can cover the major parts of
the software lifecycle. All phases of the lifecycle, from collecting requirements to roll-
ing out the software, are important and shouldn’t be managed in isolation. Although
Scrum doesn’t specify any particular methodology for managing lifecycle phases, it
can be used in conjunction with a wide range of methodologies.

 A benefit of frameworks such as ITIL or lightweight approaches like Scrum is that
you have a template you can adjust for your environment as needed, and part of the
template is a glossary. All stakeholders communicate using the same terms to express
the same things. A common language is a big help.

In Scrum, the sum of the functionality to be implemented is located in the product
backlog. Features are pulled from the backlog at well-defined points in the process.
These points can be either when you’re done with your latest task or when the team
moves items from the product backlog to the release backlog to be implemented dur-
ing the next release. Consequently, the complete product backlog is worked off over
several releases. The target scope of one release is placed in the release backlog (see
figure 3.2).

Figure 3.2 The Scrum process includes assigning items from a product backlog to
a release backlog, and the items are then implemented as part of the release. The
output of the release is a working increment (built and delivered software). A typical
release duration is 30 days. The team synchronizes daily in a Daily Scrum meeting.

Kanban

Kanban is a concept that was introduced at Toyota in 1947 and in recent years has
been gaining momentum in software engineering. In software engineering, Kanban is
influenced by Agile and Lean software development (see Lean Software Development
by Poppendieck & Poppendieck). Kanban focuses on eliminating waste and bottle-
necks as well as reducing waiting times. As a result, the overall throughput is maxi-
mized. Kanban uses a pull approach to take new tasks to where they can be completed
(that is, to where the resources are available) and it focuses on the complete supply
chain. In contrast to Scrum, Kanban doesn’t use iterations but rather maximizes the
flow by delivering software continuously.

Product backlog Release backlog Release Working increment

66 CHAPTER 3 Using Scrum for release management
All stakeholders commit to the content of the release in a planning meeting that takes
place before development begins. This is also known as the “release kickoff.”

 Many adopters of Scrum use the terms release, iteration and sprint interchange-
ably, and others prefer to talk about sprints that implement the release backlog. Some
projects distinguish between releases and sprints, both having content and planning
meetings, where a sprint is a sliced subset of the release. I will use the term release
from now on, because, in my opinion, it’s more consistent and more approachable in
traditional, conservative settings. Due to possible paradigm mismatches, it’s helpful to
build bridges between the Scrum teachings and the existing organization’s structure
and culture, and that’s what Agile ALM is intended to do.

 The release should deliver a consistent, reasonable set of functionality that’s devel-
oped incrementally and iteratively. Four weeks is a common release cycle that often
works well and is a good starting point. Shorter cycles are possible and sometimes
appropriate.

 The final, finished release will be packaged and deployed on target environments,
although doing this more frequently with continuous integration is helpful. The
deployment cycle ends when the release is put into a system test environment avail-
able for the customer.

 The team synchronizes itself on the status in a brief, daily stand-up meeting.
 The major driver of the development process, and of the release particularly, is the

set of customer requirements. The prioritized requirements emerge frequently due to
changes in the business conditions or the technology used. Requirements are
assigned to releases, always having the best ratio in mind between high value and low
effort. The implemented requirement is shipped in an increment. Requirements are
often sliced into fine-grained tasks, which are more practical to deal with during
development. A requirement consists of one or more tasks. The approach of task-
based development (see chapter 4) helps to focus on the current tasks and to make
progress as well as delivery traceable, in an efficient way.

 Figure 3.3 illustrates the process of developing software according to Scrum, high-
lighting the requirement as the driver of the development process and release.

Figure 3.3 The Scrum process supports the user in transferring prioritized customer
requirements into consistent releases and working increments.

Product backlog Release backlog Implementation time
(time-boxed)

Working increment

A requirement,
and its implementation

67Getting started with Scrum release management
Let’s summarize the key artifacts and roles that are used by Scrum. In Scrum, the fol-
lowing artifacts are created:

■ Product backlog—All work to be done. This is a list of items in the prioritized
product backlog, containing new requirements to be implemented, open
defects, and other work to be done.

■ Sprint (release) backlog—A list of features to be implemented in one release, con-
taining fine-grained tasks arranged in order of priority. The states of tasks are
updated on a task board (such as “to do,” “in progress,” and “done”).

■ Impediment list—A list of issues preventing the team from performing work as
efficiently as possible.

■ Burn-down chart—A publicly displayed chart showing remaining work in the
sprint backlog. The chart also shows the velocity of the work completed so the
team and stakeholders can see the progress and whether they’re on track to
complete.

 Scrum has the following roles:

■ Product owner—The major stakeholder (the user or the customer, or both) of
the product or a representative (or proxy) if the stakeholder isn’t collocated.
The product owner can make timely decisions so the team can get on with the
project.

■ Scrum master—The person who maintains the process and looks out for impedi-
ments. The Scrum master mentors the team.

■ Team—A cross-functional group that implements the requirements. The team is
colocated and focused on the shared goal. It’s self-organizing and self-account-
able and is responsible for delivering a successful outcome at each release. Mem-
bers of the team have different core competences; many are developers, others
are testers. Besides strong technical skills, strong complementary skills are
important such as skills in user interface design or design of processes and soft-
ware architectures. Applying these skills during development makes a valuable
solution out of a software application. Traditional soft skills such as strong com-
munication skills are a must. Expertise and experience in the underlying busi-

The Scrum template and common engineering activities

Although they’re not explicitly mentioned in Scrum, essential activities of software en-
gineering do still occur. For example, you will do some sort of requirement engineering
(because the product backlog isn’t filled by magic); you’ll probably do some architec-
ture work (but always the least that’s required); you may do some architecture and
design work up front (but maybe in release 0); and you may do some additional func-
tional post-testing after the release, although this process has a high degree of
automation.

68 CHAPTER 3 Using Scrum for release management
ness domain is helpful. The team is open-minded in order to reflect and tune
continuously and to complement one another.

NOTE Issues that will arise when using Scrum probably won’t have anything
to do with the method itself. Instead, Scrum makes existing issues visible.
Already existing issues become obvious.

A key feature of Scrum is that customers work closely together with the development
team. The customer is ideally collocated and participates in all relevant meetings.
With its continuous deliveries, frequent meetings, and open management of issues,
Scrum makes progress transparent. Issues are made visible, and no one can hide
behind the supposed mistakes of others. Consequently, Scrum implicitly manages risk.
Additionally, Scrum enables continuous improvement and improves team communi-
cation. This method emphasizes that every working day is as important as the next,
regardless of whether the day is the first or the last during a release. This also means
that Scrum enables the project to run at a sustainable pace to balance workload and to
make sure that the release backlog consists of a sustainable amount of work for the
length of the release.

3.2 Implementing Scrum release management
In this section, we’ll take a closer look at implementing release management within
the Scrum framework. Agile development, and Scrum in particular, rely heavily on
excellent release management practices to support iterative development.

3.2.1 The release

The release isn’t merely some functionality; it’s numerous technically and functionally
consistent configuration items that can be developed and distributed. Whereas ver-
sions (or iterations) may be created continuously, you only ship one final release.

 Normally, the latest version that meets the requirements is named the final release.
You should have measurable, testable acceptance criteria to verify that the software
meets those requirements. You may also have customers looking at versions and decid-
ing which will be chosen as the final one. The drawback to this second approach is
that you can’t clearly reproduce the decisions (it’s better to have testable acceptance
criteria). The most valuable approach is having the customer give feedback in addi-
tion to using testable acceptance criteria.

 In a timeboxed approach, the resulting version at the end of the time frame (the
timebox) is named the final release. Please keep in mind that you should release in a
timeboxed way whenever possible, providing the final increment when the defined
and fixed release duration is passed through. Timeboxing should be the preferred
method. The development cycle is short in Agile, so it’s much better to release the lat-
est version within the allotted time frame and implement other features in the follow-
ing release, than to shift the deadline. When you’re approaching the release deadline,

69Implementing Scrum release management
it’s also much better to take out a defective or uncompleted feature of the release
instead of delivering defective software or moving deadlines.5

 Releases are incremental, self-contained pieces of work. Implementation should
be done iteratively and incrementally, which means that the software is provided in
stages, with a later stage (a later release) providing additional functionality. This addi-
tional functionality can comprise new features or enhancements to existing ones.
Changes and bug fixes are also possible. Many projects do track and approve changes
on the software with the help of official change requests. To take it to the extreme, all
types of changes (such as feature enhancements, bug fixes, and so on) that impact the
state of the software are handled as changes, without further distinguishing between
them. In Scrum, new features, enhancements, changes, and bug fixes are all items in
the backlog that need to be prioritized.

Detailed requirements

Overly detailed requirements lead to overly specialized solutions that are less likely
to be reusable. Such requirements can be difficult to create, are even more difficult
to maintain, and take a long time, which delays getting starting and ultimately finishing.
One excellent approach is to use high-level requirements that can be reused for other
projects, and then supplement them with detailed information in the form of detailed
test cases and scripts. Epics and stories have become popular, along with use cases
that can be utilized to write acceptance tests.a

a. See Mike Cohn, User Stories Applied (Addison-Wesley, 2004).

5 In a “death march” project, the scope, as well as the deadline of the project, are moving targets.

Strategic foresight: estimating effort and content

Many approaches are available to estimate the complexity of functional content (that
is, functional requirements) and to determine the costs and effort required for imple-
menting release content.

Often, time-based estimations are used to estimate the effort that’s necessary to im-
plement the specified functionality. An Agile approach is to estimate the size of user
stories with points and to relate the different stories to each other. Other, more tra-
ditional approaches include function point analysis to determine the complexity of the
application. Function point analyses are calculated based on counts of particular types
of elements in an application. This approach requires detailed design up front. Agile
approaches use just-in-time design, so Agile projects don’t have accurate counts of
various elements prior to building.

Requirement-based approaches are different from metrics like Halstead that do com-
pute the complexity of programs. Other metrics, such as “Lines of Code” can be faked
too easily and aren’t meaningful.

70 CHAPTER 3 Using Scrum for release management
Agile teaches us that software evolves over the course of many iterations. The Agile
process continuously improves design, development, and testing until you have a fin-
ished product that meets the users’ needs.

RELEASE TYPES AND CATEGORIES

Many projects find it helpful to distinguish release types and categories in order to
improve planning and synchronization between all stakeholders, especially develop-
ment teams, test teams with their respective test environments, and the production/
operations teams.

 Releases come in many different types and can vary in scope depending upon the
sorts of changes implemented in the release. The release type defines the release on
an organizational level. Typically, the release complexity, its implications, and the test-
ing effort are metrics used to categorize releases. Some release types include struc-
tural releases, business releases, component releases, and emergency releases.

 Structural releases are the biggest in terms of complexity and implications,
because you change the underlying structure of the software. Common examples are
structural changes in databases (data definition languages, or DDLs), which are nor-
mally put into this type of release. This comes in handy for communicating database
changes to dedicated test and production departments that are responsible for main-
taining and updating their respective databases. Test managers or database experts,
such as database owners (DBOs) and database admins (DBAs), need to organize their
activities. The impact of updating the structure of a database (with a DDL) is different
from updating the data in the database (with a data manipulation language, DML),
without changing the structure. Because of the difference in the impact and higher
risks, structural releases are commonly targeted with a couple of months’ notice to
their delivery base. On the other hand, emergency releases to fix a severe production
issue can happen at any time, based on a defined process.

 The release category expresses the number of changes and is aligned at technical
borders. The category name identifies which software artifacts are released. Typical
approaches are delta releases, full releases, and package releases. A delta release pro-
vides a “diff” between the old and the new version; a full release provides the complete
set of artifacts; and a package release contains single packages. Releases not delivering
the complete set of artifacts are called incremental releases.

 Although release types and categories are independent of each other, there are
common traits found between them. For example, a structural release often is a full
release, and an emergency release is generally a delta (or patch) release.

3.2.2 The release duration

The release duration—how long it takes the team to prepare the release—should be
equal for all releases. This is important for planning reliability and for keeping the
team organized in a flow. It’s also considered a best practice to stick to the release flow
regardless of any events that happen throughout the year (such as holidays, vacations,
and so on). There’s almost always a reason for one stakeholder to want to prevent

71Implementing Scrum release management
frequent release; don’t start with special cases to serve the individual wishes of one
stakeholder at the expense of all other stakeholders, because every single stakeholder
has their own individual preferences and wishes. It’s important that all stakeholders
commit to a unified approach. Reduce the number of features delivered in that
release, if necessary, and eliminate the root causes of bottlenecks.

 If you do change the release duration for one future release, communicate this at
once and before the release starts. Put this into the public release calendar (as dis-
cussed in section 3.3.1 of this chapter). Don’t extend the duration of the current
release while it’s running. If you think your work won’t be done in time, reduce the
amount of release content appropriately. You’ll be better off if your releases are driven
in a strictly timeboxed fashion, where all dates are fixed.

TYPICAL RELEASE DURATIONS Every project is different and has its own
requirements and basic conditions. My suggestion that release durations
should be a matter of weeks is only a reference point. In projects applying
Scrum, there are debates over whether two or four weeks is the best duration
for a release (in this book’s meaning of release). The traditional recommen-
dation is four weeks, but more and more Scrum experts tend to recommend
two weeks as the standard.

No single rule of thumb exists for the best release duration. In general, the shorter
the release period, the better. Shorter release periods lead to early feedback, namely
from the customer, who uses the software on staging environments (such as during
acceptance testing). Continuous integration, automated testing, and productive
development environments help to speed development and facilitate the Scrum short
release intervals.

 Don’t confuse short release cycles with sequentially running releases at a high,
unsuitable speed. A marathon runner won’t choose the same pace for a marathon
that a sprinter will for a short-distance race. Similarly, running releases at an unsuit-
able speed leads to what are often called death sprints, which result in an overheated
project, burned-out people, and low quality software. The project may initially look
like it’s a success, but the quality of the code gets worse, new features become harder
to implement, and new versions of the software introduce new bugs.

 Some people say short releases don’t pay off because too much effort has to be
invested in the release process itself. Often this isn’t the case: If you integrate, pack-
age, and deploy your software automatically, this process will become routine and will
always take the same amount of time to run. This holds true even when you have a lot
of manual work to do during releasing, but that’s what you must reduce to zero. To
take it to an extreme, examples exist where companies deliver new software several
times a day.

RELEASE DURATION AND AUTOMATION

Automating the integration, build, packaging, and deployment steps will facilitate
rapid iterative development. Automating the most error-prone, most repetitive, and
most time-consuming activities is essential. Additionally, automation is critical in all

72 CHAPTER 3 Using Scrum for release management
areas where you’re interested in an objective, reproducible result. Another good place
to start automation is with processes that aren’t transparent for the team, because this
will force them to understand those processes: You can only automate what you under-
stand and what you’re able to describe. Finally, automation helps a lot in areas where
manual work is annoying. Good developers have always automated repetitive aspects
of their work because of this.

 Automation can lead to improved flexibility. A good approach to quality control
that leads to improved flexibility is to get the same automated results continuously.
You can then step in immediately if the automated process reveals any defects. Besides
that, in your daily work, you should focus on those aspects that require human activi-
ties. Humans shouldn’t do the work of robots.

3.2.3 The release content

The content of the release is determined and committed to in the release planning
meeting before the release starts. Agile approaches differ in dealing with changes that
occur during the release. Many projects change the scope of the current release
under the agreement that a similar amount of scope needs to be taken out of the
backlog. As a general rule of thumb, it’s often best to stick to the approach of text-
book Scrum: The scope of the release and its content mustn’t change during the
release process.6 This leads to stable requirements and basic conditions for imple-
menting, and you can better measure what you’re doing.

 The one exception to this rule is that features can be removed from the release,
particularly at the end of the release process, when it becomes obvious that a given
feature can’t be implemented or fails to meet quality standards. Quality standards can
be defined through metrics and tests, and these standards should be fixed and
defined before the release starts. It’s not a good idea at the end of the release to
remove some failed tests or to remove a metric that’s not met by the application, just
in order to pass the quality requirements and complete the release.

 During the release, you’ll further specify the features, and you may identify addi-
tional facets that are necessary. Specifying and implementing features will often result
in new insights, leading to additional (or less) work.

 Features taken out of one release go back into the product backlog. They may be put
into the next release backlog, but this isn’t always the case, because priorities may change.
Consequently, a skipped feature may be implemented much later, or perhaps never.

RELEASE CONTENT A release consists of software modules, installation rou-
tines (and other configuration items), and dependencies, including drivers,
documentation, installation guides, help, user documentation, release notes,
test cases, use cases, user stories, and requirement specifications. Most impor-
tantly, the release puts all these in the hands of the end user.

6 For further discussion on how to handle bugs that come up during the release, see Rachel Davies and Liz Sed-
ley, “Caring about Quality,” in Agile Coaching (Pragmatic Bookshelf, 2009), part III.

73Implementing Scrum release management
THE RELEASE CONTAINER, AND RELEASE 0

It’s important to understand a software release as containing all the artifacts of the
required engineering effort (use cases, user stories, and others); source code (Java,
Cobol, Scala, and so on) and its related artifacts, such as interfaces, copybooks, and
build scripts; test cases (functional and technical); and other artifacts. A release is the
reproducible container of all deliverables created in the release, or created before the
release started but that become part of the release afterwards. Functional release man-
agement defines and tracks the number of changes applied to the software (major
aspects of functional release management are planning releases, escorting the prog-
ress and delivering the final increment), whereas technical release management
tracks and references all configuration units in physical terms (such as JAR, WAR, and
EAR files).

 A release 0 can be used to kick off the development and creation of the initial
infrastructure. This can encompass setting up a continuous integration environment
and rolling out tools to the developers. Further improvements and activities concern-
ing infrastructure can also be done in later releases. It’s important that you plan and
track those activities.

 In addition, a release 0 can help if you have a chaotic development status or don’t
know the software’s status, perhaps because you recently introduced a new process
model, are applying Agile strategies for the first time, or have only worked with soft-
ware prototypes before. Collect everything you have (software, documents, and so
on), and integrate and deploy it on target machines. Then you can identify the status
of your software.

RELEASE CONTENT AND TESTS

The release content also includes tests, which should be implemented for all function-
ality. By writing unit tests, developers can find the best design and plan for future
refactoring. Functional tests validate functionally correct implementations.

 Functional tests that work as a specification for your application are also called
acceptance tests. Acceptance tests are directly aligned with business requirements. In the
best-case scenario, the customer writes the acceptance tests. This way, the tests are
written in the customer’s domain language, supporting outside-in development, as
discussed in more detail in chapter 8.

 Behavior-driven development (BDD) is a vehicle for expressing the behavior of the
application that can then be coded as automated tests. BDD focuses on example sce-
narios of how to use the developed application. Basing the written tests on example
use cases is often referred to as specification by example.

 For speed, you should write tests at a lower level than the user interface, except for
those tests that are explicitly testing the interface. Tests don’t ensure absolute correct-
ness: They can’t verify that an application is error-free. They can only find errors, and
hopefully they find a lot of them.

 The goal should be to automate as many tests as possible—automated tests deliver
the best value for the effort applied. You also need to be confident in the results of the

74 CHAPTER 3 Using Scrum for release management
tests, so you can use manual exploratory testing for any parts that aren’t tested auto-
matically. There are tools for doing that, which we’ll discuss in more detail in chapter 8.

 Tests and metrics (such as test coverage or design and code audits) are run contin-
uously and should be required to pass, particularly in the endgame, when the release
is finalized. The development team will have greater confidence if tests must always
pass, and if failed tests and suboptimal metrics are addressed immediately. Tests and
metrics (which yield their results) determine the further promotion of the software.
Software will be staged only when quality requirements are met.

3.2.4 Progress and size of working units

To measure progress, Agile teams often use burn-down charts, illustrating the amount
of work that has been completed and what still needs to be done. Both the amount of
work completed and the amount of pending work should be visible.

 The degree of work completed is often less visible, and the process of how to deal
with uncompleted work is frequently done wrong. Consider the following bad prac-
tice: You work on a feature repeatedly over the span of two releases. At the end of each
release, you state that the degree of completion is 80 percent. This is more about
guessing than about transparency, and you won’t gain insight into where you are with
that feature.

 In such a case, be sure to develop a fine-grained slicing of features and to commu-
nicate the progress in an objective, measurable way. It’s much easier to go with the
binary “done” or “not done” on small pieces of work.

 A fine-grained horizontal slicing of functionality could use more units for specify-
ing the same functionality. For instance, suppose you’ve started with two use cases to
specify functionality. After the tailoring, you’ve got four separate use cases, expressing
the same functionality, but they’re more fine-grained. Their status is now more track-
able and work progress on them is more measurable. This approach works for differ-
ent units and aggregation levels; for example, if you aggregate use cases to features
you can split both use cases and features.

 The practice of vertical slicing is similar: you can break down the units into sub-
units in order to manage development and progress better on that level. A common
example is to split features (or use cases, if you prefer to use them as the most fine-
grained specification of functionality) into tasks where features are aligned with func-
tional/business requirements, and tasks are the mapping from those requirements to
fine-grained, technical tasks that have to be worked off to complete the requirement.
If your most fine-grained planning unit is larger than two days, think about splitting it
into more fine-grained parts. Mike Cohn suggests that you should create tasks with an
approximate size so that each developer is able to finish an average of one per day.7

 You don’t have to do the slicing of features all at once, for all features. It’s enough
to do it for the high-priority items that you’re going to implement next or for tasks

7 Mike Cohn, Agile Estimating and Planning (Prentice Hall, 2006), pg. 158.

75Implementing Scrum release management
that are clearly understood. On the other hand, larger units can be understood as
placeholders for one or more additional units that will be added as soon as they’re
understood.

3.2.5 Release commitments

The whole project team works with release commitments. If you have a big project
consisting of multiple organizational units, they may all have their individual backlog.
Be aware that “when the team is specialized, its goals don’t necessarily coincide with
the overall goal of the project, or with the goals of another team.”8 The team can pull
single items out of the backlog to contribute to a release.

 On the other hand, occasionally, there’s work that needs to be done that’s outside
the scope of the backlog. In Scrum, developers shouldn’t be spending time scheduled
for development on maintenance, support, or side projects, but such time can be
scheduled in if you want to. These activities must be measured and made transparent.
For example, you may reserve 20 percent of the time for other tasks besides working
on the release backlog. Open issue lists of teams or individuals can be managed by
issue parking lots or can be held in a document, such as an Excel spreadsheet.

 Traditional environments often use a work breakdown structure (WBS) to define
how the team and its members organize their individual commitments. A WBS describes
who will do what, in which order, and what the individual pieces of work are, and it can
be written in the form of a spreadsheet. Applying “rolling wave planning,” the WBS is
more detailed for the work that’s done next. This means that the next commitments are
well planned, whereas future ones are planned with a coarse-grained outline.

 A team with a conservative posture may manage the development flow with a WBS,
whereas a team with an aggressive posture “bets heavily on changes happening and on
the ability of the project manager or lead programmer to manage the pipeline.”9

 Planning of individual and team work, and comprehensive overall release plan-
ning can be done simultaneously and in conjunction. As an example, a team of devel-
opers organizes their regular work with individual spreadsheet lists. At the same time,
those who work in projects use the respective release backlogs of those projects.

 The release commitment of the project (the release backlog) and individual team
backlogs should be stored close at hand. The product and release backlog should be
stored in a more formal way. The purist Agile approach involves writing cards and pin-
ning them on the wall, but that’s not mandatory and often doesn’t scale well. You can
also work with a lightweight ticketing system, like Bugzilla or JIRA. We’ll discuss this
further in chapter 4, which discusses task-based development.

CUSTOMIZING This chapter provides implementation practices for Scrum, in
order to fill out the abstract Scrum template. These implementation

8 Gerald M. Weinberg, The Psychology of Computer Programming, silver anniversary edition (Dorset House, 1998),
pg. 107.

9 Scott Berkun, The Art of Project Management (O’Reilly, 2005), p. 283.

76 CHAPTER 3 Using Scrum for release management
practices have been proofed and found to be resilient in many projects. In
your project, you should customize the approach where needed. No silver
bullet exists that applies to all environments. Every company and every proj-
ect is different in some way, so you need different configurations.

3.2.6 Synchronization points

ALM is all about synchronization. In every single moment, ALM synchronizes the state
of the project. What adds important value in the context of functional release man-
agement is hosting regular meetings during your releases. Three main implementa-
tions for meetings are the daily stand-up, also known as the daily Scrum or daily stand-
up meeting, the retrospective, and the release planning meeting.

DAILY SCRUM

In the microcosmic view, it’s important for the team to meet every day to synchronize
about the following questions:

■ What have you done since yesterday?
■ What are your blockers?
■ What do you want to do by tomorrow?

Do this with a daily Scrum and focus on those three questions. Don’t fall into verbose
technical discussions. If a technical discussion is needed, arrange a technical meeting
or a design session to discuss the design questions. The focus of the daily Scrum
should be how this affects everyone in the team or how everyone in the team can help.
The daily Scrum is the most essential meeting because it provides a chance to detect
and address issues early, and it provides the chance to foster team communication and
team building.

 The strategy of not falling into verbose technical discussions is wise for any kind of
regular status meeting. The stand-up shouldn’t take longer than 10 to 15 minutes and
should take place daily, always at the same time. Good times can be early in the morn-
ing or before going to lunch. The involved team should participate; other stakehold-
ers can join, but they’re not allowed to participate actively.

Responsibilities (during stand-up meetings)

Here’s a story that spells out the distinction between being committed and involved,
in which pigs are committed to the success of the work and the chickens are only
involved:

A pig and a chicken are walking down a road. The chicken looks at the pig and says,
“Hey, why don’t we open a restaurant?” The pig looks back at the chicken and says,
“Good idea. What do you want to call it?” The chicken thinks about it and says, “Why
don’t we call it ‘Ham and Eggs’?” “I don’t think so,” says the pig. “I’d be committed
but you’d only be involved.”

77Implementing Scrum release management
RETROSPECTIVE

Communication is important, but action is more important. Too often people get
bogged down in meetings where they fail to reach consensus and agree upon a course
of action. One essential forum for discussion is a meeting in which the discussion
focuses on what was done well and what can be improved. This is known as a retrospective.

 The retrospective is done at the end of the release and before the planning meet-
ing for the next release. A retrospective can also be done more often if required. The
last release will be analyzed to look for areas where the process can be improved (and
mistakes avoided). To be sure, there are things that can be optimized. If you detect
several issues, focus on the most relevant and biggest ones. Talk about the issues, and
find the root cause for the trouble. Only then can you find an adequate counterstrat-
egy. This may sound simple, but it’s often a challenge even for seasoned professionals.

BLAME STORMING AND FINGER POINTING If you have people on your team
blocking and hiding information (no, I don’t mean the “information hiding”
design principle of object-oriented software development) or waiting to
blame someone in a status meeting, you aren’t working the Agile way. For a
retrospective to work well, you need the key values of honesty, trust, and
courage and an environment where it’s safe to speak out.

It’s important not to blame anyone during the retrospective, but it’s important to talk
about what happened. By applying the appreciative inquiry approach,10 you can
underline positive relationships and the basic goodness in a person, a situation, and
an organization, instead of focusing on gaps and problems.

 In retrospectives, your thoughts and statements should be based on the agreement
that, whatever the project members did during the release, they did it to help make the
release a success. But this has limits. If you’re working in a culture where people are act-
ing to thwart a project or against the company’s goals, you may need to quit the project
as soon as possible, or you could at least establish that the team isn’t being Agile, so that
any improvements arising from a retrospective will probably add little value. Retrospec-
tive meetings aren’t successful unless the entire team is contributing and feels free and
safe to do so. Although this concerns the overall project atmosphere, in the beginning
of the retrospective you can run a “safety check” to make people feel more comfortable.
Entire books deal with how to set up and run retrospectives.11

(continued)

“Committed versus involved” is also valid in a broader sense. Developers are com-
mitted. They decide how much stuff goes into a sprint, whereas others in this case
are bystanders.

10 Recognizing the best in people while still exploring and discovering better ways of doing things.
11 See, for example, Esther Derby and Diana Larsen, Agile Retrospectives (Pragmatic Bookshelf, 2006).

78 CHAPTER 3 Using Scrum for release management
RELEASE PLANNING MEETING

During the release planning meeting, all important stakeholders will meet to discuss,
synchronize, and commit to the content of the release. This doesn’t replace other dis-
cussions that will occur during the development process. The planning meeting
should be the final point at which the team commits to delivering the content identi-
fied in the release backlog. In many projects, the planning meeting is the event where
stakeholders present their visions, break features into stories, and plan the release.
Dean Leffingwell’s Agile Software Requirements12 offers great guidance in setting up
agendas and checklists for such a planning meeting.

3.2.7 Feature teams, component teams, caretakers

Collaboration and teams are essential for reaching a project goal. “The manager’s job
with respect to a team is to start it when a team is needed, leave it alone when it’s work-
ing effectively, and stop it when it’s not.”13

 During release planning, feature teams are created where necessary. A feature team
is a cross-functional team that traces and pushes the creation of a feature that has to
be developed as part of the release to fulfill stakeholder needs. This team exists tem-
porarily, working toward a common goal. A crucial benefit of feature teams is that the
feature can be implemented using a strict focus that’s free of organizational borders
(which could have a negative impact on the architecture of the solution). The feature
team takes care of its own organization, including times and frequency of meetings.
It’s created by the responsible stakeholder, usually the project management, and it’s
responsible for achieving the goal. The team may be led by a feature team leader or it
may be completely self-organized. Possible challenges are escalated to the decision
makers where needed.

 In contrast to a feature team, a component team is a traditional team responsible for
creating and maintaining a component in a system. It’s more aligned at organizational
borders or at architectural layers, such as the presentation layer or database layer.

 Developers can work on both teams at the same time, although a full assignment to
one team is often preferred to minimize time-consuming context switches. Developers
who become part of a feature team leave this team either after a defined time or when
the job is done. Typically, the feature team is retired when its goals are achieved. Then
the created components are maintained and further developed solely by the compo-
nent teams.

 Figure 3.4 shows how feature teams and component teams coexist and how, in this
example, one developer is part of both teams at the same time. A caretaker can be
assigned the responsibility of achieving goals, tracking progress, or maintaining the
process. This is often a special manager or expert who is good at achieving goals or
solving problems. The Scrum master is an example of a caretaker. Often the caretaker

12 Dean Leffingwell, Agile Software Requirements (Addison-Wesley, 2011), chapter 16.
13 Gerald M. Weinberg, Quality Software Management, vol. 3 (Dorset House, 1994), pg. 264.

79Implementing Scrum release management
isn’t part of the team, but rather acts from outside the team. For instance, the Scrum
master isn’t part of the Scrum team. Another type of caretaker is someone who buys
cold drinks after a long working day. Please let me know which pub you’ll be in!14

3.2.8 Delivery slots, frozen zone, and code freeze

Although you can create versions of your software continuously (for instance, every
night with nightly builds), ultimately you want to complete your work and provide a
final stable version. The final version is labeled in the VCS and distributed and com-
municated as such. The final version is the release.

 You develop, integrate, and build your software from the first day of the release
process, continuously adapting to change as it occurs. At the end, you want to stabilize
the software and pay special attention to the quality, also verifying that the require-
ments are met. Some organizations call that part of the sprint the “endgame,” the
“frozen zone,” or the “hardening phase.” Here are several common strategies to focus
on during the frozen zone:

■ Code is committed only after it’s peer reviewed (explicit review in a traditional
project setup, organically through team collaboration and pair programming in
Agile settings).

14 In his book Agile Software Development: The Cooperative Game (Addison-Wesley, 2007), Alistair Cockburn men-
tions a use case where “getting seriously drunk together” helped to improve teamwork (pg. 231).

3rd party stakeholder

3rd party developer

Customer Developer

Developer

Developer

Developer

Developer

Component team
Feature team

Caretaker

Figure 3.4 Feature team and component team in coexistence. The feature teams work cross-
functionally on a feature, while the component teams work on a component. A developer may work as
part of the component team and additionally be drafted into a feature team to work on a specific feature.
The developer may work on both teams, or may solely work as part of the feature team for a defined
period. A caretaker looks out for impediments and mentors a team.

80 CHAPTER 3 Using Scrum for release management
■ No new APIs are implemented, meaning only bugs are fixed and no additional
features are implemented (there’s a feature-freeze, or features are feature-com-
plete).

■ If you don’t have a complete integration build, including all components and
databases, you want that to be done during the frozen zone at the latest. Scrum
calls for a potentially shippable solution increment to be delivered in each
sprint; the solution increment isn’t potentially shippable unless it includes a
complete integration build.

■ If you have timed builds—once a day, for example—you may want to increase
the number of builds to get more feedback.

■ The development team might continue to work on the trunk while the release
branch is frozen.

The duration and the start of the frozen zone vary. Typically, it takes days. If you get
good at Agile ALM, you may reduce this time interval to a minimum, but in a 30-day
release, having a frozen zone of two days isn’t uncommon.

 The frozen zone isn’t the same as a code freeze (see figure 3.5). The code freeze is a
short interval at the end of the frozen zone that spans a few hours, such as the last
hours of the release or the last afternoon of the release. The code freeze is the slot
where no one can commit anything, not even new features or bug fixes. It’s the time
where the releasing team creates the final release. But the procedure of creating the
release should be the same as creating the continuous versions. The purpose of the
code freeze is obvious: to eliminate any changes to the artifacts. Changes made during
the last moments of the release dramatically increase the probability that the next
(and final) build will be broken. Although you did build the software continuously, no

Development
features and bug fixes

F
B

F
B

F
B

F
B B B B

Frozen zone
bug fixes

Development
features and bug fixes

Code freeze
no changes

Creation of
final release

F
B

F
B

F
B

F
B

Timeline

Figure 3.5 The frozen zone and the code freeze for stabilizing and finally releasing the
software before the next release is developed (F = feature; B = bug). The way testing is done
in an Agile environment often eliminates the need to have a project phase dedicated to
detecting and fixing last-minute bugs. There may be a few last-minute bugs, but the dedicated
phase should be as short as possible. In the best case, the number of last-minute bugs doesn’t
justify a scheduled phase in the lifecycle.

81Implementing Scrum release management
former build took the last (changed) sources, so the last build can fail. Because the
release is strictly timeboxed, it’s important not to have any surprises on the last day or
get any new bugs later.

 If you detect some final showstopper bugs, they should be fixed. But only one per-
son or a special group should work on those bugs, under the highest quality restric-
tions. Restricting access on the VCS can be done by conventions. You can email your
team and tell them not to change anything in the VCS (they may continue work in
their individual workspaces), and then send another email later, releasing the code
freeze. In some environments, though, this lightweight approach doesn’t work. If you
have a chaotic team, hypermotivated people, or too many team members to inform
with emails, you may want to support the code freeze technically (see section 3.4).
Code freezes are important for providing stability and the chance to complete a
releasable unit of work. Success also depends on a good release plan.

3.2.9 Staging software

Staging software is the process of completely and consistently transferring a release
with all its configuration items from one environment to another. The process of stag-
ing releases consists of deploying software to different staging levels, especially differ-
ent test environments. Staging also involves configuring the software for various
environments without needing to recompile or rebuild the software. Staging is neces-
sary to transport the software to production systems in high quality.

 It’s not always necessary to put a release that won’t be shipped to the customer into
the complete releasing process, including promoting it on higher staging environ-
ments. But like other processes, the releasing process should be done automatically and
continuously. If you skip deploying the software on higher staging environments, you’ll
miss an important synchronization point. You’re done with delivering the release only
after you have put the software onto the target machine with all its facets (including, for
example, creating a technical user account that’s used by the system) and verified that
it runs successfully. Many Agile projects try to optimize the cycle time between develop-
ment software and the point when the end user is able to use the software in production.
But having a software release available on a test environment can be of much value, espe-
cially if you don’t need or don’t want to put every single release into production.

 Only a deployed and available software release illustrates the current status. No
substitute exists for that—not any working software in a workspace, and surely no
specification or other document in Microsoft Word. Often, and particularly for those
projects in the biggest chaos, a complete deployment on a real machine is the only
thing that demonstrates the quality of the software and what set of features is imple-
mented and available.

 Every significant release of the code needs to be deployed to a testing environ-
ment. Sometimes you’ll need to stage the release so that the current testing phase can
be completed without interruption. You need to balance the stability of the testing
effort with the value added by continuously integrating the code. If you postpone a
release in order to include more features, you’re more likely to postpone uncovering

82 CHAPTER 3 Using Scrum for release management
serious integration issues, but deploying while QA is in the middle of an automated
test run is also a bad idea.

 The release itself shouldn’t be dependent upon any specific target environment,
although obviously there may be required runtime environments, including external
data feeds or other resources. You should be able to reconfigure any release for a spe-
cific environment without having to rebuild the entire codebase. Figure 3.6 summarizes
how software is developed and integrated on lower staging (or promotion) environ-
ments and then is promoted to higher staging environments by configuration only.

 All software changes must climb the whole staging ladder, from the lowest rung on
the ladder to the highest rung, sequentially. (Commonly, this ladder is illustrated on
its side, as in figure 3.6, with the higher rungs being the boxes further to the right.)
It’s good practice not to skip any rungs during staging, such as by deploying a software
version that was created in a local workspace to the system test environment. Excep-
tions in staging may be made for emergency patch releases, but how you handle emer-
gencies must be planned wisely. The process for handling emergency patches must
define rules for how to retrofit the changes back into the test environments and the
current version in the development phase, to prevent environments from getting out
of sync. In a complex projects, many companies minimize such synchronization issues
by moving production versions of specific configuration items back to lower levels of
the staging ladder.

 Many projects define fallback strategies for reverting to an older release in case the
deployment of the new one fails. Rolling back to an older (usually the most recent)

Figure 3.6 Staging software: requirements will be implemented in the developers’ workspaces. The
central development environment integrates all respective configuration items and is the base for
releasing. Software is staged over different environments by configuration, without rebuilding. All
changes go through the entire staging process.

83Implementing Scrum release management
version can involve redeploying all artifacts that were deployed on that staging level
before the new release was unsuccessfully deployed.

 Rolling back is a valid approach, but it’s better to always move forward and stage all
the different types of artifacts, including database dependencies. Reverting a release
on a staging level back to a previous release isn’t always feasible, especially in complex
settings with many dependencies between configuration units. Database elements are
often on the critical path during releasing new versions. Upgrading a database to a
new release is often a one-way path, where the old version of the database structure
and data can’t be fully recovered to the old version. This is a good reason to use a well-
defined staging process and to test the delivery of your software on lower rungs of the
staging ladder.

 If you can’t revert to a previous release, you need to plan and test the entire release
process to minimize risk and to address any possible issues that may arise. It’s always best
for the test and production environments (and delivery processes) to be identical. This
is the only way you can do a dry run of your production delivery. All staging is a set of
changes that further develop the system, as opposed to rolling something back.

3.2.10 Quality gates

Quality gates allow the software to pass through only if it meets their requirements. Fig-
ure 3.7 shows the staging ladder with quality gates injected. Developers commit code to
the VCS in order to update the central test environment only if the code satisfies the
defined quality requirements; for instance, the local developer build may need to run
successfully and have all tests pass locally. Build, test, and metrics should pass out of the
central development environment, and then automated and manual acceptance tests
are needed to pass the system test. The last quality gate to pass is the one from the

Development
environments

(decentralized)

Development
environment

(central)

System test
environment

Production mirror
environment

Production
environment

VCS Commit
(only if status ok)

Build broken
if quality requirements missed

Stage if
quality requirements are hit

1 2 3 4

1 2 3 4
Quality gates

Figure 3.7 The staging of software is allowed only if it successfully passes through the defined
quality gates. Quality gates have an obligatory character, validating the defined quality
requirements (tests and metrics).

84 CHAPTER 3 Using Scrum for release management
production mirror to production. Here, for example, specific production tests are
done or relevant documents must be filled in and signed.

 It’s mandatory to define the quality requirements in advance and to resist custom-
izing them after the fact, when the software has failed. Quality gates are different at
lower and higher stages; the latter normally consist of a more severe or broader set of
quality requirements, and they often include the requirements of the lower gates.

 Feature specification tests aren’t always available when the release starts; it’s nor-
mal to detail the specifications of requirements, features, and tests during the release
process. Bug fixing occurs not only on coding artifacts, but also on tests. Tests must be
corrected and detailed where necessary. Tests must also be put into a VCS and base-
lined along with the contents of the release.

3.3 Release planning vehicles
It’s always best to create release plans and then communicate them to all stakeholders.
A release plan is a central and important utility, and a couple of vehicles are available
to express and communicate these plans.

 In chapter 4, we’ll look at a tool-driven approach based on JIRA and Trac for set-
ting up releases with milestones and plan and track contents. But that’s the second
step. The first step is to set up and create a release overview that communicates the
timeboxed slots, indicating when important things happen. This overview can have
different implementations. One is a release calendar; another is a release screenplay.

3.3.1 Release calendar

The release calendar is set up and updated
by a release manager, if one exists. If not, it
may be the project manager. It shows all
times for all releases and the key activities
required within each. The goal is to provide
a comprehensive view of the process with
dates, and the calendar broadcasts the infor-
mation. This calendar is lightweight and not
locked down; it’s open to change if required.
The release calendar provides the exclusive
view of the releasing of one project.

 Figure 3.8 shows an extract of a release
calendar. In the first column you see the
days, and in the second you see a shaded
link expressing some activities spanning
days. The third column contains comments
about what has to be done during those
days. This is only an example; the calendar
will vary from case to case.

Acceptance testing
Release 2.2.0.0
Environment B

June 1

June 2

June 3

June 4

June 5

June 6

June 7

June 8

June 9

June 10

Frozen zone
Release 2.3.0.0

Code freeze
Release 2.3.0.0

DB DDL changes
Release 2.3.0.0

Figure 3.8 The release calendar defines the
dates and activities. It’s the single view on the
timeboxed releasing that may include
activities and deliveries.

85Release planning vehicles
In this example, during the first four days in June, the focus is on acceptance testing
release 2.2.0.0 of the software on environment B. On June 5, a mandatory delivery is
defined: structural database changes influencing release 2.3.0.0 must be finalized and
communicated.

 During the next four days, the team and the software go through the frozen zone.
Here, you also see a common pattern. Structural database changes are often handled
differently compared to coding artifacts. In the best approach, all artifact types are
managed identically, but in practice this may vary for database elements: database
changes must often be defined earlier, as expressed in this example. On June 10, the
code freeze for the new release happens and the release is finalized.

 You may want to distinguish between a project release calendar and a corporate,
central release calendar. The corporate release calendar aggregates all of the distrib-
uted releases.

3.3.2 Release screenplay

The release screenplay is a timetable balanced at a zero point, which is normally the day
of release. It’s further aligned with important activities and responsibilities. Figure 3.9
shows such a schedule that’s balanced at day X—the moment when the release is cre-
ated. Looking back from this time, you can see different milestone activities, like the
start of the frozen zone two days before.

 Other actions can start when the database structures are frozen, when the creation
of target environments begin, and so on. Looking at the time interval after day X, you
can see actions such as deploying in target environments or special bug-fixing slots. Typ-
ically in this timetable, there’s a column that lists the person in charge of the action. It
can also be helpful to mention the major stakeholders in an additional column.

Time

Starting
day X-5

Day X-3

Day X-2

Day X-2/X-1

Day X-2/X-1

Day X

Day X+1

Day X+2

Day X+3

Action

Preparing,
setting up

Frozen zone
start

Writing
reminder mail

Functional tests

Last bug
fixes

Creating release
branch, tagging

Deployment
environment A

Drinking coffee

...

Responsible

DB team

Team

Release
manager

Customer
proxy

Dev-team

Releasing
team

Release
manager

Team

...

Stakeholder

Release
manager; team

Release
manager

Dev-team

Dev-team

Dev-team

...

Figure 3.9 Release screenplay
balanced at day X (release day),
aligning times, actions, responsi-
bilities, and the stakeholder.

86 CHAPTER 3 Using Scrum for release management
Let’s look at one example: Calling out
and starting the frozen zone is the task of
the central releasing or software configu-
ration management team, and one stake-
holder is the complete development
team. A screenplay for this scenario can
be set up centrally for common use. It can
also be implemented for every concrete
release, so you’ll have to transform the
variable times to concrete dates. Then the
screenplay will increasingly match the
release calendar we discussed before.

 Another derivative of the release
screenplay looks at dates and activities
from one role’s perspective. Consider the
development team or the release man-
ager. The latter can set up a schedule that
describes all actions from their point of
view. Figure 3.10 shows an example.

3.4 Supporting strategies with Subversion
We’ve discussed the basics of functional ALM and have talked about Scrum and the
fundamental aspects of releasing. We’ve also talked about calendars as tools for rolling
out and supporting releasing. In this section, we’ll cover technical strategies and tools
you can use to bridge the functional and technical releasing. We’ll look at technical
strategies to support functional releasing.

 One strategy is to use hooks (sometimes also called triggers). Another wise choice
is to use locking. Both strategies are tool-agnostic.

 Some VCS tools use a distributed approach (like Git), whereas others use a more
restrictive approach (like ClearCase); the examples in this chapter are based on Sub-
version (see http://subversion.apache.org). A distributed VCS has a different usage
for branches, but the illustrated approaches are useful for both, particularly for han-
dling a main trunk (or a main stream that’s necessary for continuous integration). In
chapter 7, we’ll discuss how to bridge different version-control systems (such as with
Subversion or Git) to enable feature branching.

 Why bother with hooks and locking? Technical releasing collects configuration
items for inclusion in releases, and they’re primarily stored in a VCS, checked out by
developers, updated, and again checked in. Access to the VCS should be aligned with
Agile strategies leveraging the overall release process.

3.4.1 The one-medium approach

Many tools are available on the VCS market. At their core, they all have the same
intent and functionality: Artifacts should be stored centrally; stakeholders must be

Time

Starting
day X-5

Day X-3

Day X-2

Day X-2/X-1

Day X-2/X-1

Day X

Day X+1

Day X+2

Day X+3

Action

Sending GO to DB-team for
DML changes

Communicate frozen zone

Check status

Monitor functional tests

Check status

Creating release
branch, tagging

Deployment
environment A

Drinking coffee

...

Figure 3.10 Release screenplay, aligned with
one role.

87Supporting strategies with Subversion
able to retrieve the artifacts, update them, and provide the new versions to the others.
This holds true for all artifact types, not only source code. But opinions differ about
whether the VCS is the right tool to use for managing all artifact types, including bina-
ries (for example, Word documents), and acting as a file server. In my opinion, it’s
better to reduce the number of different channels, to avoid, for example, having a
separate file server for storing binary documents. Using Subversion as a file server has
the advantage that you benefit from version control and know who has touched which
artifact, and when they did so. The information about which is the most recent version
of the artifact isn’t always available when using a plain file server.

 If lots of large binaries in the VCS slow down the checkout, consider improving the
folder structure in the repository. But not all stakeholders are interested in the same
artifacts and don’t have to check out all the artifacts. For example, a project manager
may be primarily interested in the project archive, including project protocols,
whereas an architect is more interested in design documents. Refining the project def-
inition to include roles, the roles’ access paths to the Subversion repository, and the
roles’ permissions is often a good way to organize the work with the VCS.

 If you have team members who don’t want to store large documents in the Subver-
sion repository, you should gather your requirements and consider the alternatives.
For example, pin down what large means. You may also consider storing references to
large artifacts, and not the artifacts themselves.

 Subversion is a lightweight, open source tool that
enables a team to apply Agile strategies. As CVS’s succes-
sor, Subversion is popular and its use is widespread
throughout the industry.

 Subversion is a good tool for storing all kinds of arti-
facts, including binaries (through its efficient storage
strategies). By using it when working on different artifact
types, you always profit from Subversion features like ver-
sion history (which is important for tracking changes) or
hooks and locks.

 Another advantage of using Subversion is that all
stakeholders can access the tool and the artifacts stored in
it. Artifacts in their versions can be accessed by developers
(via Subversion integration in the IDE) or by nontechni-
cal stakeholders, who can use the free TortoiseSVN tool.
Once installed, TortoiseSVN adds Subversion commands
to the directory explorer of your local operating system
(see figure 3.11).

 Both Subversion and TortoiseSVN are easy to use,
though it may take a bit of training to get the team up to
speed on using them.

Figure 3.11 Accessing
Subversion on Windows with
TortoiseSVN. Menu action
items are part of Windows
Explorer after installing
TortoiseSVN.

88 CHAPTER 3 Using Scrum for release management
Another interface for accessing the repository is a browser. You can peruse the central
Subversion repository and its content with a web browser (if the repository is hosted
via Apache, which is the recommended strategy). This way, you can provide read-only
access when necessary.

 Subversion has several interfaces that make it much easier to use. Automating com-
mon tasks through scripts, known as hooks, also helps improve Subversion’s usability.

3.4.2 Hooks

A hook is a program or script that’s started when entry conditions apply. For example,
a trigger could be thrown due to a Subversion repository event. These events are
aligned with significant VCS lifecycle operations. A commit is an operation, for example.

 A hook is a self-contained piece of work. It knows its context, including who did
(or wants to do) what. The hook can have output or a return status that can influence
the further behavior of the system. Hooks are powerful vehicles for synchronizing the
technical and functional worlds.
Hooks are used in the niche between functional and technical releasing and they can
allow you to enforce certain rules, such as the following:

■ During code freeze, developers aren’t allowed to check in changes to VCS.
■ During code freeze, only lead developers are allowed to check in changes to

VCS, on demand.
■ Multiple users can simultaneously update source/ASCII artifacts.
■ Multiple users can’t simultaneously update binary artifacts like Word docu-

ments.
■ Stakeholders must enter a commit message (with a minimum length of x let-

ters) for all updating actions.
■ Stakeholders must enter a commit message, including a ticket number, to

enable task-based development.
■ Stakeholders aren’t allowed to access the repository when the administrator

wants to drive a repository backup.
■ Stakeholders should receive emails with details of updating operations.
■ Stakeholders aren’t allowed to update frozen versions of the software. This sys-

tem must prevent updating changes on repository paths that contain tags (after
you update a Subversion tag, it becomes a branch).

■ When synchronizing a ticketing system with changes in the VCS (depending on
the commit message), you change the state of tickets; for instance, you close or
comment on them.

Hooks are helpful, but having too many can slow down the response time of the VCS
and cause unexpected (and undesirable) outcomes.

 In the Subversion cosmos, after creating a Subversion repository, you also create a
directory named hooks inside the repository. All executables put in that directory are

89Supporting strategies with Subversion
automatically run in their individual context, depending on the trigger event. Here
are the most important hook triggers available in Subversion:

■ Start-commit—Runs before commit transaction begins
■ Precommit—Runs at the end of the transaction but before commit
■ Postcommit—Runs at the end of the commit
■ Postlock—Runs after a repository path is locked
■ Post-unlock—Runs after a repository path is unlocked
■ Pre-unlock—Runs before an exclusive lock is destroyed

Subversion hooks are used by convention. The hook script in the directory must be
executable (often the hook scripts are Python scripts) and named with the intention
and context you want that hook to be applied to. For example, if you want to create a
start-commit hook with Python, you would name the file start-commit.py. On Windows,
executable extensions are exe and bat. To make it easier, the directory already includes
hook templates named correctly. Subversion uses the extension .tmpl for templates,
which you can easily rename.

WARNING You can run Subversion and host Subversion repositories on many
different platforms, including Windows and Linux. But be aware of platform-
specific peculiarities. For example, Subversion configuration is case-sensitive
and Windows is case-insensitive. The decision of what platform to use can
depend on many different factors; for example, if you want to run Subversion
with 64-bit Apache, this installation isn’t as mainstream on Windows as on
Linux.

Further details about hook scripts can be found in the free Version Control with Subver-
sion book, available at http://svnbook.red-bean.com.

Project role: Captain Hook

Using hooks can be helpful in application development. Often hooks are used for ex-
tending or modifying runtime behavior. Hooks are valid OO tools for designing good
APIs. Examples occur in the context of delegation and inheritance—such as in the
template method design pattern.

Please use hooks and the word itself sparingly. There are people (let me call them
Captain Hooks) who patch and hack sources and add functionality systematically on
a daily basis, while calling that hooking. Tinkering with sources without caring about
the design, extensibility, and sustainability of software isn’t using hooks; it’s tinkering.

By the way, hooking a hook script is a bad idea—as bad as modifying the Subversion
repository with operating system commands instead of the intended interface. If you
need to extend Subversion, use the dedicated API!

90 CHAPTER 3 Using Scrum for release management
3.4.3 Flow and locking

Subversion naturally supports Agile workflow because it uses the copy-modify-merge
model as an alternative to the classic lock-modify-unlock model. Copy-modify-merge is
optimistic about locking where files aren’t generally locked initially. This means all
stakeholders can work on and change a file at the same time. Developers have local
copies of the central repository (or parts of it). They work simultaneously, modifying
their private copies, and after their work is done, the private copies are merged
together into a new, final version. Subversion assists with merging, but you’ll still have
to make sure that the merges are performed correctly.

 This approach can dramatically accelerate the development flow and the velocity,
because work can be done in parallel and waiting times are reduced (idle time is
waste). The drawback is that someone has to deal with the merges, particularly the
merge conflicts. Agile suggests frequent small commits to avoid large merge conflicts.
The alternative is to apply pessimistic locking, where only one person at a time can
work on a file, but merging scenarios are much easier to handle.

 Copy-modify-merge is based on the experience that in software projects, it’s rare
that more than one person is working on one file. If multiple people work on one file
simultaneously, they (mostly) work on different parts of the file so there’s no reason
for additional communication—the tool can merge such cases automatically.

 Tools like Subversion automatically merge different developers’ versions into a
central, leading version. In cases where this isn’t possible, the tool can provide merg-
ing information. The human in front of the keyboard must then decide what the new
version of the final file should look like.

LOCKING AND COMMUNICATION Locking doesn’t replace communication.
Rather, it supports releases and communication. Stealing or breaking locks is
technically easy with Subversion. Please use the locking features wisely and in
cooperation with your peers. There are good and bad scenarios for stealing
locks. First, a good one: A colleague is on holiday and forgot to release his
lock. And a bad one: Hey, the guy on the other side of my table locked the
file; but it’s my file, and I want to update it now.

Subversion’s support for merging binaries is limited. That’s no surprise. How should
the tool, for example, merge two versions of a Word document or a JPEG image? For
binary files, a stricter approach is helpful when working with locks. With the Subver-
sion command svn lock word.doc, you lock the file word.doc. This command runs
directly on the file in the repository. After it’s applied, other people can’t change the
file; the file is locked for your changes. Conversely, svn unlock word.doc releases the
lock again (also, a commit releases the lock by default). These operations will work
only when the file isn’t locked by another user. You can overwrite another user’s lock
by using the force attribute—for example, svn unlock --force word.doc. This is
known as breaking or stealing locks.

NOTE Working with locks and properties is also conveniently possible with
Subversion clients like TortoiseSVN or SmartSVN.

91Summary
It’s also helpful to tell Subversion to expect locks for individual artifact types by
default. This means that setting locks isn’t optional but mandatory before you can
change a file of a special type. In such cases, or if you want to simulate a complete
lock-modify-unlock approach, you can configure Subversion to operate accordingly.
Subversion can deal with properties (metadata) to achieve that. They can be set (and
likewise also edited after being added). Setting the needs-lock property then looks
like svn propset svn:needs-lock yes file.doc. This is something that happens in
your local sandbox first (you don’t run the command changing the attributes directly
in the repository). This means you have to commit this in the same way you commit
other changes to files.

 This is convenient for single cases. But you have to do that for all your file types or
files individually and manually. Your local Subversion client installation contains a
conf directory, and you can set it so that for all newly added files of a special type, the
property is added automatically:

[miscellany]
enable-auto-props = yes
[auto-props]
*.doc = svn:needs-lock = true

This snippet activates automatic property setting and defines the individual property
rule. You can combine locks with a precommit hook that ensures that the property is
set on newly added files. You can also use prelock and pre-unlock hooks to let admin-
istrators decide when to permit lock creation and lock releases. With these hooks, you
can prevent certain users from breaking or stealing locks, or allow them to do so.

TIP In the same neat configuration file, you can also customize which editor
to use for merge tracking and many other things.

Subversion is a popular open source VCS and lends itself nicely to Agile development.

3.5 Summary
In this chapter, we looked at what functional ALM is, and we introduced Scrum as a
popular high-level management template. We talked about releases as the central
item in the functional releasing process and discussed releasing strategies inspired by
Agile strategies. You can use the strategies in pure Agile projects and in rich, tradi-
tional approaches. We also discussed expressing and communicating release plans.
Release calendars and release screenplays are valuable tools for defining and commu-
nicating the functional releasing process. Tools for version control like Subversion
support running an Agile approach. Running the copy-modify-merge optimistic lock-
ing pattern increases flow and velocity. In special cases, Subversion still allows adminis-
trators to create stricter enforcement policies through the use of locks or hook scripts.

 In the next chapter, we’ll discuss using toolchains to provide functional and tech-
nically consistent releases in a task-based way.

Task-based development
Traditionally, work items (or tasks) are spread across artifact types and tools. Tasks
are an abstraction level for coping with the general information overload and the
challenges of parsing information from many different sources. A task is a fine-
grained, measurable unit of work, extracted from a broader scope, like a use case
or a feature. Leffingwell states “for more detailed tracking of the activities involved
in delivering stories, teams typically decompose stories into tasks that must be
accomplished by individual team members in order to complete the story.”1

 With a task-based (or task-focused) approach, the task is the unit of interaction
and the base of work. Task-based development is the technique of linking work items

This chapter covers
■ Approaches and different tools for

implementing task-based development
■ Lightweight tools for planning and tracking

tasks
■ Example toolchains, including JIRA/

GreenHopper, Bamboo, Eclipse, FishEye, Mylyn,
Trac, for planning and tracking tasks

1 Dean Leffingwell, Agile Software Requirements (Addison-Wesley, 2011), pg. 38.
92

93Prerequisites for task-based development
(issues, defects, tasks, and so on) to the specific set of changes (such as an atomic
changeset) made to complete the work described in the work item. For example, if
you’re fixing a defect that’s listed as defect 4711 in JIRA, task-based development
requires that you link the exact set of changes to defect 4711 in JIRA.

 Task-based development is powerful and significantly improves your productivity
by making it easy to track changes to the approved change request that authorized the
modification. Working in a task-based way, the functional and technical consistency of
releases is improved.

 This chapter will examine task-based development by providing numerous com-
pelling examples. Tools aggregate knowledge and improve traceability and visibility.
They aggregate content and provide views to improve the release process. I will
describe toolchains consisting of JIRA/GreenHopper, Bamboo, Eclipse, FishEye,
Mylyn, and a product called Trac, which provides much of the same functionality. You
might be using a different set of tools in your organization, but you’ll likely find that
the functionality described is similar.

 First, let’s discuss a few basic prerequisites that are commonly found in task-based
development.

4.1 Prerequisites for task-based development
Every set of changes should be documented with a brief comment that explains the
reason for the change when you check changes into the VCS. I recommend that you
use change comments to explain why you made the changes to the code base. Merely
describing what you have done doesn’t usually add any value. For example, comments
such as “checked changes in” aren’t helpful; “fixed defect #136—date calculation
error” is more useful.

 In Agile, it’s also essential that you commit your changes frequently so that you’re
continuously integrating your code. Before you commit your changes, always refresh
your sandbox to ensure that your changes won’t break the build for someone else.
Basic quality gates are also important for analyzing static code, testing, and ensuring
that the code can successfully compile.

 There’s more, but these are the basics we’ll focus on now. Here are more details
about the practices.

4.1.1 Coordinating changes

Task-based development is valuable when you’re coordinating the changes of a large
team of developers who may be located in one place or distributed across several loca-
tions. Managing the changes of a group involves handling complex dependencies,
and it demonstrates the value of continuous integration.

 For example, suppose you want to commit your changes to the Subversion (SVN)
repository. Before you do so, you should update your sandbox (your workspace) with
incoming changes. Afterward, you need to ensure that your classes compile and your
tests run successfully (including all of the required quality gates, such as static code

94 CHAPTER 4 Task-based development
analysis). Other developers are also refreshing their sandboxes and committing their
changes to the repository at the same time. Each commit causes the Subversion repos-
itory revision number to be incremented by one and the changes to be documented
in the log.

 Once all specified features are implemented, the release is finished, and the
changes from each member of the team are successfully integrated, one developer
(often the lead developer) should tag the revision of the code, which creates a baseline.
This is often done in the code freeze phase, as you learned in the previous chapter.
Some teams use branches to help organize their work (especially when they’re close
to a release). Your colleagues can always see what you have changed, and by browsing
the changelog, they can see the set of changes that was committed to fix a particular
bug or implement a feature.

 You should commit your changes to the VCS often and continuously. A general
rule of thumb is to synchronize with the central repository and commit your own
changes at least twice a day, perhaps in the morning and evening. This doesn’t mean
you must close tickets in your bug tracking system twice a day. Instead, tasks can be
updated and be “in progress.” Therefore, one task could lead to multiple check-ins,
although one commit for one small-grained task is even better.

 The VCS system should be used to track different changes as frequently as possible.
Additionally, issue management systems should track tasks with different changes; one
task could be related to several changesets (check-ins), and each changeset could link
to several files. But keep in mind that your commits should be aligned to tasks, so you
need to slice your tasks accordingly. Fine-grained, focused tasks will give you greater
confidence and are easier to track. If tasks take days or weeks to implement, they’re
too coarse-grained and the approach definitely needs to be improved.

4.1.2 Using changesets

Modifications that are dependent on each other because they implement the same task
should be grouped in one atomic VCS commit. This enables the VCS and other tools
that connect to the VCS (like an IDE) to track these changes as a single changeset.

 Matthew B. Doar states that a changeset is “a group of related changes to a set of
files; the changes are applied all together or not at all.”2 This changeset can be propa-
gated as needed and contains all the modifications that lead to a new revision in the
VCS. On the other hand, by doing atomic, bulk commits aligned with tasks (rather
than committing separate, single files), you assign one change commit to the full
batch. This allows you and others to track the impacts and results much better. Change-
sets allow a technical view on an entire group of changes.

 Allow me to provide an example: You’re working on a bug fix that requires you to
modify a couple of files. After you finish your work, you commit the changeset to a VCS
(for example, Subversion). In Subversion, this single transactional commit will increase

2 Matthew B. Doar, Practical Development Environments (O’Reilly, 2005), pg. 42.

95Prerequisites for task-based development
the revision number by one. Your colleagues can see what you have changed and, by
browsing the change log, they can confirm that these changes belong together. You
(and others) can easily reproduce the different software versions—the one version
from before the changes and the resulting one after applying them. By accessing the
Subversion revision number, you can do this even without using Subversion tags.

 If you use a VCS that doesn’t handle commits in a transactional way, such as Con-
current Versions System (CVS), mistakes or problems can occur because of incomplete
transactions. Consider using a continuous integration infrastructure where a new
build is triggered after a developer commits changes in order to integrate the change-
sets with the central repository and with the work of your peers. You can also use the
task management system (for example, JIRA) to trigger an integration build. For
instance, when the task is marked as complete, continuous integration will trigger the
build and related testing.

 After a commit occurs, the build server often has to wait several intervals (or a spe-
cific scheduled time) to start the build. If you don’t commit the changes all in one
step, you may kick off a new build that’s based on an inconsistent state.

4.1.3 Associating changesets with tasks

The next important step is to associate every changeset with a specific task and indi-
cate the task number (for example, defect 136) in the comment that you enter when
you commit the changeset. (Task here means a ticket in the ticketing system, such as
JIRA or Trac.)

 By associating changesets with tasks, the tasks (change requests, new features, or
bugs) are traceable through the system. Many tool integrations make this connection
a two-way function that automatically tracks the changesets to the defect number that
authorized the changes. This means that you can look up the defect in JIRA and see
the revision number of the changesets that implemented the bug fix. You can also see
the defect number in Subversion that explains why the changeset was committed. This
two-way traceability improves quality and productivity.

 If this all sounds complicated, it is. But it’s more complicated, even impossible, to
track without task-based development! These different aspects of enabling task-based
development, coordinating changes, using changesets, and associating changesets to
tasks, are important considerations, and I’ll soon explain how to implement an exam-
ple solution. Right now, though, let’s consider a high-level solution from a logical
point of view.

COMMIT MESSAGES AND VCS HOOKS Task-based development is enabled by
using a special commit message that references the task identifier. You can
make referencing the ticket numbers in check-in messages mandatory by
using VCS hooks.

Figure 4.1 shows what a high-level solution looks like, from a logical point of view
(without any specific tools). The system infrastructure contains a ticket system, where
you manage your tasks (work items, requirements, bugs, features, and tasks).

96 CHAPTER 4 Task-based development
The developers use an IDE to update tasks in the ticket system with (specific context)
information. Developers can update the tickets in the ticketing system (which tracks
the changes on the task description) without leaving their development workspace
and tools. This information is distributed to other developers who are working on
these tasks too. Their workspaces are aligned with tasks and artifacts, which are neces-
sary to accomplish the specific task.

 Code sources are managed with a VCS. The developers share their code via the VCS
and perform update (pull changes) and commit (put changes) operations on the code
base. In order to work in a task-based way, they add the ticket number to their commit
messages.

 A central continuous integration server pulls the source code and builds the soft-
ware. By referencing the ticket number to the changes, the build server can retrieve
this meta-information from the VCS, and reference the changes to the build artifacts.

 Consequently, the Agile ALM system delivers information about which artifacts
contain what features or bug fixes (which tasks motivated changes on these artifacts)
and which tasks are solved by working on which artifacts. This is called traceability, and
it ensures the alignment of activities with concrete requirements.

 The ticketing system allows you to manage requirements (such as bugs, features,
and tasks) from a logical point of view. This helps facilitate the Agile business view of
the development process. The developers may also be using an IDE that has a plug-in
installed to allow easy access to the information in the ticketing system. Workspaces
should be created and aligned to organize the work in a logical way (using Eclipse,
you can use working sets to logically group the artifacts in your workspace) whereas
the code is managed in the VCS (such as Subversion). This approach provides trace-
ability, improving both productivity and quality.

Figure 4.1 The Agile ALM infrastructure: the unique ticket number of a task connects the
different participants (nodes) in the system. This results in traceability and transparency, and
it ensures the alignment of activities with specific requirements.

97Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
 In the next two sections, we’ll look at how to implement task-based development
using two different toolchains. The first uses JIRA/GreenHopper, Bamboo, and Fish-
Eye with Mylyn.

4.2 Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
In this and the next section, we’ll look at how to implement task-based development
using two different toolchains. The first toolchain, discussed in this section, is based
on the commercial tools JIRA/GreenHopper, Bamboo, and FishEye. The second tool-
chain is primarily based on Trac, which is an enhanced wiki and issue-tracking system
for software development projects—it’s covered in section 4.3. Regardless of which
toolchain you use, you can add a product known as Mylyn, which is a task framework
for Eclipse. Both toolchains can (and should) be integrated with a continuous integra-
tion server.

 Remember what we discussed in chapter 1. Your tool infrastructure should be flex-
ible and open to changes. If you feel more comfortable with different tools in your
toolchains, you can replace them with your favorites, keeping the rest of your tool-
chain unchanged. Other toolchains are possible by integrating different tools of the
same tool types. For instance, if you prefer Jenkins over Bamboo, you can easily
replace that one specific tool in the overall chain either during initial setup or at any
time later.

JIRA (and its plug-in GreenHopper), FishEye, and Bamboo are commercial prod-
ucts developed by Atlassian.3 These lightweight tools span different phases of the
development process, including requirements engineering, development, and deliv-
ery. Different project roles gain benefit from this highly integrated toolchain:

■ The team (developers and testers), project managers, and product owners can
use JIRA to manage the requirements and to align their work with those require-
ments.

■ Developers can access the tasks from within their IDEs with Mylyn.
■ The team can use Bamboo for CI, and developers can use it to start builds from

within their IDEs.
■ The team, project managers, and product owners can use FishEye to track

source changes, providing real-time notifications of code changes plus web-
based reporting, visualization, searching, and code sharing.

■ The team can track changes by ticket. This means the team is aware of which
tickets were completed in specific builds (via Bamboo and FishEye), which
sources were modified to complete a specific ticket (via JIRA and its connection
to FishEye/Subversion), and which tasks they should work on (via Eclipse and
Mylyn). Because developers have all this information at their fingertips, the
approach is often also described as developer-centric.

3 See www.atlassian.com to find comprehensive online documentation for installing and configuring these
tools.

98 CHAPTER 4 Task-based development
These tools are lightweight (and inexpensive) but they still provide full tracking of
tasks to changesets, which is the main point of task-based development. This toolchain
is illustrated in figure 4.2.

 As you already know, the ticket system contains your tasks. In this specific solution,
JIRA is the ticket system, and its GreenHopper plug-in enables JIRA to support Agile
development. Developers use Mylyn to access JIRA tasks directly from within the
Eclipse IDE to work in a task-based way. The sources are managed in a VCS, which in
this case is Subversion. FishEye monitors code changes in the VCS, and the FishEye
integration allows you to browse your source-control repository from inside JIRA. Bam-
boo, as the CI server, provides build information and makes it visible inside JIRA, as
part of the ticket.

 Let’s take a deeper look at these tools.

Figure 4.2 This toolchain enables task-based development. It’s based on JIRA,
FishEye, Subversion, Bamboo, Eclipse, and Mylyn. Requirements are managed with
JIRA. GreenHopper enriches JIRA with further features for Agile development. The CI
server pulls sources from the VCS to build the software. FishEye is a convenient VCS
browser that makes changes visible in a convenient way. Both Bamboo and FishEye are
integrated with JIRA. Developers use Eclipse with Mylyn to work on code; they access
code with Eclipse and the plug-in that’s available to connect to the VCS that’s used.

99Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
4.2.1 Managing tasks with JIRA

JIRA is most commonly used for issue tracking, but it can also help with project and
release management. You can configure JIRA for your needs. For example, you can
configure your own workflows (transition rules), and you can modify issues so they
contain information about bugs, enhancements, requirements, or a customized work
item. You can configure JIRA to track different change types that contain different
information. As a result, JIRA can also be used for tracking requirements and tasks,
which makes it appealing.

JIRA can be integrated with a VCS, like Subversion. JIRA displays all changes in Sub-
version with their respective commit messages, including the JIRA ticket number.
Besides its powerful configurable features, it also has an extensible open architecture.
There are plug-ins that you can easily add to the system, and you can also write your
own plug-ins using the documented API.

 Some of JIRA’s main features include the following:

■ Release management support (roadmaps, versions, milestones)
■ Ticketing system
■ Fine-grained permission system, Lightweight Directory Access Protocol (LDAP)

support
■ Open for integration with Atlassian Confluence wiki, Atlassian Bamboo, and

other Atlassian products like Crucible
■ Multiproject support
■ Extensibility and configurability (for reporting, issue types, features, and so on)
■ Feature-rich approach enabling Agile development
■ A configurable state machine (a workflow engine) for handling issue transitions
■ Support for task-based development
■ Support for Agile processes, including burn-down charts and cards (via Green-

Hopper)

BUG-TRACKING TOOL = PROCESS SMELL? Some teams track defects separately
from other tasks, and some teams treat a defect the same as any other work
item. Many mature Agile teams call the existence of a bug-tracking tool a pro-
cess smell. Other teams have such a severe problem with legacy code that they
need a bug-tracking tool to find a practical starting point to improve their
code base. The choice of tools will depend on local conditions and on how
the team operates. JIRA’s advantage is that you can track all the different
types of changes, including bugs and tasks. You can customize JIRA to hold
issues of type task and bugs in parallel, making JIRA more a task-tracking tool.

GreenHopper is an optional JIRA plug-in that improves JIRA’s ability to prioritize and
visualize priorities, and it thereby empowers JIRA to support Agile project manage-
ment. To that end, GreenHopper introduces cards that can be assigned to issue types
and target releases. GreenHopper also adds burn-down charts to JIRA, visualizing

100 CHAPTER 4 Task-based development
progress through the release. Installing GreenHopper into a running JIRA instance is
easy. In newer versions of JIRA, you can install the plug-in through JIRA’s admin
screen.

CODE REVIEWS WITH CRUCIBLE Crucible is Atlassian’s tool for reviewing work
as a continuous process. Crucible enables code review and is highly inte-
grated with JIRA, supporting Subversion, Git, and other VCSs. One common
use case for Crucible is to provide a workflow that transitions a ticket from
Open to Under Review to Resolved. Another scenario is a postcommit review,
done automatically after code changes are checked in.

After you have completed the well-documented JIRA installation process, you’ll have
JIRA running on your machine on port 8080, which is the default. After you’ve started
JIRA, you can create and work on tickets.4 The ticket overview shows all relevant infor-
mation belonging to one ticket, including the component the ticket belongs to and
the affected and target versions, as can be seen in figure 4.3.

 On the right side of the screen, the ticket reporter is listed as well as the current
assignee. You can assign other people to continue the work on that issue. Voting for a
ticket is a nice feature: You can vote on tickets to express the importance of the ticket
and the team can determine how many developers consider the ticket important. You
can watch a ticket and its progress to keep informed of ongoing activities. You’ll auto-
matically get emails advising of any changes to tickets you’re watching. The right
panel also includes information about when the ticket was created and last updated.

 The upper panel of buttons provides functions for working on this ticket, such as
editing the attribute of the ticket (the type of the ticket, for instance), commenting on

4 For further discussion of how to set up roles and permissions, please consult the documentation.

Figure 4.3 The ticket AGILEALM-4 is of type New Feature and is linked to three subtasks.

101Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
the ticket, indicating that you’ve started work on the ticket, or assigning others to
work on the ticket.

 Being assigned to work on one ticket doesn’t automatically mean that you’ve
started the task. If you work on the item, you can document that by using the start
progress feature. This way, the amount of time you spend working on that ticket is
recorded. Furthermore, the ticket is added to the in progress list, which can be dis-
played on the dashboard. After completing work on an issue, you can resolve it. The
possible transition states are also configurable.

 The main middle section of the page identifies attributes of the ticket that were
entered when the ticket was created, such as the issue type or the ticket’s priority, as
well as status information.

 By configuring JIRA, you can work on personalized items and attach your own cus-
tom fields to the ticket, your own issue types, your own priorities, and so on. You can
also configure dependencies of tickets, such as relationships between them. One com-
mon example is configuring a ticket to be a subtask of another ticket. In the example
in figure 4.3, the ticket with the unique identifier AGILEALM-4 identifies a feature that
was sliced into three subtasks. One subtask is already implemented and closed; two
others are still open and still must be implemented.

Another way to organize your work is to create target versions of your software. Tickets
can be assigned to target versions in JIRA, and these JIRA versions map to releases (or
iterations) in your development process. You define a JIRA version with a version ID

Integrating Confluence wiki

Atlassian also provides an enterprise wiki called Confluence. You can integrate Con-
fluence in different ways. An easy way to integrate JIRA with Confluence is to link from
Confluence to JIRA with the combination of Confluence shortcuts and JIRA’s quick
search.

In Confluence, you can create a shortcut for JIRA and use it inside your Confluence
page with [ALM-1@JIRA] to reference the ticket in JIRA. You can also use the
{jiraissues} and {jiraportlet} macros to embed JIRA reports and portlets into
your Confluence site.

Another scenario is to integrate Confluence project documentation into a build. In this
use case, you maintain project documentation with Confluence. Then, in the automatic
release process of your software, you export static HTML out of Confluence. This can
be done with Maven in its assembly phase, for example. (Technically, you create a
zip file after calling wget via Ant execution.) This is embedded in the Assembly Plugin
for Maven.

A third integration scenario is quite different: pushing content to the Confluence wiki
after a build is created. In this case, wiki content is created and uploaded in Conflu-
ence’s xmlrpc interface. One solution is to use Maven and its Confluence plug-in.

102 CHAPTER 4 Task-based development
(for example, “1.0” or “Important-0.1”), a description, and a release date. By using a
schedule, you can define its position in the list of existing versions. A roadmap collects
a list of upcoming versions.

 You can monitor the development progress in different ways. One way is to use
charts of newly created and closed tickets, or you can use GreenHopper’s burn-down
charts. In addition to the burn-down chart, GreenHopper adds planning and tracking
facilities to the system to help with Agile development. Figure 4.4 shows the planning
board for planning and tracking issues.

 Instead of the linear, text-based JIRA approach, you can simulate working with
cards, with a card being like a traditional JIRA ticket. The planning board can be
opened via the Agile menu at the top of the JIRA screen. Here, you can create new
cards and modify existing ones. You also can change the target version of cards by
dragging them to a different area on the display. For instance, a card that was assigned
to be part of version 1.0 can be assigned to be unscheduled by dragging the card to
the Unscheduled area on the page. A transition rule must exist to perform that opera-
tion, and you can set up transition rules as part of JIRA’s state/workflow system.

 Requests for developing a bug fix or a new feature lead to tasks. You’ll have differ-
ent configuration settings, like priorities, but a good approach is to manage all tasks
similarly. That’s why it’s named “task-based development” and not “development
based on feature requests” or “development based on bug fixes.” For the same reason,
JIRA talks about tickets as its coarse-grained working unit. On this level, a JIRA ticket
can be compared to a task in “task-based development.”

 Going deeper, it’s wise to distinguish between types of tasks (and tickets) by divid-
ing and organizing the work into more granular tasks, in a processes that has become
known as slicing. For example, suppose you’re documenting the software require-

Figure 4.4 GreenHopper's planning board: Visualizing tickets as cards enables you to create new ones
or change their status. Cards can be filtered to show only cards that are open or only your tickets. The
GreenHopper view also visualizes target versions and uses different icons to express information such
as priorities.

103Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
ments in the ticket type requirement (JIRA allows you to configure the ticket types and
relationships) or in user stories or use cases,5 whichever is most appropriate in your
context. These tickets have relationships to tickets of type task. In these tasks, the fea-
tures are documented technically, but at a high level. Tasks have subtasks that contain
the specific technical tasks to be implemented. Subtasks are a way to break down high-
level tasks into smaller units to be estimated and rolled up into the larger estimate.

 Another way to slice the items is to use features (describing the high-level function-
ality), stories (special use cases), and tasks (the technical face).

4.2.2 Working on tasks with Eclipse and Mylyn

The IDE is the place where developers implement the requirements. We’re using
Eclipse in this toolchain, and we can add further Eclipse plug-ins to this Eclipse con-
figuration to access the VCS. In this toolchain, we want to connect to a Subversion
repository. The Subclipse plug-in is a good choice for interacting with the repository,
and you can install it via the Eclipse update manager.

 Mylyn is an Eclipse-based task framework. It can integrate with ticket and bug-
tracking tools such as JIRA, Bugzilla, Trac, and Mantis. After installing Mylyn with the
appropriate ticket system connector for JIRA, and configuring it to connect to your
task repository by providing the URL and credentials to login, an additional view is
added to Eclipse, showing all tasks matching your search criteria, as shown in figure
4.5. Once your tasks are integrated, Mylyn monitors your work activities and synchro-
nizes with the ticket system automatically. You can reference parts of the sources
you’re working on in Eclipse as the context of a task. This context can be attached to
the task or even posted as an attachment to the ticket.

5 For slicing user stories, see Mike Cohn, User Stories Applied (Addison-Wesley, 2004). For slicing use cases, see
Alistair Cockburn, Writing Effective Use Cases (Addison-Wesley, 2001).

Figure 4.5 Mylyn adds a task-
based view in Eclipse. In the
Eclipse task view, important
information about the tasks
(such as issue type, status and
priorities) are shown directly,
but double-clicking will open the
complete ticket in your Eclipse
editor. Tickets can be grouped
by relationships of subtasks. In
the left area, incoming and
outgoing changes made by you
or other developers are
identified with icons. Unread
tickets—tickets that haven't
been opened yet—are identified
with a question mark.

104 CHAPTER 4 Task-based development
NOTE Other IDEs support an ALM approach too. IntelliJ IDEA from Jet-
Brains, for example, can integrate with task repositories, including Atlas-
sian’s JIRA.

One developer can import into their workbench a context that has been provided by
another developer. This helps to standardize views. You can easily switch tasks in
Eclipse, getting individual views on the sources. Tasks in your workspace are updated
automatically.

 These are Mylyn's main features:

■ Mylyn accesses and integrates with your task tracker. The integration is in both
directions: You import and read tasks in your workspace, and you update and
create items in your workspace.

■ Mylyn supports filtering, sorting, highlighting, and folding. You can query your
tracker for tasks, you can update tasks, you can see change notifications in
Eclipse, and you can use contexts to slice and group your sources according to
tasks. You can also activate tasks to indicate that you're working on them.

■ Mylyn integrates with VCS changesets. A changeset can be linked to a task. A
changeset can be checked in as a single atomic transaction.

■ Mylyn integrates with build servers, for instance, Hudson/Jenkins.
■ Mylyn supports activating tasks. Activating a task removes all those files from the

IDE view that are unnecessary to complete the activated task. The workspace
and its visible files are aligned with the task.

■ Mylyn supports attaching context information to a task and uploading this con-
text information to the ticket in the bug tracker.

■ Mylyn allows working offline: Locally cached tasks can still be maintained
although the central task tracker is not reachable. Changes to tasks can be syn-
chronized with the task tracker when the network is available again.

■ Mylyn is part of the Eclipse standard distribution.
■ Mylyn enables task scheduling.
■ In addition to Java, Mylyn has extended its support to C/C++, PHP, and Spring

Framework–powered enterprise Java applications.
■ Additional commercial features are provided by Tasktop (see www.tasktop.com).

The commercial product extends task focus to time tracking, web browsing, and
desktop documents, and it includes other connectors to integrate with more
tools.

Mylyn subprojects include the following:

■ Tasks for integrating task and change management
■ SCM for integrating source code management
■ Build for integrating build management and continuous integration
■ Review for collaborative code review

105Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
Mylyn has evolved into a unified platform for ALM and ALM vendors. Mylyn embraces
the Open Services for Lifecycle Collaboration (OSLC) standards for ALM.

AGILE PLANNER LEVERAGES MYLYN CONNECTORS Tasktop provides a tool called
Agile Planner. This tool can manage existing defect and project manage-
ment systems directly from Eclipse, making it effortless to maintain project
status awareness and keep plans up to date. Agile Planner supports planning
across multiple vendors’ solutions. For more details, see http://tasktop
.com/connectors/agile.php.

The developer checks in the code changes to the Subversion repository. In the com-
mit dialog box, the developer extends the commit message (which describes what he
has done) with the ticket number. In our case, based on figure 4.6, adding AGILEALM-
10 provides the information to JIRA and Bamboo to link this change to the ticket.

4.2.3 Tracking source changes with FishEye

Atlassian’s FishEye is an advanced source code repository browser. You can view the
content of the repository and any changes applied to it. FishEye’s features are the fol-
lowing:

■ FishEye lets you view user activity and track code changes.
■ FishEye enables you to search and navigate through the repository.
■ FishEye supports Subversion, CVS, Git, ClearCase, and others, with real-time

notifications of changes plus web-based reporting.
■ FishEye identifies diffs between versions.

Figure 4.6 Committing
changes to VCS in Eclipse. In the
commit dialog box, developers
add a reference to the tickets
they’ve worked on. In this case,
the ticket AGILEALM-10
motivated the code changes
that are committed now.

http://tasktop.com/connectors/agile.php
http://tasktop.com/connectors/agile.php

106 CHAPTER 4 Task-based development
■ FishEye provides a web application for convenient browsing of the repository
(see figure 4.7).

■ FishEye enables you to view multiple communication channels, including JIRA
issues, Bamboo builds, email alerts, and IDE. This means, you can gain Bam-
boo’s build information from within a couple of tools in a highly integrated
manner.

FishEye is a web application that continuously scans the repository. The browser acts
in two different ways: It allows you to see which tasks are associated with specific
changes, and it allows you to browse the VCS, with its content, and browse the changes
of single files. Figure 4.8 shows the FishEye integration with JIRA, illustrating the his-
tory of VCS changes referencing this ticket. Important information is displayed: who
made the change and what was changed.

 After installing the FishEye plug-in in JIRA, a Source tab is added to every JIRA ticket.
There, you can see changes associated with each ticket and diffs in a convenient way.
The example in figure 4.8 illustrates that changeset 37 in Subversion was triggered by

Figure 4.7 The FishEye web application: browsing the repository. Changes (activities) are displayed in
a timeline. Revisions with their changes (for instance, how many lines were added) are visualized and
can be compared with each other. You can zoom in to see the respective versions of the sources.

Figure 4.8 FishEye integrated into JIRA: A dedicated tab shows source changes associated
with each ticket. One Subversion commit resulted in this entry: 1 file was changed, 15 lines
were added in the file, and 2 were removed. Icons provide links to FishEye so you can zoom in
if you're interested in more information.

107Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
me, and it contains changes in one file. You can browse the file, create version diffs, and
so on. The main benefit is that people can trace changes and reference them to tickets,
which allows impact analysis. This means you can monitor developers’ changes and
their consequences on tickets. Also tech leads or senior developers or the team can
closely look at commits and what effect they have had on the codebase.

 Further integrations are available, such as a plug-in that integrates FishEye func-
tionality into Eclipse.

 Creating and updating tasks in JIRA was the first step. Next, you’ll view the tasks
and work on them from within your IDE. Then you’ll build the software and associate
the builds with the tasks created.

4.2.4 Build view with Bamboo

Bamboo is a continuous integration server that automates your software builds. You
can create your own build plans to create your software on a scheduled basis (with Ant
or Maven, for example), or a developer’s check-in can trigger it. Key features of Bam-
boo include monitoring build progress, deploying steps, and reviewing the results of
static code analysis. Together with JIRA, development activity can be monitored. Bam-
boo helps to bridge the development phase with delivery and testing.

 Continuous integration servers like Bamboo (or CruiseControl, Hudson/Jenkins,
TeamCity) support continuous integration and facilitate rapid application develop-
ment. When used together as a toolchain, Bamboo and JIRA help to do the following:

■ Track builds to tasks
■ Monitor progress and success on working on tasks
■ Trace issues fixed to a specific build

BUILD COMPARISON AND CHANGE TRACKING One major feature Bamboo offers
(as do other continuous integration servers) is verbose build comparison.
Efficient comparison of different builds (of the same software) delivers
answers to questions like “What changes went into the build that might have
caused a previously working feature to fail (regression)?” or “What caused
the latest build to fail?” Linking a build server to the ticketing system adds
even more value. For example, it can answer questions like “What changes
does the new release deliver?” or “What problems are fixed for a customer if
they upgrade to a new build?”

Bamboo can be integrated with different tools. For JIRA, it can be implemented as a
plug-in, or as a separate application that’s accessible via a web interface. It can also be
integrated into Eclipse by installing the Atlassian Connector for Eclipse. In a dedi-
cated Eclipse view, you can trigger builds from your workspace, monitor builds, or
comment on builds.

JIRA AND HUDSON/JENKINS If you’re using Hudson or Jenkins as a continuous
integration server (instead of Bamboo), you can use a plug-in to integrate
either of them with JIRA. The plug-ins can be installed via the administration
panel.

108 CHAPTER 4 Task-based development
Connecting JIRA and Bamboo adds an additional Bamboo Builds tab to all of your
tickets. In this tab, you’ll see all builds referencing this ticket. Figure 4.9 shows that the
Bamboo build number 12 provided changes that are responsible for fixing the task
AGILEALM-10. You’ll also see further information, such as who did the commit that
references this ticket and triggered the build, how long the build ran, how many tests
passed, and so on. Again, you can zoom in and navigate to Bamboo itself if you're
interested in further information, such as by clicking the #12 link, which leads directly
to the build detail page in Bamboo.

 By using the Bamboo web application, you can gain a lot more information about
your builds (see figure 4.10). You can enter the application by using links in Eclipse or
JIRA or by entering the start URL and navigating from there.

Figure 4.9 Bamboo integration in JIRA: builds associated with this ticket. If you're interested in more
information, you can easily navigate to the Bamboo web application by clicking a link.

Figure 4.10 The build result summary of the Bamboo web application. The summary page shows
details about the build, such as why the build was triggered and what changes were newly integrated
with this build. A history feature and further tabs allow you to navigate through builds and to zoom in
to respective test results, generated artifacts, logs, and so on. Besides its continuous integration and
build server features, it links to issues in the ticketing system.

109Trac bug tracking and project management
The official Bamboo documentation explains all the product features in detail,
including how to configure and retrieve information about your tests and changes,
how to add artifacts to your build plan, and so on. The documentation also explains
all the result views provided by Bamboo. Of special interest here is the Issues tab on
the Build Result Page. Once you have correctly integrated JIRA and Bamboo, you’ll
see the issues fixed or referenced in the build.

 Another way to closely integrate Bamboo with JIRA is to use the Bamboo Release
Management plug-in (https://plugins.atlassian.com/plugin/details/28559). This
plug-in triggers different actions in one step, including running a release build, pub-
lishing artifacts, tagging a version in the VCS, releasing a version in JIRA, creating a
branch for the next version in the VCS, and switching the build to use a new branch.

 Bamboo supports even more features for task-based development, and for release
management in general: It offers a pipeline feature—a pipeline is composed of stages
that contain several subplans. Subplans are like Bamboo plans except they don’t have
dependencies and notifications, and they can’t be run manually. In order for a pipe-
line to transition from one stage to another, all subplans in the current stage must
pass successfully. For the pipeline to complete successfully, all subplans in all stages
must pass successfully. The pipeline can pass artifacts between stages so that builds in
later stages can consume previously built artifacts produced in the same pipeline.
Additionally, there is functionality to promote artifacts.

4.3 Trac bug tracking and project management
Trac (http://trac.edgewall.org) is an open source tool developed and maintained by
Edgewall Software. Trac is a mixture of a release management and bug-tracking tool as
well as a wiki and version-control browser. Trac provides a comprehensive tool to help

In the cloud: JIRA Studio with a commit-driven approach

Atlassian offers a full, commercial toolchain named JIRA Studio (www.atlassian.com/
hosted/studio/). This hosted and integrated toolchain includes Subversion, JIRA,
GreenHopper, Confluence, FishEye, and Bamboo. This toolchain eliminates the instal-
lation effort and reduces administration efforts. Integrating the tools yourself will cost
you some time, but you would have the advantage of configuring the toolchain in a
way that meets your specific requirements.

JIRA Studio also supports interacting with JIRA via commit messages. For example,
to add something like “MYPROJ-4711 #time 4h #comment ALM #resolve” to your com-
mit message to log four hours of work against issue MYPROJ-4711, add the comment
“ALM” to trigger the state transition of the ticket in JIRA, from open to resolved, finally
resolving the issue.

Other comparable tool suites are also available—for instance, ScrumWorks (www.
danube.com/scrumworks) and codeBeamer (www.intland.com/products/cb/overview
.html).

110 CHAPTER 4 Task-based development
teams get started with software development. Although it doesn’t dictate any special
development process to your team, it can be configured to be used in an Agile context.
A toolchain for task-based development based on Trac is illustrated in figure 4.11.

NOTE In the discussion of this Trac toolchain, I won’t repeat previous discus-
sions of aspects like build server integration or Eclipse with Mylyn. They are
only suggested and mentioned as nodes in the overall toolchain here,
because you already know about them from our first toolchain. In this sec-
tion, we’ll discuss new aspects that haven't been mentioned so far, such as the
wiki. As a consequence, you can easily include the Atlassian Confluence wiki
in the first toolchain to profit from a wiki there, or you can easily integrate a
build server like Hudson/Jenkins into this second toolchain in order to link
builds to tickets. Remember, driving lightweight toolchains is also about
being flexible, adapting to changes, and being able to replace single tools in
the overall toolchain without touching the remaining tools.

Trac is a lightweight system that allows Agile planning of projects. Developers use
Mylyn to enrich their IDEs (figure 4.5 shows how this can look). Trac connects to a
VCS (in our case, Subversion). It allows you to browse source changes and track other
changes in the complete system (such as wiki changes). Trac contains its own wiki and
can be integrated with a continuous integration server (such as Hudson/Jenkins; sec-
tion 4.2 discusses what traceability on the build server can look like). Trac uses its wiki
markup to semantically link the version-control repository, the wiki, and the issue

Figure 4.11 A system for
task-based development,
based on Trac. Trac is the
ticket system that
integrates with the VCS
and CI. Eclipse and Mylyn
are used on developers’
desktops. This example
shows Hudson/Jenkins
being used as the CI server.

111Trac bug tracking and project management
tracker and to glue wiki pages, changesets, and tickets to each other. Trac’s timeline
view shows recent activities in all those areas.

 Trac is written in Python, and it’s available for different platforms such as Windows
and Linux derivatives. It can be both extended and configured. Trac’s main features
include the following:

■ Release management support (roadmaps, milestones)
■ Ticket system
■ Timeline of all recent activities
■ Fine-grained permission system
■ Wiki, with wiki markup
■ Customized reporting
■ Web interface for Subversion, including changeset support
■ Multiproject support
■ Minimalistic approach enabling Agile development
■ Plug-ins like the Agile-Trac6 plug-in to further support Agile development and

to add further features to Trac, such as iterations
■ Support for task-based development

4.3.1 Installing Trac

To install Trac, you must install a couple of required libraries. Using a prebuilt pack-
age provided by BitNami makes it easier (available at http://bitnami.org/stack/trac).

REDMINE The Redmine tool is comparable to Trac. Redmine is based on
Ruby on Rails. Its feature set is equal to Trac’s, and it can be installed via Bit-
Nami as well.

BitNami makes it easy to use and deploy Trac by providing native installers for Win-
dows, Linux, and Mac OS X. Each installer contains all the necessary components to
run out of the box. The installed Trac configuration is self-contained and doesn’t
interfere with other software on your system. After downloading the installer and run-
ning it, a wizard guides you through the process. You can also let the wizard create a
Trac project for you, which is a space inside your installation that you can use for your
release work. The installation takes only a few minutes and installs the following com-
ponents on your system:

■ Apache 2
■ Python
■ Subversion
■ SQLite
■ Trac and its required dependencies

6 See the Agile-Trac plug-in page: http://trac-hacks.org/wiki/AgileTracPlugin.

112 CHAPTER 4 Task-based development
After your package is installed, you may want to configure it for your specific needs.
The central point for that is the trac.ini executable installed in the same place as
Trac. Here you can configure the Subversion repository you want to use, the layout,
and the behavior of the Trac components, such as the wiki, the ticketing system, and
the timeline.

 Let’s look a bit deeper into some of these features. Assuming Trac is running on
port 8010 on your central server, you’ll see a screen like the one shown in figure 4.12.

 Let’s go through the main points of interest, including the wiki functionality entry
page and the timeline, roadmap, source browser, and ticket manager.

Native installer, virtual images, and Amazon EC2

Besides the normal Trac stack (and other full-packaged open source tools), BitNami
also provides two different distribution formats: virtual machine images and cloud.

The virtual machine image contains a Linux operating system and the fully configured
Trac installation. Running the image requires a virtualization host such as VMWare or
VirtualBox.

The cloud approach is an image that can be run in the cloud, namely Amazon EC2.
You can run BitNami applications on EC2 on a pay-as-you-go basis, programmatically
starting and stopping them.

Figure 4.12 The start page of Trac: the edited wiki entry page, including access to the timeline,
roadmap, source browser, and ticket viewer

113Trac bug tracking and project management
4.3.2 The wiki

The Trac entry page shows the wiki, which is one of the major features of Trac. A wiki
is a system of linked HTML pages that can be edited on an ongoing basis. The wiki is a
collaboration platform extended and maintained by users. For example, if you click
the “Edit This Page” button for the Trac entry page, you’ll get its content. The follow-
ing listing shows the content in plain text format with the Trac markup notation.

= Application Lifecycle Management =
 * Is a set of [wiki:Tools tools]

 * Has a uniform data base
 * Covers the complete software development life-cycle
 * ''Processes'' and '''tools'''

== Links ==

 * [http://www.huettermann.net/ huettermann.net] -- huettermann.net
 * [http://trac.edgewall.org/ The Trac project] -- Trac Open Source Project
 * [http://www.manning.com/ Manning] -- A wonderful publisher

You can arrange text and create new pages as needed. The comprehensive formatting
support allows you to enter different header styles B, link to other pages inside the
wiki C or outside the wiki E, and emphasize text, such as displaying it in italic or
bold D.

 An interesting feature of Trac’s wiki is that you can monitor the changes (includ-
ing the change history) to the page, line by line. A bit later we’ll see a similar display
for exploring the source code.

Listing 4.1 The content of the start page (excerpt)

Agilo for Scrum

Agilo for Scrum is an application developed on top of Trac (see www.agile42.com/
cms/pages/agilo/). Agilo is an open source tool available through an installer or host-
ed service. It contains many features that support the daily work of Scrum teams,
including a configurable product and sprint backlog, the creation of requirements or
user stories, multiteam and distributed team support, a wiki, a roadmap, a dashboard,
and real-time burn-down charts. Agilo can be integrated with Subversion, and a ticket-
ing system is also available.

The default Trac installation is more open than Aglio with respect to the development
process you choose. With the default Trac installation, you can support Agile projects.

Agilo also ships in a commercial pro version that includes more features, such as an
integrated whiteboard.

Heading
formatsBLink to another

wiki entryC

Italic and
boldDLinks to external

resources
E

www.agile42.com/cms/pages/agilo/
www.agile42.com/cms/pages/agilo/

114 CHAPTER 4 Task-based development
4.3.3 Timeline and sources

You can display the timeline by clicking on the Timeline tab. Doing so will display the
recent changes made on the system. The attractive feature here is that the changes are
displayed across all possible change types including changes to milestone planning, tick-
ets, the repository, and the wiki. This functionality fits well into the ALM environment.

 Figure 4.13 shows the changes and who did what at what time. The admin user
edited the wiki start page, created a new ticket with the unique number 4, and submit-
ted something into the Subversion repository. Because Trac is monitoring the underly-

Figure 4.13 The timeline view showing who changed what in the system, including
changes on tickets, the subversion repository, wiki pages, and milestone planning

Figure 4.14 A changeset,
including changes on the
code base done in this
atomic commit

115Trac bug tracking and project management
ing source repository, it detects the change and displays the groups of commits as
changesets.

 You can configure the view via the options in the box at the right of figure 4.13. You
can customize the timeline and the information that should be collected and summa-
rized on this page. If you want more detail, click on the link to go to the next page and
view the additional details. For example, if you’re interested in the changeset, you can
click on the changeset number (3) and view the page shown in figure 4.14.

The touched file is displayed with its differences compared to the older version. Inside
the file, lines are colored to express the type of change, such as red for removed and
green for added. You also have access to the revision numbers that Subversion
increases continuously. In figure 4.14, Trac detects that with Subversion revision 1, the
file was initially imported, and this file was changed with Subversion revision 3. You
could now also extract the status of the file at those two moments in time (the revi-
sions) by clicking the links provided—r1 and r3, respectively. In addition, you can gen-
erate a diff between two revision numbers of a file, and you can enter the two revision
numbers freely.

PROVIDING OUTLOOK TASKS Another interesting extension in context task-
based development is the bridge to Outlook (http://sites.google.com/site/
outlooktrac/). Many teams use Outlook for time management, and this plug-
in provides Trac tickets as personal Outlook tasks.

When viewing changesets, Trac’s Browse Source tab is opened. If you click on that tab
when you’re not viewing a changeset, you’ll see the complete Subversion repository
with its contents, including its individual state (its revision numbers), its age, and the
last change. This way, you can browse the complete repository.

4.3.4 Roadmap and tickets

By clicking on the Roadmap tab, you see Trac’s release management facility, which
allows you to create milestones for your development.

 Ticket updates are based on Trac’s configurable status transition and workflow
facility (for example, assigning tickets to other people). Tickets can be assigned to
milestones. Milestones also display the ticket status; for instance, which tickets are

Continuous integration with Hudson and Bitten

The Hudson Trac Plugin (http://trac-hacks.org/wiki/HudsonTracPlugin) integrates
build results delivered by Hudson into the Trac timeline and provides a menu link to
jump to the Hudson application.
Bitten (http://bitten.edgewall.org) is a Trac extension for continuous integration, and
it joins the Trac ecosystem seamlessly. It uses a distributed build model, where one
or more slaves run the tests and a master gathers the results and displays them on
a web page.

116 CHAPTER 4 Task-based development
open and which ones are closed. Besides seeing the ratio of closed to active tickets,
you can see the milestone due date and can enter the milestone detail page.

 The Trac roadmap is a list of future milestones. You can customize ticket grouping
and adjust the view by filtering the roadmap to show or hide specific milestones.

ECLIPSE AND TRAC Similar to the first toolchain we discussed in section 4.2,
you can integrate Eclipse with your ticketing system. Again, the Eclipse
plugin Mylyn is used to integrate Eclipse and Trac. In our first toolchain, we
configured Mylyn to use the available JIRA connector; here you have to use
the Trac connector that glues Trac to Eclipse.

This concludes our tour of Trac. We saw Trac’s main features that support task-based
management. The integrated approach lets you link and navigate through different
aspects of your daily work across different media and development phases:

■ The smart repository browser gives you access to the Subversion repository.
■ The roadmap can aggregate tickets to releases.
■ The timeline feature aggregates all different change types on one view.
■ The wiki function lets you use Trac as a central knowledge base.

All this is linked through wiki markup. Trac is based on plug-ins, and you can extend
and configure it according to your requirements.

4.4 Summary
In this chapter, we discussed lightweight tools for setting up and driving an Agile ALM
process: JIRA, FishEye, and Bamboo are lightweight, commercial tools for planning
and tracking tasks. Adding Mylyn to this chain makes it possible for developers to
manage a task from their workspaces. GreenHopper is a JIRA extension that adds
more visualization features, such as cards.

 Trac also offers features for planning and tracking tasks. It's an open source tool
that provides a central view on your development activities across development
phases. Besides the wiki, it contains release management functionality, including time-
line and roadmap features, a ticketing system, and a Subversion repository browser.
Trac can be integrated with Mylyn and Hudson/Jenkins. Both Trac and JIRA are
highly configurable, feature-rich tools. They can be integrated with other tools, they
can aggregate information, and they can serve as one-stop shops for managing your
activities by managing tasks. In both toolchains, task-based development is based on
the convention of using the ticket number in the check-in comment.

 Handling toolchains can be complex. The detailed examples we looked at in this
chapter should give you a good idea of how to implement lightweight toolchains to
support task-based development.

 In the next chapter, we’ll discuss integration management and the technical
releasing of software, based on Maven.

Part 3

Integration and release
management

With part 3 of this book, we leave the functional aspects of Agile ALM and
dive into the more technical aspects. This part is about integration management
and (technical) releasing. It details strategies and introduces tools to integrate
software artifacts and create releases. Additionally, this part covers productive
development environments and advanced continuous integration.

 In chapter 5, we’ll discuss Maven’s core features, particularly its dependency
management concepts. You’ll learn how to orchestrate tools to run component
repositories in different flavors. We’ll also explore a real-world use case for
(technical) releasing of software.

 Chapter 6 examines strategies to create productive development environ-
ments. Major aspects include strategies and tools for working with artifacts in iso-
lated environments—for example, on developers’ desktops. This workspace
management involves using congruent build systems in order to provide fast
feedback.

 Chapter 7 delivers recipes and tools for advanced continuous integration. This
chapter reviews the basics and presents scenarios that show how you can integrate
different languages and platforms and how to unify toolchains. We’ll also look at
staging releases without rebuilding, performing continuous inspections, and inte-
grating different version-control systems to enable feature branching.

 At the end of this part of the book, we’ll have completed our discussion of
functional and technical release management, and we can start discovering out-
side-in development.

Integration and release
management
Integration and release management allow you to produce software artifacts and
release those configuration items that perform a function for end users. I refer to
the process of building the software and providing a final product to the end user
as technical releasing.

 The first chapters of this book discussed the strategy of using a component
repository and the value that a VCS like Subversion adds to the software develop-
ment process. We’ve discussed the general requirements for ALM as well as the
functional and technical aspects of releasing. Now we’ll go one step further: We’ll
use Maven to release the complete software—to build and store it in a component

This chapter covers
■ Integration and release management basics
■ Maven as a comprehensive integration and

release management tool
■ Different ways to store artifacts and

dependencies in a repository
■ A real-world use case of releasing with Maven
119

120 CHAPTER 5 Integration and release management
repository. We’ll discuss the relevant basics of Maven, how Maven implements compo-
nent repositories, and how you can host these component repositories. Finally, we’ll
work through a real-world use case to illustrate how a complex project can be released
with Maven.

 In chapter 3, we talked about releasing software and bridging the functional releas-
ing to the technical releasing. Applying a task-based development approach, we’ve
improved the development process to focus on work items and make the develop-
ment progress visible and traceable. That’s what we did in chapter 4. In this chapter,
we’ll look at more details of technical releasing. We’ll now talk about integrating and
releasing the software technically.

 In this chapter, you’ll learn how Maven supports the common tasks of release man-
agement in an out-of-the-box way. Aside from building, packaging, and deploying,
you’ll also want to support automated unit and integration testing with Maven, which
we’ll discuss later in this chapter. We’ll discuss some accompanying tools such as Arti-
factory which helps to host component repositories and can help streamline your inte-
gration and release management tool infrastructure. We’ll also review lightweight
alternatives to a full-fledged component repository by discussing hosting binaries in
Subversion. I refer to the latter approach to be the “poor man’s solution” because
although using Subversion as a component repository has advantages, using a dedi-
cated product for hosting a component repository is often preferred.

 The rest of the book will further detail the release and test management functions.
We’ll use Maven where appropriate and show other detailed use cases and views on
integration and release management. Chapter 6 also contains best practices for using
Maven and discusses concepts for setting up productive environments. We’ll review
how developers can consume, integrate, and test artifacts efficiently. Chapter 7 con-
tains recipes and tools for continuous integration. We’ll discuss tools such as Maven,
Jenkins, and Artifactory, and talk about staging and audits. Chapter 8 will cover test
management in more detail and how it can be bridged to the development of soft-
ware, also partly based on Maven. Chapter 8 will focus on the QA/tester view of Agile
ALM and integrate testing activities with the creation of software.

 Now let’s start our discussion on the integration and release management func-
tion.

5.1 The integration and release management function
The integration and release management function is the backbone of your Agile ALM.
How your integration and release ecosystem will look depends a lot on your develop-
ment process and your individual requirements, but in this chapter, I’ll explain com-
monly used practices and implement them with tools.

 Developers write the software, checking their sources and build scripts into a VCS
(such as Subversion). Developers implement requirements in their workspaces. They
check in and update sources to the VCS, as shown in figure 5.1.

http://search.maven.org/#browse
http://search.maven.org/#browse
http://search.maven.org/#browse

121The integration and release management function

Produced and consumed artifacts are stored in the component repository for further
usage. You can configure the component repository to act as a cache or proxy for
third-party products and as a shared pool where developers continuously deploy ver-
sions of their built code.

 A component repository stores binaries and acts as a cache for artifacts.1 Binaries can
be separated into snapshot versions and released versions. Snapshots express artifacts
that are currently under development. Released binaries are final, baselined versions
of artifacts that fulfill defined quality requirements. A release is a special type of ver-
sion—either the version after reaching a deadline (in a timeboxed environment, for
example) or the version that implements all requirements (tasks) and fulfills the
requirements of test management. The release might represent a minor milestone
(for instance, the completion of a sprint) or a deployable release candidate that
includes all of the requirements expected for delivery to an end user. Typically, the
sources that correspond to released binaries and that were produced by the team are
labeled in the VCS.

 The continuous integration (CI) server (such as Hudson/Jenkins) is set up to auto-
matically trigger a build when the code is committed, using Maven to do the build,
packaging, unit tests, and deployment. Ideally, the developers should use the same

1 In this context, a component is a concise collection of software units that has a specific meaning for the team.

Figure 5.1 Integration and release management system: Sources and build scripts are shared in a VCS;
a CI server builds, tests, and deploys versions; and a component repository stores ongoing versions as
well as releases of the software (as binaries). Several roles and responsibilities exist; a release manager
takes care of creating and staging releases.

122 CHAPTER 5 Integration and release management
Maven build scripts for their private builds as are used for the official builds on the
central CI server. Build scripts manage build dependencies and change as the project
grows or when sources use other or new parts of the software. These build scripts
(such as the Maven POM; more on that a bit later) should be version controlled like
any other artifact essential for the release. Once this is set up, the CI server builds,
packages, unit tests, and integrates components, and it may deploy the release to an
integration test machine. This approach and these tools provide a streamlined
approach to continuously building, releasing, and integrating the code.

 The CI server pulls sources and build scripts from the VCS and builds the software
on a dedicated build machine, continuously. The main task of the CI server is to pro-
duce artifacts. The generated artifacts, as well as the build process itself are both often
called build. Often the CI server integrates and deploys the software on the integration
test machine (the developers don’t do that themselves!). For producing artifacts, the
CI server has to consume artifacts such as artifacts that the produced artifacts depend
on to fulfill build-time dependencies. Those consumed artifacts are artifacts that were
produced previously, such as artifacts created by a feature team during a release or
components developed by a component team. Most of the consumed artifacts are
third-party libraries, though, such as testing frameworks or other Java libraries. All
these consumed artifacts are fetched from the component repository, which acts as a
pool of shared assets.

 As we discussed in chapter 3, developers and their workspaces are the first rung on
the staging ladder. Developers consume artifacts in well-defined versions, which
means that developers integrate necessary binaries into their workspaces to develop
the software that was specified and prioritized by the customer.

 For testing and releasing software, the built software is staged. This means differ-
ent logical repositories can be used inside a physical component repository. Typically,
for each test environment, a dedicated logical component repository is in place. In
many projects, the CI server continuously deploys snapshot versions to an integration
test environment. The software is then deployed to other environments, such as the
system test environment, without rebuilding the software, but rather by staging and
reconfiguring the baselined software.

 By using a tag or label in a VCS, the person responsible for the release manage-
ment function creates releases that are baselined and may create branches. This job
may be performed by an independent release management function (for example, a
release manager or a developer, depending on how you slice your roles) or a devel-
oper tasked with creating the official release. With the help of branches, fixes can be
applied on the release (a branch) without affecting the ongoing development (on the
head and trunk).

 The software is promoted to higher testing environments by a release manager. The
release management function is also performed by the expert who deploys the release
artifacts to the component repository or promotes existing artifacts. Depending on the

123The integration and release management function
process, that person may stage the artifacts (all artifacts belonging to one release) to
another (logical) repository inside the component repository. The overall system
should be based on clear responsibilities that are implemented by access and authen-
tication security systems and tools; not all developers should be able to deploy (or
remove) artifacts to a release component repository or to stage software.

 Often, tagging and branching, as well as automatic testing and parts of the staging
process, are triggered by the CI server. If the CI server stages software automatically or
supports the staging in parts, this is often called staged builds or build pipelines. The
development process and its roles, as well as their activities, are highly integrated.
Additionally, the produced artifacts are integrated continuously.

 Integration on different levels, meaning integration of software and integration of
people and status, directly leads to having synchronization points. The development
process consists of implicit synchronization points. This means that aspects like a
staged build, automatic testing, or the use of component repositories synchronize
people with each other and with the status of the project. By using inherent synchro-
nization points, defects in the process and in the software are discovered early and
often and are made visible to the team.

QA (testers or the whole team) are supported by scripts. Many tests can be auto-
mated, so test results can be made visible to the team continuously, in an objective
and efficient way.2 QA audits and static analyses are done by scripts. Developers
should run those scripts in the developers’ workspaces, and they should also be run
on the CI server, depending on your personalized staging strategy and your defined
quality gates.

 Many teams find it difficult to reach consensus when trying to choose a build man-
agement tool. Teams that choose Maven usually do so because of Maven’s focus on
convention over configuration, allowing Maven to do the heavy lifting. What this
means is that Maven allows you to assume reasonable defaults and reasonable default
behavior. Maven also provides a fully featured project description incorporating auto-
matic binding for project dependencies. Many developers also like Maven’s seamless
integration with IDEs and the ease of learning another team’s build process (which is
based upon Maven’s standardized build convention). Some developers find Maven to
be complex, which isn’t surprising because it’s both a lifecycle management and an
integration tool.

 In the next section, we’ll first discuss some of Maven’s core features, particularly in
the context of testing. This basic information will prepare you for the following sec-
tions, but it isn’t a full Maven guide. Please refer to Maven’s online documentation
(http://maven.apache.org) or to dedicated books for more information about Maven
in general.3

2 Tests that can’t be automated are exploratory tests, for instance. More on tests in chapter 8.
3 See the free Maven books by Sonatype (www.sonatype.com) or Brett Porter and Maria Odea Ching, Apache

Maven 2 Effective Implementation (Packt Publishing, 2009).

124 CHAPTER 5 Integration and release management
5.2 Maven feature set
Maven is free and extensible and it’s distributed as a small core module. All features
are implemented as plug-ins and are loaded on demand. These plug-ins are also
stored in repositories. You (or other developers) can easily write plug-ins in Java or
other scripting languages. Maven scripts can run Ant scripts and vice versa.

 To get Maven running with its default settings (including its default repositories),
you must start the standard Maven distribution. I’ll show you several examples of run-
ning Maven from the command line.

TIP It can be helpful to transition to Maven in steps. You don’t need to
immediately use m2eclipse to use Maven from within Eclipse. As a first step,
you may use only the console interface (although the IDE integration is much
more convenient) because IDE integration adds complexity, and command-
line commands can help you understand initially what is happening.

Maven provides a simple way to set up projects that follow common best practices,
including a default directory structure that makes it easier to understand how a proj-
ect is structured. A consistent and unified directory structure simplifies software devel-
opment and provides a standard based on industry best practices. This focus on
convention over configuration increases cross-project knowledge and makes it easier
to get up to speed on another team’s project. Many Maven features, configurations,
and settings are provided implicitly. You can change Maven’s default behavior at many
points and can configure almost everything, but generally it’s better to stay with the
commonly accepted conventions.

 When it runs the first time, Maven creates a local repository for your artifacts and
updates it during subsequent runs continuously. Maven requires a settings.xml file
that’s shipped with default values as part of Maven’s standard distribution; for the
moment, suppose the location of settings.xml is $M2_REPO. All developers have a set-
tings.xml in their local filesystem. Its location is either “~/.m2/settings.xml” or
“$M2_HOME/conf/settings.xml.” It contains personal data, such as user credentials,
that allows you to access repositories or to route to a private SSH key. This personal
data shouldn’t be bundled with a specific project in the project object models (POMs).

 You can run Maven from the command line or in your favorite IDE. Or you can
have the CI server trigger it automatically. Manually configuring classpaths and depen-
dencies in the IDE can be a difficult and error-prone task. With Maven IDE integration
in place, the classpath is resolved automatically, so you don’t need to manually config-
ure project settings in your IDE. We’ll discuss that more in the next chapter.

 On centralized build and integration servers, you’ll want to run build scripts (such
as Ant or Maven scripts) to build your software. Whether you’re building from within
the IDE or on a centralized server, you should use the same build scripts. Eclipse or
other IDEs aren’t build tools, and normally you won’t run Eclipse on your integration
server to build your software. Maven supports this approach of context-free builds,
which is what I call congruent build management (chapter 6 explains this in more detail).

 Now let’s take a close look at the Maven project object model (POM).

125Maven feature set
5.2.1 POMs and dependencies

Each project (in the sense of a module or component) needs one Maven model to be
described. This Maven model is called the POM (project object model) and it’s written
in XML (you can write the meta information that’s expressed in the POM with Groovy
as well).

 A POM is defined by its GAV coordinates: groupId, artifactId, and version, as
shown in the following listing. Besides its coordinates, the POM includes sections for
defining dependencies (also referenced by its coordinates) and for configuring its
complete build processing (including testing). More on this later.

<project
 xmlns=http://maven.apache.org/POM/4.0.0
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.huettermann</groupId>
 <artifactId>myartifact</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 ...
 </build>
 <reporting>
 ...
 </reporting>
 <repositories>
 <repository>
 <id>snapshots</id>
 <url>...</url>
 </repository>
 </repositories>
 <distributionManagement>
 <repository>
 <id>huettermann</id>
 <url>...</url>
 </repository>
 </distributionManagement>
</project>

Normally, the groupId is unique to a company or a project and classifies the origins of
its artifacts. Dots are often used in the groupId to form hierarchies, but that’s not
required (for example, JUnit uses its name as the groupId). It’s also not mandatory to

Listing 5.1 Basic POM

GAV coordinates

Dependencies of
this moduleb

Scope restricted
to “test”c

Build
sectiond

Reporting
sectione

Repositories for incoming
dependenciesf

Repositories for
generated artifactsg

126 CHAPTER 5 Integration and release management
map the groupId to your package structure, although this is a common best practice.
When stored in a directory (or in the repository), the groups act as a separator so that
you can distinguish them from the Java packaging structures.

 The artifactId is the unique name of the module or project. Consider a project
that produces a lot of artifacts. They all share the same groupId and differ in their
artifactId. The combination of groupId and artifactId creates a unique key for
identifying the artifact. This is also a valid way to address the module in a repository.
In our case, the project is located in $M2_REPO/com/huettermann/myartifact.

 The combination of groupId and artifactId defines the module, but it doesn’t
contain information about its versions. The version element defines that. As soon as
you update your own sources to work against a new target version of your software or
you use a dependency in another version, your POM should reflect these changes. By
adding the version information to the groupId and artifactId, you get the full path
to your artifact (for a specific version) in your repository. In our case, the full path
would be $M2_REPO/com/huettermann/myartifact/1.0.

 The packaging adds the artifact type (the architect would say, deployment unit) to
the address structure of groupId:artifactId:version. The model-based approach
supports standard output types like JAR, WAR, EAR, or OSGi artifacts. One Maven model
produces exactly one deployment unit by default; you can add additional ones. Maven
knows how to build these types. Unlike Ant, you don’t have to write the logic for each
step of the build again; instead, you declaratively describe what your project is about.

 The dependencies section specifies the modules our module is dependent upon
B. Maven provides dependency management for all dependencies including transi-
tive dependencies (dependencies of your dependencies). You can also use scopes c
to specify resulting classpaths (during compiling or testing) and limit the transitivity
of dependencies. Maven looks for these dependencies in the repositories defined in
your POM. Dependency management is a core feature of Maven. For further informa-
tion about dependency management, see the relevant part of the official Maven docu-
mentation.4

 The build section d configures the build (via Maven’s build lifecycle) and the
reporting section e configures the reporting (via Maven’s site lifecycle). The POM
also contains information about the repositories to which you need to connect f (to
resolve your dependencies) and to which you want to deploy your own artifacts g.
Dependencies can also be managed in Ant with Ivy.

4 http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Dependency management with Ant and Ivy

Another popular build tool is Ant, which has many features. With Ant, you must code
your build scripts imperatively, which means that you have to specify each step and
assume nothing. This also means you need to write new scripts for each new build
project. You must tell Ant how you want to achieve something.

127Maven feature set
5.2.2 Inheritance and aggregation

You can use Maven inheritance and aggregation to organize your projects.
Inheritance means your project can define a parent project from which it derives

settings. An example of inheritance is that the project POM derives from Maven’s
Super POM implicitly. The Super POM ships with Maven, and it consists of basic set-
tings that dictate, for example, which artifact repositories to use. If you don’t define
optional settings in your POM, the default values are taken from the Super POM.

Aggregation is used when you join different projects into a container POM. This is
often used in complex multimodule settings where an application consists of, for
example, a Java web archive (WAR), a Java enterprise archive (EAR), or Eclipse OSGi
bundles aggregated to a feature or a target platform. Another example is where you
want to build and test a project with the parent module referencing and managing all
of the other modules specified in the POMs.

 The following listing shows a POM that specifies an Eclipse bundle.

<?xml version="1.0" encoding="UTF-8"?>
<project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <artifactId>com.huettermann.plugin</artifactId>
 <packaging>eclipse-plugin</packaging>
 <version>1.0.0</version>
 <parent>
 <artifactId>parent</artifactId>
 <groupId>com.huettermann.parent</groupId>
 <version>1.0.0</version>
 <relativePath>../com.huettermann.parent/pom.xml
 </relativePath>
 </parent>
</project>

(continued)

In contrast to Ant, Maven runs a declarative approach, based on conventions and best
practices. You tell Maven what you want to achieve, and Maven knows how to achieve it.

If you have based your projects on Ant and are interested in advanced dependency
management, you can use the Maven–Ant bridge, working with dependencies from
inside Ant scripts or Ivy. Ivy is a dependency manager that took many concepts from
Maven. Using Ivy, you don’t have to leave the Ant ecosystem to gain advanced de-
pendency management (see http://ant.apache.org/ivy/).

You may be driven by requirements or as part of a migration path to use Ant, Ivy, and
Maven in parallel or in conjunction.

Listing 5.2 POM referencing a parent POM

Define moduleb

Use Eclipse plug-in
packagingc

Reference
parentd

Specify relative
path to parente

128 CHAPTER 5 Integration and release management
The POM is pretty lean. Besides its coordinates, it only defines itself B as an Eclipse
plug-in c and references its parent POM d, inheriting the parent’s configurations
(note that for managing OSGi bundles, you need Maven 3). The scripts are referenced
using a relative path addressing the parent e. The POM inherits the configurations of
its parent. The parent is shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.huettermann.parent</groupId>
 <artifactId>parent</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>

 <modules>
 <module>../com.huettermann.plugin</module>
 <module>../com.huettermann.test</module>
 </modules>

 <build> ... </build>
 <distributionManagement>
 <repository>
 <id>huettermann</id>
 <url>http://... /libs-releases-local</url>
 </repository>
 </distributionManagement>
</project>

The parent POM defines the packaging type pom B, and it has two tasks. The first is
the parent POM acts as a container by referencing a couple of modules c. The sec-
ond task is to configure the central settings used by the child POMs, for example, to
configure the distributionManagement section describing the target to which the
artifacts are deployed d. In this example, the parent POM includes the OSGi bundle
discussed earlier and adds a test bundle to the aggregation. Therefore, if you run the
parent POM, all its child POMs will be built successively.

5.2.3 Lifecycles, phases, and goals

Maven requires that you describe what your project is doing. To this end, Maven offers
lifecycles and individual phases that you can configure to tell Maven what to do in
these phases.

 Maven has three lifecycles: clean (removing previously built artifacts, like a “tidy
up” lifecycle), build (which contains the main logic), and site (for reporting). The
build lifecycle contains the following main phases:

■ Validate—Validate that the project is correct and all necessary information is
available

Listing 5.3 Parent POM with central settings and multiple modules

Specify
packaging

b

Include modules in
this container projectc

Specify distributionManagement
configurationd

129Maven feature set
■ Compile—Compile the source code of the project
■ Test—Test the compiled source code using a unit testing framework
■ Package—Take the compiled code and package it in its distributable format,

such as a JAR
■ Integration test—Do integration tests or process and deploy the package into an

environment where integration tests can be run
■ Verify—Run any checks to verify that the package is valid and that it meets qual-

ity criteria
■ Install—Install the package into the local repository, for use as a dependency in

other projects locally
■ Deploy—Copy the final package to the remote repository for sharing with other

developers and projects (done in an integration or release environment)

Based on these standard phases, Maven would perform the following tasks in a real-
world use case:

■ Download dependencies
■ Compile the code
■ Run the unit tests
■ Package the source code into a WAR archive
■ Download the Java container for the integration tests
■ Deploy the artifacts in the installed Java container
■ Start the Selenium server to run user interface tests
■ Start a browser
■ Run the integration tests
■ Clean up the integration test environment
■ Install the artifact in the local repository

Some parts of this process are already covered by entries in the POM (for example,
defining WAR as the packaging type). Others are available out of the box (such as test-
ing), and some can be described declaratively with dedicated plug-ins that you can
attach to run in Maven’s phases.

NOTE Calling one phase (such as running mvn install on the console) does
execute the phase, as well as all phases in the Maven lifecycle placed before
the called phase.

Plug-ins allow you to configure their behavior. The Surefire plug-in (responsible for
testing) provides the property maven.test.skip, which you can use to configure the
plug-in to do nothing. You do this by passing the Java parameter to your Maven call:

mvn install -Dmaven.test.skip

All phases consist of goals. Goals offer a more technical view, whereas phases provide a
high-level functional entry point. Internally, Maven organizes entry points as packages.

130 CHAPTER 5 Integration and release management
Each package maps one or more goals to one or more phases by default—some have
more than one, and some have none. Phases often have default goals that are exe-
cuted automatically based on the project’s packaging type. You can also directly trig-
ger a goal by adding it to its phase, separated by a colon. For the install goal, it would
be mvn install:install.

5.2.4 Maven and testing

Maven is ideally suited for running all your tests as part of your normal build setup.
You don’t need a customized environment for different types of tests. Unit tests run by
default, and integration tests are specified as a phase in the Maven build (between the
packaging and the install phases). In this way, you can rely upon the previously built
package, which can output a WAR file. To run your integration tests, you need to add
and configure the dedicated plug-ins.

 The Surefire plug-in is responsible for tests. It can be configured inside the POM’s
build element. By default, the plug-in looks for test cases in the src/test/java folder. It
runs in the Maven test phase and by default looks for classes with the patterns **/
Test*.java, **/*Test.java, and **/*TestCase.java. It’s possible to run both unit
tests and integration tests with the Surefire plug-in. In most cases, this will meet your
requirements right out of the box.

 For more complex integration tests, consider using Maven’s Failsafe plug-in. It’s a
fork of the Surefire plug-in and ensures that the post-integration phase runs even if
there’s an error in the integration tests. In addition to not breaking the build on test
failure, the Failsafe plug-in also enables more convenient configuration. For example,
it allows you to skip the integration tests but run the unit tests. To create integration
tests (instead of unit tests), you can save the tests with names following any of these
patterns, which include the letters “IT”: **/IT*.java, **/*IT.java, and **/

*ITCase.java.
 Both plug-ins can run JUnit and TestNG tests. All you need to do is include the

dependency of the framework in your project POM.
 Maven’s plug-ins block further execution until they’ve completed their tasks. This

can be helpful if you start a server for integration tests and want to wait until every-
thing is started, deployed, and ready for testing.

 The following listing shows an extract of a typical POM.

<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

Listing 5.4 Maven POM

131Maven feature set
 <groupId>group</groupId>
 <artifactId>artifact</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <name>name</name>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>5.10</version>
 <scope>test</scope>
 <classifier>jdk15</classifier>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 ...
 </configuration>
 <executions>
 ...
 </executions>
 </plugin>
 </plugins>
 </build>
...
</project>

There are a number of things to note in this POM file. First, each model is described
through project coordinates containing groupId, artifactId, and version B. The
project is built in a WAR file c. The model also describes the project dependencies by
referencing their project coordinates d. JUnit version 3.8.1 is a dependency in this case
e. Another dependency is TestNG 5.10 f. You can define the scope of the dependen-
cies and further parameters. Finally, you can configure Maven’s build lifecycle g, which
also includes testing, compiling, and packaging, by adding and configuring plug-ins.

5.2.5 Maven ecosystem

Tycho (http://tycho.sonatype.org/) extends Maven by providing a toolchain and
embedded runtime (Equinox) for building OSGi bundles, Eclipse plug-ins, and rich cli-
ent platform (RCP) apps. OSGi bundles have features similar to Maven, such as provid-
ing dependency management. Most OSGi apps were built with Eclipse’s plug-in
development environment (PDE), which is based on Ant scripts that often lead to com-
plex build scripts. With Maven Tycho, OSGi is a first-class citizen in the Java enterprise

Model’s project
coordinatesb

Project built
as WARc

Model describing
project dependenciesd

JUnit
dependencye

TestNG
dependencyf

Build lifecycle
configurationg

132 CHAPTER 5 Integration and release management
build and release management ecosystem. Tycho makes it possible to transparently
build OSGi apps with Maven—Maven takes care of the building behind the scenes. OSGi
and POMs are synchronized and compatible.

 Polyglot Maven (http://polyglot.sonatype.org/) adds yet more flexibility to the
Maven core by allowing domain-specific languages (DSLs) access to the core function-
ality.

 Maven Shell (http://shell.sonatype.org/) is a command-line interface for Maven
enabling faster builds. With Maven Shell, project information and Maven plug-ins are
loaded into a single, always-ready Java Virtual Machine (JVM) instance that can exe-
cute a Maven build.

 Maven and its comprehensive lifecycle management facility aggregates project
information as part of the build, and this data can be published on a Maven-generated
website. Because of its first-class dependency management support and its integration
with various VCSs, it’s able to support automatic release management. All of these fea-
tures make Maven a compelling choice for many technology professionals.

 Another important feature is Maven component repositories.

5.3 Maven component repositories
Maven repositories are essential for organizing build artifacts of varying types and
their dependencies on each other. Two types of repositories are remote and local.

 A remote repository is any centralized repository that’s accessed by a variety of pro-
tocols such as file://, scpexe://, and http://. These repositories might be truly
remote, set up by a third party. They provide their artifacts for downloading. For
example, the official Maven repository is available under http://repo1.maven.org.
Artifacts are provided in Maven’s central repository, and your Maven installation
downloads them on an as-needed base. This type of repository is named a public reposi-
tory, and it’s illustrated in figure 5.2.

Figure 5.2 Maven repository
topology: developer repositories, a
central proxy repository, and a
remote public repository. The public
repository is an external system,
normally on the internet. All other
repositories are internal systems.

133Maven component repositories
 Other remote repositories may be internal repositories located inside your net-
work, or what some IT professionals call a DMZ (demilitarized zone). They’re set up
on a file or HTTP server within your project or company, and they’re used to share pri-
vate artifacts between development teams and for releases. This sort of repository is
often called a proxy repository. A proxy repository acts as an intermediary for requests
from desktop machines seeking or providing binaries.

 A key benefit of proxy repositories is that you don’t need to download artifacts
multiple times from remote sources; rather, you download quality-assured artifacts
once and share them across projects and teams via the repository proxy. This way, the
developer machines’ access to the internet can be restricted, and developers can pull
unified artifacts from the proxy repository.

 Proxy repositories are essential for managing your dependencies. Dependencies are
external libraries that are required to compile and run your code and related artifacts.
They can be external libraries like Checkstyle and Log4J or internal dependencies like
your shared libraries that are deployed to the proxy repository for further reuse.

 Local repositories are placed on the developers’ machines. They’re individual
caches of artifacts that have been downloaded from the proxy repository. In addition,
they contain build artifacts that haven’t yet been released from workspaces and that
aren’t yet visible to others.

 An artifact is stored in a Java-like package struc-
ture derived from its groupId and artifactId
data, which also provides version information, as
shown in figure 5.3.

 Under the repository’s root folder, inside the
folders named for the groupId and artifactId,
you’ll see different version folders containing sev-
eral JAR files, a POM file, and additional meta infor-
mation. In figure 5.3, the repository root is located
under repository and the folder structure contains
checkstyle as the groupId and the artifactId, fol-
lowed by the individual folders for versions, in this
case 4.1 and 4.4.

 I’ve selected the folder named 4.4, so in the file
explorer, the lower part of the window displays its
contents. JAR is the deployment unit created by this module (and its build), as
described in the POM. You can add additional JARs to accomplish tasks such as distrib-
uting the sources. The files with the sha1 extensions are files generated with a crypto-
graphic hash function in order to validate their integrity.

 Remote and local repositories are structured equally so that scripts can be easily
run on either side. They can also be synchronized for offline use, but the layout of the
repositories is completely transparent to the Maven user.

Figure 5.3 Extract of a local
developer’s repository

134 CHAPTER 5 Integration and release management
 An important lifecycle feature is the option to not only consume dependencies,
but also to publish the project’s artifacts. The published artifacts can then be con-
sumed as dependencies by other developers or projects. Maven provides a standard
lifecycle phase called deploy, which needs to be configured to specify a repository that
publishes artifacts, making them available to the other developers. Once deployed,
these artifacts can be added to a project’s POM as dependencies.

 There are various ways to set up a repository infrastructure:

■ Use a shared filesystem and deploy artifacts to it via network mounts, FTP, or
SSH-based secure copy. For serving the repository, a web server like Apache
HTTP could run on the same machine, exposing the repository for dependency
resolution. Alternatively, the web server, if equipped with WebDAV features,
could be used to serve the publishing process as well.

■ Use a repository manager product such as Apache Archiva, Sonatype Nexus, or
JFrog Artifactory. These products must be run in a J2EE/JEE web application
container (quick-start versions are also available where the distribution is
already bundled with a container), accessible by artifact publishers and con-
sumers. They offer many additional benefits such as security models, search fea-
tures, permission models, workflows, and so on. Later in this chapter, we’ll look
at Artifactory to get a basic understanding of the features provided by a reposi-
tory manager.

Open source projects have the option to deploy to the central Maven repository, and
many do so. The central Maven repository is http://repo1.maven.org/maven2 (often
mirrored). Therefore, this repository is the source where you can browse and include
your dependencies. The process for deploying artifacts to the central repository is
described in detail on the Maven website.5

 Although the central repository is the preferred mechanism for publishing public
artifacts, the process requires some administrative effort. Most notably, the recom-
mended way of publishing requires a staging repository that’s accessible by secure
copy (scp), which means that the team will still have to establish a self-hosted proxy
repository in your internal system.

 To accelerate development flow and rapidly work on code in an Agile development
effort, relying solely on repositories isn’t enough. Imagine you have different develop-
ment teams developing components for your overall application, and the components
have interdependencies. In continuous release mode, where you’re continuously pro-
viding the most recent development state, the output is unreliable. A lot of bugs and
unstable developments are released too soon and are included in the development
work your colleagues do. But what you want is a productive work environment, with
private workspaces that consist of reliable, quality-assured versions of artifacts. You
need a way to declare frozen versions of dependencies to other components, so

5 See Maven’s “Guide to uploading artifacts to the central repository,” http://maven.apache.org/guides/
mini/guide-central-repository-upload.html.

http://maven.apache.org/guides/mini/guide-central-repository-upload.html
http://maven.apache.org/guides/mini/guide-central-repository-upload.html

135Maven component repositories
Maven enables you to specify dependencies between components. With Maven, one
team can continue working on new features, and another can develop against a stable
API and version. In your individual project model, you can decide to provide either a
versioned artifact of your work or a snapshot.

SNAPSHOTS AND SITES If you have a CI server, such as Hudson or Bamboo,
you should configure a snapshotRepository, which the CI server uses to
store the nightly build results. If you’re also building and deploying the proj-
ect’s website with Maven, you need to define the site element as well.

A snapshot is a special version that indicates a current development state. Unlike reg-
ular versions, Maven will check for a new snapshot version in a remote repository for
every build, once a day, or however often you choose to define as the frequency. For
normal versions (releases), Maven downloads—once only—the artifacts from a
remote repository to your local repository. This artifact bootstrapping (where you
download the artifact only once to serve all further requests to it out of the local
repository) applies to proxy repositories, too, in terms of their dependencies upon the
artifacts in remote repositories. Versioned artifacts and snapshot artifacts are stored in
both local and remote repositories. For that, different access paths or folder structures
are used.

REPOSITORIES AND MIRRORS Repositories can be defined in POMs. You can
set up a parent POM that contains the enterprise settings on which all your
individual projects will be based. Alternatively, or in combination, you can
define repositories in your private Maven settings file. Using a mirror, you
can replace a public repository (such as “central,” where Maven connects to
when it automatically tries to resolve missing dependencies) with your own
proxy repository.

Developers can choose to use either snapshots or versioned artifacts for development,
depending on whether they’re actively developing or preparing a release of the code.
Having a choice between versioned artifacts and snapshots dramatically improves the
quality of the software process, purges the workspaces (and avoids workspace clutter),
and keeps the component repository clear of duplicate libraries. Developers don’t
need to check out sources and their references in a manual, error-prone way, nor do
they need to build third-party code again from scratch. They only need to include the
binaries in their workspaces. This is what they should do to develop their own compo-
nents. (Sources for debugging can be attached, though.)

5.3.1 Managing sources and binaries in conjunction

Source code management, including branching strategies, and management of bina-
ries are used in conjunction with each other. For example, an application and its
sources are developed on the VCS head or trunk (see figure 5.4). A continuous build
consumes and produces binaries, and it deploys the current snapshots to the compo-
nent repository. During the process of building a release (for instance, during a code

136 CHAPTER 5 Integration and release management
freeze), a VCS tag is created (for instance, 1.0.0), and its corresponding release binaries
are deployed to the component repository.

 If you release software continuously, in a timeboxed way, you may not need any
branches at all, because you can always work on the most recent head version of the
software. But if you want to change a formerly released build without including fur-
ther development that was already done on the head (such as new features), you’ll
need to branch.

 A branch is an isolated code stream, parallel to the head stream and other
branches that are in place already. Changes on the branch are backported to the
head: they’re committed to the head ideally directly after the commit on the branch.
Many projects find it helpful to create branches as part of the releasing process in the
code freeze interval, or even earlier in the frozen zone interval.

 It is a good strategy to create VCS branches on demand only. This means that you
don’t branch prophylactically but only when needed, at the last possible
moment—when a new version of the software is required.6 A new version is then based

6 Using Subversion, you can create branches at any time based on a given tag or a given Subversion revision
number. Physically, branches and tags in Subversion are copies of the folder structures in the repository.

Figure 5.4 Branching strategies and the deployment of binaries (snapshot and release) are
used in conjunction with each other. The frozen versions that were tagged from the head are
1.0.0 and 1.1.0. Version 1.0.0 had two bugs, so a branch was created, where the two bugs were
fixed; the bug fixes were merged into the head as well. At specific moments (the diamonds in
the figure), the versions are frozen. The head is frozen to version 1.1.0 and the branch is frozen
to version 1.0.1. Both new versions contain the two new bug fixes.

137Maven component repositories
on a version that was previously frozen, tagged, and shipped. It’s important that you
focus only on changes on the branch that are critical and of high value for the customer.
Don’t fix bugs of lower priority and don’t develop new features on a branch, because
that counteracts the functional releasing process that was discussed in chapter 3.

 The ranges of version numbers are different on branches and heads. Release bina-
ries have unique identifiers and should be deployed to the component repository only
once. You should set up the same CI process on the branch that you’ve already set up
for the head. This is important in order to find defects there early and often and to
start preparing and training the final release of the branched version early. Like the
setup on the head, commits on the branch trigger new builds, trigger tests, and create
new binaries that are deployed to the component repository. The CI process on the
branch also includes the creation of snapshot versions as well as release binaries.

 A branch should be closed. Closing a branch retires it: No further work is done on
the branch (no new commits to the branch), and all necessary changes are merged to
the head. Closing a branch may be implemented by convention (when the release is
finished) and can be supported technically, such as by preventing developers from
committing to the branch by using Subversion hooks.

 You’ll normally want to close a branch soon, because once a branch is created, it’s
another development line for the team. CI requires you to integrate software and syn-
chronize the team, and having too many branches that must be merged back to the
mainline is additional overhead and often slows down the workflow on the head,
counteracting the basic idea of CI.

CI is also a communication vehicle that relies on the current, synchronized, most
recent version of the software.7 Although branches also act as communication points,
the development flow and its pace is determined on the head, and branches fragment
communication. For the same reason, mechanisms such as developer branches, where
developers have their own isolated code lines in the repository, should be avoided.

5.3.2 Artifactory’s enterprise component repository

Artifactory is a component repository manager. It allows you to have full control over
your project’s binary artifacts, acting as both a secure warehouse for locally hosted
artifacts and a smart caching proxy for remotely hosted artifacts. Artifactory provides a
few unique management features and some cross-technology integrations that make it
compelling to use in environments ranging from a small startup project to large CI
setups.

 These are the core features of Artifactory:

■ Stores artifacts (your own artifacts should be created by a CI server)
■ Acts as a proxy for artifacts

7 This is the main reason why people should commit early and often. Investing much time in developing soft-
ware in the workspace without committing changes to the repository and having the changes integrated with
the work of others is a lost opportunity.

138 CHAPTER 5 Integration and release management
■ Avoids hitting public remote repositories
■ Deploys, manages, and shares local artifacts
■ Offers full control over artifacts’ resolution and delivery
■ Provides a fine-grained security system, including repository administration,

and distinguishes between read, write, and delete permissions for working with
artifacts

Artifactory provides support for managing remote repositories. By configuring a pub-
lic repository (the major ones are already preconfigured), Artifactory creates its own
cache out of the box; you don’t need to add repositories and link them to public
repositories. For example, using the Maven repo1 central public repository, Artifac-
tory sets up a repo1-cache directly, as shown in figure 5.5.

 Artifactory also supports virtual reposito-
ries. Virtual repositories wrap local and
remote repositories under a single identi-
fier, acting like a facade, so you can create
combinations of repositories and expose
them to clients as a single virtual repository.
This way, you can decouple the logical
repository view for developers from the
technical implementation view that a reposi-
tory admin must have.

 Virtual repositories can also wrap around
other virtual repositories. Whenever a repos-
itory (local, remote, or virtual) is added to,
changed, or removed from such a virtual
repository, the change is automatically prop-
agated to all virtual repositories.

 Artifactory ships with a conveniently
embedded virtual repository called repo.

Artifactory’s origins

In 2006, Yoav Landman started Artifactory’s development with the purpose of provid-
ing a better alternative to the existing repository managers at that time (such as Maven-
proxy and Proximity) that lacked basic features such as security, filtering, indexed
searches, and a user-friendly UI. This was a time when large enterprises were using
Maven and managed artifacts. They had no real solution to enterprise needs for artifact
management.

The Artifactory project was hosted on SourceForge, where it’s still hosted at the time
of this writing. In 2008, JFrog (www.jfrog.org) was founded to support the product and
its future development.

Figure 5.5 Artifacts in the Artifactory
repository browser

139Maven component repositories
This means that all you need to get your local workspace connected to Artifactory is a
settings.xml file, such as the one shown in the following listing.

<settings xmlns="http://maven.apache.org/settings/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>snap</id>
 <username>michael</username>
 <password>secret</password>
 </server>
 <server>
 <id>rel</id>
 <username>michael</username>
 <password>secret</password>
 </server>
 <server>
 <id>central</id>
 <username>michael</username>
 <password>secret</password>
 </server>
 <server>
 <id>snapshots</id>
 <username>michael</username>
 <password>secret</password>
 </server>
 <server>
 <id>repo</id>
 <username>michael</username>
 <password>secret</password>
 </server>
 </servers>
 <mirrors>
 <mirror>
 <mirrorOf>*</mirrorOf>
 <name>repo</name>
 <url>http://localhost:8081/artifactory/repo</url>
 <id>repo</id>
 </mirror>
 </mirrors>
 <profiles>
 <profile>
 <repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>libs-releases</name>
<url>http://localhost:8081/artifactory/repo</url>

Listing 5.5 A settings.xml file with server credentials and repositories

Set server elements
with repository
credentials

B

Mirror unresolved
repository requests

c

Add ID to
server sectiond

Use default
profilee

Specify shadow
maven2 repository
central

f

Point to virtual
repo repository

g

140 CHAPTER 5 Integration and release management
 </repository>
 <repository>
 <snapshots />
 <id>snapshots</id>
 <name>libs-snapshots</name>
 <url>http://localhost:8081/artifactory/repo</url>
 </repository>
 </repositories>
 <pluginRepositories>
...
 </pluginRepositories>
 <id>artifactory</id>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>artifactory</activeProfile>
 </activeProfiles>
</settings>

To enable non-anonymous access, we set up the server elements to contain reposi-
tory credentials b. These include an ID mapping to the id element of a repository
fragment. Next, we mirror all unresolved repository requests c; it can also be useful
to hide maven2 central. The ID must be added to the server section with valid cre-
dentials d. We use a default profile e. Next, we shadow the maven2 central reposi-
tory f, overwriting the same entry in the Super POM, and then point to the virtual
repo repository g, which automatically maps to repo1-cache. This listing skips over
the plug-in repository h, which contains similar entries for managing plug-ins. After
providing an ID for the profile i, we set the profile to active j. The profile will be
applied without any further preconditions.

 You also need a distributionManagement section in your POM, as shown in the
following listing. This can be placed in a parent POM.

<distributionManagement>
 <snapshotRepository>
 <id>snap</id>
 <url>http://localhost:8081/artifactory/libs-snapshots-local</url>
 </snapshotRepository>
 <repository>
 <id>rel</id>
 <url>http://localhost:8081/artifactory/libs-releases-local</url>
 </repository>
</distributionManagement>

This example shows the advanced features for mirroring repositories. Here we use
mirroring with a wildcard, a star (*) in the mirrorOf element of the XML file, so all
unresolved repositories will access Artifactory’s virtual repository, named repo). The
example also shows advanced permission settings. In the previous listing, Artifactory is
configured to prevent anonymous access, so we have to use valid usernames, as you

Listing 5.6 POM distribution management

Specify plug-in repository,
skipped hereh

Specify ID
for profilei

Set profile
to activej

Specify snapshot artifacts
deployed to this repository Repository ID must

match settings.xml

Define deployment target

141Maven component repositories
can see in the different username elements of the XML file. The default is to allow
anonymous access, so you have to disable that via Artifactory’s web interface.

 On top of Artifactory’s open source version, there’s a Power Pack set of commer-
cial add-ons targeted at enterprise users. With a little more effort, many of the com-
mercial enterprise features can be utilized in the open source version by using
Artifactory’s REST API. JFrog also offers a fully hosted Artifactory service—Artifactory
Online (www.artifactoryonline.com)—targeted at small to medium-sized organiza-
tions. This cloud-based repository manager provides its subscribers with the latest ver-
sion of Artifactory and the Power Pack.

 Artifactory is a generic binaries repository. Although it initially started as a Maven
repository manager, Artifactory isn’t intended only for Maven users; Grails or Ivy users
can use it as well. Artifacts that are deployed to Artifactory with Ivy can be retrieved
with Maven, and vice versa. Therefore, the tool offers features that are targeted at
other build tools:

■ Generic uploading from the UI to any path
■ Indexing of any artifact type
■ Searching inside the content of Ivy modules (parallel to searching inside Maven

POMs)
■ Integration with the Gradle (www.gradle.org) and Ivy (http://ant.apache.org/

ivy/) build tools
■ Encrypted password support

For Maven, Artifactory offers many features:

■ Uploading of artifacts with optional POM editing and auto-guess properties
■ Special searches
■ Auto-generated settings.xml files (derived from repositories configured in Arti-

factory)
■ Centrally controlled snapshot policy and convenient POM views
■ Cleanup of POMs from troublesome remote repository references
■ Finding and deleting of selected artifact versions under a folder
■ Copying and moving of artifacts (single and bulk)

All artifacts in Artifactory are merely pointers to binaries, and binaries can be stored
either on the filesystem or in a configurable relational database. Artifactory comes with
a built-in Derby database that can be used to store data for production-level repositories
(up to hundreds of gigabytes). Artifactory’s storage layer supports pluggable storage
implementations; this is made possible by the underlying Jackrabbit Java Content
Repository (JCR), so you can configure Artifactory to run with almost any JDBC database
or even store data completely on the filesystem. The storage used by Artifactory is
checksum-based, which means it doesn’t matter how many times a file exists in Artifac-
tory; it will still be stored only once. This makes operations such as moving or copying
cheap in terms of speed and space. Copying artifacts is unavoidable if, for example, the

www.artifactoryonline.com

142 CHAPTER 5 Integration and release management
same binary needs to be exposed to different groups of people who are allowed access
to different repositories, and you can’t (or it’s way too complicated to) do this by shar-
ing one repository and applying fine-grained security rules.

 Artifact management and metadata is atomic in Artifactory—moving multiple arti-
facts, deploying artifacts with their metadata, deleting groups of artifacts, and so on,
can all be done in an all-or-nothing fashion.

 In Artifactory, all files and folders are candidates for receiving an unlimited
amount of metadata that can contain any appropriate information that further
describes the artifact. Any XML metadata can be attached using the UI or the REST API
and can be managed, created, or deleted. This metadata is also indexed, so it’s fully
searchable from the UI or REST. The commercial version of Artifactory takes this one
step further by offering user-defined, strongly typed custom properties on top of XML
metadata that provide a specialized UI according to the property type. For example, if
the user has defined a single-value, closed list property for the performance level of an
artifact, they will get a single-select dropdown when annotating an artifact with this
property.

 The user interface is intuitive and easy to understand. Items are displayed clearly
on the screen, and all items are either self-descriptive or have decent online help. The
UI is mostly Ajax-based and is implemented using Apache Wicket with many custom
components and the Dojo JavaScript library. The UI can be branded (from the UI)
with a custom logo and footer.

 Artifactory puts searches in the center of the user activity and offers the following
types:

■ Quick search
■ Class or archive content (for example, properties file in a JAR) search, with the

ability to see the class that was found
■ XPath search inside Maven POMs, Ivy modules, or any deployed XML content
■ groupId, artifactId, version, and classifier search (for Maven artifacts)
■ Properties search (in the commercial version; more about properties later in

this section)

All searches are exposed through Artifactory’s REST API.
 Artifactory takes searches one step further by making them the prime vehicle for

artifact management. All search results are navigable to the repository tree, where you
can annotate, move, remove, view, or download the artifact. Figure 5.6 shows Artifac-
tory’s search facility.

 The commercial version of Artifactory is even more powerful, offering smart
searches. You can save your search results, search again, and add or subtract the
results from the saved ones (as many times as you wish), tweak the saved results manu-
ally, and operate with them as one unit of work. For example, you can search for all
artifacts of a certain group and version in a dev repository, save the results, search
again for all the sources with the same group and version, subtract the sources from

143Maven component repositories
the original result, and finally promote (move) the results to another repository acces-
sible to the QA team.

 Artifactory provides a simple, yet powerful, security model that allows the assign-
ment of the following four permissions:

■ Read
■ Write
■ Delete (also implies redeploy or overwrite)
■ Annotate (with metadata)

Permissions are applied to a target consisting of a group of selected repositories and a
set of include or exclude path patterns on these repositories. Permissions are then
assigned to either individual users or user groups. This simple model works well in
practice and is easy to understand and to control, incurring minimal security manage-
ment overhead. Permissions of artifacts are viewable by an in-place effective permis-
sion page. Artifactory also offers out-of-the-box support for LDAP and Active Directory
authentication. Support for highly optimized LDAP groups authorization is part of the
commercial add-ons. (Standard LDAP support is freely available.)

 Have you experienced situations where colleagues accidentally override artifacts
and POMs with older versions or outdated sources by locally running only an mvn
deploy? Artifactory’s Watches notifies you by mail whenever a create or delete opera-
tion is run on a certain Artifactory repository, folder, or artifact.

 Maven manages a certain amount of metadata by adding it to artifacts. The coordi-
nates (groupId, artifactId, version) provide important value, but Maven has no fea-
ture to add more context metadata to artifacts that would be helpful right when they’re
deployed. Properties, or artifact tagging, is a neat feature that can enrich your build
infrastructure. Generally, properties are arbitrary meta-information. For example, a
property is a Maven or POM property that will become an Artifactory property—a

Figure 5.6 Artifactory’s search facility: POM/XML search

144 CHAPTER 5 Integration and release management
Maven build property exposed to Artifactory. You can use these properties to locate and
identify the deployed artifacts that originated from the same build so you can promote
them later on.

 Properties can be attached to artifacts in many ways: via the UI or REST API using
PUT requests, or piggybacked on artifacts that are PUT to Artifactory using matrix
parameters. To add parameters, you need to configure your POM’s distributionMan-
agement section; using a good design approach, this configuration should be in one
location—in one parent POM. It could look like this:

<distributionManagement>
 <repository>
 <id>qa-releases</id>
 <url>http://srv/artifactory/repo;build=${number}</url>
 </repository>
</distributionManagement>

This pair of arguments is added to the deployment repo definition. The values are
usually taken from regular Maven properties and can be updated by any POM. Techni-
cally, they’re a set of key-value pairs separated by a semicolon—a standard HTTP com-
munication protocol. Using Maven’s native properties approach, this matrix property
can be configured and set in a top-level POM or injected by a command-line interface.

 Artifactory allows you to search for properties and copy or move the result set to
allow sophisticated staging and promoting. Figure 5.7 shows an example of how you

Figure 5.7 Property search: searching repositories for properties. Examples of properties are
build.name and build.number.

145Maven component repositories
can search for artifacts tagged with the properties build.name and build.number
and their values MM and 18. As we’ll discuss in chapter 7, the Jenkins/Artifactory inte-
gration automatically injects these properties with every build. This way you gain from
traceable builds.

 Once you’ve tagged artifacts in your repositories with any set of properties, setting
them manually or automatically, you can search for these annotated artifacts. Once
they’re found, you can save and refine the search results (add or subtract results from
the former result) for later reuse. Artifactory acts as a shopping cart of artifacts, mak-
ing bulk artifact management a lot easier. Once you’re done, you can move or copy
the results.

 One use case for searching and performing bulk operations is to navigate to all
saved searches, mark the search results you want to work with, and then copy or move
all artifacts belonging to the search result to another repository. Figure 5.8 shows the
artifacts found by a save search being copied.

5.3.3 Using Subversion to serve a simple Maven repository

 —This section contributed by René Gielen

When you’re starting without Maven, additional infrastructure and software is needed
to set up a Maven topology, such as a proxy repository on a dedicated machine. This
might not be possible in the organization’s environment for either technical or politi-
cal reasons. Open source project teams, on the other hand, might fear some of the
administrative overhead involved in publishing to the central repository, and
resources such as self-hosted repository managers might be beyond the budget. But
any such project team should feel highly encouraged to consider central repository
publishing, at least for the early stages of a project.

 Often, project teams don’t regard central repository publishing as a suitable
option, and they lack the ability to establish or access additional infrastructure. The

Figure 5.8 Working on search
results, and copying an artifact
set to a different repository.
This allows smart artifact
staging and promoting.

146 CHAPTER 5 Integration and release management
question is, could there be a solution for establishing a repository without the need
for extra resources?

 Any method of publishing is workable as long as it results in a normalized reposi-
tory structure tree accessible by the HTTP or HTTPS protocol. Maven’s deploy phase
publishing mechanism utilizes a transport abstraction layer called Wagon that pro-
vides a service provider interface (SPI) to be implemented by various transport plug-
ins, such as Wagon File, Wagon FTP, Wagon WebDAV, or Wagon SSH.

 One of the (possibly) less known providers is Wagon SVN, which makes it possible
to publish artifacts to the Subversion VCS. Subversion allows you to browse the latest
revision of the repository tree via its web server integration using simple HTTP GET
requests. Project teams using Subversion over HTTP or HTTPS for version control can
utilize Subversion to gain a fully functional Maven repository without needing any
additional resources other than those they’re already using.

 The first step is to choose and
create a suitable folder structure
in the Subversion repository. My
recommendation is to create a
Maven folder along with the usual
trunk, branches, and tag folders.
Another common practice is to
differentiate between release and
snapshot artifacts, where you cre-
ate two additional subfolders, one
named snapshots and the other
one releases or staging. The latter
name implies that this folder
might later serve as a staging
repository for publishing to a more general repository, maybe even central. The repos-
itory contents will be published in these two folders, depending on whether the arti-
fact you’re deploying is a release or a snapshot version, as shown in figure 5.9.

 Next, the project’s pom.xml has to be extended to configure the target repository
locations to which you’re going to deploy and that the Wagon provider will use. This is
shown in the following listing.

<project ... />
 <groupId>com.myorg</groupId>
 <artifactId>myproject</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 ...
 <distributionManagement>
 <repository>
 <id>myproject.staging</id>
 <name>MyProject Staging Repository</name>
 <url>

Listing 5.7 POM configuring Wagon

Figure 5.9 Sample Subversion folder layout

Configure Subversion in
distributionManagement

b

147Maven component repositories
 svn:https://myorg.com/svn/myproject/maven/staging
 </url>
 </repository>
 <snapshotRepository>
 <id>myproject.snapshots</id>
 <name>MyProject Snapshots Repository</name>
 <url>
 svn:https://myorg.com/svn/myproject/maven/snapshots
 </url>
 <uniqueVersion>false</uniqueVersion>
 </snapshotRepository>
 </distributionManagement>
 ...
 <build>
 <extensions>
 <extension>
 <groupId>org.jvnet.wagon-svn</groupId>
 <artifactId>wagon-svn</artifactId>
 <version>1.9</version>
 </extension>
 </extensions>
 ...
 </build>
 ...
</project>

In the distributionManagement section, we configure the release repository location
within the repository element b and the snapshot repository location within the
snapshotRepository element c. Both elements require a unique ID, which we’ll use
later to configure the matching private credentials. The name element should contain
a handy, human-readable description of the location. The url element defines the trans-
port endpoint for the Wagon mechanism. The configured values for both endpoints d,
representing the HTTP address of the repository folders created earlier, are prefixed by
the svn: pseudo protocol scheme. The standard Wagon mechanism won’t know how to
deal with that, so we add the wagon-svn plug-in as a build extension dependency, which,
after being resolved, will register itself for the handling of the svn: prefix. By setting the
uniqueVersion configuration option to false, we ensure that snapshot version num-
bers for the artifact won’t be extended by a timestamp on each deployment.

 The next step is to configure the credentials needed to authenticate against Sub-
version for publishing. These credentials are subject to nondisclosure and should
reflect the authorization of the person issuing the Maven deployment, so they won’t
be configured in the project-wide pom.xml file, but rather in the individual team
member’s local Maven configuration file, usually found at $HOME/.m2/settings.xml.
An example is shown in the following listing.

<settings>
 ...
 <servers>
 <server>

Listing 5.8 Configuring credentials in settings.xml

Add Subversion as
snapshot repository

c

Configure wagon-svn
extensiond

148 CHAPTER 5 Integration and release management
 <id>myproject.staging</id>
 <username>dave_deployer</username>
 <password>secret</username>
 </server>
 <server>
 <id>myproject.snapshots</id>
 <username>dave_deployer</username>
 <password>secret</username>
 </server>
 ...
 </servers>
 ...
</settings>

Please note that the server ID values have to match those configured in the
distributionManagement section of the project’s pom.xml file. From now on, each
authorized team member can publish artifacts to the Subversion-based Maven reposi-
tory as with any other repository management solution:

> mvn deploy

Whether the artifact will be published to the snapshot or the staging repository
depends on whether the project version found in the pom.xml file at the time of
deployment is a snapshot or a release version. An example folder structure also con-
taining snapshot versions is shown in figure 5.10.

Credentials for
staging repo

Credentials for
snapshot repo

Figure 5.10 This
expanded repository
tree contains various
deployed artifacts.

149Maven component repositories
 To consume the deployed artifacts as dependencies in another project, this proj-
ect’s pom.xml file must be modified to recognize the additional custom Maven repos-
itory to be used for dependency resolution (see the following listing).

<project ...>
 ...
 <repositories>
 ...
 <repository>
 <id>myproject.repository</id>
 <name>Repository for the MyProject artifacts</name>
 <url>http://myorg.com/svn/myproject/maven/staging</url>
 </repository>
 ...
 </repositories>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>com.myorg</groupId>
 <artifactId>myproject</artifactId>
 <version>1.0.0</version>
 </dependency>
 ...
 </dependencies>
 ...
</project>

How you set up the project repository to resolve both the snapshot and the release
artifact versions is shown in the following listing.

<project ...>
...
 <repositories>
 ...
 <repository>
 <id>myproject.staging.repository</id>
 <name>Staging Repository for MyProject</name>
 <url>http://myorg.com/svn/myproject/maven/staging</url>
 <releases>true</releases>
 <snapshots>false</snapshots>
 </repository>
 <repository>
 <id>myproject.snapshot.repository</id>
 <name>Snapshot Repository for MyProject</name>
 <url>http://myorg.com/svn/myproject/maven/snapshots</url>
 <releases>false</releases>
 <snapshots>true</snapshots>
 </repository>
 ...

Listing 5.9 Dependency resolution pointing to the repository

Listing 5.10 Repository settings with both staging and snapshot

Configuration
of repository

Example dependencies
for project

Configuration of
release repository

Configuration of
snapshot repository

150 CHAPTER 5 Integration and release management
 </repositories>
...
</project>

This section described using Subversion as a Maven repository. The next section shows
how to create releases with Maven.

5.4 Releasing with Maven

 —This section contributed by Matthias Weßendorf

The release of software packages is an important phase of the Agile ALM. You should
put the source code into a VCS (for example, Subversion) and extract it to be compiled
and packaged. In most cases, your customer will require a complete release package
(also referred to as a distribution) that also contains additional information. In this sec-
tion, you’ll learn how to create a software release and distribute it using Subversion,
Maven, and some useful Maven plug-ins. You’ll also learn how to leverage additional
tools, such as Python scripts, to automate almost all steps of the release process.

 Before you start creating your release, you must be clear about what is expected to
ship with the software. Typically a release needs a lot more than some compiled Java
classes. Common artifacts in a distribution include the following:

■ Executables—The software itself, such as binaries, property files, database scripts,
installers, and so on.

■ Documentation—Practical user guides, such as installation guides or how-to doc-
uments, and API descriptions, created with tools like Javadoc or TagDocs, need
to be made available as part of a release.

■ Examples—Showcase applications, a reference implementation, API usage exam-
ples should be included. Most open source releases contain examples, which
may be simple or rather complex, showing many features.

■ Distribution of the source code—This may not only be important for open source
projects. Releases for in-house projects or business partners may also distribute
the source code, which makes debugging easier.

■ Anything else of value in your individual situation—For project-specific require-
ments, you may need to ship additional artifacts.

The location of the release deliverables is also important. For instance, with Maven,
JAR files (including sources and JUnit tests) can be deployed to an in-house repository,
which is an HTTP or file server (for example, Artifactory or SVN) that follows a
defined directory layout. The complete release package is often placed somewhere
else. It’s common to place these files on your company website or an open source
project website. Another option is to deliver the distribution on a network filesystem
(such as NFS), which you use to exchange files with your business partners or other in-
house teams.

 Once it’s clear where the distribution will be placed and what it contains, you’re
faced with what is probably the most important question: How do you deploy the

151Releasing with Maven
release? Several tools and options are available to get a release out the door. These can
be historic make files or Bash or Perl scripts that run the software build and assemble
the final release package. On older Java projects, you may still see the use of home-
grown Ant tasks to generate the release and its distribution package. Today, the de
facto standard for Java-based projects is Maven. This not only manages the build sys-
tem of a software project, but also helps to manage the project through its entire
lifespan. Maven support includes aspects such as the following:

■ Creating documentation (like the product website or Javadoc documents)
■ Managing source code (the location of the SVN repository)
■ Branching and tagging in SVN
■ Creating the distribution of the release

BEST PRACTICES IN MAVEN PLUG-INS Commonly established best practices are
coded into many of the available plug-ins. This means the Agile development
process starts with the choice of a powerful tool belt.

Maven is a framework that executes plug-ins that accomplish a variety of important
tasks. The plug-ins can help you perform tasks that are essential for building, packag-
ing, and deploying your software. An example would be to use Maven to post the
results of your nightly builds to Twitter (see http://code.google.com/p/maven-twitter
-plugin/). Normally, you won’t want to publish results to the public via Twitter, but
Maven supports you in making the status visible and ensuring the build gets fixed back
to green as soon as possible. In this section, we’ll look at several major plug-ins (and
their required configurations) that are ideal for producing a software release.

 Before you start to generate a release, you need to understand that there are sev-
eral ways to do it. You could start in the SVN trunk folder, which is probably not a good
idea, because the main codeline is usually developed on the trunk. It’s a common
practice to create a separate release branch using a standard naming convention such
as “release-version-x.y.z.”

 In this example, we use a common SVN layout:

-myProject/
 -branches/
 -branchA
 -branchB
 -tags/
 -trunk/
 -src
 -pom.xml
...

The first task is to include the Maven Release plug-in in your POM as part of the proj-
ect’s Maven build lifecycle:

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-release-plugin</artifactId>
<version>2.0</version>

http://code.google.com/p/maven-twitter-plugin/
http://code.google.com/p/maven-twitter-plugin/

152 CHAPTER 5 Integration and release management
5.4.1 Creating the branch and preparing the release

Creating the entire release from a release branch is a good pattern. Doing so ensures
that the main development can continue on the trunk without having any undesired
side effects on your release. Imagine if some of the changes weren’t ready in time for a
scheduled release. In this case, you’d want to revert the changes that aren’t complete,
and this is much easier if you’re using a release branch that contains only the tested
and completed features approved for the release.

 You can create a branch with the tools provided by SVN, like svn copy. Windows
has convenient graphical tools (such as TortoiseSVN, see chapter 2) that support creat-
ing branches and tags. Even with Maven there are several ways to create a branch,
such as with the Maven SCM plug-in or the Maven Release plug-in. You can use the
Maven Release plug-in to help automate the release process, including creating a
release branch automatically.

 Before you can use the Release plug-in for branch creation, you must configure
your source control management (which is named SCM in Maven) settings inside the
project’s pom.xml file. See the following listing.

<scm>
 <connection>
 scm:svn:http://server/svn/path/to/project/trunk/
 </connection>
 <developerConnection>
 scm:svn:https://server/svn/path/to/project/trunk/
 </developerConnection>
 <url>http://www.anexample.com</url>
</scm>

MAVEN SITE GENERATION The SCM configuration in the preceding listing is
used when the Maven Site plug-in creates the project’s website. The informa-
tion about the used source code repository is made available on the gener-
ated source-repository.html webpage (see MyFaces, at http://myfaces
.apache.org/source-repository.html, or CXF, at http://cxf.apache.org/
source-repository.html).

The connection element represents the URL that’s used by everybody to check the
source code b. Usually, the anonymous checkout is done through an unsecured
HTTP connection. The developerConnection section contains the URL that’s used by
the project’s developers to commit their changes back to the source repository c. In
almost all cases, this is done through a secured HTTP (HTTPS) connection. The only
exception would be when the repository is already hidden by a corporate firewall. The
last parameter (url) is a “nice to have” setting. Usually, it contains a web interface to
the source code stored in the repository d. Most Subversion servers have something
like ViewVC (www.viewvc.org/) or WebSVN (http://websvn.tigris.org/) installed.

Listing 5.11 Configuring SCM in project’s model (POM)

URL to
check code

b

URL to work
on code

c

URL for web
interface

d

http://myfaces.apache.org/source-repository.html
http://myfaces.apache.org/source-repository.html
http://cxf.apache.org/source-repository.html
http://cxf.apache.org/source-repository.html

153Releasing with Maven
Once you configure the required settings, it’s time to create the first branch:

mvn release:branch -DbranchName=myFirstRelease

Shortly after executing the plug-in, it asks for the next version number (which is then
recorded in the POM) on your trunk. For instance, if your project has the version
number 1.0.0-SNAPSHOT (check your pom.xml for its <version/> XML element),
you’d see the following prompt:

What is the new working copy version for "my-tool"? (com.book:my-tool)
1.0.1-SNAPSHOT:

MAVEN VERSION SCHEMA The Maven Release plug-in requires the version
scheme to end with -SNAPSHOT, such as 1.2.4-alpha-4-SNAPSHOT.

Hitting the Enter key accepts the suggested value, or you can specify a different ver-
sion number. After that, the plug-in updates the version number in pom.xml and com-
mits the change to the SVN trunk. The plug-in also creates the new branching folder
in the source repository. The pattern for the myFirstRelease branch would be some-
thing like this: https://server/svn/path/to/project/branches/myFirstRelease.

Using GIT as your repository

If you plan to use GIT as your repository, you can use Gitweb (http://git.wiki.kernel.org/
index.php/Gitweb) or even host your entire project directly on GitHub (http://
github.com/). The benefit of a web interface installation is that you can easily view
the annotated source code with additional information: You get a colored overview of
the difference between two revisions and some more advanced information about who
added or changed the file in which revision.

To get similar information from your source code system, you would need to use the
command-line tool, like git blame. In SVN you would use the command svn blame.
You could use TortoiseSVN, or you could benefit from a toolchain that integrates a
VCS browser, such as FishEye with SVN.

Maven Release plug-in: tools and processes

Tools follow the development process, which means that the process decides about
tools; we discussed this in chapter 2. But some people state that the Maven Release
plug-in doesn’t support the individual release process that exists in their project.

You shouldn’t customize your process to map to what Maven suggests with the Release
plug-in. If the plug-in works for you and your process, that’s fine. If you have the option
to personalize your process and align it with commonly accepted best practices, you can
also use the Maven Release plug-in. But you can also implement either part or all of the
releasing process yourself with other tools than Maven. For instance, it’s easy to write
a small Ant script that uses a replace function and that scans your POM files and incre-
ments version numbers (see http://ant.apache.org/manual/Tasks/replace.html).

154 CHAPTER 5 Integration and release management
The Release plug-in checks whether you have modified files on your project. If this is
the case, you’ll get a build failure:

[ERROR] BUILD FAILURE
[INFO] --
[INFO] can't prepare the release because you have local modifications :
[pom.xml:modified]

To continue, you need to evaluate the change and commit it to the SVN trunk or
revert it if it wasn’t intended. Then you need to check the newly created branch:

svn checkout
 https://server/svn/path/to/project/branches/myFirstRelease/
 directoryToContainTheBranch

If you look at the scm section of the pom.xml file in the version of the code you just
checked, you’ll notice that the previous branch goal also updated this section. It con-
tains the right URLs to point to the new SVN branch.

 Before you can continue with the release preparation, your project’s pom.xml file
needs some extra configuration (see the following listing).

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.0</version>
 <configuration>
<preparationGoals>clean verify install</preparationGoals>
<tagBase>https://server/svn/path/to/project/tags</tagBase>
 </configuration>
 </plugin>
 </plugins>
 ...
</build>

Inside the build section of your pom.xml file, you must configure the Maven Release
plug-in b. The important part here is the tagBase element, which tells the plug-in
the base location for all of your Subversion tags c. By default, the plug-in assumes
that you created the release out of the trunk folder. Therefore, it can automatically
follow the common pattern to create all tags as subdirectories of the default SVN tag
location (the tags/ folder). Because we want to run the release preparation from a
branch, we specify that configuration in the pom.xml file.

GENERATING OUT OF THE TRUNK Generating releases out of the trunk folder is
common, but this approach has some risks, because you’re modifying the
trunk. You should take this approach only if you have some experience with
the tools. It’s safer to have a separate release branch folder for this step. The
good news is that the extra setup isn’t too difficult.

Listing 5.12 Maven Release plug-in in the project’s POM

Include
Release plug-in

b

Configure
preparation goals

Specify base
location
of tagsc

155Releasing with Maven
Now you can finally start the preparation of your release:

mvn release:prepare

What does preparation mean? If your branch has some Maven snapshot dependen-
cies, the plug-in asks if you want to continue with the release procedure. Generally it’s
a bad idea to branch and release a software package that has a dependency on a snap-
shot, because snapshots are unreleased software or software under development, and
they’re usually generated every day with a nightly build. If you depend on snapshots,
your released project can become unstable. In the worst case, it can mean that some
depreciated APIs will be removed from your dependency overnight, making your
released software no longer usable. You want to avoid this scenario and should never
release software that has a snapshot dependency; instead you want to reference stable
versions.

 Once the Release plug-in identifies a snapshot dependency in your project, it gives
you the following prompt:

There are still some remaining snapshot dependencies.: Do you want to _
resolve them now? (yes/no) no:

The default value for the prompt is no, as you should avoid snapshot dependencies. If
you continue with the release by entering yes even if there’s one or more snapshot
dependencies in your project, the plug-in will force you to upgrade to the released
version of the dependency.

TIP To avoid any snapshot dependencies in your project, use the Maven
Enforcer plug-in, which we’ll discuss later in this chapter.

For instance, if your project depends on a 1.0.2-SNAPSHOT dependency, the plug-in
wants to use the 1.0.2 released version. If your project depends on a change that was
made in 1.0.2-SNAPSHOT and there’s no such release yet, you should delay releasing
the latest changes and instead use an earlier release version of the dependency.

“But I must release with snapshots!”

Sometimes there are no other options and you must release with a snapshot depen-
dency; perhaps a critical bug was fixed on the dependent project.

One approach to releasing is to build the dependency on your local desktop and add
the dependency to your local repository. Then you can manually change the version
to something that would never be picked by the original project team (in order to prevent
the situation where an officially released version of that third-party library has the ver-
sion number you’ve used). For example, using a version string like 1.0.2-modified-by-
MyCompany-for-iteration-1 makes it clear that you (or your team) provided the modified
(or hacked) dependency. This special dependency is also a candidate for your distri-
bution, as it’s not available elsewhere. Note that this approach is only a valid option
if the license of the open source dependency fits into your own schema.

156 CHAPTER 5 Integration and release management
To continue with the preparation, let’s assume there’s a release, but you haven’t
picked up the released version yet. You could manually update the version and com-
mit the change to SVN or let the Release plug-in do it for you. During the execution of
the release:prepare goal, the plug-in asks you for the release’s version number:

What is the release version for "my-tool"? (com.book:my-tool) 1.0.0: : _
1.0.0-alpha

What is SCM release tag or label for "my-tool"? (com.book:my-tool) _
my-tool-1.0.0-alpha: :

What is the new development version for "my-tool"? (com.book:my-tool) _
1.0.1-alpha-SNAPSHOT: :

For the version number, you could accept the suggested 1.0.0 value, or you could spec-
ify a different version ID. It’s always good to have some alpha, beta, or release-candi-
date releases before shipping a final release, so let’s imagine there’s a demand for an
alpha release. At the prompt, type in 1.0.0-alpha and accept the suggested defaults
for the Subversion tag and the next version number increment. After you have speci-
fied the version number, the plug-in triggers the regular project build and executes
some SVN tasks. Under the hood, it creates the tag (the URL would be http://server/
svn/path/to/project/tags/my-tool-1.0.0-alpha) and updates and commits the new
version number (1.0.1-alpha-SNAPSHOT) to your previously created branch.

SVN TAG A tag inside the Subversion repository is, by convention, a folder
that’s never updated. Tag folders are a single source of truth because they
identify the exact version of the source code that was used to create a base-
lined release. Later, if you have to patch an existing release—for instance,
due to a critical security bug—you usually create a branch by copying the cor-
responding tag folder to make sure that you’re patching the correct baseline
of the code. By committing changes to the tag (which is possible by default),
the tag automatically becomes a branch (by convention), which can be con-
fusing. If you want to be sure that this doesn’t happen, restrict the access to
tag folders by using SVN hooks.

If problems occur during the release:prepare goal, execution could lead to a build
failure. In such cases, you need to solve the failures. For instance, if your SVN server is

(continued)

Another option for dealing with snapshots is the versions:lock-snapshots plug-in. It
inspects all POMs and replaces all snapshot versions with the current timestamp ver-
sion of that -SNAPSHOT (for instance, -20100320.172301-4). You can release with
this modified code base. You could also switch back to regular snapshots via the ver-
sions:unlock-snapshots plug-in. Maven’s Versions plug-in also provides some other
interesting goals for working with versions (see http://mojo.codehaus.org/versions
-maven-plugin/).

http://mojo.codehaus.org/versions-maven-plugin/
http://mojo.codehaus.org/versions-maven-plugin/
http://server/svn/path/to/project/tags/my-tool-1.0.0-alpha
http://server/svn/path/to/project/tags/my-tool-1.0.0-alpha

157Releasing with Maven
down, you need your admin to get it back up. Once the problems are fixed, you can con-
tinue from where the Maven Release plug-in exited the job by entering this command:

mvn release:prepare -Dresume

Another option would be to run mvn release:clean release:prepare after first
deleting all temporary files created by the plug-in, and then rerun the entire release
preparation again. If the Release plug-in has already changed some of your files, like
the version in the pom.xml files, you can roll back these changes (before re-running
prepare):

mvn release:rollback

The Release plug-in has built-in safety features, so you won’t spend extra hours reas-
sembling the release again and again. This is part of the Agile strategy behind Maven
and similar tools.

5.4.2 Creating the release

Before you can perform the last steps on your release—the creation of the
release—configure your pom.xml file’s distributionManagement section. Here’s an
example of what this might look like:

<distributionManagement>
 <repository>
 <id>local-repository</id>
 <name>My staging component repo</name>
 <url>file:///m2_repo</url>
 </repository>
</distributionManagement>

Inside the distributionManagement section, you specify the Maven repository to
which the release should be deployed. Usually the Maven repository is a remote
(HTTP) server, via SSH. For now, we’ll use a folder on the local filesystem, because it
works just as well. Later in the chapter, we’ll discuss uploading to a remote Maven
repository and the required configuration.

 To finish the release procedure, you need to invoke the release:perform goal:

mvn release:perform

The plug-in creates a target/checkout directory and checks the previously created
Subversion tagged version of your project. Next, it executes the normal build process.
With the release:perform goal, you not only generate the normal JAR file (or what-
ever deployment unit your project delivers); the plug-in also generates the matching
javadoc-jar and source-jar files:

my-tool-1.0.0-alpha-javadoc.jar
my-tool-1.0.0-alpha-sources.jar
my-tool-1.0.0-alpha.jar

During the execution of the release:perform goal, the Maven Release plug-in uses
the Deploy plug-in and handles the upload to the Maven repository, which has been

158 CHAPTER 5 Integration and release management
configured in the distributionManagement section of your project’s pom.xml file. If
no error occurs, the Release plug-in cleans up its temporary files by internally calling
the following:

mvn release:clean

This erases the backup POM files (pom.xml.releaseBackup) and the release.properties
file, which store information about the ongoing release process. Congratulations!
Your release is complete.

 You saw many useful Maven features implemented through its plug-ins. But there’s
still some room for improving this release process. By configuring a remote repository
(the component repository), the invocation of mvn release:perform will deploy the
artifacts to the server. But you don’t always want to directly deploy the newly generated
Maven artifacts to a production Maven repository. In a case like that, use
release:stage goal:

mvn release:stage
-DstagingRepository=remote-repo::default::scpexe://URL_TO_DIR

The release:stage goal doesn’t require a repository URL to be present in the
pom.xml file, but the same settings.xml configuration is still needed. Note that the
stagingRepository parameter starts with the ID of the specified server.

5.4.3 Testing the release

A software release requires more than merely compiling sources from a Subversion
tag. The QA team must review and test the generated artifacts (such as documentation
and binary JAR files). Every project has many JUnit tests, and the entire development
starts with a test case. The final testing is done by the QA team that eventually approves
the release.

 The QA team gets the released artifacts from a staging Maven repository. The best
solution would be that the QA and the customer get exactly those files that the QA
team has tested and verified. Sometimes, you need to make the exact JAR files that you
used for testing available. Imagine that your project is implementing some (Java) stan-
dard (such as part of the Java Community Process, JCP) and that executing a TCK
(technology compatibility kit) is part of the required test plan.

 The staging repository could be the previously specified file:///m2_repo direc-
tory, which could be mounted as a network device. The QA test plan is executed
against the previously created release artifacts.

 Once the QA team gives its approval, you should deploy the Maven artifacts to a
production or release Maven repository. Here are a few options for automating the
deployment:

■ Rebuild the bits from the Subversion tag. Once you build the code, you’ll need
to use the Maven Deploy plug-in to deploy the artifacts. This plug-in reruns the
important parts of the previous release procedure, without having QA test the
generated bits. Testing is important, because mistakes can happen while
rebuilding the release from the TAG folder.

159Releasing with Maven
■ Copy the artifacts to the final repository. Use secure copy scp (or copy cp) to
manually copy the artifacts. This ensures the exact JAR files are made available
through the Maven repository, but doing so will destroy the Maven metadata.

■ Use the Maven Stage plug-in with the stage:copy goal: mvn stage:copy

-Dsource="file:///m2_local_staging_repo/" \
-Dtarget="scp://maven_repository_server/path/to/repo" \
-Dversion=1.2.3

This plug-in is a smarter version of the copy process, because it honors the
Maven metadata. The plug-in creates a zip file of everything in the local staging
repository and uses scp to upload it to the specified remote server. Then, the
zip is extracted and removed. This means that the artifacts are now correctly
deployed to your Maven repository.

The Stage plug-in is useful, particularly when you care about keeping Maven
metadata files intact. But the plug-in itself has some small issues. You have to
specify a meaningless version parameter, and it’s not possible to download from
a remote server to your local folder. Additionally, your current user account
needs to exist on the server, and you’re required to have write access rights for
the remote directory. Finally, the password entered for the remote account is
displayed in plain text. These are significant limitations, but the overall benefits
outweigh the extra effort.

■ Copy the artifact via a repository manager feature set. Artifactory provides a
context menu for all artifacts in your repositories (see figure 5.11). You can
mark artifacts and copy or move them to another repository (such as a special
staging repository). Artifactory provides a dry-run feature, so you can first try to
execute the command without any commit to keep a consistent state, even if
something goes wrong. If your check is successful, you can then execute the

Figure 5.11 Copy
artifacts to a staging
repository with
Artifactory

160 CHAPTER 5 Integration and release management
command. You can also use advanced staging strategies by applying matrix
parameters and smart searches. For more details on this, see chapter 7.

5.4.4 Useful Maven plug-ins for releasing

Previously, we talked about the undesired effect of introducing a snapshot depen-
dency into your project. In most commercial software projects, the code is released
only after it has successfully completed a formal release process. The Maven Release
plug-in can help catch snapshot dependencies, but there are better options. Catching
unreleased dependencies is something that needs to happen as soon as possible, not a
few days before the release deadline.

 One way to ensure that you never introduce snapshot dependencies is to use the
Maven Enforcer plug-in. This plug-in evaluates a given set of rules to make sure they’re
honored on every build of your project. It not only helps to prevent dependencies on
unreleased software (and force that no snapshots are included as dependencies), but
you can also require a specific version of the JDK, as shown in the following listing.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-beta-1</version>
 <executions>
 <execution>
 <id>enforce-versions</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireReleaseDeps>
 <message>
 You need management approval before you use SNAPSHOTS
 </message>
 </requireReleaseDeps>>
 <requireJavaVersion>
 <message>
 Project needs to be compiled with Java 6
 </message>
 <version>1.6</version>
 </requireJavaVersion>
 </rules>
 </configuration>
 </execution>
</plugin>

In order to use the plug-in, you need to configure it inside the build section of your
project. The enforce goal runs the configured rule set against every module of your
build. This is important for the requireReleaseDeps rule b. For the JDK rule c,
you could use the enforce-once goal, as this doesn’t change for the submodules of

Listing 5.13 Maven Enforcer plug-in ensuring no snapshots are used

Bans
snapshots

b

Requires
Java version 1.6

c

161Releasing with Maven
your multimodule project. Violating the rules will cause a build error, so no code is
compiled.

 It’s recommended that you specify message for each rule to provide information
on why the build failed. If you don’t configure the custom message, the Enforcer plug-
in will use a default one. For instance, executing our project with Java 5 will display
the following warning:

[WARNING] Rule 0: org.apache.maven.plugins.enforcer.RequireJavaVersion _
failed with message:

Project needs to be compiled with Java 6

The warning message for dependencies that have been disallowed looks similar:

[WARNING] Rule 0: org.apache.maven.plugins.enforcer.RequireReleaseDeps _
failed with message:

You need approval before you use SNAPSHOTS
Found Banned Dependency: org.project.foo.:jar:1.0-SNAPSHOT

The Enforcer plug-in helps to ascertain which JAR files have caused the problem.
 More rules can be used with the Enforcer plug-in. For instance, you could enforce

the existence and values of properties, or you can restrict the execution of the build to
Linux-based systems (see http://maven.apache.org/enforcer/enforcer-rules/). It’s
important to note that the plug-in isn’t limited to its built-in rules: It offers a rich API
for creating custom rules (see the documentation at http://maven.apache.org/
enforcer/enforcer-api/writing-a-custom-rule.html).

5.4.5 Using cryptography with Maven

Another helpful plug-in is Maven GPG. Security is essential. If your company makes
the generated release artifacts available to the wider public, it’s important to sign the
release with a cryptographic key. Doing so assures potential users that the package is
tamperproof and comes from a legitimate source. The same is true for open source
projects. Potential users (or customers) downloading the files from your website or a
Maven repository assume that your release manager created those files and that they
won’t cause problems. To deliver on the trust you have built, you must sign all gener-
ated artifacts of the release by using GPG (GNU Privacy Guard).

 The GnuPG project (http://gnupg.org) is a popular implementation of the Open-
PGP standard, which is defined in RFC 4880 (OpenPGP Message Format). Merely sign-
ing the artifacts isn’t enough. You need to make your public keys for the release
managers available. Open source projects usually offer some information on how to
verify the distributed files8. If something is wrong with the JAR file, the verification will
give you an error message:

$ gpg --verify my-tool-1.2.3.jar.asc my-tool-1.2.3.jar
gpg: Signature made Fri 12 Feb 2010 12:33:38 PM CET using DSA key ID 1CE17EDC
gpg: BAD signature from "Your name <you@company.de>"

8 See Apache-MyFaces at http://myfaces.apache.org.

http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html
http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html

162 CHAPTER 5 Integration and release management
In order to sign the release artifacts, you must install GPG and create your own key pair.
GnuPG has instructions on how to install the software on different operating systems.
On Ubuntu, the software is usually already on your machine. A good quick introduction
is available here: http://wiki.wsmoak.net/cgi-bin/wiki.pl?ReleaseSigning.

 Once you have your key pair, you need to sign all the files that you’re uploading to
the public:

gpg --armor --output my-tool-1.2.3.jar.asc --detach-sig my-tool-1.2.3.jar

This can be time-consuming on projects with many artifacts. Thankfully, in the Maven
ecosystem, the Maven GPG plug-in does the job for you, as shown in the following listing.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-gpg-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <id>sign-artifacts</id>
 <phase>verify</phase>
 <goals>
 <goal>sign</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

This configuration prompts for the private key and then creates a cryptographic signa-
ture on every build. Usually, you won’t want to sign the files all the time. It’s only
needed when you build the release. A common practice is to put this plug-in into a
special release profile. We’ll discuss the definition of profiles in the next section.

5.4.6 Maven assembly

Another helpful plug-in is Maven Assembly. Your project’s JAR files (including -java-
doc.jar and -sources.jar files) are usually deployed to a Maven repository. But when
your project generates many different artifacts besides the JAR files, such as documen-
tation or WAR files, you’ll generally also want a binary distribution that ships all the
artifacts. (Note that the distribution has to contain the JAR files as well, because obvi-
ously the Maven repository may not be accessible to a potential user.)

 The Assembly plug-in assists you with the creation of distributions. A simple config-
uration is shown in the following listing.

<project ...>
<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-5</version>

Listing 5.14 Maven GPG plug-in signing files on every build

Listing 5.15 Maven Assembly plug-in

163Releasing with Maven
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 <descriptorRef>bin</descriptorRef>
 <descriptorRef>src</descriptorRef>
 <descriptorRef>project</descriptorRef>
 </descriptorRefs>
 </configuration>
</plugin>

You can invoke the Assembly plug-in with the following command:

mvn assembly:assembly

This starts the regular build and creates a few standard distributions:

■ Dependency JAR—Creates a JAR file that contains all classes of your module and
those that it depends on. For instance, if your project has a dependency against
Apache Log4j, the plug-in extracts its classes into your my-tool-1.2.3-jar-with-
dependencies.jar file. That means that you can ship your application and all its
dependencies in a single (huge) JAR file.

■ bin—Contains all JAR files of the module.
■ src—Contains the content of the src folder, including the module’s pom.xml

file.
■ Project—Contains the source code of the embedding module (not all modules).

The formats for the distributions are different. Although the Dependency JAR distri-
bution is created as a JAR file, the other distributions (BIN, SRC, and Project) come in
different formats, such as these:

■ .zip
■ .tar.gz
■ .tar.bz2
■ .jar* (only used for the “Dependency JAR”)

The four default distribution options are convenient for small projects that have only
one module. In most cases, though, they aren’t enough because a typical Maven proj-
ect consists of multiple modules:

/API
/Implementation
/web-app-spring
/web-app-simple
...

This means that your distribution needs to ship multiple JAR files and all example
applications along with the source code for all modules.

 To deliver the source code, you can use the built-in project descriptor. For the
binary part of the distribution, you need to create a custom description file that you
place under the src/assembly of the root directory (see the following listing).

164 CHAPTER 5 Integration and release management
<assembly ...>
 <id>all-binary</id>
 <formats>
 <format>tar.gz</format>
 <format>tar.bz2</format>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <moduleSets>
 <moduleSet>
 <includes>
 <include>com.book.maven.api:book-api</include>
 <include>com.book.maven.impl:book-impl</include>
 <include>com.book.maven.example:book-example</include>
 ...
 </includes>
 <binaries>
 <outputDirectory>/</outputDirectory>
 <unpack>false</unpack>
 </binaries>
 </moduleSet>
 </moduleSets>
</assembly>

To use the preceding XML file, you must register it with the Assembly plug-in. Because
the complete assembly process takes quite some time, you shouldn’t execute it on the
regular build. Instead, you can define a special profile (see the following listing).

<profiles>
 <profile>
 <id>generate-assembly</id>

 <activation>
 <property>
 <name>assemblyProject</name>
 <value>true</value>
 </property>
 </activation>

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-5</version>
 <configuration>
 <descriptorRefs>
 <descriptorRef>project</descriptorRef>
 </descriptorRefs>
 <descriptors>
 <descriptor>src/assembly/bin.xml</descriptor>

Listing 5.16 Assembly description file

Listing 5.17 Configuring Assembly as a profile

Define descriptor
with ID

Define output
formats

Place artifacts in
root directory

Include submodules

Place binary
files in root

Define profile
with ID

b

Define profile
activation

c

Configure
plug-in

Use built-in project
descriptors

d

Use custom
descriptor files

e

165Releasing with Maven
 </descriptors>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

The new profile with the ID generate-assembly b is invoked when the assembly-
Project is set to true c. The complete command for this profile is as follows:

mvn -DassemblyProject=true package assembly:assembly

Executing the command runs the build process and then creates all the archive files.
The configuration is quite simple. The descriptorRefs section reuses the built-in
project descriptor d, and within the descriptors element e, point the Assembly
plug-in to your custom assembly file. The result of the archive looks like this:

ARCHIVE-FILE:
/book-api-version.jar
/book-impl-version.jar
/book-web-app-spring-version.war
/book-web-app-simple-version.war

Even with these results, you aren’t done yet. A complete distribution needs more than
the binary deliverables. Most projects also make the generated Javadoc files available
as well.

 To make this happen, you must use the Maven Dependency plug-in, because you
need to copy the desired artifacts. The Dependency plug-in provides the capability to
manipulate artifacts—it can copy or unpack artifacts from local or remote repositories
to a specified location. Inside the generate-assembly profile, you need to configure
the Maven Dependency plug-in, as shown in the following listing.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>copy-javadoc</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>com.book.maven.api</groupId>
 <artifactId>book-api</artifactId>
 <version>${project.version}</version>

Listing 5.18 Maven Dependency plug-in to include Javadoc

Use Maven
Dependency plug-in

Configure execution
to copy Javadoc

Define
artifact

166 CHAPTER 5 Integration and release management
 <classifier>javadoc</classifier>
 </artifactItem>
 ...
 </artifactItems>
 <outputDirectory>
 ${project.build.directory}/javadoc
 </outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

Inside the plug-in, you can define multiple execution elements. You could define a
global copy-everything execution ID, but don’t because doing so would mix different
artifacts, such as sources-jar and javadoc-jar files in the same folder of the package. To
keep things more organized, make sure every artifact classifier has an execution
element, like copy-javadoc or copy-sources. In the preceding configuration, the
specified copy goal copies all nested artifactItems to the javadoc folder inside the
Target directory. If you want to make the -sources-jar files available, you should place
them, through their own execution element, into a sources folder in the Target
directory.

 Next. you need to tell the assembly process to pick up the javadoc artifacts. To do
so, add the following fileSet element to your custom assembly descriptor, the
bin.xml file:

<fileSets>
 <fileSet>
 <directory>target/javadoc</directory>
 <outputDirectory>javadoc</outputDirectory>
 </fileSet>
</fileSets>

Last but not least, it’s commonly required that you make your dependencies available.
If your customer gets your artifact from a repository, you don’t need to worry about
this, because Maven resolves their dependencies and downloads them along with your
files. But for those without a Maven project, you need to ship the dependencies as part
of the distribution:

<dependencySets>
 <dependencySet>
 <outputDirectory>lib</outputDirectory>
 <scope>compile</scope>
 </dependencySet>
</dependencySets>

You must add the preceding configuration to your custom assembly descriptor. It adds
all compile-time dependencies of your root pom.xml file to the final distribution,
inside its lib folder. You can use different Maven scopes to bind the operation to the
defined phase, such as compile in the preceding example. Dependencies of a differ-
ent Maven scope require a separate dependencySet element.

Target
directory

167Releasing with Maven
 The preceding distribution process defines a profile inside of the root pom.xml
file to generate the different archives. Consequently, the pom.xml grows hard to read.
To keep pom.xml files small, create a separate assembly module as part of the project.
As before with the generate-assembly profile, you shouldn’t execute this module as
part of the regular build, which means you won’t list this module inside the modules
section:

<modules>
 <module>book-api<module>
 <module>book-impl<module>
 ...
</modules>

To generate the distribution, you must navigate into the assembly module and run the
mvn package assembly:assembly command from there.

 In section 5.4.1, you saw that executing mvn release:prepare increases the ver-
sion numbers for all (sub)module pom.xml files. Because you’re excluding the assem-
bly module from the modules section, you need to ensure the version of the assembly
module gets updated as well. To archive this, introduce a prepare-release profile, as
shown in the following listing.

<profiles>
 <profile>
 <id>prepare-release</id>
 <activation>
 <property>
 <name>prepareRelease</name>
 <value>true</value>
 </property>
 </activation>
 <modules>
 <module>my-assembly</module>
 </modules>
 </profile>

The profile is invoked when the prepareRelease parameter is set to true. In addition
to the release:prepare goal, specify the parameter:

mvn release:prepare -DprepareRelease=true

This statement applies the command to all (default) modules and to those that are
listed in the prepare-release profile.

5.4.7 Tooling beyond Maven and outlook

The plug-ins we’ve discussed help to generate a Maven release with a complete distri-
bution. The Release (or Stage) plug-in also deploys the Maven artifacts to a given
Maven repository, but the final distribution should also be made available on your

Listing 5.19 Include the assembly as part of a release to update its version

168 CHAPTER 5 Integration and release management
website. Because your release process already signs all generated JAR files, the final dis-
tribution should be signed too.

 To make this procedure simple and easy for all team members to use, you could
create a Python script that automates the distribution signing and uploading. The
script should also combine the various mvn commands, such as mvn -Dassembly-

Project=true package assembly:assembly or mvn release:stage... The Apache
MyFaces project uses a Python script for this: http://svn.apache.org/repos/asf/
myfaces/trinidad/trunk/scripts/trinidad-build-release.py. You can download and cus-
tomize it as needed. The script is executed as follows:

./script.py passpharse /folder/to/the/source

Most plug-ins are configured in the root pom.xml file, because they’re visible for the
submodules as well. But because a software company has several products or projects,
and all have similar requirements, like a release or the configuration of the source
code management, it’s recommended that you create a master POM that contains the
most common plug-ins and dependencies. On each project, your root pom.xml will
point to your master POM file as its parent:

<project ...>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.company.devision</groupId>
 <artifactId>devision</artifactId>
 <version>2</version>
 </parent>
 <groupId>com.company.devision.current-project</groupId>
 ...

This is a common pattern in a big organization, such as the Apache Software Founda-
tion (ASF). The ASF releases a master POM (see https://svn.apache.org/repos/asf/
maven/pom/trunk/asf/pom.xml) that contains fundamental dependencies and pro-
files, and each Maven-based Apache project inherits from this POM. Following this
pattern makes sense. Over time the master POM evolves and includes more conve-
nient settings that the subprojects inherit.

 The Apache Maven project doesn’t only maintain the master POM—it also outlines
the release guidelines for every project within Apache (http://maven.apache.org/
developers/release/apache-release.html). In companies with different development
teams, defining a similar guide makes perfect sense. It’s also important to maintain
both the release guide and the master POM, because a build environment (including
the release process) isn’t static. Things change over time.

 As a final note, it’s recommended that you document the entire process for every
release on your company’s wiki. This helps to document any potential problems and
workarounds, resulting in a repeatable process whether you release your code
monthly, nightly, or hourly, via a CI server.

http://svn.apache.org/repos/asf/myfaces/trinidad/trunk/scripts/trinidad-build-release.py
http://svn.apache.org/repos/asf/myfaces/trinidad/trunk/scripts/trinidad-build-release.py
https://svn.apache.org/repos/asf/maven/pom/trunk/asf/pom.xml
https://svn.apache.org/repos/asf/maven/pom/trunk/asf/pom.xml

169Summary
5.5 Summary
This chapter introduced integration and release management, as well as Maven and
its major release tools and plug-ins. We looked at where Maven stores its artifacts and
which tooling options you have for hosting a component repository. You learned that
it’s also possible to host Maven artifacts in Subversion, although using a dedicated
repository manager like Artifactory adds much more value and results in a better solu-
tion. Additionally, you saw how Maven can be used for management integration and
release management.

 This chapter also serves as preparation for the advanced use cases that we’ll discuss
later in this book. In the next chapter, we’ll talk about productive working environ-
ments, where Maven plays yet another important role.

Creating a productive
development environment
This chapter illustrates strategies and tools for setting up controllable and highly
maintainable environments that are isolated from those of other developers and
production systems, and that include private workspaces (sometimes called sand-
boxes). But what does isolation have to do with collaborative team play? In fact, being
able to work in isolation is essential for effective software development and team
collaboration. Management has the obligation to foster reusability and protect
investments, but it’s important for all stakeholders, such as developers, to be famil-
iar with strategies for creating a productive development environment.

 In this chapter, we’ll first look at what makes productive workspaces and review
concepts from earlier chapters, including how to build code in sandboxes. Next,

This chapter covers
■ Approaches to accelerating development on the

developer’s desktop
■ Strategies and tools for streamlining the

development and build process
■ Tools like Mockito and Cargo that help with

testing and deployment
170

171Congruent builds and workspace management
we’ll take a deeper look at a technique for creating testing stubs called mocking, which
uses substitutes for real objects in tests. We’ll discuss mocking in general, and
Mockito—a leading Java mocking framework—in particular. Lastly, we’ll talk about
Cargo, which is a smart interface to application containers, and we’ll discuss TeamCity
for running private builds on a remote build machine. We’ll also cover the impor-
tance of having consistent builds whether they’re triggered in a private workspace or
on the official build server. I call this capability a congruent build.

6.1 Congruent builds and workspace management
Developers need consistent environments and private workspaces that are controlled
and isolated from unexpected changes. This helps developers reproduce and detect
bugs. Components include versioning the IDE configuration in version-control sys-
tems (VCSs) and checking in all dependencies, not only for code or components, but
also for tools like Tomcat and Ant.

6.1.1 Workspace management and the VCS

As a rule, put as much into your VCS as you can, and give control to the relevant stake-
holders, where it makes sense. This makes it much easier to rebuild a development
environment or to switch to another machine quickly. Additionally, workspaces that
can be reproducibly set up from the VCS help to maintain consistent standards across
the team. Because the workspace is the first rung of the staging ladder, it’s important
to have workspaces in a defined state that can be reproduced automatically. You
should also commit the default configuration settings of your developed software or
of the tools you use to the VCS. These settings are valid for all developers and can be
used by all developers to test and run the application from inside their workspaces.
Personalized configuration settings, such as individual usernames or individual data-
base schemes, shouldn’t be kept in the VCS as part of the developed software, because
they can’t be shared across the team.

 Many teams find it helpful to put the Jenkins configuration settings to the VCS.
They’re stored on hard disk and can be easily added to version control. It’s also conve-
nient to use snippets that are stored in the VCS to trigger builds. For example, having
a CruiseControl build server running suggests that you’ll have a build machine auto-
mating builds for different components or projects. You could put the CruiseControl
control script (config.xml) into a VCS, or this container script could be stored outside
of any specific project that has to be built with CruiseControl. You could put project-
specific, build-related code snippets into the VCS folders belonging to the project, or
put these snippets on the build server while checking them out of VCS and including
them with native XML entities. Another solution could be to use CruiseControl’s
include.projects element, which includes different build projects.

 Another important aspect of productive environments is the ability to check a ver-
sion of the complete project and run all automated tests quickly. Among other things,
this approach allows you to check sources from VCS and run tests in one step, without
having to manually start servers or similar items. This ability is often associated with a

172 CHAPTER 6 Creating a productive development environment
headless running mode—running tests without having to start a complete environ-
ment, IDE, or user interface. This gains even more significance with complicated tech-
nologies such as JBoss, Tomcat, and others. It’s also important to use the API and any
related tool support where available, particularly in the context of testing. For
instance, while using Spring, get acquainted with the Spring support for JUnit.

6.1.2 Workspace management and integrating code

Integrating code can be difficult. Developers must work on their code in isolation and
must keep up with the functions completed by other developers. As a centralized syn-
chronization point, the VCS and the continuous integration (CI) server help with this
effort. The VCS contains the successfully integrated code; think of it as being the
authoritative single source of truth. During development, developers are continuously
committing to and updating from the codebase in the VCS. A typical sequence of activ-
ities can look like this:

1 Get up to date by synchronizing with the VCS and updating changes.
2 Make your own changes in alignment with the tasks.
3 Prior to each check-in, run a local build with all tests.
4 Update the workspace with the latest version in the VCS.
5 Rebuild and retest.
6 If everything looks good, then check in or commit your changes to the VCS.

A merging conflict can result from synchronizing your changes with the most recent
version in the VCS, but most of the time you can easily resolve the conflict and check
in your changes to produce a new, consistent version of the software.

 Although these kinds of merging conflicts can be painful, there are other conflicts
that are even worse: Given that you only check merged code into the VCS when it’s
free of compile errors, the other category of errors concerns semantic correctness.
Developers implement customers’ requirements, and the source code expresses func-
tionality and semantic behavior. Merging different versions of the sources leads to one
version that contains all interdependencies between the components and their func-
tionality. Merging code and checking in the new version to VCS can lead to a new soft-
ware version that’s free of compile errors but that no longer implements the
customer’s requirements.

 How can you minimize the probability as well as the risks of merge conflicts? When
you check in small changes frequently, you minimize the chances of a conflict and
ensure that any conflicts will be minor and easily resolved. Semantic changes can be
detected early and often by writing automated tests and running them continuously.
These tests compare the current behavior of the application with the expected one.
We’ll look more at tests in chapter 8.

 The more throughput your Agile team has, the more important it is to take care
of finding bugs early, which means that you want to integrate early and often and to
work in a private, isolated sandbox. To achieve excellent speed in delivering as much
software in as short iterations as possible, you need workspaces isolated from outside

173Congruent builds and workspace management
changes—places where developers can work on their code and concentrate on finish-
ing their individual tasks.

ISOLATION AND DATABASE SYSTEMS Isolation is a core feature in database sys-
tems. It defines how and when changes made by one operation become visi-
ble to other concurrent operations. Isolation is one of the ACID (Atomicity,
Consistency, Isolation, and Durability) properties of database management
systems. Because the term isolation suggests a noncollaborative approach, I
prefer to talk about productive workspaces.

In the normal course of development, the work your colleagues do results in changes
being committed to the VCS that could potentially impact your environment, and it’s
difficult to get any work done if the code in your sandbox is changing constantly. For
example, if you regularly refresh your sandbox by pulling the latest changes from the
VCS, you’ll never have a reliable workspace, because integrating each atomic change
into your workspace impacts the stability of your environment. Constant updates lead
to churn and waste a lot of time. It also prevents you from reliably tracking the results
of merging changes with your coding (which hasn’t yet been transferred to the VCS).

 Agile teams do integrate, but integration can be done differently in different contexts:

■ On a central build server, teams integrate continuously. This may lead to bro-
ken builds and crashed versions, but this is tolerated in order to identify bugs
and integration issues early.

■ Developers work in their private workspaces and they have control over the ver-
sion of the code that they’re working on. They control when and how their own
isolated environment changes. Developers need to set up an environment and a
flow that enables them to keep up with the code line, which is changing contin-
uously, while empowering them to make progress without being distracted by
changes made by others.

The build system on your local workspace should be as close as possible to the integra-
tion build system, with at least the same compiler and versions of external compo-
nents that are required for the build. Typical features that may not be included locally
are comprehensive test coverage and integration with or connection to all external
resources, such as databases.

6.1.3 Workspace management and running tests

Besides source code and build scripts, all tests and the source code for integrating to
remote resources, are maintained in the developers’ workspaces as well. But the devel-
opers don’t run all of those tests locally and often don’t connect to remote resources
from their workspaces. Typically, functional tests run exclusively on a CI system where
remote resources are connected.

 These differences are a good reason to keep up the development flow: Waiting too
long for test feedback or to run a full-fledged infrastructure slows you down. Instead
of running the full bunch of tests as a single group, you should categorize your tests.

174 CHAPTER 6 Creating a productive development environment
By categorizing tests according to type, your builds become more Agile and tests run
more focused and more frequently.

TestNG1 is a popular Java testing framework that was created with the intent of
improving upon the earlier testing frameworks (such as JUnit). TestNG allows you to
use test groups, and you can determine which groups of tests run where and when
(see the following listing).

package com.huettermann.testng;

import org.testng.annotations.*;

public class SampleTest {
 @Test(groups = { "groupA" })
 public void methodA() {
 System.out.println("groupA");
 }
 @Test(groups = { "groupB" })
 public void methodB() {
 System.out.println("groupB");
 }
}

Test groups allow you to run smoke tests or sanity checks locally. Then, you can run a
full set of tests on the centralized build server. We’ll discuss TestNG in more detail in
chapter 8.

6.1.4 Workspace management and dependencies

Many developers find that it’s difficult to manage isolation in a development work-
space, and without isolation, you can have unexpected problems with other build
dependencies. Managing your code and isolation around your workspace is essential.
Automated build scripts can help to build your code and all required dependencies. If
something isn’t part of your workspace, you must ensure that it can’t impact the work
that you’re doing. Sometimes you may find that other developers have private copies
of artifacts that, if left uncontrolled, can impact your build.

 Ideally, your workspace should be isolated so that it contains only code that you’ve
built locally. Source code of components built by other departments or third-party
libraries shouldn’t be included in your workspace. In fact, having unnecessary parts of
software in your workspace leads to less reusability and more possible variations, and
both can prevent you from improving the whole development process. Sources of
third-party libraries can be used to debug, but it’s not your job to build them. Remem-
ber, the component vendor or provider is responsible for the build script that con-
structs the reproducible component.

 This is one reason why the Maven approach is appealing. It includes dependent arti-
facts as binaries and sources in the local workspace are optional. This way you can rely

1 See Cédric Beust and Hani Suleiman, Next Generation Java Testing, TestNG and Advanced Concepts (Addison-
Wesley, 2008).

Listing 6.1 Different test groups with TestNG

First test
group

Second test
group

175Congruent builds and workspace management
upon stable versions of the component dependencies. Maven describes components
through coordinates consisting of a collection of attributes (groupId, artifactId, and
version):

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.0</version>
 <type>jar</type>
 <scope>test</scope>
</dependency>

You can include dependencies by documenting the dependency to another artifact via
XML. The rest is done by Maven, eliminating manual and error-prone copying of JARs.
The build system shouldn’t depend on where it’s started or how it’s used. For instance,
you shouldn’t natively rely upon an IDE to build your system. Instead, use build scripts
that you can execute from the command line, or even better, from a CI server.

 These build scripts can be triggered from the console (with Ant or Maven com-
mands) or from inside the IDE or from an application (like a build server). Ant has
been integrated into IDEs for years and the Maven integration is mature as well. For
Eclipse, Sonatype offers the free m2eclipse Eclipse plug-in, which offers dependency
management and the ability to use Maven archetypes to search and browse Maven
repositories, automatically download dependencies, and edit POMs conveniently,
among other features (see http://m2eclipse.sonatype.org/).

MAVEN AND IDES All major Java IDEs have native Maven support, including
Eclipse, NetBeans, and IntelliJ IDEA.

Dependency management, including the illustration of the dependencies, is a big
benefit of Maven and m2eclipse. Figure 6.1 shows an example from a workspace.

Figure 6.1 Dependencies visualized in real time by Maven and m2eclipse. The color of the
background expresses the scope. Dependencies with compile scope are displayed with a darker
background. Dependencies with a white background have other scopes, such as test or runtime.

176 CHAPTER 6 Creating a productive development environment
All artifacts have dependencies on other artifacts, including transitive dependencies
(dependencies of their dependencies)—this is part of the Java classpath approach.
Using Maven and m2eclipse, all dependencies are described as part of the POM.
M2eclipse fetches this information and provides POM editing support in your IDE, as
well as a dependency visualization feature. This allows you to immediately see which
artifact (identified through groupId, artifactId) depends upon which other specific
artifact. The transitive dependencies are of special interest, as are the conflicts. (A
conflict can occur, for example, when two artifacts depend on different versions of the
same third artifact.)

SONATYPE PROFESSIONAL Sonatype Professional (www.sonatype.com) is a
commercial product that ties together open source products like Hudson,
Nexus, m2eclipse, and Eclipse, making it easy to install and support out-of-
the-box solution.

In order to manage projects in the workspace, m2eclipse must use classpaths, and you
can configure the classpath to enable compiling and development. POMs and their
specified dependencies provide another mechanism that contains information
needed to set up the classpath (and related dependencies). But often you don’t want
to (or you can’t) work with classpaths on a central build system in an elegant way.
M2eclipse manages the Eclipse classpaths for you simultaneously. Add a dependency
in your POM, and then m2eclipse automatically downloads the artifact and adds it to
the classpath.

 This approach is efficient. To accomplish it, m2eclipse uses a Maven classpath con-
tainer (see figure 6.2). All artifacts (in binary format) are referenced automatically,
and they’re stored in your individual local repository. Consequently, you don’t need to
repeatedly check the JARs as part of the project; you only manage the meta model

Figure 6.2 M2eclipse manages the Eclipse Maven classpath container. In your
Eclipse project, all JARs are referenced as binary dependencies. No manual
referencing or checking of artifacts is needed, and the approach is congruent, both
in your workspace (IDE) and in your build script.

177Using Mockito to isolate systems
(the POM) and put this document into the VCS. In the figure, the local repository is
located under C:\app\maven_repo.

6.1.5 Workspace management and bootstrapping the development

M2eclipse also supports using Maven archetypes, which is a feature that helps to
enable productive environments. The Archetype plug-in allows you to create a Maven
project from an existing template called an archetype. As a result, you get a basic build
script skeleton derived from the common template. You can also create an archetype
from an existing project.

 Archetypes can be described, built, and delivered with Maven. An archetype proj-
ect has a special structure—the main difference from a normal Maven project is its
archetype-resources and META-INF folders. The META-INF folder contains an arche-
type.xml file that decides which resources are put into a new project created by this
archetype. It typically consists of references to source and test folders and files:

<archetype>
 <id>archetype</id>
 <sources>
 <source>src/main/java/App.java</source>
 </sources>
 <testSources>
 <source>src/test/java/AppTest.java</source>
 </testSources>
</archetype>

The folders and files are put into the archetype-resources folder, which also contains a
template for a resulting POM. You can use parameters while executing the archetype
by calling the archetype:generate goal. Parameters can be set for filling placehold-
ers in your resulting POM. For many open source projects, archetypes already exist,
offering you a smart, quick start. Additionally, archetypes are great for organizations
that want to provide a set of standard builds on a central, parent POM, which helps
new products set up their environments quickly and consistently.

 Another great way to work more efficiently is to use a technique known as mock-
ing, which sets a placeholder for functions that aren’t yet completed.

6.2 Using Mockito to isolate systems

 —This section contributed by Szczepan Faber

Mocking is a technique of using substitutes for real objects in tests. Mocking lets you
test code that’s ready and leave a test stub in place for other functions as they become
ready. Additionally, mocks are helpful for executing tests more quickly, because they
can use mocked-out infrastructure. Mocks allow you to isolate the code under test so
that a test case can fail only for the reason intended.

 Gerard Meszaros (in his book, xUnit Test Patterns) defines the following types of
objects that simulate behavior:

■ Dummy object—Keeps the compiler happy. Dummy objects are placeholder
objects passed to the system under test but that are never used.

178 CHAPTER 6 Creating a productive development environment
■ Test stub—Can be configured to return predictable, canned values. In
Meszaros’s terms, test stubs provide the indirect input.

■ Test spy—Can be asked what happened; for instance, “Was this method called
on a spy?” Spies are helpful because they can also be stubbed (akin to a spy’s dis-
guise). Officially, the test spy provides a way to verify that the system under test
performed the correct indirect output.

■ Mock object—Can be configured to receive expected method calls. Mock objects
can also return canned values if needed. Mock objects provide the system under
test with both indirect input and a way to verify indirect output.

The main reason to use mocks is to isolate the code under test so that the test case can
fail only for the reason intended, and not because a collaborator has a defect or
because an external resource is in an unexpected state. If the code under test has
dependencies on collaborating classes, environmental configuration settings, or
external resources, then the test is fragile and can’t reliably tell you whether the
asserted behavior is occurring. Depending on the scope of the code under test, you
might isolate larger or smaller subsets of the application code. The purpose of isola-
tion in this context is to guarantee that the test tells you what it’s intended to tell you,
and not to merely work around difficulties in using real objects.

 It’s useful to know the official language that experts in the mocking world speak. But
often I adjust the language for the sake of simplicity and use the mock term, as it’s fairly
easy to grasp. As a friend once said, “At the end of the day, a mock is a mock.”

 The differences between Mockito and conventional mocking frameworks revolve
around the use of the terms spy versus mock, but there are a couple of interesting
developer-friendly Mockito features. Some of these aren’t unique to Mockito—other
tools might do something similar, and if they don’t, I encourage their authors to
implement it! I am certain that when Mockito was developed, I couldn’t find those
features in other tools:

■ Clean stack trace
■ Clickable locations in failure information to optimize debugging (debugging is

necessary, although debugging time should be reduced to a minimum)
■ Handy annotations that make tests more readable and DRY (Don’t Repeat Your-

self, which means that your tests should be made modular to avoid repetition
errors)

■ Feedback on what you did wrong if you misuse the API, and how to fix it

Let’s start by discussing the importance of isolation in the testing process.

6.2.1 Isolation and dependency injection

Mocks enable you to test certain pieces of your system in isolation, but it’s wise to
remember that isolation itself isn’t a goal. The underlying principle is to write readable
and maintainable tests and to gain from fast feedback cycles. That’s it. Isolating is one
of the ways to achieve highly maintainable tests.

179Using Mockito to isolate systems
 The fundamental use case for mock objects is a situation where using real objects is
impractical. For a trivial example, consider the following listing.

public class SmartDictionary {

 private final Translator translator =
 new OnlineTranslator();
 private final History history = new DatabaseHistory();

 public String search(String word) {
 String translated = translator.translate(word);
 history.rememberSearch(word, translated);
 return translated;
 }
}

When testing SmartDictionary, you have to take care of its collaborators: Online-
Translator B and DatabaseHistory c. Both are problematic from the standpoint
of testing. OnlineTranslator uses a remote service, so managing this external source
that you can’t control may be problematic. The DatabaseHistory talks to the data-
base: It makes the test cumbersome and slow and forces you to consider the leftover
and initial database state. To test SmartDictionary, it’s impractical to use real Trans-
lator and History objects.

 Let’s refactor the code so we can replace instances of collaborators. This is shown
in the following listing.

public class SmartDictionary {

 private final Translator translator;
 private final History history;

 public SmartDictionary(Translator translator,
 History history) {
 this.translator = translator;
 this.history = history;
 }

 public SmartDictionary() {
 this(new OnlineTranslator(), new DatabaseHistory());
 }

 public String search(String word) {
 String translated = translator.translate(word);
 history.rememberSearch(word);
 return translated;
 }
}

Listing 6.2 Code to be tested with mocks

Listing 6.3 Code with dependency injection enabled

Creating instance
can be
time-consuming

b

Time-consuming
database accessc

New constructor
allows passing objects
to SmartDictionary

b

Default constructor, existing
API isn’t broken

180 CHAPTER 6 Creating a productive development environment
The new constructor enables you to inject dependencies into SmartDictionary B. In
general, dependency injection pretty much enables mocking. You need to be able to
inject mocked instances into the system under test.

 Given that the API now allows injecting dependencies, the test looks like this:

import static org.Mockito.*;

public class SmartDictionaryTest {

 Translator translator = mock(Translator.class);
 History history = mock(History.class);
 SmartDictionary dictionary = new SmartDictionary(translator, history);

 @Test
 public void shouldFindWord() throws Exception {

 when(translator.translate("mock")).
 thenReturn("substitute");

 String result = dictionary.search("mock");

 assertEquals("substitute", result);
 }

 @Test
 public void shouldKeepHistory() throws Exception {
 dictionary.search("I want to mock");

 verify(history).rememberSearch("I want to mock");
 }
}

The static import of Mockito B makes it easy to access the entire Mockito API. To max-
imize clarity, the test setup c is placed outside the test method. Our givens d are that
the mock is stubbed to return a canned result when a particular method with a partic-
ular argument is called using the stubbing API. We ensure that a particular method with
particular arguments e was called on the collaborator (verification API).

6.2.2 Mocks in test-driven development

I can’t imagine test-driven development (TDD) without mocks. The use of mock
objects comes from extreme programming (XP), so no wonder there’s a bond
between TDD and mocks. Mockito’s implementation was test-driven from day one.
The API and error handling had been continuously optimized for TDD.

 I’ve already mentioned that the fundamental use case for mocks is substituting
unwieldy objects. But mocks do more than that. Mocks in TDD play a crucial role in
interface discovery, a technique that allows you to design the communication between
the collaborators from the test. It sounds difficult but it’s not, unless you don’t know

Listing 6.4 Your first sip of Mockito

Imports
Mockitob

Sets up
test

c

Provides given
informationd

Ensures particular
method was called

e

181Using Mockito to isolate systems
yet which collaborators your tested object needs. As you continue implementing a
test, you gradually figure out what collaborating roles are required. You can learn
more about this in an interesting book called Growing Object-Oriented Software, Guided by
Tests by Steve Freeman and Nat Pryce.

TEST-DRIVEN DEVELOPMENT TDD is a technique that relies on the repetition of
a short development cycle: The developer first writes a failing test that
defines a functionality, then produces code to pass that test, and finally refac-
tors the new code. Refactoring means changing the code without modifying its
external functional behavior, in order to improve its internal quality. TDD,
initially defined by Kent Beck, encourages simple designs.2

Let’s do a TDD exercise that I like to call “ping-pong programming:” I write a test, and
you write the code that makes the test pass. The test for the first feature is shown in
the following listing.

public class SmartDictionaryTest {

 @Test
 public void shouldFindWord() throws Exception {
 Translator translator = mock(Translator.class);
 SmartDictionary dictionary = new SmartDictionary(translator);
 when(translator.translate("mock")).
 thenReturn("substitute");

 String result = dictionary.search("mock");

 assertEquals("substitute", result);
 }

Now running the test, the test will fail. It’s pretty easy to implement the code so that
the test passes.

 Here’s another test method, this time for a different feature that starts with a test
method that initially fails:

@Test
public void shouldKeepHistory() throws Exception {
 Translator translator = mock(Translator.class);
 History history = mock(History.class);
 SmartDictionary dictionary = new SmartDictionary(translator, history);

 dictionary.search("i want to mock");

 verify(history).rememberSearch("i want to mock");
}

2 See Kent Beck, Test-Driven Development (Addison-Wesley, 2002).

Listing 6.5 The test for finding word feature

Listing 6.6 The test for keeping history feature

Given

When

Then

When
Then

182 CHAPTER 6 Creating a productive development environment
It’s your turn to make this test green—go ahead and implement the missing code.
 Once you see the green bar, you can do some refactoring. You should watch for

duplication in the complete test and then remove it to get the test DRY (Don’t Repeat
Yourself). You should make your tests modular to avoid repetition errors and so you
have less code to maintain.

6.2.3 The flavor of behavior-driven development

Did you notice the given, when, and then comments in the preceding examples? Those
comments are the simplest possible technique for increasing the quality of your tests.
Start writing them in your tests for one month, and you’ll never go back. Every test
should consist of those three components: given, when, and then to clearly describe the
setup, the test, and the result.

 Behavior-driven development (BDD) is so much more than those three comments,
but this chapter is too short to fully describe the BDD technique. Suffice to say (quot-
ing J. B. Rainsberger), “BDD is TDD done correctly, nothing else.” We’ll get into a
detailed discussion of BDD in chapter 8.

 Explicit given, when, and then comments are great, but unfortunately, the Mockito
stubbing API doesn’t play nicely with them. Mockito stubbing starts with when(), but
stubbing is a part of the given component of the test. Mocking rookies often become
confused, so Mockito added aliases for stubbing:

//note the different static import
import static org.BDDMockito.*;
//given
given(translator.translate("mock")).willReturn("substitute");

BDDMockito is a base class from the Mockito framework that allows you to work easily
with given, when, and then comments. Many other helpful features are available,
including a powerful API.

6.2.4 Other handy features of Mockito

Most of the Mockito API is available via static methods. To take the most advantage of
static imports, you can apply two configuration tweaks to your IDE:

■ Favorite static imports—Some IDEs (for example, Eclipse) can’t figure out the
static import if you type the method name (for instance, verify, mock). It’s use-
ful to instruct your IDE about the static methods you often use. Search in your
Eclipse preferences for “favorite static imports” and you’ll be able to add
org.Mockito.*; as one of your favorites.

■ Organize static imports smartly—It’s useful to configure your IDE to always use a
wildcard (*) for static imports. Decent IDEs allow you to configure the num-
ber of imports before a wildcard is used. I usually configure the number to 1
for static imports. This way, import static org.Mockito.* is always at the top

183Using Mockito to isolate systems
of my tests; and I can take advantage of intelligent features (such as IDE auto-
completion).

Often, interaction with collaborators means passing specific method arguments. It’s
easy to verify and stub interactions that take simple arguments like primitives or
strings. The trouble occurs when complex types are parameters of interactions. In that
situation, you have the following options:

■ Make sure the complex type implements the equals() method. This method is
used by Mockito to match arguments passed to collaborators. This technique is
the most natural, but in some cases it may be impractical to set up expected
parameters in the test (for example, there may be too much irrelevant setup).

■ Use the ArgumentCaptor to store the arguments of an interaction. This way, you
can explicitly and selectively assert certain properties of the argument. It’s a
useful technique, as it may provide a more readable and focused test. Here’s an
example:

ArgumentCaptor<Person> argument = ArgumentCaptor.forClass(Person.class);
verify(registry).delete(argument.capture());
assertEquals("John", argument.getValue().getName());

Bear in mind that it doesn’t make sense to use ArgumentCaptor for stubbing.

■ Implement an ArgumentMatcher. It’s a Boolean function that will match the
arguments for the purposes of stubbing or verification. ArgumentMatcher is
mostly useful for stubbing or when an argument is repetitively matched the
same way across many tests.

The @Mock annotation helps you to DRY the test and clarify what’s being mocked in a
given test. Using annotations has additional benefits: The field name is used in verifi-
cation failures, making them more descriptive. That’s shown in the following listing.

public class SmartDictionaryTest {

 @Mock Translator translator;
 @Mock History history;

 @Before public void before() {
 MockitoAnnotations.initMocks(this);
 SmartDictionary dictionary = new SmartDictionary(translator, history);
 }

You can see the clarity in the @Mock annotations that mark class fields that are mocked
B. The initMocks method initiates those fields marked by an annotation c. Alterna-
tively, you can use MockitoJUnitRunner for this task.

 Now that we’ve covered a number of helpful tips and use cases, let’s discuss some
antipatterns that you should avoid.

Listing 6.7 Using the @Mock annotation

Specify @Mock
annotations

B

Initiate fields marked
by annotation

c

184 CHAPTER 6 Creating a productive development environment
6.2.5 Antipatterns

Although the Mockito API is fairly straightforward, some users may find it difficult to
use unless they read the Javadocs carefully. I’ve also noticed that users who come from
other mocking tools tend to occasionally misuse the API.

ASK and TELL (verifying stubs) are the first antipatterns we’ll look at. Mockito
makes a clear distinction between ASK-style (in translator.translate(word)) and
TELL-style (history.rememberSearch(word)) interactions:

public String search(String word) {
 String translated = translator.translate(word);
 history.rememberSearch(word);
 return translated;
}

The API is designed this way in order to improve test readability and to make the pro-
cess of writing tests more natural. In object-oriented design, we usually prefer TELL
interactions because they promote pushing the responsibilities and complexities into
separate objects. We tell the collaborator to do something and we forget about it. It’s
their responsibility to deal with it. This leads to better design and more single-respon-
sibility objects. If you write a lot of tests, you already know that TELL interactions are
more convenient from the standpoint of testing with mocks. If you’re interested in the
subject, you can look up more information on the “Tell don’t ask” principle in object-
oriented design.3

 Verifying all surrounding interactions is the second antipattern. Mockito enables
you to verify interactions explicitly and selectively. You can verify exactly what you
want, which means you can write readable, maintainable, and focused tests. Occasion-
ally, though, you might be interested in verifying all surrounding interactions:

verify(listener).notify(event);
verifyNoMoreInteractions(listener);

This ensures that no other interaction was made with the listener collaborator.
Some users tend to exercise verifyNoMoreInteractions() often, even in every test
method, but this isn’t recommended; verifyNoMoreInteractions() is a handy asser-
tion from the interaction testing toolkit. Use it only when it’s relevant. Abusing it leads
to overspecified, less maintainable tests.

 The third antipattern is unnecessary verification in order. Mockito supports verify-
ing interactions in a specific order, and this might be useful on occasion, but it’s cer-
tainly not a way to implement all your tests. You can create the inOrder object to pass
any mocks that need to be verified in order:

InOrder inOrder = inOrder(firstMock, secondMock);
inOrder.verify(firstMock).add("was called first");
inOrder.verify(secondMock).add("was called second");

3 On their website, Cunningham and Cunningham provide an article about the “tell don’t ask” principle:
http://c2.com/cgi/wiki?TellDontAsk.

185Interfacing application containers with Cargo
Just because you can doesn’t mean you should. Developers tend to test implementa-
tion details rather than behavior; I’ve observed that some developers feel better writ-
ing more defensive tests, overusing in order verification. In the majority of cases, it
doesn’t make sense to verify the order of calls. It makes the test overspecified because
the reader feels the order is relevant. It also makes the test less maintainable, as it can
break for invalid reasons (such as refactoring of code).

 Mockito assumes a lenient mock definition by default, which makes it easier for you
to take a behavior-oriented approach to TDD (which is an accepted good practice). If
unit tests “know” too much about the internal operations of the code’s interaction with
collaborators, the tests become fragile when the application code is refactored. Refac-
toring shouldn’t break tests, because the behavior of the application shouldn’t change.
When refactoring breaks a test, you must be able to depend on the test to tell you that
you made a mistake when refactoring. Otherwise, you’ll ignore test failures, and that
leads to the creation of defects. Tests that “know too much” make it harder to refactor
the application code, and when it becomes harder, developers tend to stop doing it.

 Cargo is often used to manage application deployment to containers in a standard
way, and we’ll discuss it in the next section.

6.3 Interfacing application containers with Cargo
Cargo, in combination with Maven, provides a multipurpose utility to help manage
Java containers in a build environment. You can download, start, stop, and configure
Java containers, and you can deploy modules into them. Because there are so many
different containers (for example, JBoss, Jetty, Tomcat, WebLogic), Cargo sees itself as
a thin standard wrapper around them.

 Suppose we need a clean Tomcat server to deploy our web archive (WAR) file and
run our tests against this server. The Cargo Maven2 plug-in is a good integration of
Cargo into the Maven lifecycle. The plug-in can easily be included in the build section
of your POM.

 The following listing shows the configuration of Cargo to use Tomcat. We config-
ure the download of Tomcat and where it should be unzipped in the build.

<build>
 <plugins>
 <plugin>
<groupId>org.codehaus.cargo</groupId>
<artifactId>cargo-maven2-plugin</artifactId>
<configuration>
 <wait>false</wait>
 <container>
 <containerId>tomcat6x</containerId>
 <zipUrlInstaller>
 <url>
 http://www.apache.org/dist/tomcat/

 tomcat-6/v6.0.32/bin/apache-tomcat-6.0.32.zip
 </url>

Listing 6.8 Configuration of Cargo to use Tomcat

Use Tomcat to configure
download URL

186 CHAPTER 6 Creating a productive development environment
 </zipUrlInstaller>
 </container>
 <configuration>
 <home>
 ${project.build.directory}/tomcat6x/container
 </home>
 <properties>
 <cargo.servlet.port>${webserver-port}</cargo.servlet.port>
 </properties>
 </configuration>
</configuration>
...

Now that we have Tomcat in place, we can start it in the preintegration test phase of
Maven and deploy the artifact. In the following listing, Cargo starts Tomcat, deploys
the WAR, and blocks the execution until it can ping the URL of the deployed artifact.

<build>
 <plugins>
 <plugin>
<groupId>org.codehaus.cargo</groupId>
<artifactId>cargo-maven2-plugin</artifactId>
<configuration>
...
</configuration>
<executions>
 <execution>
 <id>start-container</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start</goal>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <deployer>
 <deployables>
 <deployable>
 <groupId>${project.groupId}</groupId>
 <artifactId>myartifact</artifactId>
 <type>war</type>
<pingURL>
 http://localhost:${webserver-port}/mycontext/index.jsp
</pingURL>
 <pingTimeout>300000</pingTimeout>
 <properties>
 <context>mycontext</context>
 </properties>
 </deployable>
 </deployables>
 </deployer>
 </configuration>
 </execution>
 <execution>

Listing 6.9 Configuration of execution

Configure usage, home
directory, port

Trigger
plug-in

Start Tomcat,
deploy WAR

Block execution until
ping successful

187Remote builds with TeamCity
 <id>stop-container</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
</executions>
...

As you see in the listing, Cargo provides an API that allows you to easily use and config-
ure your application server. You can deploy your application into the container and
run your tests. This dramatically increases your productivity, and it can be integrated
into your continuous build script.

 Cargo helps to manage containers. In the next section, we’ll discuss another inte-
gration server called TeamCity, which has several helpful features, particularly for run-
ning remote builds.

6.4 Remote builds with TeamCity
In section 6.1, I mentioned that you should use the same build scripts locally that you
use for the central build, but running builds and tests locally has drawbacks. One
major drawback is that the procedure allocates your local desktop to this task—you
can’t work on other things, or your work is at least delayed until the build is finished.
Another drawback is that your private environment probably isn’t equal to the central
one that hosts the build server. But you don’t want to trigger the central build server
during your development because you don’t
know whether your software contains bugs or
doesn’t integrate. Besides that, the central
build server normally pulls sources out of the
VCS that are already committed to VCS. You
don’t want to commit your untested changes
to the VCS merely to see if they’ll build suc-
cessfully. One solution is to run your private
build using a centralized build server.

 To test how successful your changes are,
you can create personal builds in JetBrains’
TeamCity (www.jetbrains.com/teamcity/) us-
ing its remote run feature. The modified files
are submitted to the server, bypassing the
VCS. In addition, using the pretested commit
feature, the project codebase always stays
clean: If the tests fail, the code isn’t integrated
into the codebase, the developer can safely
work on a fix, and the team’s work isn’t inter-
rupted. If the build is successful, the changes
are committed to the VCS automatically (this

Stop
container

Figure 6.3 Continuous integration with
remote run and delayed commit. A build
doesn’t block the IDE, because it runs on
the central build server. If the private build
passes, the underlying code changes are
committed to the VCS. If the build fails, the
central VCS isn’t affected.

188 CHAPTER 6 Creating a productive development environment
is an opt-in request). From there, the changes will be automatically integrated into the
next regular integration build (see figure 6.3).

 Like other continuous integration servers, TeamCity is based on a central job that
starts builds and a web application for managing build plans. You must enrich your
IDE to support the remote run feature. For Eclipse, you must download the dedicated
Eclipse plug-in if it’s not part of the TeamCity standard distribution you may have
already downloaded. Support for IntelliJ IDEA and Microsoft Visual Studio are similar
to the Eclipse support.

YOUTRACK BUG-TRACKING INTEGRATION Because JetBrains’ bug tracker, You-
Track, integrates with TeamCity, you can easily see how your code changes
align with your bug-fixing activity, and you can determine which bugs have
been fixed in a particular product build.

What does it look like when you use TeamCity’s remote run feature? Figure 6.4 shows
Eclipse’s TeamCity Remote Run dialog box, which is opened by selecting Team >
Remote Run in a project’s context menu. You can enter the username and password
for connecting TeamCity and Subversion, if necessary.

Figure 6.4 Eclipse’s
TeamCity Remote Run
dialog box: Although
you see all your local
changes (compared to
the central VCS) and
you can commit your
changes (both when a
build runs and after it
succeeds), the changes
are committed to the
VCS and not the other
way around.

189Remote builds with TeamCity
After the build is finished and special post conditions are met, you can enter a commit
message and decide whether you want to commit your changes to the VCS or not.
Besides the traditional condition that no test failed, you can also configure the
changes that are put into the VCS if no new tests failed. In figure 6.4, we’ll also be
asked if we want to commit, after the build runs.

 The Changes pane at the bottom of the dialog box lists all local changes compared
to the central VCS. In this example, we changed one file (the POM). In a subsequent
dialog box (not displayed here), you must specify which TeamCity build configuration
you want to link to your build request. TeamCity lists the existing build plans and
anticipates which ones have applicable configurations. Your selection is saved locally,
so you must do this linking only once.

 After starting the private build on the remote server, TeamCity documents its activ-
ity on its web interface. Figure 6.5 shows the UI, illustrating that personal changes are
transferred and the remote build will start soon. Although the TeamCity dashboard
does show the current activities (including personal builds), the personal build isn’t
added to the public build history. You must go into the build’s detail page (by clicking
on Build Me) to see a full list of all builds (regular builds and private builds). They’re
differentiated by the icons there.

When the private build completes successfully (according to the configured metrics),
a new dialog box opens in the Eclipse IDE and asks if you want to commit(see figure
6.6). If you confirm at this point, a commit is executed: Your changes will be checked
into the VCS. This may motivate a new central build, if you’ve configured new builds
to run after VCS changes occur.

Figure 6.5 The TeamCity web interface, documenting that a personal build has started

Figure 6.6 In Eclipse, TeamCity asks you to commit your changes to the VCS. The remote run of
your build completed successfully, and you must now click Yes to commit the changes. All
information (changes, commit messages) should already be known.

190 CHAPTER 6 Creating a productive development environment
TeamCity provides several useful features and is the preferred CI server for many
development teams. Remote runs (together with delayed commits) are another prac-
tice that will help your team enjoy a productive development environment.

6.5 Summary
In this chapter, we talked about productive environments. You learned what it means
to work in isolated developer workspaces and which strategies and tools you can use.
We talked about general strategies and best practices and how they’re covered by
Maven. We talked about mocking with Mockito, using DRY tests, wrapping application
servers with Cargo, and running private builds with delayed VCS commit using Team-
City. This chapter provided a number of helpful examples and use cases to explain
what it means to have a productive environment and how to implement productive
environments.

 In the next chapter, we’ll focus on CI recipes and tools.

Advanced CI tools
and recipes
This chapter provides techniques to help you implement advanced continuous inte-
gration (CI). As you learned in earlier chapters, CI is the backbone of an Agile ALM.
But why do we need to discuss advanced CI? CI is a widespread discipline. Its basic con-
cepts are widely understood and supported by all build servers (such as Jenkins,
Bamboo, TeamCity, Continuum, and CruiseControl), but advanced topics, such as
those I cover in this chapter, are rarely covered elsewhere. This chapter explains how
to implement Agile ALM in the context of CI, as illustrated in figure 7.1.

NOTE If you’re interested in CI basics that we don’t cover in this book, con-
sider reading Continuous Integration: Improving Software Quality and Reducing
Risk by Paul. M. Duvall (Addison-Wesley, 2007) or Martin Fowler’s free
online resources (http://martinfowler.com/articles/continuousIntegration
.html).

This chapter covers
■ Tools and recipes for continuous integration
■ Approaches for integrating different artifact

types
■ Strategies and tooling for staging artifacts
191

192 CHAPTER 7 Advanced CI tools and recipes
This chapter starts with examples of integrating different artifact types into a compre-
hensive CI ecosystem. The first approach is to use a platform or language (such as Java),
and the build systems it offers, to drive and manage the builds of other languages or
platforms (such as Cobol). This approach is helpful in situations where languages and
platforms don’t have their own native build systems (or have only support for integrat-
ing with an enterprise integration system). The examples we’ll look at will deal with
those languages and platforms (specifically, integrating Cobol by using Java and Ant).

 Where possible, we’ll use the tools available for the platform and then integrate
the native build scripts on the common build servers. We’ll also cover .NET and look
at how to build and integrate source code using lightweight (open and flexible) tools,
such as Subversion and TeamCity, without having to use proprietary products like
Microsoft’s Team Foundation Server.

 After discussing builds (spanning different artifact types), we’ll talk about creating
builds for multiple target environments. This is a good example of staging, discussed
in chapters 2 and 3. We’ll cover strategies and solutions for promoting artifacts to
other target environments, merely by configuring them (without rebuilding).

Figure 7.1 Advanced CI scenarios for Agile ALM that are covered in this chapter: building and
integrating platforms or languages (.NET and integrating Cobol by using Java and Ant), enabling
traceable deployment of artifacts, building artifacts for multiple target environments (staging these
artifacts by configuration, without rebuilding them), bridging different VCSs, and performing audits.

193Integrating other artifact types: Cobol
 Then, we’ll discuss bridging different VCSs. As you already know, all artifact types
(Java, Cobol, and so on) should be stored in a VCS, but sometimes you might need to
work with different VCSs in a complex project setup. You may need to view this effort
as a soft migration from one VCS tool to another, where you don’t try to replace the
entire VCS in one step. These are all common scenarios, and I’ll explain how to deal
with them in an Agile ALM context. We’ll look at an example of how to bridge a wide-
spread enterprise VCS (Subversion) to another one (Git, a distributed VCS) to imple-
ment feature branching.

 We’ll look at builds and audits with Jenkins. Checkstyle, FindBugs, PMD, Cober-
tura, and Sonar perform code audits. Then, you’ll learn strategies for building spe-
cific facets of your builds depending on where the build is running, and for injecting
version numbers into the built applications. Another important aspect of this discus-
sion will be deploying and staging artifacts or builds with Jenkins and Artifactory. In
this section, I’ll show you how to deploy and stage a Maven based project to the com-
ponent repository in a consistent and traceable way. By default, deploying a multi-
module Maven project (a project that consists of multiple modules) results in
deploying each module isolated from each other. This approach will illustrate how to
deploy the complete application in a single downstream step, but only after each mod-
ule build (including successful compiles and tests) has already succeeded.

 All these views and issues are important facets of running a comprehensive, uni-
form Agile ALM infrastructure. This chapter explains strategies, and it shows by
example how you can orchestrate tool chains in a cohesive and integrated way. Strat-
egies and specific tool examples will show you how to set up an open Agile ALM
infrastructure.

 Let’s start by looking at how to integrate legacy Cobol applications.

7.1 Integrating other artifact types: Cobol
Integrating Java artifacts is a common task. All you need to get started is a build server
and a build script. Compiling, packaging, and deploying Java artifacts are routine
jobs. But Agile ALM comprises more than operating on only Java and derived artifacts
compiled to Java bytecode (like Groovy, Scala, JRuby, and more). In this book, I can’t
possibly illustrate how to integrate all the different artifact types and programming
languages. In this section, though, we’ll look at how to prototype the processing of
Cobol host sources. Host refers to IBM System/360 compatible product lines with oper-
ating systems like OS/390, MVS, and z/OS.

 In this section, we’ll also look at an example of how to set up a CI environment to
support Cobol development and how to control the processing using Java. We’ll inte-
grate building Cobol artifacts into our CI ecosystem. This real-world solution also
shows a strategy for continuously integrating and building non-Java artifact types. This
approach shows how to use a platform or language (like Java) to drive and manage
the build of other languages or platforms.

194 CHAPTER 7 Advanced CI tools and recipes
7.1.1 Preconditions and basic thoughts

Traditionally, Cobol development is done in a mainframe-based environment: Cobol
sources are written and compiled on the host. Compiled Cobol sources are called
“load modules,” or “modules.” After compiling sources, the generated modules are
loaded to host libraries. This mainframe-based approach is different from how other
applications are developed, such as Java applications, where you don’t develop sources
on a host or transfer sources to a central host in order to compile them.

 Different approaches often lead to silos, but that need not be the case. There are
ways to bring those two worlds—developing Java and Cobol applications—together,
and to foster a comprehensive Agile ALM approach. Bridging the two platform ecosys-
tems is possible by using the same IDE for developing software in Java and Cobol and
using CI in both cases. Feature-rich, commercial tools (such as products of the IBM
Rational product family) nowadays enable developing and even compiling Cobol
sources on the developer’s desktop workspaces.

 Many projects find it helpful to transfer Cobol sources from the developer’s work-
space to the host manually, such as via FTP, in order to compile the sources on the
host. As this section will show, you can also develop Cobol sources on the desktop and
use the host compiler to compile the sources, in an automatic, lightweight, and conve-
nient way.

 A basic precondition for processing Cobol sources is that the sources must be
imported and managed in a VCS. We’ve already discussed the importance of manag-
ing sources in a VCS, and Cobol source code should be stored in a VCS as is the source
code of any other programming language. Some people may suggest that this isn’t
necessary because Cobol is a mainframe host language, and there have been main-
frame facilities (such as libraries) in which both source and compiled binaries have
been managed for some time. But the advantages of putting Cobol sources into a VCS
include benefiting from all the features of a modern VCS and being able to add Cobol
processing to a CI system. The CI system can trigger Cobol processing on the host con-
tinuously. Compiled Cobol sources (binaries, load modules) can be stored in a VCS or
a component repository so they can be reused later by other CI build jobs that stage
those modules to other test environments on the host.

 During software development, a repetitive activity is using an IDE, such as Eclipse
(with its Cobol support), and synchronizing the sources to a VCS with Eclipse’s excel-
lent support for all common types of VCSs. But after editing sources, how do we com-
pile them, and how do we put them onto the host? By using Cobol compilers, the
compiling can be done on the developer’s desktop. But it’s much more common to
upload the sources to the host for compiling, and not upload binaries into libraries.

 Developing Cobol applications in an IDE on the desktop and offloading the build
onto the mainframe further improves the quality, reduces the risk of late bug detec-
tion, accelerates feedback cycles, and prevents the desktop from being blocked by
long processing times. Offloading the build to the host fosters productive workspaces
(discussed in chapter 5). Besides that, when developing Cobol applications, desktop

195Integrating other artifact types: Cobol
and workspace Cobol compilers may differ in functionality and handling. But how can
we transfer sources to the host?

 You can use FTP for communication between a developer’s desktop and the host.
To do this, you need the following:

■ A host machine that runs an FTP server.
■ An authorized user with a valid user account.

Once you have the FTP server and the authorized user up and running, you can set up
FTP-based processing. In general, the FTP server can address and communicate with
the host’s job entry subsystem (JES). The JES is part of the operating system used to
schedule and run jobs and control their output. On a mainframe, the job control lan-
guage (JCL) controls the jobs. For instance, a JCL script may contain commands to
compile a Cobol source. JCL scripts consist of steps (that are commands for the host)
and programming features to implement conditional statements and workflow. If you
submit JCL scripts into the JES, the resulting jobs are processed immediately, depend-
ing on job priorities. Here is a small JCL example:

//XXXXXXXJ JOB (ACCTCODE),'ABCDEF',NOTIFY=D123456,CLASS=I,
// MSGLEVEL=(1,1),MSGCLASS=C
//*
//STEP1 EXEC PGM=ABCDE99

As you can see, it’s a simple file with only one step. An FTP server provides access to
JES functions, including submitting and deleting jobs, displaying the status of jobs,
and receiving the output of JCL messages.

 There are many possible ways to manage your FTP communication. We’ll discuss
the two main ones here, using either Ant or the Java API. We’ll start with the prag-
matic approach, which uses Ant.

7.1.2 FTP communication with Ant

The Ant approach is pragmatic, in that it helps you handle the processing of JCL jobs
in a straightforward way. This approach has two benefits. One, it’s lightweight, and,
two, it’s mainly scripted in a native build scripting language (Ant) and can be directly
included in a CI process. You don’t need to write a full-featured program to set up the
communication between the build server or the developers’ machines and the host.

 In brief, the approach of processing the Cobol sources is as follows:

■ The CI server checks out Cobol sources from the VCS and generates signal files,
as well as JCL files (one signal file and one JCL file for each Cobol source), and
a bash script (see figure 7.2).

■ The bash script is triggered by CI and transfers the Cobol and JCL files to the host.
■ On the host, the JCL files kick off host jobs that process the Cobol files accord-

ing to the type of processing defined in the JCL files. Typically, processing
means that Cobol sources are compiled, and generated libraries are loaded on
the host. The host runs the JCL jobs asynchronously, so we use signal files on the
CI server to monitor the process.

196 CHAPTER 7 Advanced CI tools and recipes
■ FTP commands inside the JCL files trigger the transfer of generated libraries
(the compiled Cobol sources) and log files back to the CI server.

■ In each JCL job, an FTP command removes the signal files from the CI server to
indicate that the processing of this specific Cobol source is finished. The CI
server can put the libraries into the VCS or distribution management in order
to reuse these binaries for other test environments without again compiling
them (compile once, run everywhere).

This lightweight process is based on a sequence of dynamically created Ant scripts that
check sources from the VCS, generate files, run a bash1 script to upload them to the
host, wait for the host to process all the files, and collect the returned files.

 Here are the steps of the solution in more detail:

1 Check out all Cobol sources from the VCS. Use Ant for this.

NOTE This is a generic solution (which will work regardless of the names of
the Cobol sources), so the following steps include the generation of generic
scripts.

1 Bash, or a Windows equivalent. Although Java is platform-independent, I’ve assumed Linux or Unix to be the
test and production environments in this section. This won’t necessarily be the case, though.

Figure 7.2 The processing of Cobol sources is based on Ant scripts
that are dynamically generated and triggered by the CI server. Files are
transferred from the CI server to the host and vice versa via FTP. CI with
Cobol is similar to how we integrate Java applications: Cobol sources
are managed by the VCS. The CI server checks Cobol sources and
triggers and then monitors the success of Cobol compilation on the
host. Compiled Cobol sources can be loaded into libraries on the host
and transferred back to the CI server to store them in the VCS or a
component repository for further reuse.

197Integrating other artifact types: Cobol
2 Iterate over the Cobol sources to identify the filenames and store them in a Java
collection. Do this in a Java class that’s called by your Ant script. You can also
write your own Ant task that wraps the functionality and can be used directly
from outside your Ant script.

3 In the same Java class, generate a bash script to transport the files (the Cobol
sources and the to-be-generated JCL files that will include logic about what to
do with the Cobol source on the host) via FTP directly. This means you’ll use
FTP commands in your bash script. The script starts with #!/bin/sh and it’s
essential to specify the FTP site correctly in the JCL: filetype=jes for the jobs
and filetype=seq for the artifacts, as shown in listing 7.1. You can use variables
for environment-specific configuration settings. The specific values for these
placeholders are held in a Java properties file and can be injected into Ant
scripts by filter-chaining at execution time (more on Ant’s filtering feature in
section 7.3).

for (Iterator<FileHandler> iterator = cics.iterator(); iterator
 .hasNext();) {
 FileHandler fh = (FileHandler) iterator.next();
 if (fh != null) {
 print += "quote SITE FILETYPE=SEQ"
 + System.getProperty("line.separator") + "put "
 + path + fh.getNameWithExtension()
 + " '${cics.sourcelib}(" + fh.getName() + ")'"
 + System.getProperty("line.separator")
 + "quote SITE FILETYPE=JES"
 + System.getProperty("line.separator") + "put "
 + path + fh.getName() + ".jcl" + " "
 + fh.getName() + ".jcl"
 + System.getProperty("line.separator");
 }
}

4 In the Java class, you also generate an Ant script that uses the Ant touch task.2

Using it once touches every source and generates signal files: one use of this
command impacts each Cobol source you checked out from the VCS and cre-
ates an empty file for each Cobol source. These empty files can be called barriers
or signal files. The reason for creating these files is that once you put JCL files
on the host, they are processed by the host asynchronously. By introducing
these barriers, the transferring system (the CI server) can monitor the asynchro-
nous processing and it will be informed when the processing on the host is com-
pleted. You call the generated Ant script dynamically to create these empty files;
you can place these barrier files into an inbox folder.

Listing 7.1 Generating bash script for uploading files

2 See the Ant documentation of the touch task: http://ant.apache.org/manual/Tasks/touch.html.

Iterate all files
to be processed

Generate script
to upload artifacts

Use Ant variables,
to be filtered later

Generate JCL files

198 CHAPTER 7 Advanced CI tools and recipes
The use case of this section shows that you can upload the Cobol artifacts
and the corresponding JCL files in pairs to control processing of the Cobol arti-
facts. All files (Cobol sources as well as the JCL files) must be in place for the
script to find them. You can configure where to place the files. It’s good prac-
tice to copy all Cobol sources to an outbox folder where you’ve also placed the
corresponding JCL files. The following listing shows an example touch script
snippet that generates Ant script.

private String getTouchScript(){
 int countCics =
 ((ArrayList<FileHandler>) cics).size();
 String touchScript = "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>"
 + System.getProperty("line.separator")
 + "<project name=\"waitfor\" default=\"wait\" basedir=\".\">"
 + System.getProperty("line.separator")
 + "<target name=\"wait\">";
 for (int i = 0; i < countCics; i++) {
 FileHandler fc = cics.get(i);
 touchScript = touchScript
 + System.getProperty("line.separator")
 + "<touch file=\""
 + inbox + "${myuniqueprefix}." + fc.getName()
 + ".running\"/>";
 }

 touchScript=touchScript +
 System.getProperty("line.separator")+"</target>" +
 System.getProperty("line.separator")+"</project>";
 return touchScript;
}

5 In the Java class, you dynamically generate one JCL file for each Cobol source.
This JCL contains the JCL steps for processing the individual Cobol resources on
the host. The JCL can vary, depending on the type of Cobol file (for instance,
online or batch) and will include different JCL steps or Cobol compiling
options. You can also include FTP commands in your JCL snippets. Firing these
into the JES results in host jobs uploading log files or load libraries to the build
server. You must add an FTP command to your JCL to remove the signal file that
monitors the processing for this JCL.

Executing the bash script transports the files to the host. You don’t need to manually
call the script, as it can be part of your build logic. For example, a sequence of Ant
scripts can start by generating the files and then running them. In the script, you must
include logic to pause until the host removes all signals. You can, for instance, write a
small Java class, creating threads monitoring the inbox folder and its entries. When
the folder is empty, the host has processed all jobs. Afterward, you can collect possible
return files (like load modules) and store them in the VCS.

Listing 7.2 Generating touch script

Retrieve number
of sources
to be processed

Create empty file
with Ant touch task

Prefix filenames
with unique IDs

199Integrating other artifact types: Cobol
MAVEN AND ANT Ant scripts can be integrated with Maven scripts by using
Maven’s AntRun plug-in for Ant: http://maven.apache.org/plugins/maven-
antrun-plugin/.

We’ve reviewed automating common tasks, such as FTP, using Ant and scripting. Next
we’ll examine how to use Java for FTP communication.

7.1.3 FTP communication with Java

Instead of using Ant to handle communication with the host, you can code it with
Java. You can work with sockets yourself, or you can use the Commons Net library
(http://commons.apache.org/net/). This library is an easy-to-use abstraction for
handling different protocols, including FTP.

NOTE Wherever possible, you should use common abstractions for commu-
nication, which means using higher levels of the Open Systems Interconnec-
tion (OSI) model (such as the application layer). FTP and HTTP are examples
of such common abstractions.

Let’s transfer the JCL file shown earlier onto the host and execute it in the JES. The
following listing shows how to achieve this with Java.

public class FileTransferProtocol {
 public static void main (String [] args) {
 String serverName ="my.zos.mainframe";
 String userName ="userid";
 String password ="********";
 FTPClient ftp = new FTPClient();
 try {
 ftp.connect (serverName);
 String replyText =ftp.getReplyString();
 System.out.println (replyText) ;
 }
 catch (Exception e) {
 e.printStackTrace ();
 }
 try {
 ftp.login (userName, password);
 String replyText = ftp.getReplyString();
 System.out.println (replyText);
 } catch (Exception e) {
 e.printStackTrace();
 }
 try {
 ftp.site ("filetype=jes");
 String replyText = ftp.getReplyString();
 System.out.println (replyText);
 }
 catch (Exception e) {
 e.printStackTrace() ;

Listing 7.3 Uploading artifacts by using FTP

 Connect to
FTP server

b

Log into
FTP server

c

Configure
file type

d

Retrieve
resulte

200 CHAPTER 7 Advanced CI tools and recipes
 }
 try {
 FileInputStream inputStream =
 new FileInputStream ("C:\\job.jcl") ;
 ftp.storeFile (serverName,inputStream) ;
 String replyText = ftp.getReplyString() ;
 System.out.println (replyText);
 }
 catch (Exception e) {
 e.printStackTrace() ;
 }
 try {
 ftp.quit() ;
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

For more details on how to manage host jobs with Java, see the IBM documentation.3

 Listing 7.3 starts by connecting B and logging in c to the remote FTP server.
Commons Net provides an FTP client; you don’t need to work with sockets on your
own. We then configure the file type d, which outputs “200” if it all worked success-
fully, retrieves the result e, confirms that “200 SITE Command was accepted”, and
reads the file to submit it to the host f.

 Please keep in mind that those are the most important high-level points. In addi-
tion, we handle exceptions (but only on a basic level, in order to avoid long code list-
ings and an overly complex example).

 For uploading JCL and generating jobs, it’s essential to set the file type to jes so
the jobs get executed. On the other hand, for uploading Cobol sources, you need to
set the file type to seq. This way they’re stored in a library instead of in the job queue.

 Afterward, you can access the results of your operation and wait for the host to exe-
cute the job. The API is powerful: You can monitor the host job queue and scan for
your jobs. You can also configure your FTP client by assigning a custom parser to work
on the results in a more convenient way.

 You can integrate the compiled Java class into a CI process depending on your
requirements. For example, the Java class can be called by an Ant script or be
included as an Ant task.

 Java is powerful, but Microsoft .NET also has many helpful features, which we’ll
cover next.

3 For instance, see “Submit batch jobs from Java on z/OS” by Nagesh Subrahmanyam (www.ibm.com/
developerworks/systems/library/es-batch-zos.html) and “Access z/OS batch jobs from Java” by Evan Williams
(www.ibm.com/developerworks/systems/library/es-zosbatchjavav/index.html).

Read file,
submit to hostf

201Integrating other artifact types: .NET
7.2 Integrating other artifact types: .NET

 —This section contributed by Hadi Hariri

This section will show you how easy it is to use a build framework such as MSBuild to build
.NET software. Additionally, it will demonstrate how to add CI with .NET applications to
an Agile ALM CI ecosystem that can also integrate other artifact types, such as Java.

 To demonstrate using CI with .NET, we’ll use TeamCity as the build server, but
build frameworks like MSBuild are agnostic regarding build servers, so you can add
your build scripts to other build servers as well. TeamCity is a powerful build server
that can be used to integrate different platforms and languages, including Java and
Microsoft-related ones, in parallel.

 The strategy presented in this section is to orchestrate best-of-breed tools and inte-
grate them into a configured, personalized toolchain (as discussed in chapter 1). You
don’t need to stick to proprietary Microsoft tooling, such as Visual Studio, to build
your .NET software; rather, you can use lightweight tools instead. Additionally, it’s not
necessary to use Microsoft Team Foundation Server to manage your .NET sources; you
can manage the sources in parallel with other project artifacts in the same tool, such
as Subversion, in order to foster an Agile ALM approach. Finally, this section shows an
example implementation of the service-oriented approach that you learned about in
chapter 1. You’ll see how easy it is to temporarily add additional build machines to
your CI system by running builds in the cloud.

 Like many other tools and practices in .NET, CI originated from the world of Java.
But despite its relative newcomer status, .NET has certainly gained maturity in terms of
adoption of best practices that evolved in the Java world. Much of this is impacted by
the number of tools in .NET that support the key elements required for successful CI.

Ted Neward on integrating .NET and Java systems

I once asked Ted Neward, .NET and Java expert, “What’s your opinion about adding
.NET artifacts to continuous integration processes and systems that are based on
open source or lightweight tools, in the case that projects don’t want to use TFS, Visual
Studio, or other Microsoft products?” This was his answer:

“In general, as much as I spend time handling integration between .NET and Java sys-
tems, I’m not a huge fan of mixing the developer tools across those two platforms—try-
ing to get Maven to build .NET artifacts, for example, can be a royal pain to get right.
In general, the best success I’ve had with this is to fall back to MSBuild, and kick it
off as you would any other command-line tool. The build results can be captured to a
text file and examined later, or if a more fine-grained control is needed, a shell around
MSBuild can be built (probably with PowerShell, depending on the complexity of the
problem) to capture events during the build. This doesn’t mean I’m going to tell .NET
developers to stick with plain-vanilla Visual Studio or TFS, mind you. Better tools def-
initely exist for handling continuous integration builds than what comes out of the box.
Pick one of those CI tools, figure out how to invoke a command-line tool from the CI
infrastructure, use that to kick off MSBuild, and call it a day.”

202 CHAPTER 7 Advanced CI tools and recipes
When talking about build tools in the .NET space, there are two main contenders. On
one side there’s NAnt, which is a port of Java’s Ant, and on the other there’s MSBuild,
which is the .NET framework’s native build system from Microsoft. The core principles
behind MSBuild are the same as those for NAnt.

7.2.1 Using MSBuild to build .NET projects

MSBuild provides a series of targets, each of which defines one or more tasks to be car-
ried out. Targets are a sequence of grouped steps; this is similar to Ant, where targets
are a sequence of Ant tasks. The following listing shows a sample build script.

<?xml version="1.0" encoding="utf-8" ?>
<Project
xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
DefaultTargets="Build">
 <ItemGroup>
 <Compile Include="*.cs"/>
 </ItemGroup>
 <PropertyGroup Condition="'$(BuildType)'=='Release'">
 <OutputPath>Bin\</OutputPath>
 <OutputAssembly>Example.exe</OutputAssembly>
 </PropertyGroup>
 <PropertyGroup Condition="'$(BuildType)'=='Debug'">
 <OutputPath>Debug\</OutputPath>
 <OutputAssembly>Example.exe</OutputAssembly>
 <Optimize>false</Optimize>
 <DebugType>full</DebugType>
 </PropertyGroup>
 <Target Name="Clean">
 <RemoveDir Directories="$(OutputPath)"
 Condition="Exists('$(OutputPath)')"/>
 </Target>
 <Target Name="Build">
 <MakeDir Condition="!Exists('$(OutputPath)')"
 Directories="$(OutputPath)"/>
 <Csc Optimize="$(Optimize)" DebugType="$(DebugType)"
 Sources="@(Compile)"
 OutputAssembly="$(OutputPath)$(OutputAssembly)"/>
 </Target>
 <Target Name="Rebuild" DependsOnTargets="Clean;Build"/>
</Project>

As you can see, there’s support for concepts such as multiple targets (that is, one
script being able to run different tasks and operations), property definitions, and con-
ditions. Like NAnt, MSBuild is also extensible. You can create new tasks by implement-
ing an interface and referencing it as an external assembly.4

Listing 7.4 A simple build script for .NET with MSBuild

4 A complete reference on all possible commands can be found at Microsoft’s “.NET Development” site (http://
msdn.microsoft.com/en-us/library/aa139615.aspx).

Custom item
group

Property groups
using conditions

Targets

203Integrating other artifact types: .NET
 TeamCity, from JetBrains, supports CI for both Java and .NET projects and has
become one of the most popular CI servers.

7.2.2 Using TeamCity to trigger .NET builds

TeamCity ((see http://www.jetbrains.com/teamcity/) is available in two flavors: Pro-
fessional, which is free, and Enterprise. It has quickly gained popularity over other
tools, such as CruiseControl, due to its ease of use and rich feature set. In this section,
we’re going to look at some of the features that TeamCity provides, starting with visual
configuration of the environment.

VISUAL CONFIGURATION ENVIRONMENT

One of the more painful issues with CruiseControl is the requirement to set up the
configuration through XML files and having to make these changes on the production
CI server. With TeamCity, rather than requiring users to have permission to access
folders on the server, all access control is handled via a web interface, allowing differ-
ent levels of permissions. All project configurations are carried out using this inter-
face, making setup easier and less error-prone.

 Figure 7.3 shows how you can configure a build runner to choose between Ant,
Maven2, MSBuild, NAnt, and many others.

 Ease of configuration is a main feature of TeamCity, although its ability to facilitate
integration with other tools is also essential.

INTEGRATION IS CORE

TeamCity was built with the goal of being integrated with other tools and frameworks.
Each developer or company has its own policies and ways of working. Some prefer to
use tools such as MSTest for testing and MSBuild for build automation, whereas others

Figure 7.3 Configuration in TeamCity: selecting a build runner (such as MSBuild or NAnt)

204 CHAPTER 7 Advanced CI tools and recipes
prefer to use open source tools such as NUnit and NAnt. TeamCity tries to accommo-
date as many frameworks as possible by providing support for a variety of them. This is
a key feature when it comes to having a productive CI environment.

 One of the core benefits of CI is immediate feedback. When you break the build,
you need to know why, to see test results, and so on. All this needs to be easily accessi-
ble and viewable without requiring a lot of effort. By supporting different testing and
code coverage frameworks, TeamCity allows this seamless integration.

 Figure 7.4 shows a sample output screen of build results with relevant information
that allows you to investigate further if required.

 Apart from the more traditional build tools, TeamCity also supports some newer
tools that are starting to gain interest among developers, such as Ruby’s Rake for build
automation or Cucumber for testing. In addition to integrating with unit testing, code
coverage, and automation tools, TeamCity also works with various types of source

Figure 7.4 Example TeamCity output screen showing test results

Figure 7.5 Selecting a VCS for the .NET project build (with Subversion)

205Integrating other artifact types: .NET
control management, including Team Foundation Server, Subversion, and some
more popular distributed VCSs such as Git and Mercurial, as shown in figure 7.5.

 Another important aspect when it comes to integration is issue tracking systems.
Again, TeamCity allows integration with common tools such as JIRA as well as Jet-
Brains’ own issue tracker called YouTrack.

The flexibility of building and storing sources makes Agile ALM effective. Using
remote build agents and cloud computing are also popular practices.

BUILD AGENTS AND CLOUD COMPUTING

Many CI tools, including Jenkins, support the concept of build agents. The idea is to
have one machine that handles the process and delegates the computing to other
machines. As such, the main CI server would handle the configuring, reporting, and
other non–CPU intensive processes, and one or more machines (called agents) would
handle the compiling, building, and testing of the code. Figure 7.6 shows a build
matrix that indicates the status of all agents and their utilization.

 TeamCity has supported the concept of build agents from the beginning, but
what’s new in the recent releases is its integration with cloud computing. Amazon’s
EC2 cloud computing infrastructure is a pay-per-use concept where you pay for
machines based on the number of hours they’re on—if your machine is running for,
say, five hours, you would be charged for five hours of use. TeamCity uses EC2 via vir-
tual build agents, which are similar to standard ones except that they run on virtual
instances on the Amazon EC2. This means that TeamCity can dynamically start as
many instances of agents as needed in order to keep the build queue under control
during high loads. Additionally, TeamCity can shut down virtual build agents when
they aren’t needed anymore; this minimizes EC2 consumption of uptime.

CI with .NET, but without Microsoft

Although you can use Microsoft tools (like the Team Foundation Server) to store your
artifacts and run builds, this isn’t necessary. Tools like TeamCity or Jenkins are popular
for building .NET projects (using MSBuild or NBuild), and you can store the artifacts
in a common VCS, like Subversion.

What’s different when comparing CI with .NET to CI with Java is that you must use
the specific .NET tools, such as MSBuild or NAnt, for building (and testing) the .NET
components in what’s known as a managed environment. The most important point
here is that you can host your .NET projects on the same VCS where you host projects
for other languages and platforms (such as Java) and integrate them on the same
build server where you also integrate other projects (such as Java projects).

There are also other approaches to integrating different platforms and languages and
using a common, unified tool infrastructure, such as hosting your sources in TFS and
building them with Jenkins (with the help of Jenkins’s TFS plug-in).

206 CHAPTER 7 Advanced CI tools and recipes
Figure 7.7 shows how to create an EC2 cloud profile in TeamCity.
CI is the same, whether it’s in Java, Ruby, or .NET. What’s important when it comes

to implementing CI is having the correct tools to make the whole process efficient and
fast. Spending time to integrate multiple products for every project is cumbersome

Figure 7.6 TeamCity showing agents

Figure 7.7 Server
configuration,
defining a cloud
profile for EC2

207Configure: building (web) apps for multiple environments
and a waste of resources, and that’s why it’s important to have tools that can seamlessly
work with multiple frameworks, platforms, and tools, such as Jenkins and TeamCity.
This leads to an effective toolchain that consists of one central CI server that inte-
grates and works with different platforms and tools, such as Java and .NET.

7.3 Configure: building (web) apps for multiple environments

 —This section contributed by Max Antoni

Java applications consist of artifacts such as EAR, WAR, or JAR packages. When develop-
ing an application, you might want to do some integration tests and then deploy the
application onto a test environment and into production. Deploying the application
on one specific machine may require that you configure environment-specific applica-
tion properties. But you often won’t want to run the script on each environment indi-
vidually because it takes too long and you want to rely on one specific version of the
software.

 How can you support multiple environments and cope with runtime configura-
tions? Generally, you have many options:

■ Use the artifacts and manually configure them for each environment (bad!).
■ Aggregate environment-specific data in Java properties, replacing them manu-

ally for each environment.
■ Write a script that scans configuration files, automatically replacing specific

entries with other values.
■ Write scripts that check on which server the build is running, the target envi-

ronment, and where tools are installed, to detect the configuration parameters
for the output.

■ Use dependency injection, based on the technology you’re using.5

It’s more elegant to use the features your build tool offers. If you use Ant, you can
apply its filter-chaining feature. For instance, by embedding a filter chain together
with an expandproperties command in a copy task, Ant will replace placeholders
with values of property files. A basic template looks like this:

<copy todir="targetDir">
<fileset dir="templates" />
<filterchain>
<expandproperties/>
</filterchain>
</copy>

This section will show an elegant solution that uses Maven.

5 One example of using dependency injection with Java EE 6 can be found in Juliano Viana’s “Application con-
figuration in Java EE 6 using CDI—a simple example” blog entry on java.net: http://weblogs.java.net/blog/
jjviana/archive/2010/05/18/applicaction-configuration-java-ee-6-using-cdi-simple-example.

http://weblogs.java.net/blog/jjviana/archive/2010/05/18/applicaction-configuration-java-ee-6-using-cdi-simple-example
http://weblogs.java.net/blog/jjviana/archive/2010/05/18/applicaction-configuration-java-ee-6-using-cdi-simple-example

208 CHAPTER 7 Advanced CI tools and recipes
 When people start using Maven, one of the first things they discover is that it always
produces a single artifact per POM. This is good for identifying dependencies and
avoiding circular dependency issues or duplicated class files in the classpath. In Maven,
a specific artifact (that is, a specific version of your artifact) is defined by its groupId,
artifactId, and version number (its GAV coordinates, in short). These coordinates
shouldn’t be changed, even when the artifact is deployed to a different target environ-
ment. Let’s look at how Maven helps with this configuration using profiles.

 A common solution to this configuration problem is to run the build with a differ-
ent profile for each environment (profiles are discussed in section 7.3.3). This has the
advantage of keeping the build simple. But the disadvantage is that you can’t use the
results of the same build in multiple environments. This might be a critical issue if you
have to meet common compliance or audit requirements. Besides governance issues,
there may be technical reasons to avoid this approach. If you’re using the Maven
Release plug-in to establish a full-fledged release based on Maven, it becomes a critical
limitation because you create the release (that is, the output of the Release plug-in)
only once. You would have to check out the sources from the created tag, and then
build and deploy it again with the corresponding profiles activated. It’s much easier to
have a single build that produces all artifacts for all environments.

 You should try to keep your configuration data separated from your binaries. With
Maven, you can create separate artifacts for each environment by using classifiers, dif-
ferent profiles, or projects.6 In your build process, by default, you should build all arti-
facts for all possible target environments.

 Another typical way is using assemblies, discussed next.

7.3.1 Multiple artifacts with assemblies

Maven has assemblies that let you create multiple distributions of your application.
Artifacts may produce a zip file with the source code, a JAR with all dependencies, and
much more.

 Let’s look at an example of a perfect approach for a web application. In this case,
we want to produce a WAR file, which we do in a standard POM by specifying war in the
packaging tag: <packaging>war</packaging>. You can add an assembly to your
build’s plugin section, as shown in the following listing.

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/prod.xml</descriptor>
 </descriptors>
 </configuration>

6 See the official documentation on the Maven web page: http://maven.apache.org/guides/mini/
guide-building-for-different-environments.html.

Listing 7.5 Maven assembly plug-ins

Descriptor from
dedicated
XML file

b

http://maven.apache.org/guides/mini/guide-building-for-different-environments.html
http://maven.apache.org/guides/mini/guide-building-for-different-environments.html

209Configure: building (web) apps for multiple environments
 <executions>
 <execution>
 <phase>package</phase>
 <goals><goal>attached</goal></goals>
 </execution>
 </executions>
</plugin>

This next example in listing 7.6 produces the assembly B as part of the package phase
c. By convention, assembly descriptors are placed in src/main/assembly. The assem-
bly descriptor will produce another WAR file next to the one that the POM creates by
default. The assembly ID that’s specified gets attached to the filename, so you end up
with something like this in your target directory:

webapp-1.0-SNAPSHOT.war
webapp-1.0-SNAPSHOT-prod.war

The referenced assembly descriptor is shown in the following listing.

<assembly>
 <id>prod</id>
 <formats
 <format>war</format>
 </formats>

 <includeBaseDirectory>false</includeBaseDirectory>

 <dependencySets>
 <dependencySet>
 <outputDirectory>/</outputDirectory>
 <includes>
 <include>net.huettermann:webapp:war
 </include>
 </includes>
 <unpack>true</unpack>
 <unpackOptions>
 <excludes>
 <exclude>**/filtered.properties</exclude>
 </excludes>
 </unpackOptions>
 <scope>runtime</scope>
 </dependencySet>
 </dependencySets>

 <fileSets>
 <fileSet>
 <directory>src/main/config/prod</directory>
 <outputDirectory>WEB-INF/classes</outputDirectory>
 <includes>
 <include>**/*.properties</include>
 </includes>
 <filtered>true</filtered>

Listing 7.6 Assembly for production (prod.xml)

Assembly is part of
Maven’s package phase

c

Specifies
descriptor

Unpacks
generated WAR

Allows overwriting
newer files

Specifies environment
properties

210 CHAPTER 7 Advanced CI tools and recipes
 </fileSet>
 </fileSets>
</assembly>

We configure the assembly to produce the same WAR as the normal development ver-
sion. To do so, we add a dependency set that unpacks the dev WAR file. The produc-
tion WAR file gets patched with the properties file in the dist directory by configuring
a file set in the prod assembly.

7.3.2 Applying different configurations

You don’t want to hardcode specific data values in your
application. Instead, it’s good practice to have environ-
ment-specific information grouped together in one or
two configuration files. Assuming the configuration of
our web application lives in Java property files, we can
now have a basic configuration for development and
additional configurations for each assembly being cre-
ated (for example, production). In addition to that, a
development team might need different configura-
tions for their environments.

 To achieve this, we’ll first separate the configura-
tion files from other resources and place them into
src/main/config/dev and src/main/config/prod. The
resulting directory structure is shown in figure 7.8.

 The production version of the property files might
contain information like database connections, but
the development version could use placeholders that
are filtered by Maven to contain values for the individ-
ual developers’ profiles. This can be done by overriding Maven’s default configura-
tion for resources in the POM. The following listing shows how to configure the
resources folder.

<properties>
 <variant>dev</variant>
</properties>

<build>
 <resources>
 <resource>
 <directory>src/main/config/dev</directory>
 <targetPath>${project.build.outputDirectory}</targetPath>
 <filtering>true</filtering>
 </resource>
 <resource>
 <directory>src/main/resources</directory>

Listing 7.7 Overriding default configuration in the POM

Figure 7.8 Directory structure,
including configuration for
different environments (dev,
prod, test)

Platform-specific
resource folder

b

Platform-opaque
resource folder

c

211Configure: building (web) apps for multiple environments
 <targetPath>${project.build.outputDirectory}</targetPath>
 </resource>
 </resources>
</build>

First we define the platform-specific resource folder B and configure it to allow filter-
ing. Next, we define the resource folder c containing the platform-opaque content.

 By setting up the resources correctly, accessing the content is transparent. The
next listing shows a major part of our example web application.

public class HelloWorldServlet extends HttpServlet {
 private static final long serialVersionUID = 8689617527304514864L;
 private Properties filteredProperties;
 private Properties staticProperties;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setStatus(HttpServletResponse.SC_OK);
 String text =
 staticProperties.getProperty("text");
 PrintWriter writer = resp.getWriter();
 writer.append("<html><head><title>");
 writer.append(text);
 writer.append("</title></head><body><h3>");
 writer.append(text);
 writer.append(" ");
 writer.append
 (filteredProperties.getProperty("version"));
 writer.append("</h3></body></html>");
 writer.flush();
 }

 public void init() throws ServletException {
 filteredProperties = new Properties();
 staticProperties = new Properties();
 try {
 filteredProperties.load
 (HelloWorldServlet.class.getResourceAsStream
 ("/filtered.properties"));
 staticProperties.load
 (HelloWorldServlet.class.getResourceAsStream
 ("/static.properties"));
 }
 catch (IOException e) {
 throw new ServletException(e);
 }
 super.init();
 }
}

We read the properties content in the init method of our servlet. To demonstrate the
two ways of accessing content (content that’s dependent on the environment B and

Listing 7.8 Accessing configuration properties

Set environment-dependent propertiesb
Set environmentally
opaque propertiesc

Access
properties

Choose correct
environment

Load
propertiesd

212 CHAPTER 7 Advanced CI tools and recipes
content that’s platform-independent c), we specify two properties files. In the Java
class, the approach is the same. In both cases we load the resource as a stream d.
Maven puts the properties into the correct folders.

 Running mvn clean package now produces two WAR files with different configura-
tions. But we might not want to create all versions for all environments on each build.
In the next section, I’ll show you how to use a distribution profile to handle multiple
environments.

7.3.3 Using a distribution profile and executing the example

To optimize the current POM, the entire assembly plug-in configuration in the build
section can be wrapped into a dist profile. This has the advantage that a developer
can choose when to produce the WAR files for all target environments. You can also
use this approach to automate this step when producing a release. The following list-
ing shows the profile.

<profiles>
 <profile>
 <id>dist</id>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <inherited>false</inherited>
 <configuration>
 <descriptors>
<descriptor>src/main/assembly/test.xml</descriptor>
<descriptor>src/main/assembly/prod.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

Maven’s Release plug-in offers a convenient way to work with profiles during releas-
ing. By configuring the releaseProfiles element, the defined profiles are activated
automatically. Here’s an example:

<plugin>
 <artifactId>maven-release-plugin</artifactId>

Listing 7.9 Profiles

Define profile
dist

Define test and
prod assemblies

Execute in
package phase

213Building, auditing, and staging with Jenkins
 <configuration>
 <releaseProfiles>dist</releaseProfiles>
 <goals>install</goals>
 </configuration>
</plugin>

You can now run the example with mvn clean package -Pdist. Maven will compile
and package the web application, putting three WARs into your target folder:

webapp-1.0-SNAPSHOT.war
webapp-1.0-SNAPSHOT-prod.war
webapp-1.0-SNAPSHOT-test.war

Using the Maven Jetty plug-in, the dev build can be created and tested in one single
step. Add this to the plug-ins section of your POM:

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
</plugin>

Now run mvn clean jetty:run and then open http://localhost:8080/webapp/ in
your browser. The test and prod environments can be tested by deploying the respec-
tive WAR files into a servlet container and then opening http://localhost:8080/
webapp-1.0-SNAPSHOT-test/ and http://localhost:8080/webapp-1.0-SNAPSHOT
-prod/ in your browser.

 In summary, Maven offers functionality to configure artifacts for different target
environments. By using assemblies, a build produces multiple artifacts for your speci-
fied environments. This way it’s easy to maintain the application and it encourages a
clean separation of environment-specific configuration files. Combined with Maven’s
releasing facilities, creating a release for multiple environments is done in a single step.

7.4 Building, auditing, and staging with Jenkins
Kohsuke Kawaguchi is currently lead developer on the Jenkins project, an open
source CI server that was originally released in February of 2005 (under the name
Hudson). Many developers find Jenkins easy to install and configure with its web
interface written in Ajax (instead of using XML configuration files, as is required by

Accelerating development with the Maven Jetty plug-in

Sooner or later, you’ll want to deploy your coded and packaged web application to a
servlet container for development testing purposes. Usually, you would download a
servlet container such as Tomcat, and then copy and unpack your WAR file to the con-
tainer’s webapps folder. But with Maven, you profit from a much faster feedback loop
by using the Maven Jetty plug-in to run your web application within Maven. You have
to configure the Jetty plug-in in your POM and run special Maven Jetty goals to deploy
and run the WAR file.

http://localhost:8080/webapp-1.0-SNAPSHOT-test/
http://localhost:8080/webapp-1.0-SNAPSHOT-test/
http://localhost:8080/webapp-1.0-SNAPSHOT-prod/in your browser
http://localhost:8080/webapp-1.0-SNAPSHOT-prod/in your browser

214 CHAPTER 7 Advanced CI tools and recipes
Cruise Control). With Jenkins, many different artifact types can be built, such as .NET
and Java.7

JENKINS AND HUDSON Hudson split into two different products: Hudson
(http://hudson-ci.org) and Jenkins (http://jenkins-ci.org). The original
founder and core contributor, Kawaguchi, along with others, works on the
open source product Jenkins. Hudson development is led by Oracle,
together with Sonatype and others. Jenkins and Hudson follow different
strategies regarding releasing and licensing—for details, please refer to the
respective product sites. I used Jenkins in writing this book, but all discus-
sions apply to both products. it’s possible, though, that divergent develop-
ments and incompatibilities may result in the future.

It’s recommended that you run Jenkins in a servlet container such as Tomcat or JBoss,
but you can also start by executing java -jar Jenkins.war on the command line.
Jenkins has a component architecture, so it supports a large library of plug-ins that
extend its functionality. Using plug-ins, you can, for example, add different build
types to your system, like .NET projects; add further reporting or auditing facilities; or
add different communication channels, like posting build results on Twitter.

 Discussing Jenkins could fill a whole book. Here, we’ll focus on introducing Jen-
kins and looking at it in the context of audits and its Artifactory integration.

7.4.1 Jenkins and triggering jobs

Jenkins jobs allow you to specify what you want Jenkins to build and to schedule when
they should be built. Jenkins also specifies which artifacts should be procured as a
result of the build. It also provides reporting on channels and a definition of what to
do after the build has run.

 Jenkins is a build server, so it doesn’t know how to build your project. You need
build scripts, such as Maven, Ant, Ivy, MSBuild, and so on, to build your project,. Jen-
kins allows you to manage these build scripts (inside a Jenkins job) and run builds,
depending on specific criteria.

 These are the typical approaches to triggering a build:

■ A developer checks something into your VCS, and Jenkins then builds a new ver-
sion of your software including these recent changes, because it’s monitoring
changes to the VCS. This is a nice approach for setting up a continuous build.
You can align this with your individual needs in many ways. For example, by
configuring when Jenkins checks for changes. You could require that Jenkins
checks the VCS once every hour by using a cron-like syntax in the Jenkins job
configuration panel.

Some projects use postcommit hooks inside their VCS to start a new build
after a check-in. This is also a valid and effective approach. You can do this by

7 For further details on Jenkins, see John Ferguson Smart, Jenkins: The Definitive Guide (O’Reilly, 2011).

215Building, auditing, and staging with Jenkins
referencing a shell script as a postcommit hook containing a single wget call to
your build URL. This fosters a task-based approach, but it also has drawbacks. If
you have many local changes to be synchronized with your central VCS, starting
a build directly may lead to code in the VCS that’s inconsistent. This makes it
difficult to check in your changes frequently, even if the changes don’t have any
interdependency with each other. In this case, you should rely on the Jenkins
feature. Letting Jenkins check the VCS for changes is more elegant and is often
done on an hourly basis. Don’t be afraid of performance bottlenecks here. Jen-
kins doesn’t check out the entire source tree. For example, for Subversion, Jen-
kins checks the revision number to detect any changes.

■ Configure the job to start a scheduled build. This is often used to run nightly
builds that may contain more complex logic, may do more testing, and so on.
These builds are done once a day, typically overnight, to deliver the results in
the morning when developers can then react to them.

■ Use dependency builds, which means a build job is dependent on the run of
another job. This allows complex build chaining (often also called a staged
build). One such scenario is to have a simple build job that compiles, packages,
and does some basic sanity checks. Only if this is successful is a second down-
stream job run to complete the test coverage. This allows much better feedback
loops than putting the complete build and test logic into one monolithic build
job. On the success of the previous build, another Jenkins downstream job
could be triggered to deploy the created artifact to a test environment. For
instance, Jenkins’ Deploy plug-in can deploy artifacts to common application
servers; build dependencies can also be configured by using Jenkins’ Build
Pipeline plug-in.8 You can also configure dependency builds across build tools.
Using the Bamboo plug-in for Jenkins, for example, you can trigger a Bamboo
build as the postbuild action in Jenkins. Besides that, Jenkins offers you features
that aggregate build results for dependant builds. As an example, you can con-
figure Jenkins to aggregate test results across different jobs.

■ Push the build start button manually.

Jenkins organizes builds with build jobs that are aggregated on Jenkins’ dashboard.

7.4.2 Jenkins dashboard and Jenkins jobs

Jenkins provides intuitive navigation, starting with the Jenkins dashboard, which lists
your build jobs. There, you can click on one job to see more details on a particular
build job (for example, the workspace consisting of all sources checked out by Jen-
kins). Finally, you can go into one of the job runs to check its individual result.

 What does this look like in detail? Figure 7.9 shows the dashboard listing a couple
of jobs—you can see the status of the different jobs.

8 Jenkins’ Deploy plug-in can be found at https://wiki.jenkins-ci.org/display/JENKINS/Deploy+Plugin. The
Build Pipeline plug-in is at https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin.

216 CHAPTER 7 Advanced CI tools and recipes
The balls in the first column indicate whether the last job run was successful or not.
Here, green indicates success (but the green must be configured by installing another
plug-in; success in Jenkins is traditionally indicated with blue balls). Other possible
indicators are red balls (for failed builds, due to compile errors, for example) and yel-
low balls (pointing to unstable builds, due to failed tests, for instance). You can config-
ure what fails a build. For example, you can define when a build is considered to be
unstable, based on the results of audits, tests, and test coverage.

 The trend is displayed in the second (weather) column, which analyzes the last
builds, and the subsequent columns provide pointers to the times of the last builds
and their durations. You can also start new builds by clicking the button on the right.
Rolling the mouse over a visual UI item delivers more detailed context information.

 Proceeding from the dashboard to a specific build job, you’ll see the following
(depending upon how you’ve configured Jenkins and what Jenkins plug-ins you’ve
installed):

■ Links to a change history that shows the build history and the VCS changes new
in this build (and identifying who did this change). This can be linked with a
repository browser like FishEye and an issue tracker like JIRA.

■ Links to associated tools (like Trac or Sonar), if configured.
■ Links to the coverage report showing test coverage and its trend across

builds—for example, measured by the Cobertura coverage tool (if you config-
ure the Cobertura plug-in as part of your Maven build). For example, a display
of code coverage on package, file, class, method, line, and conditional levels.

■ Exposed and stored artifacts, like a JAR built by the job. This can’t replace more
sophisticated storage, like in a VCS or in a component repository like Artifac-
tory. Depending on your context, you could provide a zip file that’s generated
by your Maven build (via the Maven Assembly plug-in); for example, you could
generate a target platform for your OSGi project or any similar package of arti-
facts you want to provide.

■ Links to the latest test results, which include pages containing a list of test mod-
ules and the test results (for instance, test failures new with this build).

■ Aggregated data about audits and tests and the trends across builds (if you con-
figure the audit tools as part of your Maven build and reference the audit XML
results in Jenkins).

Figure 7.9 Jenkins dashboard listing the configured jobs and information about them (result of the
last build, trend, duration). You can also start new builds by clicking the buttons at the far right.

217Building, auditing, and staging with Jenkins
■ Dedicated trend illustrations for tests and static code auditing (FindBugs, PMD,
Checkstyle), as well as a handy overview of all violations detected by a specific
tool (if you configure the audit tools as part of your Maven build).

■ The Javadocs delivered by the build (if they’re part of the Maven project
description).

■ A link to the generated Maven site.
■ Links to Maven modules showing fine-grained information on the module level

(such as audit violations).
■ A link to the Jenkins workspace showing the current sandbox checked out of

VCS (by VCS checkout or update, according to what you’ve configured).
■ Links to configuration pages to configure what you see.

When a job runs, it adds the results of a specific build to the history. Whereas the job
overview page aggregates information or shows the last results, each job build occur-
rence has its individual information. This is important, because with Jenkins you can
also inspect older builds in addition to the most current one. Each build shows the
information illustrated in figure 7.10, as part of the build detail page.

JENKINS AND ITS MATRIX PROJECT JOB TYPE Jenkins comes with a job type
called matrix project (see the official plugin page: http://wiki.Jenkins-ci.org/
display/JENKINS/Aboutncysa). This job type expands a freestyle software

Figure 7.10 On the build detail pages, Jenkins provides more information, including
build artifacts, details on why the build was triggered (here a change in Subversion,
revision 255, detected by Jenkins), and an overview of static code analysis violations.

http://wiki.Jenkins-ci.org/display/JENKINS/Aboutncysa
http://wiki.Jenkins-ci.org/display/JENKINS/Aboutncysa

218 CHAPTER 7 Advanced CI tools and recipes
project to a large number of parameterized build configurations. Matrix proj-
ect lets you set up a single configuration with user-defined parameters. When
you tell Jenkins to build it, it will build all the possible combinations of param-
eters and then aggregate the results. In addition to testing, this job type can
also be useful for building a project for multiple target platforms. The plug-in
is extended with further functionality continuously.

Figure 7.11 shows another excerpt of
the build detail page with links to
test results, audits, Artifactory, and
built modules.

 In the next section, we’ll discuss
using Sonar with Jenkins. Sonar is an
open source code analysis tool that
helps to improve code quality.

Figure 7.11 On the build detail pages,
Jenkins links to test results, dedicated

reporting pages according to code
violations (here Checkstyle, FindBugs,

and PMD), an aggregation page of
violations (static analysis warnings),

and to Artifactory and individual
modules of the Maven build.

7.4.3 Auditing with Jenkins and Sonar

Jenkins and Sonar both deliver reporting and data-aggregation support for auditing
your software development. Auditing with Jenkins relies on configured build scripts,
whereas Sonar doesn’t require your build scripts to be changed. Sonar can be inte-
grated with Jenkins. Let’s start auditing with Jenkins.

AUDITING WITH JENKINS

As a precondition for using your chosen auditing tools, you must configure your build
project appropriately. This way, you can run the build script without Jenkins, for
instance locally in the developer’s workspace, and get the result of those audits as well.
Jenkins triggers the builds and aggregates and visualizes audit results. The following
POM snippet shows what this can look like.

<reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>

Listing 7.10 POM with Cobertura, FindBugs, Checkstyle, and PMD configuration

Add
Cobertura

219Building, auditing, and staging with Jenkins
 <configuration>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <configuration>
 <configLocation>checkstyle.xml</configLocation>
 <excludes>**/package-info.java</excludes>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <configuration>
 <rulesets>
 <ruleset>pmd.xml</ruleset>
 </rulesets>
 <excludes>
 <exclude>**/package-info.java</exclude>
 </excludes>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <configuration>
 <effort>Max</effort>
 <threshold>Low</threshold>
 <includeFilterFile>include.xml</includeFilterFile>
 <excludeFilterFile>exclude.xml</excludeFilterFile>
 </configuration>
 </plugin>
 </plugins>
</reporting>

You can place your auditing plug-ins into the POM’s build and reporting sections. In
the reporting section, shown in listing 7.10, Maven inspects your code and reports
the result. This has an informal character only because the build itself isn’t influenced
by the result of the audits. You can configure Jenkins to influence the reported project
health, or even break the build. There are limitations, though, in handling the granu-
larity and criticality of violations. Jenkins counts only the violations.

 In the build section, auditing results can influence the build directly. This is handy
for implementing quality gates, if, say, you want to break the build when defined
requirements aren’t met. Another use case for including audits in the build section

Configure output
formats

Add Checkstyle
functionality

Reference config file,
exclude special files

Add PMD
to build

Reference rule set, exclude
files from processing

Add
FindBugs

Configure
FindBugs

220 CHAPTER 7 Advanced CI tools and recipes
(and not in the site section) is if you don’t want or need to use Maven’s site lifecycle
to generate these reports.

CONTINUOUS INSPECTION VERSUS ONE-TIME INSPECTION Some projects experi-
ence good results with a single one-time inspection instead of continuous
inspections. These projects claim that it’s enough to include specific inspec-
tions for a particular instance, and then not run them again afterward. In
these cases, this approach will point to possible design defects that result in
a learning opportunity for the team. This is a task-based approach that
allows developers to focus on their work instead of constantly focusing on
passing audits.

Audit tools support the configuration of rules in dedicated configuration files. If you
choose to use detailed files for configuring rules, you may place these files into a dedi-
cated Maven project. You must place these files in a dedicated project if you run a mul-
timodule Maven build. Then, in your parent POM build section, you add an extension
element that adds only artifacts to the Maven compile classpath. This section extends
the compile classpath, adding the audit rules:

<extensions>
 <extension>
 <groupId>net.huettermann</groupId>
 <artifactId>resource</artifactId>
 <version>1.0.0</version>
 </extension>
</extensions>

The resource project consists of only the configuration files for the audit tools,
placed in the default file structure where Maven expects general resources: src/main/
resources/. Be aware that you can’t use the extensions construct in a POM’s report-
ing section.

 Figure 7.10 showed an aggregation of static code violations that can be detected by
various audit tools (such as Checkstyle, FindBugs, PMD).

FALSE POSITIVES Remember that you have to align audits with your individ-
ual context. In part, this involves placing a value on the auditing rules you
include. A valuable rule for one project can be misleading and of no value
for another project. For example, consider FindBugs’ UWF_FIELD_NOT_
INITIALIZED_IN_CONSTRUCTOR rule, which rule checks whether you’ve initial-
ized fields in the constructor. If you use any kind of Java injection mecha-
nism, this may lead to a lot of false positives because the injection system
takes care of initializing properties. Other rules are debatable; one person
may state it’s perfect and a good design to have only one return statement at
the end of your block. Another person may state that using multiple return
statements improves clarity and reduces the overhead.

Figure 7.12 provides an example of using Checkstyle for code audits.

221Building, auditing, and staging with Jenkins
In figure 7.12, Checkstyle analyzed the code and found a design antipattern. Accord-
ing to Checkstyle, the method isn’t designed for extension—the method should be
abstract or final. Checkstyle knows this rule as DesignForExtensionCheck. Jenkins
reports this with a special colored background.

 The example in figure 7.13 shows PMD in action. PMD detected an empty catch
block (an unhandled exception), which is considered to be an antipattern.

The last auditing example is shown in figure 7.14. FindBugs detected a code fragment
that was obviously a coding defect. By accident, the developer repeated a conditional
test. The developer wanted to add a different condition but made a mistake while
doing so.

Discussing all tools or even all rules in detail is beyond the scope of this book. The les-
son here is that you should include audits in your build and let Jenkins report and
aggregate the results. For more information on the individual rules (and how to con-
figure them), please consult the available documentation for these free tools:

■ FindBugs—http://findbugs.sourceforge.net/
■ Checkstyle—http://checkstyle.sourceforge.net/
■ PMD—http://pmd.sourceforge.net/

Figure 7.12 Checkstyle found an antipattern: this method isn’t designed for extension.

Figure 7.13 PMD detects an empty catch block.

Figure 7.14 FindBugs points to a repeated conditional test, which is most likely a
coding defect.

222 CHAPTER 7 Advanced CI tools and recipes
SUN/ORACLE CODE CONVENTIONS The Sun/Oracle code conventions usually
don’t target project requirements (they’re too restrictive and too fine-
grained), but you can use them as a template to customize your own conven-
tions. Conventions are important for a team to follow, in order to collaborate
with the greatest efficiency and to maintain a common standard while shar-
ing code.

As mentioned, you can configure a failed build based on the results of your audits.
Although you can directly configure the auditing tools and plug-ins in Maven (for
example, to automatically break a build completely as soon as the test coverage is
ascertained to be insufficient), Jenkins’s configuration helps to control operational
efficiency. Although developers can use Jenkins, too, the build scripts aren’t usually
supported by the build manager: Instead, project developers write and maintain build
scripts as part of the application development effort. Depending on how you slice
project roles, a central build manager may use Jenkins to apply centralized quality
gates, but they probably won’t change the scripts themselves (because of organiza-
tional restrictions or because they don’t have the skills to do so).

JENKINS, AUDITS, AND IDES Jenkins integrations for IDEs are available, too,
and there’s support for auditing in the IDE. For example, it can be wise to use
the Checkstyle plug-in for Eclipse, but this should be integrated with the
build stream. It’s more important to include audits (and only the audits that
add value in your individual situation) in your build system than in your IDE.

What makes Checkstyle, PMD, and FindBugs complementary?

Although there’s some overlap, all three tools have different usage scopes and indi-
vidual strengths.

Checkstyle focuses on conventions. For instance, does the code correspond to a de-
fined format, are Javadocs set correctly, and are the Sun/Oracle naming conventions
followed?

PMD focuses on bad practices, such as well-known antipatterns—code fragments that
will lead to difficulties over time. Typical examples are having dead (unreached) code,
too many complex methods, and direct use of implementations instead of interfaces.

Finally, FindBugs focuses on potential bugs. These are code statements or sequences
that aren’t immediately clear but that will lead to terribly bad situations. Multiple pa-
rameters must be taken into account to detect such a circumstance. Examples include
a code change that uses a conditional statement twice or that returns references to
mutable objects while exposing internal representations.

223Building, auditing, and staging with Jenkins
Many IDEs also provide auditing rules or apply conventions. You can config-
ure Eclipse, for example, to apply rules, such as organizing imports, when
you save. If you use this configuration, you check in your configurations to
your VCS and provide them to others, but you can’t force colleagues to use
them (which is a good reason for integrating audits with a build run on the
central build server).

Finally, let’s look at test coverage. We added Cobertura to our Maven POM; f igure 7.15
shows the test coverage of the project built via Jenkins, on the package level. You can
navigate further into files, classes, and methods, inspecting which tests passed (and
how often) and which didn’t. Please keep in mind that Jenkins is a tool that provides
reporting and aggregating; it doesn’t measure or inspect code.

AUDITING WITH SONAR

Although Jenkins provides a centralized view of your build results (including report-
ing of audits), there are other common tools for tracking code quality. Sonar (http://
sonar.codehaus.org/) is one such application. It’s self-contained and isn’t dependent
on build scripts or Jenkins. If you reference your Sonar installation in Jenkins, Sonar
will examine the quality of the builds Jenkins performs.

 Sonar can be configured to apply FindBugs, Checkstyle, and PMD, among other
tools, and it can apply code coverage for your project without having to configure the
tools in the Maven POMs. Because it doesn’t require any POM modifications, it can be
executed on every Maven project. The benefit of this is that it allows Maven to do its
core job (build the project) and it keeps the POMs lean. But this can be a drawback
too, because you lose early feedback on simple compliance errors in your builds.
Another benefit is that you can easily analyze projects. SonarSource (commercial sup-
port for Sonar) added reporting on many open source projects to their audit server
hosted under their nemo subdomain: http://nemo.sonarsource.org.

 Figure 7.16 shows the results of a build in the Sonar dashboard.

Figure 7.15 Code coverage breakdown by package, showing packages and their files, classes, and
methods coverage

224 CHAPTER 7 Advanced CI tools and recipes
Continuous inspection, by Simon Brandhof
(SonarSource founder and technical lead)

More than ten years ago, the concept of continuous integration was introduced. Its
ultimate goal was to become capable of firing a release of any type at any time with
minimal risk. To reach this objective, continuous integration has introduced new quality
requirements on projects:

■ Anybody must be able to build the project from any place and at any time.
■ All unit tests must be executed during the continuous integration build.
■ All unit tests must pass during the continuous integration build.
■ The output of the continuous integration build is a package ready to ship.
■ When one of the preceding requirements are violated, nothing is more important

for the team than fixing it.

This is a good starting point, but it isn’t sufficient to ensure total quality. What about
other source code quality requirements? Requirements could be

■ Any new code should come with corresponding unit tests (regardless of previous
state in code coverage).

■ New methods must not have a complexity higher than a defined threshold.

Figure 7.16 A project inspected by Sonar, showing the results of FindBugs, Checkstyle, and PMD
inspections, and the results of code coverage

225Building, auditing, and staging with Jenkins
Sonar enables you to navigate through components and provides appealing visualiza-
tions. You can also zoom in on individual class statements. An in-depth discussion of
Sonar is beyond the scope of this book, but it’s worth taking a closer look at this tech-
nology. This is particularly true if you’re interested in audits and are looking for a one-
stop solution that eliminates the need to integrate different tools into your build
scripts.

 For projects based on Maven, Sonar permits you to visualize artifact dependencies
(for example, libraries cartography, which specifies the project and library in use).
Sonar supports analyzing project sources to identify what project is using a specific ver-
sion of a library. You can also use the functionality provided by Maven’s Dependency
plug-in (http://maven.apache.org/plugins/maven-dependency-plugin) by running
the dedicated commands on the console or by binding the functionality to a Maven
phase, but Sonar’s reporting is much more convenient. Besides the improved conve-
nience, questions like “Which projects are using commons-logging or any other specific
library?” aren’t possible to answer when you use Maven’s Dependency plug-in directly.

 But keep in mind that Sonar isn’t a substitution for a repository manager, like Arti-
factory, and Maven’s site lifecycle can read POMs and visualize dependencies as well.

7.4.4 Running build fragments in Jenkins only

It can be handy to run parts of your build scripts using Jenkins (that is, on a central
integration server), but it’s also useful to have fast-running builds on developers’
machines, so developers can run their build scripts before code check-in. But build
scripts should be the same whatever their running context is—how can build scripts
know if they’re running in Jenkins or not? To resolve this, we need a special configura-
tion or another mechanism to detect the runtime environment.

NOTE Many developers don’t want to wait until test coverage (or other audits)
are measured before each VCS commit. They only want to do a smoke test

(continued)

■ No cycle between packages must be added.
■ No duplication blocks must be added.
■ No violation to coding standard must be added.
■ No call to deprecated methods should be added.
■ More generally, how to keep overall technical debt under control and only let it

increase consciously: this is the concept of continuous inspection.

A continuous inspection process can be seen as an information radiator dedicated
to making the source code quality information available at any time to every stake-
holder. Transparency is certainly one of the main reasons open source software is
usually of better quality than closed source software is. A developer writing a new piece
of code should always think about the next person or team who will maintain it. Con-
tinuous inspection ensures this golden rule is not forgotten.

226 CHAPTER 7 Advanced CI tools and recipes
consisting of compiling and packaging artifacts. Other developers would like
to run test coverage and other audits in their workspace, but they value fast
builds and fast feedback, and many builds aren’t quick enough. Audits (or
other similar advanced practices) can be run on the central build machine.

One solution is to configure Jenkins to inject specific Java properties into your build.
While running the build script, it detects which specific parameters are or are not
available if you start your build script on a developer’s desktop. Another solution is to
use one of the implicit parameters that Jenkins automatically injects into every build
(for instance, BUILD_NUMBER). In either case, you’ll need to use Maven profiles to han-
dle the different build behaviors.

 The next listing shows an example where we define a profile inside a parent POM.
Using Maven profiles enables you to create different configurations, depending on
where the script runs.

<profiles>
 <profile>
 <id>Jenkins</id>
 <activation>
 <property>
 <name>BUILD_NUMBER</name>
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

Each profile has a unique identifier and contains information specifying when it will
be activated. Many options for activating a profile are available, such as activating a
default profile on particular operating systems, or Java versions, or if properties are
set. In this case, we activate the profile B when the property BUILD_NUMBER is set. The
value of the property isn’t important in this example, only that it exists. Next, we con-
figure the Maven logic c by adding the Cobertura plug-in to the build phase. Many
areas of your POM can be customized with profiles.9

 Because <property file="${user.name}.properties"/> is a commonly seen pat-
tern, it could be useful to provide a properties file named Jenkins.properties. If

Listing 7.11 A Maven profile activated by Jenkins

9 For a comprehensive discussion, see the Maven “Introduction to Build Profiles” (http://maven.apache.org/
guides/introduction/introduction-to-profiles.html).

Activate
the profile

b

Customize
the script

c

227Building, auditing, and staging with Jenkins
Jenkins runs as user Jenkins, it will run without further intervention. In other cases,
you have to start your build script with -Duser.name=Jenkins, which is equal to set-
ting user.name=Jenkins somewhere in the properties, although you probably don’t
want to do this.

Jenkins allows you to pass arbitrary use data as a key/value pair to the build script. You
can evaluate this data to activate a Maven profile, for example by checking whether
the parameter (the key) is set and passed to the build script, or whether the key has a
specific value. Another use case for processing passed data is that you can process the
build number in the build script.

7.4.5 Injecting build numbers into applications

A developed and delivered application should have a visible version number. Often
different version numbers are used: a version number that is primarily used by
domain experts and users of the applications, and a version number that is used by
the development team. A shared version number improves communication between
the stakeholders (developers, testers, and users) by linking bug fixes and features to
delivered versions of the software.

Agile ALM encourages communication between stakeholders, so many Agile ALM
projects inject a technical version number into the applications. One commonly used
version number is the build number that is incremented by Jenkins because this build
number is unique for each build project.

 A typical setup to inject the build number into an application built with Maven
may look like this: In your Jenkins build project, you can configure parameters to be
passed to your build script. Parameters are key/value pairs, and in your build script
you can access the key and read the passed value. In this case, we’ll assign Jenkins’
implicit variable $BUILD_NUMBER to the key jenkins.build_number. An implicit vari-
able is not a user-defined variable, rather this variable has a specific meaning for

Advanced Maven pluginManagement

Besides adding a Maven plug-in to your build or reporting section, you can also use
Maven’s pluginManagement section. There, you can define and fully configure a plug-
in inside a parent POM for further flexible reuse. Once a plug-in has been defined and
configured in the pluginManagement section, child POMs can reference the plug-in
for usage without repeating the full configuration. This enables you to centrally provide
default plug-in settings so that child projects don’t have to repeat the configuration
settings again and again.

This feature allows you to configure project builds that inherit from the current one,
but this configures only those plug-ins that are referenced within the plugins element
in the children. The children have every right to override pluginManagement
definitions.

228 CHAPTER 7 Advanced CI tools and recipes
Jenkins: Jenkins replaces the variable with the concrete build number whenever the
build job runs. The resulting key/value pair looks like this:

jenkins.build_number=$BUILD_NUMBER

Jenkins triggers the project’s Maven build system. In the Maven POM, you can access
the parameter and further process it, as shown in the following listing.

<build>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>write-version-file</id>
 <phase>process-resources</phase>
 <configuration>
 <target>
 <echo file="${dist.version.ui.filename}"
 append="false">
 build_number=${jenkins.build_number}
 </echo>
 </target>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The Maven POM uses Maven’s Ant plug-in to call Ant’s echo task. The echo task writes
the build number to a file c. The name and the location of the file are parameter-
ized. This means that in the central parent POM (our master POM, not shown in this
example), we configured the variable as a Maven property so we can access the prop-
erty later where we want to use it (as we did at B).

 The remaining aspect of integrating the version number into the application is to
read the previously written version number file in the developed application, as you
can see in this listing.

public static String getVersionNumber() {
 Properties properties = new Properties();
 try {
 InputStream stream =
 MyClazz.class.getResourceAsStream("/version.txt");
 if (stream != null) {

Listing 7.12 A Maven profile activated by Jenkins

Listing 7.13 Reading the version file

Parameterized
filename

b

Jenkins’ build number,
written to filec

Access the file
via Java

b

229Building, auditing, and staging with Jenkins
 try {
 properties.load(stream);
 } finally {
 stream.close();
 }
 }
 } catch (IOException e) {
 ; //NOOPT
 }
 return properties.getProperty("build_number");
}

In the application, the file can be read B and the retrieved version number can be
put into a semantic context, such as by displaying it in the user interface. The conve-
nience method encapsulates the reading of the version number and has the version
number as its return value c.

 Now that we’ve discussed different approaches to integrating Jenkins with your
build system, we’ll talk about integrating Jenkins with the component repository, Arti-
factory.

7.4.6 Jenkins, Artifactory, staging, and atomic deployment of Maven artifacts

Integrating Jenkins with Artifactory has many appealing benefits. The most obvious
advantage is that your CI server should deploy artifacts to a component repository,
such as to Artifactory. But there are more advantages.

 By integrating those two tools, you profit from atomic deployments of build arti-
facts. Additionally, the integration better links built and deployed artifacts to build
jobs. Linking artifacts to builds enables Artifactory to semantically group binaries so
that you can operate commands on the semantic group of artifacts, instead of operat-
ing commands on single, loosely coupled artifacts. A common command that you’ll
want to apply on a group is staging the group of artifacts.

 But first, let’s start with setting up the integration of Jenkins with Artifactory.

INSTALLING AND CONFIGURING THE JENKINS/ARTIFACTORY BRIDGE

The Jenkins/Artifactory communication is done with Artifactory’s REST API, and the
Artifactory UI shows convenient views of this data as part of the Power Pack commer-
cial add-ons. To install and configure the integration with Jenkins, here is what you
need to do:10

1 Get Jenkins running.
2 Get Artifactory running (with the commercial Build Integration Jenkins add-on).
3 Install the Jenkins Artifactory plug-in (available through the Jenkins plug-in

manager).
4 In Jenkins, configure your Artifactory server and user credentials in the Jenkins

configuration panel.

10 For further information about the Jenkins/Artifactory integration, see the plug-in’s web page: https://
wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin.

Return the build
number

c

230 CHAPTER 7 Advanced CI tools and recipes
5 In your build job in Jenkins, configure your build section to run mvn clean
install. This will install the artifacts to a Jenkins repository, from which Jen-
kins deploys the artifacts to Artifactory.

6 In your build job in Jenkins, configure a postbuild action to deploy artifacts to
Artifactory (after the full build goes through successfully).

7 In your build job in Jenkins, in the Artifactory Configuration section, select the
Artifactory server, the target repositories for releases and snapshots, and check
boxes to deploy Maven artifacts and capture and publish build info (see figure
7.17). Jenkins offers a drop-down list for scanning all available repositories.
Double-check that you have the deployment permissions on the target reposi-
tory (in Artifactory) and that the credentials are set correctly (in Jenkins). The
Artifactory plug-in for Jenkins also includes a link on the Jenkins user interface
to redeploy artifacts to Artifactory at any time.

Figure 7.17 Configuring the integration of Jenkins with Artifactory. Jenkins resolves the central
settings that you’ve set on the Jenkins configuration page and suggests valid entries for Artifactory
server and target repositories. In this example, Jenkins will deploy artifacts to Artifactory after all single
Maven modules are built successfully. It will also capture build information and pass it to the Artifactory
server. Help texts are available on demand for all configuration settings (by clicking the question marks).

231Building, auditing, and staging with Jenkins
ATOMIC DEPLOYMENTS WITH JENKINS/ARTIFACTORY

Jenkins is a build server that can trigger Maven goals. If you configure Jenkins to deploy
a Maven multimodule build project, the deployment is executed on all POMs, includ-
ing parent and children.

 If one Maven module deployment fails due to a build error, this may leave the
build in an inconsistent state, with some artifacts being deployed into your compo-
nent repository and others not, as shown in figure 7.18.

 Using Artifactory, together with Jenkins, the deployment is done as one atomic
operation only at the end, after every single module has been processed successfully.

Figure 7.18 The default way of deploying Maven artifacts in a multimodule project: All single
Maven projects are deployed one by one. If the multimodule build fails, some artifacts are
deployed to the component repository, and others aren’t. The result is an inconsistent state.

Figure 7.19 Deploying Maven artifacts in a multimodule project, with Artifactory and
Jenkins: All single Maven projects are installed locally. If the complete multimodule
build succeeds, all artifacts are deployed to the component repository. In the case of
a build failure, no single module is deployed. This result is a consistent state.

232 CHAPTER 7 Advanced CI tools and recipes
This is a big step forward and solves the problem with Maven deploying each module
separately as part of the deploy phase, which can leave your repository with partial
deployments and inconsistent builds (see figure 7.19).

 Based on this atomic deployment feature, you can set up a sophisticated build system
to ensure high-quality and state-of-the-art releasing. For instance, one Jenkins job does
some essential tasks like compiling and packaging, and a second downstream job does
comprehensive testing. Only if all the tests pass are the artifacts published to Artifactory.

STAGING ARTIFACTS IN ARTIFACTORY

Another common requirement is identifying (and semantically grouping) artifacts
deployed to your component repository. The process of staging software involves pick-
ing artifacts and promoting them as a single unit. For staging, you must identify and
reference all artifacts built by a Jenkins build job. And identifying them isn’t
enough—you must change their locations (or their visibility) in one atomic step.
These are common challenges, and Jenkins, in conjunction with Artifactory, provides
a viable solution.

STAGING VERSUS PROMOTING IN ARTIFACTORY This book doesn’t distinguish
between the staging and promoting of artifacts. Both terms refer to moving
artifacts from one rung of the staging ladder to a higher rung. Artifactory
does distinguish between staging and promoting. Given a Maven-based build,
staging in Artifactory involves replacing the snapshot version numbers in the
sources of the modules to released version numbers before the released mod-
ules are built again and put into a different target repository. Promoting arti-
facts doesn’t change the sources; it moves (or copies) the artifacts to another
logical repository, without rebuilding.

Staging artifacts

Regardless of what scripts you use (such as Ant, Maven, or shell build scripts), you’ll
probably consider some kind of promotion build; there are just as many ways to im-
plement a staging build. In a staging build, you’ll specify all of the individual require-
ments for the environment that will be used to run the release.

Some general pieces of advice, already discussed in this book, apply to many projects:

■ All your sources should be put into a VCS.
■ Releasing means applying tags or labels to the baselined version (the release).
■ Promoting has the precondition of being able to access the results of former

builds again.

The artifacts that are built during releasing should be stored in such a way that you
can promote them, so you should store the generated artifacts (at least the artifacts
identified as being part of a release) in a component repository. This can be a VCS
(like Subversion), a tool like Artifactory, or the build archive where Jenkins stores its

233Building, auditing, and staging with Jenkins
In a nutshell, the principle is simple: Your CI server is the entity having the most com-
plete knowledge about the project. This information is captured during build time
and is sent to Artifactory upon deployment at the end of the build process (as a JSON
object). The information contains the produced modules, their published artifacts
and dependencies, and data about the build environment (server version, JVM ver-
sion, properties, and so on). Once you have all this information inside Artifactory, you
can do the following:

■ You can collect the data required to reproduce the build.
■ You can see the builds’ artifacts and dependencies.
■ You can see the builds each artifact belongs to.
■ You can get warnings when you try to delete artifacts used in builds.
■ You can export the whole set of artifacts or dependencies for a build as an

archive to deploy or reuse elsewhere.
■ You can operate on the whole set of artifacts or dependencies for a build as one

unit (promote, remove, and so on).
■ You can navigate to the build information in Jenkins and from the Jenkins build

page to the Artifactory build info.

In Artifactory you can click on the Builds panel. This will display all build projects
(corresponding to the name of the build job in Jenkins) that deployed artifacts to
Artifactory (see figure 7.20).

 You can select the build project of interest, and on the next page you’ll see a list of
all builds sorted by the Jenkins build number. For each build job item, you can now
use the context menu to jump directly to Jenkins (to the corresponding job detail
page) or you go into Artifactory’s build detail page.

(continued)

build results. Once this is done, promoting means pulling these stored artifacts and
putting them, by hand or by script, into another context (often deploying to another
environment, without rebuilding). A script can pick up the artifacts from your compo-
nent repository and deploy them accordingly.

This process can have many variations and can be supported by additional tools. One
example is using Artifactory’s features to stage artifacts, as discussed in this chapter.
Another option is using Jenkins’s build promotion plug-in. Once you install it, you can
configure your individual promotion as part of the build job description. Parts of this
description are the criteria for when a build is qualified to be promoted and what hap-
pens when it’s promoted. Concerning qualification criteria in Jenkins, you can manually
mark builds as being promoted or note whether any downstream jobs (for example,
running special tests) run successfully. Then the build is marked with a star in the
build job history. The promotion action triggered by Jenkins afterward could run a dif-
ferent script.

234 CHAPTER 7 Advanced CI tools and recipes
Artifactory’s build detail page provides many pieces of information about the build,
including general build information (for example, who performed the deployment
and when) and what the published modules are. In figure 7.21, two Maven modules
belonging to build #14 are listed: a JAR and the corresponding POM.

Figure 7.20 Artifactory’s Build Browser lists all builds for a specific build name (in this case,
Task-based). The build name corresponds with the name of the Jenkins job that produced the
builds. You can click on one specific build to get more information about it.

Figure 7.21 Artifactory shows published modules for all builds, including in which repositories
the artifacts are located (in the Repo Path column).

235Building, auditing, and staging with Jenkins
Clicking on an artifact in the Published Modules tab (see figure 7.21), opens the
repository browser showing that artifact (valid for build artifacts and their dependen-
cies). You can do this, too, by opening Artifactory’s repository browser (where you can
browse all repositories and their artifacts in their versions) and navigating to and
marking the artifact of interest.

 When you display an artifact in Artifactory’s repository browser, you can see which
build produced the artifact (the Produced By section in figure 7.22), with the build
name and build number referencing the information from Jenkins. Artifactory also
lists artifacts built using this artifact (the Used By section in figure 7.22). In this case,
another Jenkins build job named Multi project references the artifact.

 Promoting all artifacts belonging to a specific build is easy. Jenkins injects the two
parameters (or properties) into Artifactory: build.name and build.number. You
already learned in chapter 5 how to proceed from here. You perform a property
search to find all artifacts belonging to this build, and save the search. Alternatively,
you can save the search in the General Build Info tab in the Builds browser. Finally,
you perform a bulk operation (such as copying artifacts to a special staging reposi-
tory), as shown in chapter 5.

Figure 7.22 Artifactory shows the producers and consumers of artifacts built by Jenkins.

236 CHAPTER 7 Advanced CI tools and recipes
You now have traceable information about all jobs that deployed artifacts. This is
good, because you know now how each artifact ended up being in Artifactory, who put
it there, and when. You have information about the job created, and you know what
else was published by each job. This is a great deal more information than you have in
the traditional Maven approach.

STAGING/PROMOTING ARTIFACTS IN JENKINS

Using the Jenkins/Artifactory integration, it’s possible to trigger both stagings and
promotions out of Jenkins conveniently.11

 To use this integration feature, you need to activate it in the respective Jenkins
build job and do some simple configuration, as shown in figure 7.23. You need to first
enable the release management feature by clicking the check box, and then configure
a VCS tag base URL. You don’t need to configure any VCS credentials, because the Jen-
kins/Artifactory integration will take the settings that you’ve already configured in the
dedicated VCS configuration section of Jenkins. Optionally, you can force Jenkins to

Injecting arbitrary properties into Artifactory

You can submit arbitrary properties from Jenkins to Artifactory through your Maven
build. Your POM’s deployment sections are ignored when you deploy via Jenkins, so
you must specify the properties in the Jenkins Artifactory plug-in, configuring the target
Artifactory server.

As of this writing, this approach is less than completely reliable. A workaround is to
edit the config.xml file (in .Jenkins/jobs/jobName/config.xml) of your Jenkins job to
extend the repositoryKey by the property in the publisher’s section:

<repositoryKey>path;myProperty=${myProperty}</repositoryKey>

In Jenkins, you must reload the configuration from disk afterward.

11 You’ll need the commercial Artifactory Pro in order to use all the features.

Figure 7.23 Configuring the Jenkins build job to use the Jenkins/Artifactory release
management functionality. The VCS base URL for this Jenkins build job must be specified.
Among other options, you can force Jenkins to resolve all artifacts from Artifactory during builds.

237Building, auditing, and staging with Jenkins
resolve all artifacts from Artifactory, which can further improve the quality of your
builds, because you ensure that all artifacts (such as compile dependencies) are
pulled from Artifactory, not from any other location. As a result, this quality gate over-
writes any other settings developers may use in their individual workspaces.

 For Maven projects, the Jenkins/Artifactory combination performs the following
steps to stage a project:

1 Change the POM version from snapshot to release (this also applies to multi-
module builds).

2 Trigger the Maven build.
3 Commit the changed sources to VCS. This will trigger a new build in Jenkins,

the release build, which will deploy the released modules to Artifactory.
4 Change the POM version to the next development version (which is again a

snapshot version).
5 Commit the changes to VCS. This will trigger a new build in Jenkins, the next

development build, which will deploy the new snapshot versions to Artifactory.

After activating and configuring the release management facility, an Artifactory
release management staging link appears in the left panel of your Jenkins build job
page. Clicking the link opens a new page in Jenkins to configure and trigger the stag-
ing process, as shown in figure 7.24. To stage the artifacts that were produced by a past

Figure 7.24 Staging the artifacts that were produced by a past Jenkins build. Before
starting the staging process, you must configure versions and a target repository.

238 CHAPTER 7 Advanced CI tools and recipes
Jenkins build, specify the last built version that will be the base for staging, configure
the new versions for your Maven modules, and optionally create a tag in VCS. Finally,
configure the target repository where you want to stage the release to. The target
repository is a logical repository inside Artifactory. Clicking the Build and Release to
Artifactory button starts the staging process.

 Staging is wrapped as Jenkins builds, so you can open the Jenkins console for these
builds and read the output of these job interactively and after the fact. In Jenkins, a
successful release build is marked with a special icon beside the job in the job history.

 After the staging is done and a release build has been finished successfully, you can
promote the build. Promoting the build means that the build is moved (or copied,
depending on how you configure the staging process) to another logical repository in
Artifactory, without rebuilding (see figure 7.25).

 Promoting built artifacts from inside Jenkins is a convenient way to put artifacts
into a different repository location while still gaining from traceability. As part of this
traceability, the Build Browser (see figure 7.20) is updated to show staged or released
as the release status of Jenkins builds that were deployed as artifacts to Artifactory.
Additional information can be found in the Release History tab of Artifactory’s build
detail page (see figure 7.21).

 Jenkins, Artifactory, and Maven provide considerable functionality. Another
approach is to use Git and the git-svn bridge for feature branch–driven CI.

7.5 Using Git and git-svn bridge for feature branch–driven CI

—This section contributed by René Gielen

The mainline of a feature development phase—also called trunk or head if the devel-
opment isn’t taking place on a branch of the source code—is the unique line of

Figure 7.25 Promoting a
build from inside Jenkins
requires selecting a
target promotion
repository. You can
configure it to include
dependencies and specify
whether you want to copy
the artifacts in Artifactory
or move them.

239Using Git and git-svn bridge for feature branch–driven CI
development in the VCS. The mainline often also contains the latest revisions of the
software’s features.

USING BOTH SUBVERSION AND GIT The git-svn bridge is often used to enable
the use of both the Git and Subversion VCSs in parallel. This can be a good
approach if you want to softly migrate from one tool to the other, or if your
organizational structure requires you to use one tool for managing source
code centrally (for instance, Subversion) but where developers have the free-
dom to use other tools in addition (such as Git).

In almost every case, a central CI job is set up to be triggered by check-ins to the main-
line. Developers work on the mainline; they check out code, change code, and com-
mit changes. They are notified by the central CI job about the results of their and their
colleagues’ commits. Figure 7.26 illustrates the standard workflow (without feature
branching).

 This is a good approach, because you always want to ensure that the mainline inte-
grates properly, unless you’re willing to sacrifice the benefit of having a continuous
line of release candidates. Nevertheless, a number of problems might arise when the
mainline CI is the only build and test automation is taking place:

■ Although a feature that a developer is currently working on might be far from
complete and still subject to heavy changes and refactoring, their solution steps
related to commits will continuously be integrated against other developers’
work. There’s a good chance that more integration problems will have to be
resolved, as compared to an approach where the developer’s work wouldn’t
have to be integrated against the team’s work until their feature is completed.

Figure 7.26 Mainline CI
without feature branching

240 CHAPTER 7 Advanced CI tools and recipes
■ If the team embraces the “commit early, commit often” policy, the triggered CI
builds will often include changes from more than a single commit, given the
common case where the next build job isn’t allowed to fire unless the previous
CI job is completed. Therefore, the features of the various change-sets that are
committed, while the previous build blocks the following CI’s turn, might bleed
into each other. If a build fails, each developer who committed during the pre-
vious build will be notified by the CI system as potentially having caused the
problem. Even though only one or two of them would be to blame, each of
these developers—maybe most of the team, for complex and long-running CI
cycles—will have to interrupt their work to check whether they’re at fault for
the broken build. This approach will often require updating and merging the
local working copy of the code with the code in the VCS mainline, and this loss
of focus might decrease the team’s productivity.

■ Forcing the CI system to fork build jobs unconditionally on any commit doesn’t
solve the previous problem either. It will make it harder to investigate the last
successful build and determine whether it has been completed, and it will be
harder to determine the appropriate cumulated change-set that’s the target for
investigation to find the problem and create a solution. In addition, if Devel-
oper A is to blame (or partly to blame) for an integration problem, which a later
commit of Developer B reveals by breaking a CI build, then Developer B—as the
only team member being notified—has to investigate the full problem and the
cumulated change-set in doubt. This may potentially result in them having to
notify developer A to check whether their commit may have broken the build.
This process foils the idea of automatic detection of problematic change-sets
and automatic and well-targeted developer notification.

■ Unless the developers in charge of fixing a broken CI have succeeded, the CI sys-
tem will be useless to the rest of the team because their commits will always result
in broken builds due to previous errors. Meanwhile, the change-sets that need to
be investigated for a possible consecutive CI break might pile up significantly.

■ Being blamed for breaking the team’s CI is something a developer will try to
avoid, particularly when their commit causes the project build to break; this
means that each team member fetching their changes won’t be able to build
the project locally until the fix is applied. Consequently, developers might be
tempted to double-check that their upcoming commits won’t break the build,
resulting in a process of updating and merging the local repository with the lat-
est mainline revision followed by issuing a full project build. Doing this immedi-
ately wipes out the advantage of shortened turnaround cycles by shifting long-
running tasks to the build server.

■ A common side effect of the team dealing with the previously described prob-
lems is that the individual developer will tend to pile up their work results and
not commit to the VCS until they regard the feature they are focusing on as
being completed. This clearly violates the “commit early, commit often” policy,

241Using Git and git-svn bridge for feature branch–driven CI
leading to implications such as change-sets that are huge, poorly documented,
and lacking safe rollback points during the feature development process.

This is an impressive list of possible problems. Teams need to see positive results in the
form of improved build processes or enhanced productivity in order to maintain the
acceptance and support for implementing improved practices such as CI. Without vis-
ible results, support for CI will drop dramatically over time.

7.5.1 Feature branching comes to the rescue

The concept of feature branching addresses most of the problems previously men-
tioned. The idea is pretty simple: Each developer is given an isolated branch in the
VCS to use for their changes for as long as is necessary to implement a specific feature.
Reaching this milestone, they would then merge the cumulated changes on their fea-
ture branch back to the project’s VCS mainline, which will then trigger the mainline
CI job to check for proper integration.

In an environment that uses Subversion as the VCS, which I have found to be com-
mon, the process would be similar to the following. First the developer starts work on
a feature by creating a feature branch. They then switch their working copy to that
branch:

> svn copy http://svn.myorg/ourproject/trunk \
 http://svn.myorg/ourproject/branches/myfeature \
 -m "Starting work on feature myfeature"
> cd checkout/ourproject
> svn switch http://svn.myorg/ourproject/branches/myfeature .

The developer starts working on the feature, issuing commits early and often. When
finished, they reintegrate their work back to the trunk:

> svn switch -r HEAD http://svn.myorg/ourproject/trunk .
> svn merge --reintegrate \

Feature branching and CI

Some people claim that feature branching strictly conflicts with CI, because CI sug-
gests that you should focus on a single VCS mainline (the head) and you shouldn’t
branch in VCS (or at least should minimize branching). Too many branches can lead
to delays in the development flow, big merging efforts, and overall communication frag-
menting; having a single code line in the VCS means that you have a central, single
synchronization point.

Depending on your specific requirements, feature branches can be the best approach
for a given problem. If your task is to migrate major parts of the software to another
solution, Martin Fowler suggests applying an approach named branch by abstraction
instead of feature branching. See his “Feature Branch” discussion at http://
martinfowler.com/bliki/FeatureBranch.html.

242 CHAPTER 7 Advanced CI tools and recipes
 http://svn.myorg/ourproject/branches/myfeature
> svn commit -m “Merged myfeature into trunk”

Although working with Subversion for feature branching is possible nowadays, it
hasn’t always been ideal. The reintegration of the full commit history when merging a
branch into the mainline wasn’t available before Subversion 1.5, and support for man-
aging conflicting merges is historically not considered a forte of Subversion.

 Here’s where one would argue that this is a perfect use case for a distributed
VCS, such as Git. In contrast to a server-based VCS such as Subversion, the concept of
a local working copy is replaced by forking a central master repository as a fully fea-
tured local repository on which changes will be done directly. Commits always affect
only the local repository. To reintegrate the changes, the Git user pushes a chosen
change-set, which consists of various commits and their commit messages, back to the
master repository.

 The developer starts their work by cloning the master repository locally:

> git clone git://git.myorg/ourproject .

The developer starts working on the feature, issuing commits early and often. When
finished, they reintegrate their work back to the master repository:

> git push

Given that this is the native and recommended way to work with Git, it should be used
as a solution for establishing a feature branch–driven process, because Git has a good
reputation for automatic conflict resolution—even in the case of complicated conflict-
ing changes.

 Regardless of whether the team decides to use Subversion or Git for a feature-
branching process, in both cases, the CI setup can be configured to define additional
build jobs for each feature branch. An ongoing discussion is occurring about whether
these jobs should be called continuous building instead of continuous integration, which
reflects the conviction that “real” integration checks can happen only against the
mainline.12 In my opinion, running feature-branch build jobs with a CI server can still
be considered CI, because in such a setup, the change-sets of an individual developer
are continuously integrated against a frozen state of the overall project, given that the
feature-build job will incorporate automatic testing and validation. Combined with
mainline CI, it might be seen as a staged CI. Figure 7.27 illustrates this setup.

 The advantages of this approach are quite obvious:

■ The problem of having the integration of unstable code happen too early, caus-
ing more integration problems than necessary, is addressed by a process in
which only complete features are integrated back into the mainline.

■ A commit-triggered feature-branch CI build will always cover minimal change-
sets by having only the one developer working on that branch, making it easy to
focus notifications and investigate problems in the case of breaking integration.

12 See Martin Fowler on feature branching at http://martinfowler.com/bliki/FeatureBranch.html.

243Using Git and git-svn bridge for feature branch–driven CI
■ Breaking feature-branch CI won’t affect any other team members, even if the
project build breaks. The developer won’t be blamed for holding up the team,
and they can be truly confident in delegating full project builds and testing to
the build server without causing harm. The individual developer can take full
advantage of partial build and isolated testing features in their development
environment and increase productivity and focus.

■ The “commit early, commit often” policy won’t negatively impact team produc-
tivity and developer reputation as described earlier, highly motivating the indi-
vidual team member to embrace this policy.

■ A well-organized feature-branching setup allows for cherry-picking features in
the deliverable product.

■ Build server job setups can easily be extended to do automatic deployments to,
say, a testing environment, after successfully accomplished CI builds. This
enables the developer to manually test the outcome without having to wait for a
local build and deployment.

7.5.2 The Lone Ranger problem and how the git-svn bridge can fix it

Having a convincing concept isn’t enough—it has to stand up to a reality check. If you
try to move to a feature branch–driven process that includes CI, you might encounter
some unexpected obstacles.

Figure 7.27 Feature-branching CI

244 CHAPTER 7 Advanced CI tools and recipes
 Let’s imagine a senior developer with a rather progressive mindset, maybe even a
contractor working on a rather traditional company’s project as part of the team. Let’s
call him the Lone Ranger, fighting for a better world where software craftsmanship is
regarded highly. He wants to take advantage of the described benefits but suddenly
must face one or more of the following problems:

■ The company refuses to provide a CI infrastructure. Whether this is reasonable
or not, the contractor has to accept it as a political decision.

■ The company, the infrastructure team, or the development team refuses to
establish a Subversion branching policy, maybe because they fear the increased
complexity of the VCS setup and handling.

■ Switching to Git isn’t an option. Maybe the infrastructure team doesn’t have the
knowledge or resources to set up a suitable Git infrastructure, or maybe the
company recently switched from CVS to Subversion and refuses to reverse this
decision, preferring to switch to a better product when it comes along. Maybe
the Lone Ranger was the one who convinced them to switch to Subversion, and
his reputation would be damaged if he now suggested switching to yet another
product so soon after making his initial recommendation.

■ The provided CI infrastructure isn’t able to deal with the increased load of
many parallel builds when defining jobs per feature branch in addition to the
mainline CI.

It seems like there’s no chance for a happy ending. But the Lone Ranger always has to
win in the end, doesn’t he? Let’s see if we can manage to help him with that.

 Both main problems—the lack of a CI infrastructure and the lack of a suitable VCS
setup—can be addressed. Today’s software development workstations are, in most
cases, comparable to small servers, with multicore CPUs and a good amount of main
memory. Such a workstation is astonishingly well suited to run a background CI build
server, IDE, and whatever else a developer needs. In addition, the developer having a
CI system in the background can ditch the time and resource-consuming full project
foreground builds for the sake of partial builds and isolated tests. Setting up a local
build server for CI takes only minutes using free products such as Jenkins or TeamCity.
We would have to configure a proper build job. Doing so requires a repository we can
watch for commit triggering and checking the working copy of the CI build.

 Here is where the git-svn bridge comes in handy. The bridge makes it possible to
work with a local Git repository as if it were in a full Git-based working environment.
The only change is that the role of the master repository is assigned to the conven-
tional central Subversion repository. The git-svn bridge translates (transparently) most
of the Git push and pull operations to the Subversion repository instead of to a Git
master repository.

 Let’s see how it works: Initialize a local Git repository to act as a Subversion reposi-
tory clone, assuming that the repository has a standard layout as recommended by
Subversion:

245Using Git and git-svn bridge for feature branch–driven CI
> git svn init -s
http://svn.myorg/ourproject/http://svn.myorg/ourproject/trunk

Fetch the Subversion change history into the local Git repository:

> git svn fetch

For Subversion repositories containing a rather small amount of changes, this will
work quickly. For larger repositories, you would want to delimit the number of histori-
cal changes to fetch, which can be accomplished with the poorly documented but
functional --log-window-size option:

> git svn fetch --log-window-size 1000

Configure the local CI job to watch and check out from the local Git repository. Start
working on the feature in focus, issuing commits early and often:

> git commit -a \
-m "Refactored foo to separate interface and implementation"

When the feature is completed, push the changes to the central Subversion reposi-
tory:

> git svn dcommit

Pull the latest changes from the Subversion repository to start working on the next
feature:

> git svn rebase

Although the cleanroom process doesn’t recommend fetching changes from the cen-
tral repository during a local, uncompleted feature development cycle, you might nev-
ertheless face the real-world requirement to do so. Because Git doesn’t let you rebase
the local repository if it has local-only changes in place, you’ll have to decide how to
move those changes out of the way. Obviously, you could push the local changes to the
master repository, but the developer wouldn’t want to do so unless they consider their
feature to be completed. To perform a probably more desirable local merge similar to
the behavior of svn update instead, you would utilize the stashing feature of Git as
follows:

1 Move your local commits to a safe hidden place to prepare for pulling changes
from the central repository:

2 > git stash

3 Fetch the changes from Subversion into your local Git repository:
> git svn rebase

4 Apply the hidden local changes by merging them back to your local repository,
which now represents the updated state from Subversion:

> git stash pop

With this in place, the happy ending for the Lone Ranger’s mission is within reach.

246 CHAPTER 7 Advanced CI tools and recipes
 This was a focused introduction to a set of Git’s features, enabling you to deal with
a specific use case without diving too deeply into a complex tool and its implied work-
flows. Whenever the word branch is used in conjunction with Git, most users with Git
experience will have Git’s extremely powerful native branching and merging features
in mind, which is intentionally not used in the workflow that this section describes.
Nevertheless, if a developer is new to Git and starts to embrace it, we recommend that
they learn about Git’s branching and other advanced features.

7.6 Summary
In this chapter, we discussed CI, tooling, and strategies. You learned how to integrate
all artifact types even with legacy technologies such as Cobol. You saw how an
approach using a platform or language, such as Java, can be used to drive and manage
the build of other languages or platforms. Where available, you can follow the second
approach: use what exists for this platform and integrate the native build scripts with
common build servers.

 We discussed using .NET without all of the associated Microsoft tools. Although it’s
a proprietary platform, .NET can be handled with common tools. You don’t have to use
a complete proprietary toolchain; you can use lightweight tools (such as Subversion)
to store your artifacts and to manage your builds. In one case, we dropped an Ant
script into a CI server. In a second case, we dropped the MSBuild script into TeamCity.

 We also discussed advanced configuration and staging recipes. One strategy
involved building applications for different environments, and you saw that you should
build your artifacts once and promote them to higher environments by plain configu-
ration without rebuilding. It’s also possible to use handmade scripts to scan your data-
driven application configurations and automatically replace context-sensitive data, or
to use standard approaches like Java properties. But these strategies have limits and
aren’t always the most efficient. In the other strategy, you learned how to use Maven to
generate builds that run on multiple environments.

 Two major CI servers, Jenkins and TeamCity, were part of our discussion. In gen-
eral, both tools are similar. With Jenkins, you saw how to build, audit, and stage your
Maven-based software. Here, the bridge to Artifactory was of special interest. TeamCity
can also manage build scripts in a sophisticated way. We briefly prototyped how to
drop .NET builds into a CI server and visualized how a build farm and an EC2 profile
are connected.

 We also talked about using feature branches with Git and Subversion. With this
approach, you can use Subversion for version control and can also profit (or softly
migrate) by using Git for feature branches.

 In the next chapter, I’ll describe strategies and tools for collaborative and barrier-
free development and testing. Starting with a data-driven approach, we’ll prototype
acceptance tests and move on to behavior-driven development.

Part 4

Outside-in and
barrier-free development

This last part of the book is about outside-in development. It discusses col-
laborative development and shows approaches to integrating different lan-
guages and tools for barrier-free development and testing.

 Chapter 8 discusses Agile ALM approaches to requirements and test manage-
ment. Here you’ll learn collaborative approaches to development and testing.
We’ll discuss data-driven tests, acceptance tests, and behavior-driven develop-
ment, and we’ll go through example use cases with lightweight toolchains.

 Chapter 9 continues to discuss barrier-free development. This chapter deals
with polyglot platforms and covers Groovy and BDD with Scala/specs2. By the end
of this part of the book, we’ll have completed our thorough tour of Agile ALM.

Requirements and test
management
In this chapter, we’ll discuss how to implement collaborative and barrier-free devel-
opment. We’ve already discussed tools that support release management, connect-
ing the roles and artifacts in a task-based way. We also looked at how you can
integrate the software delivery step into this process chain by integrating Mylyn
with build engines. But build engines such as Jenkins, Bamboo, and TeamCity are
only the infrastructure—they call your scripts, compile and test your application,
and then package and deploy it. These steps don’t say anything about the quality of
the software in terms of how (and if) it implements customers’ requirements.

This chapter covers
■ Data-driven tests, acceptance tests, and BDD
■ Approaches to integrating different languages

and tools for barrier-free development
■ Examples based on Ant, Maven, Selenium,

TestNG, FEST, Fit/FitNesse, GivWenZen,
XStream, and Excel
249

250 CHAPTER 8 Requirements and test management
 In this chapter, we’ll focus on the requirements and test management, and on inte-
grating them with the coding phase.1 Solid requirements management is essential for
project success. “Studies of factors on challenged projects revealed that 37% of factors
related to problems with requirements,” such as poor user inputs.2 As you have
already learned, the development phases are highly integrated. Requirements man-
agement, development, and delivery are all part of the development lifecycle.

 The integrated Agile ALM approach focuses on the customer’s needs. In chapter 1
(section 1.3.4) we discussed what outside-in development comprises and that it’s an
essential part of Agile ALM to archive exactly that: a focus on satisfying the needs of
the customer.3 In this chapter, we’ll discuss outside-in development in more detail,
and I’ll explain how to host it using integrated toolchains. We’ll look at some use cases
in the context of acceptance tests and behavior-driven development, and we’ll focus
on satisfying the needs of stakeholders. We’ll start with a data-driven approach, con-
tinue with acceptance testing, and finish with behavior-driven development.

 Integrated toolchains are recommended, and we’ll introduce them with the help
of some example use cases. The seamless characteristic of seamlessly integrated tool-
chains and programming languages is what I call barrier-free because you don’t need
to be concerned that there are different programming languages, different project
roles, or different test types. (In chapter 9 we’ll discuss polyglot programming—the
aspect of the barrier-free approach that focuses on programming languages—in more
detail.) All stakeholders use the same infrastructure and frameworks for the entire
development process. As discussed in chapter 1, the Agile ALM approach provides a
single view of the truth—a single view of the project, its processes, data, and status—as
opposed to multiple and confusing versions, such as when you have organizational or
technical silos across your project. The project infrastructure is collaborative because
different project roles work together while writing and managing tests. Running col-
laborative tests frequently, as part of your continuous integration ecosystem, leads to
early feedback and a living software documentation

 Because I don’t like to read overly academic stuff myself, I won’t inflict it on you.
This chapter focuses on specific and applied use cases. You may develop SWT applica-
tions rather than Swing applications, or you may prefer a specific tool in the discussed
toolchains to another, but the strategies are the same. In this section, you’ll gain fur-
ther insight into what Agile ALM is and what it means to develop in an outside-in and
barrier-free way.4

1 Many people think that coding and testing aren’t two distinct phases; rather, they belong to one project phase
called “development.”

2 See Craig Larman, Applying UML and Patterns (Prentice Hall, 2002), pg. 42.
3 For more information on outside-in, I recommend Carl Kessler and John Sweitzer, Outside-in Software Develop-

ment (IBM Press, 2007).
4 For more details on Agile requirements and test management, I recommend Lisa Crispin and Janet Gregory,

Agile Testing (Addison-Wesley, 2009), and Dean Leffingwell, Agile Software Requirements (Addison-Wesley, 2011).

251Collaborative tests
8.1 Collaborative tests
Software should be developed in a collaborative way. All roles, particularly developers,
testers, and domain experts, should work closely to create the best software possible. But
the barrier-free approach can also be supported by collaborative processes and tools.

 Essential aspects of writing tests collaboratively include writing good acceptance
tests, using the language of the domain expert, keeping the tests in an executable
form, and considering behavior-driven development (BDD). Acceptance tests define
the expectations of the customer (the person with the money) or the user (the person
who is affected by or affects the product), or both. Writing acceptance tests in a ubiq-
uitous language and in an executable way fosters outside-in development, further
improves collaboration, and leads to better and more meaningful feedback loops.
BDD is another way to apply outside-in development.

 In 2003, Brian Marick defined an Agile testing matrix that was further refined by Lisa
Crispin.5 The matrix distinguishes between business-facing tests and technology-facing
tests (see figure 8.1). A business-facing test is one that’s understandable by a domain
expert, whereas a technology-facing test is one written by and for developers only. Addi-
tionally, the matrix groups tests that support the team and tests that critique the product.

 Supportive tests directly help during the process of developing the software,
whereas tests that critique the product are after-the-fact tests that validate the
completed product (or a reasonable increment of it) in order to find defects. The
matrix in figure 8.1 consists of four quadrants, Q1–Q4.

5 Brian Marick’s original blog post, from August 21, 2003, can be found here: http://www.exampler.com/
old-blog/2003/08/21/. Lisa Crispin’s refinements can be found in her book, Agile Testing (Addison Wesley,
2009), pg. 98.

Acceptance tests
Behavior-driven

development

Business-facing

Technology-facing

Su
pp

or
t

th
e

te
am

Cri�
que the product

Exploratory tests
Usability tests

Acceptance tests

Unit tests
Component tests

Test-driven/
Behavior-driven

development

Performance tests
Load tests

Security tests

Automated
and manual

Manual

Automated
Automated

Outside-in
barrier-free

collabora�veQ1

Q2 Q3

Q4

Figure 8.1 A test matrix (a skeletal
based on Lisa Crispin’s version of Brian
Marick’s diagram) that arranges
acceptance tests and BDD in
quadrants. Tests can be divided into
business-facing and technology-facing
as well as those that support the team
and those that critique the product.

http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/

252 CHAPTER 8 Requirements and test management
 The lower-left quadrant (Q1) represents technical tests (often provided with the
help of tools from the xUnit family). This quadrant commonly includes unit tests and
component tests, where a component is more coarse-grained than a unit is and often
spans different artifacts or architectural layers. These tests help to improve the design
of the code and improve the internal quality of the software. These white box tests
address how a specific task is solved.

 Another aspect that relates to Q1 is test-driven development (TDD).6 TDD is a
widely accepted concept that includes writing tests first and refactoring the code con-
tinuously. The goal is to focus on the specific task, while eliminating waste, improving
the design of the code, and setting up and maintaining adequate test coverage. In his
book Clean Code, A Handbook of Agile Software Craftsmanship, Robert C. Martin lists
“Three Laws of Test-Driven Development”:

■ You may not write production code until you have written a failing unit test.
■ You may not write more of a unit test than is sufficient to fail, and not compiling

is failing.
■ You may not write more production code than is sufficient to pass the currently

failing test.

BDD often touches Q1 too. Within the context of Q1, BDD is similar to TDD, but with
more focus on specifications that lead to low-level specifications for the code.

 The tests in Q2 are often highly automated as well, but they drive the development
at a higher, functional level and target the external quality of the software. There, tests
define functional requirements and run as black box tests. They address the question of
what the specific task is. “Design itself is the process of converting a black box to a
white (or transparent) box—one in which we can clearly see all the details of how.”7

This quadrant includes acceptance tests and BDD.
 Acceptance tests are also used in Q3 after the software is developed (development

milestones can be provided frequently). These manual tests address aspects that are
hard to automate, such as usability.

 Finally, Q4 includes tests that critique the product on a technical level. This area
often addresses nonfunctional requirements.

 Acceptance tests are business-facing tests. They represent functional requirements
for software that’s under construction (coordinating what’s developed) or already
completed, ensuring that changes don’t break existing functionality. Tests that vali-
date that changes don’t break existing functionality are often called regression tests.

 Acceptance tests should be executed automatically in order to reduce the cycle time
and to deliver objective results. The technique of BDD, which we’ll look at a bit later,
also supports the team while developing the software. Acceptance tests and BDD foster
outside-in, barrier-free, and collaborative development. Implemented and integrated

6 See Kent Beck, Test-Driven Development (Addison-Wesley, 2002) and Lasse Koskela, Test Driven (Manning,
2008).

7 Donald C. Gause and Gerald M. Weinberg, Exploring Requirements, Quality before Design (Dorset House, 1989),
pg. 249.

253Collaborative tests
with the right tools, these strategies are powerful vehicles for requirements and test
management. By integrating different quadrants of the matrix with each other, all the
different test categories can be run in conjunction with one step, and the results can be
aggregated.

 Let’s start by looking at the basics of writing good data-driven tests. Data-driven
tests are the prerequisite for any further advanced strategy.

8.1.1 Data-driven tests

An important aspect of testing is how you generate and manage the physical test data.
Data-driven testing means testing with test data that’s decoupled from the test scripts.
You write data-driven tests before (or while) developing the application. Using data-
driven testing only for after-the-fact functional testing is often considered an antipattern.

 There are many advantages to separating the data from the tests, including the
following:8

■ It makes test data easy to edit.
■ It makes adding new test cases easier.
■ It helps reduce failures caused by invalid data.

The data-driven testing approach focuses on the separation of concerns instead of
the hardcoded data, and it allows you to change data easily. You can distinguish
between input data and output data; in an approach that’s fully data-driven, both
types of data should be excluded from the code. Therefore, both types of data can be
managed without touching the test classes. Where you need to reference the data in
test classes, solutions must support variables inside these test classes and generate veri-
fications dynamically. Examples of mediums for input and output data are flat files,
HTML files, and Excel documents.

 For user interface (UI) testing, you can use a capture and replay (CR) tool to collect
input data (and user interactions) for test input. CR tools for UI testing can add value,
but you shouldn’t rely on them solely. Captured and saved interactions result in scripts
that are like source code: You must maintain these tests scripts, refactor them, and opti-
mize them. This optimization includes isolating tests after recording them, and making
them robust for future changes. For example, you should identify UI controls relatively,
not by an absolute position that directly depends on other controls. Software changes,
and input scripts must be flexible enough to evolve along with the software.

 Depending on the context, having a small set of automatic UI tests can be a good
start. You could use a small set of automatic UI tests as a sanity check that runs after
every build or as a first quality gate in a staged build environment. Many projects use
several UI tests, and they find it helpful; some even automate all their acceptance tests
as UI tests. But testing via the UI is often slow and brittle. Not everything should be
tested via the UI; only a subset of all existing tests of different test types should be. You
should always take care to slice your tests adequately. For example, if you must start a

8 See Thomas Hammell, Test-Driven Development (Apress, 2005), pg. 169.

254 CHAPTER 8 Requirements and test management
UI test in order to test a database operation or business logic, something can be
improved for sure.

 Collecting and using data for tests has been a common practice for quite some
time now. But what differentiates good tests from simple data-driven tests? The answer
is that good tests should be acceptance tests, which is what we’ll discuss next.

8.1.2 Acceptance tests

Acceptance tests determine whether a system satisfies its specified acceptance criteria.
This helps the customer to decide whether to accept the software: “Acceptance tests
allow the customer to know when the system works and tell the programmers what
needs to be done.”9 This means that acceptance tests also tell the programmers what
the customer doesn’t want them to do.

 Using acceptance tests to determine what has to be delivered to the customer is
sometimes called acceptance test-driven development (ATDD). The name suggests an anal-
ogy to traditional TDD, but the latter is more focused on improving the design of the
software and delivering the right thing correctly, whereas ATDD has the goal of ensur-
ing that the right thing is delivered and that it’s delivered when it’s supposed to be
delivered. The goals and concepts of these two approaches are similar though.

 Compared to a subjective “look and approve” approach, acceptance criteria is
measurable and objective. In the worst-case scenario, the acceptance criteria aren’t
known, or the approval is done by the client in a capricious way.

 Setting up acceptance criteria the Agile way means that the specification is neither
calculated precisely (in a mathematical sense) nor complete. Rather, the criteria con-
sist of example interactions. That’s why this approach is often referred to as specifica-
tion by example.10 The general process is compatible with traditional requirements
management, where you write use cases (or user stories) that also contain scenarios.

 Acceptance tests can be used on different specification levels, from coarse-grained
to fine-grained, starting with tests for features and stories or scenarios up to tests for
tasks. Because each acceptance test examines functionality, they’re functional tests.

 Acceptance tests are another example of focusing on meeting the stakeholder’s
requirements as advocated by the outside-in approach. You can introduce critical
requirements into the test, distinguishing between must-have features and other less
important ones. Acceptance tests assess whether the application is doing the right
thing; they approach the project from the macro level. Unit tests (or component tests,
depending on how you slice them) technically assess the classes and modules; they
focus on the micro level. Unit tests validate whether the right thing (according to the
acceptance criteria) is done correctly. Acceptance and unit tests should be used in
conjunction with each other.

9 See Ron Jeffries, Ann Anderson, and Chet Hendrickson, Extreme Programming Installed (Addison-Wesley,
2001), pg. 31.

10 Gojko Adzic, Specification by Example (Manning, 2011).

255Collaborative tests
 Although it’s strongly recommended that you write acceptance tests before (or
while) developing the application, acceptance tests can also be created after the appli-
cation is written in special cases—for instance, in a migration scenario accessing leg-
acy code. Acceptance criteria should be specified before starting the acceptance
routine that’s approving the software.

 Although you use an incremental and iterative development process, you must
know the goal that you’re trying to achieve. If your work isn’t defined by concrete
requirements, you won’t be effective. Whether you do it the Agile way or not, clear
requirements are essential for achieving measurable and objective success. In the best
case, the requirements can be executed and validated automatically, for instance,
through triggering by the CI system (like those shown in this chapter). They’re part of
the release and are put into the VCS along with the other coding artifacts.

 Let’s now discuss the importance of ubiquitous language in testing.

8.1.3 Ubiquitous language

Who can describe the customer’s expectations better than the customers can? The
domain expert has the deepest domain knowledge. This is the approach taken in the
book Domain-Driven Design, where Eric Evans defines ubiquitous language as being
“structured around the domain model and used by all team members to connect all
the activities of the team with software.”11 This ubiquitous language breaks down bar-
riers between different roles and organizational units. Where other approaches use
different vehicles for stakeholder communication (such as the software architec-
ture12), writing acceptance tests in an ubiquitous language is a common Agile practice
for stakeholder communication and asking the right questions while moving from the
problem domain to the solution domain.

 A ubiquitous language keeps you aligned with business values and goals. Informa-
tion technology is a means to the end of achieving those business goals, so you don’t
align the communication with the technical language of developers, but rather with
the language of the subject area you’re working in. Consequently, it’s important for
the entire team to communicate in the domain language, without having silos.

 A common challenge is that customers, domain experts, and the technical crew
don’t interact often enough and they don’t speak the same language. Agile tries to
solve that, particularly by writing tests iteratively, focused on functionality and require-
ments to help overcome any barriers and clarify communication. This is a major dif-
ference compared to unit tests that are written by and for developers.

 The barrier-free approach of using an ubiquitous language must respect the fact
that customers often don’t have a detailed technical understanding (nor do they need
to). The process should also be efficient, which means the requirements should be
documented in a form that the customer can work with. Teamwork is also essential:

11 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley, 2003), pg. 514.
12 See Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice, 2nd ed. (Addison-Wesley,

2003), pg. 27.

256 CHAPTER 8 Requirements and test management
You must help the customer and support them if they have problems, such as writing
tests, or if the customer asks for implementation details.

 It can also be good to have a technical person (or business analyst) stand in as a
proxy for the customer, to document the requirements in this executable form. This
can be helpful if the real customer isn’t available, or if the customer doesn’t want to
write tests in an executable form. The proxy should be installed before a release starts;
all project roles (and their responsibilities) should be fixed and assigned to people
before the release starts. Clearly communicated project roles and responsibilities are
essential for open and direct team communication.

 Using a common and relatively unambiguous language is essential. Acceptance
tests that are written in the language of the domain expert can be validated continu-
ously if the tests are executable.

8.1.4 Executable specifications

Executable specifications allow you to use tools that read the specifications automati-
cally (either after manually starting the process, or continuously as part of a CI pro-
cess), process them against the system under testing, and output the results in an
objectively measurable, efficient, and readable way. The domain expert specifies the
tests in simple formats, and the program writes the results after running the tests
against the system under test.

 Traditional Word documents aren’t executable and they’re problematic in Agile
teams where you want to run tests iteratively and often. Someone must read the specs
in Word documents, apply them to the system undergoing the test, verify the results,
and document them manually, in isolated manual and error-prone steps. Describing
requirements in an executable way fosters the barrier-free approach. Executable
requirements help to minimize the number of different artifact types that express the
same information about the software. Merging different mediums for documentation
(single-sourcing product information) reduces the amount of traditional documenta-
tion, because the specification is the system’s functional documentation and therefore
can be efficiently validated against the current software state. Executable specifica-
tions lead to living (always up-to-date) software documentation, more efficient code
changes, higher product quality and less rework, and a better alignment of activities of
different roles on a project (see Adzic, Specification by Example, pg. 6).

 By combining different test strategies, you can profit from the best results of each.
Customer-centric acceptance tests are based on data-driven tests and are written in the
language of the domain expert. These specifications test the application “by example”
by applying test scenarios to the system under test. Acceptance tests (in the Agile
sense) are executable, just as BDD fosters executable specs, as discussed next.

8.1.5 Behavior-driven development

Behavior-driven development (BDD) promotes a special approach to writing and
applying acceptance tests that’s different from the traditional TDD, although BDD also
promotes writing tests first. BDD was first defined in Dan North’s article, “Introducing

257Collaborative tests
BDD” (http://dannorth.net/introducing-bdd), in which the tests are like (functional)
stories in a given/when/then format. This specification-oriented technique also uses a
natural language to ensure cross-functional communication and to understand busi-
ness concepts. BDD provides a ubiquitous language for analysis and emphasizes appli-
cation behavior over testing. BDD fosters writing tests from a domain perspective
rather than a technical perspective.

 In BDD, user stories are input to test scenarios that specify what the system does.
The programmer codes the test scenarios directly in the test tool.13 BDD is a new Agile
software development technique that helps software developers collaborate with busi-
nesspeople. But this isn’t its only benefit. It also simplifies and clarifies the test code.

 Let’s discuss the benefits and principles of using BDD in your projects. First, and
most importantly, BDD is a specification-oriented technique. This implies that you, as
a BDD developer, will be focused on specifications as the main concept. But you’re
also going to leverage BDD for verifying and writing your code. BDD is a different
approach than traditional TDD, focusing more on code verification than on the func-
tionality the code should provide.

 Why does BDD matter? Because well-defined specifications help developers write
tests that cover all major aspects of system functionality. They also provide a good
overview of how everything should work. BDD uses a natural language for specifying
interactions and functionality, which is the easiest way to ensure good communication
and understanding of business concepts by all members of the project, whether
they’re developers, project managers, or domain experts.

GIVEN/WHEN/THEN AND OTHER STRUCTURES Don’t equate BDD with given/
when/then. You can use other ways to structure specifications, like “As a”
(which expresses the type of user), “In order to” (which expresses the goal),
“I can” (which expresses the task), and “And then” (which expresses the
result). Even though BDD has been popularized with the given/when/then
structure, the Fit tool (which we’ll look at later in this chapter) has been
around for much longer than BDD, and it was used by people doing BDD
before the BDD name came into use.

I’m sure you have been in situations where you start writing tests and only after some
time passes does it become apparent exactly what needs to be tested and how the test-
ing needs to be done. BDD solves this issue by defining in the first step the name of the
test method that will describe your business case. Only after that do you start develop-
ing your test.

BDD requires names for test methods that describe the functionality each test is
supposed to check within the method. The name of the method clarifies what should
be tested and how the code should work. This is extremely useful for other develop-
ers, because they only need to take one look at your test to get an idea of what it tests
and how it works. You might even say that the behavior specification defines your test
methods, which defines your application code.

13 James O. Coplien and Gertrud Bjornvig, Lean Architecture (Wiley, 2010), pg. 175.

258 CHAPTER 8 Requirements and test management
 Consider the following example. You’re writing code to calculate the sum of two
values. You might start by creating the CalculatorTest class, which will contain the
testAdd() method. Then you create the Calculator class with an add() method that
will take two parameters and return their sum. This approach works fine, but you
could do that in a better way by defining the behavior, creating tests with appropriate
test methods (with well-defined names), and finally creating the Calculator class with
the add() method. The test class might look like this:

class CalculatorTest {
 public void addsTwoAndThreeAndReturnsFive() {
 ...
 }
 public void addsMinusOneAndThreeAndReturnsTwo() {
 ...
 }
}

BDD can easily be combined with traditional approaches like TDD. All you need to
care about is defining your specifications (which should represent the business behav-
ior of your system) before developing the test and then implementing tests directly
associated with appropriate specifications.

 To write a BDD specification, focus on the three most important BDD phrases:

■ Given—Defines the initial state of the scenario
■ When—Defines an event (something that should happen)
■ Then—Defines the final state of the scenario

The initial state of the scenario is the beginning of your business case. It also serves as
the input for the event represented by the term when. The final state should repre-
sent the end of your business case. It describes what you want to reach as a conse-
quence of the preceding event.

 Suppose a child wants to buy one can of Coca-Cola from a vending machine. We’ll
consider three main scenarios:

■ The machine has enough cans of Coca-Cola; the child pays for one and receives it.
■ The machine has enough cans of Coca-Cola; the child pays an insufficient

amount of money for one can and receives all the money back.
■ The machine is out of cans; the child pays for one can but the machine returns

all of the money.

Here’s what the BDD approach would look like for the first scenario:

■ Given that there are enough cans of Coca-Cola.
■ When the child pays enough money.
■ Then ensure the child receives one can of Coca-Cola.
■ And ensure the child receives change.

The first line reads, “There are enough cans of Coca-Cola.” This describes the initial
state of the scenario (that is, it sets an initial context) and ensures that a sufficient
number of cans are available in the machine. Then the “child pays enough money”

259Acceptance testing with TestNG, Selenium, XStream, and Excel
event occurred. This event represents our business logic. As a result, we should receive
two outcomes, which will define the final state of the scenario. These outcomes are
“receives one can of Coca-Cola” and “receives change.”

 The second scenario is defined here:

■ Given that there are enough cans of Coca-Cola.
■ When the child pays an insufficient amount of money.
■ Then ensure the child will not receive a can.
■ And ensure the child receives all money back.

And here is the third scenario:

■ Given that there aren’t enough cans of Coca-Cola.
■ When the child pays enough money.
■ Then ensure the child receives all money back.

These scenarios are described in natural language that can be understood by all proj-
ect members. They directly represent the business flow and business expectations by
describing the initial state, the events, and the final state that should be reached.

BDD is effective, as is the use of test tools such as TestNG, Selenium, and Excel.

8.2 Acceptance testing with TestNG, Selenium, XStream, and Excel

 —This section contributed by Simon Tiffert

In this section, we’ll test a rich internet application (RIA) with Selenium as the web
driver and TestNG as our backbone for data-driven tests. The test data is serialized by
XStream. Maven supports all these tools.

 Before we start integrating the tools in our example use case, let’s briefly discuss
the underlying technologies.

8.2.1 TestNG and the data-driven approach

TestNG (http://testng.org) is a testing framework inspired by JUnit and NUnit. It’s
flexible and perfectly suited for normal unit tests as well as more complex tests of dif-
ferent types: unit tests, integration tests, and acceptance tests. It’s supported by all
major Java IDEs and build systems. Features like test groups, support for data-driven
testing by enabling parameterized tests with complex objects (@DataProvider), and
test dependencies make TestNG a unique tool.14

 Test groups can be used to group tests for different setups, and they can be used to
prioritize your tests. The first group would be the most important tests; you must run
them to ensure that the main system is working. The second group is smoke tests;
these should run quickly enough for you to be able to trigger them several times a day.
With a smoke test, various areas of the system are analyzed but not in full detail. The

14 See Cédric Beust and Hani Suleiman, Next Generation Java Testing: TestNG and Advanced Concepts (Addison-
Wesley, 2008).

260 CHAPTER 8 Requirements and test management
last test group includes every test and tests in more detail; it should be triggered only
once a day, such as in a nightly build.

 A test can belong to zero, one, or multiple test groups. This is defined in an anno-
tation at the method or class level. A group definition on the test class is inherited for
every test method inside the class. A simple test assigned to the test group smoke-test
could look like this:

@Test(groups = {"smoke-test"})
public void testToString() {
 User user = new User("Albert", "Einstein");
 Assert.assertEquals(user.toString(), "User: Albert Einstein");
}

Implementing the tests from a Maven script is pretty easy. The Surefire plug-in is
included in Maven’s default configuration and searches test cases in the src/test/java
folder. It runs in the Maven test phase and looks for class names that follow these pat-
terns: **/Test*.java, **/*Test.java, and **/*TestCase.java. You can run both unit tests
and integration tests with the Surefire plug-in, but this configuration gets more com-
plicated, and there’s no way to skip the integration tests.

 The Failsafe plug-in is designed to run integration tests. It’s a fork of the Surefire
plug-in, and it ensures that the postintegration phase runs even if there’s an error in
the integration tests. To differentiate the tests, you can store the integration tests with
any of the following patterns: **/IT*.java, **/*IT.java, and **/*ITCase.java.

 Both plug-ins can run JUnit and TestNG tests. All you need to do is include the
dependency of the framework. In our example, it’s this:

<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>5.10</version>
 <scope>test</scope>
 <classifier>jdk15</classifier>
</dependency>

If you want to run all the tests, there’s nothing else to configure. With the help of dif-
ferent testng.xml files, you can set up finely grained tests. You can define parameters
for each test suite and include or exclude Java packages and files or the previously
defined test groups. An example TestNG test suite is illustrated in the following listing.

<suite name="smoke" verbose="1">
 <parameter name="PARAMETER_NAME"
 value="PARAMETER_VALUE"/>
 <test name="smokeTest">
 <groups>
 <run>
 <include name="smoke-test"/>
 <exclude name="broken"/>
 </run>
 </groups>

Listing 8.1 TestNG test suite

Parameters passed
to suite

Includes/excludes
used on group level

261Acceptance testing with TestNG, Selenium, XStream, and Excel
 <packages>
 <package name="PACKAGENAME"/>
 </packages>
 <classes>
 <class name="A_CLASS">
 <methods>
 <include name="SMOKE_TEST"/>
 <exclude name="FUNCTIONAL_TEST"/>
 </methods>
 </class>
 </classes>
 </test>
</suite>

One important feature of TestNG is the separation of test logic and test data. To catch
as many error situations and corner cases as possible, you should define them in the
most compact form. In the following listing, TestNG’s DataProvider is used to inject
an array of arrays into the test method.

import org.testng.Assert;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;

public class UserTest {
 @Test(dataProvider = "users")
 public void testToString(String firstName,
 String lastName, String result) {
 User user = new User(firstName, lastName);
 Assert.assertEquals(user.toString(), result);
 }

 @DataProvider(name = "users")
 public Object[][] createData() {
 return new Object[][]{
 {"Paul", "Breitner", "User: Paul Breitner"},
 {null, "Breitner", "User: Breitner"},
 {"", "Breitner", "User: Breitner"},
 {"Paul", null, "User: Paul"},
 {"Paul", "", "User: Paul"},
 {null, null, "no user"},
 {"", null, "no user"}};
 }
}

As you can see, we’ve extracted the data out of the test logic. TestNG expects an array
of objects for each test run, and each entry of that array is matched to a parameter of
the test method.

 Often, you will need the same data for different tests. To reuse the data, you must
define the DataProvider to the @Test annotation—that’s good. The data is hardcoded
inside the test class—that’s bad. The next step is to define the test data outside of the
class; then other nondevelopers can manage the data, too. You shouldn’t do this for

Listing 8.2 Using data-driven tests with TestNG and its DataProvider

Test defined by
specifying package

Individual methods
assigned to suite

Use DataProvider
named “users”

Run tests for
each data set

Annotate method
as DataProvider

262 CHAPTER 8 Requirements and test management
unit tests, but in functional tests, you can predefine the test data and program against
this data.

 The data needs to be defined in a more user-friendly format, such as XML, Excel,
or whatever format best suits your needs. Let’s first look at an approach based on
object trees and XML. Using test tools with a data-driven approach is important.
XStream helps makes this effort easier by serializing the XML data.

8.2.2 Data-driven testing with XStream

XStream is an XML serializer and deserializer. You’ll use it when you need an object
from an XML structure or vice versa. It’s easy to use and the XML is clean.

 If you’re defining test data of flat objects in Java, you need to write some glue code.
If you need to define object trees, you’ll soon realize that Java is the wrong lan-
guage—it’s time-consuming to initialize every child object, set the values, and assign
them to the parent object. This would be fine if you needed it at a few points in your
application, but if there are predefined object hierarchies, you should extract them.
An XML structure is a common way to describe object hierarchies; there are a lot of
tools available, and you don’t need to worry about using the wrong character sets.

 Let’s start with a simple example. First, we’ll add the XStream dependency to the
pom.xml file:

<dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.3.1</version>
</dependency>

Now let’s write a simple Java bean:

public class User {
 private String firstName;
 private String lastName;
 public User(String firstName, String lastName) {
 this.lastName = lastName;
 this.firstName = firstName;
 }
 ...
}

To serialize User with XStream, we can use XStream’s API as follows:

XStream xstream = new XStream();
User user = new User("Paul", "Breitner");
String xml = xstream.toXML(user);

Depending on the package name you use in your Java class, the result should look sim-
ilar to this:

<org.agile.alm.entities.User>
 <firstName>Paul</firstName>
 <lastName>Breitner</lastName>
</org.agile.alm.entities.User>

As you can see, there are some package definitions in the XML file.

263Acceptance testing with TestNG, Selenium, XStream, and Excel
 If you want a cleaner XML structure, you can define aliases in XStream. You can
define an alias either as an annotation or as a special definition. If you can control
your objects, annotations are a handy way to write and forget about the aliases if you
use that object multiple times in different code positions. Serializing with a defined
alias looks like this:

XStream xstream = new XStream();
xstream.alias("user",User.class);
User user = new User("Paul", "Breitner");
String xml = xstream.toXML(user);

Working with XStream annotations looks like this:

import com.thoughtworks.xstream.annotations.XStreamAlias;

@XStreamAlias("user")
public class User {
 private String firstName;
 private String lastName;
 ...
}

In the Java code, serializing based on annotations looks like this:

XStream xstream = new XStream();
xstream.processAnnotations(User.class);
User user = new User("Paul", "Breitner");
String xml = xstream.toXML(user);

The results are the following XML:

<user>
 <firstName>Paul</firstName>
 <lastName>Breitner</lastName>
</user>

For deserializing objects back from XML, you must go the following way:

String xml = "<user><firstName>Paul</firstName>
<lastName>Breitner</lastName></user>";
XStream xstream = new XStream();
xstream.processAnnotations(User.class);
User user = (User) xstream.fromXML(xml);

XStream is even more helpful if you have larger object trees for deserialization. Nor-
mally, the objects of your model are already defined, and with XStream, you can easily
reuse complex objects to drive your DataProvider in TestNG.

 Now let’s go back to TestNG. To use your list of objects as a DataProvider there,
you can use a helper function that transforms it into an array of arrays, as shown in the
following listing.

import org.agile.alm.entities.User;
import com.thoughtworks.xstream.XStream;
import org.testng.Assert;

Listing 8.3 TestNG test class reading data from XML via XStream

264 CHAPTER 8 Requirements and test management
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.io.IOException;
import java.io.InputStream;
import java.util.List;

public class TestMe {
 ...
 protected <T> List<T> readListData(String filename) {
 return (List<T>) xstream.fromXML(this.getClass().getClassLoader().
 getResourceAsStream(filename));
 }

 public static <T> Object[][]
 getObjectArray(List<T> elements) {
 Object[][] values = new Object[elements.size()][1];
 int counter = 0;
 for (T t : elements) {
 values[counter][0] = t;
 counter++;
 }
 return values;
 }

 @DataProvider(name = "users")
 public Object[][] createData() {
 List<User> users = readListData("users.xml");;
 return getObjectArray(users);
 }
 ...
}

Transforming the list into an array of arrays B allows it to fit into TestNG’s data-
Provider format.

 The reuse of your model can be handy in data-driven functional tests. If you have
ten or more parameters in your user interface that you want to check, the parameter
list becomes even more complicated and results in a lot of work. Building your user
interface around your model using XStream is the way to go. XStream makes it easy to
fill in the important parts of your model.

 To further explain this use case, let’s talk about using Selenium to test web apps.

8.2.3 Testing the web UI with Selenium, TestNG, and XStream

Selenium is a web test framework that drives the user interfaces with JavaScript. It has
direct access to the full web page and its DOM. Different types of locators are available
that tell Selenium which HTML element a command refers to on the page.

 If you’re testing in the Java world, you’ll normally be faced with Selenium Remote
Control (Selenium RC). Selenium RC acts as a small server that gets execution com-
mands. It can start and stop browsers on different platforms; after the browser is started,
it communicates with the injected Selenium Core, which is based on JavaScript. Differ-
ent client libraries are available for different platforms to drive Selenium.

Read XML
with XStream

Transform list
into array of arrays

b

Return data
for tests

265Acceptance testing with TestNG, Selenium, XStream, and Excel
 Selenium fits perfectly in a Maven and TestNG setup. The Selenium Maven plug-in
starts Selenium RC on the local machine in the preintegration test phase (see the fol-
lowing listing).

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>selenium-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>start</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start-server</goal>
 </goals>
 <configuration>
 <background>true</background>
 </configuration>
 </execution>

 <execution>
 <id>stop</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop-server</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The TestNG test suites are defined in XML, and you can tell Maven which test suite to
take. Instead of using the Surefire plug-in directly (which is responsible for testing
with Maven), you can use the Failsafe plug-in, which is a fork of the Surefire plug-in
for running integration tests, as was discussed earlier in this chapter. The Surefire
plug-in stops the build when a test failure occurs, with the result that the test environ-
ment isn’t released correctly. The Failsafe plug-in won’t fail the build during the inte-
gration-test phase, enabling the postintegration-test phase to execute.

 The following listing shows the part of the POM where you define that the testng-
firefox-minimal.xml test suite is taken for test definition.

<plugin>
 <groupId>org.apache.maven.plugins </groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.8.1</version>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>integration-test</goal>

Listing 8.4 Starting and stopping the Selenium server via Maven

Listing 8.5 Defining the tests in the POM

Start
test

Stop
test

Use failsafe-
maven-pluginb

266 CHAPTER 8 Requirements and test management
 </goals>
 <configuration>
 <suiteXmlFiles>
 <suiteXmlFile>src/test/resources/
 testng-firefox-minimal.xml</suiteXmlFile>
 </suiteXmlFiles>
 </configuration>
 </execution>
 <execution>
 <id>verify</id>
 <goals>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
</plugin>

By using the failsafe-maven-plugin B, the build won’t break even if tests fail. The
TestNG test suite C is a collection of include and exclude patterns and packages. Gen-
erally, for setting up Selenium tests, you need the following:

■ A system under test, accessible on the server where Selenium RC runs
■ A configuration to access Selenium RC
■ Selenium tests to verify that the web user interface is working as expected

Locally, you can start the application with the Maven Cargo plug-in. The application is
running on a port you need for test configuration. You additionally need the port of
Selenium RC, which is port 4444 by default. The host is localhost in this example (as
you will see in listing 8.6).

 You can prepare test servers with different operating systems and browsers
installed. The servers can run Selenium RC as a service, and you only need to point
your tests to run against these servers. The application that you want to test could be
complex and so large that it’s deployed only once a day to an external location. In this
case, you could run the tests on different operating systems and browsers against this
external location. Be aware that parallel tests get more complicated in such a setup.

 Let’s go back to the Selenium test setup. The easiest way to get started with Sele-
nium is to use the Selenium IDE until you’re familiar with the most recently used com-
mands. Selenium IDE is a Firefox plug-in that can record tests while you use the
application under test. This allows you to replay the tests inside the Selenium IDE and
export tests in various languages like Java. Once you understand the common com-
mands, you can dig deeper into your DOM, your application, and your tests.

 Recorded tests are fragile. The tests may suggest that nothing has changed, but if
things like layout or template do change, your tests shouldn’t break. Tests should rely
on the base of your application, like HTML elements that are marked with a unique
ID. This is why we rely on tests written in a higher programming language like Java
with the TestNG framework—we can include those test sequences in continuous inte-
gration easily. Furthermore, hosting the tests in TestNG enables barrier-free testing:
We can aggregate functional tests with other test categories.

Define TestNG
test suite

c

267Acceptance testing with TestNG, Selenium, XStream, and Excel
 To add the compile and classpath dependency to the Selenium Java library, add
the following entry to your Maven POM:

<dependency>
 <groupId>org.seleniumhq.selenium.client-drivers</groupId>
 <artifactId>selenium-java-client-driver</artifactId>
 <version>1.0.1</version>
</dependency>

The following listing shows a simple TestNG test class. It uses the Selenium API pro-
vided by selenium-java-client-driver.

import com.thoughtworks.selenium.DefaultSelenium;
import com.thoughtworks.selenium.Selenium;
import org.testng.annotations.AfterClass;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class SimpleSeleniumIT {
 private Selenium selenium;

 @BeforeClass
 private void init() throws Exception {
 selenium = new DefaultSelenium("localhost", 4444, "*safari",
 "http://localhost:8000/");
 selenium.start();
 }

 @Test
 public void testPage() throws Exception {
 selenium.open(
 "http://localhost:8000/webtest/index.jsp");
 selenium.waitForPageToLoad("10000");
 Assert.assertTrue(
 selenium.isTextPresent("Hello World"));
 }

 @AfterClass
 private void stop() throws Exception {
 selenium.stop();
 }
}

The browser is started with TestNG’s @BeforeClass annotation. You could also use
@BeforeSuite or @BeforeTest. Keep in mind that the browser start process can take a
pretty long time, so you should avoid restarts if possible.

 With the initialization of the DefaultSelenium class, you need four parameters:

■ serverHost—The host name of the Selenium RC server
■ serverPort—The port of the Selenium RC server
■ browser—A Selenium-specific browser string (such as, *iexplore for Internet

Explorer)
■ browserURL—The URL of your application

Listing 8.6 A simple TestNG test class, including Selenium

Launch browser
window

Perform test

268 CHAPTER 8 Requirements and test management
The test in listing 8.6 uses the @Test annotation. It first opens the website, waits for
the page to load (for a length of time specified in milliseconds), and then verifies
whether the text appears.

 Let’s now complete the data-driven web testing scenario by integrating TestNG,
Selenium, and XStream. The following listing is the missing piece.

@Test
public void testPage() throws Exception {
 selenium.open("http://localhost:8000/webtest/index.jsp");
 selenium.waitForPageToLoad("10000");
 selenium.isTextPresent("Hello World");
}

@Test(dataProvider = "users")
public void testDataTable(User user) throws Exception {
 selenium.open("http://localhost:8000/webtest/index.jsp");
 selenium.waitForPageToLoad("10000");
 Assert.assertTrue(selenium.isElementPresent
 ("xpath=//table/tbody/tr/td[1][text()='" +
 user.getFirstName() + "']"));
 Assert.assertTrue(selenium.isElementPresent
 ("xpath=//table/tbody/tr/td[2][text()='" +
 user.getLastName() + "']"));
}

This listing shows the remaining details of the TestNG test class that runs a data-driven
test. The testDataTable method gets its test data from the XStream DataProvider B
that we discussed earlier in this chapter, and then it runs the test C.

 It can be more convenient to use Maven profiles to manage which kinds of tests
you want to run. The following listing shows such an example.

<profiles>
 <profile>
 <id>daily</id>
 <activation>
 <property>
 <name>!nightly</name>
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins </groupId>
 <artifactId>maven-failsafe -plugin</artifactId>
 <version>2.8.11</version>
 <executions>
 <execution>
 <id>integration-test</id>

Listing 8.7 Integrating TestNG, Selenium, and XStream

Listing 8.8 Using profiles to decide which tests to run

Receive data
by XStream

b

Run tests
on the datac

Define first
profile

b
Set unique
profile ID

Define when profile
will be activated

Derive build
phase for profile

269Acceptance testing with TestNG, Selenium, XStream, and Excel
 <goals>
 <goal>integration-test</goal>
 </goals>
 <configuration>
 <suiteXmlFiles>
 <suiteXmlFile>PATH/minimal.xml
 </suiteXmlFile>
 </suiteXmlFiles>
 </configuration>
 </execution>
 <execution>
 <id>verify</id>
 <goals>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>nightly</id>
 <activation>
 <property>
 <name>nightly</name>
 </property>
 </activation>
 <build>
 ...
 </build>
 </profile>
</profiles>

The daily profile B runs the integration test with the Maven Failsafe plug-in. The
second profile C has the ID nightly. It can look completely different and will run if
nightly is passed as the parameter. The idea is to define the plug-in in two different
profiles and then script the Failsafe plug-in with different TestNG XML configurations.
You can use this pattern for various situations.

 To activate the profile, you use system properties. This is handy if you need to run
different profiles on the same computer. If you need different profiles—for example,
for the development computer versus the build server—you had better activate the
profiles in the settings.xml file.

 To run the normal tests, type the following in your command shell console:

mvn clean install

To run the nightly tests, you can use your newly created profile:

mvn clean install -Dnightly

Selenium, TestNG, and XStream are popular testing tools and they integrate with build
tools such as Maven and Ant. But many test engineers are successful with running
data-driven tests using Excel, too.

Define second
profile

c

270 CHAPTER 8 Requirements and test management
8.2.4 Data-driven testing with Excel

XStream-based tests inject one object for each test run. If you’re dealing with flat
structures or using Excel for other project tasks, XML can look like a too-complex, too-
technical, developer-centric solution. There are some Excel libraries for Java available,
so it’s easy to define test data within Excel sheets. This section shows you how to do
that. This solution extends the infrastructure we set up for the XStream processing.

 Order the Excel columns to match the parameters in your test method, with each
row representing a test run. Table 8.1 shows an example Excel sheet.

As in the XStream solution, you need a TestNG host to host the tests and read the test
data. The TestNG test method gets data from a TestNG data provider. The logic that
converts the Excel sheet into an array of arrays is simple (it’s shown shortly in listing
8.9). You also need to choose an Excel library to read the sheets: the Apache POI
library (http://poi.apache.org/) or the Java Excel API (http://jexcelapi.source-
forge.net/) are both good choices.

 The following example uses the Apache POI library, which is added to the
pom.xml file:

<dependency>
 <groupId>org.apache.poi</groupId>
 <artifactId>poi</artifactId>
 <version>3.6</version>
</dependency>

A helper method reads a file that’s located in the resources folder of your Maven proj-
ect. It reads the first sheet and uses Apache POI to find the filled data range. The first
line should be excluded because it contains the column headings. The following list-
ing shows this basic example; you can extend this to more specific formats as
necessary.

@Test(dataProvider = "xls-users")
public void testXlsDataTable(String firstName, String lastName)
throws Exception {
 ...}

@DataProvider(name = "xls-users")
public Object[][] readXlsData() throws IOException {
 return readXlsToArray(userXlsFile);
}

Table 8.1 Example Excel sheet containing two rows, two columns, and a header

First name Last name

Paul Breiter

Bernd Müller

Listing 8.9 Reading from Excel with POI

Get test
data

Define data
provider

271Acceptance testing with TestNG, Selenium, XStream, and Excel
private String[][] readXlsToArray(String userXlsFile) throws IOException {
 InputStream inputStream = this.getClass().
 getClassLoader().getResourceAsStream(userXlsFile);

 HSSFWorkbook wb = new HSSFWorkbook(inputStream);
 HSSFSheet sheet = wb.getSheetAt(0);

 int rowNumber = sheet.getPhysicalNumberOfRows();
 int cellNumber = sheet.getRow(0).getPhysicalNumberOfCells();

 String [][] xlsArray = new String[rowNumber-1][cellNumber];

 for(int i=1; i < rowNumber; i++) {
 for(int j=0; j < cellNumber; j++) {
 try {
 xlsArray[i-1][j] =
 sheet.getRow(i).getCell(j).getStringCellValue();
 }
 catch(Exception e) {
 xlsArray[i-1][j] = "";
 }
 }
 }

 return xlsArray;
}

As you have seen, it’s easy to use Excel as the source for your tests. If you want to use a
different flat data database, you can use CSV with a StringTokenizer or fixed-length
formats. It’s up to you to choose your weapons.

 Because the user (domain expert) can specify the application and can help with
maintaining tests (test data), data-driven tests with Excel are considered to be accep-
tance tests, in a narrow sense.

Using Maven, TestNG, and Selenium 2 for web interface testing

Web interfaces are no longer simple forms where you enter data and click Next to
reach the next page. We’re confronted with more interaction and dynamic interfaces
implemented through JavaScript and Ajax. Different browsers have different features,
so it’s important to test the real usage as closely as possible. On the other hand, you
may have limited time for testing. Tests in real browsers are slow. You need to start
the browser environment, and the (Selenium) locators are sometimes slow because
you need to use the native methods.

HtmlUnit is a browser emulator written in Java that’s ideally suited for fast and reliable
tests. With the Selenium 2 release, we now have a merge of Selenium 1 and WebDriver,
so you can now run the same tests in real browser environments or in HtmlUnit. Which
environment you choose depends on your needs.

If you’re working with a lot of JavaScript, you should test in real browser environments.
But because real browser tests could easily exceed an hour, they aren’t suited to run

Read Excel file
as stream

Use POI API

272 CHAPTER 8 Requirements and test management
Excel and TestNG make an effective test toolchain. Fit, TestNG, and FEST (Fixtures for
Easy Software Testing) also help with creating effective acceptance tests.

8.3 Acceptance testing with Fit, TestNG, and FEST
The example of outside-in development and barrier-free testing with a chain of inte-
grated tools that we’ll look at in this section is based on specifying, developing, and
testing a Java Swing application. We’ll functionally test the application with our UI test-
ing framework, FEST, automatically validate the acceptance criteria with the test
framework, Fit. The framework that hosts the tests is TestNG. We’ll also embed the
tests in both Ant and Maven. We’ll integrate both the tests (functional tests and unit
tests) and the build results.

 We’ll discuss the individual tools and their integration as we come to them. Let’s
start with the application under test.

8.3.1 The application

In this section, we’ll test a small Swing application. It contains an editable table of two
columns, an input text field, and a button. A document listener is added to the input
field. When entering or removing text, the table is updated accordingly. Table rows
are displayed, and the first column value starts with the pattern entered in the input
field. For example, entering M will display the four result sets that start with M, filtering
out others (assuming there are other rows in the table). Under the hood, a table is
associated with a TableRowSorter (see figure 8.2).

 Let’s specify and test this functionality (and develop the code). As you can see,
we need a functional test to verify this user interface behavior. Because Java 1.6, the
sorter functionality is available as part of the standard distribution, so you don’t have
to implement it again yourself. Generally, it’s an antipattern to test a standard API,

(continued)

with every check-in on the CI server. Instead, you can run them in the HtmlUnit envi-
ronment and run the real browser tests nightly. In this way, you can get fast feedback
for normal errors and then also detect browser differences once a day. The combination
of Maven, TestNG, and Selenium 2 is a perfect setup for this solution.

Figure 8.2 Swing application
with a table and a corresponding
TableRowSorter

273Acceptance testing with Fit, TestNG, and FEST
but it offers a simple isolated use case for explaining the integration of Fit, TestNG,
and FEST.

 You can also extend your testing capabilities with Fit.

8.3.2 The specification

Fit (http://fit.c2.com), the Frame-
work for Integrated Test, is a popu-
lar, free tool.15 This tool perfectly
meets our need to specify user
interactions on the application and
to specify expected behavior. Inter-
actions and expected behavior are
defined in HTML syntax (see figure
8.3). This is an easy-to-use inter-
face, because customers can edit
HTML using any number of tools,
including Word.

 Fit can process the specification
automatically, and it generates
another HTML file containing the
result of the approval. This new file
consists of the same structure and
content as the specification and
adds the check results to it in the
form of colors. We’ll talk about the
result page in the next section.

FITNESSE FitNesse (http://www.fitnesse.org/) is a free, standalone wiki-
based tool that integrates with Fit (and with another test system called SLIM).
FitNesse allows you to write your tests in a wiki syntax instead of plain HTML
tables. More about FitNesse in section 8.4.

By writing fit.ActionFixture in the first table row, you specify that you’ll use Fit’s
ActionFixture. An action fixture interprets rows as a sequence of commands to be
performed in order. The ActionFixture knows four Fit commands, and they must be
written in the first column:

■ start—Subsequent commands are directed to an instance of the class that’s
written in that row of the table (in this case, com.huettermann.fit.FitTest-
ActionFixture).

■ enter—Invokes the method of the class with an argument. This command takes
values from the Fit specification and enters them in fields on the UI.

15 See Rick Mugridge and Ward Cunningham, Fit (Prentice Hall, 2005).

Figure 8.3 The HTML specification in the Fit format,
viewed in a browser

274 CHAPTER 8 Requirements and test management
■ press—Invokes a method of the class with no arguments. This clicks (or
presses) a button on the UI.

■ check—Invokes a method of the class with no arguments, and compares the
returned value of that method with the given value in the table cell. This reads
and validates values from the UI.

REFACTORING FIT TESTS The FITpro project (http://www.luxoft.com/fit/)
provides functionality to integrate Fit into Eclipse, and it offers reporting and
refactoring features. This has the benefit of working on Fit tests directly
inside Eclipse. You can include Fit into a build script and use this script in
your IDE too. Refactoring tests is appealing because you don’t need to worry
about changes not being applied to all corresponding artifact types (HTML,
Java fixtures, and so on).

The Fit specification is associated with the system under test by a Java class (named a
fixture). You have to develop this Java class by extending Fit’s ActionFixture base class
(see the following listing).

package com.huettermann.fit;

import static org.fest.swing.fixture.TableCell.row;
import org.fest.swing.cell.JTableCellReader;
import org.fest.swing.fixture.FrameFixture;
import org.fest.swing.fixture.TableCell;
import com.huettermann.fit.application.TableFilter;
import com.huettermann.fit.util.BasicJTableCellReader;
import fit.ActionFixture;

public class FitTestActionFixture
 extends ActionFixture {
 private static String TABLE_NAME = "myTable";
 private static String FILTERTEXT_NAME = "myFilter";

 private FrameFixture window;
 private TableFilter table;
 private JTableCellReader cr;

 public FitTestActionFixture() {
 table = new TableFilter(TABLE_NAME);
 cr = new BasicJTableCellReader();
 window = new FrameFixture(table);
 window.show();
 }

 public void insertRow5Column2(int param) {
 window.table(TABLE_NAME).cell(row(4).
 column(1)).enterValue(String.valueOf(param));
 }

 public String checkRow1Column1() {
 return window.table(TABLE_NAME).cell(row(0).column(0)).value();
 }

Listing 8.10 The Java fixture associated with the Fit HTML table (extract)

Extends Fit’s
base class

Starts Swing
application

Inserts “71”
into cell

Checks if cell
contains “Peter”

275Acceptance testing with Fit, TestNG, and FEST
 public void insertFilterText(String param) {
 window.textBox(FILTERTEXT_NAME).enterText(param);
 }

 public String checkRow1Column1StartsWith() {
 return window.table(TABLE_NAME).cellReader(cr).
 cell(row(0).column(0)).value().substring(0,1);
 }

 public int countRows() {
 return window.table(TABLE_NAME).contents().length;
 }

 public void closeApplication() throws InterruptedException {
 window.button().click();
 window.cleanUp();
 }

Java reflection has methods that are linked (and later called) according to the names
in the table (see figure 8.3) and their signatures.

 To find the visual controls on the UI, drive them, and retrieve content, you can use
FEST (Fixtures for Easy Software Testing; http://easytesting.org). FEST is free and is
technically based on the AWT robot. As you can see in listing 8.10, you can use FEST’s
fluent interface notation to navigate through the object hierarchy.

NOTE A fluent interface is an object-oriented API leading to more readable
code. It’s normally implemented by method chaining to relay the instruction
context of a subsequent call. The approach was widely spread by Eric Evans
and Martin Fowler.

Before you can call the Fit test to process a HTML document, you need to write a small
adapter, like that shown in the following listing.

public String runFitTest() throws IOException {
 String result = null;
 FileRunner runner = new FileRunner();
 runner.args(new String[]
 {inputFileName, outputFileName});
 runner.process();
 runner.output.close();
 if (runner.fixture.counts.wrong +
 runner.fixture.counts.exceptions > 0) {
 result = "" + runner.fixture.counts.wrong + " errors and" +
 " " + runner.fixture.counts.exceptions + " exceptions for "
 + this.fitTestName + ". See output " + this.outputFileName;
 }

 return result;
}

Listing 8.11 Calling the Fit application passing parameters (extract)

Inserts filter
text “F”

Checks if cell value
starts with “F”

Counts number
of rows

Closes application
with click

Use FileRunner
to execute HTML
document

b

Pass input HTML format
and result page

276 CHAPTER 8 Requirements and test management
This adapter receives the HTML Fit spec and calls Fit with it. You can now execute the
HTML specification B and compare the defined specification with the current appli-
cation functionality.

 In order to process the spec, you need to glue the tests, which we’ll discuss next.

8.3.3 Gluing the tests and processing the document

To run the test, you can use the free TestNG, which you saw earlier in section 8.2.1.
TestNG and its tests are the entry point for executing the Fit tests. Because we’re using
unit tests in this example too (for example, with TestNG), we can integrate those tests,
profit from aggregated reporting, and minimize barriers and overhead.

TestNG can not only run tests (as you can see in the example), but it can also host dif-
ferent types (groups) in parallel, enabling you to call groups of tests or all tests. A
group can be all unit tests or an integration test. TestNG and its tests are our entry point
for executing the Fit tests. Because you use unit tests, too (for example, with TestNG),
you can integrate those tests, profit from the aggregated reporting, and minimize bar-
riers and overhead. The following listing shows how you can set up a TestNG class that
hosts different groups.

package com.huettermann.fit;

import org.testng.Assert;
import org.testng.annotations.Test;
import com.huettermann.fit.framework.FitRunner;

public class AllFitTests_Integration {

Additional glue code?

In some situations, dedicated testers use feature-rich tools to write acceptance tests
in specific scripts. The problem with these types of tools is that they generally use
some kind of scripting language that’s different from what the team is using for pro-
duction code. Sometimes they use something like JavaScript, and other times a pro-
prietary scripting language. Programmers on the team don’t want to switch gears and
have to use a different language for writing test scripts.

An Agile team should take a whole team approach, where everyone, regardless of their
main role, is responsible for quality and making sure all testing activities are completed
for each user story and release, so the whole team needs to choose test tools by
consensus so that everyone can use the tool.

An advantage of the Fit/FitNesse model for tools is that if you have testers writing
test cases and programmers writing the fixtures that automate them, these two groups
are forced to collaborate, which is a big advantage!a

a. Special thanks to Lisa Crispin for discussing this with me and providing her opinion.

Listing 8.12 Integrating the Fit test into TestNG

Append “_Integration”
to test class

b

277Acceptance testing with Fit, TestNG, and FEST
 private static final String
 FIT_SPEC_FOLDER = "fit_spec";
 private static final String
 FIT_RESULT_FOLDER = "fit_result";
 private FitRunner runner;

 @Test(groups={"gui"})
 public void testTable() throws Exception {
 runner = new FitRunner(FIT_SPEC_FOLDER,
 FIT_RESULT_FOLDER,
 "FitTestActionFixture.html");
 String result = runner.runFitTest();
 if (result != null){
 Assert.fail(result);
 }
 }

 @Test(groups={"backend"})
 public void testProcess() throws Exception {
 runner = new FitRunner(FIT_SPEC_FOLDER,
 FIT_RESULT_FOLDER,
 "FitTestColumnFixture.html");
 String result = runner.runFitTest();
 if (result != null) {
 Assert.fail(result);
 }a
 }
}

First, you append _Integration to
your test class B to indicate that
you have integration tests. If you
want, you could access classes with
this suffix by reflection. Next, you
specify C the input folder where
the HTML spec is located and the
output folder where Fit puts the
result file. You use FitRunner d to
encapsulate the access to the Fit
framework and set up the test
method e for the first group, gui.
You then run the Fit runner f with
parameters to process the HTML
document. The second test
method for the backend group g
is a dummy in this example to sim-
ulate another group.

 In this example, one group
expresses all GUI tests; the others

Specify input,
output foldersc

Use runner to
access frameworkdAssign test method

for group gui
e

Run Fit runner
with parametersf

Introduce second
test method for
dummy group

g

Figure 8.4 The Fit result document shows successful
checks with a green background.

278 CHAPTER 8 Requirements and test management
are backend tests. Running only the tests of type gui will run the functional tests.
More about running the tests a bit later.

 Running the TestNG test will process the Fit table. FEST will start and drive the
Swing application. Executing Fit will create a result table (see figure 8.4).

 The content of the result table is exactly the same as the spec file, with one differ-
ence: The cell of a check row containing the expected result has a background color.
The color is green when the expected result is identical to the actual one (as in the
four cases in figure 8.4) and red if it isn’t.

8.3.4 Running tests with Ant

You won’t want to always trigger the test cycle via an IDE or even manually on the con-
sole. You can also use Ant to call the tests automatically. To do that, call TestNG inside
the Ant script. The following listing shows an example of how to do that.

<target name="test" depends="ini,compile">
 <taskdef name="testng" classpathref="cp"
 classname="org.testng.TestNGAntTask"/>

 <testng classpathref="cp"
 haltOnFailure="false"
 useDefaultListeners="false"
 suitename="Agile Development"
 testname="Some agile tests"
 outputdir="${report.dir}"
 listeners=
 "com.huettermann.prio.PriorityInterceptor,
 org.uncommons.reportng.HTMLReporter,
 org.uncommons.reportng.JUnitXMLReporter">
 <xmlfileset dir="."
 file="mastersuite.xml"/>
 <sysproperty key="org.uncommons.reportng.title"
 value="Barrier-free testing"/>
 </testng>
</target>

In the Ant script B, you use the embedded TestNG C Ant task xmlfileset to define
which tests to process d. Using this TestNG feature, you can configure the tests you
want to run without hardcoding the test classes in the script.

 The referenced mastersuite.xml file is illustrated in the following listing.

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >
<suite name="Master Suite" verbose="1">
 <suite-files>
 <suite-file

Listing 8.13 Running TestNG with Ant (excerpt)

Listing 8.14 The TestNG mastersuite.xml defines which tests to run

Introduce Ant
target executing
TestNGb

Define
TestNG
task

Execute
TestNGc

Add
listeners

Tell TestNG
which tests
to processd

Ant target
executes TestNG

279Acceptance testing with Fit, TestNG, and FEST
 path="./priority-testsuite.xml"></suite-file>
 <suite-file
 path="./mock-testsuite.xml"></suite-file>
 <suite-file
 path="./common-testsuite.xml"></suite-file>
 </suite-files>
</suite>

This script aggregates different scripts. This way, you can further group the tests. In
this example, there are some priority tests, some mocked tests, and a common test
suite B.

 If you investigate the common-testsuite.xml file, you’ll see the following listing.

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >
<suite name="Common Test Suite" verbose="1">
 <test name="Component Tests">
 <groups>
 <run>
 <include name="backend" />
 <exclude name="gui" />
 </run>
 </groups>
 <packages>
 <package name="com.huettermann.unittest" />
 </packages>
 </test>
 <test name="Functional Tests">
 <groups>
 <run>
 <include name="backend" />
 <include name="gui" />
 </run>
 </groups>
 <classes>
 <class
 name=
 "com.huettermann.fit.AllFitTests_Integration" />
 </classes>
 </test>
</suite>

This listing is an XML document that follows the TestNG schema. You can see further
hierarchies and collections of tests B, and you include and exclude groups to run C.
The groups in the XML, reference the TestNG groups in the TestNG test class’s anno-
tated test methods. The example also demonstrates the flexibility you have to address
tests in your Java classes. Besides include and export patterns, you can also reference
the artifacts by their package names or class names.

 Now it’s time to run the script. By calling the Ant script, you compile and package
your system and test. Then Fit runs the acceptance tests by starting the application

Listing 8.15 TestNG test suite defining which tests to run

TestNG suite
aggregates
three files

b

Define test collection
containing groups,
packagesbDefine

includes, excludes
c

Include pattern,
run tests

Test collection for
functional tests

Include test groups
for functional tests

Define class,
including tests

280 CHAPTER 8 Requirements and test management
and driving the UI. Afterward, the output document is written and the system under-
going the test is stopped.

 Effective reporting is essential. To validate the success of the test, you don’t need to
validate all the results. We have one single entry point to the test results because we
embedded the acceptance tests into the TestNG suite. Therefore, we have a reporting
document that shows the results of all the test types. Figure 8.5 shows the resulting
document, which is a bit different from the standard TestNG report.

 As you can see in figure 8.5, we integrated ReportNG (freely available at the official
project website, http://reportng.uncommons.org) to further facilitate the reporting.
ReportNG is a simple report plug-in for TestNG that provides a nicely colored view of
the test results. It also produces JUnit format XML output for further integration into
CI engines.

 You can also integrate these features into the Maven run.

8.3.5 Running tests with Maven and adding to a Maven site

Depending on your overall strategy and project conditions, it can be helpful to inte-
grate the Fit tests into Maven, but setting this up can be a bit tricky. This section shows
how you can integrate Fit tests into Maven.

 Fit tests are stored in files in the directory system. You need to prepare the Fit specs
so they’re found in the Maven build lifecycle while executing the tests. This means you
need to copy them into the target folder before the tests run. You also need to prepare
a target folder where the Fit results will be placed. Ant is efficient at copying files and
creating folders, but Maven, like Java, lacks an easy way to handle files, so you can use
the Maven AntRun plug-in to embed an Ant script in your Maven build file.

 The use of this Maven–Ant bridge should be kept to a minimum. It’s possible to
insert the complete Ant script in the Maven file, but doing this would probably rob

Figure 8.5 ReportNG aggregating TestNG tests, including the functional tests in the common test suite

281Acceptance testing with Fit, TestNG, and FEST
you of the Maven features, which were the reason that you chose to use Maven in the
first place. (But note that fully integrating bigger Ant scripts with Maven as a first step
to migrating the Ant script to Maven could be a valuable migration strategy.) In this
example, we’ll focus on inserting Ant tasks to copy Fit files.

 The code that copies the Fit spec and creates the result folder can look like the fol-
lowing listing.

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <configuration>
 <tasks>
 <copy todir="target/classes/fit_spec">
 <fileset dir="src/java/fit_spec" />
 </copy>
 <mkdir dir="target/classes/fit_result" />
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
</plugin>

First, you add the Maven–Ant bridge for integrating Ant scripts into Maven in the
build lifecycle B. Next, gluing the Ant processing to the generate-sources phase C
enables execution of the Ant tasks before sources are processed. You then copy the Fit
specs to the target folder d. Finally, you prepare a result folder for the Fit results e.

 Now we have to configure Maven to find and execute the TestNG tests. The follow-
ing listing configures Maven’s Surefire plug-in for this.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 <configuration>
 <forkMode>always</forkMode>
 <testFailureIgnore>true</testFailureIgnore>
 <suiteXmlFiles>
 <suiteXmlFile>mastersuite.xml</suiteXmlFile>
 </suiteXmlFiles>
 <parallel>false</parallel>
 <groups>gui,backend</groups>
 <properties>
 <property><name>usedefaultlisteners</name>

Listing 8.16 Providing Fit tests

Listing 8.17 Configuring Maven to include the Fit tests

Specify Maven–Ant
bridgeb

Enable execution
before sources
are processedc

Copy Fit specs
to target folderd

Prepare result
foldere

Specify plug-in
for testing

Reference TestNG
mastersuite.xml

Specify
groups

282 CHAPTER 8 Requirements and test management
 <value>true</value>
 </property>
 <property><name>listener</name>
 <value>com.huettermann.prio.PriorityInterceptor,
 org.uncommons.reportng.HTMLReporter,
 org.uncommons.reportng.JUnitXMLReporter</value>
 </property>
 <property><name>reporter</name>
 <value>listenReport.Reporter</value>
 </property>
 </properties>
 </configuration>
</plugin>

In the notation of this Maven plug-in, you configure the Surefire plug-in to use your
test suite and your listeners. Running the tests with Maven leads to the same test
reports you already know (see figure 8.5). But by using Maven and providing the Fit
files in their target folders, you also gain from Maven’s reporting facility, particularly
the Maven website.

 The Maven command mvn clean install site, entered on the console shell
prompt, runs Maven, cleans up Maven’s working area, compiles the application under
test and runs the tests, and generates a Maven website for your Maven project. The
generated Maven website contains all the information about your build, and the site is
highly configurable to fit your individual needs. Figure 8.6 shows the website, config-
ured to provide links to the Fit spec and results page.

Add
listeners

Configure
reporter

Figure 8.6 The Maven site configured to include the Fit specifications and results page as links in the
left sidebar

283BDD in FitNesse with GivWenZen
 The Maven Surefire plug-in makes the TestNG test results accessible in the Project
Reports area of the site. This is a good example of what I have been calling the barrier-
free, integrated approach. The TestNG test tool and Surefire plug-in are useful in
implementing an effective approach.

 Using BDD in FitNesse with GivWenZen is also an effective approach.

8.4 BDD in FitNesse with GivWenZen

—This section contributed by Wes Williams

FitNesse started as a tool to make Fit more accessible by adding a wiki frontend to it.
It’s implemented as a simple web server and wiki with a page editor and wiki syntax
that’s easy and quick to learn. It also provides a runtime environment for the tests.

 New wiki pages are created as they are in many wikis—by typing the name of the
new page in WikiWord (camel case) style in the URL. To tell FitNesse that this page is
a test, click the Properties button in the left menu of the page and select the Test page
type.

All of the wiki content is saved in the FitNesseRoot folder; this is in the same folder
from which you started the FitNesse server. You’ll see a hierarchy that represents your
URL path in which every ParentPage is located. ChildPage will have a ParentPage
folder that contains a ChildPage folder. In each directory, you’ll find a content.txt file
that contains the wiki markup for the page and a properties.xml file that holds the
properties, such as the page type. It’s a good practice to put the FitNesseRoot direc-
tory under version control, along with the code it describes and tests.

Installing and running FitNesse with GivWenZen

To get started with FitNesse and GivWenZen, download the latest zip file from the of-
ficial web site (http://code.google.com/p/givwenzen/downloads/list), unzip the file
into a folder, and run the command java -jar ./lib/fitnesse.jar.

Once the FitNesse server is running, you can start viewing, creating, and editing wiki
pages and creating tests via a simple browser interface. Point your browser to http://
localhost/ and you’ll see links to the GivWenZen documentation on the Google code
site, example test pages, and the tests for GivWenZen.

For more information about using GivWenZen, consult the website at http://
code.google.com/p/givwenzen/.

Automated acceptance testing with FitNesse

If you’re creating automated acceptance tests, you should be including them in your
automated build. This is also true for tests based on FitNesse.

284 CHAPTER 8 Requirements and test management
FitNesse will need to know where to find the code that will run the tests and the appli-
cation code that the tests will verify. This is done with a special wiki syntax: !path ./
myclasses. Multiple paths can be created on separate lines, as shown here:

!path ./target/classes/main
!path ./target/classes/examples
!path ./lib/commons-logging.jar
!path ./lib/fitnesse.jar
!path ./lib/log4j-1.2.9.jar
!path ./lib/slf4j-simple-1.5.6.jar
!path ./lib/slf4j-api-1.5.6.jar
!path ./lib/javassist.jar
!path ./lib/google-collect-1.0-rc4.jar
!path ./lib/dom4j-1.6.1.jar
!path ./lib/commons-vfs-1.0.jar

The path is relative to the working directory in which the FitNesse server was started.
Child pages inherit the path of parent pages and can add to the path.

 FitNesse originally sat on top of the Fit test system, but Fit has been stagnant since
reaching a mature feature set. Additionally, Fit isn’t always easy to translate to other
languages. This isn’t an issue if you don’t want to translate the existing library to other
languages. But the FitNesse team decided to implement a new test system that they
named SLIM. FitNesse can be used with either the Fit or the SLIM test system. If you’re
just starting with FitNesse, consider choosing SLIM. SLIM is what we’ll use in all the fol-
lowing examples; the previous sections of this chapter already demonstrated the use
of Fit.

 To use SLIM, you must tell FitNesse that you wish to use that test system. You can do
this with more special wiki syntax:
!define TEST_SYSTEM (slim)

This should go in the top-level wiki page of your suite of tests, and then all child pages
will inherit this property.

FITLIBRARY FitLibrary is another option in addition to SLIM. Most people
who are using the Fit test system use the FitLibrary, which is still maintained

(continued)

Here are a few options for including FitNesse in an automated build:

■ Use the set of Ant tasks that come with FitNesse to integrate FitNesse into your
build system.

■ Include FitNesse in your Maven-based build with the Maven FitNesse Plug-in.
■ Use the Hudson/Jenkins plug-in for FitNesse to integrate FitNesse in Hudson/

Jenkins directly.
■ Use JUnit to run the FitNesse tests by using the JUnitHelper class that ships

with FitNesse. This way you can create JUnit XML result files that can be reported
by any build server.

285BDD in FitNesse with GivWenZen
and which has a lot of useful features. Unfortunately, the FitNesse team
doesn’t verify FitLibrary is still working with each release, and occasionally
FitLibrary stops working with the latest version of FitNesse.

8.4.1 Testing with GivWenZen

Every SLIM test needs a fixture. A fixture is code—Java in this case—that executes a
test. SLIM has several built-in table or fixture types: script tables, decision tables, query
tables, and so on. We’ll be using a simple script table because with GivWenZen the
majority of the code required to execute the tests goes into Java classes, which are
referred to as step classes.

 GivWenZen comes with a simple fixture, which we’ll start with: org.givewenzen
.GivWenZenForSlim. To tell a test page where to find the fixture, you use a special
import table:

|import|
|org.givwenzen|

Now you can tell SLIM to use the fixture with a script table start command:

-|script|
|start|giv wen zen for slim|

Notice the - before the |script| code. This will hide the first row of a table in SLIM.
The |script| row is purely technical and adds no value to understanding the test. If
you’re writing a test, it’s needed. But it’s not needed when reading the test, so it’s bet-
ter to hide it (so it’s not shown in the reporting—more on that a bit later).

 Our first page could look like this:

|import|
|org.givwenzen|

-|script|
|start|giv wen zen for slim|

-|script|
Given	A flight departing at 0800
And	the flight arrives at 1000
When	the flight departure is delayed by 20 minutes
Then	the flight should depart at 0820
And	the flight should arrive at 1020

Run this test by clicking the Test button on the left-hand menu. You should results
similar to those shown in figure 8.7.

 The test will fail, but the fixture should start successfully. We’re working in a TDD
style at the story level, so its failure is expected. As mentioned earlier, BDD is a nice
extension of TDD, when done correctly.

Listing 8.18 Completed test page

Tell page where
to find fixture Hide

command

Tell SLIM to
use fixture

Provide
test stub

286 CHAPTER 8 Requirements and test management
What has happened here is that FitNesse has found the fixture and called the meth-
ods given, when, then, and and, passing in the step text as the first parameter. Because
we’ve not defined these steps anywhere, GivWenZen is throwing an exception. Let’s
take a quick look at the fixture we’re using:

public class GivWenZenForSlim implements GivWenZen {
 private GivWenZenExecutor executor;

 public GivWenZenForSlim() {
 this(GivWenZenExecutorCreator.instance().create());
 }

 public GivWenZenForSlim(GivWenZenExecutor executor) {
 this.executor = executor;
 }

 public Object given(String methodString)
 throws Exception {
 return executor.given(methodString);
 }

 public Object when(String methodString) throws Exception {
 return executor.when(methodString);
 }

Listing 8.19 GivWenZenForSlim script fixture

Figure 8.7 Our first, simple test setup, including a fixture

Name of
fixture classb

Rows in wiki mapped
to methods in fixturec

287BDD in FitNesse with GivWenZen
 public Object then(String methodString) throws Exception {
 return executor.then(methodString);
 }

 public Object and(String methodString) throws Exception {
 return executor.and(methodString);
 }

 public GivWenZenExecutor getExecutor() {
 return executor;
 }

 public Object Given(String methodString)
 throws Exception {
 return given(methodString);
 }

 public Object When(String methodString) throws Exception {
 return when(methodString);
 }

 public Object Then(String methodString) throws Exception {
 return then(methodString);
 }

 public Object And(String methodString) throws Exception {
 return and(methodString);
}

The name of the fixture class B maps to the |start| command on the wiki page.
Notice that the given, when, then, and and methods all take a single string parameter.
The SLIM script fixture C turns rows into method calls. The method name is deter-
mined by taking the value in the first column in a row and every other column after
that and concatenating them. The other columns are expected to be parameters to
the method.

 A test specification written as |Given|...| calls the method public Object

Given(String methodString). A test specification written as |given|...| calls the
method public Object given(String methodString). This is because SLIM uses a
case-sensitive matching for methods. To demonstrate this, our example fixture has
two of each method: one beginning with a lowercase letter and one beginning with an
uppercase letter. Writing both versions of methods can be convenient if you want to
be free in which initial letters you use while writing the test specification d.

 Our fixture is simple, so the first column in the test is given, when, then, or and.
We have no additional method columns, and we have one parameter column that gets
passed in to the given, when, then, and and methods. It’s a fairly easy concept, and
that’s all you need to understand about fixtures to use GivWenZen. Now let’s imple-
ment the steps of the test.

SLIM methods
are case sensitived

288 CHAPTER 8 Requirements and test management
 At present, our tests are failing with an error because the steps aren’t imple-
mented. See the following sample error output:

__EXCEPTION__:org.givwenzen.DomainStepNotFoundException:
You need a step class with an annotated method matching this pattern:

'A flight departing at 0800'
The step class should be placed in the package or sub-package of bdd.steps or

your custom package if defined.
Example:
 @DomainSteps
 public class StepClass {
 @DomainStep("A flight departing at 0800")
 public void domainStep() {
 // TODO implement step
 } }

The exceptions are listed at the top of the wiki page. SLIM doesn’t put them in order,
but it’s easy to figure out which one belongs to which row in most cases. The error for
the first row in the table states we need a step class that has a method with an annota-
tion that matches our step text. The first thing we need to do is create a step class.

 By default, GivWenZen looks for step classes in the bdd.steps package, and the
class should be annotated with @DomainSteps:

package bdd.steps;
import org.givwenzen.annotations.DomainSteps;
@DomainSteps
public class FlightSteps {
}

Now that we have the step class, we can start by copying the example method from the
error message and adding it to the class. Then we should fix the name of the method,
because domainStep isn’t descriptive. Let’s call it createFlight and make the method
return a Boolean and return false for now.

 When we run the test again, the former error is gone and the first row has a red
background in the first column, indicating that the row executed but failed. Return-
ing false for a row causes SLIM to display it as a failure.

 I recommend starting each BDD cycle by getting all your tests to a failure state, with
no exceptions. Once there are no exceptions, make the tests pass. Go ahead and cre-
ate all the methods you need; it’s easiest to start with the example methods in the
exceptions GivWenZen throws. After you’re done, your step class should look similar
to the following listing.

package bdd.steps;

import org.givwenzen.annotations.DomainStep;
import org.givwenzen.annotations.DomainSteps;

@DomainSteps

Listing 8.20 FlightSteps with default failing steps

Define class
implementing
test steps

289BDD in FitNesse with GivWenZen
public class FlightSteps {
 @DomainStep("A flight departing at 0800")
 public boolean createFlight() {
 return false;
 }

 @DomainStep("the flight arrives at 1000")
 public boolean flightArrivesAt() {
 return false;
 }

 @DomainStep("the flight departure is delayed by 20 minutes")
 public boolean delayFlightBy() {
 return false;
 }

 @DomainStep("the flight should depart at 0820")
 public boolean verifyFlightDepartsAt() {
 return false;
 }

 @DomainStep("the flight should arrive at 1020")
 public boolean verifyFlightArrivesAt() {
 return false;
 }
}

Your test should look like the one in figure 8.8.

Map wiki row
to test method

Return false
from test

Figure 8.8 Steps implemented (with default method bodies), no exceptions; all failed tests

290 CHAPTER 8 Requirements and test management
Finally, you can make your test pass by implementing the methods. Step method param-
eters are created with regular expression captures that use a regular expression syntax
in parentheses: (.*). We’ll change 0800 in the annotation for the createFlight
method to the value (.*). Next, we’ll add a string parameter to the method signature
called departureTime. We’ll also create a calendar object; this isn’t a good object for
scheduling, but it will work for our simple examples. We’ll set the hour of the day and
minutes based on the string passed in. Finally, we’ll set the time on the flight object and
change the return from false to true.

 This should result in a method similar to the following:

@DomainStep("A flight departing at (.*)")
public boolean createFlight(String departureTime) {
 Calendar departureCal = Calendar.getInstance();
 departureCal.set(Calendar.HOUR_OF_DAY,
 Integer.valueOf(departureTime.substring(0,2)));
 departureCal.set(Calendar.MINUTE,
 Integer.valueOf(departureTime.substring(2)));
 flight = new Flight();
 flight.departsAt(departureCal);
 return false;
}

You can run the test now, and the first row should turn green to indicate that the test
is passing. I normally have only the then steps of my tests turn green because these are
the real confirmations of completeness.

 When you start the next step, you’ll see that you need the same exact conversion to
a calendar for the arrival time. We’ll use the GivWenZen and Java property editors to
manage these types.

8.4.2 GivWenZen and Java PropertyEditors

Like SLIM, GivWenZen can use Java property editors to convert to a specific type. Let’s
do that now and move the conversion code into the property editor.

 Let’s create a class named CalendarEditor that extends PropertyEditorSupport
and put it in the bdd.parse package. By default, Java’s java.beans.PropertyEditor
functionality looks for a property editor in the same package as the class it creates.
Because this is the calendar object, we probably don’t want to put it in that package.
GivWenZen has another package that it looks for in PropertyEditor and that is, you
guessed it, the bdd.parse package.

 We need to override one method in the CalendarEditor and that’s setAsText.
This is where we’ll move the conversion from string to calendar, too. We should end
up with a class that looks like this:

public class CalendarEditor extends PropertyEditorSupport {
 @Override
 public void setAsText(String departureTime {
 Calendar departureCal = Calendar.getInstance();
 departureCal.set(Calendar.HOUR_OF_DAY,
 Integer.valueOf(departureTime.substring(0,2)));
 departureCal.set(Calendar.MINUTE,

291BDD in FitNesse with GivWenZen
 Integer.valueOf(departureTime.substring(2)));
 setValue(departureCal);
 }
}

Now we can change the parameter in FlightSteps#createFlight to a calendar,
greatly simplifying the method. The new method signature is public boolean

createFlight(Calendar departureTime).
 The implementation of our next method, flightArrivesAt, should be simple

now. Change the 1000 value to (.*) in the annotation and add a calendar parameter
called arrivalTime. Implement a new method on the flight that accepts the arrival
time, and change the return statement to true. Now the first and second step should
pass the test.

 You don’t need a property editor for converting to native types such as int, dou-
ble, and so on, or for converting to a string. Everything we’ve done in code, including
the fixture, should be driven with TDD. The step classes and methods and the editors
we create should all follow good coding practices.

 The test currently looks a bit like a unit test, and this isn’t the sweet spot for Fit-
Nesse or GivWenZen. GivWenZen is best used for functional and acceptance testing of
a story. In the real world, we would already have some type of domain created, and it
would need to be instantiated and interacted with. In between making each step pass,
we would be writing unit tests and creating classes to integrate them into real func-
tionality. Moving ahead and finishing the implementation of the remaining steps
leads us to the following listing.

@DomainSteps
public class FlightSteps {
 private Flight flight;

 @DomainStep("A flight departing at (.*)")
 public boolean createFlight(Calendar departureTime) {
 flight = new Flight();
 flight.departsAt(departureTime);
 return true;
 }

 @DomainStep("the flight arrives at (.*)")
 public boolean flightArrivesAt(Calendar arrivalTime) {
 flight.arrivesAt(arrivalTime);
 return true;
 }

 @DomainStep("the flight departure is delayed by (\\d+) minutes")
 public boolean delayFlightBy(int delayBy) {
 return flight.delayBy(delayBy);
 }

 @DomainStep("the flight should depart at (.*)")
 public boolean verifyFlightDepartsAt(Calendar expectedDepartureTime) {

Listing 8.21 Steps and flight

Fully implemented
flight steps

292 CHAPTER 8 Requirements and test management
 return expectedDepartureTime.get(Calendar.HOUR_OF_DAY) ==
 flight.getDepartureHour() &&

 expectedDepartureTime.get(Calendar.MINUTE) ==
 flight.getDepartureMinute();

 }

 @DomainStep("the flight should arrive at (.*)")
 public boolean verifyFlightArrivesAt(Calendar expectedArrivalTime) {
 return expectedArrivalTime.get(Calendar.HOUR_OF_DAY) ==
 flight.getArrivalHour() &&
 expectedArrivalTime.get(Calendar.MINUTE) ==
 flight.getArrivalMinute();
 }
}

public class Flight {
 private Calendar arrivalTime;
 private Calendar departureTime;

 public void departsAt(Calendar departureTime) {
 this.departureTime = departureTime;
 }

 public void arrivesAt(Calendar arrivalTime) {
 this.arrivalTime = arrivalTime;
 }

 public boolean delayBy(int delayBy) {
 arrivalTime.add(Calendar.MINUTE, delayBy);
 departureTime.add(Calendar.MINUTE, delayBy);
 return true;
 }

 public int getDepartureHour() {
 return departureTime.get(Calendar.HOUR_OF_DAY);
 }

 public int getDepartureMinute() {
 return departureTime.get(Calendar.MINUTE);
 }

 public int getArrivalHour() {
 return arrivalTime.get(Calendar.HOUR_OF_DAY);
 }

 public int getArrivalMinute() {
 return arrivalTime.get(Calendar.MINUTE);
 }
}

We now have a first passing test. Quite often your tests will have steps that touch mul-
tiple parts of your domain. Because we put steps related to each separate domain
aggregate or service in different step classes in this example, we’ll probably need to
share states with them. GivWenZen allows this by telling the GivWenZenExecutor,
which was created in our fixture, what the shared state is. In the next section, we’ll
look at adding some additional scenarios.

Fully implemented
flight object

293BDD in FitNesse with GivWenZen
8.4.3 Adding further scenarios

In the flight-scheduling program, what we might have is some additional functionality
related to airports and their behavior. We might also have some scenarios related to
choosing to delay a flight depending on which airport we are departing from:

As a flight scheduler
In order to see the effect that taxi time has on the departure time at an

airport
When I delay a flight the departure time should be adjusted by the delay time

plus the taxi time of the airport

Our next test, which we can call DelayFlightWithAirportTaxiTimeTest could look
like this:

Given	airport XXX
And	airport XXX has a taxi time of 15 minutes
And	A flight departing at 0800
And	the flight departs from airport XXX
And	the flight arrives at 1000
When	the flight departure is delayed by 15 minutes
Then	the flight should depart at 0830
And	the flight should arrive at 1030

You can give this a try: Create this test and run it. It should fail on the first three
given statements, with exceptions, and the when statements should fail because of
invalid values.

 Let’s create a new AirportSteps class and implement the airport steps such that
they fail without an exception and the new flight step:

@DomainSteps
public class AirportSteps {
 @DomainStep("airport XXX")
 public boolean createAirport() {
 return false; }
 @DomainStep("airport XXX has a taxi time of 15 minutes")
 public boolean airportTaxiTimeIs() {
 return false;
 }
}

For this example, let’s create an Airport class and for the tests an AirportSteps class.
We’ll create an AirportService class to give our FlightSteps and AirportSteps
access to airports.

 Next, we’ll create a fixture that uses an instance of the GivWenZenExecutor that
knows about our AirportService. To do this, we can extend GivWenZenForSlim and
override the default no-parameter constructor. In the constructor, we’ll create an
instance of the GivWenZenExecutor using the GivWenZenExecutorCreator:

public class BookExampleGivWenZenFixture extends GivWenZenForSlim {
 public BookExampleGivWenZenFixture() {
 super(GivWenZenExecutorCreator.instance().
 customStepState(new AirportService()).

294 CHAPTER 8 Requirements and test management
 create()
);
 }
}

At this point, we need to change two places that use the GivWenZenForSlimFixture to
our new BookExampleGivWenZenFixture. Ugh! FitNesse offers us a way around this.
Let’s create a special wiki page called SetUp as a child of the BookExamples suite page.
In this page, let’s put the import table and the table that starts our new fixture, as
shown here:

|import|
|org.givwenzen|
-|script|
|start|Book Example Giv Wen Zen Fixture|

This is a special wiki page that will be included at the top of every page under
BookExamples. Let’s remove the import and start tables from both of our current tests.
After changing the properties of the BookExamples page to set the Page type to Suite,
we’ll save the properties. Running the tests from the BookExamples page again results
in the original test still passing but the new test fails.

 The AirportService can now be passed to any of our step classes. Create a con-
structor in the FlightSteps and AirportSteps classes that takes an AirportService
as a parameter:

@DomainSteps
public class FlightSteps {
 private Flight flight;
 private AirportService airportService;
 public FlightSteps(AirportService airportService) {
 this.airportService = airportService;
 } ...

Now that we have both step classes with access to the AirportService, we can imple-
ment the new steps. Go ahead and do so; I won’t show that here because these are sim-
ple methods.

 Some comments before we finish this section. I would probably not have imple-
mented the state object in this case. The domain would probably have a real service
for finding and creating airports, and I would have used that from an AirportEditor.
This would have allowed me to have airport parameters instead of strings, but this
example did show that you can share states between the steps.

 It’s good practice to break the new test when it’s first coded and implements a new
story. Tests, fixtures, and step classes are code, and they should be treated like all code.
Your tests must be maintainable or they will stop being used and become useless.

SLICING FIXTURES An issue I have seen is fixtures that become too big or have
an inheritance hierarchy that’s too deep. This makes them difficult to reuse
and definitely more difficult to understand. Your fixtures, step classes, and
tests should have a logical organization that matches that of your application.

295BDD in FitNesse with GivWenZen
For me, it seems like the step class idea helps with this, but it sure doesn’t
guarantee it. As you refactor your application, your domain reorganizes your
tests and the code that goes with these tests to match the current organiza-
tion or structure of your domain. Not doing so will lead to confusion and will
increase the difficulty of maintaining the tests.

8.4.4 Creating scenarios

Scenarios allow steps to be grouped and parameterized so you can use them multiple
times with different parameters. A parameter table starts with a row that defines the
table as a scenario table by putting the word scenario in the first column. The remain-
ing columns work similarly to the method lookup of a script table. Start with the sec-
ond column and use every other column after that to build the scenario name. In
between the columns are the names of parameters.

 The following listing shows an example scenario for the delay flight tests.

|scenario|delayed|delayBy|flight|origDepartTime||origArriveTime|with taxi
time|taxiTime|should adjust departure|newDepartTime|and
arrival|newArriveTime|times|

Given	airport XXX
And	airport XXX has a taxi time of @taxiTime minutes
And	A flight departing at @origDepartTime
And	the flight departs from airport XXX
And	the flight arrives at @origArriveTime
When	the flight departure is delayed by @delayBy minutes
Then	the flight should depart at @newDepartTime
And	the flight should arrive at @newArriveTime

The name of the scenario in this example is “delayed flight with taxi time should
adjust departure and arrival times.” See how this is similar to the script table? But
notice one strange thing: There’s an empty column between origDepartTime and
origArriveTime. I left this blank in order to have the scenario name read well. This is
better, but the blank column is needed because of the “every other column” rule.

 The parameters for the scenario are the values delayBy, origDepartTime,
origArriveTime, newDepartTime, and newArriveTime. Looking down through the
steps, notice that we replaced exact values with the parameter names appended with
an @ symbol.

 You can include scenario pages by inserting the following line at the top:

!include DelayFlightWithAirportTaxiTimeScenario
|delayed flight with taxi time should adjust departure and arrival times|
|orig depart time|orig arrive time|taxi time|delay by|new depart time|new

arrive time|
|0800|1000|0|20|0820|1020|
|0800|1000|15|15|0830|1030|

The include feature is a nice option to give reusability and remove duplication. It’s
also possible to have the scenarios automatically included in the page by putting them

Listing 8.22 Delay flight with airport taxi time scenario

296 CHAPTER 8 Requirements and test management
in a page called ScenarioLibrary. Figure 8.9 shows a more complex example, also
using scenarios.

 To sum up, we have FitNesse up and running with GivWenZen. We have created a
couple of tests in the BDD style with GivWenZen, a fixture, and a couple of step classes.

 Automated acceptance tests add a lot of value to a project. Like unit tests, they
increase the confidence you have in changes you’re making to the application. They
describe the application to the whole team and are a meaningful way to collaborate
on adding value to your application. But there’s a cost: You must maintain these tests.

8.5 Summary
In this chapter, we discussed requirements management and testing, and integrating
these phases with the coding phase. Requirements management, development, and
delivery are all part of the development lifecycle. This chapter introduced collabora-
tive and barrier-free testing. We talked about data-driven tests, acceptance tests, and
behavior-driven development. By discussing real-world examples, we learned how to
integrate tools seamlessly.

 The next chapter will explore another aspect of collaborative and barrier-free
development and testing. With Groovy and Scala, we’ll talk about languages other
than Java, also running on the JVM. they’re part of the polyglot development move-
ment and bridge different technologies, including tools and languages.

Figure 8.9 Passing scenario tests

Collaborative and
barrier-free development
with Groovy and Scala
In this chapter, we’ll continue to discuss collaborative development and testing.
We’ll talk about approaches to integrating different languages for barrier-free pro-
gramming and testing. In our discussion, I’ll use the term “polyglot,” which means
multilingual, to refer to using different languages for software engineering, in con-
junction, to solve a given problem.

POLYGLOT PROGRAMMING “Polyglot programming refers to leveraging
existing platforms by solving problems via solutions that compose special
purpose languages.” —Neal Ford1

This chapter covers
■ Approaches for integrating different languages

and tools for barrier-free testing
■ Agile and polyglot, with Groovy
■ Scala and BDD, with specs2

1 Neal Ford, “Polyglot Programming: Building Solutions by Composing Languages”, www.devx.com/
codemag/Article/39419/1763.
297

www.devx.com/codemag/Article/39419/1763
www.devx.com/codemag/Article/39419/1763

298 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
 We’ll discuss Groovy and Scala, both of which are major languages that run on the
JVM. Groovy and Scala, used together with Java, bridge different languages, technolo-
gies, and tools, providing many valuable features throughout the development lifecy-
cle. As a consequence, Groovy and Scala enable the development of software without
any barriers, which makes software development a “barrier-free” experience. Both lan-
guages offer interesting features for setting up a polyglot ecosystem, leveraging exist-
ing platforms by providing solutions that involve special purpose languages. With
Groovy and Scala, you can also write tests and use behavior-driven development,
which helps to overcome various barriers:

■ Barriers between project phases and project activities (because coding and test-
ing move together more closely)

■ Barriers between artifact types (because code and executable specifications are
written on the same unified infrastructure)

■ Barriers between project roles (because tests are written collaboratively, with
mechanisms to use terms close to the problem domain)

■ Barriers between tools (because the same tools are used for programming and
testing)

In summary, barrier-free development accelerates feedback loops and removes the
sources of many potential problems that are barriers to quality.

 We’ve already looked at strategies for avoiding many common problems, and we’ve
discussed integrated approaches. Now let’s start to discuss Agile and polyglot pro-
gramming with Groovy.

9.1 Agile and polyglot with Groovy

 —This section contributed by Vaclav Pech

When talking about Agile practices and barrier-free development and testing, we
should discuss the Groovy programming language. Due to its features, Groovy is des-
tined to enrich ALM and overcome barriers between testing, development, and opera-
tions.

 Groovy is an object-oriented programming language, and it’s the major language
on the JVM besides Java and Scala. It’s a dynamic language that can also be used for
scripting. Groovy is compiled to the JVM bytecode and works seamlessly with other
bytecode that originates from Java sources.

 Groovy is well positioned to be used for testing Java code. These are the most note-
worthy features that prove this:

■ Groovy has the built-in Power Assert command (assert), which provides
detailed error reports on what went wrong during the running of assertions.

■ Groovy has built-in support for JUnit, so you can script JUnit tests in Groovy for
your Groovy and Java classes.

299Agile and polyglot with Groovy
■ Groovy has relaxed rules for typing that increase test versatility and reduce the
verbosity of tests.

■ Groovy has relaxed accessibility rules that give tests the freedom to access pretty
much any field, method, or class without having to raise the access permission
level in the target code.

■ Groovy allows easy stubbing and mocking of Java classes thanks to the dynamic
nature of Groovy meta-programming.

■ Groovy allows scripts to run Groovy tests against an already running application.
For example, a web application administrator can log in and type in Groovy
code to verify the internal state of the application with a few asserts, getting
back immediate feedback about the health of the system.

Thanks to its tight relationship with Java, Groovy can leverage the Java infrastructure
completely. All Java libraries can be used as-is in Groovy code. And vice versa, all
Groovy-written code is fully accessible from Java or any other JVM-based programming
language, such as Scala or Clojure. The power of Java and Groovy code’s seamless inte-
gration can lead to fancy constructs. For example, consider a Groovy class that imple-
ments a Java interface and that will be extended by a Java class. In this construct, a
modern editor would not distinguish between the origins of methods, be it a Java arti-
fact or a Groovy artifact (see the following listing).

package com.huettermann.polyglot;

import polyglot2.IWriter
import javax.swing.JLabel

class Book implements IWriter {
 private String m_title = "Title"
 private String m_author = "Author"

 public String getTitle() {
 return m_title
 }

 public String getAuthor(){
 return m_author
 }

def returning() {
 JLabel entityName='Result:'
 if (valueB==0) return
 return valueA/valueB
 if (a<b) {
 return a
 } else {
 return a
 }
}}

Listing 9.1 Mixing Java and Groovy

Groovy class
implementing
Java interface

300 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
package com.huettermann.polyglot;

public class Comics extends Book {
 String character;

 public static void main(String[] args){
 System.err.println(new Comics().getTitle());
 }

 public String getTitle() {
 return super.getTitle();
 }

 public String getCharacter(){
 return character;
 }
}

package com.huettermann.polyglot;

public interface IWriter {
 String getTitle();
 String getAuthor();
}

In recent years, the Groovy community has generated numerous frameworks, the
impact of which often extends beyond the boundaries of the Groovy world. Let’s look
at some of them.

■ Gradle (http://gradle.org) is a universal, enterprise-grade build system aiming
to compete with and replace Maven. Although implemented in Java, Gradle
chose a Groovy-based DSL as the language in which to write build scripts and
configuration.

■ Grails (http://grails.org) is a rapid web application development framework
that adopts many of the Ruby on Rails ideas, such as easy prototyping, scaffold-
ing, configuration-by-exception, DRY2 or DSL-based MVC architecture, as well as
proven, enterprise-scale, Java-based technologies. Groovy serves as the glue lan-
guage, connecting all the technologies, and a family of Groovy-based DSLs
enables developers to create their applications quickly and easily.

■ Griffon (http://griffon.codehaus.org), like Grails, adopts many of the Agile
principles discussed in this book to rapid desktop application development and
uses Groovy as the glue and DSL language.

■ Gaelyk (http://groovy.codehaus.org/Gaelyk) is a lightweight Groovy toolkit for
developing and deploying Groovy applications on Google’s App Engine. It pro-
vides a set of DSLs to define the MVC structure of an application and access GAE
APIs, like data management, email service, and others.

2 Don’t Repeat Yourself.

Java class extending
Groovy class

Java
interface

301Agile and polyglot with Groovy
Groovy’s ALM features include built-in testing and mocking capabilities, low-ceremony
language constructs, the flexibility to create intuitive yet powerful domain-specific lan-
guages (DSLs), a rich ecosystem of innovative frameworks, and the ability to alter code
at runtime through scripting or meta-programming. Add in Groovy’s Java-like syntax,
seamless Java-to-Groovy and Groovy-to-Java interoperability, mature IDE support, and
build tool integration, and you’ll see Groovy as the powerful vehicle that it is, with the
potential to attract and serve well many of the approximately 9 million Java developers
worldwide. Several aspects in particular are worth discussing in more depth.

First, Agile development refers to light processes as being “low ceremony,” which
many developers find more effective and productive than verbose processes that
require a great deal of “ceremony.” Groovy can help to reduce the ceremony involved
with scripting.

9.1.1 Low ceremony and scripting

Compared to Java, Groovy reduces the implied ceremony in code, often by a factor of
two or more. A dedicated syntax for lists, maps, or functions; an enhanced closure-
based API for the JDK classes, called GDK (Groovy Development Toolkit); powerful
operators; properties; named parameters; dynamic typing; and many other features all
help express programmers’ ideas concisely.

 Look at the following snippet, for example. You can see that the dedicated syntax
for collections plus all the collection-processing methods added to collections, lists,
and maps by Groovy reduce verbosity and clearly express the programmer’s intent:

['Java', 'Groovy']*.toUpperCase()
def cities = [
'Germany' : 'Berlin'
'United Kingdom' : 'London'
'France' : 'Paris'
]
[

Typing on the Java Virtual Machine

Groovy is a dynamically typed programming language, whereas Java and Scala are stat-
ically typed. Generally, a language is said to use static typing when type checking is
performed at compile time as opposed to runtime (which is dynamic typing). With JSR
223, version 6 of the Java Standard Edition can also execute scripting languages.

Java 6 comes with its own exemplary language—the Rhino JavaScript engine. Besides
that, languages like JRuby, Jython, Groovy, and Scala produce Java bytecode that runs
on the JVM. Nowadays, the JVM is more a deployment system and runtime environment
that can run many languages other than Java. With JSR 292 (and its new invoked dy-
namic bytecode), the VM offers support for other languages out of the box. Running
something other than Java source compiled code on the JVM is a generational ad-
vancement in the technology.

302 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
'http://groovy.codehaus.com',
'http://www.dzone.com',
'http://www.infoq.com'
].collect {it.toURL().text}.findAll{it.contains 'groovy'}

As a dynamic language, Groovy can accept new code at runtime. A running applica-
tion could receive new source code as text from the user or as a file, a URL, a database,
or any other location, and then compile and use it. Putting aside the security con-
cerns, which should certainly be considered and handled (perhaps by leveraging the
standard Java mechanisms of security managers), being able to add code to a live
application opens new possibilities. Think of an administration console allowing the
administrator to fire ad hoc queries or tests against a server-side application. Imagine
a business rule engine offering the ability to alter the rules on the server without any
downtime.

 Groovy scripting, particularly when combined with the DSL aspect of the language,
can also implement macro support, allowing users to customize or automate function-
ality of off-the-shelf software.

9.1.2 Domain-specific languages

Domain-specific languages (DSLs) are valued for allowing developers to express their
ideas in terms close to the problem domain. The smaller the gap is between the lan-
guage and the domain, the less code is needed (because the code is written in a spe-
cial purpose language focused on the given problem area) and the fewer bugs that are
likely to occur in the program. As a convenient side effect, a nonprogrammer domain
expert can often understand and verify the code written by a programmer.

 Groovy offers a whole set of tools for creating DSLs. The first feature is the relaxed
syntax regarding parentheses, semicolons, and the return keyword, which helps
reduce boilerplate code. The ability to override standard operators is also handy in
this context. The principles of categories and mix-ins enable classes to take on meth-
ods and properties of other classes. And we must not forget about the ability to alter
the definition of any class or object at runtime.

 To give you a taste of what’s possible, in the micro-DSL shown in the following snip-
pet the left shift (>>) operator is overridden to indicate a request to transfer money
between two accounts. I defined dynamic properties to convert numbers to money or
dates, respectively, and I altered the behavior of the toUpperCase method on the
string 'Joe' to add an exclamation mark at the end of the string, hiding the original
functionality.

'Account1' >> 350.eur >> 'Account2'
(3.days + 5.hours).ago
'Joe'.metaClass.toUpperCase = {-> delegate + '!'}

In addition to runtime modifications, the recent addition of AST Transformations to
Groovy enables greater flexibility at compile time, with all the benefits of higher per-
formance and potential assistance from IDEs or other tools when compared to the
runtime code modifications. In the following code, you can see the Registrations

303Agile and polyglot with Groovy
class defines a field named items. Thanks to the @Delegate annotation, all public
methods of java.util.List are added at compile-time to the Registrations class, so
users can invoke List-specific methods on Registrations instances (people in this
case) directly.

class Registrations {
 @Delegate List items = []
}

def people = new Registrations()
people.addAll(["Joe", "Dave"])
assert ["Dave", "Joe"] == people.reverse()

This, combined with no restrictions (whether the enhanced class has been defined in
Java or Groovy), puts explosive power at the developer’s fingertips. No wonder frame-
works such as Grails or Griffon, the success of which depends on the flexibility and
power of their DSLs, have been created around Groovy and enjoy a rapidly increasing
adoption rate.

 Check out the following examples of DSLs used to build Grails applications. The
first example shows the ease of creating simple database queries:

def recentBooks = Book.findByReleaseDateBetween now - 5, now

Defining constraints for a domain class is also intuitive, isn’t it?

country nullable:false, unique:true, inList:['de', 'uk', 'cz', 'at']

Another DSL is ready to make your life easy whenever you need to explicitly define the
mapping of your domain classes to database tables:

static mapping = {
table 'CONFERENSES'
if (current == PRODUCTION) {
country column:'COUNTRY_CODE'
age type:'integer'
}
participants fetch:'join', sort:'name'
}

DSLs help create tools that solve problems in a specific domain. Spock and easyb are
two BDD testing tools implemented as DSLs in Groovy.

9.1.3 Testing with easyb and Spock

Writing good tests is an important aspect of Agile development. Groovy comes with
built-in support for testing and mocking and can be used to test both Java and Groovy
code. IDE support for Groovy is quickly improving and now allows for efficient TDD
practices, such as the ability to define or alter class or method definitions for a specific
usage or to refactor and generate code. Two BDD frameworks have emerged from the
Groovy community—easyb and Spock. Thanks to the close Groovy and Java relation-
ship, they can both be used to implement BDD on pure Java projects.

304 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
 easyb (www.easyb.org) is a BDD framework for the Java platform. By using a specifi-
cation-based DSL, easyb aims to enable executable, yet readable, documentation. Its
specifications are written in Groovy and run via a Java runner that can be invoked with
the command line, with Maven, or with Ant. What’s more, easyb supports a few differ-
ent styles of specifications that range from RSpec’s to a story-based DSL with givens,
whens, and thens. The following example shows a test case where we invoke the
zipvalidate function using an invalid zip code, and we confirm that it appropriately
returns the value of false:

given "an invalid zip code", {
 invalidzipcode = "221o1"
}
and "given the zipcodevalidator is initialized", {
 zipvalidate = new ZipCodeValidator()
}
when "validate is invoked with the invalid zip code", {
 value = zipvalidate.validate(invalidzipcode)
}

then "the validator instance should return false", {
 value.shouldBe false
}

easyb stories provide an easy way to capture user requirements in natural language,
making requirements closely match normal conversations between people. The plain
text story DSL is separated from the behavior DSL and implementation. At the early
stages of gathering requirements, empty or “pending” stories will typically be created.
Pending stories are not yet implemented and leave the closure body unimplemented.
The implementation is expected to be provided later in the process by adding bodies
to the textual descriptions of the different steps of the story.

 Spock (http://code.google.com/p/spock/) is a testing and specification frame-
work for Java and Groovy applications. What makes it stand out from the crowd is its
beautiful and highly expressive specification language. As you can see from the follow-
ing snippet, Spock code tweaks Java syntax quite a bit. It allows you to create several
sections describing different aspects of your test, each labeled accordingly, such as
expect:, where:, when:, and then:.

class HelloSpock extends spock.lang.Specification {
 def "can you figure out what I'm up to?"() {
 expect:
 name.size() == size

 where:
 name << ["Kirk", "Spock", "Scotty"]
 size << [4, 5, 6]
 }
}

Whereas easyb takes a more traditional approach to defining DSLs in Groovy, Spock
relies on compile-time AST Transformations and therefore can stretch the allowed syn-

305Agile and polyglot with Groovy
tax a bit further. While Spock provides syntax that looks different from typical Java or
Groovy code, Spock feels comfortable to developers, who are used to unit testing
frameworks like JUnit. By leveraging the power of Groovy meta-programming and DSL
definition abilities, together with being able to help pure Java shops, both frameworks
serve as good examples of typical citizens of the Groovy ecosystem.

9.1.4 Groovy Maven ecosystem

Besides IDE support, build tools also support working with Groovy. Groovy is designed
to run alongside Java, so any build tool that works for Java works for Groovy as well.
The following listing shows an example Maven POM for compiling Groovy classes.

<dependencies>
 <dependency>
 <groupId>org.codehaus.groovy.maven.runtime</groupId>
 <artifactId>gmaven-runtime-default</artifactId>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.groovy.maven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generateStubs</goal>
 <goal>compile</goal>
 <goal>generateTestStubs</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Groovy is one of the languages you can use to write POM information that Maven sup-
ports. If you would prefer to write your POM as source code, as opposed to XML,
Groovy supports that approach. A translator tool is also available to translate a given
POM into a Groovy derivate by calling translator pom.xml pom.groovy.

 The following listing shows an example POM written in Groovy.

project {
 modelVersion '4.0.0'
 parent {
 artifactId 'artifact-parent'
 groupId 'group'
 version '1.0.0-SNAPSHOT'

Listing 9.2 Compiling Groovy with Maven

Listing 9.3 A Maven POM, written in Groovy

Add dependency
for compiling
Groovy artifacts

Call plug-in’s
goals in build
phase

306 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
 }
 artifactId 'artifact'
 version '1.0.0-SNAPSHOT'
 name 'name'
 url 'http://maven.apache.org'
 dependencies {
 dependency { groupId 'junit'; artifactId 'junit';
 version '4.7'; scope 'test' }
 dependency { groupId 'org.hamcrest'; artifactId 'hamcrest-all';
 version '1.1'}
 dependency { groupId 'log4j'; artifactId 'log4j';
 version '1.2.12' }
 }
 profiles {
 profile {
 id 'development'
 properties {
 'log4j.level' 'DEBUG'
 }
 }
 profile {
 id 'production'
 properties {
 'log4j.level' 'WARN'
 }
 }
 }

 properties {
 'log4j.level' 'info'
 }
}

Because Groovy is supported in all modern IDEs, writing POMs this way can be even
more fun.

 Groovy has many interesting applications that can help you support an Agile ALM.
Scala/specs2 provide another useful approach that supports BDD.

9.2 BDD with specs2 and Scala

 —This section contributed by Radosław Holewa

Scala, which is short for “scalable language,” is a statically typed hybrid for object-ori-
ented and functional programming. It runs on the Java platform (JVM) and is interop-
erable with Java. The Java and Scala languages share the same runtime environment
and deployment infrastructure. As a result, you can invoke your existing Java code
from inside your Scala methods and also invoke Scala code from Java. Scala, Java, and
Groovy can all be used together, so you can choose the language that best fits your
particular requirements without leaving the JVM ecosystem.

 Scala is popular, and API-breaking changes in new versions are rare. Scala was cre-
ated at a university, and clarity and richness of features were the goals in mind. Scala is

307BDD with specs2 and Scala
a fully object-oriented language. Every value or variable used in your code is an object.
This also holds for Java primitive types, which come with their own Scala wrapper
classes. In Scala, functions are first-class citizens. You can create anonymous functions,
pass functions as parameters of other functions, and even return functions as method
results. But Scala functions are also objects. You can even derive subclasses from func-
tion types.

 Scala works well in multithreaded environments due to its Actors library, which was
inspired by Erlang actors.3 Hence, multithreading applications written in Scala are
often more reliable and scalable than their Java counterparts. For example, using
actors prevents data races caused by inconsistent states, because the data is encapsu-
lated within actors and can’t be accessed from outside. The only way for actors to
cooperate is by sending messages to each other.

 Scala is an interesting and important language; it’s a generational advance in terms
of syntax and programming language approach. Fifty years of programming language
design influenced the design of Scala, and the Scala language’s origins are a major dis-
tinguishing feature as compared to Java. Java has grown over the years to serve as an
easy, multipurpose language. Scala, in contrast, represents new ideas that many pro-
grammers haven’t seen (such as applying functional programming). This can help us
all reflect on how we approach BDD and provides new models for abstraction. Scala’s
core is small but extensible, and its SDK contains many useful libraries that were devel-
oped by extending the Scala core, including the Actors and XML libraries. The lan-
guage’s flexibility also helps in creating internal and external DSLs. Scala allows you to
develop your own syntax on top of Scala language features, and it also provides combi-
nator passing for processing your own external DSL grammars.

9.2.1 Scala/specs2

specs2 (http://specs2.org) is one of the most popular external Scala libraries. It pro-
vides a BDD framework that was created by Eric Torreborre. Specs2 leverages Scala’s
flexibility and offers many constructions useful in helping to write BDD tests.

 Now it’s time for some fun. Let’s code a Coca-Cola machine example in Scala,
using the specs2 framework! (If you’re wondering, I don’t get any rebates from Coca-
Cola for doing this.)

 We’ll define our specifications within the CocaColaMachineSpec object:

import org.specs2.mutable._
object CocaColaMachineSpec extends Specification {
 "coca-cola machine" should {
 "sell one can and return change" in {
 }
 "not sell can because of wrong price and return all money" in {
}

3 For more information on the Erlang programming language and runtime environment, see www.erlang.org.

308 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
 "not sell can because of missing cans and return all money" in {
 }
 }
}

This snippet is written in what specs2 calls unit specification style, where the text is inter-
leaved with the specification code. As you can see, we created the specification using
almost pure natural language. Thanks to this fact, it’s readable not only by developers,
but also by other project stakeholders.

 The first example could be read as “coca-cola machine should sell one can and
return change.” This is the specification of the first use case: The Coca-Cola machine
will sell the child a can of Coke. This kind of definition obviously helps in understand-
ing what effect the processing should have. It also shows how elegant BDD tests can be.

 The body of this example is implemented in the next step. Here is the implemen-
tation of the first part of our specification:

"coca-cola machine" should {
 def machine = CocaColaMachine.create(5, 2) // some factory

 "sell one can and return change" in {
 val (can, change) = machine.sell(4)
 can must not beEmpty
 change must be_==(2)
 }
}

Declaring matchers

There are different ways to declare and use matchers that can look more or less like
using the English language. For example, the canonical way of expecting an option to
be “not empty” is can must not beEmpty.

This can also be written as can must not be empty (works with any object that has
an isEmpty method), but this needs a bit more machinery than creating only a new
matcher. Therefore, if you want to create a matcher like this:

moneyInEur1 must not be matchingMoney(moneyInEur2)

instead of

moneyInEur1 must not beMatchingMoney(moneyInEur2)

you would have to create a new implicit definition:

implicit def toMoneyResult(r: MatchResult[Money]) =
 new { def matchingMoney(m: Money) =
 r.apply(beMatchingWith(m))}

Consult the specs user guide (http://code.google.com/p/specs/wiki/UserGuide) for
all options.

309BDD with specs2 and Scala
Let’s take a closer look at this example. We invoke the sell method on the machine
object and receive the Coke can and change as a result. Scala/specs2 provides a spe-
cial internal DSL for writing specifications. As you can see,

■ can must not beEmpty checks if the machine delivers the can
■ change must be_==(2) checks if the returned change is 2

Thanks to the internal DSL, the code for final state checking is clear immediately. The
whole CocaColaMachineSpec object is presented in the following listing.

object CocaColaMachineSpec extends Specification {
 "coca-cola machine" should {
 def machine = CocaColaMachine.create(5, 2)

 "sell one can and return change" in {
 val (can, change) = machine.sell(4)
 can must not beEmpty
 change must be_==(2)
 }

 "not sell can because of wrong price and return all money" in{
 val (can, change) = machine.sell(1) C
 can must beEmpty d
 change must be_==(1) e
 }
 "not sell can because of missing cans and return all money" in{
 val machine = CocaColaMachine.create(0,
 val (can, change) = machine.sell(2) C
 can must beEmpty d
 change must be_==(2) e
 }
 }
}

First we use the factory method invocation b to create an instance of the CocaCola-
Machine class. For each instance, we invoke the sell() method C with the amount of
money as the argument, check the first value d of the returned tuple to make sure it
isn’t empty, and then confirm the value of the returned change e.

SPECIFICATION: CLASS OR OBJECT? A specification can be either a class or an
object. Using the class approach, you could execute the class with scala -cp
<...> specs2.run CocaColaSpec.4 JUnit can also execute this by appending
WithUnit to the extended class name: class CocaColaSpec extends
SpecificationWithJUnit.

Listing 9.4 The CocaColaMachineSpec object

4 The classpath is represented by the <...> placeholder.

Invoke factory
method

b

Invoke sell()
method

c
Check value of
returned tuple

d

Confirm returned
change valuee

310 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
specs2 is a powerful BDD framework with many useful features. It’s also flexible, which
means you can easily extend specs2. Let’s consider a subset of the previously discussed
code snippet:

val (can, change) = machine.sell(2)
can must beEmpty
change must be_==(2)

You can see what a nice piece of code we’ve specified using specs2. This code frag-
ment looks friendly and ensures good readability: can must beEmpty. The preceding
code checks the value against an empty matcher represented by beEmpty, which is the
special matcher that was created for checking options.

MATCHERS Matchers as defined in specs and pattern matching are two dif-
ferent things. A specs matcher generally doesn’t use pattern matching. You
can find more details on general pattern matching with Scala here:
www.scala-lang.org/node/120.

Matchers are constructs that simplify the code. Specs offers many predefined match-
ers out of the box, but you can create a new one, as the following example illustrates.
Let’s start by creating Currency object:

object Currency extends Enumeration {
 type CurrencyType = Value
 val EUR, USD, CHF = Value
}

This code is an example of an enumeration definition in Scala. It defines an enumera-
tion of currency values: EUR, USD, and CHF. We’ll use our currency enumeration as the
type of currency value in the Money class:

class Money(val value: Integer, val currency: Currency.CurrencyType) {
 override def equals(obj: Any) = {
 val money = obj.asInstanceOf[Money]
 value.equals(money.value) && currency.equals(money.currency)
 }

 override def toString = value + " " + currency
}

The class overrides two methods. The equals method is used by the matcher. The
Money class contains two overridden methods: equals() and toString(). The equals
method will be used to compare Money objects that belong to the matcher class. (You
could also create the Money class as a case class here to avoid ClassCastException
with obj.asInstanceOf[Money]).

 Now let’s create a new matcher for the Money class. There are different ways of cre-
ating matchers in specs2, but here is the simplest way:

def matchMoney(money: Money): Matcher[Money] = {
 (m: Money) => (m.equals(money),
 m + " is equal to " + money,

311BDD with specs2 and Scala
 m + " is not equal to " + money)
}

The following listing shows how this matcher can be used in a simple specs example.

object MoneySpec extends Specification {
 "money" should {
 "be not equal" in {
 val moneyInEur = new Money(10, Currency.EUR)
 val moneyInChf = new Money(10, Currency.CHF)
 moneyInEur must not matchMoney(moneyInChf)
 }

 "be equal" in {
 val moneyInEur1 = new Money(5, Currency.EUR)
 val moneyInEur2 = new Money(5, Currency.EUR)
 moneyInEur1 must matchMoney(moneyInEur2)
 }
 }

}

As you can see, matchers make your code compact by hiding checks inside their
implementation and providing intuitive DSL-like constructions that can be reused in
specifications.

 Another nice and useful feature of specs2 is data tables. Consider a simple test
where you want to check whether the sum of two given values was calculated correctly.
The simplest way to write such a test is to add two values directly and compare the
result with the sum. But what happens if your test is invoked for many different pre-
defined value pairs? This is where the specs2 data table feature enters the game. This
example illustrates how to use it:

"calculation example" should {
 "add values correctly" in {
 "first value" | "second value" | "sum" |>
 1 ! 2 ! 3 |
 4 ! 5 ! 9 | { (value1, value2, sum) =>
 (value1 + value2) must be_==(sum)
 }
 }
 }

Here, we define a data table with two rows of data and one row with table column
names. The first and second columns contain values that will be added, and the third
column contains the sum of the two values. The code (value1 + value2) must

be_==(sum) will be invoked for every row in the data table (excluding the column
headers row). Obviously, this is a simple and powerful solution for providing a test
data set.

Listing 9.5 Specs2 in our example

Creates instance
of Money class

Checks if moneyInEur
isn’t moneyInChf

312 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
The last feature I’d like to mention in this context is the support for literate specifica-
tions.5 Suppose you need to handle tests where the test description could also be a
part of the code that will be invoked. This way, tests can be described using a natural
language. And as another benefit, each change in the description will have an impact
on the test execution.

Eric Torreborre on the present and future of specification tools

As he reviewed this chapter, Eric Torreborre, the founder of specs/specs2, offered
the following comments:

“I built the Forms support in specs2 as an alternative to Fit in the Java world. I
wanted to (a) get the specification closer to statically typed code (whereas in
Fit the tables can’t be type checked); (b) propose more complex forms that can
be composed instead of simple tables—this suits better complex domain mod-
els; and (c) still allow for simple text to be used with appropriate code inserted
to check the literal assertions. There is still a big gap to fill in terms of collab-
oration with the business analyst (or product owner or whatever role you give
her). The big question is, can you let the BA write the specifications and then
have the developer instrument them for execution? This point is important, be-
cause the person writing the specification ultimately owns it. That’s her work,
her baby.

But there are fundamental difficulties in putting BDD and acceptance testing
tools in the hands of a BA:

■ Tools need to live close and evolve with the code. Otherwise it’s prone to the
same kind of evolution issues that we faced when trying to synchronize UML
diagrams with code.

■ Specification text needs to be version controlled, which brings in concepts
that aren’t so easy to understand for the BA (even for developers sometimes).

■ Successful specifications need to be constantly refactored like any code. This
requires some thinking skills that are close to a developer mindset.

On the other hand, leaving all the BDD artifacts in the hands of the developers
is also doomed to fail because it’s less easy to use the artifacts as communi-
cation and discussion tools.

In conclusion, I think that there is still room for improvement in that space. I
can envision tools where the developer would build templates and components
for accessing and setting up the business objects, domain, and services, and
for checking up on them. Then the BA would use those tools to write up the
specification. When those templates or components don’t exist, the BA should
still be able to create some generic or not executable ones to start off the work.”

5 For more information about literate specifications, see http://code.google.com/p/specs/wiki/
LiterateSpecifications.

http://code.google.com/p/specs/wiki/LiterateSpecifications
http://code.google.com/p/specs/wiki/LiterateSpecifications

313BDD with specs2 and Scala
9.2.2 Specs2 forms

The next example was created using specs2 Forms and creates tables with your custom
content in a convenient way.6

package alm

import org.specs2._
import specification.Forms
import form._

class FormsSpec extends Specification with Forms
{ def is =
 "Forms specification".title ^
 details ^
 """
Basic

This is a simple example to show how to mix your
 Scala code and description of your tests.
 """^
 p^
"should add two values correctly" !
{ 2 + 2 must_== 4 } ^
 p^
 """
Advanced

An advanced example that shows how to mix calculation
 forms inside of your tests.
 """^
 Form.th("a", "b", "a*b")
 .tr(multiply(2, 1, 2))
 .tr(multiply(2, 2, 4))
 .tr(multiply(2, 3, 6)) ^
 p^
 """
Failed

This is example of failed test: """^
 p^
"**this test should fail**" !
{ 2 must_== 3 } ^
 p^
 """
because there is a mistake in the code (2 != 3) """

def details =
Form.tr(field("author", "Agile ALM")).

Listing 9.6 specs2 Forms in action

6 For more information on Forms, please consult the specs2 Forms documentation: http://etorreborre
.github.com/specs2/guide/org.specs2.guide.Forms.html.

Define class to
use Forms

Create a
simple test

Invoke form to compute
multiplications

Define a simple
test that fails

Define details to be
included at top of page

http://etorreborre.github.com/specs2/guide/org.specs2.guide.Forms.html
http://etorreborre.github.com/specs2/guide/org.specs2.guide.Forms.html

314 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
 tr(field("version", "2.0"))

 def multiply(a: Int, b: Int, result: Int) =
 Row.tr(field(a), field(b), prop(a*b)(result))
}

With Forms, you can represent domain objects and declare expected values in tables.
Forms can be composed of other Forms to accommodate composite information.
specs2 allows you to write tests in what specs2 calls acceptance style. In a test written
according the acceptance style, the implementation is isolated from the specification
text and located elsewhere.

 When using the acceptance style, a list of “fragments” is concatenated by the special
caret character (^). Specification examples are written using the format: "descrip-
tion" ! body. Other special characters are used by specs2 as well. For instance, sur-
rounding an item with triple double-quotes ("""), at its start and its end, allows things
written on multiple lines to be treated as continuous strings. Another example are
blocks that are separated from each other by introducing “p” as in “paragraph”. In the
class, these special operations are often aligned on the right to leave the text on the left
free from visual markers. For more information on the layout, see http://
etorreborre.github.com/specs2/guide/org.specs2.guide.SpecStructure.html#Layout.

 Running this example outputs the report that’s shown in figure 9.1.

Define multiply method
to be used by tests

Figure 9.1 A Forms sample,
BDD with Scala

315Summary
9.2.3 Scala build ecosystem

Scala artifacts can be built with Maven. This next listing shows an extract of a Maven
POM for processing Scala artifacts.

<build>
 <plugins>
 <plugin>
 <groupId>org.scala-tools</groupId>
 <artifactId>maven-scala-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <scalaVersion>${scala.version}</scalaVersion>
 </configuration>
 </plugin>
 </plugins>

Besides Maven, the simple-build-tool (http://code.google.com/p/simple-build-tool),
sbt for short, is another powerful option for building your Scala projects. sbt is written
in Scala and can be configured and extended by using the Scala language, so you
don’t need to leave your Scala platform to configure your build scripts. Additionally,
sbt supports specs2 as well as advanced dependency management. You can use differ-
ent dependency declaration types, including Ivy and Maven configuration files. It’s
also possible to trigger sbt build scripts with Jenkins, using Jenkins’ dedicated plug-in
(https://wiki.jenkins-ci.org/display/JENKINS/sbt+plugin).

9.3 Summary
This final chapter detailed collaborative and barrier-free development and testing. We
introduced Groovy and Scala as languages that also run on the Java Virtual Machine.
They’re part of the polyglot development movement, bridging different languages,
technologies, and tools to gain the best benefit for specific project requirements. Both
languages, Groovy and Scala, provide features that can bridge the distance between
the coding and testing activities.

Listing 9.7 A Maven POM that includes Scala

Compile
artifacts

316 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala
Roundup
In this book, we discussed what Agile ALM is, and we covered strategies and tools for
implementing an Agile ALM. You’ve seen that ALM evolved from SCM, which in turn
evolved from version control. An Agile ALM enriches an ALM with Agile strategies.
Concepts are agnostic regarding tools, but I’ve offered suggestions on how to use and
integrate lightweight tools while applying Agile strategies. Concepts, as well as tools,
can be aligned with your individual requirements, and the resulting mash-up can
form an Agile ALM. I’ve shown example toolchains along with different aspects of
Agile ALM in dedicated chapters in this book.

 Consider the following items, which we’ve discussed in this book:

■ Introduce quality gates—milestones in the project where quality requirements
must be fulfilled

■ Work in isolation and as a team; maintain productive development environ-
ments, in order to focus on individual tasks, while also working collaboratively
as a team in an efficient way

■ Commit early, commit often, to provide your changes to the team and to gain
from fast feedback

■ Structure work so it’s aligned with tasks, to allow humans and tools to link work
items to technical artifacts in a traceable way

■ Include audits to detect integration issues early and often, and to improve
quality

■ Follow conventions as a team by aligning your work with standards that were
committed to by the team

■ Apply barrier-free approaches to avoid silos by integrating tools, project phases,
artifact types, activities, and considering polyglot languages and specification by
example

■ Streamline your work by implementing strategies for building, testing, staging,
and configuring artifacts

Also, consider the common questions I pointed to in chapter 1, including:

■ How can I improve communication in the team?
■ How can I set up a flexible infrastructure to secure the assets of my company?
■ What is the state of my software?
■ Which changes (requirements, bugs) are implemented in which artifacts?

Step out of your career as a software professional for a moment, and imagine yourself
doing something different, perhaps building cars or managing a restaurant. Almost all
of these activities involve interacting with a lot of people. These are all universal terms
and questions—the ideas in this book can be extended well beyond issues of software
development to address corporate challenges and project management.

 In this book, we applied these universal principles to the specific instance of soft-
ware programming. Each instance I picked could be slightly modified for a different

317Summary
managerial environment: For example, “How do I significantly improve the quality of
the food I sell at my restaurant?” Obviously, the answers across different fields will dif-
fer, but the questions are remarkably similar. Gathering requirements and then test-
ing to ensure that there is acceptable functionality is a good example of aspects that
can be applied in many different situations.

 In this book, I’ve developed a set of questions every business owner should be ask-
ing, and I’ve delivered answers for the specific instance of software programming.
We’ve examined many different problem domains, and I’ve suggested a variety of ways
to improve the development process in terms of both productivity and quality. I hope
that you have enjoyed the book and will apply these approaches in your Agile ALM.

318 CHAPTER 9 Collaborative and barrier-free development with Groovy and Scala

index
Symbols

!path ./myclasses 284
(X)aaS 20
@BeforeClass annotation 267
@BeforeSuite annotation 267
@BeforeTest annotation 267
@DataProvider annotation 259
@Delegate annotation 303
@Test annotation 261, 268
|script| row 285
|start| command 287
$HOME/.m2/settings.xml 147
$M2_HOME/conf/

settings.xml. 124
$M2_REPO/com/huetter-

mann/myartifact 126

Numerics

1.0.2-SNAPSHOT
dependency 155

A

acceptance style 314
acceptance test-driven develop-

ment. See ATDD
acceptance testing 73, 254–255

application 272–273
frameworks 272–283
gluing tests and processing

documents 276–278
running tests 278–283
specification 273–276

accidental complexity 27

ACID (Atomicity, Consistency,
Isolation, and Durabi-
lity) 173

ActionFixture class 274
activating tasks 104
Active Directory authentica-

tion 143
add() method 258
additional Bamboo Builds

tab 108
admin screen, JIRA 100
advanced permission set-

tings 140
aggregation, inheritance

and 127–128
Agile 15–17

development 98, 102, 303
strategies 34–57

and project manage-
ment 36–40

CI 43–50
component repository 50–51
process pitfall 53–57
productive work-

spaces 42–43
quality, standards, and rele-

ase cycles 51–53
version control and single

coding stream 40–41
Agile ALM

approach 194, 201, 227, 250
definition 6
fundamentals 6
key benefits 14

Agile ALM infrastructure 96
Agile ALM summary 4
Agile ALM system 96

Agile application lifecycle man-
agement. See ALM

Agile ecosystem 35
Agile Manifesto 39
Agile menu 102
Agile Planner tool 105
Agile practices, with Groovy

language 298–306
DSLs 302–303
Groovy Maven eco-

system 305–306
low ceremony and script-

ing 301–302
testing with easyb and Spock

frameworks 303–305
Agile project management 99
Agile teams 99
Agile-Trac plug-in 111
agnostic regarding tools 316
Airport class 293
AirportEditor 294
AirportSteps classes 293–294
ALM (Agile application lifecycle

management) 3–33
building blocks of 17–26

configuration, customiza-
tion, and plug-
ins 22–23

open source culture 24
polyglot program-

ming 23–24
service orientation 19–20
stakeholder focus 17–19
task-based and outside-in

development 21–22
views on release manage-

ment 19
319

INDEX320
ALM (continued)
description of 5–7
evolution of software engine-

ering 7–17
Agile 15–17
ALM 8–15
SCM 8–13

example use case 30–33
with lightweight tooling 26–30

ALM approach 104
ALM environment 114
Amazon Web Services. See AWS
Ant approach 195
Ant language, FTP communica-

tion with 195–199
Ant tool, running tests

with 278–280
antipatterns 184–185
AntRun plug-in 199
Apache POI library 270
API-breaking changes 306
application containers, interfac-

ing with Cargo tool 185–187
applications

for acceptance testing 272–273
injecting build numbers

into 227–229
Archetype plug-in 177
archetype project 177
ArgumentCaptor 183
ArgumentMatcher 183
artifact bootstrapping 135
artifact types 5, 298
artifactId coordinate 143,

175–176
artifactId data 133
Artifactory build info 233
Artifactory button 238
Artifactory commercial

version 142
Artifactory Configuration

section 230
Artifactory plug-in 230
Artifactory project 138,

141–142, 145
Artifactory repository manager

enterprise component reposi-
tory 137–145

staging artifacts in 232–236
Artifactory server 229
Artifactory UI 216, 229, 231
artifacts. See also reference 14,

30, 55
multiple, with assem-

blies 208–210

staging
and promoting 236–238
in Artifactory repository

manager 232–236
assemblies

assembly command 167
multiple web apps

with 208–210
Assembly plug-in 162
assemblyProject 165
AST Transformations 302
ATDD (acceptance test-driven

development) 254
ational Unified Process 35
Atlassian Confluence wiki 101,

109–110
Atlassian Connector for

Eclipse 107
Atlassian tool 100
atomic deployments, with Jenkins

/Artifactory bridge 231–232
atomic VCS commit 94
Atomicity, Consistency, Isolation,

and Durability. See ACID
attaching context informa-

tion 104
auditing 218–225

with Jenkins server 218–223
with Sonar tool 223–225

audits 55–56
Auto-generated settings.xml

files 141
automated acceptance tests 83
automated deployment

process 18
automatic property setting 91
automatic testing 46–47
automation 7, 14, 26, 71–72
AWS (Amazon Web Services) 20

B

backup POM files 158
balanced scorecard approach.

See BCS
Bamboo builds 106
Bamboo documentation 109
Bamboo integration in JIRA 108
Bamboo plug-in 215
Bamboo Release Management

plug-in 109
Bamboo server, build view

with 107–109
Bamboo web application 92, 97,

108

barrier-free approach 11, 251,
255–256

barrier-free approaches 316
barrier-free development 298
barrier-free experience 298
barriers 4–5, 197
bash script 195
BCS (balanced scorecard)

approach 21–22
BDD (behavior-driven develop-

ment) 22, 256–259, 306–315
in FitNesse tool 283–296

GivWenZen tool 285–290
scenarios 293–296

isolating systems with Mockito
tool 182

Scala language
build ecosystem of 315
specs2 library 307–312

BDD artifacts 312
BDD frameworks 303
BDD style 296
BDD tests 308
BDDMockito 182
Beck, Kent 35
behavior-driven development.

See BDD
big bang integrations 48
binaries, managing in conjunc-

tion with sources 135–137
binary artifacts 51
BitNami 111
black box tests 252
blame storming 77
bottom level approach 16
branch by abstraction

approach 241
branches, release 152–157
branching strategies 136
branching, for feature branch-

driven CI 238–246
breaking feature-branch CI 243
breaking locks 90
broken builds 52
broken code 42
Browse Source tab, Trac 115
bug tracking, with Trac

Tool 109–116
installing 111–112
Roadmap tab and

tickets 115–116
timeline and sources 114–115
wiki 113

bugfix branch 41
bugs 42, 80

INDEX 321
Bugzilla 103
build agents, and cloud

computing 205–207
Build Browser 238
build ecosystems, of Scala langu-

age 315
build fragments, running in Jen-

kins server 225–227
build lifecycle 128
build numbers, injecting into

applications 227–229
build pipelines 123
build scripts 122
build section 154, 219
Build server job setups 243
build view, with Bamboo

server 107–109
BUILD_NUMBER property 226
build-staging 45
build.name 235
build.number 145, 235
builds 31

.NET framework, using Team-
City tool to trigger 203–207

Bamboo 106
congruent, and workspace

management 171–177
remote, with TeamCity inte-

gration server 187–190
using MSBuild system to build

.NET framework pro-
jects 202–203

Builds panel 233
built-in Power Assert com-

mand 298
built-in project descriptor 163
built-in support, for JUnit 298
built-in testing 301
burn-down chart artifact 67
burn-down charts 99, 102
business values 17
business-facing tests 251

C

CalculatorTest class 258
CalendarEditor class 290
calendars, release plan-

ning 84–85
Capability Maturity Model Inte-

gration. See CMMI
Captain Hooks 89
capture and replay. See CR
caret character 314
caretakers 78–79

Cargo Maven2 plug-in 185
Cargo tool, interfacing applica-

tion containers
with 185–187

central repository 41
central servers 42
ceremony, reducing 301–302
change control function 9
change enablers 57
changesets 14, 94–95, 114
check command 274
check-ins. See changesets
checkstyle 133
Checkstyle plug-in 221–223
Checkstyle tool 56
CI (continuous integration) 6,

18, 31, 43–50, 172
automatic testing and inspec-

tions 46–47
continuous delivery and

deployment 47–48
Conway's law 48–49
description of 45–46
server 121–123
synchronization and continu-

ous improvement 49–50
virtuous cycle 48

CI (continuous integration)
tools 191–246

.NET framework 201–207
using MSBuild system to

build projects 202–203
using TeamCity tool to trig-

ger builds 203–207
Cobol platform 193–200

FTP communica-
tion 195–200

preconditions for 194–195
Git VCS, and git-svn bridge for

feature branch-
driven 238–246

Jenkins server 213–238
and triggering jobs 214–215
auditing 218–225
injecting build numbers

into applica-
tions 227–229

installing and configuring
Jenkins/Artifactory
bridge 229–230

Jenkins dashboard and Jen-
kins jobs 215–218

running build fragments
in 225–227

staging artifacts 232–238

web apps for multiple
environments 207–213
applying different config-

urations 210–212
multiple artifacts with

assemblies 208–210
using distribution profile

and executing
example 212–213

CI infrastructure 244
ClassCastException 310
classifier search 142
clean lifecycle 128
clean release, prepare 157
ClearCase tool 86, 105
cloud approach 112
cloud computing, and build

agents 205–207
CMMI (Capability Maturity

Model Integration) 64
coarse-grained working unit 102
Cobertura tool 56, 216, 223
CobiT (Control Objectives for

Information and related
Technology) 64

Cobol applications 192–194
Cobol artifacts 193, 198
Cobol development 193–194
Cobol platform 193–200

FTP communication
with Ant language 195–199
with Java language 199–200

preconditions for 194–195
Cobol sources 194–198, 200
Cobol support 194
CocaColaMachine class 309
code branches 46
code changes 105
code freeze 79–81
code freeze interval 136
code freeze phase 94
codebase 107
coding streams, single 40–41
Cohn, Mike 46
collaborations 6, 12, 34
collaborative develop-

ment 297–317
Agile practices and polyglot

programming with Groovy
language 298–306
DSLs 302–303
Groovy Maven eco-

system 305–306
low ceremony and

scripting 301–302

INDEX322
collaborative development (con-
tinued)
testing with easyb and Spock

frameworks 303–305
BDD 306–315

Scala build ecosystem 315
with Scala language specs2

library 307–312
summary 316–317

collaborative testing 251–259
acceptance tests 254–255
BDD 256–259
data-driven tests 253–254
executable specifications 256
ubiquitous language 255–256

command-line commands 124
command-line tool 201
commercial add-ons 143
commit (put changes) 96
commit operation 88
commit-triggered feature-

branch CI build 242
commitments, release 75–76
common-testsuite.xml file 279
Commons Net library 199
commons-logging 225
communication 35
communication points 137
compilation errors 42
compile scope 175
compile-time AST

Transformations 304
Compiled Cobol sources 194
complex multimodule

settings 127
component repositories 50–51,

121, 132–150, 232
Artifactory repository mana-

ger 137–145
managing sources and binaries

in conjunction 135–137
using subversion to

serve 145–150
component teams 78–79
comprehensive documenta-

tion 39
Concurrent Versions System. See

CVS
config.xml file 236
configurable relational data-

base 141
configuration 22–23
configuration audit function 9
configuration environments,

visual 203

configuration identification 55
configuration identification

function 9
configuration items 8–9, 54,

56–57
configurations, applying dif-

ferent 210–212
Confluence plug-in 101
congruent build manage-

ment 43, 124, 171–177
connection element 152
consecutive CI break 240
construction phase 63
containers, application

interfacing with Cargo
tool 185–187

continuous build 45
continuous building jobs 242
continuous delivery 47–48
continuous improvement 7, 26,

49–50
continuous inspection 47
continuous integration. See CI
continuous risk management 16
contract negotiation 40
Control Objectives for Informa-

tion and related Technol-
ogy. See CobiT

convenient browsing 106
Conway’s law 48–49
copy-everything execution

ID 166
copy-javadoc 166
copy-modify-merge model 90
copy-sources 166
corporate release calendar 85
CR (capture and replay) 253
created artifacts 14
createFlight method 288, 290
creating a baseline approach 51
CRM (customer relationship

management) 19
cron-like syntax 214
cross-functional process 49
cross-functional team. See feature

teams
cross-project knowledge 124
CruiseControl server 107
cryptographic key 161
cryptography, using with Maven

tool 161–162
Currency object 310
customer collaboration 40
customer relationship manage-

ment. See CRM

customer-centric acceptance
tests 256

customization 22–23
customizing 75
CVS (Concurrent Versions

System) 95, 105
cycle time 47

D

daily Scrum 76–77
dashboarding 45
dashboards, Jenkins server jobs

and 215–218
data access 20
data definition languages. See

DDLs
data manipulation language. See

DML
data synchronization 13
data-aggregation support 218
data-driven testing 253–254,

259–272
testing web UI 264–269
TestNG framework and data-

driven approach 259–262
with Microsoft Excel 270–272
with XStream library 262–264

database administrators. See
DBAs

database elements 83
database owners. See DBO
DatabaseHistory 179
DBAs (database administra-

tors) 18, 70
DBO (database owners) 70
DDLs (data definition langua-

ges) 70
death sprints 71
default Trac installation 113
DefaultSelenium class 267
defects 47
DelayFlightWithAirportTaxiTime

Test 293
deliverable. See artifact
delivery slots 79–81
delivery, continuous 47–48
delta release 70
DeMarco, Tom 52
demilitarized zone. See DMZ
dependencies, POMs

and 125–126
dependency injection, isolation

and 178–180
Dependency JAR 163

INDEX 323
dependency management 175
dependency manager 127
dependencySet element 166
deploy standard lifecycle

phase 134
deployment 47–48
deployments, atomic

with Jenkins/Artifactory
bridge 231–232

descriptorRefs section 165
descriptors element 165
design phase 9
DesignForExtensionCheck 221
dev WAR file 210
developer branches 137
developer checks 105
developerConnection sec-

tion 152
developers 17
developing Cobol applica-

tions 194
development

behavior-driven
isolating systems with Moc-

kito tool 182
collaborative. See collabora-

tive development
task-based. See also task-based

development 21–22, 116
test-driven, isolating systems

with Mockito tool 180–182
development activity 107
development efforts 14
development environ-

ment 170–190
congruent builds and work-

space management 171–177
interfacing application con-

tainers with Cargo
tool 185–187

isolating systems with Mockito
tool 177–185
antipatterns 184–185
behavior-driven develop-

ment 182
equals() method 182–183
favorite static

imports 182–183
in test-driven develop-

ment 180–182
isolation and dependency

injection 178–180
organizing static

imports 182–183

remote builds with TeamCity
integration server 187–190

development phases 5, 9
development process 123
development team 16
DevOps movement 18
discipline 14
distributed VCS 86
distribution management

servers 51
distribution profiles 212–213
distributionManagement

section 128, 140, 147–148,
157–158

DML (data manipulation
language) 70

DMZ (demilitarized zone) 133
documentation 109, 150
documents, processing 276–278
domain language 255
Domain-Driven Design 255
domain-specific languages. See

DSLs
domainStep 288
double maintenance problem 10
dry-run feature 159
DSDM 35
DSLs (domain-specific langua-

ges) 301–303, 305, 311
Dummy object 177
Duvall, Paul M. 43

E

easyb framework, testing
with 303–305

EasyB stories 304
EC2 (Elastic Cloud Com-

puting) 20
Eclipse bundle 127
Eclipse editor 103
Eclipse IDE 98
Eclipse Maven classpath

container 176
Eclipse OSGi 127
Eclipse plug-ins 103, 116, 131,

188
Eclipse standard distribu-

tion 104
Eclipse task view 103
Eclipse TeamCity Remote Run

dialog box 188
Eclipse tool 103–105
Eclipse-based task frame-

work 92, 96, 98, 103

ecosystems
Maven tool 131–132
Maven, with Groovy

language 305–306
Scala language build 315

effectiveness 54
efficiency 54
efficient comparison 107
elaboration phase 63
Elastic Cloud Computing. See

EC2
email alerts 106
empire-building 49
encapsulate data 20
enforce-once goal 160
Enforcer plug-in 161
engineering activities 67
enter command 273
environment-specific applica-

tion properties 207
environment-specific configura-

tion files 213
environment-specific data 207
environment-specific informa-

tion 210
environments, multiple 207–213
equals() method 182–183, 310
error-prone copying 175
error-prone way 135
errors, cost of repairing 44
Excel documents 253
Excel library 270
Excel, Microsoft. See Microsoft

Excel
executable specifications 256
expandproperties com-

mand 207
extensions construct 220
external DSLs 307
external libraries 133
Extreme Programming 35

F

failed tests 42
failsafe-maven-plugin 266
fallback strategies 82
fast feedback cycles 178
fast-running builds 225
favorite static imports 182–183
feature branch-driven CI 238
feature branching

CI 238–246
Lone Ranger problem 243

feature teams 78–79

INDEX324
FEST (Fixtures for Easy Software
Testing) framework, accep-
tance testing with 272–283

application 272–273
gluing tests and processing

document 276–278
running tests 278–283
specification 273–276

FEST tool 56
File Transfer Protocol communi-

cation. See FTP
fileSet element 166
filesystem 134
filtering 104
FindBugs 221, 223
Fine-grained permission

system 94, 99
finger pointing 77
first-class citizens 307
FishEye browser 216
FishEye tool 56, 105–107
FishEye, integrated into

JIRA 92, 97–98, 106
Fit (Framework for Integrated

Test) framework, accep-
tance testing with 272–283

application 272–273
gluing tests and processing

document 276–278
running tests 278–283
specification 273–276

Fit spec 281
Fit tool 56
fit.ActionFixture 273
Fit/FitNesse model 276
FitNesse server 283–284, 296
FitNesse tool, BDD in 283–296

GivWenZen tool 285–290
scenarios 293–296

FitNesseRoot folder 283
fixed constants 36
Fixtures for Easy Software Test-

ing framework. See FEST
flat files 253
flight-scheduling program 293
flightArrivesAt method 291
floating labels 51
flow, and locking 90–91
fluent interface 275
folder structures 135
force attribute 90
forms, specs2 library 313–314
Fowler, Martin 43
Framework for Integrated Test

framework. See Fit
frozen zone 79–81, 136

FTP (File Transfer Protocol)
communication

with Ant language 195–199
with Java language 199–200

FTP client 200
FTP server 195
full release 70
full-fledged repository mana-

ger 225
fully data-driven 253
function point analyses 69
functional release manage-

ment 73
functional tests 7, 46, 73, 254

G

Gaelyk framework 300
GAV coordinates 125
GDK (Groovy Development

Toolkit) 301
generate-assembly profile 165,

167
generate-sources phase 281
Git 105
git blame 153
Git push 244
Git tool 41, 86
Git VCS, and git-svn bridge for

feature branch-driven
CI 238–246

git-svn bridge, Lone Ranger
problem 243–246

GitHub 153
Gitweb 153
given component 182
Given phrase 258
given/when/then format 257
GivWenZen tool 285–290
GivWenZenExecutor 292–293
GivWenZenForSlimFixture 294
gluing, tests 276–278
GnuPG project 161–162
goals, lifecycles, phases

and 128–130
Gradle 141
Gradle framework 300
Grails applications 303
Grails framework 300
GreenHopper burn-down

charts 102
GreenHopper planning

board 102
GreenHopper view 99, 102
Griffon framework 300
Groovy artifact 299

Groovy class 299
Groovy code 299
Groovy Development Toolkit. See

GDK
Groovy ecosystem 305
Groovy language, Agile practices

and polyglot program-
ming 298–306

DSLs 302–303
Groovy Maven eco-

system 305–306
low ceremony and script-

ing 301–302
testing with easyb and Spock

frameworks 303–305
Groovy meta-programming 299,

305
Groovy scripting 302
groupId coordinate 133,

142–143, 175–176
Growing OO Software 181

H

hardening phase 79
headless running mode-running

tests 172
helper method 270
high-level processes 14
high-level solution 95
high-level tasks 103
highlighting 104
History object 179
history.rememberSearch(word)

184
hooks. See also triggers 86, 88–89
horizontal slicing 74
HTML elements 266
HTML files 253
HTTP communication

protocol 144
HTTP GET requests 146
hub infrastructure 19
Hudson Trac Plugin 115
Hudson/Artifactory integra-

tion 145
Hudson/Jenkins plug-in 284
Hudson/Jenkins server 107, 110

I

IaaS (Infrastructure as a
Service) 19–20

id element 140
ID generate-assembly 165

INDEX 325
ID nightly 269
IDE view 96, 104
idle time 90
IEEE (Institute of Electrical and

Electronics Engineers) 64
IM (instant messaging) 45
impediment list artifact 67
implicit variable 227
imports, static 182–183
improvement,

continuous 49–50
inception phase 63
include feature 295
include.projects element 171
increments 37
independent release manage-

ment function 122
individual class statements 225
Infrastructure as a Service. See

IaaS
inheritance, and aggrega-

tion 127–128
init method 211
initMocks method 183
inspections 46–47
instant messaging. See IM
Institute of Electrical and Elec-

tronics Engineers. See IEEE
integrated toolchains 250
integrated tools 28
integration 7, 119–169

and release management
function 120–123

Maven tool
feature set 124–132

Maven tool, component repo-
sitories 132–150

of TeamCity tool 203–205
integration build 31, 45, 52
integration management 19
integration test 129
integration tools 14
IntelliJ IDEA 104, 188
interfacing, application contain-

ers with Cargo tool 185–187
isEmpty method 308
isolated code stream 136
isolated sandbox 172
isolating systems, with Mockito

tool 177–185
antipatterns 184–185
behavior-driven

development 182
equals() method 182–183

favorite static
imports 182–183

in test-driven
development 180–182

isolation and dependency
injection 178–180

organizing static
imports 182–183

isolation, and dependency
injection 178–180

items field 303
iterations 37, 63
ITIL (IT infrastructure

library) 64
Ivy modules 141

J

J2EE/JEE web application 134
JAR files 162
java -jar ./lib/fitnesse.jar 283
Java artifacts 193
Java class 197, 298
Java classpath approach 176
Java Content Repository. See JCR
Java language 306

FTP communication
with 199–200

property editors, and GivWen-
Zen tool 290–292

Java libraries 122
Java property files 210
Java syntax 304
Java Virtual Machine. See JVM
java.beans.PropertyEditor 290
java.util.List 303
javadoc artifacts 166
Javadoc documents 151
Javadoc files 165
Jazz Integration Architecture 25
JCL (job control langua-

ge) 195–196, 198–199
JCR (Java Content Reposi-

tory) 141
Jenkins Artifactory plug-in 229
Jenkins build job page 236–237
Jenkins build number 233
Jenkins Build Pipeline plug-

in 215
Jenkins configuration panel 229
Jenkins dashboard 215–216
Jenkins Deploy plug-in 215
Jenkins integrations 222
Jenkins server 213–238

and triggering jobs 214–215

auditing 218–225
with Jenkins server 218–223
with Sonar tool 223–225

injecting build numbers into
applications 227–229

installing and configuring
Jenkins/Artifactory
bridge 229–230
atomic deployments with

Jenkins/Artifactory
bridge 231–232

Jenkins dashboard and Jen-
kins jobs 215–218

running build fragments
in 225–227

staging artifacts
and promoting 236–238
in Artifactory repository

manager 232–236
Jenkins user interface 230
Jenkins workspace 217
jenkins.build_number key 227
Jenkins/Artifactory bridge

installing and configur-
ing 229–230
atomic deployments with

Jenkins/Artifactory
bridge 231–232

Jenkins/Artifactory integra-
tion 236

JetBrains bug tracker 188
JetBrains TeamCity 187
JIRA

Bamboo integration in 108
FishEye integrated in 92,

97–98, 106
JIRA admin screen 100
JIRA connector 116
JIRA issues 106
JIRA plug-in 99
JIRA state/workflow system 102
JIRA Studio 109
JIRA ticket 102
JIRA tool 99–103
JIRA versions map 101
jiraissues macro 101
jiraportlet macro 101
job control language. See JCL
jobs

Jenkins server, Jenkins dash-
board and 215–218

triggering, Jenkins server
and 214–215

JSON object 233
JUnit format XML output 280

INDEX326
JUnit tests 130, 150, 260
JUnit XML files 284
JVM (Java Virtual Machine) 45,

132
JVM ecosystem 306

K

Kanban 65
Kaplan, Robert S. 22
key/value pairs 227

L

labels 51
language-the Rhino JavaScript

engine 301
languages, ubiquitous 255–256
Larman, Craig 44
last-minute bugs 80
late binding 48
LDAP (Lightweight Directory

Access Protocol) 99
LDAP groups authorization 143
Lean approach 52
Lean software development 52
Leffingwell, Dean 78
legacy code 23
libraries 55
lifecycle activities 14
lifecycle management 123
lifecycles phases, goals

and 128–130
Lightweight Directory Access

Protocol. See LDAP
lightweight tooling 26–30
Linux-based systems 161
listener collaborator 184
Lister, Timothy 52
load modules 194
local environment 42
local Git repository 244–245
local servers 42
locking 86, 90–91
Lone Ranger problem 243–246
low ceremony 301
lower-left quadrant 252

M

m2eclipse Eclipse plug-in 175
machine object 309
macro 101
magic barrel 36

managed environment 205
management support 99
Mantis 103
manual acceptance tests 83
Martin, Robert C. 47
mashup 23, 29
Matrix project 218
Maven 101
Maven AntRun plug-in 280
Maven approach 174
Maven artifacts 231
Maven Assembly plug-

in 162–167
Maven based project 193
Maven build 237
Maven Cargo plug-in 266
Maven compile classpath 220
Maven Dependency plug-in 165,

225
Maven Deploy plug-in 158
Maven ecosystem, with Groovy

language 305–306
Maven Enforcer plug-in 160
Maven Failsafe plug-in 130
Maven FitNesse plug-in 284
Maven GPG plug-in 161–162
Maven Jetty plug-in 213
Maven modules 217
Maven POM 228, 305
Maven profiles 226
Maven project 220, 223
Maven property 228
Maven Release plug-in 151–152,

160, 212
Maven SCM plug-in 152
Maven scripts 199
Maven Site plug-in 152
Maven site, running tests with

Maven tool and adding
to 280–283

Maven Surefire plug-in 265,
281, 283

Maven tool 54, 56
component reposito-

ries 132–150
Artifactory repository mana-

ger 137–145
managing sources and bina-

ries in conjunc-
tion 135–137

using subversion to
serve 145–150

feature set 124–132
ecosystem 131–132
inheritance and aggrega-

tion 127–128

lifecycles, phases, and
goals 128–130

POMs and dependen-
cies 125–126

testing 130–131
releasing with 150–169

creating branch and pre-
paring 152–157

final tooling 167–169
Maven tool plug-

ins 160–167
testing 158–159
using cryptography

with 161–162
running tests with and adding

to Maven site 280–283
Maven-based build 232
maven.test.skip property 129
media, minimizing 50
meetings

daily Scrum 76–77
release planning 78

META-INF folders 177
meta-measurement 57
meta-model 32
meta-programming 301
metrics 74
Microsoft .NET 200
Microsoft Excel, data-driven test-

ing with 270–272
Microsoft's Team Foundation

Server 192
Mills, Harlan 37
minimalistic approach 111
minimizing media 50
mirrorOf element 140
Mock object 178
mocking capabilities 301
mocking technique 171, 177
Mockito features 178
Mockito framework 182
Mockito tool, isolating systems

with 177–185
antipatterns 184–185
behavior-driven develop-

ment 182
equals() method 182–183
favorite static imports 182–183
in test-driven develop-

ment 180–182
isolation and dependency

injection 178–180
organizing static

imports 182–183
MockitoJUnitRunner 183

INDEX 327
mocks 43
modules section 167
Money class 310
monolithic build job 215
moving targets 51
MSBuild framework 201
MSBuild system, using to build

.NET framework pro-
jects 202–203

Multi project 235
multimodule project 161
multiple check-ins 94
Multiproject support 111
MVC structure 300
mvn clean install site com-

mand 282
mvn clean jetty 213
mvn clean package 212
mvn deploy 143
mvn install 130
mvn release 157–158
myFirstRelease branch 153
Mylyn framework 92, 97, 103
Mylyn monitors 103
Mylyn subprojects 104
Mylyn tool 56, 103–105

N

name element 147
needs-lock property 91
.NET artifacts 201
.NET framework 201–207

using MSBuild system to build
projects 202–203

using TeamCity tool to trigger
builds 203–207
build agents and cloud

computing 205–207
integration 203–205
visual configuration envi-

ronment 203
.NET projects 205, 214
network filesystem 150
nightly build 31
non-Java artifact types 193

O

object-oriented language 298,
307

obligatory character 83
one size fits all infrastructure 15
one-medium approach 86–88

OnlineTranslator 179
open Agile ALM infra-

structure 193
Open Services for Lifecycle Col-

laboration. See OSLC
open source culture, and

standards 25–26
Open source project teams 145
open source tools 28
Open Systems Interconnection.

See OSI
OpenPGP Message Format 161
OpenPGP standard 161
organizational borders 12
origArriveTime 295
origDepartTime 295
OSGi apps 131–132
OSGi bundles 128, 131
OSI (Open Systems Intercon-

nection) 199
OSLC (Open Services for Lifecy-

cle Collaboration) 25, 32,
105

Outlook tasks 115
outside-in approach 5–6, 254
outside-in development 21–22

P

PaaS (Platform as a Servi-
ce) 19–20

Page button, Trac entry page 113
panta rhei 57
peopleware 6
personalized configuration set-

tings 171
phases, lifecycles, goals

and 128–130
ping-pong programming 181
pipeline 109
plain-process 15
Planner tool, Agile 105
planning board, Green-

Hopper 102
Platform as a Service. See PaaS
platform-opaque content 211
platform-specific resource

folder 211
plug-ins 22–23

Agile-Trac 111
AntRun 199
Archetype 177
Artifactory 230
Assembly 162
Bamboo 109, 215

Cargo Maven2 185
Checkstyle 221–223
Confluence 101
Eclipse 103, 116, 131, 188
Enforcer 161
Failsafe 265
FishEye 106
Hudson/Jenkins 284
Jenkins Artifactory 229
Jenkins Build Pipeline 215
Jenkins Deploy 215
JIRA 99
m2eclipse Eclipse 175
Maven AntRun 280
Maven Assembly plug-

in 162–167
Maven Cargo 266
Maven Dependency 165, 225
Maven Deploy 158
Maven Enforcer 160
Maven Failsafe 130
Maven FitNesse 284
Maven GPG 161–162
Maven Jetty 213
Maven Release 151–152, 160,

212
Maven SCM 152
Maven Site 152
Maven Surefire 265, 281, 283
Maven tool 160–161
Release 152, 156–157
Selenium Maven 265
versions 156
wagon-svn 147

polyglot programming 23–24,
298–306

POM build section 220
POM snippet 218
POM version 210, 212, 237
pom.xml files 148, 157
POMs (project object models),

and dependencies 125–126
post-unlock hook trigger 89
postcommit hook trigger 89
postlock hook trigger 89
pre-check-in tests 47
pre-unlock hook trigger 89
precommit hook trigger 89
prelock hooks 91
prepare-release profile 167
prepareRelease parameter 167
press command 274
private builds 31, 42
problematic change-sets 240
process models 35

INDEX328
process pitfall 53–57
change enablers 57
configuration items 54–57
effectiveness and efficiency 54

processes 14, 54
produced modules 233
product backlog artifact 67
product category 14
product owner role 67
production operators 18
production-level repositories 141
productive development envi-

ronments 42
productive workspaces 173
programming, polyglot 23–24
project activities 298
project artifacts 55
project management

Agile 99
Agile strategies and 36–40
with Trac Tool 109–116

installing Trac tool 111–112
Roadmap tab and tic-

kets 115–116
timeline and sour-

ces 114–115
wiki 113

project managers 97
project object models. See POMs
project phases 298
project roles 298
project tracking tool, JIRA 56
promoting, artifacts

and staging 236–238
promotion build 232
properties build.name 145
properties.xml file 283
property editors, Java language

and GivWenZen tool 290–292
PropertyEditor 290
proxy repository 133
public boolean createFlight(Cal-

endar departureTime) 291
public Object Given(String

methodString) 287
public repository 132
Published Modules tab 235
pyramid of steadiness 15

Q

QA testing 18
quality 51–53
quality gates 47, 53, 83–84, 316
quality pitcher 36

R

rapid application develop-
ment 107

Rational Quality Manager 25
Rational Requirements Compo-

ser 25
rational unified process. See RUP
RCP (rich client platform) 131
ready to go tool suites 29
real-time notifications 97
Redmine tool 111
Registrations class 303
regression tests 252
release 68–70, 156–158, 167

commitments 75–76
content of 72–74

and tests 73–74
release container and

release 0 73
duration of 70–72
perform goal 157
planning meeting 78
planning vehicles 84–86

calendar 84–85
screenplay 85–86

prepare goal 156, 167
stage goal 158
types and categories of 70

release backlog 75
release category 70
release cycles 51–53
release durations 71
release kickoff 66
release management 10, 19, 73,

119–169
integration and release mana-

gement function 120–123
Maven tool, releasing

with 150–169
release manager 18
Release plug-in 152, 156–157
release.properties file 158
release/build/deploy/config

block 11
releaseProfiles element 212
releasing, with Maven

tool 150–169
creating branch and prepar-

ing release 152–157
cryptography 161–162
final tooling 167–169
Maven tool plug-ins 160–167
testing 158–159

remote (HTTP) server 157
remote builds, with TeamCity

integration server 187–190
remote repository 132
repo1-cache 140
reporting section 126, 219
repositories synchronize

people 123
repositories, component 50–51,

132–150
Artifactory repository mana-

ger 137–145
managing sources and bina-

ries in conjunction 135–137
using subversion to

serve 145–150
repository browser 235
repository element 147
repository event 88
repository manager 134
repositoryKey 236
reproducibility 4
requirement-based appro-

aches 69
requireReleaseDeps rule 160
resources/costs pitcher 36
retrospectives 77
return on investment. See ROI
RIA (rich internet applica-

tion) 259
rich client platform. See RCP
rich internet application. See RIA
risk management 15
Roadmap tab and tickets

Trac tool 115–116
ROI (return on investment) 6, 15
rolling back approach 83
rolling wave planning 75
Royce, Winston W. 36
rules, enforcing with hooks 88
run mvn clean install 230
runtime configuration set-

tings 40
RUP (rational unified pro-

cess) 63

S

SaaS (Software as a Ser-
vice) 19–20

safety checks 77
sandbox (your workspace) 93
sandboxes 170
sanity checks 47

INDEX 329
sanity test 31
Scala artifacts 315
Scala language

build ecosystem of 315
features 306–307
Forms 313–314
specs2 library 307–312

Scala wrapper classes 307
ScenarioLibrary 296
scenarios 293–296
SCM (software configuration

management) 3, 8–13, 55
basics of 8–10
development of 10–13

SCM checklist 56
SCM configuration 152
scope pitcher 36
scopes 47
screenplays, release plan-

ning 85–86
scripting 301–302
Scrum 35, 76–77
Scrum Agile methodology 37
Scrum framework 16
Scrum master role 67
Scrum release manage-

ment 61–91
implementing 68–84

delivery slots, frozen zone,
and code freeze 79–81

feature teams, component
teams, and care-
takers 78–79

progress and size of working
units 74–75

quality gates 83–84
release 68–70, 75–76
staging software 81–83
synchronization

points 76–78
introduction to 62–68
release planning

vehicles 84–86
calendar 84–85
screenplay 85–86

Subversion version control
system 86–91
flow and locking 90–91
hooks 88–89
one-medium

approach 86–88
Scrum template 67
SDLC (software development

lifecycles) 13, 29

secure copy (scp) 134, 159
Selenium Core 264
Selenium framework, testing

web UI with 264–269
Selenium Maven plug-in 265
Selenium RC (Selenium

Remote Control) 264, 266
Selenium tool 56
self-hosted proxy repository 134
self-hosted repository mana-

gers 145
sell() method 309
semantic correctness 172
server-based VCS 242
serverHost 267
serverPort 267
servers, Jenkins. See Jenkins server
service orientation, SaaS, IaaS,

PaaS 19–20
service provider interface. See SPI
service-oriented architecture. See

SOA
setAsText 290
settings.xml file 124, 139
SetUp wiki page 294
shadow processes 29
shared data problem 10
short release cycles 71
Siemens Corporate Research

and Technologies 32
signal files 197
silos 4, 29
single-select dropdown 142
single-sourcing product informa-

tion 256
site element 135
site lifecycle 128
slicing of features 74
slicing of functionality 74
SLIM test system 284–285
SmartDictionary 179–180
smoke tests 31, 42–43, 47
snapshotRepository ele-

ment 135, 147
snapshots artifacts 135
SOA (service-oriented archite-

cture) 20
Software as a Service. See SaaS
software configuration manage-

ment. See SCM
software craftsmanship 47

software development lifecycles.
See SDLC

software engineering, evolution
of 7–17

Agile 15–17
ALM 13–15
SCM 8–13

software, staging 81–83
Sonar tool, auditing

with 223–225
Sonatype 175
sorting 104
source repositories 50
Source tab 106
source-control repository 98
sources 51

managing in conjunction with
binaries 135–137

Trac tool 114–115
tracking changes with Fisheye

tool 105–107
specification by example 73
specification-based DSL 304
specification-oriented tec-

hnique 257
specifications

executable 256
processing 273–276

specs2 library 307–312
SPI (service provider inter-

face) 146
spiral model 35
Spock code 304
Spock framework, testing

with 303–305
Spring support, for JUnit 172
sprint (release) backlog arti-

fact 67
sprints 63
src/test/java folder 130, 260
stability 16
stable states 57
staged builds 123, 215
staging artifacts

and promoting 236–238
in Artifactory repository

manager 232–236
staging build 232
staging in Artifactory 232
staging ladder 82
staging software 81–83
stagingRepository para-

meter 158

INDEX330
stakeholders
focus on 17–19
using Subversion 87

standard distribution,
Eclipse 104

standard TestNG report 280
standards 25–26, 51, 53
start command 273
Start-commit hook trigger 89
state object 294
state-of-the-art releasing 232
state/workflow system, JIRA 102
static HTML 101
static imports 182–183
status accounting 55
status accounting function 9
steadiness pyramid 15–16
stealing locks 90
story-based DSL 304
strategies 6, 35
streams, coding single 40–41
structural database changes 85
structural releases 70
submodules 160
suboptimal collaboration 12
Subversion hooks 137
Subversion repository 87, 156
Subversion revisions 115
Subversion tool 41
Subversion VCSs 146, 239
Subversion version control sys-

tem 86–91
flow and locking 90–91
hooks 88–89
one-medium approach 86–88

Subversion-based Maven reposi-
tory 148

subversion, using to serve reposi-
tory 145–150

Sun/Oracle code conven-
tions 222

Super POM 127, 140
svn 147
svn copy 152
SVN hooks 156
SVN repository 151
SVN tag location 154
svn unlock word.doc 90
Swing application 272
SWT applications 250
synchronization 49–50
synchronization points 76–78,

123
daily Scrum 76–77

release planning meeting 78
retrospective 77

system infrastructure 95

T

TableRowSorter 272
TAG folder 158
tagBase element 154
.tar.gz format 163
task AGILEALM-10 108
task view, Eclipse 103
task-based build process 31
task-based development 4–5,

21–22, 92–116
prerequisites for 93–97

changesets 94–95
coordinating chan-

ges 93–94
toolchains 97–109

build view with Bamboo
server 107–109

Eclipse and Mylyn
tools 103–105

JIRA tool 99–103
tracking source changes, with

FishEye tool 105–107
Trac tool, bug tracking and

project manage-
ment 109–116
installing 111–112
Roadmap tab and

tickets 115–116
timeline and sour-

ces 114–115
wiki 113

tasks 21
associating changesets

with 95–97
scheduling 104

TDD (test-driven develop-
ment) 180, 185, 252

TDD practices 303
TDD style 257, 285
Team Foundation Server 205
TeamCity 201, 203–205
TeamCity dashboard 189–190
TeamCity integration server,

remote builds with 187–190
TeamCity tool, using to trigger

.NET framework
builds 203–207

teamicide techniques 52

teams
Agile 99
component 78–79
feature 78–79
role of 67

technical implementation
view 138

technical release manage-
ment 73

technical releasing 86
technical tests 46
technology-facing tests 251
TELL interactions 184
temporary files 157
test matrix 251
Test spy 178
Test stub 178
test-driven development. See TDD
testAdd() method 258
testDataTable method 268
testing 249–296

acceptance, with Fit, TestNG,
and FEST frame-
works 272–283

automatic 46–47
BDD in FitNesse tool 283–296

GivWenZen tool 285–290
scenarios 293–296

collaborative 251–259
acceptance tests 254–255
BDD 256–259
data-driven tests 253–254
executable specifica-

tions 256
ubiquitous lan-

guage 255–256
data-driven 259–272

testing web UI 264–269
TestNG framework and

data-driven ap-
proach 259–262

with Microsoft
Excel 270–272

with XStream
library 262–264

Java code 298
with easyb and Spock

frameworks 303–305
with Maven tool 130–131,

158–159
TestNG framework

acceptance testing
with 272–283
application 272–273

INDEX 331
gluing tests and processing
document 276–278

running tests 278–283
specification 273–276

and data-driven
approach 259–262

testing web UI with 264–269
TestNG test method 270
TestNG test tool 259–260,

265–266, 283
testng-firefox-minimal.xml 265
testng.xml files 260
TestNG’s DataProvider 261
tests 12

content of release and 73–74
gluing 276–278

text-based JIRA approach 102
then steps 290
ticketing system 96
tickets, Trac tool 115–116
time pitcher 36
time-based estimations 69
timeboxed approach 68
timed builds 80
Timeline tab 114
timeline view 114
timeline, Trac tool 114–115
tool integrations 95
tool-centric approach 15
toolchains 4–5, 12, 26, 28–29,

97–109
build view with Bamboo ser-

ver 107–109
Eclipse and Mylyn

tools 103–105
JIRA tool 99–103
tracking source changes with

FishEye tool 105–107
tooling 54

final before release 167–169
lightweight 26–30

tools 22
TortoiseSVN 152–153
toString() method 310
toUpperCase method 302
Trac Browse Source tab 115
Trac project 111
Trac roadmap 116
Trac timeline 115
Trac tool, bug tracking and proj-

ect management
with 109–116

installing Trac tool 111–112
Roadmap tab and

tickets 115–116

timeline and sources 114–115
wiki 113

Trac toolchain 92, 103,
109–111, 116

Trac wiki 113
traceability 4, 6, 14, 96
transition phase 63
Translator object 179
translator.translate(word) 184
transparency 17
transparent processes 12
triggers 86
tringTokenizer 271
triple double-quotes 314
turnaround times, reducing 46

U

ubiquitous language 255–256
UI (user interface) 253
UI controls 253
UI tests 253
UML diagrams 312
unambiguous language 256
uniqueVersion configuration

option 147
unit specification style 308
unit tests 42
Unread tickets 103
Unscheduled area 102
update (pull changes) 96
update problem 10
url element 147
user activity 105
user interface behavior 272
user interface. See UI
user-defined parameters 218

V

value pairs, Agile Manifesto 39
value system 36
values 6
VCS (version-control systems) 8,

23, 64
VCS base URL 236
VCS branches 136
VCS browser 98
VCS changesets 104
VCS head 135
VCS in Eclipse 105
VCS mainline 241
VCS setup 244
VCS system 93–96, 98, 109

VCS tag 136
VCS tag base URL 236
VCS tools 86
vehicles, release planning 84–86

calendar 84–85
screenplay 85–86

verbose build comparison 107
verifyNoMoreInteractions()

method 184
<version/> XML element 153
version control 40–41, 55
version coordinate 142–143,

175
version element 126
version history features, Sub-

version 87
version management servers 51
version-control systems. See VCS
versioned artifacts 135
versions

lock-snapshots plug-in 156
unlock-snapshots plug-in 156

versions map, JIRA 101
vertical slicing 74
virtual machine images 112
virtual repositories 138
virtuous cycle 48
visual configuration environ-

ments 203
VMWare 20
Vodde, Bas 44

W

Wagon mechanism 147
wagon-svn plug-in 147
waiting times 90, 208
WAR files 209, 212
waterfall model 35–36
WBS (work breakdown stru-

cture) 75
web application admini-

strator 299
web apps, for multiple envi-

ronments 207–213
applying different configu-

rations 210–212
multiple artifacts with assem-

blies 208–210
using distribution profile and

executing example 212–213
web UI (user interface), test-

ing 264–269
web-based reporting 105

INDEX332
WebDAV features 134
WebSVN 152
Weinberg, Gerald M. 52
white box tests 252
wiki

Atlassian Confluence 101,
109–110

Trac tool 113
Word documents 256
work breakdown structure. See

WBS
work items 21
working in isolation 42

working offline 104
working units, progress and size

of 74–75
workspace management, con-

gruent builds and 171–177
workspaces, productive 42–43
write access rights 159

X

XML data 262
XML document 279
XML metadata 142

XML structure 262–263
xmlfileset 278
XStream library

data-driven testing
with 262–264

testing web UI with 264–269

Z

zero tolerance approach 53
.zip format 163
zipvalidate function 304

A
gile Application Lifecycle Management combines fl exible pro-
cesses with lightweight tools in a comprehensive and practical
approach to building, testing, integrating, and deploying soft -

ware. Taking an agile approach to ALM improves product quality,
reduces time to market, and makes for happier developers.

Agile ALM is a guide for Java developers, testers, and release engi-
neers. By following dozens of experience-driven examples, you’ll
learn to see the whole application lifecycle as a set of defi ned tasks,
and then master the tools and practices you need to accomplish
those tasks eff ectively. Th e book introduces state-of-the-art,
lightweight tools that can radically improve the speed and
fl uidity of development and shows you how to integrate them
into your processes.

What’s Inside
A thorough introduction to Agile ALM
Build an integrated Java-based Agile ALM toolchain
Use Scrum for release management
Reviewed by a team of 20 Agile ALM experts

Th e tools and examples are Java-based, but the Agile ALM prin-
ciples apply to all development platforms.

Michael Hüttermann is a Java Champion, a member of the JCP
and Agile Alliance, and founder of the Cologne Java User Group.
He led the Tools for Agility track at Agile 2009. Th e Technical
Editor on this book was Robert Aiello.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/AgileALM

$54.99 / Can $63.99 [INCLUDING eBOOK]

Agile ALM
SOFTWARE DEVELOPMENT

“Agile answers for managers,
 leads, and engineers.”
 —Ben Ogden, General Dynamics
 Advanced Information Systems

“Power up your Agile ALM
 tool chest with this book!” —Tariq Ahmed
 Amcom Technology

“A practical guide to
 improving the soft ware
 delivery process.” —Darren Neimke
 HomeStart Finance

“Covers a wide variety of
 tools that make up the
 Agile ALM.”
 —Craig Smith, Suncorp

“A great book for stream-
 lining and improving
 your projects!”
 —Robert Wenner
 Port25 Solutions, Inc.

M A N N I N G

123

SEE INSERT
 Michael Hüttermann

	Agile ALM-front
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the cover illustration
	Part 1 Introduction to Agile ALM
	1 Getting started with Agile ALM
	1.1 Agile ALM at a glance
	1.2 Evolution of software engineering: moving to Agile ALM
	1.2.1 SCM and the first ALM trial balloons
	1.2.2 The dawn of ALM
	1.2.3 Becoming Agile: Agile ALM

	1.3 Building blocks of Agile ALM
	1.3.1 Stakeholder focus
	1.3.2 Views on releasing and Agile ALM
	1.3.3 Service orientation, SaaS, IaaS, PaaS
	1.3.4 Task-based and outside-in
	1.3.5 Configuration, customization, and plug-ins
	1.3.6 The polyglot programming world
	1.3.7 Open source culture
	1.3.8 Open technology and standards
	1.3.9 Automation

	1.4 Comprehensive Agile ALM with lightweight tooling
	1.4.1 Toolchains and accidental complexity
	1.4.2 Agile ALM tools
	1.4.3 Effective and efficient tooling

	1.5 Example use case
	1.6 Summary

	2 ALM and Agile strategies
	2.1 The Agile and project management
	2.2 Agile strategies
	2.2.1 Version control and a single coding stream
	2.2.2 Productive workspaces
	2.2.3 Continuous integration
	2.2.4 Component repository
	2.2.5 Quality, standards, and release cycles

	2.3 The process pitfall, the illusion of control
	2.3.1 Effectiveness and efficiency
	2.3.2 Agile ALM and configuration items
	2.3.3 Agile ALM as change enabler

	2.4 Summary

	Part 2 Functional Agile ALM
	3 Using Scrum for release management
	3.1 Getting started with Scrum release management
	3.2 Implementing Scrum release management
	3.2.1 The release
	3.2.2 The release duration
	3.2.3 The release content
	3.2.4 Progress and size of working units
	3.2.5 Release commitments
	3.2.6 Synchronization points
	3.2.7 Feature teams, component teams, caretakers
	3.2.8 Delivery slots, frozen zone, and code freeze
	3.2.9 Staging software
	3.2.10 Quality gates

	3.3 Release planning vehicles
	3.3.1 Release calendar
	3.3.2 Release screenplay

	3.4 Supporting strategies with Subversion
	3.4.1 The one-medium approach
	3.4.2 Hooks
	3.4.3 Flow and locking

	3.5 Summary

	4 Task-based development
	4.1 Prerequisites for task-based development
	4.1.1 Coordinating changes
	4.1.2 Using changesets
	4.1.3 Associating changesets with tasks

	4.2 Our first toolchain—JIRA, FishEye, Bamboo, and Mylyn
	4.2.1 Managing tasks with JIRA
	4.2.2 Working on tasks with Eclipse and Mylyn
	4.2.3 Tracking source changes with FishEye
	4.2.4 Build view with Bamboo

	4.3 Trac bug tracking and project management
	4.3.1 Installing Trac
	4.3.2 The wiki
	4.3.3 Timeline and sources
	4.3.4 Roadmap and tickets

	4.4 Summary

	Part 3 Integration and release management
	5 Integration and release management
	5.1 The integration and release management function
	5.2 Maven feature set
	5.2.1 POMs and dependencies
	5.2.2 Inheritance and aggregation
	5.2.3 Lifecycles, phases, and goals
	5.2.4 Maven and testing
	5.2.5 Maven ecosystem

	5.3 Maven component repositories
	5.3.1 Managing sources and binaries in conjunction
	5.3.2 Artifactory’s enterprise component repository
	5.3.3 Using Subversion to serve a simple Maven repository

	5.4 Releasing with Maven
	5.4.1 Creating the branch and preparing the release
	5.4.2 Creating the release
	5.4.3 Testing the release
	5.4.4 Useful Maven plug-ins for releasing
	5.4.5 Using cryptography with Maven
	5.4.6 Maven assembly
	5.4.7 Tooling beyond Maven and outlook

	5.5 Summary

	6 Creating a productive development environment
	6.1 Congruent builds and workspace management
	6.1.1 Workspace management and the VCS
	6.1.2 Workspace management and integrating code
	6.1.3 Workspace management and running tests
	6.1.4 Workspace management and dependencies
	6.1.5 Workspace management and bootstrapping the development

	6.2 Using Mockito to isolate systems
	6.2.1 Isolation and dependency injection
	6.2.2 Mocks in test-driven development
	6.2.3 The flavor of behavior-driven development
	6.2.4 Other handy features of Mockito
	6.2.5 Antipatterns

	6.3 Interfacing application containers with Cargo
	6.4 Remote builds with TeamCity
	6.5 Summary

	7 Advanced CI tools and recipes
	7.1 Integrating other artifact types: Cobol
	7.1.1 Preconditions and basic thoughts
	7.1.2 FTP communication with Ant
	7.1.3 FTP communication with Java

	7.2 Integrating other artifact types: .NET
	7.2.1 Using MSBuild to build .NET projects
	7.2.2 Using TeamCity to trigger .NET builds

	7.3 Configure: building (web) apps for multiple environments
	7.3.1 Multiple artifacts with assemblies
	7.3.2 Applying different configurations
	7.3.3 Using a distribution profile and executing the example

	7.4 Building, auditing, and staging with Jenkins
	7.4.1 Jenkins and triggering jobs
	7.4.2 Jenkins dashboard and Jenkins jobs
	7.4.3 Auditing with Jenkins and Sonar
	7.4.4 Running build fragments in Jenkins only
	7.4.5 Injecting build numbers into applications
	7.4.6 Jenkins, Artifactory, staging, and atomic deployment of Maven artifacts

	7.5 Using Git and git-svn bridge for feature branch–driven CI
	7.5.1 Feature branching comes to the rescue
	7.5.2 The Lone Ranger problem and how the git-svn bridge can fix it

	7.6 Summary

	Part 4 Integration and release management
	8 Requirements and test management
	8.1 Collaborative tests
	8.1.1 Data-driven tests
	8.1.2 Acceptance tests
	8.1.3 Ubiquitous language
	8.1.4 Executable specifications
	8.1.5 Behavior-driven development

	8.2 Acceptance testing with TestNG, Selenium, XStream, and Excel
	8.2.1 TestNG and the data-driven approach
	8.2.2 Data-driven testing with XStream
	8.2.3 Testing the web UI with Selenium, TestNG, and XStream
	8.2.4 Data-driven testing with Excel

	8.3 Acceptance testing with Fit, TestNG, and FEST
	8.3.1 The application
	8.3.2 The specification
	8.3.3 Gluing the tests and processing the document
	8.3.4 Running tests with Ant
	8.3.5 Running tests with Maven and adding to a Maven site

	8.4 BDD in FitNesse with GivWenZen
	8.4.1 Testing with GivWenZen
	8.4.2 GivWenZen and Java PropertyEditors
	8.4.3 Adding further scenarios
	8.4.4 Creating scenarios

	8.5 Summary

	9 Collaborative and barrier-free development with Groovy and Scala
	9.1 Agile and polyglot with Groovy
	9.1.1 Low ceremony and scripting
	9.1.2 Domain-specific languages
	9.1.3 Testing with easyb and Spock
	9.1.4 Groovy Maven ecosystem

	9.2 BDD with specs2 and Scala
	9.2.1 Scala/specs2
	9.2.2 Specs2 forms
	9.2.3 Scala build ecosystem

	9.3 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Agile ALM-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

