

Hershey • New York
InformatIon ScIence reference

Agile Technologies in
Open Source Development

Barbara Russo
Free University of Bozen-Bolzano, Italy

Marco Scotto
Free University of Bozen-Bolzano, Italy

Alberto Sillitti
Free University of Bozen-Bolzano, Italy

Giancarlo Succi
Free University of Bozen-Bolzano, Italy

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Christopher Hrobak
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue,
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Agile technologies in open source development / by Barbara Russo ... [et al.].

 p. cm.

 Includes bibliographical references and index.

 Summary: “The aim of this book is to analyze the relationship between agile

methods and open source, presenting the basic principles and practices and

providing evidence through a set of specific empirical investigations”--

Provided by publisher.

 ISBN 978-1-59904-681-5 (hardcover) -- ISBN 978-1-59904-683-9 (ebook) 1.

Agile software development. 2. Open source software. I. Russo, Barbara.

 QA76.76.D47A395 2009

 005.1--dc22

 2008054195

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in
this book are those of the authors, but not necessarily of the publisher.

Foreword ... ix

Preface .. xi

Section 1:
Comparing Agile and Open Source Development

Introduction ... 1

Chapter 1
Historical Evolution of the Agile and Open Source Movements 4
Agile Methods ... 4
The Win-Win Spiral Software Development Model ... 5
The XP Software Development Model .. 10
Open Source Software Development .. 13
Comparison of OS and Agile Development .. 19
References ... 20
Endnotes .. 22

Chapter 2
The Agile Manifesto and Open Source Software ... 23
Introduction ... 23
Principles of Agile Software Development ... 25
VTK Example .. 26
Conclusion .. 28
References ... 28
Endnotes .. 29

Table of Contents

Chapter 3
Values and Principles Practices in Agile and Open Source Development ... 30
Introduction ... 30
Values in Agile and in Open Source Development .. 31
Principles in Agile and in Open Source .. 33
Software Practices in Agile and in Open Source Development 35
Putting the Analysis Together ... 39
References ... 40
Endnote ... 40

Chapter 4
Models of Organization .. 41
Introduction ... 41
The Agile Manifesto .. 42
Culture, People, Communication .. 43
Goals of Organization Models for AMs and XP ... 43
Organization ... 46
Key Points for Organizations .. 48
References ... 49

Chapter 5
Coordination in Agile and Open Source ... 51
Introduction ... 51
What is Coordination? .. 52
Interdependencies and Coordination Mechanisms ... 54
Coordination and New Software Development Approaches 61
References ... 72
Endnotes .. 74

Chapter 6
Other Agile Methods ... 75
Introduction ... 75
Crystal ... 76
DSDM ... 79
LSD ... 83
References ... 89

Section 2:
Agile Software Practices for Open Source Development

Chapter 7
Testing ... 91
Introduction ... 91
Testing in the Open Source Development ... 92
Use of xUnit in Agile and OS Development .. 94
A Method to Reveal the Adoption of Test First in OS Projects 95
Adoption of Test First in Open Source Projects: A Manual Inspection 96
Tool Supporting the Repository’s Inspection... 99
Excel Tool for the Analysis and Evaluation of Collected Metrics116
Example of the Use of the Macro, CruiseControl_2.1.1116
Manual Test First Analysis...119
References ... 122
Endnote ... 123

Chapter 8
Code Ownership .. 124
Introduction ... 124
Pareto Analysis ... 125
Adoption of Code Ownership in Open Source Development 125
References ... 132

Chapter 9
Design Approaches .. 133
Introduction ... 133
Agile Approaches to Design .. 134
Adoption of Big Upfront Design in Open Source Development........................ 135
Time Series Analysis ... 136
References ... 142

Chapter 10
Case Studies ... 144
Introduction ... 144
The Eclipse Software Development Process ... 145
The Eclipse Software Development Process and the XP values and practices 150
The Funambol Release Life Cycle .. 151
References ... 155

Section 3:
Empirical Evaluations

Chapter 11
A Framework for Collecting Experiences ... 157
The Rationale .. 157
Structure of the Experience Framework ... 158
Standards for Data Collection .. 159
Standards for Data Analysis ... 167
Standards for the Set Up of Experiments .. 170
Standardization for the Generalization and Validation of the Results 176
How to use the Experience Framework: An Example of Repository 179
References ... 187
Endnote ... 188

Chapter 12
Improving Agile Methods ... 189
Motivation ... 189
Data Collection ... 194
Case Study I .. 198
Case Study II ... 205
Generalization ..211
Methods for Assessing Generalization .. 212
Limitations of the Experiments ... 218
Summing Up .. 220
Final Considerations .. 222
Acknowledgment ... 227
References ... 227
Endnotes .. 231

Chapter 13
Effort Estimation .. 232
Effort Estimation in Agile Environments using Multiple Projects 232
Effort Estimation Models: An Overview ... 236
Comparative Analysis Using Two Case Studies ... 241
Model Building and Prediction ... 244
Summing Up .. 250
References ... 251
Endnote ... 255

Chapter 14
Discontinuous use of Pair Programming .. 256
Introduction ... 256
Structure of the Experiment .. 257
Results ... 262
Summing Up .. 266
References ... 267

Chapter 15
Requirements Management ... 268
Introduction ... 268
Background ... 269
Survey ... 274
Results ... 275
Discussion ... 280
Summing Up .. 283
References ... 284

Chapter 16
Project Management ... 287
Introduction ... 287
The Structure of the Investigation ... 288
Results ... 293
Summing Up .. 298
References ... 299
Endnotes .. 300

Section 4:
Industrial Adoption and Tools for Agile Development

Chapter 17
Open Source Assessment Methodologies .. 302
Introduction ... 302
Open Source Maturity Model (OSMM) from Cap Gemini 303
Open Source Maturity Model (OSMM) from Navica .. 305
Methodology of Qualification and Selection of Open Source Software (QSOS)307
Open Business Readiness Rating (OpenBRR) .. 308
References ... 310

Chapter 18
Adoption of Open Source Processes in Large Enterprises311
Introduction ..311
The Study ... 312

Chapter 19
Trust Elements in Open Source ... 334
Introduction ... 334
Trustworthy Elements.. 337
Trustworthy Elements in Companies .. 340
References ... 342
Endnote ... 342

Chapter 20
Overview of Open Source Tools for Agile Development 343
Introduction ... 343
Version Control Tools .. 345
Automated Build Tools .. 348
Continuous Integration Tools .. 350
Issue Tracking Tools .. 351
Synchronous and Asynchronous Communication Tools 352
Project Management Tools.. 354
Testing Tools .. 355
Tools to Support Specific Agile Practices ... 356
Measuring Tools .. 360
Endnotes .. 361

Conclusion ... 362

Glossary ... 364

About the Authors .. 365

Index ... 367

ix

Foreword

This book approaches two contemporary topics in the field of software engineer-
ing that have had more than a significant impact in the way the modern software is
being developed. Agile movement raised the role of experience and people in the
centre stage having a profound impact on large and small software organizations
alike. Research and practice have shown that agile is penetrating practically in
all industrial domains including the globally operating, hardware-bound software
development.

Open source software development was considered to be outside of the scope
of professional software development practice for long time. Companies perceived
the voluntarily lead programming initiatives as something that could not be part of
their strategic goal setting or daily practice. Today, a great majority of the companies
utilize the open source solutions at many levels of the organization. The corporate
strategies often include a plan where part of the software product has been opened
for getting the benefits that are associated with the open source communities.

There are many similarities in agile and open source movements. They have taken
the field by surprise and gained a significant momentum that bear long lasting impact
on the practice of software development. Both were initiated by a small group of
practitioners. They are based on a value structure, which is far from the traditional
technology orientation of many other software engineering innovations. Finally, the
two approaches value people, collaboration, and excellence as the primary drivers
of software development.

x

This book shows you that open source and agile both deal with operational ef-
ficiency approaching it from different but mutually supporting angles. The authoring
team has done a great job in highlighting the key differentiators and similarities
of the two approaches. This book stands out from the others by presenting solid
empirical evidence to support authors’ argumentation. Practitioners will find many
suggestions and guidance, and they can also see the rationale behind these ideas,
which further raises the value of this book.

Pekka Abrahamsson
Professor
University of Helsinki

Pekka Abrahamsson, PhD is a professor of computer science in University of Helsinki in Finland. He
leads large European research projects on agile software development in large systems development
settings. He has presented several key notes on agile software development in several international
conferences He has published more than 65 refereed publications in international journals and
conferences. His research interests are centered on agile software development, empirical software
engineering and embedded systems development. He leads the IEEE 1648 working group on agile
standardization and he was granted the Nokia Foundation Award in 2007. Dr. Abrahamsson is a
member of both IEEE and ACM.

xi

Preface

This book presents agile methods (AMs) and open source development (OSD) from
an unconventional point of view. Even if these two worlds seem very different,
they present a relevant set of similarities and dependences that are identified and
analyzed throughout the book.

The book is organized in four sections. The first one introduces and compares
the agile and the open source (OS) movements analyzing their evolution, their main
values and principles, and their organizational models. The second section focuses
on some specific practices that are very relevant for both agile and OS movements
(testing, code ownership, and design), and presents two success stories of integrat-
ing such worlds into a single and successful development process. The third section
focuses on empirical studies. It introduces a framework for the collection and the
comparison of empirical evidences and a set of empirical studies performed on agile
and OS projects and teams. The chapters of this section focus on single aspects of
the development process and present data collected in different kinds of experiments
performed in different contexts. The last section aims at presenting topics relevant
for industrial adoption, such as methodologies for selecting OS solutions to adopt
in companies (agile and not) and presents a catalog of OS tools that are widely
used in agile development. Since the large number of tools available may confuse
practitioners and researchers interested in experimenting some of the techniques
presented, the section aims at describing assessment methodologies and providing
a reference set of tools from which people can start.

Part of this book has been based on the work done by the authors in the EU
funded project QualiPSo and the FIRB project ArtDeco.

This book is organized as follows:

• Section 1 makes a comparison between AMs and open source software devel-
opment (OSSD) investigating the founding principles.

• Section 2 focuses on a specific subset of practices through a deeper analysis
based on empirical evidences.

xii

• Section 3 presents a set of empirical evaluations performed in different settings
to verify the effectiveness of specific practices.

• Section 4 investigates industrial adoption of OS and tools available for the
agile development.

Section 1 includes the following chapters:

• Chapter 1: Historical Evolution of the Agile and Open Source Movements
○ The Win-Win Spiral Software Development Model
○ The XP Software Development Model
○ The Cathedral and the Bazaar
○ References

• Chapter 2: The Agile Manifesto and Open Source Software
○ Individuals Over Processes and Tools
○ Working Software Over Comprehensive Documentation
○ Customer Collaboration Over Contract Negotiation
○ Responding to Change Over Following a Plan
○ References

• Chapter 3: Values and Software Practices
○ Values in Agile and in Open Source
○ Principles in Agile and in Open Source
○ Software Practices in Agile and in Open Source Development
○ References

• Chapter 4: Models of Organization
○ Culture, People, Communication
○ Goals of Organization Models for AMs and XP
○ Organization
○ References

• Chapter 5: Coordination in Agile and Open Source
○ Interdependencies and Coordination Mechanisms
○ Coordination and New Software Development Approaches
○ References

• Chapter 6: Other Agile Methods
○ Crystal
○ DSDM
○ LSD
○ References

xiii

Section 2 includes the following chapters:

• Chapter 7: Testing
○ Introduction
○ Adoption of Test First in Open Source Development
○ Example: JUnit
○ References

• Chapter 8: Code Ownership
○ Introduction
○ Adoption of Code Ownership in Open Source Development
○ References

• Chapter 9: Design Approaches
○ Introduction
○ Adoption of Big Upfront Design in Open Source Development
○ References

• Chapter 10: Case Studies
○ The Eclipse Development Process
○ The Funambol Development Process
○ References

Section 3 includes the following chapters:

• Chapter 11: A Framework for Collecting Experiences
○ The Experience Framework
○ Data Collection
○ Data Analysis
○ Example of Application
○ References

• Chapter 12: Improving Agile Methods
○ Case Studies
○ References

• Chapter 13: Effort Estimation
○ Effort Estimation Models
○ Comparative Analysis
○ References

• Chapter 14: Discontinuous Use of Pair Programming
○ The Study
○ Results
○ References

xiv

• Chapter 15: Requirements Management
○ The Study
○ Results
○ References

• Chapter 16: Project Management
○ The Study
○ Results
○ References

Section 4 includes the following chapters:

• Chapter 17: Open Source Assessment Methodologies
○ OSMM from Cap Gemini
○ OSMM from Navica
○ QSOS
○ OpenBRR
○ References

• Chapter 18: Adoption of Open Source Processes in Large Enterprises
○ The Study

• Chapter 19: Trust Elements in Open Source
○ Trustworthy elements
○ Trustworthy elements in companies
○ References

• Chapter 20: Overview of Open Source Tools for Agile Development
○ Introduction
○ Version Control Tools
○ Automated Build Tools
○ Continuous Integration Tools
○ Issue Tracking Tools
○ Synchronous and Asynchronous Communication Tools
○ Project Management Tools
○ Testing Tools
○ Tools to Support Specific Agile Practices
○ Measurement Tools

Section I
Comparing Agile and Open Source

Development

 1

Introduction

Agile Methods (AMs) are very recent but many of their basic principles are rather
old, inherited from the lean production pioneered in the ‘60s at Toyota for the pro-
duction of cars. Moreover, many practices on which AMs are based have a long
tradition in software development. For instance, unit testing has been used since
the ‘60s. However, one of the major achievements of AMs is the integration of all
these well established principles and practices with some others more recent such
as pair programming.

The Open Source (OS) movement has a long tradition as well. However, it was
born as a way of licensing software not as a development method. Moreover, people
producing OS software use a wide range of different approaches to software devel-
opment. Even if, it is not possible to define a single OS development method, there
are some basic principles and approaches that have become common in several OS
communities.

Surprisingly or not, there are many basic principles and development techniques
that are similar in AMs and OS Software Development (OSSD). As an example
further investigated in the first section of this book, the three of the four principles
of the AMs are completely embraced by OSSD.

The analysis of commonalities and differences between AMs and OSSD is at
the beginning but it is interesting to understand how some development approaches

 2 Introduction

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global
is prohibited.

have evolved during the time and whether they produce concrete benefits in terms
of software quality and customer satisfaction.

This book is a first attempt in the investigation of such relationship through of
the analysis and the comparison of the basic principles and practices, the discus-
sion of some empirical evaluations, and the presentation of promising assessment
methodologies.

This book addresses three main audiences: managers, researchers, and students.
In this book, managers can find the basic principles and practices that are the

base for AMs and OSSD, how they are related to each other, and how the organiza-
tion of the work is affected. Moreover, the last section related to industrial adoption
guides the reader into the main aspects to consider in using such technologies in a
business environment.

Researchers can find not only a theoretical analysis of the phenomena of AMs
and OS, but also the definition of an experimental framework for data collection
and analysis and a set of empirical investigations.

This book can be used by software engineering students in BSc and MSc courses
as a starting point to study how AMs and OSSD approaches the development proc-
ess and how they are related to each other.

Besides the references listed in each chapter, here below the reader can find a
small set of additional readings:

•	 Section	1: AMs and OSSD
○ Coplien, J. O., & Schmidt, D. (2004). Organizational Patterns of Agile

Software Development. Prentice Hall.
○ Goth, G. (2007). Sprinting toward Open Source Development. IEEE

Software, 24(1).
○ Koch, S. (2004). Agile Principles and Open Source Software Development:

A Theoretical and Empirical Discussion. In Eckstein, J., & Baumeister,
H. (Eds.) Extreme Programming and Agile Processes in Software Engi-
neering (pp. 85-93). Springer.

○ Mellor, S. (2005). Adapting agile approaches to your project needs. IEEE
Software, 22(3).

○ Stamelos, I. G., & Panagiotis, S. (Eds.). (2007). Agile Software Develop-
ment Quality Assurance. IGI Global.

•	 Section	2: Analysis of Practices
○ Appleton, B., Berczuk, S., & Cowham, R. (2005). Branching and Merg-

ing: An agile perspective. CM Journal. Retrieved November 11, 2008
from: http://www.cmcrossroads.com/content/view/6657/264/

Introduction 3

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global
is prohibited.

○ Cockburn, A., & Williams, L. (2001). The Costs and Benefits of Pair
Programming. In Succi, G., & Marchesi, M. (Eds.) Extreme Program-
ming Examined (pp. 223-248). Addison-Wesley Professional.

○ Davis, R. (2005). Agile requirements. Methods & Tools, 13(3).
○ Poole, C. J. (2004). Distributed product development using extreme pro-

gramming. In Eckstein, J., & Baumeister, H. (Eds.) Extreme Programming
and Agile Processes in Software Engineering (pp. 60-67). Springer.

○ Turnu, I., Melis, M., Cau, A., Marchesi, M., & Setzu, A. (2004). Intro-
ducing TDD on a free libre open source software project: a simulation
experiment. 2004 Workshop on Quantitative Techniques For Software
Agile Process.

•	 Section	3: Empirical Evaluations
○ Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., &

Lucena, V. (2008). An agile development methodology applied to em-
bedded control software under stringent hardware constraints. SIGSOFT
Software Engineering Notes, 33(1).

○ Hazzan, O., & Dubinsky, Y. (2006). Can diversity in global software
development be enhanced by agile software development? 2006 Interna-
tional Workshop on Global Software Development For the Practitioner.
Shanghai, China.

○ Racheva, Z., & Daneva, M. (2008). Using measurements to support
real-option thinking in agile software development. 2008 International
Workshop on Scrutinizing Agile Practices Or Shoot-Out At the Agile
Corral, Leipzig, Germany.

○ Rumpe, B., & Schroder, A. (2002). Quantitative Survey on Extreme Pro-
gramming Project, 3rd International Conference on eXtreme Programming
and Agile Processes in Software Engineering (XP 2002).

○ Turnu, I., Melis, M., Cau, A., Setzu, A., Concas, G., & Mannaro, K.
(2006). Modeling and simulation of open source development using an
agile practice. Journal of System Architecture, 52(11).

•	 Section	4: Industrial Adoption
○ Cohn, M., & Ford, D. (2003). Introducing an Agile Process to an Orga-

nization. IEEE Computer, 36(6).
○ Hansson, C., Dittrich, Y., Gustafsson, B., & Zarnak, S. (2006). How agile

are industrial software development practices? Journal of Systems and
Software, 79(9).

○ Hodgetts, P., & Phillips, D. (2001). Extreme Adoption Experiences of a
B2B Start-up. Retrieved November 11, 2008 from: http://www.agilelogic.
com/files/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf

○ Martin, K., & Hoffman, B. (2007). An Open Source Approach to Devel-
oping Software in a Small Organization. IEEE Software, 24(1).

4 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 1

Historical Evolution
of the Agile and Open

Source Movements

1.1 Agile Methods

Agile Methods (AMs) were born in the mid 1990s as part of a reaction against
“heavyweight methods” (also called plan-driven methodologies) like the waterfall
model. Heavyweight processes were seen as bureaucratic, slow, and inconsistent
with the business needs. Initially, AMs were called lightweight methods; in 2001,
prominent members of the raising community met in Utah and decided to adopt
the name Agile Methods. Later, some of these people formed the Agile Alliance, a
non profit organization that promotes Agile development. Early AMs, established
before 2000, include Scrum (1986), Crystal Clear, Extreme Programming, Adaptive
Software Development, Feature-Driven Development, and DSDM. Even if Extreme
Programming (XP) was not the first Agile Method, it established their popularity. XP
was created in 1996 by Kent Beck as a way to rescue the Chrysler Comprehensive
Compensation (C3) project. The aim of this project was to replace several payroll
application of Chrysler Corporation with a single system.

DOI: 10.4018/978-1-59904-681-5.ch001

Historical Evolution of the Agile and Open Source Movements 5

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1.2 the Win-Win spirAl softWAre developMent Model

The Win-Win spiral software development model (Boehm & Bose, 1994) is based on
the ground-braking work of Barry Boehm, the first software engineering researcher
to formalize an agile process. It is based on two pieces of research elaborated by
Barry Boehm:

The Win-Win approach to requirement negotiation (Boehm • et al., 1994)
The spiral software development model (Boehm, 1988)•

1.2.1 the Win-Win Approach to requirement negotiation

Requirement negotiation is a very critical part of the software development pro-
cess; it deals with the elicitation of the desires of customer and with the negotiation
of what needs to be developed. Often, during such negotiation critical situations
emerge, where the desires of the customers clash with what the developers think it
is important and feasible to do. In such circumstances, the risk is high for the project
to go nuts or, even worse, for the developer to say “yeah!” to the customer or to the
manager, just to keep his or her position while looking for another job. The former
is risky because, at the end, the software developers needs a customer, otherwise
money will not come. The latter is terrible, as for sure the functionality will not
be delivered to the customer. Moreover, more money will be wasted. “Customers
are always right.” Well, this is what old-fashioned marketing books tell us. This
is true in the sense that the customer pays the bill. Therefore, s/he has the right to
get value for his or her money. However, for the customer to be always right, two
provisions are necessary:

The developer understands fully what the customer wants, and acts •
accordingly.
The customer understands fully what the developer can provide him or her in •
the time framework and with the money given, and acts accordingly.

If such provisions are not met and we still proceed, we are in a loose-loose situa-
tion:

The developer looses her or his jobs and gets a bad reputation.•
The customer wastes her or his time, and, sometimes, even his or her money •
and reputation.

6 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Now, there are two possibilities. First, the positions of the developer and the
customer cannot be accommodated together. In such circumstances, it is better to
acknowledge that there is no sense in proceeding with any agreement. Second,
the positions can be accommodated. In such case, we would like to find a way to
identify such point of accommodation with mutual benefit, the win-win point. The
win-win approach to requirement negotiations is a process that aims at ensuring that
the two provisions are satisfied whenever possible, leading to a win condition for
the customer, who gets the job done, and a win condition for the developer, who is
paid and builds up a good reputation.

The key idea is to try to make the process as transparent as possible, so that if a
win-win condition exists, it can be found and implemented. This is accomplished
using various kinds of tools. We describe the process; we define steps to make it as
objective as possible; we eliminate cultural barriers; and we put together customer
and developer. Among the tools to use, there are diagrams detailing the negotia-
tion process, like the ones available at http://sunset.usc.edu/research/WINWIN/
EasyWinWin.

In such diagrams, for instance, it is evidenced that there the process of defining
an agreement between a labor provider, the customer, the funds provider, and the
customer. The customer has issues s/he wants to solve. There are several alterna-
tives on how to address the issue. Our goal is to find that alternative that not only
addresses the issue to solve, but that can be carrier out with satisfaction by the de-
veloper. Such alternative, if it exists, is for us the win-win condition. It satisfies both
the customer and the developer. An agreement is a set of such alternatives. Well…
isn’t here something missing? Where is the manager? After all, the customer does
not talk directly with the development usually, s/he talks to a marketing person,
who then refers the issues for development to a manager.

Here there is yet another aspect of the wickedness of software development. The
manager is indeed important. However, a satisfactory negotiation does require the
presence of also the developer, or a person very much knowledgeable of what is
going on, otherwise the risk is high, not to be able to build a solid relationship.

1.2.2 the spiral development Model

The incremental software development model has the advantage of focusing on
small increments, making easier for developers to understand what happens at the
different stages and so on. One of the major limitations of this model lied on its
inability to involve the customer in the planning of the iterations. On one side, the
presence of the customer is beneficial as it helps the team to be in sync with his or
her desires. On the other side, the presence of the customer may become detrimental
in incremental model. The customer may not understand why effort is placed for a

Historical Evolution of the Agile and Open Source Movements 7

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

long time on issues whose relevance s/he is not able to capture. The main idea of
Barry Boehm has been to propose alternative. Try to slice the increments to develop
not in terms of the inner functionality, but by the functions deployed to the customer.
The model is called spiral, as:

At each “increment”… well “iteration,” or “ring of the spiral” we get a more •
complete version of the system to develop and
At each increment we repeat everything, including the interactions with the •
customer.

The key issue is that the ring is a portion of the system that does something useful
for the customer. Each ring should not require the building of the entire infrastruc-
ture; otherwise, it would be just a waterfall development! Each ring, though, should
contain functionalities that are useful to the end customer. Such functionalities may
need a portion of the overall infrastructure. Altogether, it is not easy to identify the
rings of the spiral. It requires a deep understanding of the system to build and an
extensive interaction with the customer, so that a “reasonable” ring can be produced.
To simplify the process we could use the win-win approach that we discussed earlier.
This is what is called the win-win spiral method (Figure 1).

It is important to remember that the spiral software development model is a
“model,” that is, is not a process itself. Rather, different processes can be built on
its basis. In Figure 1, there is the description of a sample process built on the spiral
model. Again, this is an implementation of the general win-win spiral model. The
model can be implemented very differently in various contexts.

The sample model entails the following eight steps:

1. Identification of the stakeholders of the ring to develop. This involves the
customers, or the portion of them that relates to what to do next.

2. Determination of the win-win condition: here customers, developers, and, if
needed, managers evaluate if a win-win condition exists and, if so, they develop
it.

3. Analysis of what to build on the basis of the identified win-win condition – in
the picture we omit the way out that occurs if the win-win condition does not
exist. Here we need to reconcile what to build with what has already been
built. Clearly, we want to develop an analysis performed on the top of what
is already there and we do not want to restart everything from scratch.

4. Design of what to build on the basis of the identified win-win condition. Also
in the case, we want to extend the previously built design. Definitely, redoing
everything from scratch is not to be considered.

8 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

5. Coding of what to build on the basis of the identified win-win condition. Here
it is extremely important to extend the previous functionalities and not restart.
Redoing everything is not an option now.

6. Test of the new ring alone and within the entire system developed so far.
7. Evaluation with the customer of the new version of the system built so far.
8. Commitment of the work done so far.

This sample model evidences once more the critical issue of building the sys-
tem ring by ring. The first ring, the “nucleus,” is especially critical. The nucleus
requires: a) a good general understanding of what to develop and b) the ability to
build a system that does not commit “too much” the future developers in terms
of architectural and design lock-ins. Note that in the spiral model the customer is
involved in each ring.

Each ring in the spiral can then be organized in a V-shaped manner, quite like the
incremental model. Likewise, an object oriented approach appears an ideal match for
the spiral model, for the same reasons listed in the incremental model plus the easier
understandability on the side of the customer of part of the object oriented models,

Figure 1. Structure of the win-win spiral development model

Historical Evolution of the Agile and Open Source Movements 9

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

such as the Use Case model. Frameworks can be applied in designing the nucleus,
if they can be deployed pretty fast and they are perceived as a valuable asset by the
customer. Otherwise, they can still be applied, but they need to be built a piece at a
time in each ring, together with the provision of functionality to the customer. This
poses an additional burden on the developers, as it may delay the overall develop-
ment and create dissatisfaction on the customer side. Within XP, this problem is
addressed by refactoring. We will discuss this aspect shortly hereafter.

1.2.3 evaluation of the Win-Win spiral Model

The win-win spiral method is probably the first application of an agile model to
software engineering. It includes several aspects of what later on are called AMs
(Boehm, 2002; Boehm & Turner, 2003):

Direct connection between the customer and the developer, in the search of •
a win-win condition;
Absence of a big “architectural” phase upfront and requirement to keep the •
system flexible for changes;
Customer-driven selection of the features to develop in each increment•
Possibility to stop the development at any time, still providing something •
valuable to the customer
Adaptive control of the development: at each ring there can be a significant •
shift in the overall direction of the project based on the outcome of the ring
and on the feedback of the user.

The model is less rigid than the incremental model and requires an even lower
upfront investment, as there is not architecture to build per se. The development in
rings has beneficial aspects both at the technical level and dealing with the customer.
At the technical level, it allows lower initial commitments to specific hardware and
software that may cause undesired irreversibility. Dealing with the customer, it supports
evolving and changing requirements, with rapid feedback on what is going on.

The spiral model requires developers to have a wide range of capabilities, not
only at the technical level, but also dealing with the customer. As such, it is well
suited to the profiles of most of today software development organizations.

The flow of communication between phases is simplified by the small sizes of
the rings: it is possible to perceive in a fairly short amount of time if there is an
overall understanding of the system to develop at the customer level, the analysis
level, the design level, and the coding level. Object oriented methodologies fit pretty
well the structure of spiral development models. When they are used, the flow of
information becomes more seamless.

10 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The small sizes of the ring also help to reduce the occurrences and the relevance
of panic situations. Moreover, such small sizes and the higher integration between
phases ensure that panic situations do not create inconsistencies throughout the
different phases of development.

Altogether, the spiral development model looks like a panacea. But nothing comes
for free. There are two major caveats to consider when thinking using it.

The first is that the coordination complexity is much higher than in the model
we have discussed before. Such coordination complexity cannot be managed using
(only) standard, plan-based techniques like Gantt charts, todo lists, and so on.

Moreover, the spiral model is quite theoretical, with a limited body of knowledge
on its applications. Before the advent of the so-called “agile movement” only a hand-
ful instances of it have been described. The advent of AMs has provided possible
solutions to the problem of coordination and a lot of example of the instantiation
of “spiral-like” structures.

1.3 the Xp softWAre developMent Model

Extreme Programming (XP) is not a pure process model. XP was originally con-
ceived as a description of a well defined, successful process, the one of the C3 team
(Jeffries, 1999). After four years of unsuccessful effort to build the Chrysler Payroll
System, the large team in charge of it was laid off. Kent Beck, then a Smalltalk guru,
was hired. With a handful of colleagues he implemented and followed a process
that lead to the successful delivery of the system in less than two years. The suc-
cess of the C3 project has resulted in the diffusion of XP beyond its original scope.
People have tried to replicate the C3 experience by adapting to their context the XP
approach. Altogether, we can say that XP is a “model by similarity,” while most
of the models we have seen so far are “models by generality”. Being a model by
analogy explains lots of the successes and the issues related to XP. We will explain
them later on, in the section related to the evaluation of the XP process. There are
three important drivers in the XP approach:

Focus on the value and on what generates the value•
Generation of the value with a constantly-paced flow of activities, driven by •
the desire of the customer
Aim at the highest possible absence of defect, without any trade-off •
decision

The entire XP extravaganza focuses on these three aspects, which can be then
related to lean management. In this book we will not discuss lean management.

Historical Evolution of the Agile and Open Source Movements 11

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

There are lots of interesting works on this new field of management sciences.
The interested reader can refer to the work of Womack and Jones (1996) and Pop-
pendieck and Poppendieck (2003) for the implementation of lean management in
software development. Being born as the support for a specific project rather than
in an “aseptic” research environment, the language of the first description XP by
Kent Beck is committed itself to produce value. The first description was valuable
if it was able (a) to support the first users of XP – the developers of the C3 project,
in the use of XP itself and (b) to persuade such users of its goodness. Given the suc-
cess of it, subsequent descriptions of XP have maintained the same, very suggestive
and metaphorical style. We notice this not only in the XP manifesto (Beck, 1999),
but also the subsequent works (Highsmith, 2002; Beck & Fowler, 2000; Fowler et
al., 1999), Wake’s (2002), etc. Here below we summarize XP using the commonly
used XP jargon. XP has four founding values:

• Communication: developers communicate among themselves and with cus-
tomers a lot.

• Simplicity: the simplest solution is always preferred; no time is devoted
to seek “beautiful” solution, with no real, tangible, evident value for the
customer.

• Feedback: feedback is always sought from fellow developers, from custom-
ers and from all sort of testing tools, to ensure to be on the right track.

• Courage: developers are not scared of making modifications to their code, to
let customers discuss and re-discuss over and over what they have done, to
negotiate with the customers the amount of functionality to deliver; custom-
ers are not afraid that developers waste their money.

The relationship between the three drivers and the four founding values is not
a simple one-to-one relationship. Rather, there is a bit of a few values in each of
the drivers and vice versa. Here below there is a short description of the match
(Figure 2).

The focus on the value and on what generate value is evident in the simplicity:
only those features that of interest for the customers are generated. Such focus is
also present on the communication with, and feedback from the customers: the
customers define the priorities of what to develop. The generation of value with a
constantly paced flow of activities, based on the desire of the customers, is apparent
in the feedback, where the developers ask the customers their priorities and in the
courage, where developers negotiate with the customers the amount of function-
alities to deliver, without any fear from the customer side that developers “do not
work enough”. The aim at the highest possible absence of defect requires simplicity
of design, to avoid inserting defects, feedback from tools and customers, to elimi-

12 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

nate existing errors and detect non conformance with the wishes of the customers.
Moreover, communication among developers and courage to test the code under
the most severe circumstances help very effectively to eliminate defects. The XP
extravaganza then says that the four founding values are implemented via a set of
12 XP practices (according to the first edition of the Beck’s book1). It further claims
that such practices are so much interconnected that it is very difficult to implement
only a portion of them:

Planning game•
Short releases•
Metaphor•
Simple design•
Testing•
Refactoring•
Pair programming•
Collective code ownership•
Continuous integration•
40 hours working week•
On-site customer•
Coding standards•

It is important to remember that these practices have been conceived in the
framework of the C3 project. This is the spring of XP. We refer the reader to the Beck
(1999) for clarification of each practice. As for the relationships between drivers and
values, the relationships between values and practices are many-to-many (Figure
2) (Table 1). It is difficult to just try to alter the balance achieved by Kent Beck in

Figure 2. Drivers and values

Historical Evolution of the Agile and Open Source Movements 13

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

orchestrating different activities to match the overall goal of the methodology.
Such intricate mix has leaded a few developers to accept each of the XP practices

as a sort of magical device that solves all sorts of problems of software develop-
ment. This is indeed completely false. Moreover, this is the exact opposite of the
intention of the founder, who has repeatedly claimed that the practices need to
be adjusted to each individual situation and that even the value set has to fit each
individual circumstances.

1.4 open source softWAre developMent

At the beginning, there was only free software. Later on, proprietary software was
born and it quickly dominated the market, to the point that it is today considered
as the only possible model by many people. Only recently, the industry started to
consider free software and OSS as an option.

In late 1970s, two different groups established the roots of the Open Source
software movement. On the US East coast, Richard Stallman, a former software de-
veloper at the MIT AI lab, launched the GNU Project and founded the Free Software
Foundation (FSF). The aim of the GNU project was to build a free operating system.

Table 1. Drivers and values of the XP practices

Drivers Values

Focus on
value

Constant
flow

No de-
fects

Communi-
cation

Simpli-
city

Feed-
back Courage

Planning
game √ √ √ √ √

Short rel. √ √ √ √

Metaphor √ √ √

Simple des. √ √ √

Testing √ √ √ √

Refactoring √ √ √ √

Pair progr. √ √ √ √

Collective
code own. √ √ √ √ √

Cont.integr. √ √ √ √ √

40hrs week √ √ √

On-site cus-
tomer √ √ √

Coding std. √ √ √ √

14 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Stallman started by coding some development tools (GCC2, Emacs3). He also created
the GNU General Public License (GPL), a legal tool with the aim to guarantee that
software produced by GNU will remain free and promote free software.

On the other side of the US coast, the Computer Science Research Group (CSRG)
of the University of California at Berkeley improved the Unix system and developed
many applications which quickly became “BSD Unix”. For many time, this software
was not redistributed outside the community of holders of a Unix AT&T license.
But in the late 1980s, it was finally distributed under the “BSD license’”, one of the
first Open Source license. Unfortunately, users of Unix BSD also needed an AT&T
Unix license since some parts of the kernel and some utilities, which were needed
to have a usable system were still proprietary software.

During the 90s, the landscape of software development was changing. In Finland,
Linus Torvalds, a student of computer science, unhappy with Minix4, developed
the first versions of the Linux kernel. Soon, many people were contributing to the
kernel by adding more and more features to create GNU/Linux, a real operating
system. At present, Linux and the Apache web server dominate the market of web
site (http://www.netcraft.com/).

1.4.1 the cathedral and the Bazaar

The Cathedral and the Bazaar5 is an essay by Eric S. Raymond on software develop-
ment methods, based on his observations of the Linux kernel6 development process
and his personal experience on managing Fetchmail7, an Open Source project. His
work is considered the manifesto of the Open Source Initiative. Raymond presents
two contrasting free software development models:

In the • cathedral model, source code is available with each software release,
but the access to code developed between releases is restricted to an exclu-
sive group of software developers, i.e. GNU Emacs, GCC. The Cathedral
model is the typical development model for proprietary software, with the
additional restriction that source code is not released.
On the contrary, in the • bazaar model the code is developed over the Internet
in view of the public. Linus Torvalds, leader of the Linux kernel project, is
the inventor of this process.

Raymond’s thesis is that “given enough eyeballs, all bugs are shallow”: the more
available the source code is for public testing, the more rapidly all kind of bugs will
be discovered. On the other hand, Raymond claims that projects developed with the
Cathedral model require a huge amount of time and energy for hunting bugs, since
the working version of the code is available to only few developers.

Historical Evolution of the Agile and Open Source Movements 15

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1.4.2 the development Model

OS products are distributed along with their source code and under an OS license that
allows to study, change, and improve their design. In OSS, requirements are rarely
gathered before the start of the project, instead they are based on early releases of
the software product. Scacchi (2002) proposes a model that includes seven phases:
1) Download and Install; 2) End-use; 3) Communicate Experience; 4) Analyze and
Redesign; 5) Assert Requirements-Redesign; 6) Develop OSS code; 7) Manage
Configuration (Figure 3).

Now we describe each phase of the project.

1.4.2.1 Download and Install

This phase includes the following steps:

1. Check Open Source software web sites (e.g., SourceForge, FreshMeat, etc.)
for news and/or latest release information

2. Download packaged OSS (e.g., RPM files) containing source code and/or
executable files

3. Unpack and install source code

Figure 3. Open source community development process (adapted from Scacchi
(2002))

16 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1.4.2.2 End-Use

The typical flow of this phase includes:

1. Review any application documentation or web pages.
2. Use downloaded executable image

Optional:

1. Perform local source code build
2. Perform local integration test

1.4.2.3 Communicate Experience

The main activities of this phase are:

1. Browse Open Source software project web site, discussion forum, or other
on-line resources.

2. If observe bugs, then do bug report.
3. If observer performance bottlenecks, external innovation opportunities, or

localization shortfalls, then do enhancement, or code restructuring request.

1.4.2.4 Analyze and Redesign

This phase includes the following steps:

1. Select application, process, or web site to redesign
2. Analyze and model (components, connectors, interfaces, I/O resources, con-

figuration, and versions.
3. Identify applicable redesign heuristics
4. Develop redesign transformation plan
5. Execute plan

1.4.2.5 Assert Requirements-Design

The main activities of this phase are:

1. Assert software requirements or design update using communication tools/
artifacts.

Historical Evolution of the Agile and Open Source Movements 17

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

2. Read and make sense of updates, determine accountability.
3. Browse and extend software discourse web.
4. Harden discourse web via navigational cross-linkage.
5. Provide global access to software web.

1.4.2.6 Develop OS code

This phase includes the following steps:

1. Check-out and download source code from project repository/Web site
2. Edit source code file(s)
3. Compile local source code into executable image
4. Debug as needed
5. Perform unit test on executable image
6. Submit source code to configuration management

1.4.2.7 Manage Configuration

The main activities of this phase comprise:

1. Compose/integrate source code files (e.g., via make files).
2. Build/make executable composed image.
3. Regression test executable image.

Optional:

Submit source code for review•
Review and approve/reject submitted source•
4. Check-in source code into source code repository
5. Create remote installation package (e.g., RPM) for release
6. Create and build multi-platform executable images for release
7. Create release “news” information
8. Post news and release on project web site
9. Track and record source/image downloads

1.4.3 starting an os project

An OS project can start, mainly, in four ways:

18 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1. An individual, who feels the need for a project, announces the intent to develop
the project in public. The individual may receive offers of help from others.
The group may then proceed to work on the code.

2. A developer working on a limited but working codebase, releases it to the
public as the first version of an OS program. The developer continues to work
on improving it, and possibly is joined by other developers.

3. The source code of a mature project is released to the public, after being de-
veloped as proprietary software or in-house software (e.g., Netscape).

4. A well-established OS project can be forked by an interested outside party.
Several developers can then start a new project, whose source code then di-
verges from the original.

1.4.4 os development tools

OS developers use different kind of tools to support the development process. The most im-
portant tools can be grouped in the following categories.Testing Tools and Integration.

OS developers use tools to automate testing during system integration since
OS projects are frequently integrated. For example, CruiseControl (Table 2) runs a
continuous build process and inform users about the parts of the source code that
have issues. In particular, it polls, in the background, a version control repository
looking for changes. When a change does occur, the tool executes a predefined build
script through Ant, for example.

Bug Tracking

Bug tracking is an important aspect of the management of OS projects. Bug tracking
activities include: keeping a record of all reported bugs, whether the bug has been
fixed or not, which version of the software does the bug belong, and whether the
bug submitter has agreed that the bug has been fixed. The most popular bug tracking
system in the OS environment is Bugzilla (http://www.bugzilla.org) (Table 3).

Table 2. CruiseControl

Feature Description

Developer CruiseControl development team, originally created by employees of
ThoughtWorks

Operating System Cross-platform

License BSD-style license

Website http://cruisecontrol.sourceforge.net

Historical Evolution of the Agile and Open Source Movements 19

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Collaboration and Communication

OS communities need tools to aid in organizing communication between project
participants since they are dispersed. This is done through OS portals (Freshmeat,
Savannah, Sourceforge), mailing lists (GNU mailman), and instant messaging tools
(IRC, ICQ, etc.).

1.5 coMpArison of os And Agile developMent

Warsta and Abrahamsson (2003) consider OS a paradigm that lies between agile
and plan-driven methods, though it presents more commonalities with AMs. The
most important differences are in the proximity and size of the development teams,
the customers’ representation during the development of the project, and with the
primary objective of the development work. The results of the analysis shows the

Table 3. Bugzilla features

Feature Description

Advanced Search Two forms of search: 1) a basic Google-like that is simple for new users and searches
the full text of a bug; 2) A very advanced search system where users can create any
kind of search, including time-based searches (such as “show me bugs where the
priority has changed in the last 3 days”) and other very-specific queries.

Email notifications Users can get an email about any change made in Bugzilla, and which notifications
users receive is fully controlled by the personal user preferences.

Bug Lists in Multiple
Formats

When users search for bugs, they can get the results in many different formats than
just the basic HTML layout. Bug lists are available in Atom, if the user wants to
subscribe to a search like it was a feed. They are also available in iCalendar format,
by using the time-tracking features of Bugzilla it is possible to see where the bugs
in the calendar. There are even more formats available, such as a long, printable
report format that contains all the details of every bug, a CSV format for importing
into spreadsheets, and various XML formats.

Reports and Charts Bugzilla has a very advanced reporting system. Results can be seen as tables, bar
graphs, or pie chart.

Time Tracking Bugzilla allows estimating how many hours a bug will take to fix, and then keep
track of the hours spent working on it. It is also possible to set a deadline that a
bug must be complete by.

Request System The Request System is a method of asking other users to do something with a
particular bug or attachment. That other user can then grant the request, or deny it,
and Bugzilla keeps track of their answer. It is useful for various purposes; whether
it is needed to ask for code review, request information from a specific user, or get
a sign-off from a manager, the system is extremely flexible.

Patch Viewer This tool provides a nice, colorful view of any patch attached to a bug. It is integrated
with LXR8, CVS, and Bonsai to provide even more information about a patch. In
particular, it makes code review much easier.

20 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

OS approach is close to a typical AM, with the distinction that OS developers are
geographically distributed. In OSSD, the customer often is also a co-developer,
which is not the case in agile software development.

Table 4 shows the comparison of agile, Open Source, and plan-driven processes
using Boehm’s analytical lenses [Boehm, 2002].

1.6 references

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Beck, K. (2004). Extreme programming explained: Embrace change, second ed.
Addison-Wesley Professional.

Beck, K., & Fowler, M. (2000). Planning extreme programming. Addison-Wesley
Professional.

Boehm, B. (1988). A spiral model of software development and enhancement. IEEE
Computer, 21(5), 61–72.

Table 4. Comparison between agile, plan-driven methods, and open source software
development (Warsta and Abrahamsson, 2003)

Home-ground
area

Agile methods Open Source software Plan-driven methods

Developers Agile, knowledgeable, col-
located, and collaborative

Geographically distributed,
collaborative, knowledge-
able and agile teams

Plan-oriented, adequate
skills; access to external
knowledge

Customers Dedicated, knowledgeable,
collocated, collaborative,
representative, and em-
powered

Dedicated, knowledgeable,
collaborative, and
empowered

Access to knowledgeable,
collaborative, representa-
tive, and
empowered customers

Requirements Largely emergent;
rapid change

Largely emergent; rapid
change,
commonly owned, continu-
ally evolving
– “never” finalized

Knowable early;
largely stable

Architecture Designed for current
Requirements

Open, designed for current
requirements

Designed for current and
foreseeable requirements

Refactoring Inexpensive Inexpensive Expensive

Size Smaller teams and
Products

Larger dispersed teams and
smaller products

Larger teams and
products

Primary objec-
tive

Rapid value Challenging problem High assurance

Historical Evolution of the Agile and Open Source Movements 21

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1),
64–69.

Boehm, B., & Bose, P. (1994). A collaborative spiral software process model based
on theory W. 3rd International Conference on the Software Process (ICSP94). New
York: IEEE Press.

Boehm, B., Bose, P., Horowitz, E., & Lee, M. J. (1994). Software requirements as
negotiated win conditions. 1st International Conference on Requirements Engineer-
ing (ICRE94). Colorado Springs, CO: IEEE Computer Society Press.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the
perplexed. Addison-Wesley Professional.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999) Refactoring:
Improving the design of existing code. Addison-Wesley Professional.

Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley
Professional.

Jeffries, R. (1999). We’ll try. Retrieved on November 11, 2008 from http://www.
xprogramming.com/xpmag/well_try.htm

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit. Addison-Wesley Professional.

Scacchi, W. (2002) Open source software development processes. Version 2.5.
Retrieved on November 11, 2008 from http://www.ics.uci.edu/~wscacchi/Software-
Process/Open-Software-Process-Models/Open-Source-Software-Development-
Processes.ppt

Wake, W. C. (2002) Extreme programming explored. Addison-Wesley Profes-
sional.

Warsta, J., & Abrahamsson, P. (2003). Is open source software development es-
sentially and agile method? 3rd Workshop on Open Source Software Engineering,
Portland, OR.

Womack, J. P., & Jones, D. T. (1996). Lean thinking: Banish waste and create wealth
in your corporation. Simon & Schuster.

22 Historical Evolution of the Agile and Open Source Movements

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

endnotes

1 In the second edition (Beck, 2004), the number of practices listed is much
higher and they are not already well accepted by the agile community.

2 http://gcc.gnu.org/ (accessed on November 11, 2008)
3 http://www.gnu.org/software/emacs/ (accessed on November 11, 2008)
4 Minix is an operating system designed to be useful for learning about the

implementation of operating systems.
5 http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ (accessed on

November 11, 2008)
6 http://www.kernel.org/ (accessed on November 11, 2008)
7 http://sourceforge.net/projects/fetchmail (accessed on November 11, 2008)
8 http://sourceforge.net/projects/lxr (accessed on November 11, 2008)

The Agile Manifesto and Open Source Software 23

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 2

The Agile Manifesto and
Open Source Software

2.1 introduction

The four main statements shared by all AMs are listed in the so-called Agile Mani-
festo1:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

In this section, we review these statements to determine the extent to which they
apply to OSS.

2.1.1 individuals over processes and tools

The development process in OS communities definitely puts more emphasis on
individual and interaction rather than on processes and tools. The interactions in
OS communities, though, tend to be mainly based on emails; the pride and the in-

DOI: 10.4018/978-1-59904-681-5.ch002

24 The Agile Manifesto and Open Source Software

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

dividuality of the developer, though, become predominant, while in AMs there is a
strong push toward establishing team spirit among developers.

2.1.2 Working software over comprehensive documentation

Both AMs and OSD view the working code as the major supplier of documentation.
In OS communities the most common forms of user documentation are screenshots
and users forums (Twidale & Nichols, 2005), which both come from the direct use
of the systems, and the most common source of technical documentation are class
hierarchies directly extracted from the code, bug-tracking databases, outputs from
diffs between versions, etc.

2.1.3 customer collaboration over contract negotiation

In OSS, customers and developers often coincide. This was especially true in the
early era of OSS, when it was clearly said, for instance, that Unix was a system
developed by developers and for developers. In such cases, the systems are clearly
customer driven. There are now situations where the customers are clearly separated
from developers. New systems such as Subversion, ArgoUML, etc., have a clear
customer base, separated from the developers. Still, looking at how the releases
occur, the functionalities are added, and the problems are solved it appears that the
system is developed with a clear focus on customer collaboration. Moreover, in
Europe it is becoming more popular the request that systems developed with public
funds are releases with OSS licenses of various kinds.

2.1.4 responding to change over following a plan

Following the discussion above on “Customer collaboration over contract negotia-
tion”, the evolution of an OS project typically is customer driven. It appears that OS
systems do not have a “Big Design Upfront”; they are pulled rather than pushed and
their evolution depends on real needs from the customers. However, most of such
analysis is based on situations where customers and developers coincide. It would be
interested to see how this situation would evolve in the newer scenarios where there
are customers separated from developers. Altogether, it is evident that OS adopts
most of the values fostered by supporters of AMs. Such evidence calls for subsequent
analysis to determine the extent and the depth of such adoption. Moreover, AMs and
OSD classes of software development methods, which include a wide number of
specific methods. Therefore, it is important to consider specific instances of them
to determine how the interactions between AMs and OSD really occurs in practice,
beyond considerations that, left alone, ends up being quite useless.

The Agile Manifesto and Open Source Software 25

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

2.2 principles of Agile software development

This paragraph lists the agile development principles taken from the Agile Manifesto
and show how these principles apply to OSSD (Goldman & Gabriel, 2005):

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software

 OS does not talk about the customer, but in general, OS projects do nightly
builds and releases frequently, mostly for the purpose of testing and gather
feedback from the community of users.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage

 OS projects resist major changes as time goes on, but there is always the
possibility of forking a project if such changes strike enough developers as
worthwhile.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter time scale

 OS delivers working code every night, usually, and an OS motto is “release
early, release often”.

4. Business people and developers must work together daily throughout the
project.

 OS projects do not have a concept of a business person with whom they
work, but users who participate in the project serve the same role.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done

 All OS projects do this, almost by definition. If there is no motivation to
work on a project, a developer will not participate. OS projects are purely
voluntary, which means that motivation is guaranteed. OS projects use a set
of agreed-on tools for version control, compilation, debugging, bug and issue
tracking, and discussion.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation

 In this case, OS differs from most from AMs. OS projects value written com-
munication over face-to-face communication. On the other hand, OS projects
can be widely distributed, and do not require collocation.

7. Working software is the primary measure of progress
 This is in perfect agreement with OSD.
8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

26 The Agile Manifesto and Open Source Software

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

 Although this uses vocabulary that OS developers would not use, the spirit of
the principle is embraced by OSD.

9. Continuous attention to technical excellence and good design enhances
agility.

 OSD is predicated on technical excellence and good design.
10. Simplicity, the art of maximizing the amount of work not done, is essential.
 OS developers would agree that simplicity is essential, but OS projects also

do not have to worry quite as much about scarcity as agile projects do. There
are rarely contractually committed people on OS projects – certainly not the
purely voluntary ones – so the amount of work to be done depends on the
beliefs of the individual developers.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

 Possibly OS developers would not state things this way, but the nature of OS
projects depends on this being true.

12. At regular intervals, the team reflects on how to become more effective, and
then tunes and adjusts its behavior accordingly”

 This is probably not done much in OS projects, although as OS projects ma-
ture, they tend to develop a richer set of governance mechanisms. For ex-
ample, Apache started with a very simple governance structure similar to that
of Linux and now there is the Apache Software Foundation with manage-
ment, directors, and officers. This represents a sort of reflection, and almost
all community projects evolve their mechanisms over time.

In short, both the agile and open-source methodologies embrace a number of
principles, which share the ideas of trying to build software suited especially to a
class of users, interacting with those users during the design and implementation
phases, blending design and implementation, working in groups, respecting tech-
nical excellence, doing the job with motivated people, and generally engaging in
continuous design.

2.3 vtK eXAMple

The Visualization Toolkit (VTK)2 is an example of OS project that embraces OS and
Agile values (Twidale & Nichols, 2005). VTK is a software system for 3D computer
graphics, image processing, and visualization. Some parts of it are subject to patents
held by General Electric and a smaller company called Kitware.

The Agile Manifesto and Open Source Software 27

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The kit is substantial, encompassing over 600 C++ classes and around half a
million lines of code. There are over 2,000 people on the VTK mailing list. General
Electric considers VTK as a commercial advantage:

“We don’t sell VTK, we sell what we do with VTK.” General Electric has a number
of internal and external customers of the toolkit, it is used in a variety of projects
General Electric is involved with. Kitware provides professional services associ-
ated with VTK.

As an OS project, VTK is a bit unusual, and this is the result of some of its
principals being involved with General Electric, which is the prime supporter of
a design and implementation methodology called six sigma. Six sigma refers to a
statistic that states that a manufactured artifact is 99.99966% defect-free, and it also
refers to a process in which factors important to the customers’ perception of qual-
ity are identified and systematically addressed during a design and implementation
cycle whose steps are Define, Measure, Analyze, Improve, Control (DMAIC). OS
involves the possibility of diverse innovations and also provides opportunities for
interacting with customers in a direct way, which is appealing to an organization
focused on customers, but there is also the possibility of erratic results when there
is not a strong, explicit emphasis on quality that can be enforced. Therefore, OS
went only part of the way to satisfying General Electric goals for quality.

Moreover, the original VTK implementation team was small and dispersed
within General Electric, and its members were admittedly not software engineers.
The open-source component added to this the need to find a way to handle quality.
The solution was to adopt some of the practices of XP, in particular Test Driven
Development (TDD), in which tests are written at the same time as, or before, the
code is designed and written. Writing tests first has the effect of providing a sort of
formal specification, as well as a set of tests to be used for regression and integration
testing. XP calls for frequent releases, and VTK combines this with the OS practice
of “release early, release often” to do nightly, fully tested builds.

The VTK developers implemented a system in which submitted code is tested
overnight using a large corpus of regression tests, image regression tests (compar-
ing program output to a gold standard), statistical performance comparisons, style
checks, compilation, error log analyses, and memory leak and bounds-check analyses;
the software’s documentation is automatically produced; and the result is a quality
dashboard that is displayed every day on the website. The tests are run on around
50 different builds on a variety of platforms across the Internet, and distributions
are made for all the platforms.

28 The Agile Manifesto and Open Source Software

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The reasons for this approach, as stated by the original team, are as follows:

To shorten the software engineering life cycle of design/implement/test to a •
granularity of 1 day.
To make software that always works.•
To find and fix defects in hours not weeks by bringing quality assurance in-•
side the development cycle and by breaking the cycle of letting users find
bugs.
To automate everything.•
To make all developers responsible for testing (developers are expected to fix •
their bugs immediately).

Among the values expressed by the original development team are the following:

Test early and often; this is critical to high-quality software.•
Retain measurements to assess progress and measure productivity.•
Present results in concise informative ways.•
Know and show the status of the system at any time.•

2.4 conclusion

Twidale and Nichols (2005) claim that the primary source of similarity between
OSD and AMs is their shared emphasis on continuous Some OS projects, especially
hybrid projects, use more formal processes and produce more formal artifacts such
as specifications, but even these projects accept the idea that the design should
change as the requirements are better understood.

2.5 references

Goldman, R., & Gabriel, R. P. (2005). Innovation happens elsewhere: Open source
as business strategy. Morgan Kaufmann.

Twidale, M. B., & Nichols, D. M. (2005). Exploring usability discussions in open
source software. 38th Annual Hawaii International Conference on System Sciences
(HICSS’05). IEEE Computer Society Press.

The Agile Manifesto and Open Source Software 29

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

endnotes

1 http://agilemanifesto.org/ (accessed on November 11, 2008)
2 http://www.vtk.org/index.php (accessed on November 11, 2008)

30 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 3

Values and Principles
Practices in Agile
and Open Source

Development

3.1 introduction

Values are ideals that that a group of people embrace. They can be positive or
negative, for example empowerment or control. These values are implicit in the
personality or culture of a company. Values are often emotive; they represent driv-
ing forces behind people. The word principle stems from the Latin for leader or
emperor, however in this context we mean it as a general law or essence, for instance
principles of modern physics.

Values and principles are related to practices, which are sets of repeatable actions
you perform, e.g., practice developing software by driving with tests.

A practice works in a given context due to an underlying principle. For example,
the practice of continuous integration is backed by the principle of reducing bottle-
necks to enable flow in software development. Practices produce effects that support
one or more values. If a software company values the ability to meet their customer
needs, then a practice such as Test Driven Development (TDD) (Beck, 2002) will
support that value as it keeps the cost of change low over time. In early 2001, a
group of industry experts met to outline the values and principles that would allow
software teams to develop quickly and respond to change. They called themselves
the Agile Alliance. Over two days they worked to create a statement of values. The

DOI: 10.4018/978-1-59904-681-5.ch003

Values and Principles Practices in Agile and Open Source Development 31

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

result was the manifesto of the Agile Alliance1. The document provides a philo-
sophical foundation for effective software development. In the next paragraphs of
this chapter, we review values and principles of the Agile Manifesto to determine
the extent to which they apply to OSD.

3.2 vAlues in Agile And in open source developMent

AMs are centered in four major values. Here we briefly introduce them. A comprehen-
sive discussion is in the two editions of Beck’s book (Beck, 1999; Beck, 2004):

1. Communication: Developers need to exchange information and ideas on the
project among each other, to the managers, and to the customer in a honest,
trusted and easy way. Information must flow seamless and fast.

2. Simplicity: Simple solutions have to be chosen wherever possible. This does
not mean to be wrong or to take simplistic approaches. Beck often uses the
aphorism “simple but not too simple”.

3. Feedback: At all levels people should get very fast feedback on what they do.
Customers, managers, and developers have to achieve a common understanding
of the goal of the project, and also about the current status of the project, what
customers really need first and what are their priorities, and what developers can
do and in what time. This is clearly strongly connected with communications.
There should be immediate feedback also from the work people are doing,
that is, from the code being produced – this entails frequent tests, integrations,
versions, and releases.

4. Courage: Every stakeholder involved in the project should have the courage
(and the right) to present her/his position on the project. Everyone should have
the courage to be open and to let everyone inspect and also modify his/her
work. Changes should not be viewed with terror and developers should have
the courage to find better solutions and to modify the code whenever needed
and feasible.

Agile Modeling (Ambler, 2002) adds a further value: humility. This value states
that every one has equal value on a project.

3.2.1 communication

These values are present in various ways in Raymond’s description of OSD (Raymond,
2000). We will now analyze them one by one and evidence the points of contact.
The very same concept of OS is about sharing ideas via the source code, which be-

32 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

comes a propeller for communication (page 10). So, with no doubt communication
is a major value in the work of Raymond. The role of communications is reinforced
by Raymond throughout his essay. He clearly states the paramount importance to
listening to customers (page 17) “But if you are writing for the world, you need to
listen to your customers – this does not change just because they are not paying you
in money.” Then, it is evidenced that to lead an OS project good communication and
people skills are very important (page 19): he carries as examples Linus Torvalds and
himself, allegedly, two people capable at motivating and communicating.

3.2.2 simplicity

Simplicity in the system is highly regarded in the OS community. In general, Raymond
mentions the “constructive laziness”, which helps in finding existing solutions that
can be adapted to new situations. Beck’s concept of simplicity is clearly reflected in
rule number 13 of Raymond; it is an excerpt from Antoine de Saint’Exupéry (page
15): “Perfection (in design) is achieved not when there is nothing more to add, but
rather when there is nothing more to take away.”

3.2.3 feedback

Working in a distributed community, Raymond acknowledges the value of a fast
feedback at all levels:

Between distributed developers, potentially working on the same fix, see for •
instance the comment on page 9;
Between developers and customers – rule number 11 is a clear example: “The •
next best thing to having good ideas is to recognize good ideas from your us-
ers. Sometimes the latter is better.”

Feedback is achieved especially running and testing the code, this is why early
and frequent releases are instrumental – rule 7 says “Release early, release often.
And listen to your customers. Needless to say most of the comments made about
feedback could apply as well to communication. This is not awkward. Beck ac-
knowledges explicitly that the two concepts overlap.

3.2.4 courage

The value of courage is less present in the presentation of Raymond. He hints at
courage when he presents the initial difficult in getting the work exposed to (page
8) “thousands of eager co-developers pounding at every single new release.”

Values and Principles Practices in Agile and Open Source Development 33

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

3.3 principles in Agile And in open source

As noted by Fowler (2003), hidden inside the first version of Beck’s book there are
15 principles, divided into 5 fundamental principles and 10 other principles.The
fundamental principles are:

1. Rapid feedback: Going back to the value of feedback, such feedback should
occur as early as possible, to have the highest impact in the project and limit-
ing to the highest extent the possible disruptions.

2. Assume simplicity: As mentioned, simplicity is a major value. Therefore,
simplicity should be assumed everywhere in development.

3. Incremental change: Change (mostly resulting from feedback) should not
be done all at once. Rather, should be a permanent and incremental project,
aimed at creating an evolving system.

4. Embracing change: Change should be handled with courage and not avoided.
The system as a whole, and the code, should be organized to facilitate change
to the largest possible extent.

5. Quality work: Quality should be the paramount concern. Lack of quality
generates rework and waste that should be avoided to the large degree.

Other principles of XP are:

1. Teach learning: Requirement elicitation is an overall learning process.
Therefore, learning is of paramount importance in the system.

2. Small initial investment: The upfront work should be kept as minimum as
possible, as subsequent changes may destroy it.

3. Play to win: All the development should be guided by the clear consciousness
that what we do is effectively doable.

4. Concrete experiments: The ideas should be validated not though lengthy and
theoretical discussions but via concrete experimentations on the code base.

5. Open, honest communication: The communication should be kept simple
and easy. The customer should not hide his/her priorities nor the developers
and the managers should hide the current status of the work.

6. Work with people’s instincts – not against them: The role of the managers
is to get the best out of developers, so their natural inclinations should be ex-
ploited. A strong team spirit should be exploited. Moreover, in the interactions
between managers, developers, and customers, the fears, anxieties, discomforts
should not be ignored but properly handled.

34 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7. Accepted responsibility: All the people in the project should voluntary take
their own responsibilities, customers, managers, and developers. Such respon-
sibilities should then be assigned with complete trust.

8. Local adaptation: The methodology should be wisely adapted to the needs
of each development context.

9. Travel light: In XP projects it is important to keep the lowest amount of docu-
ments possible, clearly without compromising the integrity of the project.

10. Honest measurement: The project should be tracked with objective and un-
derstandable measures. The measures should be collected in a lean way not
to alter the nature of XP.

3.3.1 review of the fundamental principles

In this section, we review the application in the OSD of the fundamental principles:
rapid feedback, assume simplicity, incremental change, embracing change, quality
work.

We have already discussed the issue of feedback and simplicity.
Regarding the incremental changes, Raymond acknowledges upfront it as

one of its guiding principles since his early Unix experience (page 2): “I had been
preaching the Unix gospel of small tools, rapid prototyping and evolutionary pro-
gramming for years.”

As for embracing changes proposed by others, we have already mentioned Ray-
mond’s opinion on listening to customers even if they do not “pay you in money.”
Raymond goes further and in rule number 12 he states the pivotal role of embracing
the change: “Often, the most striking and innovative solutions come from realizing
that your concept of the problem was wrong.”

Raymond goes farther than Beck on this subject. The both agree that prototypes
(spikes in Beck jargon) can be instrumental to achieve a better understanding of a
complex application domain. Raymond also claims that the system being developed
can help identifying new ideas for new developments – rule 14: “Any tool should
be useful in the expected way, but a truly great tool lends itself to uses you never
expected.” Needless to say, when drafting rule 14 Raymond is not concerned in
ensuring the customer that he will not waste customer’s resources.

Regarding quality work, in Raymond’s there is not an explicit reference to the
paramount role of quality as it is in Beck’s. However, throughout the essay there is
a constant evidence of the pride that OS developers put in their code, a pride that
comes only from deploying quality work.

Values and Principles Practices in Agile and Open Source Development 35

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

3.3.2 review of the other principles

Now we turn our attention to the other principles: teach learning; small initial in-
vestment; play to win; concrete experiments; open, honest communication; work
with people’s instincts – not against them; accepted responsibility; local adaptation;
travel light; honest measurement.

Raymond emphasizes the role of listening and learning from other’s comments.
However, there is not an explicit mention on teaching learning.

There is also little concern of not having small initial investment and travel
light. The reason is that OS projects are lead more by developers, less likely to
spend ages in the “analysis paralysis” or in producing useless documentation and
more concerned on delivering useful code. Rather, the attention of Raymond is on
evidencing that a little bit of upfront work is required (page 18) “When you start
building a community, what you need to be able to present is a plausible promise.
Your program does not have to work particularly well. It can be crude, buggy,
incomplete, and poorly documented. What it must not fail to do is (a) run, and (b)
convince potential co-developers that it can be evolved into something really neat
in the foreseeable future.”

Playing to win and concrete experiments are an integral part of any self-
motivated effort, so it does not require any further explanation.

Discussing values, we have already evidences the role given by Raymond to an
open, honest communication.

Being developer-centric, Open Source also advocates working with people’s
instincts – not against them and relies on accepted responsibility. The very first
two rules of Raymond are “Every good work of software starts by scratching a de-
veloper’s personal itch,” and “Good programmers know what to write. Great ones
know what to rewrite (and reuse).” Also rule 4 appears quite applicable: “If you
have the right attitude, interesting problems will find you.”

While there is no formal measurement in place in Raymond’s essay, there is an
emphasis on releasing often, thus making clear the status of the project and the bugs
still presents. This resembles honest measurement.

3.4 softWAre prActices in Agile And
in open source developMent

For example, Extreme Programming has 12 practices (in the first edition of the
Beck’s book). As suggested by Ron Jeffries et al. (2001), they can be divided into
four categories:

36 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Fine scale feedback

1. Test first: Test should be written together with the customer and before the
actual code; they should also cover all the most relevant aspects of the system.
In this way, they serve as a way to ensure requirements are met and as a form
of formal specification of the behavior of the system.

2. Planning game: Planning should be done together by developer, managers,
and the customer. Together, these three stakeholders write user stories of the
system; then the customer sets the priorities, the manager allocates resources,
and the developers communicate what is likely to be feasible to do. The com-
munication on plan should be kept honest and open.

3. Customer on-site: The customer and the developers should be easily accessible
and, if possible, co-located. In this way the customer would be ensured that
the developers are working along their plan and the developers could receive
fast feedback from the customer.

4. Pair programming: Programmers should always work in pair, where one
stays at the keyboard and write the code, while the other proposes ideas and
verifies the code being written.

Continuous process rather than batch

5. Continuous integration: The code should be integrated frequently, to ensure
that all the pieces fit seamlessness together.

6. Refactoring: The code should be constantly revisited and made simpler and
more understandable, with a clear constraint that (a) such simplifications
should be done test first, (b) the simplifications should be checked in only
when passing all the existing and new tests, and (c) the simplifications should
be done in pair.

7. Small releases: The development of the system should proceed in small incre-
ment with frequent releases.

Shared understanding

8. Simple design: The design should be kept simple and developed
incrementally.

9. System metaphor: The overall project team should be a jargon shared among
developers, customers and managers, so that developers could better under-
stand the problem domain and customers could better appreciate developers’
solutions. Such jargon could be built around an overall analogy of the system
being built.

Values and Principles Practices in Agile and Open Source Development 37

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

10. Collective code ownership: Everyone in the team should have complete
accessibility to any piece of code developed by anyone else in the team, and
should be able to modify in and check in a new version of it, provided that (a)
proceeds test first, (b) checks in only a new version passing all the existing
and new tests, and works in pair.

11. Coding standard: The code should be written in a style agreed upon by all
the people in the team, to promote sharing and easy understanding. What
standard to use is not so important provided it is reasonable and it is accepted
by everyone. But it is important to have one.

Programmer welfare

12. Forty hours week: The project should proceed at a sustainable pace, along the
lines of the constant flow advocated by lean management. Therefore, major
efforts might be tolerable for a week or two per term, but overall the effort
distribution should be flat and not exceed what is normally bearable: 40 hours
per week.

We use these categories in the further discussion. Clearly, now there will be some
repetitions with what we have previously said.

The practices of fine scale feedback are not particularly adopted in OSD – test
first, planning game, customer on site, pair programming. They appear par-
ticularly difficult to implement in their literal form in an OS community, where
everyone provides his/her own contribution.

There are a few remarkable analogies, though.
There is an emphasis on test, especially automated tests. Raymond cites as a cri-

teria of success of Emacs/Lisp the virtuous cycle (page 7) “release/test/improve.”
Rule 6 advocates trying to convert users as co-developers: “Treating your users

as co-developers is your least-hassle route to rapid code improvement and effective
debugging.” Moreover, dealing with the users/co-developers, Raymond notes that
“ideas and prototypes were often rewritten three or four times before reaching a
stable, final form.”

A peculiar role is played by beta-testers. Beta-testers play a mixed role: they
are both co-developers and customers. According to Raymond, it is very important
to pay a lot of consideration to such beta-tester – rule 10: “If you treat your beta-
testers as if they’re your most valuable resource, they will respond by becoming
your most valuable resource.”

Moreover, the idea of a large test base is present in rule 8 dealing with beta-testers:
“Given a large enough beta-tester and co-developer base, almost every problem will
be characterized quickly and the fix obvious to someone.”

38 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

This is not having the customer on site or running the planning game; however,
it is quite similar.

Dealing with distributed teams, where usually there is only one programmer per
physical site, pair programming is quite impossible.

3.4.1 practices of continuous process

Continuous integration, refactoring, and small releases are almost entirely ad-
opted in OSD.

The concepts of releases and integrations are mixed in the work of Raymond.
He promotes very frequent releases. Rule 7 says “Release early. Release often. And
listen to your customers.” And down on page 7 he supports the idea of releasing
once per day.

Rule 3 advocates constant refactoring: “Plan to throw one away; you will anyhow.”
We have discussed in the previous section the role of constant rewriting of ideas
and prototypes. All of this is quite along the lines of Rule 13 (already mentioned)
on perfection via simplicity.

3.4.2 practices of shared understanding

Shared understanding is also of paramount importance for OSD. Simple design
has already been discussed.

Raymond does not mention the system metaphor in any format. However, he
asserts the importance to try to use plain English whenever feasible – rule 16 says:
“When your language is nowhere near Turing-complete, syntactic sugar can be
your friend.”

Source code awareness is advocated throughout the essay and is evidences in
page 10: “Thus, source-code awareness by both parties greatly enhances both good
communication and the synergy between what beta-tester reports and what the
core developer(s) know.” This lends toward collective code ownership, especially
when Raymond mentions that Torvalds has been “open to the point of promiscu-
ity” (page 3).

However, this does not means that everyone can modify any portion of the
project, as the project manager (or however one wants to call it) has still the right
of selecting what to insert. There is evolutionary, self-selection mechanism for
creating a team of core developers who contribute to the projects, and this clearly
imposes implicitly coding standards. To this end, it is remarkable rule 5 that even
discusses what to do when someone is not any more interested in guiding an OS
project: “When you lose interest in a program, your last duty to it is to hand it off
to a competent successor.”

Values and Principles Practices in Agile and Open Source Development 39

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Coding standards are not explicitly mentioned by Raymond, even if, in practice,
they are present.

3.4.3 practices of programmer Welfare

Being largely self-motivated, the issue of programming welfare is not of primary
interest for Raymond. Still on page 27 he claims that “A happy programmer is one
who is neither underutilized not weight down with ill-formulated goals and stressful
process friction. Enjoyment predicts efficiency.” This is not quite the concept of the
forty hours week, but it is quite similar.

3.5 putting the AnAlysis together

Altogether, we note that there is a pretty high level of overlap between the values
adopted by XP and that of OSD according to Raymond. Communication, feedback
and simplicity are fully endorsed. Courage is also implicitly assumed to carry out
an OS project.

Going to the principles, there is still a good level of agreement in the funda-
mental principles, apart from quality that in Raymond’s work is assumed, rather
than advocated.

For the “other principles” of XP, the only differences come from the different
point of view: Raymond deals with mostly volunteers, while Beck mostly with
employees. Concepts such as traveling light, limited upfront design, etc., do not
concern particularly Raymond that, on the other hand, is more interested that the
open source developers do at least a little bit of design upfront.

As to the practices, clearly the situation is quite different. Practices related to
process, shared understanding and programmer welfare are somewhat similar in
the two cases. Practices related to fine-scale feedback are not so widely present in
the description of Raymond.

As a final note, we would like to evidence that both Beck’s and Raymond’s
experience comes from an early use of very easy to use, expressive, and powerful
programming languages: Smalltalk and Lisp respectively. An analysis of the role
of programming languages in AMs and in OSSD could be an interesting subject
for a further study.

40 Values and Principles Practices in Agile and Open Source Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

3.6 references

Ambler, S. (2002). Agile modeling: Effective practices for extreme programming
and the unified process. Wiley.

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Beck, K. (2002). Test driven development: By example. Addison-Wesley Profes-
sional.

Beck, K. (2004). Extreme programming explained: Embrace change, second ed.
Addison-Wesley Professional.

Fowler, M. (2003). Principles of XP. Retrieved on November 11, 2008 from http://
www.martinfowler.com/bliki/PrinciplesOfXP.html

Jeffries, R., Anderson, A., & Hendrickson, C. (2001). Extreme programming in-
stalled. Addison-Wesley Professional.

Raymond, E. S. (2000). The cathedral and the bazaar. Retrieved on November 11,
2008 from http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

endnote

1 http://agilemanifesto.org/ (accessed on November 11, 2008)

Models of Organization 41

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 4

Models of Organization

4.1 introduction

The essence of XP, but in general of AMs, is making the customer a part of the
team who works very closely with the developers, ideally communicating on a
daily basis. However, this is not always feasible: this is due to a number of differ-
ent reasons, some connected with difficulties of the customer, but others may exist,
for instance, situations where the development team is offshore. In this document,
we will illustrate the organizational models of XP, also throughout a number of
techniques used to obtain at least a part of the benefits of close interactions in case
where they are impossible.

In fact, the momentum to the development of a project deriving from an ongo-
ing communication flow is the key point of AMs and XP, in order to have a prompt
integration of the deliverables into the customer’s production environment.

The reason to implement XP or AM projects with the proper organization model
is to obtain the maximum outcome from the chosen methodology:

• Lower risks. By implementing XP (or any AM) properly, it is possible to tru-
ly control the development spend by getting daily estimations of how far the
allocated budget will take the project in terms of implementing the desired

DOI: 10.4018/978-1-59904-681-5.ch004

42 Models of Organization

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

functionality. In short, what is possible to obtain is a “fixed price, variable
scope” situation, with very close control over how every dollar is spent.

• Scope prioritization and early release of the core functionality.
• Possibility to throw in changes as the project goes (as many as possible).

It is the projects with highly fluid requirements that especially benefit from
XP. The cost of change relative to project phase is linear here rather than ex-
ponential as in conventional projects. This is where such XP practices as “no
design in advance” and “keep it simple” really add value.

• Projects can be started with a minimal set of requirements. Ideally a new
project should have user stories, story tests and mockups, but this is not a
must. Clients can kick off an XP project without the long preliminary phase
of requirements preparation, because it is possible for the client, thank to the
improved communication facilities, to define its requirements iteratively.

4.2 the Agile MAnifesto

Indications coming from the Agile Manifesto state the concepts of the organizational
models in the Agile Methodologies:

Organizations must live with the decisions developers make•
Organizations need to have an environment that facilitates rapid • communica-
tion between team members

These sentences have two great implications in the usual structure of organiza-
tions:

Developers can make decisions for the whole project, and the whole team •
should just accept them
Any organization willing to embrace AMs or • XP should provide facilities
and adapt its environment, and not only in material way, to allow and ease
communications between team members: as the team is composed by peo-
ple from heterogeneous departments (business and technical), this is a great
boost for horizontal communications inside a company.

Models of Organization 43

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

4.3 culture, people, coMMunicAtion

As stated by Cohen et al. (2004), an organization can be assessed by examining
three key dimensions: culture, people, and communication. In relation to these areas
a number of key success factors have been identified:

The • culture of the organization must be supportive of negotiation
People must be trusted•
Fewer but more competent • people
Organizations must live with the decisions developers make•
Organizations need to have an environment that facilitates rapid • communica-
tion between team members

Most agile methods are more suitable for projects with small teams, with fewer
than 20 to 40 people. Large scale agile software development remains an active
research area (Eckstein, 2004; Ambler, 2006). Based on empirical evidence, the case
can be made that very large projects (more than 200-1000 software engineers) are
the natural terrain for agile methods. The case does not depend on running these
projects as confederations of small teams.

4.4 goAls of the orgAnizAtion
Models for AMs And Xp

Review of the required adaptations to the organization models for AMs and XP,
starting from C3 project described by Beck (1999).

4.4.1 scheduling

XP specifically prescribes two levels of scheduling, which make up the Planning
Game. These levels, called Commitment Schedule and Iteration Plan, are based on
developers’ own estimates for the production of the necessary software. The joint
Commitment Schedule process results in a comprehensive estimate of what will be
produced, and when. The joint Iteration Plan schedules a short interval, and results
of each iteration feed back into the Commitment Schedule to refine the schedule.
C3 progress is in no way characterized by a series of crises.

The C3 team specifically prohibits heroics, and works almost no overtime.
Instead, the team treats a desire for heroics as an indication that there is something
wrong with the process. They dig in and determine what is going wrong, and fix
the process.

44 Models of Organization

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

While the C3 team members are quite competent, they are generally not excep-
tional. The team’s Pair Programming practice brings two good minds to bear on
each problem: this is generally better than bringing one excellent mind to bear.

The team manager offers no exceptional support. Rather, he serves only to track
progress, and to interface to management, with all technical decisions and assign-
ments being done jointly by the team and by a volunteer process.

A second XP project, with a new team, has not yet been attempted at Chrysler,
so we cannot yet speak to how well the success will be replicated. Our thoughtful
opinion, however, is that it is our process, not us as individuals, that is making C3
work so well.

4.4.2 training and Monitoring

XP clearly specifies a number of practices. These are well-defined, and are docu-
mented. The team has been trained at the beginning of the project, has a full-time
coach, and trains new members in the team practices. Practices are generally mea-
sured and enforced by the shared responsibility of the team. Pair Programming
and an open process ensure that all developers know what is happening all over
the system. In the rare instances where a developer may violate one of the team’s
practices, the offending developer will be advised, reprimanded, or, in rare cases,
allowed to work on some other project.

The practices are improvable, and in fact are improved as we go along. In XP,
there are Four Variables that are tracked: Resources, Scope, Quality, and Time. These
variables let us determine whether we are meeting the schedule, with the desired
quality, as we go along. We report these variables uniformly, from ourselves all the
way to the top of the organization.

4.4.3 definition of organizational processes

XP rules encompass the readiness criteria (e.g., completion of User Stories, pres-
ence of key resources), inputs (User Stories), standards and procedures (the many
“Extreme Programming Rules”), verification mechanisms (Unit Tests and Functional
Tests), outputs (the software plus anything else defined in the User Stories), and
completion criteria (user-acceptable scores on the Functional Tests), defined for
CMM level 3 (Chrissis et al., 2003).

Using the Four Variables, XP provides management with simple and clear insight
into actual project performance.

Models of Organization 45

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

4.4.4 Management

XP requires that quality goals for products be set via the Functional Tests. We require
Unit Tests to be at 100% all the times, so that’s not very interesting as a statistic.
We measure our Load Factor, which relates elapsed time to developers’ estimates of
difficulty. We have not set quantitative goals for this figure, but we do use changes
in Load Factor as a cue to look into the process and see where we can improve.

When the schedule is tracking and test scores are good, it is not always necessary
to track other quantitative values. Some candidates to consider would be: number
of unit tests vs. number of system classes; rate of change of test creation; number
of system classes; class/method/code lines ratios, and so on.

Looking at XP through CMM eyes, especially if XP were being done throughout an
entire large organization, it is possible to expect that more measurement might be needed
than the required in a single project. An interesting question in those circumstances is
how much to invest in measurement “in case we need it”. The XP advice would be to
measure only things that have low cost, and start measuring when you see the need. We
would advise recording additional (low-cost) measures but (literally) not looking at them
unless and until there is a perceived use for the figures. Otherwise you’re just wasting
time that could be used writing more software – which is, after all, the point.

4.4.5 optimization

At the Optimizing Level [..]. software teams analyze defects to determine their
causes. They evaluate software processes to prevent known types of defects from
recurring and [they] disseminate lessons learned throughout the organization.
(Chrissis et al., 2003)

XP practice is to meet every defect by implementing tests that display the defect,
then fixing the software so that the tests run. Other tests are to be built in the same
or related areas, to catch similar or related problems.

It is fair to say that the C3 team, being human, sometimes falls a bit short in
terms of creating tests for things that are outside our current scope. This is an area
that needs continual attention from the Extreme Coach, and it may need shoring up
in some other way as well.

XP teams prefer to implement software to check for and detect errors, whether
in the base software or in process, rather than to set up involved procedures which
leave open the possibility of human error or laziness. Thus, an XP team will write
software to make sure that changes are not stepped on by subsequent developers,
rather than set up a more involved release procedure.

46 Models of Organization

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

4.5 orgAnizAtion

There is a template of an ideal organizational structure to run multiple XP projects.
This role definition starts from generalizing a set of data collected in a number of
studies (Ambler, 2006; Ceschi et al., 2005; Chrissis et al., 2003; Eckstein, 2004;
Sillitti et al., 2005).

4.5.1 Business project Manager (BpM)
and Business Analyst (BA)

Carry out business analysis and prepare prioritized user stories and story •
tests.
Allocate the project budget (BPM).•
Answer business questions and update the documentation.•
Provide early feedback for completed stories. Verify implemented stories.•
Open, prioritize, and track • change requests and defects.
Participate in release planning sessions, planning games, and daily Scrums.•

The business team should drive the story creation and prioritization. Stories and
subsequent change requests are consolidated and channeled to the development team
through the BPM. The business team’s main task is to be responsive to the devel-
opment team, answering questions early and often, thus enabling the development
team to move quickly through the implementation of stories. As the development
team delivers its daily builds, the business analysts also continuously verify that the
functionality implemented by the developers is really what the business wanted.

4.5.2 technical integration lead (til) responsibilities

Keep the balance between the development team and the customer (moderator role).•
Cannot be BPM or BA!•
Supervise the team staffing • process.
Track progress of the entire project.•
Make sure that all resources (environment, documentation, back-end access) •
are arranged and made available to the development team.
Get external resources (e.g., a stress testing team), as necessary.•
Make sure that all questions are answered in timely manner and that the doc-•
umentation is updated accordingly.
Arrange and participate in release planning sessions, planning games, and •
daily Scrums.

Models of Organization 47

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The TIL deals strictly with the technical and organizational side of the project,
leaving the issues related to the business logic to the BAs and the BPM. This is to
ensure that the BPM is focused on getting the requirements right 100% of the time
and does not have to be distracted from communicating with the development team
for non-essential, administrative tasks.

4.5.3 enabler responsibilities

Participate in the project feasibility study preceding the project.•
Review user stories and creates technical stories.•
Provide proper interfaces and stubs to back-end systems.•
Review the source code daily and checks compliance with architecture stan-•
dards and coding guidelines.
Check product metrics (unit test coverage, automatic unit test coverage, cy-•
clomatic complexity).
Help the development team by answering difficult technical questions and •
suggesting better solutions.
Participate in release planning sessions, planning games, and daily Scrums.•

The enabler acts as the first filter on the customer side. He receives the daily build
from the StarSoft team and deploys it in the client’s integration environment (which
emulates the production environment), since the offshore team is not allowed direct
access to the client’s highly sensitive environments. He also performs code reviews
to make sure the team follows coding and architectural guidelines. In short, the
enabler’s responsibility is to ensure the code’s consistency and to make sure the
business analysts can proceed to test the system’s functionality. More often than
not, a separate Technical Data Analyst (TDA) is working alongside the enabler and
takes care of the database side of things.

4.5.4 tdA responsibilities (When present as a separate role)

Create technical stories relating to databases.•
Provide the necessary schemas and data of back-end databases.•
Review DDL, DML, and query scripts.•
Perform load and stress testing, if necessary.•
Help the development team by answering the difficult technical questions •
and suggesting alternative solutions.

48 Models of Organization

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Due to the global nature of the client’s organization, the BMP, TIL, Enabler and
the development team can be in different countries for the same project. This is to
adapt at maximum level the organization to any client request.

4.5.5 project Manager’s responsibilities

Put the team together from the available resource pool, based on the • require-
ments of the project at hand. Serve as the central communication point to the
client.
Sort out everything that can potentially decrease the team’s velocity.•
Arrange and participate in release planning sessions, planning games, and •
daily Scrums. Write and circulate minutes.
Participate in estimations; track status.•
Gather questions and forward them to the client, receive answers, and discuss •
them with the team.
Arrange standup meetings, and make sure that everyone has his/her daily •
tasks assigned and that the tasks are clear.

The project manager shall staff the development team and act as the central com-
munication conduit to the customer. On a daily basis, he or she shall run the morning
standup meeting to kick off the daily “mini project.” Right after that, the PM proceeds
to collect the questions from his team, answering the easier ones and consolidating
the rest into the daily email to the client’s analyst team.

In the middle of the day, the project manager holds the daily Scrum telephone call
with the customer. Generally speaking, it is important to propagate this communica-
tion between developers and the customer through the PM: if each team member
communicated with the customer directly, the customer could be flooded by duplicate
questions or by questions that can be easily answered by the PM. However, team
members might also take part in the Scrum. For example, in the case of a complex
technical problem, Tech Lead shall speak directly to the Enabler on the customer
side. Immediately after the Scrum, the PM holds the second stand-up meeting for
the day, passing back the answers he received during the Scrum call.

4.6 Key points for orgAnizAtions

• Face to face communication is important. Over time, data gathered in
some studies (Ceschi et al., 2005; Sillitti at al., 2005) have shown that some
companies moved to holding planning games on the phone rather than face

Models of Organization 49

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

to face, for economic reasons: it can be expensive to send a team of three to
five managers from Ireland or the UK to Russia for up to four days. Although
phone planning games are cheaper, those companies still report that it is ad-
visable to hold at least the first planning game face-to-face with the client. It
is less likely that questions will be asked during telephone planning games
than in face-to-face meetings, which can result in more errors, more bug fix-
ing down the line, and ultimately more expensive projects. Another reason
why face-to-face meetings are so important (at least once per client) is be-
cause the personal connection made at the first meeting makes subsequent
communication much more effective. So in the long run, face-to-face plan-
ning games may still make economic sense.

• Separation of roles. Having the Enabler, TIL, and BPM/BA as separate roles
really helps with the focus and the efficiency of communication. This re-
quires a certain degree of dedication from the client. Generally speaking,
since usually there is no direct access to the client’s integration and produc-
tion environments, the adoption of an enabler is a must to ensure the proper
deployment of the daily (or interactions) releases. The separation of the TIL
and BPM roles is really helpful in focusing people’s energies on the right
things.

• The importance of tools. Tools provide the much needed daily visibility
into the project for the management on the client side, enabling them to truly
harness the power of XP. This is especially critical if the development team
is located offshore.

4.7 references

Ambler, S. (2006). Supersize me. Dr. Dobb’s Journal. Retrieved on November 11,
2008, from http://www.ddj.com/architect/184415491

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Ceschi, M., Sillitti, A., Succi, G., & De Panfilis, S. (2005). Project management
in plan-based and agile companies. IEEE Software, 22(3), 21–27. doi:10.1109/
MS.2005.75

Chrissis, M. B., Konrad, M., & Shrum, S. (2003). CMMI: Guidelines for process
integration and product improvement. Addison-Wesley Professional.

50 Models of Organization

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. In M.
Zelkowitz (Ed.), Advances in computers (pp. 1-66). New York: Elsevier Science.

Eckstein, J. (2004). Agile software development in the large: Diving into the deep.
Dorset House Publishing.

Sillitti, A., Ceschi, M., Russo, B., & Succi, G. (2005). Managing uncertainty in
requirements: A survey in documentation-driven and agile companies. 11th IEEE
International Symposium on Software Metrics (METRICS 2005).

Coordination in Agile and Open Source 51

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 5

Coordination in Agile
and Open Source

5.1 introduction

Although the situation in the software industry is improved in the last years, the
percentage of software project cancelled 18%, or challenged (late, over budget, and
with less than the required features) 53% is still high1. Researchers and practitio-
ners are looking for the magic solution or the silver bullet that will allow software
companies to overcome the software crisis (Brooks, 1987). New development ap-
proaches like AMs and OSD models are some of the solutions identified (Feller &
Fitzgerald, 2002; Abrahamsson et al., 2003).

One critical problem in software development consist of coordinating interde-
pendent processes involving many interacting stakeholders with different interests,
points of view, and expectations (Toffolon & Dakhli, 2000).

Two inherent characteristics of software make coordination a critical issue and
a primary cause of the software crisis. These characteristics are (Kraut & Streeter,
1995; Marchesi et al., 2002):

1. Complexity: software systems are often very large and far beyond the abil-
ity of any individual or small group to create or even to understand in detail.
Several, different groups work toward a common goal, share information, and

DOI: 10.4018/978-1-59904-681-5.ch005

52 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

need to coordinate their activities. A lot of interdependent decisions have to
be made in the presence of incomplete information and high uncertainty.

2. Uncertainty: software development is permeated by uncertainty. Environmental
factors like technological innovations and market changes introduce uncertainty
into software projects. The intangibility of software makes it difficult to review
progress, thus introducing uncertainty into software project management. The
flexibility of software and the volatile environment that software projects
face makes change a main source of uncertainty. Changing and incomplete
requirements increase uncertainty in software development. Finally, software
is uncertain because the different subgroups involved in its development often
have different beliefs about what it should do and how it should do it.

Coordination becomes much more difficult as project complexity and uncertainty
increase (Kraut & Streeter, 1995).

This chapter focuses on how to coordinate software development when there is
a high level of complexity and uncertainty. Companies adopting new development
approaches like AMs and OSD models are investigated. In fact, AMs are suitable
for developing software in dynamic and uncertain environment, while OSD models
develop software in particularly complex conditions.

Using the framework provided by organization and game theory, we are going
to identify the main kind of dependencies and coordination mechanisms both in
OSD models and AMs.

5.2 WhAt is coordinAtion?

5.2.1 organization theory

A common way to deal with complex problems consists of splitting the problem in
smaller sub-parts easier to manage. The Fordist approach in product manufactur-
ing is an example of this method (Ohno, 1988). According to the Fordist approach,
division and specialization of labor permit to achieve perfection in the tasks and
economies of scales (Womack et al., 1991). In particular, complexity can be tamed
through:

Clear identification of different activities to do•
Specialization of competences•

Clear division of tasks and separation of labor reduces complexity but can increase
the integration need of the organization. Specialization causes interdependency

Coordination in Agile and Open Source 53

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

among production units, and interdependency requires coordination.
Therefore, in a production process, it is important to manage and coordinate the

interdependences among different units (Lawrence & Lorsch, 1967).
Nevertheless, there could be two different situations of interdependency. Only

one results in coordination problems (Camerer & Knez, 1996).
The first situation is when there is a conflict between the individual goals and

the common goals. For example, when more subjects have to share the same limited
resources but there are not incentives to cooperate.

The second situation occurs when different decision makers have a common goal,
but they can choose among different alternatives to achieve such goal. Different
decision makers may choose different alternatives because of the lack of informa-
tion about the choices of the others. In these situations, even though the goals are
aligned, the lack of mutual expectations among actors results in strategic uncertainty
and thus in coordination problems (Camerer & Knez, 1996).

5.2.2 game theory

Game theory is an extension of decision theory to situations involving strategic
interaction (Weber, 2001).

Coordination problems have received a lot of attention from game-theorists.
According to game theory, the essential aspect of coordination is the presence of
multiple equilibria (Cooper, 1999).

To analyze these kinds of problems, game-theorists use a game called pure
coordination game (Figure 1). This game represents the most basic form of the
coordination problem, and it presents a situation of strategic uncertainty.

A game theoretic-representation of a situation has the following basic elements
(Weber, 2001):

Figure 1. Pure coordination game

54 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1. A set of decision makers or players
2. A set of actions available to each of the players
3. A mapping from all combinations of actions into outcomes
4. Preferences for each player over each of the outcomes
5. The information and beliefs held by players at any point in the game

In this game, there are two players and each has two actions (in this case they
are labeled A and B). Each player values positively only the outcomes in which
both players make the same choice. This game has two pure-strategy equilibriums:
(A, A) and (B, B). Players do not care which equilibrium is reached, but only that
their actions coincide. The only problem is figuring out which of two equally valued
equilibriums will result.

The coordination problem arises because of the presence of two equilibriums
and uncertainty about which one should be played. The game therefore captures
the aspect of a problem that makes it a coordination problem: strategic uncertainty.
Strategic uncertainty results from uncertainty about what actions others will take.

5.3 interdependencies And coordinAtion MechAnisMs

According to the framework proposed by Malone and Crowston (1994), coordina-
tion can be defined as “the act of managing interdependencies between activities
performed to achieve a goal”. They analyze group action in terms of actors perform-
ing interdependent activities to achieve goals. These activities may also require or
create resources of various types.

This definition gives a prominent role to interdependence. In fact, if there is no
interdependence, there is no need to coordinate activities (Malone & Crowston,
1990).

In order to address the coordination problem it is necessary to follow two main
steps (Malone & Crowston, 1994):

1. Identify the main kinds of dependencies that can exist among production units,
activities, or actors

2. Identify the coordination mechanisms that can be used to manage these
dependencies

There are a wide variety of potential dependencies and the following list is by
no means intended to be exhaustive. Different authors, mainly from the organiza-
tional research area, provided different conceptions of dependencies and alternative
categorizations of the existing dependencies.

Coordination in Agile and Open Source 55

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

On the basis of the dependencies identified, organizational researchers have pro-
posed several coordination mechanisms. For example, Thompson (1967) described
three patterns of dependency (pooled, sequential, reciprocal) with corresponding
coordination mechanisms (standardization, plans, mutual adjustment).

Mintzberg (1979) presented a similar set of coordination mechanisms: mutual
adjustment, direct supervision and four kind of standardization.

Malone and Crowston (1994) identify several common dependencies (shared
resources, producer-consumer, simultaneity constraints, etc.) with the related coor-
dination mechanisms (resource allocation, standardization, and synchronization).

Game theorists similarly have a list of coordination mechanisms useful for
addressing strategic uncertainty. Among these are making certain actions salient
or focal points, using precedent to coordinated activity, statements by people in
authority positions, communication between players, and repeated interaction
(Weber, 2001).

It is possible to find a parallel between the types of coordination mechanisms
provided by organizational researchers and game theorists. For example, both stan-
dardization and salience facilitate coordination creating tacitly expectations of the
correct action to be performed (Weber, 2001).

Finally, it is important to notice that there are many different coordination
mechanisms that could be used to address the same kind of dependence. For in-
stance, to address a shared resource dependency it is possible to use both plans and
authority.

5.3.1 interdependences

Crowston (1994) suggested a structural taxonomy of dependencies and associated
coordination mechanisms based on all the possible relationships between tasks and
resources. For simplicity, he considered tasks both the goals to be achieved and the
activities to be performed. With the term resources he included everything used or
affected by activities, both material things and effort/time of actors.

According to this framework, there are three main kinds of dependencies between
tasks and resources (Crowston 1994; Crowston 2005):

1. Task-resource dependencies
2. Task-task dependencies
3. Resource-resource dependencies

56 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

5.3.1.1 Task-Resource Dependencies

This dependency occurs when a task requires some resource to be performed. If
there is only one appropriate resource known, then that resource must be the one
used. However, in many situations there are many possibly appropriate resources,
creating the problem of resource assignment. A general resources allocation process
encompasses the following five steps:

Identification of the resource required by the task•
Identification of the resources available•
Choice of a particular resource•
Assignment of the resource to the task•

One very important special case of resource allocation is task assignment, that
is, allocating the scarce time of actors (resource) to the tasks they will perform
(Malone & Crowston, 1994).

Different coordination mechanisms can be used for resource assignment, for
instance, hierarchy or market (Crowston, 1994).

5.3.1.2 Task-Task Dependencies

According to Crowston (1994) the only way two tasks can be dependent is via some
kind of common resources. Consequently, there are three major kinds of dependen-
cies among tasks:

1. Shared resource
2. Producer-consumer
3. Common output

Shared Resource
The first kind of dependency arises whenever multiple tasks/processes share some
limited resources (Malone & Crowston, 1994).

Thompson called this dependency pooled interdependence and described it as
a weak or indirect interdependence that arises only in the global functioning of the
organization as a whole (Thompson, 1967).

To understand the potential constraints of this dependency it is necessary to
introduce the notions of reusability and shareabilty (Crowston, 1994).

Reusability describes a situation in which many tasks can use the resource over
time. Not all the resources are reusable; some of them such as raw materials and time
can only be used once. Because of this, these kinds of resources are non-shareable.

Coordination in Agile and Open Source 57

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Shareablity describes a situation in which many tasks can use the same resource.
If the common resource is shareable, there is no conflict for two actors to use it. On
the contrary, if the resource is not shareable, then the two tasks cannot be performed
simultaneously and a coordination mechanism is necessary (prioritization, plans,
etc.).

Nevertheless, in some situations in which there is no conflicting use of a resource,
and more tasks require at the same time the same resource, a simultaneity constraint
can emerge. A suitable coordination mechanism for this dependency can be the
adoption of a synchronization process (Malone & Crowston, 1994).

Producer-Consumer
A producer-consumer or sequential dependency arises when a task creates a resource
(output) that another task requires as an input (Thompson, 1967).

In this case there is a precedence or prerequisite dependency between the two
tasks, requiring that the tasks be performed in the correct order and the flow of the
resource between the two be managed (Crowston, 1994).

Precedence dependencies often imply additional constraints on how tasks are
performed, such as (Malone & Crowston, 1994; Weber, 2001):

Usability constraints: the first task has to produce something that should be •
usable by the second task that receives it.
Transfer constraints: the output produced by the first task must be transferred •
to the second task when needed.

To address prerequisite dependency a notification or planning process can be
used. Usability constraints can be managed by standardization, participatory design,
customer involvement and negotiation, or by testing (Crowston, 1994).

Managing transfer constraints may involve physical transportation or in the
case of intangible assets such as information, the suitable coordination mechanism
is communication (Malone & Crowston, 1994). Managing transfer dependency
sometimes involves storing things. Thus, inventories represent buffers between
tasks that permit to control the timing of the different tasks.

A particular category of sequential dependency is the reciprocal dependency.
Malone and Crowston defined reciprocal dependence as “where each task requires
inputs from the other” (Malone & Crowston, 1994). According to Thompson re-
ciprocal dependence occurs when the outputs of each task become inputs for other
tasks creating a bilateral dependency (Thompson, 1967).

58 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Reciprocal dependence has several of the features of sequential dependence. Its
unique aspect is the fact that actors can affect outcomes reciprocally and repeat-
edly. Their role may not be competed once they have acted (Weber, 2001). Due to
its continuity, reciprocal dependency can be primarily managed through mutual
adjustment (Thompson, 1967).

Common Output
The third kind of dependency, common output, occurs when two tasks contribute
to create the same resource or output (Crowston, 2005). This dependency can have
either positive or negative effects. In fact, if both tasks do exactly and unintentionally
the same thing, it may result in a problem of duplication or waste of resources.

Nevertheless, two tasks can affect different aspects of a common resource. This
is the case of more actors that collaborate in order to achieve a common goal.

This kind of dependency is quite complex because it requires coordination of the
resources and time of the different actors. Moreover, there is a problem of interoper-
ability among the different parts produced by the different actors.

The coordination mechanism can involve two stages, that is, goal selection and
goal decomposition (Malone & Crowston, 1994)

5.3.1.3 Resource-Resource Dependencies

It is possible for different resources to be interdependent, for example, by being
connected together in some kind of assembly (Crowston, 1994).

In this case, changes to a resource could affect the state of another resources and
it is not always easy to identify the relationships among resources.

A critical step to manage these dependencies is to identify all the potential
relationships among resources. Afterward, it is necessary to adopt a coordination
mechanism such as standardization of the interfaces or a rapid information sharing
process.

5.3.2 coordination Mechanisms

Coordination problems arise because there are interdependencies among activities
(Malone & Crowston, 1990). Consequently, there are two possible and main ways
to deal with coordination problems:

1. Managing interdependencies
2. Reducing interdependencies

Coordination in Agile and Open Source 59

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

5.3.2.1 Managing Interdependencies

The above dependencies can be managed by a variety of coordination mechanisms.
Projects with different characteristics rely on different coordination techniques
(Kraut & Streeter, 1995).

The main characteristics that should be evaluated in order to choose an appropri-
ate coordination mechanism are:

Project • uncertainty/complexity
Project goals (quality, customer satisfaction, efficiency•
Project phase•

Coordination mechanisms can be informal or formal. The informal coordination
techniques are more suitable when uncertainty is greater, the projects is particu-
larly complex, or it is in the requirements analysis phase, and the goal is to deliver
an effective project. Informal techniques are communication-oriented and highly
interactive; they can be divided in two main types:

1. Remote, technology mediated, such as emails, chat, etc.
2. Direct, face-to-face such as informal meetings, ad-hoc communication, etc.

The formal coordination techniques are more suitable when uncertainty is lower,
the projects is not complex, or it is during the implementation/ testing phases, and
the goal is to deliver an efficient project (Kraut & Streeter, 1995).

Formal techniques are more control-oriented and less interactive. Formal coor-
dination techniques mainly involve written communication such as plans, reports,
and formal standards.

Both game theory and organization theory provide formal and informal tech-
niques to manage coordination problems. The main coordination mechanisms are
the following:

Focal Points, Precedents, Standardization
When it is difficult or impossible to communicate one way of solving coordination
problems is by providing everyone with some focal point for each person’s expec-
tation. Focal points are equilibriums that for different reasons become expected
solutions to coordination problems.

Such equilibriums or norms can emerge in a spontaneous way, for example as
result of past interactions (precedents), or they can be recommended or imposed by
an authority. An example of this second case is standardization.

60 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Organization standards can be considered as focal points as they create coordina-
tion by tacitly indication the correct action to be performed (Weber, 2001).

Coordination by standardization can be accomplished by establishing rules
or procedures that govern the performance of each activity. These predetermined
rules enhance the predictability and regularity of the actions in a given process
(Mintzberg, 1979).

This coordination mechanism is a common way of managing sequential and
reciprocal dependency and work best in repeated and stable environments (Malone
& Crowston, 1994).

Plans, Authority
Coordination by plans involves addressing a particular interdependence problem
by developing schedules and formal rules for action.

Coordination by plan often requires an organizational authority (Thompson,
1967). In fact, an authority position is responsible for implementing the correct
plan, or set of actions (Weber, 2001).

An authority can also solve a coordination problem simply recommending or
imposing a particular action. Another important role of the authority is that of cre-
ating a common knowledge among project participants. This common knowledge
stimulates mutual expectations and reduces strategic uncertainty.

Mutual Adjustment, Repeated Interactions, Communication
Repeated interactions result in information and common knowledge that allows dif-
ferent actors to mutually adjust their expectations and actions (Thompson, 1967).

Communication is a powerful coordination mechanism. It creates common knowl-
edge and shared expectations thus enabling mutual adjustment. These coordination
mechanisms are useful in changing environments where the same informal or formal
rules cannot be applied repeatedly across situations (Weber, 2001).

5.3.2.2 Reducing Interdependencies

Studies in R&D provide alternative solutions to coordination problems (Grinter
et al., 1999; Herbsleb & Grinter, 1999). These solutions address the coordination
problem focusing on its primary source, that is, the existing interdependencies among
activities. These approaches focus on designing the organization and assigning the
work so as to reduce the amount of interdependence and communication among
activities. There are three main solutions:

1. Functional areas model: in the functional area model, expertise for a specific
functional area involved in development of the product is located at a single site.

Coordination in Agile and Open Source 61

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

2. Product structure model: decisions about a product structure would determine
who would need to coordinate their work with whom. The architecture of the
system influence the communications required among project members (Grinter
et al., 1999). In particular, tasks associated with a particular component are
generally highly interrelated, so co-locating everyone performing those tasks
should facilitate needed communication. On the other hand, tasks associated
with different components, are likely to be much more loosely coupled and
require less communication and coordination. This model provides the basis
for designing modular products.

3. Process steps model: the activities for a given process step are co-located. In
fact, the coupling of tasks within a process step is likely to be much tighter
than the coupling between process steps.

To deal with strategic uncertainty it is possible both to reduce the interdependen-
cies and to manage them with the existing coordination mechanisms. These two
strategies can be used in parallel.

5.4 coordinAtion And neW softWAre
developMent ApproAches

One of the most challenging aspects in software development is achieving a tight
coordination among the various groups involved in the development process (Curtis
et al., 1988). Complexity and uncertainty make coordination a major but inevitable
problem in software development.

The next sections will present the main dependencies and coordination mecha-
nisms in two particularly complex and uncertain domains: OS and AMs.

5.4.1 open source software development

Large software development projects tend to be highly complex. Consequently,
they need to be tightly coordinated. In the recent years, increasing numbers of
large software development projects are conducted on a global scale that disperses
processes to different locations (Carmel & Agarwal, 2001).

The driving force behind this tendency toward globalization of software projects
is largely economic. In particular, the two strategic reasons for distributed software
development are cost advantage and labor availability (Carmel, 1999).

Due to globalization of large software projects, achieving a tight coordina-
tion among the various groups involved in the development process is even more

62 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

complex. Consequently, new and different coordination mechanisms have to be
identified and applied.

The extreme of distributed development is OSD. With its globally distributed
developer force and extremely rapid code evolution, open source is the extreme in
virtual software projects, and exemplifies many of the advantages and challenges
of distributed software development.

OSS is software for which the source code is distributed or accessible via the
Internet without charge or limitations on modifications and future distribution by
third parties. This definition highlights two main characteristics of the software
open source that are (Feller & Fitzgerald, 2002):

• Free redistribution: There should be no restriction from selling or giving
away the software, and no royalties or other fees for such sale.

• Availability of the source code: The program must include source code, and
must allow distribution in source code as well as compiled form. One of the
key technological strengths of OSS is the ability for users to evaluate and
modify the underlying source code.

The OSSD process can be briefly characterized as consisting of distributed,
parallel development supported by rapid release cycles and communication meth-
ods, and collaboration among highly talented and motivated developers and users
(Feller & Fitzgerald, 2002).

Some of the characteristics highlighted in this definition are particularly important
for the purpose of this chapter:

• Parallel development is a key characteristic of the OSD process. Parallel
development refers to the practice of individual developers working on one
aspect of a large system at the same time that other individuals work on an-
other aspect of the same system. However this is not always the case. In fact,
in OSS projects can happen that individual developers work in parallel on
the same aspect of the same system. In the first case development speed is
improved while in the second case product quality is improved.

• OSD processes involve large communities of globally distributed developers
that interact and collaborate primarily using a wide variety of Internet tech-
nologies. This global nature of OSS communities improves the overall quality
of OSS. It guaranties truly independent peer reviews and prompt feedback.
Other key aspects of the • OSD processes, critical to the success of the projects,
are the high level of skills in the core developers and their high motivation.
In • OSD, due to the prompt feedback/communication and to the parallel de-
velopment process, the process is organized in rapid, incremental releases.

Coordination in Agile and Open Source 63

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Typically, in • OS projects there are two tiers of developers participating in
the effort: a core group that is relatively small, and a much larger pool of
contributors. The core developers are actively and frequently involved in
the development of the product. Often, the core developers as initial project
founders are responsible of the requirement definition, analysis, and design
phases. Contributors submit occasionally to the system, as they have time,
interest, or ideas.

Findings from different studies (Curtis et al., 1988; Kraut & Streeter, 1995;
Herbsleb & Grinter, 1999) show that informal coordination mechanisms, such as
unplanned and ad-hoc communication, are extremely important in supporting col-
laboration and coordinating activities. This is particularly true in complex environ-
ments as distributed software development. Therefore, one of the central problems
of OSD is generated by the fact that distance profoundly reduces the amount of
such informal mechanisms (Grinter et al., 1999). Some of the barriers which led to
coordination breakdowns in OS projects are (Herbsleb & Grinter, 1999):

Lack of unplanned contact•
Knowing who to contact about what•
Cost of initiating contact•
Ability to communicate effectively•
Lack of trust or willingness to communicate•

To understand how OSD overcomes the barriers to coordination that are imposed
by distance, it is necessary to identify the main kind of potential dependencies in
open source projects and the most used coordination mechanisms.

5.4.1.1 Task-Resource Dependencies

In OSD the time of the different actors or contributors involved in the project is a
limited and consumable resource that has to be assigned to the different tasks of
the development process. This task-resource dependency requires a coordination
mechanism called task allocation.

In a proprietary process the choice is made based on specialization and division
of labor. Typically, the project manager assigns developers to the process tasks on
the basis of the skills required by the task and the specialization of the person. This
approach requires a fair amount of work and experience for the assigner, but it easier
to coordinate (Crowston, 1994).

OSD does not rely on explicit assignment but instead relies on developers to
assign themselves to tasks on the basis of their experiences and interests. Task al-

64 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

location occurs through voluntary assignment. This approach makes the assignment
process similar to the market approach where a description of each task is sent to all
available agents. Each evaluates the task and if interested in working on it, submits
a bid. The task is then assigned to the best bidder (Crowston, 1994).

In OSD the description of the tasks is available in terms of requirements speci-
fication and design of the application. Each contributor evaluates the tasks and
chooses autonomously whether to work on a task if interested. In contrast to the
market mechanism, contributors do not submit a bid for the task. In fact, studies
affirm that OS programmers usually tend to perform the tasks without declaring
the commitment for them. In particular, they perform the tasks without a formal as-
signment mechanism (Yamauchi et al., 2000). Their contributions are subsequently
reviewed and evaluated by the core developers (Cubranic & Booth, 1999) or by the
community (Yamauchi et al., 2000; Feller & Fitzgerald, 2002).

5.4.1.2 Task-Task Dependencies

Shared-Resources
This dependency arises when multiple tasks require the same limited resource. In
OSD contributors provide their own computing resources, bring their own soft-
ware development tools with them, and do not have to share the same workplace.
Nevertheless, there is an important limited resource that needs to be shared among
contributors: information.

Contributors to an OS project need to share information about (Gutwin et al.,
2004):

Who is on the project•
Where in the code they are working•
What they are doing•
What their plans are•

Since developers rarely meet face-to-face, the informal communication channels
do not work in a distributed development context, it is necessary to find substitutive
communication mechanisms. In game theory terms, the contributors need to share
information that creates a common knowledge, thus enabling the coordination of their
efforts. In OS projects there is not an authority that creates common knowledge.

Gutwin et al. (2004) named this common knowledge group awareness information
and described different mechanisms that allow distributed developers to maintain
awareness of one another.

Coordination in Agile and Open Source 65

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The primary mechanisms for sharing information in OS project are informal
and technology mediated communication tools: mailing lists and chats web sites
(Yamauchi et al., 2000; Gutwin et al., 2004).

The mailing list is the primary communication channel for an OS project. It is
used to gather and provide a reasonable awareness of who is on the project and what
their activities are. Furthermore, by overhearing conversations on the list it permits
a considerable implicit information sharing (Gutwin et al., 2004)

Chat conversations provide a general awareness of the project. The real-time and
informal nature of the channel provides an opportunity for the unplanned contacts.
These contacts are particularly important in order to keep the project coordinated
(Herbsleb & Grinter, 1999).

The success of the above mechanisms for sharing information and creating a
common knowledge depend strongly on the incentives to cooperate of the contribu-
tors. In fact, in order to maintain group awareness, contributors have to spend some
extra effort reading the lists, writing good-quality responses, and helping others.
In OS projects, there are many incentives to cooperate. For example, the sense of
belonging to a community, or the reputation factor (Gutwin et al., 2004; Feller &
Fitzgerald, 2002).

Developers use web sites to share information. As instance, such information
includes architecture, access policies, bugs, etc.

OS developers can contribute adding new code or fixing bugs to the existing
code. In both cases the code itself becomes a resource that has to be shared (Crow-
ston, 1994).

For example, if there are two problems on the same module, then both fixing
tasks need the same code, thus creating a shared resource dependency. Moreover, if
more developers are interested in changing the same module (to add or modify func-
tionalities), the code is the initial resource for their tasks and has to be shared.

In the proprietary development process, this dependency is managed by as-
signing modules of code to individual programmers (individual code ownership)
(Crowston, 1994)

In OSD, there is no code ownership because of the basic open source principle
of free availability of the source code. Thus, it is necessary to coordinate the use of
the code that becomes a limited but shareable resource.

To manage this dependency most open source projects use configuration tools
like CVS2 or Subversion3 (Feller & Fitzgerald, 2002).

CVS and Subversion are Version Control Systems (VCS) that allow remote access
to the source code and enable multiple developers to work on the same version of the
source code simultaneously. They centralize the source code so that developers can
always refer to the latest code. This centralization gives consistency and is crucial

66 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

to merge the work of dispersed individuals in a context of parallel development
without formal division of work (Yamauchi et al., 2000).

VCS allow developers to work both on different components of the same system
and also on the same components in parallel of the same system.

Producer-Consumer
The producer-consumer or prerequisite dependency arises when a task creates an
output that another task requires as an input (Thompson, 1967).

A key characteristic of OS processes is parallel development. Because of the
modularity of the code (Feller & Fitzgerald, 2002), a large number of developers
can work simultaneously rather than wait on each other. The various members of
OS projects usually work on highly cohesive tasks within loosely coupled modules.
Consequently, there is not sequential tasks dependency among modules that has to
be managed. The only coordination mechanism among modules is standardization
of the modules interfaces.

Nevertheless, among tasks within a single module there is a sort of prerequisite
dependency requiring that the tasks be performed in a sequential order (Crowston,
1994). These tasks results in the following life cycle of the implementation phase
(Feller & Fitzgerald, 2002).

1. Code: The contributors submit the code to general OS community
2. Review: The community gives truly independent feedback as suggestions and

contributions
3. Pre-commit test: Contributors test the code carefully mainly delegating test-

ing to the user community
4. Development release: The module is incorporated in the development

release
5. Parallel debugging: A global parallel debugging is performed by the com-

munity or by new contributors
6. Production release: Contributions became part of the production release

To coordinate these tasks the notification process used in OS projects is mainly
based on informal, technology mediated communication tools: mailing lists and
chats.

The above prerequisite dependencies imply additional constraints: usability and
transfer constraints (Malone & Crowston, 1994). The output of each task must be
usable as input for the other task and must be transferred.

In OSD, the main mechanisms for managing usability constraints are testing
and user involvement. The releases of the code are used to manage the transfer
constraint (Crowston, 1994).

Coordination in Agile and Open Source 67

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Common Output
This dependency occurs when two tasks contribute to the same output (Crowston,
2005).

OS is a collectivist phenomenon; more individuals join their efforts in order to
achieve a common goal (Feller & Fitzgerald, 2002). Core developers and contribu-
tors collaborate to develop or enhance the same application; their goals are aligned
but there is a lack of information about the mutual choices.

Due to the parallel development process and the modular nature of most open
source products, it may happen that more developers choose to work on the same
component. In this case there is a risk of duplication or waste of effort. In most OS
projects, this kind of parallelism and duplication is not viewed negatively. In fact,
in situation where developers contribute to the same components product quality
is improved (Feller & Fitzgerald, 2002).

In OS projects, to manage this dependency, all developers need to have the same
tail-light to follow. In fact, having well-understood requirements and well-established
design patterns is fundamental in order to allows a multiple developers to contribute
independently (Feller & Fitzgerald, 2002).

Furthermore, in the OS community there are some cultural and social norms
that govern implicitly the behaviors of the developers and take the place of formal
project management (Feller & Fitzgerald, 2002). These norms avoid dangerous
behaviors like forking and create mutual expectations regarding the actions of the
contributors thus reducing the coordination need.

5.4.1.3 Resource-Resource Dependency

This dependency occurs when multiple resources are interdependent and changes
to a resource could affect the state of other resources.

In software development there could be this kind of dependency between mod-
ules. A module depends on another if the first makes use of services provided by
the second (Crowston, 1994). Interactions between the different parts of software
are not always easy to identify or avoid, and it is necessary to find a solution for
this coordination problem.

To manage these dependencies, OSD tends to use highly modular architectures
for their products. Modules must be loosely coupled but also highly cohesive and
address a single well-defined purpose. To achieve this goal, modules interfaces
have to be defined upfront.

This solution allows developers to work in parallel thus affecting positively the
development speed. Furthermore, the loosely coupled modules can be modified and
implemented independently reducing the need of communication among developers
(Feller & Fitzgerald, 2002).

68 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The adopting of modular architectures can also be noticed considering the strong
tendency towards object-oriented programming languages in OS projects (Feller
& Fitzgerald, 2002).

In some cases, it is necessary to coordinate changes on different modules. This
requires a rapid information sharing process. OS projects adopt mainly the informal,
technology mediated, communication tools like mailing lists and text chat.

5.4.2 Agile Methods: the Xp case

Coordination is not only a problem for large and distributed software development
projects. Coordination can be difficult to achieve even if the development teams
are co-located and the project does not involve many actors.

In particular, in highly dynamic and turbulent contexts the level of uncertainty
is higher and it is very difficult to coordinate successfully. The situation evolves
over time, information emerges during the project, and the communication need
is higher. To develop software in this kind of environments, it is necessary to be
adaptive rather than predictive. The development team has to change its direction
quickly on the basis of incomplete knowledge. In these highly uncertain environ-
ments it is necessary to adopt a flexible development approach and thus a flexible
coordination strategy.

AMs are a set of development techniques designed to address modern challenges
of changing and uncertain environments.

AMs highlight the importance of Agility. Agility is the ability to both create and
respond to change in order to profit in a turbulent business environment. Consequently,
agile organizations have an ability to react, to respond quickly and effectively to
both anticipated and unanticipated changes in the business environment.

AMs emphasize the human factor in the development process and the impor-
tance of direct, face-to-face communications among key stakeholders, the value of
simplicity, perceived as an elimination of waste, and continuous process improve-
ment, as the transposition to the Software Industry of Total Quality Management
(Poppendieck & Poppendieck, 2003; Beck, 1999).

The XP four values are implemented via a set of 12 practices. Hereafter only the
practices that will be useful for our discussion will be briefly described:

• Pair programming: All code to be included in a production release is cre-
ated by two people working together at a single computer.

• Collective code ownership: It encourages everyone to contribute new ideas
to all segments of the project. Anyone can change any part of the code at any
time.

Coordination in Agile and Open Source 69

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• Continuous integration: Developers should be integrating and releasing
code into the code repository every few hours, whenever possible. Continuous
integration avoids diverging or fragmented development efforts.

• Coding standards: Coding rules exist and are followed by the programmers.
Coding standards keep the code consistent and easy for the entire team to
read and refactor. Communication through the code should be emphasized.

• Testing: Software development is test-driven. Unit tests are implemented be-
fore the code and are run continuously. Customers write the functional tests,
this permit to increase the trust of the customer in the system.

• Metaphor: This practice gives a coherent and consistent vision of the system
both to the customer and to the developers.

• Refactoring: It keeps the system simple avoiding unnecessary complexity.
This practice consists in removing redundancy, eliminating unused function-
ality, and revitalizing obsolete designs.

In the following sections the main dependencies and coordination mechanisms
will be presented.

5.4.2.1 Task-Resource

In Agile approaches, due to the importance of rapidity, the time of the developers
is the most important and limited resource. This resource has to be allocated to the
different tasks of the development process. In XP the task-resource dependency is
managed with the following task allocation process.

The XP development process starts with the developers, manager, and customer
collaborating in order to write the user stories. A user story is a chunk of functional-
ity that is of value to the customer. Customers prioritize the user stories.

The development team, brainstorm the things that must be done to accomplish
a user story; each of these is an engineering task. Tasks are scheduled by asking
developers to sign up for the tasks they want, then asking them to estimate their
tasks (Fowler et al., 1999).

By signing up, a programmer accepts the responsibility for working on those tasks
during the iteration. Programmers can sign up for things they have a desire to do,
which keeps them motivated. Developers are so varied that there is almost always
someone who likes doing anything. For unpopular tasks, there could an informal
or formal sharing process. In the second case team members may choose to do a
rotation to take turns doing unpopular work (Fowler et al., 1999).

In agile teams, as in the OS community, there is not an authority assigning tasks
on the basis of the people specialization. XP adopts cross-functional teams with
team members that are more generalists that specialists. XP teams draw together

70 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

individuals performing all the roles and rotations from one role to another are com-
mon. Consequently, every member of the team plays different roles at different
times during the project, and has to be skilled enough to play all the roles effectively
(Chau et al., 2003).

The difference between the voluntary task allocation process of the agile and the
OS approach is in the fact that developers have to declare their commitment for the
tasks chosen. Each member of the team knows who is performing what. This infor-
mation or common knowledge is critical to coordinate the development process.

5.4.2.2 Task-Task Dependencies

Shared-Resource
In fast-moving environments, in which information is often scarce and uncertain,
decisions need to be made quickly and well. In order to make rapid decisions, in-
dividuals require knowledge and mechanisms to share knowledge. Consequently,
knowledge becomes a critical resource that has to be shared among team members.
In XP, this shared-resource dependency is managed as follows.

More traditional software development approaches, like the Waterfall model,
facilitate knowledge sharing primarily through documentation. Accordingly, docu-
mentation transfer is the mechanism used to coordinate knowledge sharing.

In contrast, agile methods suggest that most of the written documentation can
be replaced by informal, face-to-face communications among team members with
a stronger emphasis on tacit knowledge rather than explicit knowledge (Chau et
al., 2003).

The limited sizes of the co-located development teams allow developers to
communicate frequently and directly. These informal communication mechanisms
compensate for the reduction in documentation and allow developers to keep co-
ordinate during the project (Curtis et al., 1988; Kraut& Streeter, 1995, Herbsleb &
Grinter, 1999).

The key of knowledge sharing here are the interactions among members of the
teams, which happen voluntarily, and not by an order from the managers.

In XP there are several specific practices that facilitate knowledge sharing.
For example, pair programming encourages the sharing of tacit knowledge such
as system knowledge, coding convention, design practices, and tool usage tricks.
Furthermore, pair rotation improves communication, mutual trust, and informal
training (Chau et al., 2003).

Another practice that facilitates creation and distribution of common knowledge
are the stand-up meetings. During these daily meetings, each developer presents
his/her work done since the last meeting. Such presentations allow team members
to know who has worked/is working on which part of the system. Thus, they know

Coordination in Agile and Open Source 71

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

whom to contact when they need to work on parts of the system that are unfamiliar
(Chau et al., 2003).

To reduce the knowledge transfer time, XP uses coding standards. The standards
are made public for the entire team thus avoiding time-consuming debates of cod-
ing styles. Furthermore, agile methods and in particular XP suggest that explicit
knowledge including user stories, designs, and models should be visible and col-
lectively owned (Chau et al., 2003).

In XP the collective code ownership practice create a shared-resource dependency
where the resource to share is the code.

This practice is different from the traditional individual code ownership where
each module of the system has a single owner who performs all tasks that modify
that code. It is also different from the no code ownership of the OSD approach where
the code is freely available to all contributors and nobody owns any particular piece
of code (Crowston, 2005).

In XP every member of the development team owns the code and can change any
piece of code in the system at any time (Beck, 1999). Everybody takes responsibility
for the whole of the system.

This dependency can be managed through two XP practices continuous integration
and testing. Continuous integration avoids diverging or fragmented development
efforts while testing ensure that all the changes in the code do not contain errors
and can be accepted (Beck, 1999).

Producer-Consumer
XP adopts an incremental and iterative development process with short and fre-
quent releases. The releases are made of more iteration of two/three weeks. During
an iteration the analysis, design, testing, and code tasks are performed by pairs of
programmers (Beck, 1999).

Among these tasks there is a particular category of prerequisite dependency:
reciprocal dependency. In fact, the outputs of each task become inputs for other
tasks through the mechanism of feedback. In other words, there is not a unilateral
dependency between tasks as for the sequential dependency. The tasks are recipro-
cally dependent and the actors performing the tasks can affect outcomes repeatedly
(Weber, 2001).

For example, the result of the design task becomes input for the coding task thus
affecting it. Then, as programmers code, a better design solution can be found. In this
case, the coding task produces something affecting the design task (feedback).

Reciprocal dependencies result in a process of mutual adjustment. Actors perform
their tasks using the input received and adjust the output of their tasks on the basis
of the feedback received.

72 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

5.5 references

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2003). Agile software
development methods: Review and Analysis (p. 478). Espoo, Finland: Technical
Research Centre of Finland, VTT Publications.

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Brooks, F. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4), 10–19.

Camerer, C. F., & Knez, M. (1996). Coordination in organizations: A game-theoretic
perspective. In Z. Shapira (Ed.), Organizational decision making. New York: Cam-
bridge University Press.

Carmel, E. (1999). Global software teams: Collaborating across borders and time-
zones. Prentice Hall.

Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global
software development. IEEE Software, 18(2), 22-29. doi:10.1109/52.914734

Chau, T., Maurer, F., & Melnik, G. (2003). Knowledge sharing: Agile methods vs.
tayloristic methods. 12th International Workshop on Enabling Technologies: Infra-
structure for Collaborative Enterprises.

Cooper, R. W. (1999). Coordination game: Complementarities and macroeconom-
ics. Cambridge University Press.

Crowston, K. (1994). A taxonomy of organizational dependencies and coordina-
tion mechanisms. Retrieved on November 11, 2008, from http://ccs.mit.edu/papers/
CCSWP174.html

Crowston, K. (2005). The bug fixing process in proprietary and free/libre open
source software: A coordination theory analysis. In V. Grover & M. L. Markus
(Eds.), Business process transformation. Armonk, NY: M. E. Sharpe Inc.

Cubranic, D., & Booth, K. S. (1999). Coordinating open-source software develop-
ment. 8th Workshop on Enabling Technologies (WETICE ‘99).

Curtis, W., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 31(11), 1268-1287.
doi:10.1145/50087.50089

Feller, J., & Fitzgerald, B. (2002). Understanding open source software develop-
ment. Addison-Wesley.

Coordination in Agile and Open Source 73

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999) Refactoring:
Improving the design of existing code. Addison-Wesley Professional.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E. (1999). The geography of coordination:
Dealing with distance in R&D work. ACM SIGGROUP Conference on Supporting
Group Work.

Gutwin, C., Penner, R., & Schneider, K. (2004). Group awareness in distributed
software development. 2004 ACM Conference on Computer Supported Coopera-
tive Work.

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the organization and integrating
the code: Conway’s law revisited. International Conference on Software Engineer-
ing (ICSE’99).

Kraut, R., & Streeter, L. (1995). Coordination in software development. Commu-
nications of the ACM, 38(3), 69-81. doi:10.1145/203330.203345

Lawrence, P. R., & Lorsch, J. W. (1967). Organization and environment: Managing
differentiation and integration. Harvard Business School Press.

Malone, T. W., & Crowston, K. (1990). What is coordination theory and how can
it help design cooperative work systems. 1990 ACM Conference on Computer-
Supported Cooperative Work.

Malone, T. W., & Crowston, K. (1994). The interdisciplinary theory of coordination.
ACM Computing Surveys, 26(1), 87–119. doi:10.1145/174666.174668

Marchesi, M., Succi, G., Wells, D., & Williams, L. (2002). Extreme programming
perspectives. Addison-Wesley.

Mintzberg, H. (1979). The structuring of organization. Englewood Cliffs, NJ:
Prentice-Hall.

Ohno, T. (1988). Toyota production system: Beyond large-scale production. Pro-
ductivity Press.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit. Addison-Wesley Professional.

Thompson, J. D. (1967). Organizations in action: Social science bases of adminis-
trative theory. New York: McGraw-Hill.

Toffolon, C., & Dakhli, S. (2000). A framework for studying the coordination process
in software engineering. 2000 ACM Symposium on Applied Computing.

74 Coordination in Agile and Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Weber, R. (2001). Organizational coordination: A game-theoretic view. Retrieved
on November 11, 2008, from http://www.andrew.cmu.edu/user/rweber/Files/org-
coord.pdf

Womack, J. P., Jones, D., & Roos, D. (1991). The machine that changed the world:
The story of lean production. Harper Perennial.

Yamauchi, Y., Yokozawa, M., Shinohara, T., & Ishida, T. (2000). Collaboration with
lean media: How open-source software succeeds. Computer Supported Cooperative
Work Conference (CSCW’00).

endnotes

1 The Standish Group International (2001). Extreme Chaos.
2 http://www.nongnu.org/cvs/ (accessed on November 11, 2008)
3 http://subversion.tigris.org/ (accessed on November 11, 2008)

Other Agile Methods 75

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 6

Other Agile Methods

6.1 introduction

The most well known AMs are Extreme Programming (XP) (Beck, 1999) and
SCRUM (Schwaber & Beedle, 2001) but there are several more (Abrahamsson et
al., 2002):

• Crystal (Cockburn, 2004)
Dynamic System Development Method (• DSDM) (Stapleton, 1997)
Lean Software Development (• LSD) (Poppendieck & Poppendieck, 2003)
Feature Driven Development (• FDD) (Palmer & Felsing, 2002)
Agile Modeling (• AM) (Ambler, 2002)
…•

In this chapter we briefly summarize some of them highlighting their specific
features.

DOI: 10.4018/978-1-59904-681-5.ch006

76 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

6.2 crystAl

In the early ‘90s, the IBM Consulting Group hired Alistair Cockburn to build a
methodology for object-oriented development.

Cockburn investigated a large number of software projects and asked to each team
to identify the main reasons for their own success. Cockburn has defined Crystal
(Cockburn, 2004) as a family of AMs, because he believed that different kinds of
projects require different development methodologies.

All the Crystal methodologies are based on the following paradigm: “strong on
communication, light on work products”. Compare to XP (Beck, 1999), the Crystal
family shows many differences: XP is based on a well defined set of development
rules, on the contrary, Crystal does not include such rigid constraints but gives a lot
of freedom to the development team. Hence, this methodology allows a greater indi-
viduality inside the team and a more relaxed work habits. Crystal is easier to adopt
for a team, but XP produces better results and guarantees a higher productivity.

6.2.1 crystal family and its subgroups

There are several subgroups in the Crystal methodology. These groups, identified
with a color, are defined by the number of the developers in the team (Table 1).

Table 2 shows project qualities in relation to the size of the development team.
On the vertical axis it shows the number of people (from 1 till 1000). The basic idea
is that the more people are working on a single project the greater will be the need
of coordination among team members. The vertical axis shows the potential damage
caused by the hidden defects of the system. In the graph, every square identifies a
set of projects that could use the same combination of coordination and politics.

The label of every cell shows the maximum damage and the importance of com-
mon coordination in these projects; for example, D40 refers to projects with 20-40
people and a potential loss of the available money.

The different levels show that projects have different priorities; some of them
stress the productivity, others the legal responsibility or the costs.

Table 1. Crystal subgroups

Methodology Team (n° people)

Crystal Clear 2-6

Crystal Yellow 6-20

Crystal Orange 20-40

Crystal Red 40-80

Other Agile Methods 77

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 1 shows three quantities: the weight of the methodology to use, the size
of the problem to solve, and the size of the team.

At the beginning, a small size team can focus on a specific kind of problems.
Adding some elements to this methodology it is actually possible to improve the
quality of the work and cope with larger problems. The continuous addition of oth-
ers elements to the methodology, generates an increment of the bureaucratic load,
therefore it is necessary to spend more effort to find out the appropriate methodol-
ogy for a specific kind of problem. For this reason, the size of the problem has to
be reduced.

For larger teams the curve is similar, but it does not present a so abrupt decline.
These kinds of teams require more coordination elements for working in an optimal
way and they consist of more people that are able to solve the larger problems.

As time goes by and the size of the methodology grows, also larger teams begin
to be less productive; therefore, solving larger problems successfully becomes more
difficult.

To find out whether small or large teams are better, it is necessary to consider
two different subgroups: Crystal Orange and Crystal Clear.

Table 2. Characteristics of different projects

Life (L) L6 L20 L40 L100 L200 L500 L1000

Essential money (E) E6 E20 E40 E100 E200 E500 E1000

Discretionary money (D) D6 D20 D40 D100 D200 D500 D1000

Comfort C6 C20 C40 C100 C200 C500 C1000

1-6 -20 -40 -100 -200 -500 -1000

Figure 1. Methodology and size of the problem

78 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

6.2.2 crystal orange

The Crystal Orange methodology designed for teams of 20-40 people; this approach
is used for projects with a maximum length of a year, the time-to-market is important,
and it is necessary to control both the development time and costs.

Since the number of team members is high, an important feature of this methodology
is the constant effort in improving the information flow among the different members.

Crystal Orange is a methodology used by at most 40 people, working in the same
building. Given the high number of team members, the failure of a project could
cause a considerable loss of capitals. This is due both to the missing delivery and sale
of a product with such a size and to the expenses sustained, including the wages of
all the team members; in the case of smaller teams, these costs are clearly lower.

This kind of methodology requires a very different structure and coordination
of the team, compared to a project with a few members.

The personnel is organized in teams and every one of these carries out a well defined
role: system planning, project monitoring, architecture, technology, infrastructures
and external tests. This methodology requires the usage of automatic regression
tests in order to verify the presence of all the required functionalities and guarantee
that the quality of the delivered software is tested every three months. Furthermore,
Crystal Orange requires the direct involvement of the users and the supervision of
two of them during every release. It is necessary to perform these operations every
time developers add new code. In the usage of this methodology it is obligatory to
follow these standard even if, sometimes, the usage of other methodologies, such
as XP and Scrum (Schwaber & Beedle, 2001), is allowed.

Every product is developed until it is comprehensible for all the colleagues
and until it has achieved a level of precision and stability allowing a peer review.
Finally, every developer can freely decide the technique to use for obtaining a run-
ning product, and meeting the date of the delivery.

6.2.3 crystal clear

Crystal Clear is a methodology for teams with 2-6 members working in the same
room or in adjacent offices.

With a team made of only six components it is not necessary to divide the group
in subgroups, as in Crystal Orange. In this way it is easier to keep all the colleagues
informed of the project progress.

The main feature of Crystal Clear is that it is a methodology that gives a high
level of freedom to the developers. This is due to the fact that team members are not
numerous and, consequently, it is possible to have a direct and fast communication
among developers and more feedback.

Other Agile Methods 79

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The features of Crystal Clear are almost similar to those of Crystal Orange; the
main difference is the possibility, for the former, to obtain a better product due to
a small team.

In Crystal Clear, some team members are thinkers and others are typers. They
use two very different approaches for solving problems. The thinkers think to a way
for solving the problem, write down annotations on a board or on a sheet of paper,
when they think to have reached a solution, they start to write the code.

The typers, on the contrary, are able to find out the more suitable solution to a
problem, only when they are writing code.

In Crystal Clear, the time spent to write the user manual is a task with a high
tolerance level, while, for example, the regression tests, the interactions among us-
ers and the releases, are all tasks with a lower level of tolerance because these are
considered more important.

The size of the team is not very constrained; the members could vary from 2 to
6. In every team it is necessary to have a person with a good level of experience;
that is a person that knows exactly how to move in the project.

Developers can choose the development technique to use; in fact, the important
thing is not the used sequence, but the accomplishment of the expected results.

The primary objective of this methodology is the discovery of the best technique,
that is, the technique that allows both to modify the product without problems and
to deliver a working version of it in the least time possible.

6.2.4 Advantages from the Adoption of crystal

The primary strengths of the Crystal family methodologies are:

To identify the elements of success of a project.•
To allow team members to choose how to do their job.•

Furthermore, this methodology is substantially based on a specific and new
concept of software development: “Software development is a cooperative game,
in which every participant helps the others in order to reach the aim of the game,
that is the software” (Cockburn, 2004).

6.3 dsdM

DSDM (Dynamic System Development Method) is a new AM for the development
of software products. During the early ‘90s, a company called Magic Software
coined the term Rapid Application Development (RAD).

80 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

RAD was different from the traditional methodologies such as the waterfall ap-
proach and it was born for being used in an evolutionary economic environment.

Because RAD was not a well defined process, different users gave it dissimilar
interpretation.

The DSDM consortium was born in the 1993, it had the aim to develop and to
promote an unique framework, RAD. In the same time were created three main
workgroups to supervise the various activities:

• The technical workgroup that had to create the DSDM framework and to
decide in detail the contents of the framework.

• The workgroup for the politics and the procedures that had to make the
decisions regarding the process and to write the book on the rules of the
consortium.

• The promotional workgroup that had to lead the marketing plan

In order to obtain rapid results the technical workgroup established the task groups
regarding the development and the management of the tools, of the techniques, of
the personnel, of the quality and of the software implementation.

Originally DSDM was focused around the RAD process and the IT; currently it
is utilized as a framework for finding timely solutions able to satisfy the business
needs.

6.3.1 features of dsdM

The traditional approaches focus on the requirements satisfaction and on the com-
pliance of the product code with the prior deliverables, even if the requirements are
often inaccurate and the market demand can change during the project.

Moreover, the time and the resources are both factors that vary over and over
again during the development process.

On the contrary, in the DSDM methodology, the time and the resources are frozen
at the outset of the project and the requirement that have to be satisfied can change.

This flexibility has a considerable impact on the development and control process
and also on the whole system.

DSDM methodology is based on a fundamental hypothesis that is, nothing can
be produced in a perfect way the first time, but 80% of the system can be produced
in the 20% of the total project time.

One of the basic principles of DSDM is that the software implemented should
add value to the company and should satisfy the business.

DSDM can be used together with other frameworks and development approaches,
such as RUP (Rational Unified Process) and XP.

Other Agile Methods 81

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

6.3.2 the dsdM life cycle

DSDM is more a framework than a methodology. The process entails five phases:

• Feasibility study
• Business study
• Functional model iteration
• Design and build iteration
• Implementation

These five stages occur before the pre-project and after the post-project phases.
The pre-project, the feasibility phase and the business study are performed in a

sequential order. These stages set the general rules for the subsequent development
cycle that is iterative and incremental and in spite of this it must be completed before
carrying out any other task on a given project.

After having solved the problems regarding the business, the project team disjoins
itself and starts the post-project phase, during which are accomplished activities
such as the check of the actual operability of the project and of the obtainment of
the expected benefits.

6.3.2.1 Pre-Project

The pre-project phase makes sure that only the most interesting projects will be consid-
ered. After having decided this, it is possible to proceed with the feasibility study.

6.3.2.2 Feasibility Study

It is important in the feasibility study to evaluate if the DSDM is the correct ap-
proach for the type of project that has to be realized.

Furthermore, in this phase it is necessary to assess the costs and the technical
feasibility in delivering a product that corresponds to the business requests.

DSDM have to be utilized for the development of rapid solutions, therefore the
feasibility study stage must be as short as possible.

6.3.2.3 Business Study

As the name suggests, this phase focus on the business analysis. Given the short
time required by DSDM, the business study is a very collaborative activity and it
has to be performed by work teams made up of competent personnel.

82 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The results obtained, are used for creating the Business Area Definition that will
define the business process and the classes of the users interested in the introduc-
tion of the system.

6.3.2.4 Functional Model Iteration

This activity is necessary to improve the basic aspects of the system. Both the
functional model iteration and the design and build iteration are made up of cycles
with four main activities that are:

To identify what must be produced;•
To establish how and when produce it;•
To produce the product;•
To verify that the software has been correctly produced.•

6.3.2.5 Design and Build Iteration

The design and build iteration phase occurs only when the system designed has
reached such a level that can be delivered to the users. In this stage the best product
obtained is the tested system.

6.3.2.6 Implementation

The transfer from the development environment to the operational environment
is accomplished during the implementation phase. This stage as well involves the
training of the users that have not taken part to the team of the project.

6.3.2.7 Post-Project

It is the post-project phase that makes really operative the product. The iterative
and incremental nature of DSDM indicates that also the maintenance stage can be
viewed as a continuous development phase.

6.3.3 Advantages deriving by the Adoption of dsdM

DSDM utilizes an iterative process based on the users’ involvement throughout the
life cycle of the project. The advantages deriving from the usage of this methodol-
ogy are:

Other Agile Methods 83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The users are very satisfied since they can take part of the software develop-•
ment process;
The risk to produce a not working system is remarkably reduced;•
The final system is more oriented to the satisfaction of the actual users •
needs;
The time-to-market is significantly improved.•

The key point of DSDM methodology is the communication among project
components; this factor increase the quality of the product obtained. In addition,
DSDM delineates the necessary documentation for every type of project.

As a rule, the majority of the documentation produced, refers to the transfer of
the ideas between developers and users.

DSDM methodology does not consider necessary a lot of documentation thus
this approach reduces the amount of it till the minimum level.

6.4 lsd

In order to set the groundwork, we should consider the definition of lean and lean
thinking. According to the National Institute of Standards and Technology Manu-
facturing Extension Partnership’s Lean Network, lean is: “A systematic approach
to identifying and eliminating waste through continuous improvement, flowing the
product at the pull of the customer in pursuit of perfection” (Kilpatrick, 2003).

The lean thinking was born in Japan in the late ‘40s with a small company named
Toyota that had to deal with a problem in the car production area. The cars had to
be cheap but they could not use the mass production system because of the small
number of cars required by the Japanese market.

To solve this problem, Taiichi Ohno, the father of the Toyota Production Sys-
tem, created a very new way to think about manufacturing, logistics, and product
development (Ohno, 1988).

The basic principle of Ohno’s philosophy was to eliminate waste: anything that
does not create value for the customer. The goal of Ohno was to both make and
deliver a product immediately after a customer placed an order, without the need
of inventories, warehouses, and forecasts.

The efficiency and effectiveness of this new approach create a massive transition
from the mass production to the lean manufacturing in the last two decades.

Lean Software Development (LSD) enhances the theoretical foundations of
agile software development by applying well-known and accepted lean principles
to software development. LSD is more strategically focused than other AMs and is

84 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

not a management or development methodology per se, but it offers principles that
are applicable in any environment to improve software development.

6.4.1 principles of lean software development

The seven principles of Lean Thinking can be translated in the following seven
Software Development principles. These general principles are guidelines for devis-
ing appropriate practices for specific domains. When translated properly, they can
change radically the basis of competition of a firm.

6.4.1.1 Eliminate Waste

Anything that does not add value to a product, from the customer perspective, is
waste. In order to eliminate every possible waste, firms have to identify what the
customer wants, then develop it, and deliver it almost immediately.

The first step to remove waste is to see it. Good starting points include those activi-
ties that do not contribute directly to the value of the final product: everything differ-
ent from analysis and coding. Creating a value stream map and outlining the process
details to satisfy a customer request, helps to identify the sources of the waste.

The seven main wastes of software development are the following (Poppendieck
& Poppendieck, 2003):

1. Partially done work. Partially done software development can carry huge fi-
nancial risks because it ties up investments that have yet to yield results. The
strategy is to reduce it.

2. Extra processes. Paperwork has a lot of drawbacks: it consumes resources,
slows down response time, hides quality problems, gets lost, degrades, and
become obsolete. When paperwork is required, it is better to keep it short,
high-level and always verify if there is a more efficient and effective way to
share information.

3. Extra features. Every line of code in the system has to be tracked, compiled,
integrated, and tested every time the code is touched and it has to be maintained
for the whole life of the system. Furthermore, every line of code increases the
complexity and is a potential point of failure. The solution is to implement
only the features that are needed at the moment.

4. Task switching. Assigning people to multiple projects and multiple teams is a
source of waste because of the switching time and the continuous interruptions.
Thus, the fastest way to complete two projects that use the same resources is
to make them one at a time.

Other Agile Methods 85

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

5. Waiting. Delays are common in most projects; they are waste because prevent
the customer from the savings or improvements generated by the system.

6. Motion. Development is an activity that requires concentration, so every move-
ment is waste because it takes time to reestablish focus on his work. For this
reason, agile practices recommend to a team to work in a single, open room.

7. Defects. The amount of waste caused by defects depends on the defect impact
and on the time they go undetected. The way to reduce the impact of defects
is to find them as soon as they occur. Thus, the way to reduce the waste due
to defects is to test and integrate immediately and release the product as soon
as possible.

6.4.1.2 Amplify Learning

Development is a typical learning process involving trial and error that is carried
out in order to discover the best product for satisfying the customers.

The knowledge coming from the feedback loops is critical to any process with
inherent variation. The goal is not to eliminate changes but to adapt to variation
through feedback.

Developers use frequent iterations in order to identify the differences between
what the product does and what the customer wants. This knowledge is useful to
make adjustments accordingly. Typically, a lean organization focuses on increas-
ing feedback and learning. The main way to do this is through short iterations that
produce working software able to be tested by the customer.

6.4.1.3 Decide as Late as Possible

In domains characterized by high uncertainty, it is useful to delay commitment and to
use an option-based approach. The lean concept is to defer irreversible and uncertain
decisions until they can be made based on known events, rather than forecasts.

Delaying decisions allows making better and more reliable decisions. This
practice is particularly valuable in evolving markets.

A key strategy for delaying commitments is to include the support for changes into
the system. This support is related strictly to the design and development activities.

The sequential development forces designers to make low-level binding decisions
before experiencing the consequences of the high-level decisions. In this way, many
costly mistakes are possible and it is very expensive to repair them.

Iterative development is the better approach when the understanding of the
problem is evolving or there is a high level of uncertainty in the domain.

Concurrent development means to start the implementation from the features
with the highest value as soon as a high-level conceptual design is ready, even while

86 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

detailed requirements have to be investigated. This is an exploratory approach al-
lowing the development team to learn by trying a bunch of options before to be
locked in a specific direction.

In addition, iterative development is the best way to deal with changing require-
ments. When change is inevitable, concurrent development reduces delivery time
and the overall cost while improving the performance of the final product.

In an iterative development process, the crucial decisions at the beginning of the
development process have to be minimized. In this way, the cost of the changes has
a low-cost escalation factor. Concurrent design defers decisions as late as possible.
This approach has four effects (Poppendieck & Poppendieck, 2003):

1. Reduces the number of high-stake constraints.
2. Gives a breadth-first approach to high-stakes decisions, making it more likely

that they will be made correctly.
3. Defers the bulk of the decisions, significantly reducing the need for change.
4. Dramatically decreases the cost escalation factor for most changes.

According to this approach, developers can start to implement the system even
if partial requirements are available. Every iteration provides essential feedback
that allows the final application to emerge.

The important thing is not to delay a commitment over the last responsible mo-
ment that is the time at which failing to make a decision eliminates an important
alternative. Here are some tactics for making decisions at the last responsible mo-
ment (Poppendieck & Poppendieck, 2003):

Organize for direct, worker-to-worker collaboration•
Share partially complete design information•
Develop a sense of how to absorb changes:•

Use modules, interfaces, parameters, abstractions ◦
Avoid sequential programming ◦
Beware of custom tool building ◦
Avoid repetition ◦
Separate concern ◦
Encapsulate variation ◦
Defer implementation of future capabilities ◦
Avoid extra features ◦

Develop a sense of what is critical in the domain•
Develop a sense of when decisions must be made•
Develop a quick response capability•

Other Agile Methods 87

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

6.4.1.4 Deliver as Fast as Possible

Rapid development has many advantages. First, without speed it is not possible to
let the customers take an options-based approach, letting them to delay decisions as
long as possible in order to make decisions based on the best possible information.
In fact, once a customer decides what he wants, the goal of the development team
is to implement it as fast as possible.

With rapid development cycles (design, implement, feedback, improve), it is
simple and immediate to obtain reliable and valuable feedback. Consequently, the
shorter these cycles are, the more can be learned.

Furthermore, rapid delivery means fewer customers’ changes. In fact, the easiest
way to keep customers from changing their minds is to give them what they ask for
so fast that they do not have the time to change their mind.

6.4.1.5 Empower the Team

In a lean organization, everything moves at high speed and the decisions have to
be taken very fast. For this reason, it is very important to involve developers in
technical decisions and let them the responsibility.

In fact, the people on the front line have enough knowledge and experience to
make better technical decisions than anyone else in the higher levels of the orga-
nization hierarchy.

Furthermore, because decisions are made late and execution is fast, a central
authority cannot orchestrate the activities. Thus, lean practices use pull techniques to
schedule work and contain local signaling mechanisms so workers can let each other
know what needs to be done. In lean software development, the pull mechanism is
an agreement to deliver increasingly refined versions of working software at regular
intervals. Local signaling occurs through visible charts, daily meetings, frequent
integration, and comprehensive testing (Poppendieck & Poppendieck, 2003).

In order to empower a development team, it is fundamental to have highly
motivated people.

In a context where the team is empowered to make its own decision, the project
manager has to carry out these main activities:

Identify • waste
Sketch the value stream map and tackle the biggest bottlenecks•
Coordinate iteration planning meeting and daily status meetings•
Help the team get the resources it needs to meet commitments•
Coordinate multiple teams•
Provide a motivation environment and keep skeptics away•

88 Other Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

6.4.1.6 Build Integrity In

There are two kinds of integrity: perceived and conceptual. Software with perceived
integrity delights the customers because it is exactly what they want and what they
ask for. The way to achieve perceived integrity is to have continuous and detailed
information flow from users to developers.

Conceptual integrity means that all the pieces of a software system work together
to achieve a smooth, well functioning entity. This kind of integrity is achieved
through continuous and detailed information flow among the several technical
people working on a system.

There is a further level of integrity: products have to maintain their usefulness
over the time. Thus, they have to evolve gradually as adapting to the future. Software
with integrity has a coherent architecture, scores high on usability and fitness for
purpose, and is maintainable, adaptable and extensible.

Research has shown that integrity comes more from wise leadership, relevant
expertise, effective communication, and healthy disciple, than from processes and
measurements.

6.4.1.7 See the Whole

The development of every complex system requires a deep expertise in many dif-
ferent areas. One of the most difficult problems with product development is that
often an expert of a specific area has a tendency to maximize the performance of a
specific subsystem rather than focusing on overall system performance. Quite often,
the common goal suffers if people are focused too much in their own areas.

Lean thinking suggests that optimizing single subsystems almost always leads
to sub-optimized overall systems. The best way to deal with sub-optimization and
promote collaboration is to make people responsible for their own behavior, not
just for what they control. This means measuring performance one lever higher
than one would expect.

6.4.2 Advantages deriving by the Adoption of lsd

Software companies that want to outperform their competitors and get successful
results should consider the lean approach to software development. Lean software
development can be summarized as follows. Instead of adding process complexity,
the focus is on simplifying processes. Enhanced customer relationship improves the
understanding of what produces value. Performance breakthroughs can be created
by identifying and removing waste from the value streams. Development teams
should be responsible for making improvements and they have to be rewarded as

Other Agile Methods 89

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the whole project progress. The entire company can be reorganized to help teams to
create and optimize value streams based on two kinds of learning: what customers
will need next and how to deliver it in a better way.

Focus on value, flow, and people are the way to implement the principles of
lean thinking in the software industry. This can really help to keep customers from
changing their minds and raise the maturity of the organization to the level where
it can deliver what customers want so fast that they have no time to change their
minds.

6.5 references

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2003). Agile software
development methods: Review and analysis (p. 478). Espoo, Finland: Technical
Research Centre of Finland, VTT Publications.

Ambler, S. (2002). Agile modeling. Wiley.

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Cockburn, A. (2004). Crystal “clear”: A human-powered software development
methodology for small teams. Addison-Wesley Professional.

Kilpatrick, J. (2003). Lean principles. UT: Utah manufacturing extension partner-
ship.

Ohno, T. (1988). Toyota production system: Beyond large-scale production. Pro-
ductivity Press Inc.

Palmer, S., & Felsing, J. (2002). Practical guide to feature-driven development.
Prentice Hall.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit. Addison-Wesley Professional.

Schwaber, K., & Beedle, M. (2001). Agile software development with SCRUM.
Prentice Hall.

Stapleton, J. (1997). DSDM: The dynamic systems development method. Addison-
Wesley Professional.

Section 2
Agile Software Practices for Open

Source Development

Testing 91

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 7

Testing

7.1 introduction

Software testing is the process that controls the quality of software (Myers, 1979).
Software testing is comprised in any development process and every method of
development applies practices for software testing (Burnstein, 2003; Kaner et al.,
2002). Traditional methods of development, like the waterfall approach, allocate
software testing in a given phase of the overall development process – e.g., toward
the end of the software lifecycle. In modern methods, practices of software testing
rather permeate the whole development process in an iterative and increasing way
(Black, 2002; Spillner et al., 2007) – e.g., in XP.

The goal of this chapter is to understand to what extent testing is embraced and
applied in the OS projects. In particular, we discuss whether OSD adopts testing
practices coming from AMs. In practice, we analyze OS repositories looking for
information revealing the adoption of some testing practice. In other words, we
analyze the existence, the date of creation, and the changes of test classes and
their related code classes in the public version control systems available in the OS
repositories.

DOI: 10.4018/978-1-59904-681-5.ch007

92 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.2 testing in the open source developMent

The majority of OS projects combines the feedback from the community and an
internal strategy of testing to release competitive and stable software products.

The most common practices of internal testing in the open source projects are
the use of the nightly builds and the frequent releases. The frequent releases guar-
antees a fast and iterative reporting from all the community. The majority of the
projects use Bugzilla or a modification of it to collect - from the internal teams or
from the volunteers - reports on failures, request of modification, or enhancements.
The same tool is used to divulgate solutions, patches, or occurrences of defects.
Many of OS projects declare to use automated tools or agile practices for testing,
like Test Driven Development (TDD). As we shall see, the reality is different: in
many cases test classes are totally missing or appear in a very low percentage.In
what follows we discuss the existence of test classes in projects stored in the fol-
lowing on-line repositories:

1. Tigris.org (http://www.tigris.org/)
2. Apache Foundation (http://www.apache.org/).
3. Mozilla Foundation (http://www.mozilla.org/)
4. OpenBSD (http://www.openbsd.org/)
5. XFree86 (http://www.xfree86.org/)
6. JBoss (http://www.jboss.org)
7. PostgreSQL (http://www.postgresql.org/)
8. KDE (http://www.kde.org/)

In Table 1 we report the number of classes (files), the programming language
dominant in the project, the number of test classes (tests) and the percentage of test
with respect to the files.

Among the 68 projects considered, 13 have no tests at all, or such tests are not
stored in the version control system together with the source code. 32 have more
than 10% of the files dedicated to test cases (Figure 1).

However, nearly all the projects that started in the last few years include a higher
percentage of tests. This behavior could be caused by several reasons. However, it
is interesting that the diffusion of the AMs started at the same time (2000 ca.). It is
likely that the basic ideas of the AMs have affected the development of the projects
that started from 2000 onwards.

Testing 93

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 1. Test classes in the 68 projects analyzed

Project Files Tests % Language Project Files Tests % Language

Ant 1,073 263 25 Java Logging
Log4cxx

316 93 29 C

Ant-Antidote 170 0 0 Java Logging Log4j 380 93 24 Java

Apache 1.2 92 0 0 C Maven 640 144 22 Java

Apache 1.3 222 18 8 C Maxq 124 22 18 Java + Pyton

Apache 2.0 298 16 5 C Mozilla Cami-
no

2,035 838 41 C/C++

Apache-Apr 264 18 7 C Mozilla Com-
poser

1,971 838 43 C/C++

ArgoUML 1,372 103 7 Java Mozilla Firefox 2,053 851 41 C/C++

Aut 74 51 69 C# Mozilla Sun-
bird

1,988 839 42 C/C++

Avalon 1,945 353 18 Java Mozilla Thun-
derbird

2,741 867 32 C/C++

Axion 658 95 14 Java OpenBSD 303 3 1 C

Binarycloud 514 16 3 PHP PostgreSQL 177 0 0 C

Cocoon 1.0 96 0 0 Java RapidSVN 118 0 0 C++

Cocoon 2.0 76 1 1 Java Scarab 1,328 300 22 Java

Cocoon 2.1 2,036 63 3 Java Subversion 223 16 7 C/C++

Cocoon 2.2 562 25 4 Java TortoiseSVN 26 0 0 C++

DB-ojb 1,004 337 34 Java WS AXIS 2,414 654 27 Java

DB-torque 156 23 15 Java WS FX 254 42 16 Java

Elmuth 172 0 0 Java WS JAXME 726 0 0 Java

Eyebrowse 84 3 3 Java WS jUDDI 502 17 3 Java

GEF 238 1 0 Java WS SOAP 213 17 8 Java

Jakarta Hive-
mind

2,293 341 15 Java WS WSIF 401 116 29 Java

Jakarta
Jetspeed 2

609 66 11 Java WS XMLRPC 67 8 12 Java

Jakarta JMeter 767 134 17 Java XFree86 3.0 971 1 0 C

Jakarta Lu-
cene

248 64 26 Java XFree86 4.0 5,279 23 0 C

Jakarta ORO 86 0 0 Java XML BATIK 1,579 176 11 Java

Jakarta POI 766 176 23 Java XML Crimson 49 0 0 Java

Jakarta Taglibs 667 17 3 Java XML FOP 605 17 3 Java

Jakarta Tap-
estry

1,035 212 20 Java XML Forrest 28 0 0 Java

Jakarta Tom-
cat 3.0

349 80 23 Java XML Security 532 28 5 Java

94 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.3 use of Xunit in Agile And os developMent

There are several frameworks for implementing testing in various programming
languages. They are called xUnit. There is JUnit for Java, SUnit for smalltalk,
CPPUnit for C++ and so on. In general, these frameworks provide a simple and
automated way to test specific areas of a program (Units). The developer may find

Figure 1.

Table 1. continued

Jakarta Tomcat
4.0

799 135 17 Java XML Xalan 1,905 151 6 Java/C/C++

Jakarta Tur-
bine 2

464 66 14 Java XML Xang 46 0 0 Java

Jakarta Tur-
bine 3

93 8 9 Java XML Xerces 1,938 71 4 Java/C/C++

JBoss 551 0 0 Java XML Xindice 368 41 11 Java

KDE 2,670 217 8 C X M L X M L -
beans

1,188 362 30 Java

Testing 95

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

predefined packages, classes, and methods from which to derive the test for a given
unit. In this way, using xUnits helps to explicitly declare the expected results of a
specific part of a program or execution path.

In particular, XUnit promotes the idea of testing before coding, also called Test-
Driven Development (TDD) in AMs and Test First in the terminology of XP. The
practice Test First is further extended in “test a little, code a little, test a little, code
a little, …” in an iterative manner. The code and the test case increment in parallel
to assure the quality of the piece of software produced in each iteration.

7.4 A Method to reveAl the Adoption
of test first in os projects

In this section we discuss the adoption of Test First in some open source projects.
We base our analysis on well-known repositories of OS projects from which we
extract information about class size evolution and times to commit.

The method to inspect the repositories comprises two major activities.

1. Inspection of the documentation. This would tell whether any automated tools have
been used in the open source project and if the project explicitly adopt Test First

2. Inspection of the versioning systems (CVS). This would tell the activity of a
class / version of a project by its size evolution, the use of tests by the percent-
age of test classes, and the adoption of test first by the comparison of the dates
to commit of class and test.

To select a sample of classes on which analyze the use of testing practices, we
consider product releases having the highest percentile in the added, modified,
deleted and total Lines of Code (LOC).

To have an indication of the use of the Test First practice in a project we analyze
the time in which test classes are committed to the CVS. If we find that test classes
have been committed earlier than their reference classes we may say that Test First
has been adopted by OS project team. If this is not true we cannot deduce anything;
in particular we cannot say that the team does not adopt Test First as time to commit
might be different from the time of creation of a class (developers might have cre-
ated test classes locally and committed together or later than the original classes).
Of course to check the correct adoption of Test First we may need to have access
to the local machine of the developer. Namely, Test First is correctly implemented
when Test classes are implemented on empty regular classes – with no implemented
methods. Furthermore, even in the case we find some test classes committed before
their reference ones we are not done as we need to discuss the level of adoption of

96 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the practice by analyzing the extent to which this result permeates the classes of
project. Hence, the percentage of classes following Test First will give the measure
of the level of Test First adoption.

Further analysis may study the distribution of the LOC modification near the
creation date of an original class. High number of modified LOC soon after the first
version of a class may suggest an effort due to the implementation of the class and
therefore a likelihood of the adoption of Test First.

7.5 Adoption of test first in open source
projects: A MAnuAl inspection

The goal of this section is to evaluate the adoption of the practice Test First in OSD
development. The analysis is based on a sample of tools selected in http://www.tigris.
org/. Tigris is a popular web site that contains 537 medium sized projects. Projects
in Tigris have a common mission: promoting software engineering in OSD. Thus,
Tigris represents a well scoped OS project rather than a repository of projects. As
team and project sizes are small/medium and projects fairly young, they fit the best
environment for the application of the agile practices, Tigris represents a suitable
testbed for the analysis of the connection between agile and OS development. In
this context we can rephrase our first general research goal in:

Do open source projects hosted in a collaborative environment and with a common
mission adopt Test First?

Results from the analysis may differ considerably from similar studies conducted
in different OS repositories – like SourceForge. In the following sections we describe
the data collection and the data analysis.

7.5.1 data collection

The data collection has been manually performed on the OS software in http://www.tigris.
org/. This has been feasible thank to the small-medium size of the projects. Among all the
projects we have selected the topmost featured one as appears in the web site (Table 2).

As first step we have analyzed the classes of each selected project to determine
the correspondence between them and their test classes. This procedure gives a first
idea of the percentage of test coverage. As a consequence we eliminate the projects:
Lptools, Phpcreate, ReadySet, Sstree, Style, and Xmlbasedsrs, because either the
projects were not developed with oriented-language or there were no xUnit suite
available for testing.

Testing 97

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

To analyze the adoption of the practice Test First we then analyze the source
codes by sampling the classes in three specified versions of each project: the first,
an intermediate and the final one. For each version we chose randomly 10 classes
among the ones that have a test class. This procedure would guarantee the validity
of the possible conclusion as it is conceivable that developers once started, adopt
Test First continuously through the project. On the other hand not using Test First
in some specific classes may be not so relevant or a standard procedure for specific
kind of classes, which does not indicate a misuse of Test First. For each class con-
sidered – test or regular – we have collected the date of creation.

Table 2. Projects considered in the analysis

Project Language &
license

Category1 Project Language &
license

Category

Ankhsvn Visual Studio
.NET, Apache
License, v. 2.0

Student class proj-
ects

Phpcreate Php, GNU GPL Coding, test-
ing, and de-
bugging tools

ArgoUML Java, BSD License Design tools RapidSVN C++, Apache
License, v. 2.0

Software
Configuration
Management

Aut C#.Net, GNU
GPL

Tools for software
testing

ReadySet XHTML with CSS,
BSD License

Projects relat-
ed to software
development
processes

Axion Java, Apache
License, v. 2.0

Reusable compo-
nents

Scarab Java, CollabNet/
Tigris.org Apache-

style license

Defect and is-
sue tracking
tools

Binary-
cloud

Php, GNU LPL Tools for technical
communications

Sstree Java script, Apache
License, v. 2.0

Reusable
components

Elmuth Java, BSD License Student class proj-
ects

Style CSS, Apache
License, v. 2.0

Reusable
components

Eye-
browse

Java, CollabNet/
Tigris.org Apache-

style license

Tools for technical
communications

Subversion C, Java, Pyton,
CollabNet/Tigris.
org Apache-style

license

Software
Configuration
Management

Gef Java, BSD License Reusable compo-
nents

Tortois-
eSVN

C, GNU GPL Software
Configuration
Management

Lptools Ruby, Other OSI-
certified license

Coding, testing,
and debugging
tools and Projects
related to software
development pro-
cesses

Xmlbased-
srs

C, GNU GPL Software re-
quirements
management

Maxq Java, Jyton, BSD
License

Tools for software
testing

98 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.5.2 review of the data

At first we have analyzed the percentage of test classes within each project (Figure 2).
Then, we have studied whether automated tools have been used in the project and

if the project explicitly requires the use of Test First. In our analysis, we have also
taken onto account that xUnit were developed since November 2000, so projects
with previously starting date could not use them at their beginnings (Table 3).

7.5.3 Analysis of the results

The study has been conducted in a peculiar repository. Namely, Tigris is a collab-
orative project more than a repository for OS projects. OS projects hosted in Tigris
have a common mission: developing quality software trough software engineering
practices. Therefore, the analysis we report here may be more significant than in
other repositories as the question is: do they also share practices from AMs?

Among the projects considered, Axion turns out to be the only project that fully
adopted Test First. By its documentation we may also deduce that the project has
been refactored and redesign with the use of Test First.

Among the remaining projects the answer is generally no; although, they tend to use
automated tools for testing. The analysis may easily be extended to larger repositories
perhaps with no common mission but with a wider spectrum of projects. This requires
making the procedure automatic and will be discussed in the next sections.

Figure 2. Test classes percentage in the Tigris projects

Testing 99

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.6 tool supporting the repository’s inspection

For every project we chose to analyze those three product releases having the highest
percentile based on the added, modified, deleted, and total lines of code. To analyze
the results of the diff operator in the version control system, we create a tool called
CVSMetrics. To mark the evolution in time of a project we use the sequence of tags
of a project. We call revision of a tag a new commit to the repository. For each tag
there can be more revisions.

7.6.1 cvsMetrics description and implementation

To analyze and compare the quality of software developed by OS communities, we
developed CVSMetrics, a tool that automatically extracts useful information from
public CVS code repositories. CVSMetrics is written in Java and consists in a simple

Table 3. Testing in the projects analyzed

Project xUnit Status of the project Test First # of
classes

Test class
percentage

ArgoUML Yes, from Septem-
ber 2003.

Project started in
2000. Stable version

No 1372 30%2

Aut Yes Stable version No 78 69%

Axion Yes Almost stable ver-
sion

Yes – required in
the project and ver-
ified on samples

658 70%

Binarycloud Yes Almost stable ver-
sion

No 514 3%

Elmuth No Almost stable ver-
sion

No 172 0%

Eyebrowse No In progress No 84 3%

Gef No, only one class
has been automated
tested

Stable version No 238 0%

Maxq Yes, but the minor
part of the project

Almost stable ver-
sion

No 124 9% in Java
0% and in
Pyton

RapidSVN N/A 118 0%

Scarab Yes Almost stable ver-
sion

No 338 15%

Subversion Yes, but the minor
part of the project

Stable version. A con-
sistent part is written
in C

No 223 27% in Java
and 2% in
Pyton

TortoiseSVN N/A 26 0%

100 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

command line tool taking the information it needs, like repository path, module
name, credential information etc., as command line parameters. The simple interface
allowed us to run our tool in unattended batch-mode over several repositories, which
often took several hours and even days and would have been cumbersome to do in
another way. For every CVS repository our tool produces an XML file containing
useful quality measurements concerning unit testing. This includes information
like added, modified, deleted and total lines of code per CVS file revision and per
CVS tag and some statistics about how many classes have associated unit tests and
about the presence of test-first programming (i.e., test classes committed to the CVS
before corresponding real class).

To count the different LOC metrics we implemented a LineCounter class, re-
sponsible to calculate the total lines of code. The pattern we used to define a real
line is the semicolon. So only the lines containing a semicolon are counted.

 public LineCounter(){
 p = Pattern.compile(“;”);
 }
 public int getLOC(File javaClass){
 BufferedReader br = null;
 int lines = 0;
 try{
 br = new BufferedReader(new
FileReader(javaClass));
 String line;
 while ((line = br.readLine()) != null){
 if (isLOC(line)) lines++;
 }
 }catch(Exception e){}
 return lines;
 }
 public boolean isLOC(String line){
 if (line != null) {
 Matcher m = p.matcher(line);
if(m.find())return true;
 }
 return false;
 }

This approach is commonly used and very fast, but it has some limitations. Some
lines are not recognized in a correct manner.

Testing 101

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Comments containing semicolons are counted, as well as all the lines of whole
blocks which are commented out:

// this is a comment;

a for loop is counted as a single statement:

for (i = 1; i < 100; i++){
}

an if statement does not contain any semicolon most of the times, and does not get
counted at all:

 if (line != null) {

there are also other similar cases like the try-catch statement:

try{
 ...
}catch(Exception e){}

or the while loop:

while(true){
}

or more than one declaration in one line:

int s, t;

and certain languages could not be parsed as they do not use semicolons:

e.g. Visual Basic

7.6.1.1 detailed definition of the deleted,
Added, Modified lines and limits

Class. A comparison of a class of two consecutive versions shows the definition
of the three terms, add, modify, and delete. As basis the EclipseME project was
selected. To be precise the class:

102 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

/eclipseme/EclipseME/src/eclipseme/model/impl/nokia/
Attic/NokiaWirelessToolkit.java

was chosen and a diff command between version 1.1 and 1.2 was executed. (see
Table 4)

Table 4.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

Line 7 Line 7

package eclipseme.model.impl.nokia; package eclipseme.model.impl.nokia;

import java.io.File; import java.io.File;

import java.io.FileFilter;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Iterator;

import java.util.List;

import java.util.Properties;

import java.util.StringTokenizer;

import org.eclipse.core.runtime.IProgressMonitor; import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.core.runtime.IStatus;

import org.eclipse.core.runtime.Path;

import org.eclipse.jdt.core.JavaCore;

import eclipseme.EclipseMEPlugin;

import eclipseme.model.IConfiguration; import eclipseme.model.IConfiguration;

import eclipseme.model.IEmulator;

import eclipseme.model.IPlatformDefinition;

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 103

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

import eclipseme.model.IPreverifier;

import eclipseme.model.IProfile;

import eclipseme.model.InvalidWirelessToolkitEx-
ception;

import eclipseme.model.InvalidWirelessToolkitEx-
ception;

import eclipseme.model.impl.generic.WirelessToolkit; import eclipseme.model.Version;

import eclipseme.model.impl.generic.Configura-
tion;

import eclipseme.model.impl.generic.Profile;

import eclipseme.model.impl.sun.AbstractSunWire-
lessToolkit;

/** /**

* Wireless Toolkit implementation for the Nokia
J2ME toolkit.

* Wireless Toolkit implementation for the Nokia
J2ME toolkit.

Line 27 Line 48

*
 *

* @author Craig Setera * @author Craig Setera

*/ */

public class NokiaWirelessToolkit extends Wireless-
Toolkit {

public class NokiaWirelessToolkit extends Ab-
stractSunWirelessToolkit {

 public static final String CLASSPATH_VAR =
“NOKIA_ROOT”;

 public static final String CLASSPATH_VAR =
“NOKIA_WTK”;

 /** Path to the devices within the wireless toolkit
root */

 /** Path to the devices within the wireless
toolkit root */

 public static final String DEVICES_PATH =
“Devices”;

 public static final String DEVICES_PATH =
“Devices”;

 /** File filter to capture device directories */

 private class DeviceDirectoriesFileFilter imple-
ments FileFilter {

 /**

 * @see java.io.FileFilter#accept(java.io.File)

 */

 public boolean accept(File pathname) {

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

104 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 return pathname.isDirectory() &&
isDeviceDirectory(pathname);

 }

 /**

 * Return a boolean indicating whether the
specified path

 * appears to be a device directory.

 *

 * @param pathname

 * @return

 */

 private boolean isDeviceDirectory(File
pathname) {

 return getDevicePropertiesFile(pathname)
.exists();

 }

 }

 /**

 * Return the list of libraries that are defined by
the specified

 * property.

 *

 * @param properties

 * @param propertyName

 * @return

 */

 static List getPropertyLibraries(Properties prop-
erties, String propertyName) {

 ArrayList libs = new ArrayList();

 // Pull the libraries definition from the proper-
ties

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 105

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 String librariesProp = properties.
getProperty(propertyName, “”);

 // Not sure if the path separators are changed
by platform. Going to split

 // on either just to make sure we are covered.

 StringTokenizer st = new
StringTokenizer(librariesProp, “;:”);

 while (st.hasMoreTokens()) {

 String library = st.nextToken();

 // Not sure about the file separator either...
convert to one

 // format

 library = library.replace(‘\\’, ‘/’);

 // Finally... All of these libraries are relative
paths and yet

 // the props file has some with leading path
separators. Remove

 // the leading path character to make sure it
acts relative.

 if (library.charAt(0) == ‘/’) {

 library = library.substring(1);

 }

 libs.add(library);

 }

 return libs;

 }

 /** /**

 * Construct a new Nokia wireless toolkit. * Construct a new Nokia wireless toolkit.

 * *

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

106 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

Line 47 Line 126

 } }

 /** /**

 * @see eclipseme.model.impl.generic.WirelessToo
lkit#getCLDCPreverifierParameters(eclipseme.model.
IConfiguration)

 */

 protected String[] getCLDCPreverifierParameters(I
Configuration configuration) {

 // TODO Auto-generated method stub

 return null;

 }

 /**

 * @see eclipseme.model.impl.generic.WirelessToo
lkit#getRootClasspathVariableName()

 * @see eclipseme.model.impl.generic.WirelessT
oolkit#getRootClasspathVariableName()

 */ */

 protected String getRootClasspathVariableName()
{

 protected String getRootClasspathVariable-
Name() {

Line 65 Line 136

 * @see eclipseme.model.impl.generic.Wireless
Toolkit#initializeToolkit(org.eclipse.core.runtime.
IProgressMonitor)

 * @see eclipseme.model.impl.generic.Wireless
Toolkit#initializeToolkit(org.eclipse.core.runtime.
IProgressMonitor)

 */ */

 protected void initializeToolkit(IProgressMonito
r monitor) {

 protected void initializeToolkit(IProgressMonit
or monitor) {

 // TODO Auto-generated method stub name = NokiaWirelessToolkitType.TOOL-
KIT_NAME;

 version = NokiaWirelessToolkitType.TOOL-
KIT_VERSION;

 // Gather the device directories

 File devicesDir = new File(getRoot(), Noki-
aWirelessToolkitType.DEVICES_DIRECTORY);

 File[] deviceDirs = devicesDir.listFiles(new
DeviceDirectoriesFileFilter());

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 107

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 // Create the platform component lists

 ArrayList configList = new ArrayList();

 ArrayList profileList = new ArrayList();

 ArrayList platDefsList = new ArrayList();

 // Create the platform definitions

 for (int i = 0; i < deviceDirs.length; i++) {

 try {

 IPlatformDefinition def = createDevicePl
atform(deviceDirs[i]);

 platDefsList.add(def);

 configList.add(def.getConfiguration());

 profileList.addAll(Arrays.asList(def.
getProfiles()));

 } catch (IOException e) {

 EclipseMEPlugin.log(IStatus.WARN-
ING, “initializeToolkit”, e);

 }

 }

 // Set the configurations and profiles for this
toolkit

 platformDefinitions =

 (IPlatformDefinition[]) platDefsList.toAr-
ray(

 new IPlatformDefinition[platDefsLis
t.size()]);

 profiles =

 (IProfile[]) profileList.toArray(new
IProfile[profileList.size()]);

 configurations =

 (IConfiguration[]) configList.toArray(new
IConfiguration[configList.size()]);

 }

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

108 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 /**

 * Add libraries to the profile based on the infor-
mation as defined in

 * the device properties.

 *

 * @param profile

 * @param deviceDirectory

 * @param deviceProps

 */

 private void addLibrariesToProfile(

 Profile profile,

 String deviceDirectory,

 Properties deviceProps)

 {

 // Pull the libraries definition from the proper-
ties

 Iterator libraries =

 getPropertyLibraries(deviceProps, “emula-
tor.library”).iterator();

 while (libraries.hasNext()) {

 String library = (String) libraries.next();

 // Build up the library path to be added to
the profile

 StringBuffer sb = new
StringBuffer(CLASSPATH_VAR);

 sb.append(‘/’).append(DEVICES_PATH);

 sb.append(‘/’).append(deviceDirectory);

 sb.append(‘/’).append(library);

 Path path = new Path(sb.toString());

 profile.addLibrary(JavaCore.
newVariableEntry(path, null, null));

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 109

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 }

 } }

 /** /**

 * @see eclipseme.model.IWirelessToolkit#getDe
viceNames()

 * Create a platform definition for the specified
device directory.

 *

 * @param file

 * @return

 */ */

 public String[] getDeviceNames() { private IPlatformDefinition
createDevicePlatform(File deviceDir)

 return getDeviceNames(new File(root, DE-
VICES_PATH)); throws IOException

 {

 Properties deviceProps =
getDeviceProperties(deviceDir);

 String name = deviceProps.
getProperty(“device.model”, “Unknown”);

 IConfiguration config =
getConfiguration(name, deviceProps);

 IProfile profile = getProfile(name, deviceDir.
getName(), deviceProps);

 IEmulator emulator = new
NokiaEmulator(deviceDir, deviceProps);

 IPreverifier preverifier = new
NokiaPreverifier(deviceDir, deviceProps);

 return createNewPlatformDefinition(

 name,

 deviceDir,

 emulator,

 preverifier,

 config,

 new IProfile[] { profile });

 } }

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

110 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 /** /**

 * @see eclipseme.model.IWirelessToolkit#getEmu
latorClassName()

 * Get the configuration specified by the device
properties.

 *

 * @param platformName

 * @param deviceProps

 * @return

 */ */

 public String getEmulatorClassName() { private IConfiguration getConfiguration(String
platformName, Properties deviceProps) {

 // TODO Auto-generated method stub Configuration config = null;

 return null; String configProp = deviceProps.
getProperty(“microedition.configuration”);

 if (configProp != null) {

 int dashIndex = configProp.indexOf(‘-’);

 if (dashIndex != -1) {

 // Create the configuration

 String configName = configProp + “ (“ +
platformName + “)”;

 String versionString = configProp.
substring(dashIndex + 1);

 Version configVersion = new
Version(versionString);

 config = new Configuration(this, config-
Name, configVersion);

 // Do all of the registration stuff.

 config.addDependentComponent(this);

 config.setDerived(true);

 config.setSpecificationVersion(version
String);

 getRegistry().add(config);

 }

 }

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 111

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 return config;

 } }

 /** /**

 * @see eclipseme.model.IWirelessToolkit#getEm
ulatorJarFiles()

 * Get the properties definition for the specified
device directory.

 *

 * @param deviceDirectory

 * @return

 * @throws IOException

 */ */

 public String[] getEmulatorJarFiles() { private Properties getDeviceProperties(File
deviceDirectory)

 // TODO Auto-generated method stub throws IOException

 return null; {

 Properties props = new Properties();

 File propsFile = getDevicePropertiesFile(dev
iceDirectory);

 InputStream is = new
FileInputStream(propsFile);

 try {

 props.load(is);

 } finally {

 try { is.close(); } catch (IOException e) {}

 }

 return props;

 }

 /**

 * Get the properties file for the specified device
directory.

 *

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

112 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 * @param pathname

 * @return

 */

 private File getDevicePropertiesFile(File device-
Directory) {

 String propsName = deviceDirectory.get-
Name() + “.properties”;

 return new File(deviceDirectory, propsName);

 }

 /**

 * Get the profile specified by the device proper-
ties.

 *

 * @param platformName

 * @param deviceDirectory

 * @param deviceProps

 * @return

 */

 private IProfile getProfile(

 String platformName,

 String deviceDirectory,

 Properties deviceProps)

 {

 Profile profile = null;

 String profilesProp = deviceProps.
getProperty(“microedition.profiles”);

 if (profilesProp != null) {

 int dashIndex = profilesProp.indexOf(‘-’);

 if (dashIndex != -1) {

 // Create the profile

 String profilesName = profilesProp + “
(“ + platformName + “)”;

 String versionString = profilesProp.
substring(dashIndex + 1);

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

Testing 113

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Here is exactly visible what is meant by the lines removed, modified and added.
Removed are those that are present in a previous version but not in the actual, a
changed lines is a line that is different from the same line before and an added line
was not present in the previous version. The tool takes the data from the check out
command and for every CVSTag we have a collection of revisions, which is filled
in the following way:

public void addRevision(CVSRevision revision) {
 revisionList.add(revision);
 }

version 1.1, Tue Feb 10 00:49:06 2004 UTC version 1.2, Sun Feb 22 03:12:03 2004 UTC

 Version profilesVersion = new
Version(versionString);

 profile = new Profile(this, profilesName,
profilesVersion);

 // Do all of the registration stuff

 profile.addDependentComponent(this);

 profile.setDerived(true);

 profile.setSpecificationVersion(version
String);

 getRegistry().add(profile);

 // Add the profile libraries defined by the
device properties

 addLibrariesToProfile(profile, deviceDi-
rectory, deviceProps);

 }

 }

 return profile;

 } }

 } }

Legend

Removed from v.1.1

Changed Lines

Added in v. 1.2

114 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Afterwards the following methods sum the lines.public int getAddedLOC() { int
addedLOC = 0;

 for (Iterator it = revisionList.iterator();
it.hasNext();)
 addedLOC += ((CVSRevision)it.next()).getLocAdded();
 return addedLOC;
 }
public int getDeletedLOC() {
 int deletedLOC = 0;
 for (Iterator it = revisionList.iterator();
it.hasNext();)
 deletedLOC += ((CVSRevision)it.next()).getLocDelet-
ed();
 return deletedLOC;
 }

 public int getModifiedLOC() {
 int modifiedLOC = 0;
 for (Iterator it = revisionList.iterator();
it.hasNext();)
 modifiedLOC += ((CVSRevision)it.next()).getLocModi-
fied();
 return modifiedLOC;
 }

7.6.1.2 revisions

In terms of revisions, we have the following situation. Using the XML gathered
from our tool (taken from junit.xml) we get the following XML. The file

“\junit\junit\awtui\AboutDialog.java”

with the revision ID 1.2 has 0 added, 1 modified and 8 deleted lines. Totally the
file contains 50 lines of code and it is contained in the tags r381, r38, v2, v1, r37,
r36 and r35.

<File Name=”\junit\junit\awtui\AboutDialog.java”>
 <Revision ID=”1.1.1.1”>
 <Added_LOC>0</Added_LOC>

Testing 115

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

 <Modified_LOC>0</Modified_LOC>
 <Deleted_LOC>0</Deleted_LOC>
 <Total_LOC>58</Total_LOC>
 <TagList>
 <Tag>r34</Tag>
 <Tag>start</Tag>
 </TagList>
 </Revision>
 <Revision ID=”1.1”>
 <Added_LOC>0</Added_LOC>
 <Modified_LOC>0</Modified_LOC>
 <Deleted_LOC>0</Deleted_LOC>
 <Total_LOC>58</Total_LOC>
 <TagList/>
 </Revision>
 <Revision ID=”1.2”>
 <Added_LOC>0</Added_LOC>
 <Modified_LOC>1</Modified_LOC>
 <Deleted_LOC>8</Deleted_LOC>
 <Total_LOC>50</Total_LOC>
 <TagList>
 <Tag>r381</Tag>
 <Tag>r38</Tag>
 <Tag>v2</Tag>
 <Tag>v1</Tag>
 <Tag>r37</Tag>
 <Tag>r36</Tag>
 <Tag>r35</Tag>
 </TagList>
 </Revision>
 <Revision ID=”1.3”>
 <Added_LOC>0</Added_LOC>
 <Modified_LOC>12</Modified_LOC>
 <Deleted_LOC>0</Deleted_LOC>
 <Total_LOC>50</Total_LOC>
 <TagList>
 <Tag>Root_Version4</Tag>
 </TagList>
 </Revision>
 </File>

116 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.6.2 example of use of cvsMetrics: junit

Than, for each tag, we sum data as showed for the JUnit project in Table 5. This is
done by summing up lines of the files of all revisions that belong to a tag (Figure
3). Afterwards the three tags with the most changes are listed separately (Table 6).
This ranking is then used as basis to choose the tags to analyze deeper with the
Excel Metric Analyzer tool.

7.7 eXcel tool for the AnAlysis And
evAluAtion of collected Metrics

For every project (JUnit, EclipseMe, CruiseControl) we chose to analyze those
three product releases having the highest percentile based on the added, modified,
deleted and total lines of code (LOC). For every release collect the software metrics
and build for every metric a summarizing table with graph, which compares them
with the added, modified and deleted LOC.

To achieve the creation of more than 300 graphs we implemented several macros
in the Excel worksheet. The tool needs just the start-up required data in the right
place. Therefore copy the data collected by the CVSMetrics tool to the correspond-
ing tables. The tool will then generate all the tables and graphs automatically, and
only the first part of the interpretation sheet is left to be filled out. Furthermore, it
is necessary to specify the first part of the path (of the classespaths) that has to be
cut to be able to compare the data collected with different paths by the tools.

7.8 eXAMple of the use of the
MAcro, cruisecontrol_2.1.1

The interpretation is constructed partially in automatic, as mentioned before. The
calculation for the classes that have to be taken in consideration is as follows:

Summing up the values for each metric and divide the sum by the count of values
to get the average metric value (Table 7).

The average is therefore 618/58 ~10.5. As we want only the classes that are well
above the average we decided to multiply 10.5 * 1.5. This is the minimum value
that a class must have as value to be taken in consideration for the analysis.

Testing 117

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 3. Analysis of JUnit

Table 6. Ranking of the revisions of JUnit

RESULT

RANK % Name Prom Upload

1 90.00% Root_Version4 04.04.2005 at 21.44

2 80.00% start 04.04.2005 at 22.07

3 70.00% r34 04.04.2005 at 22.20

Table 5. Analysis of JUnit

Tag
LOC

Deleted
LOC

Added
LOC

Modified TLOC a+d+m percentile/tag

Start 21 47 184 1688 252 80.00%

r34 19 47 159 1688 225 70.00%

r35 21 18 93 2222 132 10.00%

r36 26 24 55 2273 105 0.00%

r37 32 28 115 2283 175 20.00%

v1 30 30 115 2285 175 20.00%

v2 30 30 115 2285 175 20.00%

r38 65 52 60 3013 177 50.00%

r381 81 49 58 3028 188 60.00%

Root_Version4 22 41 287 3147 350 90.00%

118 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 7.

Name of the class Added lines Name of the class Added lines

Main 8 Upgrader 20

CruiseControlException 4 StreamPumper 8

Builder 12 ProjectXMLHelper 24

FileSystem 8 ModificationSet 9

PVCS 21 Vss 8

P4 18 Modification 21

BuildQueue 8 VssBootstrapper 67

EmailPublisher 33 Commandline 14

ClearCase 10 Project 2

CVS 21 AntBuilder 7

CruiseControl 1 Publisher 4

ProjectControllerMBean 21 DefaultLabelIncrementer 24

ExecutePublisher 3 LabelIncrementer 13

P4Bootstrapper 11 ProjectController 3

SCPPublisher 14 XMLLogHelper 2

DateFormatFactory 2 PluginXMLHelper 5

PauseBuilder 7 Bootstrapper 13

ExitException 2 ClearCaseModification 14

NoExitSecurityManager 2 CruiseControlController 5

NullDate 2 Schedule 11

CVSLabelIncrementer 1 SourceControl 4

VssJournal 18 MavenBuilder 9

CurrentBuildStatusPublisher 4 CruiseControlControllerAgent 5

LinkEmailPublisher 2 CruiseControlControllerJMXAdaptor 5

CurrentBuildStatusBootstrapper 4
CruiseControlControllerJMXAdaptorM-
Bean 18

ClearCaseBootstrapper 10 ArtifactsPublisher 10

CVSBootstrapper 8 HTMLEmailPublisher 1

Util 4 MKS

EmptyLabelIncrementer 4 StreamConsumer

Testing 119

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.9 MAnuAl test first AnAlysis

To understand how our tools might work and which were the results that we could
have expected we manually inspected the most active packages of 5 projects look-
ing at the date of commit of the classes and the tests. The following section reports
the results (Table 8).

7.9.1 Xplanner

As 52,38% of the classes in the package “xplanner\src\com\technoetic\xplanner\
actions” have test classes and those are created earlier then their corresponding
classes, we can say that the XPlanner developers are practicing only partly the test
first methodology (Table 9).

7.9.2 cruise control

As about 72% of the analyzed classes have test classes, we can say that the Cruise
Control developers uses testing and are practicing Test First as about 67% of the
test classes have been made by test first (Table 10).

7.9.3 prevayler

As about 70% of the analyzed classes have test classes, we can say that Prevayler
developers use testing and are practicing Test First as about 53% of the test classes
have been made by test first).

Table 8. Test classes in the package selected

Test first classes 22 52,38%

Test after classes 0 0,00%

No test classes 20 47,62%

Total classes 42 100,00%

Table 9. Test classes in the package selected

Test first classes 12 66,67%

Test after classes 1 5,56%

No test classes 5 27,78%

Total classes 18 100,00%

120 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.9.4 eclipseMe

No test classes found within the whole project, therefore no test first practiced.

7.9.5 eclipse javacc

No test classes found within the whole project, therefore no test first practiced.

7.9.6 eclipse tomcat plugin

No test classes found within the whole project, therefore no test first practiced.

7.9.7 Automated test first analysis

As we mentioned, CVSMetric also checks, whether the corresponding test classes
for the different project classes exist and when they have been created. Therefore
the following outputs in the XML file are possible:Test not found

<File Name=”\junit\junit\extensions\RepeatedTest.
java”>
 <Unit-Test>n.a.</Unit-Test>
...
</File>

Test first found

<File Name=”\junit\junit\extensions\ExceptionTestCase.
java”>

Table 10. Test classes in the package selected

Test first classes 9 52,94%

Test after classes 3 17,65%

No test classes 8 47,06%

Total classes 17 100,00%

Testing 121

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

 <Unit-Test DaysCreatedBefore-
Class=”1565.0”>\junit\junit\tests\ExceptionTest-
CaseTest.java</Unit-Test>
...
</File>

Test found after

<File Name=”\junit\junit\framework\ComparisonFailure.
java”>
 <Unit-Test DaysCreatedBefore-
Class=”-71.0”>\junit\junit\tests\framework\Comparison-
FailureTest.java</Unit-Test>

To extend the manual inspection of the projects we have performed in the previous
section we use CVSMetrics on Cruisecontrol - one of the projects that have showed
the use of testing and Test First in particular – EclipseME – one of the projects that
have not showed the use of testing and Test First in particular – and JUnit – the
automated framework to create test suites.

7.9.8 cruisecontrol

CVSMetrics confirms the results obtained with the manual inspection increasing
the percentage of tests created before their classes. The developers use test classes
for their project, as we can see that about 41% of the classes have test classes, and
that 70% of them have been made with the test first methodology and only 30%
with test after (Figure 4).

7.9.9 eclipseMe

The use of CVSMetrics on all the three tags of the project confirmed that are no test
classes found within the whole project, therefore no test first practiced (Figure 5).

7.9.10 junit

The developers of JUnit have test classes for about 22% of their classes, whereas
about 82% have been made with test first, and the other 18% with test after (Figure
6).

As for the JUnit project was no test framework, as JUnit available, the test
percentage is low.

122 Testing

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

7.10 references

Black, R. (2002). Managing the testing process. Wiley.

Burnstein, I. (2003). Practical software testing. Springer.

Kaner, C., Bach, J., & Pettichord, B. (2002). Lessons learned in software testing.
Wiley.

Myers, G. J. (1979). The art of software testing. Wiley.

Spillner, A., Linz, T., & Schaefer, H. (2007) Software testing foundations: A study
guide for the certified tester exam. Rocky Nook Inc.

Figure 4. Tests in CruiseControl

Figure 5. Tests in EclipseMe

Figure 6. Tests in JUnit

Testing 123

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

endnote

1 Categories as defined in the Tigris web site.

124 Code Ownership

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 8

Code Ownership

8.1 introduction

In many AMs, such as XP, the source code does not belong to the developer that wrote
it. The common practice is that all the code belongs to the whole team; therefore
every member can modify it. Collective Code Ownership encourages everyone to
contribute new ideas to all parts of the project. Any developer can change any line
of code to add functionality, fix bugs, or refactor. No one person becomes a bottle
neck for changes. This could seem hard to understand at first. It is almost inconceiv-
able that an entire team can be responsible for the architecture of the system (Beck,
1999; Feller & Fitzgerald, 2001).

In many traditional development methods, it is not possible to implement this
approach, since a developer knows the details of a very limited part of the prod-
uct. Usually, just the code he has written. On the contrary, in XP for instance, all
the developers have a deep knowledge of the entire code base, since they have to
participate in the development of all the code, not just a limited portion (Scotto et
al., 2007).

DOI: 10.4018/978-1-59904-681-5.ch008

Code Ownership 125

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

8.2 pAreto AnAlysis

Pareto analysis is a statistical technique in decision making that is used for selec-
tion of a limited number of tasks that produce significant overall effect. It uses the
Pareto principle, the name derives from the Italian economist Vilfredo Pareto, who
observed that 80% of income in Italy went to 20% of the population. Pareto later
carried out surveys on a number of other countries and found to his surprise that a
similar distribution applied.

Pareto analysis is a formal technique useful where many possible courses of ac-
tion are competing for your attention. In essence, the problem-solver estimates the
benefit delivered by each action, then selects a number of the most effective actions
that deliver a total benefit reasonably close to the maximal possible one.

8.2.1 example

Step 1: Frequency Analysis

The first step of the Pareto analysis is to gather data on the frequency of causes
(Table 1).

Step 2. Ranking Causes

To identify the most important causes, we rank the causes based on the frequencies
they found in their survey (Table 2).

Step 3: Pareto Graph

We draw a horizontal axis (x) that represents the different causes, ordered from the
most to least frequent. Next, we draw a vertical axis (y) with cumulative percent-
ages from 0 to 100% (Figure 1).

Now it is easy to see that approximately 7 factors are responsible for 80% of
problem. The other 13 factors are responsible for only 20%.

8.3 Adoption of code oWnership in
open source developMent

To evaluate the adoption of Collective Code Ownership we performed a Pareto
analysis on the source code repositories of some OS projects. The sample includes 53
products: 12 written in C/C++, 39 in Java, and 2 in C/C++ and Java, with a number

126 Code Ownership

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

of files between 28 (XML Forrest) and 5,279 (XFree86 4.0), and duration between
4 (XML Forrest) and 109 (OpenBSD) months. The considered products belong to
very different application domains including: web and application servers, database,
operating system, and windows manager. Major versions of the projects Apache,
Tomcat, Cocoon, Turbine, and XFree86 are considered as separate projects, since
they are very long projects and stored in different repositories.

Table 3 summarizes the contributions to the projects by different developers and
points out that the Pareto rule is valid in most of the cases. A small number of the
developers (about 20%) are able to commit code into the repositories provide most
of the contributions (about 80%). This is true from the point of view of both the
total number of commits and the total number of lines of code (added, removed,
or modified).

Table 1. Pareto analysis

Possible cause %

A 1

B 1

C 2

D 2

E 13

C 2

D 2

E 2

F 6

G 2

H 1

I 1

J 16

K 1

L 2

M 1

N 14

O 12

Q 9

R 10

Total 100

Code Ownership 127

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

In some cases (e.g., XFree86 3.0 and 4.0), most of the commits are made using a shared
login in the CVS system (several users using the same account in the CVS system). For
this reason, it is not possible to identify the actual developers from the CVS log. In this
case, there is a single virtual contributor who has provided more than 95% of the code.
Therefore, in such cases the Pareto rule cannot be verified. According to Table 3 only
about 20% of the developers that are able to commit source code are the people who
drive the development. This means that if the team is small the development is guided
by a 2-3 gurus and the project is highly dependent on them. On the other hand, if the
project is large enough, the dependency on gurus is reduced and the project is likely to
survive even if some of the main developers decide to leave. Table 4 shows the behavior
of the developers towards the access policy to source code files.

Excluding the XFree86 projects for the reasons explained above (shared CVS
login), data show that most of the code was developed by several developers (Figure
2). In this sense, there is a collective code ownership, several developers are able
to modify the same file.

Table 2. Ranking

Possible cause % Cumulative %

J 16 16

N 14 30

E 13 43

O 12 55

R 10 65

Q 9 74

F 6 80

C 2 82

D 2 84

C 2 86

D 2 88

E 2 90

G 2 92

L 2 94

A 1 95

B 1 96

H 1 97

I 1 98

K 1 99

M 1 100

128 Code Ownership

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 1. Pareto chart

Table 3. People contributing to the projects

Product People People contributing to 80% of
the commits

People contributing to
80% of the LOC

Ant 29 5 (17%) 6 (21%)

Ant-Antidote 5 2 (40%) 2 (40%)

Apache 1.2 16 8 (50%) 8 (50%)

Apache 1.3 50 11 (22%) 11 (22%)

Apache 2.0 53 12 (23%) 9 (17%)

Apache-Apr 10 2 (20%) 2 (20%)

Avalon 30 6 (20%) 5 (17%)

Cocoon 1.0 13 4 (31%) 5 (38%)

Cocoon 2.0 9 4 (44%) 4 (44%)

Cocoon 2.1 40 7 (17%) 7 (17%)

Cocoon 2.2 29 6 (21%) 6 (21%)

DB-ojb 16 5 (31%) 4 (25%)

DB-torque 18 6 (33%) 5 (28%)

Jakarta Hivemind 46 11 (24%) 11 (24%)

Jakarta Jetspeed 2 11 4 (36%) 4 (36%)

Jakarta JMeter 13 4 (31%) 5 (38%)

Jakarta Lucene 15 4 (27%) 4 (27%)

Jakarta ORO 2 1 (50%) 1 (50%)

Jakarta POI 11 3 (27%) 3 (27%)

Jakarta Taglibs 19 7 (37%) 7 (37%)

Code Ownership 129

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 3. continued

Product People People contributing to 80% of
the commits

People contributing to
80% of the LOC

Jakarta Tapestry 7 1 (14%) 1 (14%)

Jakarta Tomcat 3.0 34 5 (15%) 4 (12%)

Jakarta Tomcat 4.0 31 6 (19%) 5 (16%)

Jakarta Turbine 2 19 5 (26%) 4 (21%)

Jakarta Turbine 3 11 6 (54%) 6 (54%)

JBoss 87 9 (10%) 10 (11%)

KDE 379 39 (10%) 38 (10%)

Logging Log4cxx 3 2 (67%) 2 (67%)

Logging Log4j 13 2 (15%) 2 (15%)

Maven 27 5 (18%) 5 (18%)

Mozilla Firefox 266 51 (19%) 37 (14%)

Mozilla Thunderbird 315 47 (15%) 37 (12%)

OpenBSD 66 8 (12%) 5 (8%)

PostgreSQL 13 2 (15%) 1 (8%)

WS AXIS 58 12 (21%) 9 (15%)

WS FX 11 3 (27%) 4 (36%)

WS JAXME 4 1 (25%) 1 (25%)

WS jUDDI 3 2 (67%) 1 (33%)

WS SOAP 12 5 (42%) 4 (33%)

WS WSIF 8 4 (50%) 3 (37%)

WS XMLRPC 11 4 (36%) 4 (36%)

XFree86-3 17 1 (6%) 1 (6%)

XFree86-4 19 1 (5%) 1 (5%)

XML BATIK 10 4 (40%) 4 (40%)

XML Crimson 2 1 (50%) 1 (50%)

XML FOP 12 4 (33%) 4 (33%)

XML Forrest 3 2 (67%) 2 (67%)

XML Security 8 3 (37%) 2 (25%)

XML Xalan 31 9 (29%) 8 (26%)

XML Xang 1 1 (100%) 1 (100%)

XML Xerces 34 9 (26%) 9 (26%)

XML Xindice 11 3 (27%) 2 (18%)

XML XMLbeans 9 3 (33%) 2 (22%)

130 Code Ownership

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 4. Number of developers per file

Product Mean Std. Dev.

Ant 5.36 3.14

Ant-Antidote 1.69 0.78

Apache 1.2 7.12 3.83

Apache 1.3 9.05 7.42

Apache 2.0 9.88 7.08

Apache-Apr 1.30 0.62

Avalon 2.46 1.54

Cocoon 1.0 2.29 1.27

Cocoon 2.0 1.14 0.45

Cocoon 2.1 2.62 1.66

Cocoon 2.2 2.28 1.57

DB-ojb 2.65 1.92

DB-torque 4.72 2.66

Jakarta Hivemind 2.09 1.48

Jakarta Jetspeed 2 1.89 1.17

Jakarta JMeter 2.40 1.51

Jakarta Lucene 2.69 1.49

Jakarta ORO 1.93 0.26

Jakarta POI 1.83 1.04

Jakarta Taglibs 1.96 0.92

Jakarta Tapestry 1.06 0.25

Jakarta Tomcat 3.0 3.51 2.68

Jakarta Tomcat 4.0 2.64 1.69

Jakarta Turbine 2 4.65 2.09

Jakarta Turbine 3 2.85 1.99

JBoss 4.67 4.62

KDE 7.28 8.17

Logging Log4cxx 1.86 0.57

Logging Log4j 2.11 1.41

Maven 2.15 1.46

Mozilla Firefox 3.17 4.58

Mozilla Thunderbird 5.06 7.56

OpenBSD 4.42 2.41

PostgreSQL 2.25 0.92

WS AXIS 3.17 2.63

WS FX 1.93 0.89

Code Ownership 131

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 2. Distribution of developers per file

Table 4. continued

Product Mean Std. Dev.

WS JAXME 1.03 0.18

WS jUDDI 1.59 0.50

WS SOAP 2.72 2.01

WS WSIF 2.04 1.09

WS XMLRPC 2.51 1.57

XFree86-3 1.10 0.37

XFree86-4 1.02 0.16

XML BATIK 2.26 1.29

XML Crimson 1.02 0.14

XML FOP 2.50 1.54

XML Forrest 1.07 0.26

XML Security 2.70 1.29

XML Xalan 3.82 2.62

XML Xang 1.00 0.00

XML Xerces 3.48 1.90

XML Xindice 2.57 1.51

XML XMLbeans 1.40 0.85

132 Code Ownership

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

It is interesting to notice that the average number of developers per file is com-
parable to the number of core developers showed in Table 3.

8.4 references

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Feller, J., & Fitzgerald, B. (2001). Understanding open source software develop-
ment. Addison-Wesley Professional.

Scotto, M., Sillitti, A., & Succi, G. (2007). An empirical study on the open source
development process based on mining of source code repositories. [IJSEKE]. In-
ternational Journal of Software Engineering and Knowledge Engineering, 17(2),
1–17. doi:10.1142/S0218194007003215

Design Approaches 133

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 9

Design Approaches

9.1 introduction

In this chapter we compare agile and OS development in terms of the adoption of
design practices.

We review the practices of AMs to identify the agile approaches to the design
and we inspect the code of a set of open source projects to determine whether these
approaches are undertaken by OS projects.

Software design is a process that defines the solutions to software implementa-
tion at the early stages of the software development process. It comprises software
requirements and software architecture modeling. In the waterfall approach this
process is in general realized with the Big Design Up Front (BDUF). The method
consists in creating big structured models of design before any coding to ensure
the transparence of the overall software development. In literature there are various
models of software design. The most known are diagram specifying requirements,
architecture of the system, components, technologies, classes and interfaces. In
object oriented programming the design is implemented by the series of UML dia-
grams – the structure, the behavior, and the interaction diagrams (Ambler, 2004;
Fowler, 1999).

DOI: 10.4018/978-1-59904-681-5.ch009

134 Design Approaches

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

A modern concept of design modeling is performed through the design patterns.
A design pattern is a solution to a problem of design that repeatedly occurs and
that can be implemented in the code. The model in general is independent from a
specific language and a given application domain, but it might be related to a type
of programming like the object oriented programming. The design pattern is used to
speed up the process of development reusing stable solutions to specific problems
of development. A design pattern is not an algorithm though as is not related on
computational solution of the conceptual system.

In object oriented programming the major reference on design patterns is the
book of the Gang of Four (Gamma et al., 1994). The design patterns are classified
by the type of problem they solve. In Gamma et al. (1994), patterns are classified
in three categories: structural, behavioral, and creational.

The structural patterns relate to class and objects and their composition, the
behavioral patterns refer to class communication, and creational patterns concern
class instantiations.

In the following section we describe the design practices and patterns used in
the agile development.

9.2 Agile ApproAches to design

Agile Methodologies focus on incremental development without a single and large
upfront design. Namely, they adopt the Big Design Up Front Anti-pattern (BDUFA)
that embrace changes adopting envisioning modeling of design (requirements and
architecture) just when needed. The usual approach is to mix and refine with short
iterations the design, coding, and the testing phases. Therefore, the code is subject
to change frequently, whenever requirements change due to a deeper understand or
because the customer has changed idea. As such the design approach in the agile
methods can be readily identified in the source code. In this chapter we shall deduce
whether the developers of OS adopt BDUFA by analyzing the code changes.

In the following we shall just give some examples and discuss the most famous
facts related to design approaches in AMs.

In general, AMs use design patterns when the language of programming is object
oriented. Namely, AMs share the common principle of reusing existing working
objects from previous projects or project iterations to avoid waste and useless activi-
ties. This applies also to design objects proving the use of design patterns successful
used in previous project’s iteration or projects in AMs.

A design practice peculiar to development with the AMs concerns testing. Many
of the AMs embrace testing in the early phase of the development and all across the
development itself. In this sense, AMs extensively use the concept of acceptance

Design Approaches 135

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

test. The acceptance test is design object negotiated with the customer in which
requirements are modified and accepted by both developers and customer.

In the following we briefly discuss the design approach in the some of the most
known agile methods.

In XP, the initial light design is defined with the System Metaphor. The System
Metaphor is a short description of the system describing how it works. It is written
in a simple natural language that facilitates the communication among the stake-
holders of the development. The design is further implemented with the use of
models like user stories, acceptance tests, and CRC cards. These models are refined
in each iteration. Namely, as the work is incremental the additions of new system
components or user’s requirements are also modeled iteratively.

SCRUM is a management, enhancement and maintenance methodology for an
existing systems or prototypes. Therefore it assumes existing design and code that
in the case of object-oriented development is supported by class libraries. Therefore
SCRUM is more oriented to the orchestration of existing practices or model of
design. In order to achieve this orchestration, SCRUM uses backlogs to organize
and design the work. These are prioritized lists of tasks. Backlogs are dynamically
and iteratively filled by the different stakeholders of the development. The priority
is based on customer’s needs and team ability. Backlogs are used in the SCRUM
meetings to understand and predict the performance of the work.

In Test Driven Development (TDD) the stress is on testing. Design practices and
pattern reflect this stress. In particular Test Driven Development includes design
patterns like the Positive Feedback Loop, for which tests need to be isolated, to be
written soon starting from the assert, to use realistic data, to relate input with output.
Another diffused practice in Agile development is to use mock objects to simulate
complex or external systems. In TDD the mock objects are used in testing. For
example, the communication between two objects can be defined by implementing
a method of one object working with the interface of the second.

9.3 Adoption of Big upfront design
in open source developMent

As patterns are then implemented into the code, in this chapter we analyze the source
code of the OS projects to identify design patterns. We analyze the occurrences in
time of the changes. Depending on the density of the changes we can derive whether
the Big Design Up Front is implemented. Namely, an accumulation of non-cosmetic
changes at a given phase of the development process is a sign of deep activity of
design modeling.

136 Design Approaches

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Based on several studies on code evolution (Baxter et al., 2004; Eisenbarth et
al., 2001; Klint, 2003; Lin & Holt, 2004; Maletic et al., 2002) and on refactoring
(Fowler et al., 1999), we have developed the classification of the code changes
showed in Table 1.

Moreover, for each type of modification, we identify whether they are additions,
removals, or modifications of statements.

We discuss whether OS projects adopt Big Design Up Front by analyzing the
behavior of the programmers in the changes they performed in the source code.
In particular, in our classification we identify the structural patterns. If we find a
predominance of one of the class in Table 1 (mainly structural and non structural
changes) we can say that the programmers of the given OS project adopt Big De-
sign Up Front.

The sample includes 53 products: 12 written in C/C++, 39 in Java, and 2 in
C/C++ and Java, with a number of files between 28 (XML Forrest) and 5,279
(XFree86 4.0), and duration between 4 (XML Forrest) and 109 (OpenBSD) months.
The considered products belong to very different application domains including:
web and application servers, database, operating system, and windows manager.
Major versions of the projects Apache, Tomcat, Cocoon, Turbine, and XFree86
are considered as separate projects, since they are very long projects and stored in
different repositories.

9.4 tiMe series AnAlysis

To identify patterns in the behavior of the developers, a time series analysis tech-
nique has been used. A sequence analysis identifies a set of phases of a model and
evaluates their evolution in time. This kind of analysis is based on categorical data
and its aim is to identify patterns. The considered technique is a sequence analysis
that comes from the social sciences called gamma analysis (Pelz, 1985). We clas-

Table 1. Classification of the modifications

Type Code identifier

Structural Any change to the source code that affects the structure of the product. It in-
cludes: class and function definitions, decision statements, loops, etc.

Non-structural Any change to the source code that does not affect the structure of the product. It
includes: variable definitions, inclusions, assignments, etc.

Comment Any change to comments

Design Approaches 137

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

sify source code modifications into three categories (Table 1). Hence, the phases
considered for the analysis are listed in Table 2.

The gamma analysis is able to describe the order of the phases in a sequence and
provide a measure of the overlapping of the phases. It is based on the gamma score,
which is a non-parametric statistic based on the ordinal relationship of Goodman
and Kruskal (Pelz, 1985) defined as follows:

g(,)A B
P Q
P Q

=
-
+

where P is the number of A-phases preceding the B-phases and Q is the number of
A-phases following the B-phases. The g calculated in this way is symmetric and
varies between -1 and +1. Its meaning is summarized in Table 3.The gamma score
is used to calculate the precedence score and the separation score. The former one
is the mean of the gamma scores:

g gA A i
iN

= å1
(,)

Table 2. Phases for the gamma analysis

Phase Structural
modifications

Non-structural
modifications

Comment
modifications

000 0 0 0

100 ≠ 0 0 0

010 0 ≠ 0 0

001 0 0 ≠ 0

110 ≠ 0 ≠ 0 0

101 ≠ 0 0 ≠ 0

011 0 ≠ 0 ≠ 0

111 ≠ 0 ≠ 0 ≠ 0

Table 3. Meaning of gamma

Meaning

g(A,B) < 0 A-phases following B-phases

g(A,B) = 0 A-phases and B-phases are independent

g(A,B) > 0 A-phases preceding B-phases

138 Design Approaches

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

where N is the number of phases and g(A,i) is the gamma score calculated between
the phases A and i. The precedence score varies between -1 and +1. The separation
score is the mean of the absolute value of the gamma scores:

s
NA A i

i

= å1
g(,)

It varies between 0 and +1. A separation score of 0 means that the phases are inde-
pendent, while +1 means that there is a separation among the phases. The values of
g and s are calculated for each file in the project. Then, their values for the whole
project are calculated as a weighted average as follows:

g n g= å1
N i i

i

s
N

si i
i

= å1
n

where gi,, si, vi are the precedence score, the separation score, and the number of ver-
sions of the file i. Table 4 shows that most of the modifications made to the source
code (more than 80%) belong to the phases: 000, 010, 110, 111.

According to the data, a large percentage of the modifications (Figure 1) involve
the basic structure of the code (i.e., execution paths). This means that there is a
continuous adaptation of the code without any large upfront design. In the case of
a large upfront design, the modifications to the basic structure of the code should
be a minimum amount.

9.4.2 correlation Among time series

The visual inspection suggests that the distributions of the data are not normal. This
hypothesis has been verified using the Kolmogorov-Smirnov test (Siegel & Castel-
lan, 1988). Consequently, the analysis is based on non-parametric techniques. In
particular, it is not possible to use the Pearson correlation coefficient because it is
based on a linear model; hence, the correlation analysis is based on the calculus of
the Spearman correlation coefficient.

The separation scores of the most relevant kind of contributions are negatively
correlated with the number of versions of the files belonging to the projects (Table
5). All the values are significant at the 0.01 level (except the ones identified by *).
This value is more conservative than commonly accepted in software engineering
(El Emam et al., 2001).

Design Approaches 139

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 4. Main modifications

Product 000, 010, 110, 111 Other

Ant 92% (42%, 25%, 14%, 11) 8%

Ant-Antidote 99% (54%, 26%, 8%, 11%) 1%

Apache 1.2 86% (24%, 27%, 21%, 14%) 14%

Apache 1.3 87% (25%, 31%, 18%, 13%) 13%

Apache 2.0 89% (25%, 30%, 20%, 14%) 11%

Apache-Apr 89% (16%, 33%, 28%, 12%) 11%

Avalon 93% (28%, 41%, 15%, 9%) 7%

Cocoon 1.0 84% (26%, 21%, 21%, 16%) 16%

Cocoon 2.0 89% (10%, 24%, 26%, 29%) 11%

Cocoon 2.1 89% (17%, 42%, 18%, 12%) 11%

Cocoon 2.2 90% (10%, 52%, 16%, 12%) 10%

DB-ojb 91% (13%, 32%, 23%, 23%) 9%

DB-torque 91% (13%, 39%, 23%, 16%) 9%

Jakarta Hivemind 89% (16%, 33%, 23%, 17%) 11%

Jakarta Jetspeed 2 88% (5%, 28%, 29%, 26%) 12%

Jakarta JMeter 77% (9%, 22%, 26%, 20%) 23%

Jakarta Lucene 89% (17%, 34%, 19%, 19%) 11%

Jakarta ORO 78% (15%, 55%, 4%, 4%) 22%

Jakarta POI 90% (26%, 32%, 16%, 16%) 10%

Jakarta Taglibs 93% (17%, 46%, 17%, 13%) 7%

Jakarta Tapestry 91% (51%, 12%, 20%, 8%) 9%

Jakarta Tomcat 3.0 86% (9%, 31%, 21%, 25%) 14%

Jakarta Tomcat 4.0 87% (11%, 31%, 21%, 24%) 13%

Jakarta Turbine 2 92% (35%, 28%, 18%, 11%) 8%

Jakarta Turbine 3 89% (16%, 38%, 15%, 20%) 11%

JBoss 88% (10%, 19%, 29%, 30%) 12%

KDE 83% (16%, 24%, 26% 17%) 17%

Logging Log4cxx 88% (34%, 30%, 18%, 6%) 12%

Logging Log4j 86% (14%, 32%, 22%, 18%) 14%

Maven 89% (11%, 29%, 29%, 20%) 11%

Mozilla Firefox 85% (30%, 20%, 18%, 17%) 15%

Mozilla Thunderbird 84% (19%, 24%, 23%, 18%) 16%

OpenBSD 88% (8%, 37%, 32%, 11%) 12%

PostgreSQL 94% (25%, 25%, 31%, 13%) 6%

WS AXIS 87% (16%, 34%, 21%, 16%) 13%

WS FX 88% (12%, 28%, 26%, 22%) 12%

140 Design Approaches

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 1. Modifications

Table 4. continued

Product 000, 010, 110, 111 Other

WS JAXME 90% (6%, 52%, 22%, 10%) 10%

WS jUDDI 98% (19%, 18%, 23%, 38%) 2%

WS SOAP 90% (13%, 37%, 21%, 19%) 10%

WS WSIF 90% (6%, 42%, 25%, 17%) 10%

WS XMLRPC 86% (6%, 37%, 19%, 24%) 14%

XFree86-3 80% (19%, 20%, 16%, 25%) 20%

XFree86-4 80% (28%, 13%, 18%, 21%) 20%

XML BATIK 91% (24%, 34%, 16%, 17%) 9%

XML Crimson 82% (13%, 15%, 20%, 34%) 18%

XML FOP 75% (9%, 28%, 23%, 15%) 25%

XML Forrest 86% (2%, 57%, 20%, 7%) 14%

XML Security 88% (26%, 32%, 15%, 15%) 12%

XML Xalan 87% (27%, 28%, 14%, 18%) 13%

XML Xang 97% (17%, 52%, 14%, 14%) 3%

XML Xerces 85% (19%, 31%, 18%, 17%) 15%

XML Xindice 92% (13%, 46%, 21%, 12%) 8%

XML XMLbeans 90% (23%, 37%, 17%, 13%) 10%

Design Approaches 141

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 5. Separation scores

Product N, 000 N, 010 N, 110 N, 111

Ant -0.425 -0.511 -0.578 -0.565

Ant-Antidote -0.572 -0.560 -0.283* -0.702

Apache 1.2 -0.631 -0.541 -0.502 -0.636

Apache 1.3 -0.695 -0.620 -0.719 -0.649

Apache 2.0 -0.314 -0.363 -0.593 -0.408

Apache-Apr -0.563 -0.514 -0.479 -0.513

Avalon -0.652 -0.628 -0.618 -0.579

Cocoon 1.0 0.007* -0.361* -0.466 -0.602

Cocoon 2.0 0.000* 0.000* 0.000* -0.125*

Cocoon 2.1 -0.595 -0.615 -0.607 -0.547

Cocoon 2.2 -0.543 -0.588 -0.504 -0.651

DB-ojb -0.605 -0.640 -0.590 -0.657

DB-torque -0.422 -0.570 -0.686 -0.644

Jakarta Hivemind -0.522 -0.712 -0.743 -0.614

Jakarta Jetspeed 2 -0.540 -0.637 -0.604 -0.698

Jakarta JMeter -0.683 -0.631 -0.627 -0.629

Jakarta Lucene -0.646 -0.680 -0.581 -0.464

Jakarta ORO 0.184* 0.180* -0.764 -0.238*

Jakarta POI -0.639 -0.580 -0.391 -0.531

Jakarta Taglibs -0.399 -0.474 -0.636 -0.592

Jakarta Tapestry -0.420 -0.466 -0.516 -0.454

Jakarta Tomcat 3.0 -0.524 -0.731 -0.688 -0.608

Jakarta Tomcat 4.0 -0.613 -0.554 -0.702 -0.689

Jakarta Turbine 2 -0.457 -0.438 -0.602 -0.533

Jakarta Turbine 3 -0.659 -0.660 -0.593 -0.431

JBoss -0.463 -0.541 -0.599 -0.609

KDE -0.662 -0.686 -0.663 -0.636

Logging Log4cxx -0.341 -0.408 -0.386 -0.403

Logging Log4j -0.559 -0.574 -0.549 -0.629

Maven -0.613 -0.565 -0.649 -0.587

Mozilla Firefox -0.675 -0.783 -0.683 -0.651

Mozilla Thunderbird -0.597 -0.773 -0.678 -0.662

OpenBSD -0.586 -0.462 -0.458 -0.368

PostgreSQL -0.511 -0.505 -0.642 -0.622

WS AXIS -0.469 -0.517 -0.635 -0.587

WS FX -0.612 -0.497 -0.670 -0.462

142 Design Approaches

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

9.5 references

Ambler, S. (2004). The object primer: Agile model driven development with UML
2. Cambridge University Press.

Baxter, I. D., Pidgeon, C., & Mehlich, M. (2004). DMS: Program transformations
for practical scalable software evolution. 26th International Conference on Software
Engineering.

Eisenbarth, T., Koschke, R., & Simon, D. (2001). Aiding program comprehension
by static and dynamic feature analysis. IEEE International Conference on Software
Maintenance.

El Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of faulty classes
using object-oriented metrics. Journal of Systems and Software, 56(1), 63–75.
doi:10.1016/S0164-1212(00)00086-8

Table 5. continued

Product N, 000 N, 010 N, 110 N, 111

WS JAXME -0.572 -0.621 -0.618 -0.544

WS jUDDI -0.581 -0.660 -0.777 -0.682

WS SOAP -0.485 -0.607 -0.710 -0.735

WS WSIF -0.261 -0.434 -0.516 -0.706

WS XMLRPC -0.566 -0.642 -0.846 -0.632

XFree86-3 -0.422 -0.523 -0.475 -0.512

XFree86-4 -0.475 -0.481 -0.448 -0.482

XML BATIK -0.554 -0.551 -0.622 -0.701

XML Crimson -0.707* -0.709* -0.717 -0.739

XML FOP -0.727 -0.614 -0.715 -0.728

XML Forrest 0.000* 0.000* -0.354* 0.000*

XML Security -0.414 -0.417 -0.556 -0.593

XML Xalan -0.715 -0.741 -0.580 -0.666

XML Xang -0.791* 0.137* 0.000* -0.396*

XML Xerces -0.625 -0.633 -0.668 -0.636

XML Xindice -0.189 -0.317 -0.303 -0.555

XML XMLbeans -0.458 -0.598 -0.604 -0.734

This means that in every project, the separation among phases decreases with the increasing of the number of
versions of the files of the project. Again, such data reveal that phases are mixed and this behavior increases dur-
ing the project rather than decrease.

Design Approaches 143

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Fowler, M. (1999). UML distilled: A brief guide to the standard object modeling
language. Addison-Wesley Professional.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
improving the design of existing code. Addison-Wesley Professional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements
of reusable object-oriented software. Addison-Wesley Professional.

Klint, P. (2003). How understanding and restructuring differ from compiling-a rewrit-
ing perspective. 11th IEEE International Workshop on Program Comprehension.

Lin, Y., & Holt, R. C. (2004). Software factbase extraction as algebraic transforma-
tions: FEAT. 1st International Workshop on Software Evolution Transformations.

Maletic, J. I., Collard, M. L., & Marcus, A. (2002). Source code files as structured
documents. 10th IEEE International Workshop on Program Comprehension.

Pelz, D. C. (1985). Innovation complexity and sequence of innovating strategies.
Knowledge: Creation Diffusion . Utilization, 6, 261–291.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for behavioral sci-
ences. McGraw-Hill.

144 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 10

Case Studies

10.1 introduction

AMs have been developed considering mainly environments that are limited such as
companies. For instance, XP defines practices such as 40-hours per week and pair
programming that make sense only inside companies. However, the basic principles
and most of the related practices are not bounded to such environments and can be
useful to organize Agile teams in different contexts such as in OS communities.

There are several OS tools that are developed using Agile techniques (e.g., JU-
nit, Eclipse, Funambol, etc.). The case of Eclipse is particular for several aspects
such as:

The development is lead by an organization (IBM at the beginning, the •
Eclipse Foundation at present)
There is an active community contributing•
The system includes several sub-projects developed independently•

Since the Eclipse IDE includes several sub-projects developed independently,
it is not possible to talk about a general Eclipse Development Process applied to
the entire system but we need to focus on specific sub-projects. The core part of

DOI: 10.4018/978-1-59904-681-5.ch010

Case Studies 145

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the Eclipse IDE is the Eclipse Platform that defines the basic infrastructure used
by all the other sub-projects. This part of the system has been developed using
Agile practices adapted to the specific environment. This is an example of how
Agile development can be customized to support the specific needs of a company
or a community.

10.2 the eclipse softWAre developMent process

Even if we focus only on the Eclipse Platform development team, it is difficult to
define an Eclipse Development Process since it is not fixed but it is evolving con-
tinuously adding, removing, or modifying the practices used. In this way, the team
is able to tune the process and improve its ability to:

• Deliver quality software on time: Quality and schedule are two main prob-
lems of software development (Brooks, 1995), in particular if the product is
the base for several other projects that rely on it. The development process
should help developers in accessing the quality of the software produced to
avoid rework and problems that may generate schedule slips.

• Be predictable: Make reliable estimates of the time required to complete
a set of tasks it is always difficult and requires a lot of experience and a

Figure 1. The Eclipse development process

146 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

development methodology that helps in the definition of such estimates
(DeMarco, 1982).

The development process is organized in cycles corresponding to releases of
the platform. Each cycle includes three main phases (Figure 1): warm up, steady
state, and end game.

In the warm up phase, the team recovers from the stress of the previous release
(decompression) (often they schedule it in conjunction with holidays). When the
developers are back to work and refreshed they do a retrospective of the previous
cycle and define an initial release plan. The plan is not static but dynamic: it may
change during the cycle according to the feedback (from the development team and
from the community). The plan lists all the potential features to add and the team
marks each item as committed, proposed, or deferred. The plan is public and the team
likes to receive feedback on that. In particular, related to the proposed features.

In the steady state, the development is organized in milestones that are released at
regular intervals (6 weeks). Milestones are organized in the same way as cycles, in-
cluding a shorter version of the same phases called: plan, develop, and stabilize.

After the release of the last milestone, there is the end game phase. This is a
sprint phase in which the goal of the team is to increase the quality level of the code
through short fix-and-test cycles. At the beginning of the end game, they test for 2
days and fix for a variable number of days (usually 3-5 days).

The entire cycle for a release lasts about 12 months distributed as follows:

Warm up: •	 1 month
Milestones:•	 9 months
End game:•	 2 months

A number of practices are behind this development process. As the development
process, the practices are not fixed but they are evolving to increase the quality level
and adapt to the evolution of the development team. At the time of writing, the main
practices used by the Eclipse Platform Development Team include:

• Continuous testing: Testing is part of the development process and it is per-
formed continuously, not only before releases or milestones. A complete set
of tests allows developers to make changes without fear, since they are able
to verify if the entire system is still working correctly. There are three kinds
of tests used:

Correctness tests: ◦ Verify that the behavior of the system is the one
expected.

Case Studies 147

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Performance tests: ◦ Verify that the performance of the system is not
decreasing comparing the execution times with the ones calculated in
the previous executions and stored into a database.
Resource tests: ◦ Verify that the amount of resources used by the system
(e.g., memory, CPU, etc.) is not increasing comparing the monitored
data with the ones retrieved in the previous executions and stored into
a database.

All the tests are executed automatically after every build (nightly, weekly,
milestone). Weekly and milestone build are considered executed correctly only if
all the tests are passed.

• Continuous integration: The status of the entire system is tested continu-
ously to identify problems as early as possible and avoid quality problems
and delays related to late integration. To implement continuous integration it
is required that the entire building process is automated. Moreover, the qual-
ity of the build is verified by a set of automated tests. There are three levels
of build:

Nightly builds: ◦ These builds aim at identifying daily problems related
to components integration. If building failures occur, it is not a major
problem since a new build is done the day after.
Weekly integration builds: ◦ These builds aim at providing a usable
system that can be used by the development team to continue their de-
velopment. It is required that in such builds all the automated tests run
successfully. If building failures occur, the system is rebuild to create an
acceptable version that can be used by the team.
Milestone builds: ◦ These builds aim at being used by the community.
Therefore, they have to be stable enough and include features to test.
If building failures occur, the system is rebuild to create an acceptable
version that can be used by the community.

• Milestones: Instead of using long release cycles (several months), the develop-
ment is organized in short milestones (6 weeks). Each milestone is developed
using a shorter version of the entire development cycle (warm up, steady state,
and end game). One of the goals of the milestones is increasing the quality of
the product keeping it high during the entire development and avoiding con-
centrating all the testing and fixing just before the release of the product. In this
way, stress at the end of the development cycle is reduced and developers are
more confident about the released product. The quality of the milestone is good
enough to be used by the community. At the end of each milestone, there is a
short retrospective to evaluate what went well and what did not.

148 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• Always beta: The system is considered always in beta version. This means
that each build is a release candidate and the team is expecting that it is work-
ing correctly (no building failures). The goal is producing release quality
software every day.

• End game: It is the last iteration before a release in which the developers fo-
cus only on testing and fixing. The phase produces high level of stress, there-
fore it is effective only if it is performed only for a limited amount of time.
There is a strong commitment and shared responsibility of the development
team that aim at releasing software at the highest possible quality.

• Community involvement: The community is the best source of feedback on
the product. To involve people is to enough to produce open source software
but it is required that the development process is transparent to allow people
to know what is going on. Lack of transparency reduces feedback because
people do not know what are the new features included in a build discour-
aging its early adoption. Moreover, to encourage feedback is required to be
open and discuss plans and decisions with the community.

• Consume your own output: Developers have to use their own code to de-
velop. This allows developers to test extensively their own code and push
them to produce high quality code since they have to use it to develop the
day after.

The team of a specific component uses every day the latest code avail- ◦
able for their components.
The team uses the latest weekly build for the part of the system they are ◦
not developing.
The community is encouraged to use the latest milestone build and re- ◦
port feedback.

• Publish new and noteworthy: It is difficult to get feedback from the com-
munity about the most recent functionalities added (or modified) in a prod-
uct if just a small number of people install the new version of the product.
Publishing the new features (both the ones already developed and the ones
planned) and the noteworthy stuff related to the product is a way to push the
community to install milestones (not only releases), test the new features, and
provide useful feedback to the development team.

• Early incremental planning: During the warm up, the development team
defines the plan for the release considering the input from the community.
The team defines a general plan that is detailed at component level by each
team responsible for a specific component. At this stage, according to the
requirements and the available resources, the team defines a list of features
that they classify as committed, proposed, or deferred. The list is revised
quarterly to identify progress on the ongoing items, new items, and use the

Case Studies 149

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

input from the community. The definition of the plan includes the evaluation
of the risk of the items and it is defined according to the following criteria:

Start with high-risk items and items with many dependences ◦
Keep a fixed schedule. If it is necessary, the team can drop items start- ◦
ing from the proposed ones and then drop committed ones only if really
needed.
High-risk items are serialized to minimize the integration effort. ◦

• Collective code ownership: All the component leaders meet weekly to dis-
cuss the status, define plans, and identify cross-component issues. The min-
utes of such meetings are distributed to all the developers to allow them to
know the status of the project and behave accordingly.

• Component centric: Eclipse is plug-in centric. Everything is a plug-in that
exposes an interface and hides the implementation. In this way, developers
can easily modify and extend the system limiting the effects on other parts
that are not involved. Each team is responsible for one or more components.

• APIs	first: Since the architecture is component-centric, the definition of a
communication API is extremely important. The API should be consistent,
concise, hide the implementation details, and be extensible. To build it the API
implementation and a client for it should be developed at the same time.

• Dynamic teams: These teams are created to solve specific problems that
are cross-component. When a cross-component issue arises, a dynamic team
with the key developers of all the affected components is created to address
the issue.

• Build to last: Every build of the system has to be considered as final from
the point of view of the schedule and the quality. Deliveries have to be on
time not only at the release but also at every build. The code has to meet
quality levels (e.g., stability, scalability, performance, etc.) and continuously
includes novelties. This does not mean that code cannot be modified. This
means that modifications are required to build a system able to last in time
but such modifications have to make the structure stronger not weaker adding
bugs or reducing performance.

• Retrospectives: After developers have recovered after a release, the team
analyzes the previous development cycle to improve the process. In particu-
lar, they focus on the following aspects:

Achievements: ◦ What was done well and what are the motivations for
that. It is required to know them to be able to replicate them in the fol-
lowing cycle.
Failures: ◦ What and why something went wrong. The team has to iden-
tify actions to prevent repeating the same mistakes.
Process: ◦ How to improve the process (e.g., add/remove/modify

150 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

practices, tune procedures, etc.)
Cross-team collaboration: ◦ Evaluate how the collaboration among de-
velopers was carried out, identify potential problems and solutions.

10.3 the eclipse softWAre developMent
process And the Xp vAlues And prActices

As stated in Chapter 1, XP defines in details a sequence of development principles and
practices. However, these are not defined directly but they are derived from values
and drivers that are the foundation of the methodology. The Eclipse Development
process is mainly based on the same set of values and drivers (Table 1).

Table 1. Values and drivers of the Eclipse development process

Drivers Values

Focus on
value

Constant
flow

No
defects

Communi-
cation

Simpli-
city

Feed-
back Courage

Continuous Test-
ing

Continuous Inte-
gration

Milestones

Always Beta

End Game

Community In-
volvement

Consume Your
Own Output

Publish New and
Noteworthy

Early Incremen-
tal Planning

Collective Code
Ownership

Component Cen-
tric

APIs First

Dynamic Teams

Build to Last

Retrospectives

Case Studies 151

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Moreover, considering XP and Eclipse practices, it is possible to define a cor-
respondence table (Table 2). This correspondence does not mean that the practice
is the same (in some cases it is), but it means that their goals overlap.

In summary, the Eclipse Development Process implements the most important
aspects of XP adapting it to the specific context and enabling many different teams
to work together.

10.4 the funAMBol releAse life cycle

Funambol (http://www.funambol.com/) is a software company producing mobile mes-
saging systems. Their products are released under an OS licence and they encourage
developers from all over the world to contribute. To do that they have formalized a devel-
opment process that follows and Agile approach and includes several Agile practices.

The Funambol Release Life Cycle (RLC) is a development process that defines a
set of guidelines for releasing products at Funambol. It defines phases and milestones
of the releases and provides the requirements for each milestone. The process is
intended in a way to support the developers not to limit their creativity. Therefore,
the process is subject of revisions to accommodate new approaches and improve
the productivity of the development team.

Table 2. Eclipse and XP practices mapping

Eclipse practice XP practice

Continuous Testing Testing

Continuous Integration Continuous Integration

Milestones Short Releases

Always Beta -

End Game -

Community Involvement Customer On Site

Consume Your Own Output -

Publish New and Noteworthy -

Early Incremental Planning Planning Game

Collective Code Ownership Collective Code Ownership

Component Centric Simple Design

APIs First -

Dynamic Teams -

Build to Last -

Retrospectives -

152 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 2. The Funambol release life cycle

Case Studies 153

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The Funambol RLC includes the following seven phases (Figure 2): market
research, definition, design, develop, alpha, beta, post release. During each phase
a set of milestones are defined:

• Market research: Project start, investigation to Lab checkpoint, definition
start

• Definition: Product final candidate, design and scope start
• Design: Design and schedule complete
• Develop: Functional freeze (individual components), alpha start
• Alpha: UI freeze, beta start
• Beta: Code freeze, general availability
• Post release: Post mortem

At each milestone, the development team has to satisfy a checklist organized in
five sections:

1. Development
2. Quality assurance
3. Documentation
4. Team

The development section includes items related to the development such as
number of bugs present and fixed, functionalities implemented, etc. The quality
assurance section includes items related to the number of test cases, testing plan and
execution, etc. The documentation section includes items related to the status of the
documentation available (including content and format). The product management
section includes items related to the packaging of the product to be marketed. The
team section includes items related to the commitment of the development team to
go ahead with the development (eventually starting the subsequent development
phase).

Besides these four standard sections, there are additional sections defined just
for specific milestones.

The alpha phase focuses on internal testing and it lasts 2-6 weeks. The check
list associated to the alpha start milestone is the following:

154 Case Studies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1. Development
Release schedule updated ◦
All functionalities implemented ◦
No blocking bugs that prevent quality assurance testing ◦
Fix as many critical an major bugs as possible ◦
Collect test suggestions from the developers for the new features ◦

2. Quality assurance
Test plan completed ◦
Staff assigned ◦
Equipment available ◦
70% of the regression test and new feature tests passed ◦

3. Documentation
Outline of the documentation available for delivering to the develop- ◦
ment team for review

4. Team
Development team ready to start the alpha phase ◦

The beta phase targets external testing of the product even if it focuses on a selected
number. In this phase the sales department evaluates the new features compared to
the market demand and defines pilot installations. The phase lasts 2-6 weeks. The
check list associated to the beta start milestone is the following:

1. Development
Release schedule updated ◦
User interface frozen ◦
No blocking, critical, or major bugs ◦
Software and documentation delivered to quality assurance for ◦
acceptance
Support people trained to support beta testers ◦

2. Quality assurance
Alpha testing completed ◦
Integration tests completed ◦
Acceptance tests completed ◦
90% of the regression test and new feature tests passed ◦

Case Studies 155

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

3. Documentation
Documentation and release notes completed and reviewed by the team ◦
5. Product management
Product packaging ◦
Product name and version number finalized ◦

4. Team
Development team ready to start the beta phase ◦

The general availability milestone provides the official release of the product shipped
to customers. The check list associated to this milestone is the following:

1. Development
Beta release deployed and widely used ◦
General availability release candidate deployed ◦
No blocking, critical, or major bugs. Many normal bugs fixed. All bugs ◦
fix planned have to be completed. The others are deferred to the follow-
ing release
Final release delivered to quality assurance ◦

2. Quality assurance
Final test cycle completed ◦
Final integration tests completed ◦
98% of the regression test and new feature tests passed ◦

3. Documentation
Final documentation and release notes completed and reviewed by the ◦
team

4. Beta manager
2-4 weeks of beta testing at external sites without major problems ◦
Confirmation of readiness from the beta testers ◦

5. Team
Development team ready to release the product to all the customers ◦

10.5 references

Brooks, F. P. (1995). The mythical man-month: Essays on software engineering,
anniversary ed. Addison-Wesley.

DeMarco, T. (1982). Controlling software projects-management, measurement, &
estimation. Yourdan Press.

Section 3
Empirical Evaluations

A Framework for Collecting Experiences 157

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 11

A Framework for
Collecting Experiences

11.1 the rAtionAle

An informed introduction to AMs requires the ability to determine whether and when
AMs are better than traditional software development methodologies. The risk is
that AMs are considered just like another tool. Altogether to accredit AMs we need
to show the qualified evidence of their effectiveness, performance, productivity, in
the different contexts where they can be introduced.

This analysis is difficult as such effectiveness varies with the development
environment, depending on several aspects, such as skills, resources and culture.
However, this analysis is a key ingredient for the creation of a comprehensive body
of knowledge on AMs.

To achieve our objectives, we need to collect existence experience on AM and
to formalize it. To such an end we need to define a common experience framework
where we identify rules so that experience can be archived, compared, and used to
create knowledge.

The experience framework for AMs would support such an initiative defining
standards and general guidelines for an experimental process in AMs. Its structure
would allow some degree of freedom to guarantee its adaptation to individual and
working group cultures when used in a single specific experiment.

DOI: 10.4018/978-1-59904-681-5.ch011

158 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The experience framework focuses on different issues including the ones pre-
sented in the research roadmap:

Business•
Management•
Human factor•
Infrastructure•
Technical•

Each AM consists of a set of operational practices and share a set of common
features with all the other AMs. As AMs are emergent, their practices are often
loosely defined and applied by a subjective selection of a few core ones. Therefore,
there is a need for benchmarking on AMs that evaluates and identifies best practices,
tools and approaches.

Furthermore, following Highsmith’s idea (2002) of an ecosystem, an evalua-
tion system for AMs would help interested and expert people in building their own
agile method.

There are two main kinds of analysis we may perform on AMs: per single agile
practice or per common features.

If we identify standards and guidelines per single agile practice, we model our
experimental process to reveal practice, use and efficiency across different agile
methodologies. On the other hand if we focus on common features of AMs, we
analyze analogies and differences across different AMs or compare AMs with
traditional approaches.

11.2 structure of the eXperience frAMeWorK

We have identified four main ingredients to build an experience framework (Figure
1),

1. Data collection
2. Data analysis
3. Set up of the experiment
4. Generalization and validation of the results

The four branches are strictly interconnected. Three of them, data collection, data
analysis and generalization and validation of the results are independent from the
single experiment. The fourth, set up of the experiment, models general standards
to the single experiment to cope with the environment of the experiment.

A Framework for Collecting Experiences 159

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The structure is intended to be agile in the sense that would allow easy access,
collective ownership, automated tools, iterative processes, easy reuse, iterative
modifications and refinements.

11.3 stAndArds for dAtA collection

A solid analysis requires valid data. Data validation and collection is a continu-
ous process following all the phases of software development. Data needs to be
validated in the field, for example, interviewing experts of the project. Vice versa,
one can increase accuracy of data validation providing the experts guidelines for
data collection.

Following the approach of (Basili & Weiss, 1984), we organize the data collec-
tion process along six recommendations.

1. The data must contain information permitting identification of types of error
and changes made

2. The data must include the cost of making changes
3. Data to be collected must be defined as a result of clear specification of the

goals of the study
4. Data should include studies of projects from production environments, involv-

ing teams of programmers
5. Data analysis should be historical; data must be collected and validated con-

currently with development
6. Data classification schemes to be used must be carefully specified for the sake

of repeatability of the study in the sane and in different environment

A methodology in collecting data prevents subsequent misunderstanding and
deviated results. Standards guarantee replication of data collection both in the same
and in other experiments, reduction of effort of collection and traceability of data
all along the development process.

Figure 1. The four phases of the experience framework

160 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Hereby we outline a guideline for gathering valid data following the previous
recommendations. The first two aspects that should be taken into account are con-
sidering the material that is already available and doing a formative action on the
environment.

Look at sources of information already available. A software company has
several standard forms of control of the software development including the ac-
counting department (for example if the Activity Based Cost (ABC) is used), an
existing defects database, a customer service center or a configuration management
system. (Succi, 2002).

For companies developing with an AM, extra information can be gathered. For
example, in XP there might be a user’s story cards collection history that describes
not only the requirements themselves, but also the planning game with the customer.
In this way, one may also trace the historical development of the requirements that
have led to their final form documentation.

Do a formative action on the environment. Data may be stored and forgotten
or simply not considered relevant to the project. A formative action on members
should encourage identifying correct data and using appropriate tools for collecting
and validating them.

From this guideline one may delineate the following strategy for data collection.

11.3.1 strategy for data collection

We have identified four crucial ingredients to be specified in any data collection:

1. Data type and categories for quantitative analysis
2. Data type and categories for qualitative analysis
3. Techniques to extract data
4. Tools to extract data

11.3.1.1 Data type and Categories for Quantitative Analysis

At the beginning of our process analysis, we need to declare which kind of data we
are going to collect.

We may refer to categories of data defined by the company, or we may choose
external classification. At any rate, it would be useful to specify for each category,
the focus of the collection, the tools to be used and the development phase in which
that kind of data may be retrieved.

We may also consider the commonly used metrics to evaluate data per each chosen
category, but always keeping in mind that they might be modified or substituted by
more suitable or agile ones, at the experiment actuation.

A Framework for Collecting Experiences 161

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.1.2 Data Type and Categories for Qualitative Analysis

Categories of data for qualitative analysis are harder to identify than the quantitative
ones. In particular ones related to the development process. Very often, they depend
on factors related to the environment context, like motivations and involvement of
the interviewees.

A formative action on the environment would help in this direction making aware
to the participants the experimental goals. This would help increase the participants’
motivation, making the data collection easier. But this might also cause bias in the
experimental process, creating factors that influence the analysis. Therefore, it is
necessary to balance the given information: goals and results would be public, but
access on mechanisms of data analysis and evaluation would be more limited to
experts. Strict rules would be avoided; so situations and environments would mostly
regulate the access to the experimental process information.

Questionnaires and direct interviews are very often used in collecting this kind
of data, as for example in evaluating the use of an AM practice.

11.3.1.3 Technique to Extract Data

Techniques to extract data may depend on the previous two phases, in particular
on the context. A formative action on the environment would help the gathering of
information on techniques already used by the corporation.

Some techniques may intrude on the individual working sphere and would con-
flict with privacy policy. Non-invasive techniques using suitable automated tools
could cope with this problem.

11.3.1.4 Tools to Extract Data

Techniques to analyze a process are supported by tools subject to considerations
similar to the previous ones.

Agile practices recommend the use of automated tools. One can find automated
tools useful for any phase of the software life cycle, for example:

To trace employee’ activity, such as Hackystat (Johnson • et al., 2003), PROM
(Sillitti et al., 2003)
To trace and relate user’s story cards, such as XPSwiki (Pinna • et al., 2003)
To trace modification requests, such as Starteam•
To test code – JUnit, CUnit, etc.•

162 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.2 how to collect data in a non invasive Approach

PROM (Sillitti et al., 2003) is a tool for automated data acquisition and analysis
that collects both code and process measures, developed by the Center for Applied
Software Engineering (CASE) of the Free University of Bolzano. The tool focuses
on comprehensive data acquisition and analysis to provide elements to improve
products. Collected data include a wide range of metrics including all Personal
Software Process (PSP) metrics, procedural and object oriented metrics, ad-hoc
developed metrics to trace activities rather than coding such as writing documents
with a word processor.

The tool collects and analyzes data at different levels of granularity: personal,
workgroup and enterprise. This differentiation takes a picture of the whole software
company and preserve developers’ privacy providing to managers only aggregated
data.

Moreover, managers take advantage of the system accessing aggregated data
that are useful to manage a project. The PROM system takes care of developers’
privacy not providing to managers data related to a single developer but only project
level data.

11.3.3 data collection in the incremental process

Data collection of an AM development process reflects its iterative and incremental
features. Procedures of data collections can be refined through the analysis performed
in the previous iterations. Figure 2 illustrates an iterative data collection. Note that
we intentionally emphasize the overlapping of subsequent data collection iterations:
their common part represents a refinement phase for data categories, metrics, and
techniques.

11.3.4 categories of data for evaluating an Xp process

In the following we suggest possible categories of data that can be collected for
each practice of XP.

Together with each data category we suggest to identify

The purpose of collecting them•
The possible metrics that can be used•
The tools used to extract them•
The phases in the life cycle in which we may collect them.•

A Framework for Collecting Experiences 163

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.4.1 The Planning Game

• Data categories: User stories per iteration complete of priorities and effort
• General focus: Customer’s satisfaction, requirement fulfillment and project

management
• Metrics: Number of user stories per iteration, effort per user story, relations

among user stories
• Tools: Automated tools to collect user story – e.g. XPSwiki
• Phases: Requirement specification

11.3.4.2 Small Releases

• Data categories: Releases, implemented functionalities, user stories
• General focus: Customer’s satisfaction, requirement fulfillment and project

management
• Metrics: Defects/warnings count and distribution per release, number of user

stories per release
• Tools: XPSwiki
• Phases: Requirements analysis per iteration

11.3.4.3 Metaphor

• Data categories: Metaphors
• General focus: System understanding
• Metrics: Number of metaphors
• Tools: XPSwiki
• Phases: Design, integration

11.3.4.4 Simple Design

• Data categories: Code units, classes
• General focus: Software quality, reuse
• Metrics: Complexity, number of classes, number of methods per class, cou-

pling, code unit size
• Tools: PROM, Hackystat
• Phases: Design, integration

164 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.4.5 Refactoring

• Data categories: Refactored code units
• General focus: Reuse, time consuming
• Metrics: Complexity, number of classes, number of methods per class, cou-

pling, code unit size
• Tools: PROM, Hackystat
• Phases: Refactoring

11.3.4.6 Test-First Development

• Data categories: Test cases
• General focus: Quality, time consuming
• Metrics: Number of test case per iteration, effort of testing
• Tools: PROM, Hackystat
• Phases: Design, testing

11.3.4.7 Pair Programming

• Data categories: Qualitative data
• General focus: Knowledge exchange, quality, job satisfaction
• Metrics: Data coming from questionnaires
• Tools: Questionnaire
• Phases: All along the process

11.3.4.8 Collective Ownership

• Data categories: Versions, authoring
• General focus: Reuse, time consuming
• Metrics: Number of change per person
• Tools: Log files
• Phases: All along the process

11.3.4.9 Continuous Integration

• Data categories: acceptance test, versioning
• General focus: reuse, time consuming
• Metrics: as before
• Tools: as before
• Phases: all along the process

A Framework for Collecting Experiences 165

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.4.10 40-Hour Week

• Data categories: Effort
• General focus: Time consuming
• Metrics: Effort
• Tools:
• Phases:

11.3.4.11 On-Site Customer

• Data categories: Acceptance test, qualitative data
• General focus: Customer’s satisfaction
• Metrics: Number of acceptance test per iteration
• Tools: XPSwiki, questionnaire
• Phases: Analysis of the requirements

11.3.4.12 Coding Standards

• Data categories: Classes, methods
• General focus: Reuse, quality, maintainability
• Metrics:
• Tools: Questionnaires
• Phases: All long the iteration

One may also capture data according to common features of AMs, following a
similar template.

11.3.5 example of the Application of the strategy
for data collection for an Xp process

Here we outline the strategy in the case of an XP developing process
As XP is an incremental and iterative methodology, the data collection procedure

may follow the scheme in Figure 2. As we may collect the same kind of data in
different iterations, a first analysis based on comparison among iterations may be
promptly reported to the customer.

Furthermore, in the iterative processes we may more and more detail and refine
data categories.

166 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.5.1 Data Type and Categories for Quantitative Analysis in XP

In XP quantitative data are mainly collected from code and user stories. This is
because in XP the code would represent its documentation1.

Moreover, data on the code are readily accessible through a code version system,
which realize the XP practice of collective code ownership. Coding standards would
help in the data classification.

User stories collections allow tracing the planning game with the customer also.
In this way, all the history that led to the final version of the requirement documen-
tation is traceable.

11.3.5.2 Data Type and Categories for Qualitative Analysis in XP

Qualitative data collections do not depart from the quantitative data collection pro-
cedure in XP. Due to the subjective nature of some qualitative data, they might be
collected on predefined time intervals, more than in a continuous manner. As XP
iterations last about four weeks, we may already have a valid amount of data once
we collect them at the beginning and at the end of each iteration.

Particular involvement of the customer in XP helps in early detection of infor-
mation specially the ones related to customer’s satisfaction.

Figure 2. Data collection in an iterative development process

A Framework for Collecting Experiences 167

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.3.5.3 Technique to Extract Data in XP

XP is an incremental and iterative development method, therefore data collection
would model on these features (Figure 2). For each XP iteration, the experts may
access to a CVS that support the collective code ownership practice for retrieving
code and tests information.

As in all the AMs, XP promotes automated tools and respect for the individual.
It is therefore very natural to consider techniques that respect this policy.

11.3.5.4 Tools to Extract Data in XP

Non-invasive and automated tools to extract data are strongly suggested by the XP method-
ology. There are some agile tools already available, like PROM, XPSwiki, Starteam, etc.

Traditional tools for subjective information, like questionnaires or direct inter-
views, are also adopted.

In traditional development, the turnover of the employees is a complicating factor
in data collection. In XP, thank to a CVS, retrieving historical information is not a
big problem and agile databases help in this direction. Even if all the features of an
agile database are still under discussion, there are some examples of them already
in use – for example Prevayler2.

11.4 stAndArds for dAtA AnAlysis

An accurate analysis starts from valid data and gives findings that are expressed in
a clear and well-defined language.

In this section standards must be categorized so that the data analysis may be:

a. Replicable, ensuring robustness
b. Comparable, enabling generalizations
c. Coherent, in line with existing research

As in Poppendieck & Poppendieck (2003) we need to state the objectives of our
analysis at a high level. Goals should be independent from the development process
we are going to analyze, but still subject to agile values.Our analysis includes:

Identification of patterns in the data•
Setting of statistical methods to make inferences•
Using automated tools for data analysis – statistics tools, algorithms for min-•
ing and identifying patterns of set of data.

168 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.4.1 standards for data Analysis

As for the data collection, we may consider two different types of analysis, namely
according to common features and according to the (set) of practice(s).

If we choose the former, we may like to identify analogies and differences among
AMs or compare traditional approaches with agile ones; if we perform the latter
we may focus on practice use and efficiency across different AMs or we may be
concerned with best patterns of practices for different environmental contexts.

We list some AMs together with their practices. We also suggest similitude among
practices of different AMs. This may help in the analysis of common features and
practices.

11.4.2 example: An example of how to structure the
Analysis in an incremental and iterative process

In Figure 3 we display a possible analysis process for incremental and iterative
development processes. Analysis is performed at the end of each iteration of the
gathered data. A comparative analysis may be made based on the previous itera-
tions results.

To outline the analysis flow we start with the lean management directives (Pop-
pendieck & Poppendieck, 2003), which recommend the definition of high level
objectives for the analysis conforming to the corporate requirements. Analysis
processes would not aim at 100% of accuracy in each iteration of the developing
process. The best accuracy and the most valid results should come out from several
iterations or replications of the analysis process. In Figure 3 we outline an iterative
and incremental analysis process that will be further discussed in the next section.

11.4.3 statistical techniques

Statistical techniques are mostly selected according to type of collected data and
to the goals of the analysis.

Inferential analysis, regression models and best fit theory have been used for
prediction and data timing, like defect detection, cost estimation etc.

Descriptive statistics and correlations may identify independent and significant
variables of the experiment.

Data patterns have been used to design and re-factor. They help in identifying
similarities and differences among experiments, contexts, environments.

Factorial analysis concerns sample groups characterized by specific differences,
like the use of different development practices.

A Framework for Collecting Experiences 169

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 3. An analysis flow for an iterative and incremental process

170 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Non-parametric analysis has been often used in software engineering, since
software data often do not follow a Gaussian distribution.

Interval or fuzzy analyses are suitable in classifying data which cannot be mea-
sured with a (real) number, like data pertinent to effort or cost estimation.

Several automated tools may be used for data analysis: SPSS, SAS, R, etc.

11.5 stAndArds for the set up of eXperiMents

At this point we identify standards specific to the single experiment. Some of them
are pretty new, some are a refinement, adaptation or tuning of the general standards
of the three other phases of the experience framework.

11.5.1 experiment context and profile

The experiment needs to be modeled on the context. First we need to identify the
context profile. In this way we can outline a replicable scenario and define the ap-
propriate competencies and roles to conduct the experiment.

11.5.1.1 Formative Research

A pre-test on the experiment environment detects the rate of difference caused by the
treatment. A pre-test turns out to be essential when it is hard to repeat the experiment
or the amount of data is limited. A formative research action on the environment
may help in defining the experiment standards and detect the pre-test scenario. On
the other hand it may cause a bias and produce consequent rival variables: people
may become aware of the experiment goal.The formative research would consider
two major aspects:

1. Project staff conduct a formative period of research including interviews to
determine the knowledge present in the environment

2. Using a standard protocol that is adapted to the local needs of the environ-
ment, project staff may also conduct qualitative, semi structured interviews
with stakeholders in the environment.

We report here two scenarios that can be successful to collect context information
in XP (Goldman, 2002).

A Framework for Collecting Experiences 171

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.5.1.2 A successful Software Practice

Customer comes with a basic problem•
The customer and the developer sit down together and define the scope of the •
scenarios to be written
They work together to write between 3 and 10 short scenarios (usually with •
between 4 and 12 steps in each scenario)
They review the scenarios with the project stakeholders•
The scenarios are used to drive further analysis or design (CRC cards, UML •
class diagrams, etc.)

11.5.1.3 ...With Automated info Collection

Developers create design a model with scenarios•
A tool parses the model and generates simple test scenarios•
Developers or testers add more test-level detail to the test scenarios, to guide •
the creation of actual test code
Later, the design model changes, and the same tool is run again to update the •
list of tests

A formative research protocol would help in retrieving the following three kinds
of information.

11.5.1.4 Background Information About the Industrial
Circumstances in Which an Empirical Study Takes Place

The experiment context would involve software SMEs either competent or only
interested in AMs.In this section the research should specify:

Software company competence•
Software company standards – company standards process, quality assurance •
procedure, configuration management process
Staff expertise and skills – with languages, • AMs, tools and application
domain
Technical support and facilities – platforms, components etc.•
Automatic tools for • data collection or analysis – metric tools, log files etc.
Company standards for reporting research context:•
Specification of taxonomy or ontology of context – e.g. • XP vocabulary: test
first, customer on-site, coach, stand up meeting

172 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Knowledge management – knowledge documentation template, knowledge •
repository, automatic tool, post-mortem analysis, evangelist, interviews,
questionnaire, XP customer’s manual

11.5.1.5 Background Information About the Experiment

Kind of projects - pilot project, exploratory experiment, comparative project, •
project converted to XP
Project applicative domain•
Project staff composition – number of teams, number of team components, •
coaches, work environment and staff geographical distribution, turn over
Agile Methodology considered – • XP, SCRUM, Dynamic Systems
Development Methodology, and Feature Driven Development, Crystal etc.
Start up practice or sequential order of practices – process length and itera-•
tions decomposition, development iteration length
Product type•
Possible confounding factors for the specific empirical study – non-complete •
adoption of all the practices, customer different approach, project early sus-
pension, pressure to ship, turn over

11.5.1.6 Information About Related Research

To collocate the experiment in the appropriate research context one needs to con-
sider the state of art of the related research. The entire research picture could help
in defining data collection and storing standards.

11.5.2 goal Question Metric (gQM) of the experiment

To start an analysis process we need:

To describe clearly the objectives of the research•
To identify of the internal and external attributes of the process that concern •
the above objectives
To convert those attributes into measurable objects•

We may then adopt Basili’s Goal Question Metric paradigm (Basili & Rombach,
1988; Wholin et al., 1999) displayed in Table 1.The Goal describes the objective
of the research identifying:

A Framework for Collecting Experiences 173

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Action {characterize, evaluate, predict, motivate, etc.}•
Object of study {process, product, model, metric, etc.}•
Purpose {understand, assess, manage, engineer, improve, etc.} it•
Focus {cost estimation, effectiveness, correctness, defects prediction etc.}•
Point of view {customer, developers, managers}•
Context (environmental factors, including process factors, people factors, •
problem factors, methods, tools, constraints, etc.)

The Question is a relation to be verified connecting the Object of Study with the
Focus.

The Metric is a set of metrics for Object of Study, Focus and Question that leads
to verify the Question. Identifying metrics for the Object of study, the Focus and the
Question allows transformation of the Question in the more operational Research
Hypothesis (RH).

The Feedback collects the lessons learned from the analysis.

11.5.2.1 Setting Metrics

Metrics are chosen to measure the Object of study and answer the Question. Three
aspects may be considered in selecting them:

Consider the most used metrics•
Identify appropriate metrics•
Consider metric integration•

For example, in a XP process we would like to “measure the productivity in the
development phase.” Then the number of methods per class, the size of a method,
the unit test per class, the complexity may be some suitable metrics. If instead we
would “estimate productivity,” then effort and velocity of user stories may be the
correct ones.

Table 1. The GQM paradigm to declare the objective of the research

Goal Question Metric Feedback

1. Action
2. Object of study
3. Purpose
4. Focus
5. Point of view
6. Context

List operational questions
in order to achieve the
Goal.

Set of metrics
according to data fea-
tures and questions

What has been learned
here?
In order to clarifying the
research for future use
of it, sum up results in a
“learned lesson” section.

174 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

As we have seen in the data collection, metrics may be specified in that phase.
Refinement or creation of new metrics may be considered afterwards, but still re-
specting the coherence with previous choices.

11.5.2.2 A Comprehensive Example

The example in Table 2 describes a possible GQM (Succi et al., 2002) for an analysis
on the use of pair programming.

The metric for the Object of Study is the use of pair programming, the Focus is
the rate of job satisfaction and the Question is the difference of this rate in groups
using or not using pair programming.

11.5.2.3 Research Hypothesis

The research hypothesis can be derived from the Question in the GQM model. It is
its operational translation that can be built once metrics are identified for the Object
of Study and Focus. Each iteration could refine the metrics and the RH to get more
and more precise results.

11.5.2.4 Experiment Design

By the theory of experimental design (Campbell et al., 1990), we can choose among
several designs of an experiment according to the particular context in which the
experiment is conducted.

Very often true experimental design cannot be adopted and quasi experimental
design is more feasible. The choice may be connected with the amount of available
data: quasi-experimental design is suitable for a limited amount of data or when a
randomization process on the data is not feasible. Interested readers should refer
to the aforementioned book.To determine the appropriate design, we need the fol-
lowing activities:

Table 2. Example of GQM (Succi et al. 2002)

Goal Question Metric Feedback

Analyze pair programming
in order to evaluate it
with respect to job satisfac-
tion
from the point of view of
software developers
in the development of soft-
ware systems

Did the developers
using pair
programming
experience higher
job satisfaction
than those not us-
ing pair program-
ming?

Difference of rate of job
satisfaction in groups using
and not using pair program-
ming

It appears that pair
programming effects
job satisfaction of
developers

A Framework for Collecting Experiences 175

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Defining the experimental unit•
Identifying the population being studied•
Declaring the methods used to reduce bias and determine sample size•
Stating the rationale and technique for sampling from that population•
Defining the process for allocating and administering the treatments•
Identifying the possible rival variables to the interpretation of the experi-•
ment, which may cause bias
Rejecting any inadequate hypothesis•
Identifying metrics in terms of their relevance to the objectives of the empiri-•
cal study

11.5.2.5 Experiment Design in XP

Often development projects with XP are not large scale ones. Furthermore each
iteration lasts for a few weeks and the amount of data gathered per iteration cannot
be large. Hence in XP a quasi-experimental design is more advisable.

In the iterative processes one may consider either to change design from one
iteration to the other or to stop the analysis at an intermediate iteration, as each
iteration stands by itself. Data on processes, although not refined, are anyway
completed. Changing design is not advisable if one does not want to change the
objective of the research. Sticking to the same design allows comparison among
data from the iterations.

Of course, analysis of the final software product should end together with its
final release.

Iterations help in identifying rival variables to the experiment. That is variables
(not controlled variables) that may influence the results. By repetition of the mea-
surement significant variables may be found easier.

11.5.3 standards for the experiment data collection

Data collection is a rather delicate matter and a particular care to follow the stan-
dards should be taken.

11.5.3.1 Data Collection Tools

In this section we specify the tools used for the single experiment according to the
general recommendations of section 1.

The more the data collection process is automated the more the data should turn
out to be more objective. The use of questionnaires is commonly used, but it is subject
to bias whenever an appropriate set up of the experiment has been neglected.

176 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

An emergent issue is to identify a strategy for implementing an agile database
(Schuh, 2002; Wells, 2001), which therefore would supply an agile-oriented storage
and access of the data.

11.5.3.2 Data Collection Schedule

Data collection is a continuous process concurrent with the development process.
We need to identify phases of data collection according to the phases of the software
life cycle. Each phase would give different categories of data.

In AMs we also may consider data divided per single practice.
The schedule should match with the iterative and incremental features of the

AMs.

11.5.3.3 Data Collection Start Up

At this point a complete check of instruments is conceivable. We identified four
major steps:

Trial period to test forms•
Kick-off session•
Checking forms for correctness and completeness•
Storing form data•

11.6 stAndArds for generAlizAtion
And vAlidAtion of the results

11.6.1 comparison

Comparison is a fundamental technique for the validation of the results. There are
several types of comparisons one may perform, including:

Among iterations of the same project•
Among projects in the same application domain•
Among projects using the same agile methodology•

11.6.1.1 Among Iterations within the Same Project

Benefits of this analysis consist of fast refinements before the end of the develop-
ment process.

A Framework for Collecting Experiences 177

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Comparisons among iterations lead to more consolidated results giving us an
extra instrument to analyze the process.

Furthermore, results may be readily available to the customer before the release
of the product.

11.6.1.2 Among Projects with the Same Applicative Domain

In the same applicative domain we may compare products and development pro-
cesses.

Very often we need to understand a more suitable approach or practice to develop
a product for a precise target domain focusing on different aspects.

For example in real time domains, with high pressure of time to market, light
development approaches and reliability are both important. In this case, one might
need to evaluate agile approaches against traditional ones in order to evaluate effort
and reliability.

11.6.1.3 Among Projects with the Same Agile Method

Different projects (in domain, size and rigidity) may perform differently under the
same AM. For example in public administration, where a lot of documentation is
required, AMs may not be the best approach.

With this kind of analysis, the advantages and disadvantages of an AM would
be collected to provide cases history.

11.6.2 refinements

In iterative processes, refinements may be performed within the process itself, among
different iterations. Refinements in AMs are quite natural considering their iterative
characteristic. Here we outline a few considerations on possible refinements.

11.6.2.1 Data Collection, Metrics and Analysis Techniques

To evaluate the RH we need to measure the relationships between metrics measuring
the Object of Study and those measuring the Focus in the GQM. The wrong choice
of a metric hampers our deduction process.

If for data accuracy we can replicate the measurement, for valid results we may
use iterations. Metrics may be selected based on the conclusions of the previous
iterations.

The incremental process may also determine the use of different metrics along
the development process. For example, two OO metrics of the CK suite, Cyclomatic

178 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Complexity (CC) or Number of Children (NOC), may give more accurate results
in the later iterations rather than in the initial ones, when the number of classes and
of methods are still limited.

Together with metrics we may decide to refine our data collection procedure and
analysis techniques. They may depend on different tools used in the analysis process
or on the evolving environmental context. Refinements detect rival variables of our
analysis, such as history and mortality (Campbell & Stanley, 1990).

In XP, short iterations and continuous code ownership would also prevent the
influence on the analysis of rival variables like mortality (negative effects caused
by staff turnover may be limited).

11.6.3 Meta Analysis and generalizations

There are two ways to create a body of knowledge: through meta-analysis or through
the creation of theories and models.

The role of meta-analysis is to integrate research findings across statistical stud-
ies. A substantial number of case studies would consolidate meta-analysis results.

Whenever no formal assessment could be accomplished based on the relatively
small amount of information gained in a limited period of time, a meta-analysis
may be adopted.

In AMs where we still need to consolidate a body of knowledge, meta-analysis
would help in establishing best approaches to further application and investiga-
tion

Meta-analysis has two serious shortcomings: it is based on information often a
year or more old, and it is based on information typically biased towards the posi-
tive. The positive bias stems from the tendency to underreport negative results and
the proponents’ natural desire to share positive results.

A more stable approach consists in validating the data against an established
theory. Unfortunately, the creation of theories passes through a process of gener-
alization and validation of results against previous research. Often it comes after a
meta-analysis process, which requires several studies and abstractions.

Depending on the history, the quality or the quantity of the data one may choose
one or the other or both ways.

11.6.4 storage of the data and the results

In our process we need to provide recommendations on identifying database profiles
for data and for results.

Features of agile databases are still under discussion. Literature is scarce for agile
databases for data, and it is null for agile database for results. Namely, managing

A Framework for Collecting Experiences 179

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

information is quite a hard matter; it is hard to extract from the single and to store
in suitable format in order to be reused.

For managing results we may consider to create a benchmark on AM similar
to famous ones like TPC (Transaction Processing Performance Council), SPEC99
(for hardware).

Storing data and results we need to take into account three general recommen-
dations:

It should allow•
Continuous integration•
Collective ownership•
Collaborate with developers•

In XP, working code documents itself. Therefore information and data gather in
this process reflects the code structure which is modular and granular, allowing an
easy access for reuse and re-factoring.

Tools for code versioning, strongly suggested by AMs, help in tracking history
information.

11.7 hoW to use the eXperience frAMeWorK:
An eXAMple of repository

In this section we present an instance of the experience framework put to work. This
instance will help the user to perform an experiment in AM following the experi-
ence framework guidelines. It consists of a repository accessible via web, which
helps in gathering the right sequence of information and instruments to conduct an
experiment and to store data and results according to a commonly agreed format.
Therefore, it is more than a simple repository of data or results on AMs: it guar-
antees the validity of the experimental process and of all its outcomes.The main
functionalities of the completed repository are:

Public multiple view of the meta-analysis results (solutions per practice, •	
per AM, per applicative domain, per product type, etc.): accessible to
everybody. As meta-analysis results need a large amount of case studies and
data to be valid.
Browse/Insert/update company data:•	 accessible to accredited users of the
partner company
Browse/insert/update experiment data:•	 accessible to accredited users re-
sponsible of the experiment – the researchers

180 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

A future version of the Experience Framework (EF) web site should be able also
to rank results by different points of view providing a benchmark on AMs.

11.7.1 Main features of the repository and its structure

The repository consists of four main entities each corresponding to one section of
the Experience Framework, plus an entity for the data (Figure 4).

Each entity corresponds to a major table in the database. The novelty is that each
of those tables has more attributes than the expected ones. For example, the table
Data would consist of several attributes: Name, Category, Focus, Phase, Tool and
Metric and, lastly, the expected attribute, the data Value. This means, for example,
that two different instances of Data may differ by the Phase of collection and may
have the same values in the rest of the fields, including the value of the data. A
similar idea is behind the construction of the remaining other branches.

The branch Generalization&Validation (intentionally highlighted in red) would
be the bridge toward a benchmark in AMs.

Other fundamental features of this repository are “flow” and modularity.
There is a clockwise precise flow connecting the five branches (Figure 4.) of the

repository starting from DataCollection. Before inserting Data attributes the researcher
is advised to fill DataCollection, Data Analysis, and Set up of the Experiment. This
would help the researcher have a clear mind about his/her method and about the
required theoretical instruments, before performing an experiment.

Even though there is a suggested flow, entities (tables) are mutually independent:
for example, the repository allows a researcher to fill in the table of Data without
filling the table of DataCollection (for example, because he is inserting data previ-
ously stored in the local database) or vice versa, he/she may fill DataCollection
without having filled Data.

In an advanced version of the repository, a researcher may also run the flow
backwards starting from the entity Generalization&Validation. In the full implemen-
tation of this branch, the researcher may refine and replicate experiments towards
the establishment of meta-analysis. To accomplish this objective, it is necessary to
perform ad hoc modification in the other tables running against the standard flow.

Attributes in each major table will be populated by the accredited user through
the corresponding graphic interface.

Each entity corresponds also to a graphic interface of the web site that is filled
from the accredited user. After submitting the details of a branch, a summary report
is popped out warning on the missing fields. As soon as the researcher submits their
details, the four first major tables are linked and an all-in report is popped out to
the researcher. To access the Generalization&Validation table, researchers have to
complete all the fields of the other branches.

A Framework for Collecting Experiences 181

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

11.7.2 users

There are two major distinct levels of access:

To insert/update company data, which include information on employees, on •
projects,
To insert/update experiment data, which deals with the experiment and the •
analysis performed on the project, and include details of data, data collection,
data analysis and generalization.

Company’s employees may access the former, whereas the researcher accesses
the latter.

In Table 3., we display the possible users of our repository and their permis-
sions

The following list represents the current and future permissions.

1. Any user
a. Currently and in the future: He/she may navigate meta-analysis results.

Information is stored in secure mode: data may not be modified

Figure 4. The EF repository

Table 3. Users of the system

User Access

Administrator He/she can modify the structure and manage users’ profiles. He/she cannot
modify any data of the company

Reference Person He/She can access/manage to the stable data of a company, like credentials, list
of employees, list of projects. He/she cannot access to the experiment section

Researcher He/she can only access/modify data related to the experiment and the project

Project Manager He/she can only modify data related to the project

Customer He/she can only view/navigate public data

182 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

2. Single accredited user
a. Currently: Restricted accredited user may populate the repository and

access their own data
b. In the very near future: Industrial/academic partners of the enlarged

network would populate the repository with data coming from their
experience

c. In the very next future: A prototype of repository would be able to
process simple data (as ranking data by parameters of efficiency or of
use)

d. In the future: Running an interactive repository with well established
features for a wider accredited population, like TPC – Transaction Process
Performance Council – web site). Any accredited user may access the
full functionalities of the repository.

11.7.3 graphic interfaces for the researcher

To insert the data the user accesses through some graphic interfaces (forms) accord-
ing to the flow of the branches (see section 1). Each time he submits a form to the
repository he gets a summary report on what he/she submitted, with red warnings
for missing fields. To get the final branch, Generalization&Validation, the researcher
has to have filled all the previous branches.

11.7.4 scenarios of usage

In this section we give a simple example of use of the instance of EF – repository.
We would like to perform a

Monitoring of efficiency of Pair Programming in communication and knowledge
exchange among students of an Internship project

Here we show only the major tables which mainly correspond to a branch (see
section 1.3). We omit the Generalization&Validation table because that does not
play any role here as the researcher has performed only one experiment.

For the reader’s sake, we inserted in Table 4, Table 7, Table 9, and Table 11 the
full name of the fields instead of the ID numbers.

The researcher starts filling the DataCollection table (Tables 4, 5):
One may note that DataCollection Technique includes all the tools that have

been mentioned in Data.
Here Iterative means according to the project iterations.

A Framework for Collecting Experiences 183

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Here s/he decides which Analysis is going to be performed after the data col-
lection:

From Table 8, we see that he/she has chosen to perform the data collection of
Table 6 (DataCollectionID=2).

One may note that Object of Study includes DataName of. Table 11.

Table 4. Table of DataCollection

DataCollection

PK DataCollectionID

FK
FK
FK
FK

DataCollectionSchedule
DataCollectionTechnique
DataCollectionType
FormativeAction

Table 5. A record of DataCollection- Counter =1

DataCollection

Automatic (1)

Periodical/Iterative
Test and Questionnaire
Incremental
Yes

Table 7. A record of DataAnalysis

DataAnalysis

PK DataAnalysisID

FK
FK
FK
FK
FK

ObjectofStudy
AnalysisKind
DataAnalysisType
StudyFormat
DataAnalysisDetail

Table 6. A record of DataCollection- Counter =2

DataAnalysis

Automatic (2)

Periodical/Iterative
Test and Questionnaire
Incremental
No

184 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Finally, he/she sets up the experiment.
Note that ContextInfo field is not available because a formative action (we have

chosen Table 6) has not been performed.
The researcher is now ready to fill the Data table (Tables 11, 12)
All the fields have been filled. The researcher is able to access the Table

Generalization&Validation.

11.7.5 An example of insert data flow

The flow to insert data in the repository follows a clockwise route round the branches
of Figure 4 starting from Data. The user must be accredited and logged onto the system.
However as we have seen, data may be inserted starting from each single branch;
missing a whole branch will be reported in the intermediate/final summary.

Table 8. A record of DataAnalysis

DataAnalysis

Automatic

Use of communication tools
Experimental
By Practice
Statistical
(Statistics Type) Correlation, (Statistic) Spearman’s index, (Significance) Yes, (Value of significance),
(Variable 1) Adoption of Pair Programming, (Variable 2) Rate of Use of Instant Messenger, (Model) Linear,
(Value of the best fit model parameters), (Ranking) rank in the list of other comparable regression models

Table 9. Table SetUp of the experiment

SetUp

PK SetUpID

FK
FK
FK
FK
FK
FK

ContextInfo
Project
GQM
HR
Experiment
ExperimentalDesign
ExperimentSchedule

A Framework for Collecting Experiences 185

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 10. A record of set up of the experiment

SetUp

Automatic

Not available

4

Goal Question Metric

Object of Study: use of instant
messengers
Purpose: monitoring it
Focus: Pair Programming adop-
tion
Point of View: students
Context: Summer Internship

Is there any relation between the
use of instant messengers and the
adoption of Pair Programming

Index of Spearman’s correlation
between Rate of use (ordinal) and
Adoption of Pair Programming
(boolean)

The use of instant messengers is negatively correlated to the adoption of Pair Programming

4.1

Pretest-Posttest Control group Design

Iterative

Table 12. A record of data (counter=1)

Data

Automatic (1)

Use of instant messenger

Development

Questionnaire

Rate of use

Practice Adoption

daily

Table 11. Table of data

Data

PK DataID

FK
FK
FK
FK
FK

DataDescription
Phase
Tool

Metric
Focus

DataValue

186 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 13. An example of insert data flow

User Researcher

Preconditions The researcher is logged into the section of the experiment. The company has been registered.
The project has been added to the list of viewable projects. The Project Manager and all the
information on the project team(s) have been updated.

Main Flow 1. The researcher inserts values in DataCollection. A summary report is popped out (S1)
2. The researcher inserts values in DataAnalysis. A summary report is popped out (S2)
3. The researcher inserts values in SetUp Of the Experiment. A summary report is popped out (S3)
4. The researcher inserts values of the table Data. A summary report is popped out (S4)
5. The researcher inserts the results of the experiment. A summary report has popped out (S5)
6. A final summary result is popped out. All the missing fields are highlighted (S6)

Alternative
Flows

1.
a. Values for DataCollection have been already inserted. The researcher skips it

and starts with M2
b. Values for DataCollection have not been inserted. The researcher skips it and

starts with M2. The summary report S2 inform of the missing M1 action
2.

a. Values for DataCollection have been already inserted. DataAnalysis has been
already filled. The researcher skips both and starts with M3

b. Values for DataCollection have been already inserted. DataAnalysis has not
been filled. The researcher skips both and starts with M3. The summary report
S3 inform of the missing M2 action

c. Values for DataCollection have not been inserted. DataAnalysis has been already
filled. The researcher skips it and starts with M3. The summary report S3 inform
of the missing M1 action

d. Values for DataCollection have not been already inserted. DataAnalysis has not
been already filled. The researcher skips both and starts with M3. The summary
report S3 inform of the missing M2 and M1 actions

3.
a. Values for DataCollection have been already inserted. DataAnalysis has been

already filled. SetUpExperiment has been already filled. The researcher skips
all of them and starts with M4

b. Values for DataCollection have been already inserted. DataAnalysis has been
already filled. SetUpExperiment has not been filled. The researcher skips both
and starts with M3. The summary report S3 inform of the missing M3 action

c. Values for DataCollection have been already inserted. DataAnalysis has not been
filled. SetUpExperiment has not been filled. The researcher skips both and starts
with M3. The summary report S3 inform of the missing M2 and M3 actions

d. Values for DataCollection have not been inserted. DataAnalysis has not been
already filled. SetUpExperiment has not been filled. The researcher skips it and
starts with M3. The summary report S3 inform of the missing M1, M2, and M3
actions

e. Values for DataCollection have been already inserted. DataAnalysis has not
been filled. SetUpExperiment has been already filled. The researcher skips it
and starts with M3. The summary report S3 inform of the missing M2 action

f. Values for DataCollection have not been inserted. DataAnalysis has not been
filled. SetUpExperiment has been already filled. The researcher skips it and starts
with M3. The summary report S3 inform of the missing M2 and M1 actions

g. Values for DataCollection have not been inserted. DataAnalysis has been filled.
SetUpExperiment has been already filled. The researcher skips it and starts with
M3. The summary report S3 inform of the missing M1 actions

4. Similar combination of cases

Post Condi-
tions

The database has been updated. A final document visualizes the data that have been inserted to
the Researcher; the document highlight eventual missing fields. The four tables are linked.

A Framework for Collecting Experiences 187

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

In Table 13 we mean for data values, numerical values or discovery/fix dates. For
qualitative values we mean all the other nominal fields as displayed in Table 11.

11.7.6 some features of the ef repository

The EF repository is our main instrument to address analysis experimentation in
AMs and to answer the open issues listed in the Research Roadmap. In building it,
we focused on the following features that characterize the research in agile devel-
opment (Table 14).

11.8 references

Basili, V. R., & Rombach, D. (1988). The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineering, 14(6),
758–773. doi:10.1109/32.6156

Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering, 10(6), 728–738.

Campbell, D. T., & Stanley, J. C. (1990). Experimental and quasi-experimental
designs for research. Houghton Mifflin Company College Division.

Goldman, R. (2002). Scenarios. OOPSLA Workshop on Distributed eXtreme Pro-
gramming, Tackling the Discovery Costs of Evolving Software Systems, and Pair
Programming Explored.

Table 14. Characteristics of agile development

Modularity Each table stands by itself. May be accessed independently and may be updated independently.
The first four branches are linked only when all their fields have been filled

Reuse Each populated table may be reused in different experiments

Security Different profiles of access

Simplicity The user inserts fields strictly needed for the table. Upload of Access or Excel files help the
researcher to insert data all in once

Scientific To insert data in the branch Genarilization&Validation, the researcher has to fill up all the
other branches. The researcher is suggested to follow a prescribed flow. This guarantees the
validity of the data and the results stored in the database. The user need not modify many
fields. Only the required fields have to be filled in before the next step, these are displayed
in the graphical interface.

Public Avail-
ability

The web site in its final shape will be full available to accredited users, whereas eventual
established results will be of public domain since the beginning.

188 A Framework for Collecting Experiences

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley
Professional.

Johnson, M. P., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., et al. (2003).
Beyond the personal software process: Metrics collection and analysis for the dif-
ferently disciplined. 25th International Conference on Software Engineering.

Pinna, S., Mauri, S., Lorrai, P., Marchesi, M., & Serra, N. (2003). XPSwiki: An
agile tool supporting the planning game. 4th International Conference on XP and
Flexible Processes in Software Engineering.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit for software development managers. Addison-Wesley Professional.

Schuh, P. (2002). Agility and the database. 3rd International Conference on XP and
Flexible Processes in Software Engineering.

Sillitti, A., Janes, A., Succi, G., & Vernazza, T. (2003). Collecting, integrating, and
analyzing software metrics and personal software process data. EUROMICRO.

Succi, G. (2002). A lightweight evaluation of a lightweight process. In M. Marchesi,
G. Succi, D. Wells & L. Williams (Eds.), Extreme programming perspectives.
Addison-Wesley Professional.

Succi, G., Marchesi, M., Pedrycz, W., & Williams, L. (2002). Preliminary analysis
of the effects of pair programming on job satisfaction. 3rd International Conference
on XP and Flexible Processes in Software Engineering.

Wells, D. (2001). XP and databases. Retrieved on November 11, 2008, from http://
www.extremeprogramming.org/stories/testdb.html

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(1999). Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publishers.

endnotes

1 Manifesto for Agile Software Development, http://www.agilemanifesto.org/
(accessed on November 11, 2008)

2 http://www.prevayler.org/ (accessed on November 11, 2008)

Improving Agile Methods 189

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 12

Improving Agile Methods
Barbara Russo

Free University of Bozen-Balzano, Italy

Marco Scotto
Free University of Bozen-Balzano, Italy

Alberto Sillitti
Free University of Bozen-Balzano, Italy

Giancarlo Succi
Free University of Bozen-Balzano, Italy

Raimund Moser
Free University of Bozen-Balzano, Italy

12.1 MotivAtion

Apart from personal experience, anecdotal evidence and demonstrations are still
the most prevalent and diffused methods on which software engineers have to base
their knowledge and decisions. Although – by searching on line databases such as
the ACM1 or IEEE2 libraries – we find numerous papers for example on software
quality or cost estimation many of them either do not perform any empirical vali-
dation at all (they are mostly experience reports or base ideas more on personal
opinion than hard data) or the performed validation has limited scientific value as
it exhibits one or more of several drawbacks:

DOI: 10.4018/978-1-59904-681-5.ch012

190 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Data collected and used for analysis are not characterized properly. In par-•
ticular, it is not always clear how data have been collected, what is their
granularity and what statistical properties (kind of distribution, outliers, etc.)
it possesses.
Often studies use the same set of rather old and/or artificial data (Mair • et al.,
2005), thus risking to be biased towards that data sets and not represent cur-
rent industrial practices and environments.
Scarcity of data from industrial settings is a key problem in empirical soft-•
ware engineering and thus experiments most of the times are not replicated
by other researchers – limiting their validity.
Data are often collected manually by developers or dedicated people (for ex-•
ample quality assurance department) within an organization: A manual data
collection process is not only costly (it requires a lot of resources) but also
error prone as any human activity. Moreover, if the activity of data collec-
tion is not conform with development practices – such as in AMs – there is a
high risk that data are biased as developers tend not to collect them at all or
to collect data in a way that promotes their personal development practices
(Johnson et al., 2003).

Statistical methods are not always used in a correct way by software engineer-
ing researchers: Data coming from software engineering environments often are
messy and show distributions, which do not allow simple statistical analysis such
as ordinary least square regression or Pearson correlation (Meyers & Well, 2003).
Moreover, statistical analyses and/or data mining techniques should always define
a clear methodology for model selection, accuracy assessment, and predictive
performance. For example most of the papers in empirical software engineering
use the Magnitude of the Relative Error of the Estimate (MRE) as accuracy indica-
tor and selection criterion for prediction models. However, Myrtveit et al. (1999)
show that a model fitted using MRE as error function and which uses at the same
time MRE as selection criterion tends to underfit since it fits to some values below
the central tendency of the dependent variable. Tichy (1998) analyzes the status
of experimentation in Computer Science and concludes that there is a significant
lack of experimentation compared to other fields in science. According to him the
main reasons for this fact is the cost factor. While it is true that experimentation
in software engineering consumes considerable resources and not negligible costs
Tichy emphasizes the advantages and values of experimentation:

Experimentation can help to build a reliable base of knowledge and thus re-•
duce uncertainty about which theories, methods, and tools are adequate.

Improving Agile Methods 191

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Observation and experimentation can lead to new, useful, and unexpected in-•
sights and open whole new areas of investigation. Experimentation can push
into unknown areas where engineering progresses slowly, if at all.
Experimentation can accelerate progress by quickly eliminating fruitless ap-•
proaches, erroneous assumptions, and fads. It also helps orient engineering
and theory in promising directions.

We agree completely with these points and think that effort spent in experi-
mentation in software engineering as in any other field of engineering is worth its
value. Being cognizant of the problems and difficulties of experimental, data driven
methods in software engineering research with this research we aim at proposing
some solutions and overcoming some shortcuts identified earlier, in particular for
agile development environments:

We use a novel measurement framework targeted to agile environments, •
which enables the automatic and non-invasive collection of reliable and fine
grained process and product data.
We propose methods for selecting and comparing predictors that are easy to •
collect and still good indicators for assessing software quality.
We evaluate the impact of • agile programming practices such as refac-
toring on both productivity and quality using real data collected in agile
environments.
We show the feasibility of an automatic effort prediction model, which is •
highly adaptable to an organizations context and suitable for iterative devel-
opment processes.

Today software development processes and technologies change faster than ever.
Moreover, many software firms operate in highly volatile domains (as for example
web development or in the telecommunications sector) and often have to adapt fast
to new and unfamiliar business domains. This not only requires huge investments
in human resources (people with appropriate technological and social skills) and
technology but imposes also a lot of constraints on any measurement program set
up in a software organization: First of all, resources for data collection are limited,
thus it has to be done in an automatic way. Second, models should reflect short
technology and product cycles: It is risky to develop models based on old data and
apply them in a completely different context – it is likely that they will fail if between
data collection and model application for example development teams, technology
or processes change (Cohn, 2006). Third, it is also essential to evaluate and update
continuously measures (we refer to them sometimes as features or metrics) used as
input (predictors) and output (dependent) variables for models. Since such measures

192 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

in general depend highly on programming languages/paradigms or specific processes
a change of the latter has an impact on the meaning and impact of the further. While
statisticians and data miners (Hubert & Verboven, 2003; Bishop, 1994) are well
aware of these issues, in particular that multicollinearity leads to models with high
variance (thus high predictive errors) software engineers sometimes neglect or ig-
nore such concerns. Being cognizant of the peculiarities of statistical properties of
software engineering data in this thesis we over and over emphasize and propose
techniques to circumvent or solve possible problems for proper statistical analysis
such as multicollinearity of input variables or skewed data distributions.

The context of the two case studies of this research belongs to the family of
agile development processes. We recapitulate the ideas and principles of agile
methodologies for the unfamiliar reader in order to give her/him an understanding
of the challenges of measurements and application of data analysis for process and
product control in such environments. Agile software development is an approach
for building systems that emphasizes evolutionary development and design, short
cycles, incremental planning, customer-centricity, low-documentation/specification
overhead, and its ability to response to changing business needs. It strongly relies
on oral communication, and uses tests and source code to communicate system
structure and intent. AMs are often further defined with respect to what they are not,
traditional, rigid, plan-based approaches typified by the so-called waterfall model.
A high-level set of attributes of AMs is provided as part of the Agile Manifesto3
and consists of the following four dichotomies:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

Though there are numerous methodologies that fit loosely under the agile um-
brella (Marchesi & Succi, 2003), in this work we focus mostly on a method called
XP (Beck, 1999). XP is light-weight methodology for small teams that promotes the
following development practices: test first development, acceptance tests, continuous
integration, small and frequent releases, refactoring, pair programming, collective
code ownership, on-site customer, planning game, simple design, 40-hour-week,
system metaphor, coding standards.

The body of substantially detailed and rigorous studies of AMs in practice is still
relatively small and immature (van Deursen, 2001). The many writings by industry
commentators that do exist suggest that agile methods are in fact succeeding in
practice, but these claims have yet to be substantially corroborated with reliable
studies. Many of the empirical studies that have been done were performed using

Improving Agile Methods 193

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

students as the participant sample or using subjective surveys rather than hard
data coming from industrial settings (one exception is the study run by Layman
et al. in 2004). The results of these studies, while interesting from the perspective
of higher education, lack some of the validity required to generalize their results
to the domain of professional software development. One of the most compelling
arguments for the agile approach to developing systems is that given the fact that
most software projects run out of budget or even fail, developers should focus on
delivering working functionality in the shortest possible increments of time so
that project sponsors quickly receive some return on their development invest-
ment. Diminishing the time between analyses and fielding of a system also helps
to manage the fact that organizational requirements change rapidly and that the
best way to meet evolving requirements is through a development approach that is
able to evolve in parallel. The challenge to developers and managers is to create a
development team culture capable of adapting to shifting organizational priorities
while at the same time maintaining a commitment to high-quality processes and
delivery of sound software system products. From the statements before it is clear
that it is difficult to introduce and apply data collection programs in agile environ-
ments: Developers focus on implementing features required by a customer for the
next development iteration and are not willing to waste any time for other activities
such as documentation or filling in time sheets (for the purpose of data collection)
unless those activities contribute to the final goal. Moreover, if forced to invoke
data collection tools manually they are distracted from their core activity, which
is development and thus it is likely that such tools decrease productivity or even
change usual developers’ behavior. Nevertheless, as more and more companies aim
at reaching level three of the Capability Maturity Model (CMM) (Humphrey, 1995),
which means that the development process needs to be defined using both product
and process measures, even for agile companies a measurement program is a must.
In particular governmental organizations more often require that a software company
is certified according to some defined CMM level in order to accept a contract; in
short, if agile companies want to be competitive (in particular with their non-agile
competitors) they need to invest resources and install some kind of – preferably
light-weight – measurement program. By careful analysis of the specific needs and
characteristics of agile development projects we defined properties and constraints
that agile, lightweight measurement frameworks need to have in practice. We
implemented those requirements in the PROM tool (Sillitti et al., 2003), which we
use for noninvasive data collection in agile development projects. While automatic
data collection is for sure a precondition for data analysis in agile contexts it has to
be complemented by appropriate analysis techniques:

194 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Traditional models of software engineering are based on assumptions that •
are not anymore given in agile environments and therefore questionable. A
common, traditional approach for building for example effort or quality pre-
diction models can be outlined as follows: Data from several old projects are
collected and used for model building. Such model is used to predict future
effort or quality of projects, which have similar characteristics with the proj-
ects used for model construction (often similar is not defined well by some
objective metric but rather by subjective opinion). Usually such process takes
a long time as the completion of several projects is needed in order to build a
reliable model. The problems of such approach in agile development can be
summarized as follows:
From the time of • data collection to the application of the model technologies
and processes may change. This is even more likely in agile environments
since developers may easier change technology or processes in response to
changing requirements and market demands. Such changes potentially in-
validate any models built on historic data; moreover, it is not clear if it is
possible to recalibrate them and an organization risks to waste resources for
collecting data and building unusable and outdated models.

12.2 dAtA collection

As said in the previous section a non-invasive measurement framework for automatic
collection of reliable, fine-grained data is a precondition for a successful application
of quantitative techniques for modeling and improving both software processes and
products. However, such framework is not easy to build – in particular if, as in our
case, used with and targeted to AMs – and use. Most of available commercial or OS
tools for data collection in software engineering lack the following characteristics,
which are essential for their usage in agile development environments: Mostly,
they deal with product measures; (semi)automatic collection of process measures is
nearly always ignored. Often, they are not integrated in the usual working context of
developers and managers; the developer is required to invoke such tools explicitly.
This lack of integration affects the precision of the collected data. Sometimes, it
even happens that measures are collected later in the process than expected, just to
comply with given process guidelines; this results in spurious data. Even when some
of the tools a developer or a manager use support the collection of a few, mostly
product-oriented measures, such measures are not combined with the measures col-
lected from other tools the user or the manager use. Moreover, such activities could
potentially distract developers and alter the nature of the development process itself
(Poppendieck & Poppendieck, 2003). Finally, if collected data is used to evaluate

Improving Agile Methods 195

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

programmers’ performance or working habits it is likely that it will be biased – if
not collected without any human intervention.

12.2.1 the proM Architecture: An overview

The architecture design of PROM has three main constraints: The architecture should
be extensible to support new Integrated Development Environments (IDEs), kind
of data, and analysis tools. IDE and third party applications dependent plug-ins
need to be as simple as possible. Developers can work off-line, i.e. without Internet
connection. All these main constraints are satisfied by the PROM architecture. The
PROM core is completely written in Java using open source technologies and stan-
dard protocols such as XML and XML-RPC. XML-RPC is a lightweight protocol
based on XML that implements remote procedure calls (RPC) over HTTP channels.
Developers can write plug-ins in any language but they have to communicate to the
PROM Transfer (Figure 1) using the XML-RPC protocol. PROM exposes a set of
functions that are available inside an Intranet or over the Internet as web services.
Moreover, PROM provides secure communications and data are encrypted using
RSA algorithm with 1024 bit keys. PROM has a modular, component based design.
It has four main modules (Figure 1):

The • PROM server is the core of the PROM system and installed either lo-
cally within an organization that uses PROM for data collection or remotely
on some server that can be reached via Internet (for example within a re-
search institute); it consists of four major components: the XML-RPC server,
which is responsible for communicating with the PROM Transfer tool and
encrypted data transfer; a web-server used for administration and data visual-
ization; several tools for data processing (integration of product with process
metrics and data cleaning) and finally the PROM data warehouse for storing
integrated and cleaned data.
The • PROM Transfer tool is installed on a client machine and its main purpose
is to collect data coming from various sources and send it to the PROM Server
using XML-RPC calls and HTTP as transport protocol. Moreover, it provides
data caching in case a client machine is not connected to the Internet and pro-
vides facilities for user authentication and some basic administration.
Client tools: The • PROM Trace is a generic tool for collecting effort spent on
various activities (it records the time a window is on focus and the screen saver
is not activated, thus it does not distinguish between reading, editing, or other
activities), while PROM plug-ins are application specific plug-ins that retrieve
effort data and – in some cases – also product data for specific applications such
as Integrated Development Environments or Office productivity tools.

196 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Web-Metrics is an extensible tool able to extract code • metrics from source
code repositories. Currently procedural and object-oriented metrics for the
following programming languages are extracted: Java, C#, and C/C++.

12.2.2 data collection with proM

PROM is designed to collect different set of software data: product metrics (Chi-
damber & Kemerer, 1994; Fenton & Pfleeger, 1997 and Personal Software Pro-
cess data (Humphrey, 1995). The former set includes code length, inter-class and
inter-function dependencies, reusability, etc. The latter includes time spent in each
activity, number of changes per class, etc. Regarding product metrics PROM is
able to collect both procedural metrics and design metrics. Some of the procedural
metrics collected by PROM are:

Lines Of Code (LOC) counted as non-commented source code instructions•
McCabe Cyclomatic Complexity defined as linearly independent paths of a •
procedure flow graph (McCabe, 1976)
Halstead Volume (Halstead, 1977), which is basically a size measure and •
combines software size with measures from psychology in order to estimate
implementation effort
Fan-In and Fan-Out, which is used to describe the amount of information •
flow within procedures (Henry & Kafura, 1981)

Figure 1. Schematic PROM architecture

Improving Agile Methods 197

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

In addition, there are also metrics for designs, especially object-oriented (OO)
designs that are collected by PROM. Since OO designs can be well defined and
specified, as with a language like the Unified Modeling Language (UML), measures
about a system’s class structure, coupling, and cohesion can be easily derived.

The most cited OO metrics are the Chidamber and Kemerer (CK) suite of OO
design metrics. This is a set of six metrics, which captures different aspects of an
OO design, including complexity, coupling, and cohesion. These metrics were the
first attempt at being OO metrics with a strong theoretical basis.The metrics are
listed below:

Weighted Methods per Class (WMC)•
Depth of Inheritance Tree (DIT)•
Number Of Children (NOC)•
Coupling Between Objects (CBO)•
Response For a Class (RFC)•
Lack Of Cohesion in Methods (LCOM)•

Once PROM is installed and configured properly source code metrics are ex-
tracted daily from a company’s source code repository; moreover, PROM enables
the automatic collection of effort associated to different developer tasks such as
reading documents, browsing the web, and coding. In particular, plug-ins for In-
tegrated Development Environments (IDEs) such as Eclipse or Microsoft Visual
Studio collect the time spent by developers for coding activities at a method and class
level: effort data for coding is collected as soon as the developer enters the cursor
in the source code editor of the IDE in place and ends if the editor is off focus, the
IDE is closed or the screen saver is activated. Moreover, PROM allows the user to
specify if one or two programmers are sitting in front of a machine (this feature is
needed when a company is using the practice of pair-programming). The notion of
effort adopted in the context of this thesis is strongly related to only coding activi-
ties and does not include for example time spent discussing the design/code on a
white board or other activities; however, in agile processes which themselves assign
to coding activities the highest importance we think that the proposed measure is
a reasonable measure for total development effort. Both source code metrics and
effort data are integrated and stored automatically in a data warehouse, from where
we access data for analysis and model building (Figure 1). Table 1 summarizes
the measures we collect using the PROM tool: effort data is collected and stored
in real-time during development, while product metrics are extracted once a day
(preferably during night as it requires a considerable amount of processing time)
from a source code repository.

198 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Since we integrate product and process measures in the PROM data warehouse,
we can aggregate them easily in several ways: for example sometimes we are in-
terested in development effort and changes of source code metrics for one class
per day or per development iteration or we may aggregate measures at a package
or system level and for different time windows.

12.3 cAse study i

12.3.1 context and descriptive statistics of data

The object under study is a commercial software project – referred to as project A
- developed at VTT in Oulu, Finland. The programming language in use was Java.
The project was a full business success in the sense that it delivered on time and on
budget the required product, a production monitoring application for mobile, Java
enabled devices. The development process followed a tailored version of XP practices
(Abrahamsson et al., 2004), which included all the practices of XP but the System
Metaphor and the On-site Customer; there was instead a local, on-site manager that
met daily with the group and had daily conversations with the off-site customer.
Two pairs of programmers (four people) have worked for a total of eight weeks. The
project was divided into five iterations, starting with a 1-week iteration, which was
followed by three 2-week iterations, with the project concluding in a final 1-week
iteration. The developed software consists of 30 Java classes and a total of 1770
Java source code statements (denoted as LOC). Throughout the project mentoring
was provided on XP and other programming issues according to the XP approach.

Table 1. Measures collected by PROM and used for data analysis

Date Entity (file, class,
method)

Effort Procedural
metrics

Object-oriented
design metrics

Collection of
process (effort)
metrics during
development

2006-12-
17 14:05

UserStories.doc (MS
Word) 17 min --- ---

2006-12-
17 14:13

Main.java
(Eclipse) 4.8 min --- ---

2006-12-
17 14:15

computeTime(int)
(Eclipse) 1.2 min --- ---

… … … --- ---

Extraction of
source code
metrics once

a day

2006-12-8,
00:10 Main.java ---

345 LOC, 1451
HV, 23 MCC,
…

23 WMC, 12 CBO, 30
RFC, 2 DIT, 1 NOC, 10
LCOM

… … --- … …

Improving Agile Methods 199

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Three of the four developers had an education equivalent to a BSc and limited in-
dustrial experience. The fourth developer was an experienced industrial software
engineer. The team worked in a collocated environment. Since it was exposed for
the first time to the XP process a brief training of the XP practices, in particular of
the test-first method was provided prior to the beginning of the project.

To collect the data listed in Table 2, we used the tool PROM. Not to disrupt
developers we set up the tool in the following way: every day at midnight auto-
matically a checkout of the CVS repository was performed, the tool computed the
values of the CK and complexity metrics and stored them in a relational database.
In this way we obtained directly the daily evolution of the CK metrics, LOC and
McCabe’s cyclomatic complexity. The total coding effort recorded by the PROM
tool was about 305 hours. Table 2 shows a descriptive statistics of the collected
design metrics and coding effort at the end of each development iteration. The effort
values in column 7 of Table 2 are cumulative values, i.e. the effort of iteration n is
the total effort from the start of the project to the end of iteration n.

12.3.2 research Questions

The goal of this analysis is to determine whether refactoring supports ad-hoc reuse
of software. Our objective is to present evidence that will allow us to reject the null
hypothesis:

H• 0: The changes of reusability metric Mi induced by refactoring (ΔRi) are not
different from the average changes during development (ΔMi) for classes that
are likely to be reused in an ad-hoc manner.

Table 2. Descriptive statistics for project A. The first row for each iteration indicates
the mean and standard deviation, the second row the range.

Iteration Data
points

CBO WMC RFC DIT Effort (H)

2 21 8.5±4.2 9.2±7.1 19.7±10 2.6±1.1 6.2±6.2

[1, 17] [3, 36] [10, 59] [1, 4] [0.3, 26.9]

3 27 9.5± 6.4 14.5±14 24.1±17 2.3± 1.2 8.4±12.2

[1, 25] [3, 60] [3, 77] [1, 4] [0.2, 56.6]

4 29 9.6 ±7.3 16.4±19 25.5±19 2.3±1.2 9.8±15.2

[1, 33] [0, 81] [0, 92] [1, 4] [0.2, 70]

5 30 9.8±7.1 17.8±22 25.7±19 2.3±1.2 10.1±16.

[1, 32] [0, 102] [0, 91] [1, 4] [0.2, 76.2]

200 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

And to accept the alternative hypothesis:

H• 1: The changes of reusability metrics Mi induced by refactoring (ΔRi) are
different (preferably lower) from the average changes during development
(ΔMi) for classes that are likely to be reused in an ad-hoc manner.

In the following section we explain what we mean by reusability metrics and
what approach we take for data analysis.

12.3.3 Analysis Method

In defining suitable reusability metrics we follow the approach of Dandashi and
Rine (2002). Their set of reusability metrics consists of the metrics listed in Table
3: they include the CK set of design metrics, lines of source code statements and
McCabe’s cyclomatic complexity.

However, we do not know a priori the range of values of these metrics that
would indicate good or bad reusability. Analyzing historical data or several similar
projects can only – if at all – derive such thresholds. We follow a different strategy,
as we do not seek to associate absolute values of the metrics in Table 3 to different
classes of reusability, but rather analyze the changes of them during development.
Our approach is the following: First, we identify a set of candidate classes that
are likely to be considered for reuse. Afterwards, we monitor the daily changes of
our reusability metrics for each class during development. Finally we compare the
average of these daily changes with the change each class gains after it has been
refactored. This allows us to quantify the impact of refactoring on reusability metrics
compared to their overall evolution during development.

Table 3. Selected internal product metrics as indicators for reusability

Metric name Level Definition

MAX_LOC Class Maximum number of Java statements of all methods in a class

MAX_MCC Class Highest McCabe’s cyclomatic complexity of all methods in a class

CBO Class Coupling Between Object classes (CK)

LCOM Class Lack of Cohesion in Methods (CK)

WMC Class Weighted Methods per Class (CK)

RFC Class Response Of a Class (CK)

DIT Class Depth of Inheritance Tree

NOC Class Number Of Children

Improving Agile Methods 201

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

A bit more formally we can define our method as follows.
Let Mi ∈ M={MAX_MCC, MAX_LOC, CBO, RFC, WMC, DIT, NOC, LCOM}

be one of the reusability metrics listed in Table 3. In a first step we average their daily
changes for each candidate class over the whole development period not including
days when the class has been refactored. We denote this average value for metric
Mi by ΔMi. N in the equation below is the total number of development days; Δt is
a time interval of 1 day and R is the set of all days during which developers have
refactored a particular class.

D

D D

M

M k t M k t

Ni

N

k
k R

i i

=

× - - ×
-
Ï

å
1

1() (())

By ΔRi we denote the average of the daily changes of reusability metric Mi
only for the days (k ∈ R) in which a class has been refactored. To assess whether
refactoring improves reusability of a class we compute its ΔRi and ΔMi values and
compare them with each other: If ΔRi is negative and significantly lower than ΔMi
we may conclude that refactoring improves reusability metric Mi compared to its
standard evolution during development.

To apply our method to a real system we not only need to collect the daily
evolution of source code metrics but also to identify a set of candidate classes and
refactoring activities. Regarding the first issue we proceed as follows: we analyze
the design document and use the description provided by developers and our own
experience to find classes, which are either explicitly developed for reuse or at least
are promising to be reused in the same or similar products. We exclude any classes
that are highly dependent on the specific application such as classes dealing with
the user interface, product specific data representation/processing or classes holding
hard coded data (constants). The identification of candidate classes is a subjective
process and therefore we may not identify all relevant classes. However, in an XP
process development is not targeted specifically to reusability and in principle every
class that is not tightened too much with a particular application feature could be
reused in an ad-hoc manner.

The second issue we have to address is: How can we identify days in which a
class has been refactored? Currently we are working on a method that extracts such
information automatically from a CVS repository by using source code change metrics
information (Demeyer et al., 2000). This work is still in an early phase and cannot
be used for this research. However, for the case study we present here developers
have created user stories for refactoring activities and by analyzing them we know
which classes have been refactored when.

202 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

To summarize our method for assessing the impact of refactoring on reusability
we stress again that it has to be taken cum grano salis, as we do not include many
important factors such as experience of developers, development tools, or the stabil-
ity of the application domain. However, we think that by analyzing the change of
important internal reusability metrics induced by refactoring we can indicate whether
refactoring - by delivering easy to reuse code - supports ad-hoc reuse or not.

12.3.4 results

We were able to collect the daily evolution of the metrics in Table 3 for the entire
period of development, which was 8 weeks, apart from 3 days. In these days develop-
ers apparently did not check-in the source code and therefore we had to omit them
from our analysis. The design of the developed system is based on the MVC pattern
(Buschmann et al., 1996), the Broker architectural pattern (Buschmann et al., 1996)
and several standard design patterns described in (Gamma et al., 1995). We think
that some basic classes of these patterns – their importance is also emphasized by
the design document – are particularly interesting to be considered for reuse. Out of
them we choose a subset of classes, which have been refactored during development.
We can infer this information from two user stories that have been implemented
specifically for refactoring tasks and comments added in the respective classes. We
select in total five candidate classes and compute in a first step the daily changes of
the metrics for each of them omitting the days when they have been refactored. We
denote the five classes by A, B, C, D, and E. After we compute the average of these
changes for all days in which a class has been refactored (the considered classes have
been refactored at most on two different days during development). Table 2 shows
the results: For each metric and candidate class we indicate the average changes
during development (without refactoring), ΔMi, the average changes induced by
refactoring, ΔRi, and whether or not we can reject our null hypothesis, H0. We ac-
cept or reject H0 by applying a one-sample Wilcoxon rank sum test (Hollander &
Wolfe, 1973): We test whether a sample of changes for metric Mi has a median ΔRi
or not. For the test we use a significance level of α=0.05.

The interpretation of the numbers in Table 4 is straightforward: for every candi-
date class there are at least two reusability metrics that improve significantly after
it has been refactored (compared to the average evolution during development). In
particular classes A and E show a notable enhancement: These two classes provide
general interfaces to the user interface and database and it is likely that they will
be reused in a similar application.

By investigating the different metrics we notice that not all of them are affected
in the same way by refactoring: The metrics related to inheritance and cohesion
for example are not at all or only in a negligible way changed by the refactorings

Improving Agile Methods 203

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

applied in the project. This could be explained by the fact that the software under
scrutiny is relatively small: It does not use deep inheritance hierarchies and only in
a limited way inheritance as a mechanism for reuse. Therefore, it is quiet obvious
that no refactoring dealing with inheritance has been applied (it was not necessary
to restructure code due to complexity caused by inheritance). As for LCOM several
researchers have questioned its meaning and the way it is defined by Chidamber and
Kemerer (Counsell et al., 2002) the impact of LCOM on software reusability is little
understood by today and therefore we do not analyze it further in this research.

The highest benefit of refactoring show the CBO and RFC metrics: They ex-
press the coupling between different classes and the complexity of a class in terms
of method definitions and method invocations. We believe that these two metrics
are strong indicators for how difficult it is to reuse a class: A high value of RFC
makes it difficult to understand what the class is doing and a high value of CBO
means that the class is dependent on many external classes and difficult to reuse in
isolation. Both situations prevent it from being easily reused. For three out of the
five candidate classes refactoring improves significantly both the RFC and CBO

Table 4. Average daily changes of reusability metrics in case of refactoring (DR) and
development (DM). A 1 in the column with heading H means that we can reject the
null hypothesis for the particular class and metric, 0 means that we cannot reject
the null hypothesis. Values are rounded to their closest integer.

Class CBO RFC WMC LCOM

ΔM ΔR H ΔM ΔR H ΔM ΔR H ΔM ΔR H

A 0 0 0 0 1 1 1 -1 1 0 -1 1

B 1 -4 1 1 -4 1 0 0 0 0 0 0

C 1 0 0 2 -5 1 4 0 0 1 0 0

D 1 -1 1 1.4 -2 1 2 0 0 1 0 0

E 1 -1 1 3.5 -2 1 2 3 1 0 0 0

MAX_MCC MAX_LOC DIT NOC

A 0 -1 1 0 0 0 0 0 0 0 0 0

B 0 0 0 2 -2 1 0 0 0 0 0 0

C 3 0 0 6 -46 1 0 0 0 0 0 0

D 3 -2 1 0 0 0 0 0 0 0 0 0

E 1 0 0 10 -20 1 0 0 0 0 0 0

204 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

values and as such clearly makes them more suitable for ad-hoc reuse. Refactoring
seems also to lower method complexity: in all the classes either the method with
the maximum lines of code or the one with the highest cyclomatic complexity have
gained a notably improvement after refactoring. Again, classes with less complex
methods are easier to reuse.

Summarizing our results we can reject hypothesis H0 for several metrics Mi (in
particular for the RFC and CBO metric) but not for all of them (like the inheritance
related metrics) and not for all classes we selected. We can conclude that refactoring
improves for every class we analyze at least two internal metrics that are important
for reusability; moreover, for most of them it lowers significantly coupling and
method invocation complexity – two code smells (van Emden & Moonen, 2002)
that often prevent classes from being reused in an ad-hoc manner. Overall the results
of this case study give strong evidence that refactoring supports ad-hoc reuse in an
XP-like development environment.

12.3.5 summing up

Although agile processes and practices are gaining more and more importance in
the software industry much more work has to be done to convince managers to
introduce new and innovative development concepts in their companies. Software
reuse is a key success factor for software development and should be supported
as much as possible by the development process itself. We believe that refactoring
supports and enhances ad-hoc reuse in a software project, which does not address
reusability as one of its primary goals.

Refactoring seems to improve significantly important internal measures for
reusability of object-oriented classes written in Java. Therefore, we can sustain our
claim that refactoring has a positive effect on reusability and for sure promotes ad-
hoc reuse in an XP-like development environment.

Of course refactoring as any other technique is something a developer has to
learn and to train. First, managers have to be convinced that refactoring is very
valuable for their business; this research should help them in doing so as it sustains
that refactoring – if applied properly – intrinsically delivers code, which is easier
to reuse than code which has not been refactored. Afterwards, they have to provide
training and support to change their development process into a new one that includes
continuous refactoring. AMs already use refactoring as one of their key practices
and could be a first choice for developing code in a way that supports – among other
benefits such as good maintainability – also reusability.

Improving Agile Methods 205

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

12.4 cAse study ii

12.4.1 context and descriptive statistics of data

The analysis concerns a commercial software project – we refer to it as project
B - developed at VTT Technical Research Centre of Finland in Oulu, Finland. The
programming language used was Java and the IDE was Eclipse 3.0. Project B de-
livered a project management tool for agile projects. The software is programmed
with Java and Flash and is a standard web application for desktop computers. The
development process followed a tailored version of the XP practices: three pairs of
programmers (six people) have worked for a total of eight weeks. The project was
divided into five iterations, starting with a 1-week iteration, which was followed
by three 2-week iterations, with the project concluding in a final 1-week iteration.
The working time for the dedicated project was 6 hours per day, 4 days a week.
Beside the mentioned XP practices (pair programming, small releases, continuous
integration, planning game) also the practices of refactoring and in part test-driven
development have been adopted. Throughout the project mentoring was provided on
XP and other programming issues according to the XP approach. Four developers
were five 6th year university students and the two remaining employees of VTT and
as such experienced industrial software engineers. Project B has 3426 lines of code
(Java statements in source code) and 52 classes. The total coding effort for project
B is about 664 h. Table 5 reports the descriptive statistics for project B.

Table 5. Descriptive statistics for project B. The first row for each iteration indicates
the mean and standard deviation, the second row the range.

Iteration Data
points

CBO WMC RFC DIT Effort (H)

2 40 9.9±6.1 6.4±3 21.7±13 2.1±1 3.7±4.8

[0, 20] [2, 14] [2, 62] [1, 4] [0.04, 20.9]

3 47 11.5±8.5 9.9±9.4 28.2±18 2.3±1 7.5±8.3

[0, 26] [3, 61] [1, 90] [1, 4] [0.04, 30.8]

4 48 12.9±8.9 14.1±14.2 35.4±29. 2.3±1 11.1±14

[1, 27] [3, 68] [5, 155] [1, 4] [0.04, 57.6]

5 52 15.0±10 14.4±15.7 36.5±29 2.4±1 12.7±15.2

[1, 32] [3, 72] [5, 160] [1, 4] [0.04, 64.6]

206 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

12.4.2 research Question

We analyze the impact of refactoring on development productivity and internal code
quality. For this goal we first study how the selected productivity and quality mea-
sures evolve during the development of the project. By laws of software evolution
(those of Lehman), a software is naturally subjected to continuing change (law 1),
increasing complexity (law 2) and declining quality (law 3) (Lehmann et al., 1997).
In particular, during traditional development by adding new features to a system the
internal quality metrics tend to show an increase in complexity and coupling and a
decrease in cohesion. More complex code is more difficult to manage and to modify;
therefore, we expect that the development productivity will show a decreasing trend
over time. In contrast, in XP-like processes, thanks to its constant refactoring, the
complexity of the code and the effort for adding new functionalities is claimed to
remain about constant or to grow very slowly. Unfortunately, we were not able to
run a formal experiment where we could analyze two projects, one with treatment
(application of refactorings during development) and one without, and compare
directly the evolution of the respective quality and productivity metrics. We have
to content ourselves with a simpler approach: we compare productivity before and
after big refactorings and use such comparison as criteria for assessing the impact
of refactoring on it. For quality we determine the changes of several quality metrics
after a big refactoring has been applied to the software and compare them with the
average daily changes per iteration. If they are significantly different (improved)
we may conclude that refactoring has a positive effect on code quality.

Framed in terms of research questions, we aim at presenting evidence that will
allow us to reject (or accept) the following two null hypotheses H0i:

H• 00: After a big refactoring the productivity (averaged over four consecutive
days) is the same as before refactoring.
H• 01: The considered internal quality metrics (complexity, coupling and cohe-
sion) do not show any improvement after a big refactoring with respect to
their average daily changes per iteration

To obtain more reliable results we do not simply compare the changes of produc-
tivity and quality metrics before and after refactoring. Such changes could happen
by chance or some other factors we do not control within this case study. In order
to minimize the influence of random and uncontrolled changes we compare the
average productivity the week before a big refactoring has been applied with the
average productivity the week after. Also for the quality metrics we compute their
average daily changes per iteration and compare them with the changes induced
by a big refactoring.

Improving Agile Methods 207

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Our research design is to some extent a one-factor, repeated-measures design:
The treatment (in our case refactoring) is applied one or more times to the same
subjects. However, we do not perform a true experiment and therefore we will not
consider sophisticated analysis techniques that are available for such experimental
design; instead, we use the most common method for comparing the means of dif-
ferent populations, namely the analysis of variance (ANOVA). Our samples are very
small (less than 6 subjects per group) and we cannot assume a normal distribution
and homogeneity of variance, as it is required by the standard ANOVA method.
Therefore, we perform the so-called Brown-Forsythe test (Meyers & Well, 2003),
which is similar to the ANOVA analysis, but more suited for our case (heterogeneous
variance, small sample size). For the quality metrics we proceed in the following
way: first, we compute their daily changes after a big refactoring has been applied.
Then, we use a Wilcoxon Signed-Rank (Lehmann, 1986) test to determine whether
these changes are lower than the average daily changes per iteration or not. Our
final goal is to disprove the null hypotheses by using the Brown-Forsythe and the
Wilcoxon Signed-Rank tests to determine (a) if the development productivity is
higher after refactoring than before, and (b) if quality metrics are significantly im-
proved by refactoring with respect to their medial changes. We use as significance
level α=0.5, as it is common in empirical software engineering research (Mišić &
Tešić, 1998).

12.4.3 productivity and Quality

Refactoring is an activity, which in more traditional development processes is – if
at all – only present during the maintenance phase in order to improve software
maintainability (Kataoka et al., 2002). The context of our analysis however is an
agile development process, namely a tailored version of XP; in such environment
refactoring is an integral part of software development. Kent Beck illustrates the
principle of agile development with the two hats metaphor: one is adding new
functionality (coding) and the other is refactoring. The developer should swap fre-
quently between these two hats but wear only one at a time. Therefore, we assume
that developers apply small refactorings like Extract Method, Rename, Simplify
Conditional, Move Method/Field, and so on throughout development – without
even documenting it. We believe that all these small refactorings improve slightly
the quality of the code and increase development productivity compared to a de-
velopment process, which does not use the practice of refactoring. However, due to
lack of empirical data (of two comparable software projects, one developed using
an agile and one using a traditional method) such comparison is out of scope of
this research. Instead, we analyze the effect of big refactorings on productivity and
quality within the same project. By big refactoring we do not mean a big refactoring

208 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

composed of several basic refactorings (sometimes in a predefined sequence) as
described for example in the book of Fowler (2002. In this analysis, big refactoring
means that developers devote one or more user stories (in XP a user story is a kind
of informal requirement document developed at the beginning of each iteration) to
refactoring and that the implementation of such user stories takes a considerable
amount of time – from some hours to a whole day. For the time being, we do not
identify different kinds of refactorings and analyze separately the impact of each
refactoring category on productivity or quality (Fowler defines the following cat-
egories: composing methods, moving features between objects, organizing data,
simplifying conditional expressions, dealing with generalization, making method
calls simpler). Such coarse grained analysis could bias our results: Developers may
for example only apply a limited subset of refactorings – due to their inexperience
or other reasons – and in such case we can probably not generalize the implications
for all other types of refactoring. We plan to take into account different categories
of refactorings in a more refined, future study.

Now that we know what we mean by refactoring we have to define the other
variables of interest for this research, namely development productivity and soft-
ware quality.

Lots of work has been done on how to measure developers’ productivity (Fenton
& Pfleeger, 1997). Still, no definite measure has been defined and perhaps such
measure does not exist. A very simple measure of productivity is the ratio of the
lines of code (LOC) produced and the effort spent in producing them. Several objec-
tions has been raised against this measure as a malicious developer could artificially
inflate the number of lines of code; only coding is considered ignoring all the other
phases of development – analysis, design, etc; code reuse and automatically gener-
ated code are not taken properly into account; and other. Despite all its criticism,
this equation is by far the most used in industry, as it is very easy to understand and
gives clear and absolute numbers, which are easy to compare and to use in statistical
calculations. Needless to say, these numbers have to be taken with a grain of salt.
In this analysis, we use this equation because of its simplicity and expressiveness.
In addition, programmers are all working in good faith – they volunteered for this
experiment, the effort spent in activities other than coding has been closely moni-
tored and evenly distributed, code reuse has been closely scrutinized also via the
CVS repository, and no code generators have been used.

Software quality is a composite property of many internal and external software
attributes. There has been a lot of discussion on the meaning of software quality
(McCall, et al., 1977; Boehm et al., 1978). It is now commonly agreed (Fenton &
Pfleeger, 1997) that software quality is a property defined by several small-scaled
and directly measurable attributes. In this research we use object-oriented complex-
ity, coupling, and cohesion design metrics, as defined by Chidamber and Kemerer

Improving Agile Methods 209

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

(Table 6); such measures are widely accepted both by practitioners and researchers
and validated by several previous studies (Basili et al., 1996). In addition, such
measures are easy to collect and to understand, a precondition for their effective
use (Johnson & Disney, 1998).

12.4.4 summing up

As mentioned, the Lehman laws evidence that throughout software development
the productivity tends to decrease while the code becomes more complex and dif-
ficult to understand, classes become more and more coupled with each other, and
therefore changes in addition or modification of functionality require more effort
as the time progresses (Boehm, 1981). Figure 2 shows the evolution of the aver-
age productivity per iteration over the whole development period. It seems that the
productivity follows Lehman’s laws: It is high in iteration two and three and lower
in the last two iterations. In iteration one it is also low, which could be explained
by the fact that at the beginning of the project there was more work for setting up
and getting familiar with the environment.

The first refactoring user story has been implemented towards the end of itera-
tion 2. We compute the daily productivity of the 4 consecutive days before this first
big refactoring and the daily productivity of the four consecutive days after it. In
this way we get two, although small, samples of the productivity before and after
refactoring, which we then compare by applying the Brown-Forsythe test. We use
the same strategy for the second big refactoring, which has been applied towards
the end of iteration 4. We choose a period of 4 days (almost one week of develop-
ment) for comparison mainly for two reasons: On one hand a shorter time period as
for example one day increases the probability that the productivity simply changes
by chance (or some uncontrollable events) and not due to refactoring. On the other
hand we do not have productivity data for more than four consecutive days after

Table 6. Selected product and process metrics for assessing quality and productiv-
ity

Metric Level Definition

CBO Class Coupling Between Object classes

LCOM Class Lack of Cohesion in Methods

WMC Class Weighted Methods per Class

RFC Class Response For a Class

LOC Method Number of Java source code statements per method

Effort Method Time in seconds spent for coding a method

210 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the first big refactoring, since – as mentioned before – some data from the CVS
repository are missing. Moreover, an analysis of the second refactoring indicates
that the effect of refactoring on productivity is not visible anymore after one week
of development.

By applying a Brown-Forsythe test (Meyers & Well, 2003) we cannot reject
H00 neither for refactoring 1 nor for refactoring 2. However, we can observe that a
simple ANOVA test (which is less restrictive) would have allowed us to reject H00 for
refactoring 1. Overall, we can conclude that the productivity data sustain the claim
that refactoring raises the development productivity in the short-term, thus nullifying
to some extent the complexity naturally added during development. However, this
conclusion is more a confirmation of a suspicion and not a clear affirmation based
on statistical inference from experimental data. To consider the long-term effects of
refactoring, we have compared the medians of the daily productivity of each iteration
using non-parametric Kruskal-Wallis test (Meyers & Well, 2003). The result is that
the medians of the daily productivities of each iteration are not statistically different
from each other: this means that productivity does not decrease significantly towards
the end of the project. Altogether, our findings strongly advocate that refactoring
of a software system raises subsequent development productivity and prevents in
a long-term its deterioration.

Findings of prior studies qualitatively claim that refactoring improves some low-
level quality metrics like coupling and cohesion measures (Bois & Mens, 2003).
A visual inspection of the plots of CBO, WMC, RFC, and LCOM metrics (Figure
3) evidences that their average daily changes per iteration tend to decrease start-
ing from the second iteration (1st big refactoring) for the CBO and RFC metric,

Figure 2. Average development productivity per iteration

Improving Agile Methods 211

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

and from the third for the LCOM and WMC metrics. This is a first indication that
refactoring could limit the overall increase of cohesion, coupling and complexity
metrics that should occur, according to the current software engineering knowledge,
as it is synthesized in the work of Lehman.

Visually inspecting the plot of the average daily changes of LCOM, CBO, RFC
and WMC per iteration, we also notice an interesting phenomenon: After an initial
phase of remarkable growth of these metrics, they start to decrease, most likely
thanks to refactoring. We interpret this as the people gathering a more comprehensive
view of the application to develop, and thus being able to better refactor the system,
creating simpler, less coupled, and more cohesive code. Still, this is an interpreta-
tion based on a visual inspection not on a statistical test: only future research will
be able to assess its statistical significance.

12.5 generAlizAtion

Generalization of results obtained by single experiments or case studies is not an easy
task. First, experiments in software engineering are conducted in unique environ-
ments and therefore data that are collected within such environments are also unique.
This is in particular a problem in software engineering as many project specific

Figure 3. Evolution of the average daily changes of LCOM, CBO, RFC, and WMC
per iteration

212 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

factors (for example human factors and development environment) are not known
or cannot be easily quantified. In this chapter we have seen that even for the two
very similar projects we analyzed models extracted from data can be significantly
different and do not work in the respective other context. Second, even if we can
encode many experimental factors in hard data it is not easy to derive conclusions
about generalizability using statistical methods. Moreover, we have analyzed only
two projects and therefore a rigorous generalization procedure is almost impossible.
We rather have to confine ourselves to make some more qualitative conclusions
based on observations.

In the following section, we present some method to assess generalizability proper-
ties of models and statistics we used for analyzing the two projects described. Since
we have only two projects in particular the Bootstrapping method and leave-one-out
are useful for assessing generalizability. We could not apply the meta-analysis ap-
proach due two the limited size of experiments. Nevertheless we report this method
here as it is very powerful for generalizing results across several experiments and
hardly ever used by software engineering researchers.

12.6 Methods for Assessing generAlizAtion

12.6.1 Meta-Analysis

Statistical meta-analysis is the branch of statistics that studies how it is possible to
combine statistical indexes across different experiments (Hedges & Olkin, 1985;
Rosenthal, 1991; Hunter & Schmidt, 1990). Statistical meta-analysis has already
been used in software engineering. Hu (1997) is probably the first researcher at-
tempting to combine results from different studies. His study evaluates four alterna-
tive production models that have not been applied widely in software engineering:
linear, quadratic, Cobb-Douglas, and translog. The performances are checked using
the P-test. The comparison of the four alternative models suggests that quadratic
software production model could be applied to a wide variety of projects, while the
other three have limited practical applicability.

The method usually employed for estimating a common correlation from several
studies – we use it to estimate a common correlation between software complex-
ity measures and productivity – is the meta-analytical technique called Weighted
Estimators of a Common Correlation (Hedges & Olkin, 1985). The technique as-
sumes that:

Sample data come all from normally-distributed populations with the same •
correlation;

Improving Agile Methods 213

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Sample correlations are computed according to Pearson’s definition of •
correlation.

Since in our case we cannot assume any particular distribution of the samples,
we compute the non-parametric Spearman’s correlation coefficients of the samples.
Such correlation is independent from the distribution of the population. From Spear-
man correlation coefficient rs one can approximate Pearson correlation coefficient
by using the coefficient rc computed by the following formula (Pearson, 1907):

r rc s=
æ
è
ççç

ö
ø
÷÷÷2

6
sin p

Studies show that rc generally underestimates Pearson correlation coefficient,
though the error is usually very small: In simulation studies the largest error found
between the converted correlation coefficient and the actual correlation was -0.005.
The error decreases when the sample size and the actual population correlation
increase (Kendall & Gibbons, 1990).The steps of the Weighted Estimators of a
Common Correlation technique are:

1. Normalization of the sample correlations with the Fisher z transformation.
2. Computation of the required confidence interval for the transformed correla-

tions, in our case the 95% confidence interval.
3. Application of the inverse Fisher z transformation on the resulting range.

At the end, a check is performed on whether the results disprove the original
assumption on homogeneity of the data. For this purpose, an extension of the chi-
square test is used. Given below, there is the summary of the three steps as described
by Hedges and Olkin (1985). Suppose that samples of size n1,…,nk are taken from
k studies; we compute the sample correlations r1,…,rk (in our case we compute the
Spearman correlations and then we transform them with the formula above). The
sample correlations are then transformed by the Fisher z transform:

z r r
r

zi
i

i
i() log ()

()
=

+
-

=
1
2

1
1

Given a set of transformed correlation coefficients z1, …, zn, we can now compute
the mean transformed value as a weighted average of the zis:

214 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

z
k
i

w zi i=
=å 1

where the weight for the i-th experiment is computed over the size ni of sample i
as:

w n
k
j

n
i

i

j

=
-

=
-å

()

()

3

1
3

The 95% confidence interval in the transformed space, [z–, z+], is then determined
using the rule for normal distributions:

z z
k
i

n
z z

k
i

nj i

- += -

=
-

= +

=
-å å

1 96

1
3

1 96

1
3

.

()
, .

()

To determine the 95% confidence interval on the original correlation coefficient,
[r–, r+], we have to compute the inverse Fisher z transform, z–1, on z– and z+:

z x e
e

x

x
- =

-
+

1
2

2

1
1

() ()
()

At the end, we have to check if the original data is indeed homogeneous. To do
so, a chi-square test against the null hypothesis of homogeneity is performed. Given
the sample size and the power of the test, a non-rejection of the null hypothesis
amounts to its acceptance.The Q statistics used in our case is:

Q
k
i l

n z zi i=
=

- -å ()()3 2

We compare it with the chi-square threshold value for k-1 degrees of freedom.
If it is lower, then the dataset is considered homogeneous, otherwise not (Hedges
& Olkin, 1985).

Improving Agile Methods 215

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

12.6.2 Bootstrapping

When applying statistical methods on small sample sizes we run into two kinds of
risks: Either some statistical tests may not be applied at all or significance levels
will not be high and thus results are not reliable. The central limit theorem states that
the mean of k random variables tends to be distributed normally in the limit that k
tends to infinity. And although in practice, convergence tends to be very rapid, so
that for computing confidence intervals and other statistical properties of random
variables one can assume that their means are distributed normally and thus benefit
from the analytical properties of the normal distribution, in software engineering
data samples often are too small for using any normal approximation. In such cases
the computation of reliable confidence intervals is not trivial (there are no analytical
expressions) and involves some tricky strategies that increase in an artificial way
sample size in order to enable the application of traditional statistical techniques.

One such approach is the bootstrap method.
In short, through the re-sampling of existing observations, bootstrapping enables

the estimation of any sample statistic distribution, e.g., mean, median, standard de-
viations to mention some common examples. Although computationally intensive,
it has been shown that bootstrapping works well with small samples (Mooney &
Duval, 1993). The basic assertion behind bootstrapping is that the relative frequency
distribution of a sample statistic (correlation statistic in our case) calculated from
the resamples is an estimate of the sampling distribution of this statistic. Theoretical
work and simulations have shown this is the case when the number of re-samples is
large (1000 is a standard number). The Bootstrap method for estimating confidence
intervals for a statistic S and a data sample X requires the following steps:

Repeat N times: Randomly sample, allowing replacement, the original data •
set, i.e. take randomly some of the original observations (allowing some of
them to be included several times or missing) and construct a new (bootstrap)
sample. This step yields N samples, each randomly and slightly different from
the original sample, as some of the original observations will not have been
sampled whereas others will have been sampled several times. That form of
sampling is sometimes called resampling.
For each of the newly generated samples compute S(X*), where X* is a •
(bootstrap) sample and S our statistic of interest, for example the correlation
coefficient.
Estimate the standard error by the sample standard deviation of the N replica-•
tions. The multiple estimates of the mean and the standard error are used to
define the confidence interval around the mean (Efron & Tibshirani, 1993). In

216 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

general, for each parameter we get a distribution whose we are able to com-
pute the standard deviation, the mean and the 95% confidence interval.
Another possibility is to compute the 2.5% and 97.5% percentiles of the dis-•
tribution obtained by the computation of S(X*), which represent, based on
bootstrapping theory, a good estimate of the 95% error interval for the statis-
tic S, so called Efron’s percentile confidence limit (Bontempi, 2003; Efron &
Tibshirani, 1993).

12.6.3 generalization and over-fitting

In general, the performance of neural networks depends highly on the chosen network
architecture (number of layers, number of neurons, activation function, number of
receptive fields, spread etc.). In constructing such models for software engineering
purposes – as in general for any type of modeling – the two most important criteria
are parsimony and generalization ability of the model, i.e. the model should have
as few parameters as possible and should also provide good predictions for future
inputs. In other words, the model has to find the optimal balance between bias and
variance, also known as bias-variance dilemma. To make this issue more clear and
explain how it is addressed in machine learning we make an artificial example.
Assume we have a data set with 30 data points and want to build a model with five
input features {xi, i=1…5} and one output variable {y} using a RBF network. Our
first attempt could be to choose parameters of an RBF network in such a way that
the root mean square error defined as

RMSE
y y

=
-å ()' 2

30

(y’ is the output predicted by the model) will be minimized: It turns out that it is not
that difficult to build an architecture that not only minimizes the RMSE criterion
but is able to fit our fictitious data set (almost) exactly. It is sufficient to choose a
suitable set of 30 basis functions and then compute weights by solving a system
of linear equations. However, the problem with this solution is clearly that while it
fits exactly the so-called training data it will give poor predictions when used on a
different data set (problem of over fitting or high variance). Therefore, in machine
learning a common approach to evaluate the performance of a network is to split
data into training, validation and test set: Various networks are trained by minimiz-
ing an error function defined with respect to a training set. The performance of the
networks is then compared by evaluating the error function using an independent
validation set, and the network having the smallest error with respect to the valida-

Improving Agile Methods 217

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

tion set is selected. This procedure is called hold out method. Since this procedure
itself leads to some over fitting of the validation set, the performance of the se-
lected network should be confirmed by measuring its error on a third independent
set of data called a test set. This approach guarantees that the minimum of the sum
of bias, which measures the ability of a model to approximate the true relation-
ship, and the variance, which is an indicator of the generalizability of a model, is
reached as it coincides with the minimum of the validation error. Figure 1 shows
that while the RMSE value for the training data decreases as a model is using more
and more parameters for fitting (for example number of radial basis functions for
RBF networks or number of layers and neurons for MLP networks) this is not the
case for the RMSE value evaluated on the validation data: while at the beginning it
is decreasing (as the model’s bias since the approximation of moderately complex
target functions presupposes a certain number parameters) at some point it starts to
increase. At this point a model is enough complex to approximate a target function
fairly well and starts memorizing training data loosing its capability for general-
ization as more parameters are added and used for fitting. On the right side of this
validation boundary, which we may use for defining the optimal complexity of a
model, we enter the over-fitting region where a model will exhibit high variance
and give poor predictions for new data.

The approach for model validation outlined so far works well if data samples
are not very small. However, in our example we have only 30 data points and if we
split them randomly in three equal sets we end up with a training set of 10 points.
This is not enough for training a model if a target function is moderately complex.
Since it is common that data samples in software engineering are of very limited size
we are not able to afford the luxury of keeping aside part of the data for validation
purposes. In such cases we can adopt the procedure of cross-validation (Bishop,
1994). Here we divide the whole data set at random into S distinct segments. We
then train a model using S-1 segments and test its performance by evaluating an
error function on the remaining segment. This is repeated for the S possible choices
for the segment, which is omitted from the training process, and the validation er-
rors are averaged over all S results. If data is very scarce we can go to the extreme
limit of S=N for a data set with N data points, which involves N separate training
runs per model, each using (N-1) data points. This limit is known as leave-one-out
method. While it allows us to use almost all data points for training it requires the
training process to be repeated N times, which under certain circumstances could
involve large amount of processing time. Another advantage of the leave-one-out
method is that when splitting data at random in S sets we could run into the risk that
these sets do not reflect well overall data distribution, i.e. some sets for example
could be populated only by data with specific properties. Imagine the following
scenario: 50% of the data from a software system have one or more defects while

218 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the remaining 50% is defect-free (we may assume that one data point corresponds
to a software module and the target variable encodes a two-class membership). In
such case – if we split data into 2 sets and by chance such split separates perfectly
data with zero and one or more defects – then any model using cross-validation
and aiming at predicting whether or not a module is defect free will have a relative
error of 50% (independent of how complex such model may be).

While there is no general theory behind the structural optimization of the topol-
ogy of neural networks used in this work, they are developed as a result of some
trial and error process. For each set of parameters, that specify a model, we compute
the cross validation error. We keep the set that produces the lowest error and this
topology of the network is deemed optimal. For the MLP we start with 2 neurons
in the hidden layer and keep adding one neuron at a time until the leave-one-out
cross validation error (LOOV-RMSE) stops decreasing. Its minimum value deter-
mines the optimum number of neurons to choose for the hidden layer. For RBF we
do exactly the same: We start with one receptive field and add one at a time until
the cross-validation error stops decreasing. We repeat this procedure for a range of
spread parameters and keep the spread and number of receptive fields that return the
absolute smallest cross-validation error. The same applies to GRNN: we minimize
again the LOOV-RMSE by optimizing the spread parameter of the network.

12.7 liMitAtions of the eXperiMents

It is needless to say that in order to consolidate the findings of this analysis and
transform them into usable models and recommendations to developers and manag-
ers several replications are required. Moreover, we use a novel approach for data
collection, which does not require an active involvement of developers and thus is
well suited for agile environments. This approach is able to provide a high granular-
ity of product and process data but a quantification of the improvement compared
to manually collected data has to be carried out in a future experiment. All models
for effort prediction and quality evaluation proposed and validated in this research
have been built using two software projects in a particular XP environment and all
possible threats to external validity have to be considered carefully. In particular
we are faced with the following threats:

Generalizability of the settings of the case studies: since the development •
process is a specific version of XP we cannot conclude that the results ob-
tained from this study also hold in different XP or agile environments.
Generalization with respect to subjects: the participants of the case studies •
are in part master students; it is questionable whether or not they represent

Improving Agile Methods 219

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the average software developer in industry. Thus, further investigation with
a randomized sample of developers is needed to analyze to which degree our
findings are biased by the selection of the subjects.
Most of the participants of the study have been exposed to • XP for the first
time. We do not control the impact of a learning curve on our results. It is re-
ferred to a future study if experienced XP developers would have performed
in the same way.

As for the construction to validity of this research there remain some important
issues we have to be aware of and clarify in the future:

We observe that for both case studies effort data tend to form clusters; it •
would be interesting to develop prediction models for single clusters and to
analyze whether such approach is superior to the one proposed in this work.
Due to small sample sizes we could not perform this analysis in the current
study. Such clusters could indicate that prediction models depend for exam-
ple on single developers and/or different parts of a software system. With our
approach we could easily develop models customized for single developers/
development teams and/or parts of a project. This idea is interesting as it ad-
dresses the heavy dependence of estimation models on many human factors
and definitely deserves more exploration in the future.
We develop regression models and neural networks for comparing global •
with incremental approaches. However, there are other promising modeling
techniques in effort estimation such as Bayesian networks, classification and
regression trees or hybrid models. They could possibly give different results
and limit the validity of our findings to a subset of possible models.
The choice of the CK design • metrics as predictor variables may also have
a crucial impact for the results obtained by incremental and global models.
Other choices could favor one approach over the other and give again differ-
ent conclusions.
To do justice to global models we have to note that we use only one project for •
model building and use such model for effort prediction on a second project.
In real life settings one would possibly use more past projects for the purpose
of model building. Such model may be more reliable and stable as it averages
data from several projects and becomes less influenced by characteristics of
one particular dataset. Some researchers argue that in order to calibrate and
stabilize properly an estimation model they need at least 10 (Boehm, 1981) or
15 (Shepperd & Schofield, 1997) projects. It remains to future experiments to
determine whether a global model derived from a bunch of historic projects
would be competitive to the proposed incremental approach.

220 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The conclusions we draw depend strongly on the definition we give of pro-•
ductivity and internal software quality and its usefulness and validity in in-
dustry. As discussed, the definition we used for productivity is adequate for
the context of this case study. Needless to say, it would be interesting to run
other studies using this definition but also a definition based on other param-
eters, for instance function points. The internal quality metrics we use are
also widely used in other studies. However, it would be important to take
into account also other, high-level quality measures, for instance number of
defects.

12.8 suMMing up

As said in the introduction we cannot perform a statistical analysis to check whether
or not the results we obtain from the two experiments generalize. However, we made
a number of interesting observations, which provide some evidence that the findings
we obtain may generalize to other Agile contexts. First, in both experiments the trends
we observe are similar. For example, agile practices such as refactoring improve
internal code quality metrics and development productivity for both projects. Also
the proposed incremental effort prediction models outperform traditional estimation
techniques in both case studies. Second, both projects have been developed using
a customized version of XP, which includes most of common Agile practices. We
expect that other Agile contexts, which use a similar set of development practices
would yield similar results. We have also learned that while the findings of the two
projects are quite similar one has to be cautious when applying models built for one
project to another project. It seems that there exist no – at least for Agile develop-
ment – universal laws that govern the process of software production. The best we
can do is to seek for models, which can be easily adapted for a specific development
context. We think that due the Agile nature of projects (fast changing requirements,
technology, and business domain) we cannot use static models that work across
spatial and temporal boundaries, but rather have to derive context specific models
(for example the incremental effort estimation models we propose).Overall, the
findings of this research can be summarized as follows:

Refactoring improves important internal measures for reusability. Therefore, •
refactoring has a positive effect on reusability and for sure promotes ad-hoc
reuse in XP-like development environments.
Refactoring improves both development productivity and code quality. This •
confirms and is in line with claims that refactoring is a best practice for de-
veloping and maintaining software systems.

Improving Agile Methods 221

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• XP projects tend to confine entropy of software systems as we can see a mod-
erate growth (or even decrease) of maintainability indicators during project
evolution.
Given the availability of data collected in real-time during development we •
propose incremental effort prediction models. In practice such models can be
used to estimate effort for future development iteration and prove to be more
accurate than traditional estimation methods.

It seems to be rather difficult to build general purpose models and recommenda-
tions that work across different application domains and organizations; in particular, it
appears that there is no global or universal type of model or set of predictor variables
for a specific problem, but they rather change from one project to the next (Nagap-
pan et al., 2006). In this light, the task of a good modeler is not to seek developing
a universal model, but to come up with a methodology for building auto-adaptive,
project specific models in a fast and automatic way during project evolution.

Specific models built individually for a specific project and extracted from an
organization’s own data pool and targeted to its development process show very
promising results. It remains an open question whether or not we are able to build
a general software engineering theory, which may explain underlying principles of
software engineering (Hannay et al., 2007).

The particular challenge in empirical software engineering lies in the fact that on
one hand experimentation is extremely difficult – due to high costs and the presence
of many factors that are hard to control – and on the other hand domain knowledge
is very limited. This has two implications:

First, due to the lack of massive experimentation and therefore availability of –
both qualitative and quantitative - data theories cannot be validated in a sufficient
and scientifically acceptable way, thus implying that little knowledge has been
developed so far.

Second, data analysis is particular difficult in software engineering as it is con-
strained by a lack of domain knowledge and at the same time limited amount of
available data. Thus, for a researcher often the only choice is develop in a trial and
error manner some models that work for a particular environment, but lack either
statistical strength or expressiveness and generalization capabilities.

222 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

12.9 finAl considerAtions

12.9.1 difficulties

Here we propose a wrap-up of lessons learned:

1. Do a thorough readiness assessment. Before committing to help any orga-
nization transition to XP, thoroughly assess how prepared the organization is
to make the transition.
1. Obtain high-level executive support. Executives with the most power

in the organization need to be recruited from day one to help make an
XP transition run smoothly.

2. Ensure interdepartmental cooperation. Managers and employees in
different departments must cooperate. If they don’t, someone with power
(such as an executive) must step in to establish the necessary level of
cooperation.

3. Increase communication with management. Executive management
must communicate regularly with everyone who is implementing XP
within the organization.

4. Define success. We must define what success on a project means and report
our findings, on a regular basis, to management. This is particularly important
when trying to show how a new process is better than an older process.

5. Make collaboration explicit. We must be explicit in how we expect cus-
tomers to collaborate with developers before we begin the transition.

6. Ensure committed resources. Before the project begins, everyone
who is critical to the success of the project must commit to spending
sufficient time on it. This includes ensuring that customers and analysts
have enough time to write user stories, help prioritize work, and assess
whether features have been programmed acceptably.

7. Ensure sufficient control. Programmers must have the ability to con-
tinuously integrate and evolve whatever is essential to the system (such
as an enterprise database).

12.9.2 new practices proposed

These new practices resulted primarily from needing to properly include management
on projects and ensure that project communities live up to XP spirit of continuous
improvement. Like many of the ideas in XP, most of these practices are not new,
though some have names that may be new to the reader. The six new practices
proposed are:

Improving Agile Methods 223

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1. Readiness assessment. Continuously evaluate whether an organization and
project community are ready to do XP.

2. Project community. Identify and include people who affect a project or are
affected by the project.

3. Project chartering. Ensure that what a project community will build is in
harmony with the organization needs.

4. Test-driven management. Inspire, compel, enlighten, and align a project
community by defining SMART (specific, measurable, achievable, relevant,
and time-based) objectives.

5. Retrospectives. Include a rigorous, future-focused process for capturing les-
sons learned, best practices in a context, and multiple perspectives on how to
improve a software development environment.

6. Continuous learning. Continuously improve team skills to deliver greater
value and enjoy at the same time.

Readiness Assessment

Readiness assessments typically last one to two days and are conducted by experts
in XP. An expert begins an assessment by talking to a project or process sponsor:
someone who can describe a project, the people involved in the project (or those
likely to be involved), and how those people fit into the organization. Following
this meeting, the expert meets with individuals in small groups of three to five
people. During each meeting, the expert explains how XP works and both ask and
answer many questions.Below are questions an expert commonly asks during an
assessment:

Can we establish the kind of programming environment • XP requires (stag-
ing machines, pair-programming workstations, a database we can actually
evolve, version control that is under our control, etc.)?
Will subject matter experts (SMEs) be available for the project? Can we ex-•
pect to get ongoing feedback from end users of the evolving software?
Is there a dedication to continuous improvement? Is there a commitment to •
doing retrospectives both during and at the end of the project?
What is the organizational culture and structure like? Will other departments •
within the organization support change or construct barriers to change? What is
the history of other changes that have taken place within the organization?
Will the project community for this project have the right people?•

During a typical assessment, an expert will meet with project sponsors, program-
mers, analysts, testers, database administrators (DBAs), project and product man-

224 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

agers, domain experts, version control (or source control management) managers,
software security people, architects, facilities workers (who will be in charge of
setting up an open workspace), and process people. When necessary, an expert will
also meet with auditors (or folks involved in compliance endeavors) and members
of human resources (HR) and legal departments.

Project Community

A few years after publishing Extreme Programming Explained, Beck introduced
the term whole team into the XP vocabulary. The notion is that software teams need
the right people in order to be successful. It is found to be useful to replace the term
whole team with project community.

While the idea connected with the term team is being a constrained set of
people, the term community implies something broader. Communities have active
members who may be at the center of an effort and less active members who may
be on the periphery of the effort. Lawyers, auditors, and facilities folks are often on
the periphery of an XP project community, yet they may play important roles on a
project. If a project community fails to include important people inside or outside
the organization, it will often face numerous problems that can delay or even stall
a project.

David Schmaltz (Kerievsky, 2004) says, “The primary issue facing every project
is the lack of awareness of its own community-ness. That’s why the first steps are
well focused upon increasing this awareness within the community.”

Awareness of a project community begins during project chartering. An XP coach
leads people through a session to identify everyone within the project community.
This exercise nearly always leads to a list of names that fills up several whiteboards.
Schmaltz points out that a project community is “always bigger than you think.”
During or after a project, most project communities realize that they failed to in-
clude someone important. So the practice of defining the project community is an
ongoing endeavor that people improve at over time.

Project Chartering

After seeing XP work successfully on small projects and unsuccessfully in a number
of great project, emerged the need of finding tools able to provide chartering for XP
projects.Project chartering helps people answer questions, such as:

Is the idea for the project worthwhile?•
How does the project further the organization’s vision/mission?•

Improving Agile Methods 225

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

How would we know if the project is a success?•
Who is part of the project community?•

Like many XP technical practices, project chartering is an ongoing endeavor. Writing
and revising a charter helps establish the following project characteristics:

• Vision: A desired future
• Mission: The strategy for obtaining the vision
• Project community: The people involved in the endeavor
• Values: Concepts to guide decision making and conduct
• Management tests: Measures of success or failure that align and inspire a

project community
• Context diagram: A depiction of key events flowing into or out of a software

system or community
• Community agreements: Agreements shared and practiced by a project

community

Test-Driven Management

How does a project community learn whether its project work is successful? The
same way programmers learn whether their code works: tests.

Test-driven management directs the specification of management tests, which
are statements that indicate a measurable, time-limited goal, framed in a binary
manner. We either achieve the management test or we fail. Good management tests
are SMART.

Management tests are statements about the world external to the project, treat-
ing the project as a boundary of responsibility and authority. They avoid specifying
ways in which external effects (i.e., things that occur outside the boundary of the
project and the software) should be achieved. In other words, good management
tests set a destination, but don’t specify how to get there.

Management tests provide an excellent way for a project community to under-
stand what unites it. This echoes Tom DeMarco and Timothy Lister’s observation
(DeMarco & Lister, 1999): “The purpose of a team is not goal attainment, but goal
alignment”. Management tests create goal alignment by delineating how and when
success will be measured, enabling individuals to understand the effects of their
own actions.

226 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Retrospectives

Unlike a more typical review session, a retrospective does not yield a list of items
but continues on to establish next steps, accountabilities, and measures for making
improvements happen. The XP approach to retrospectives is based on the work of
Norman Kerth (2001).

XP retrospectives are conducted at the end of every iteration and release. An
iteration retrospective is a study of what is working well, what needs improvement,
and who will take ownership of an issue to help find its resolution. If a project
community iterations are one or two weeks long, iteration retrospectives will last
between a half hour and two hours. Members of a project community, including the
coach and project manager, help facilitate iteration retrospectives.

Release retrospectives focus on issues, events, and lessons learned across an
entire release. Typical release retrospectives look at either one release (generally
three months long) or two releases (generally six months long). Release retrospec-
tives tend to last anywhere from a half day to two days. It is best to have someone
who is not part of the project community facilitate the retrospective.

One of the most popular ways for a project community to review and learn from
its collective experience of a release is to create a timeline. Timelines are made by
listing the months of a release on posters (which span the length of a large wall) and
then letting participants write up their experiences on cards and attach those cards to
times on the timeline when their experiences occurred. Timelines provide a wealth
of information that can uncover new insights and ideas for improvement.

Continuous Learning

Continuous learning means actively and regularly learning new techniques and skills.
While pairing helps people acquire new skills from others within the project com-
munity, continuous learning focuses individuals and groups on important technical
and nontechnical subjects that can help them improve at their jobs.

XP project communities usually hold weekly or biweekly study sessions. Typical
sessions often involve studying an important piece of literature or some significant
items in a code base.

In environments where people are not encouraged to learn new skills or improve
on existing skills, resume-based development (RBD) often takes hold. A learning-
deprived employee wants to get some technology or experience on his or her resume
so badly that he or she finds some way to convince the project community to use

Improving Agile Methods 227

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

that technology, even if it isn’t actually a good fit. This is bad, as it often leads
to overly complicated and costly solutions that developers are afraid to change.
Continuous learning provides an effective way to manage this risk and also helps
a project community find enjoyment in personal growth.

12.10 AcKnoWledgMent

The authors would like to thank Prof. Pekka Abrahamsson of the University of
Helsinki, previously at VTT, for providing part of the data used in the analyses
presented in this chapter.

12.11 references

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
et al. (2004). Mobile-D: An agile approach for mobile application development.
19th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04).

Basili, V. R., Briand, L., & Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10), 751–761. doi:10.1109/32.544352

Beck, K. (1999). Extreme programming explained: Embrace change. Addison-
Wesley Professional.

Bishop, C. M. (1994). Neural networks for pattern recognition. Oxford University
Press.

Boehm, B. W. (1981). Software engineering economics. Prentice-Hall.

Boehm, B. W., Brown, J. R., & Kaspar, J. R. (1978). Characteristics of software
quality. TRW series of software technology.

Bois, B. D., & Mens, T. (2003). Describing the impact of refactoring on internal
program quality. International Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA).

Bontempi, G. (2003). Resampling techniques for statistical modeling. Retrieved on
November 11, 2008, from http://www.ulb.ac.be/di/map/gbonte/ecares/boot1.pdf

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern
oriented software architecture. Wiley.

228 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chidamber, S., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6), 476–493. doi:10.1109/32.295895

Cohn, M. (2006). Agile estimating and planning. Pearson Education.

Counsell, S., Mendes, E., & Swift, S. (2002). Comprehension of object-oriented
software cohesion: The empirical quagmire. 10th International Workshop on in
Program Comprehension.

Dandashi, F., & Rine, D. C. (2002). A method for assessing the reusability of
object-oriented code using a validated set of automated measurements. 17th ACM
Symposium on Applied Computing (SAC 2002).

DeMarco, T., & Lister, T. (1999). Peopleware: Productive projects and teams. Dorset
House Publishing Company.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000). Finding refactorings via change
metrics. 15th ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’00).

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman
and Hall.

Fenton, N. E., & Pfleeger, S. H. (1997). Software metrics: A rigorous & practical
approach. PWS Publishing Company.

Fowler, M. (2002). Refactoring improving the design of existing code. Addison-
Wesley Professional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Ele-
ments of reusable object-oriented software. Addison-Wesley.

Halstead, M. (1977). Elements of software science. Elsevier.

Hannay, J. E., Sjoberg, D. I. K., & Dybå, T. (2007). A systematic review of theory
use in software engineering experiments. IEEE Transactions on Software Engineer-
ing, 33(2), 87–107. doi:10.1109/TSE.2007.12

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic
Press.

Henry, S., & Kafura, D. (1981). Software structure metrics based on information
flow. IEEE Transactions on Software Engineering, 7(5), 510–518. doi:10.1109/
TSE.1981.231113

Improving Agile Methods 229

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical inference. Wi-
ley.

Hu, Q. (1997). Evaluating alternative software production functions. IEEE Transac-
tions on Software Engineering, 23(6), 379–387. doi:10.1109/32.601078

Hubert, M., & Verboven, S. (2003). A robust PCR method for high-dimensional
regressors. Journal of Chemometrics, 17(8-9), 438–452. doi:10.1002/cem.783

Humphrey, W. (1995). A discipline for software engineering. Addison-Wesley
Professional.

Hunter, J. E., & Schmidt, F. L. (1990). Methods for meta-analysis: Correcting error
and bias in research findings. Sage.

Johnson, P. M., & Disney, A. M. (1998). Investigating data quality problems in
the PSP. 6th International Symposium on the Foundations of Software Engineering
(SIGSOFT’98).

Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., et al. (2003).
Beyond the personal software process: Metrics collection and analysis for the differ-
ent disciplined. 25th International Conference on Software Engineering, Portland.

Kataoka, Y., Imai, T., Andou, H., & Fukaya, T. A. (2002). Quantitative evaluation of
maintainability enhancement by refactoring. International Conference on Software
Maintenance.

Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods. Oxford Uni-
versity Press.

Kerievsky, J. (2004). Refactoring to patterns. Addison-Wesley Professional.

Kerth, N. L. (2001). Project retrospectives: A handbook for team reviews. Dorset
House Publishing Company.

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme program-
ming in context: An industrial case study. Agile Development Conference.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997).
Metrics and laws of software evolution-the nineties view. 4th International Software
Metrics Symposium.

Lehmann, E. L. (1986). Testing statistical hypotheses. Springer-Verlag.

230 Improving Agile Methods

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Mair, C., Shepperd, M., & Jørgensen, M. (2005). An analysis of data sets used to
train and validate cost prediction systems. 1st International Workshop on Predictor
Models in Software Engineering (PROMISE 2005).

Marchesi, M., & Succi, G. (2003). Extreme programming and agile processes in
software engineering. Springer.

McCabe, T. (1976). Complexity measure. IEEE Transactions on Software Engineer-
ing, 2(4), 308–320. doi:10.1109/TSE.1976.233837

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality.
US Rome Air Development Center Reports.

Meyers, J. L., & Well, A. D. (2003). Research design and statistical analysis. Law-
rence Erlbaum Associates Inc.

Mišić, V. B., & Tešić, D. N. (1998). Estimation of effort and complexity: An object-
oriented case study. Journal of Systems and Software, 41(2), 133–143. doi:10.1016/
S0164-1212(97)10014-0

Mooney, C., & Duval, R. (1993). Bootstrapping. A nonparametric approach to
statistical inference (p. 95). In Quantitative Applications in the Social Sciences.
Sage Publications.

Myrtveit, I., & Stensrud, E. (1999). A controlled experiment to assess the benefits
of estimating with analogy and regression models. IEEE Transactions on Software
Engineering, 25(4), 510–524. doi:10.1109/32.799947

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component
failures. 28th International Conference on Software Engineering.

Pearson, K. (1907). Mathematical contributions to the theory of evolution. XVI. On
further methods of determining correlation. Drapers’ Company Research Memoirs
(Biometric Series 4). Cambridge University Press.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit for software development managers. Addison-Wesley Professional.

Rosenthal, R. (1991). Meta-analytical procedures for social research. Sage.

Shepperd, M. C., & Schofield, C. (1997). Estimating software project effort us-
ing analogies. IEEE Transactions on Software Engineering, 23(11), 736–743.
doi:10.1109/32.637387

Sillitti, A., Janes, A., Succi, G., & Vernazza, T. (2003). Collecting, integrating, and
analyzing software metrics and personal software process data. EUROMICRO.

Improving Agile Methods 231

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Tichy, W. (1998). Should computer scientists experiment more? IEEE Computer,
31(5), 32–40.

van Deursen, A. (2001). Program comprehension risks and opportunities in extreme
programming. 8th Working Conference on Reverse Engineering (WCRE 2001).

van Emden, E., & Moonen, L. (2002). Java quality assurance by detecting code
smells. 9th Working Conference on Reverse Engineering.

endnotes

1 http://portal.acm.org/ (accessed on November 11, 2008)
2 http://www.ieee.org/ (accessed on November 11, 2008)
3 http://www.agilemanifesto.org/ (accessed on November 11, 2008)

232 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 13

Effort Estimation
Barbara Russo

Free University of Bozen-Balzano, Italy

Marco Scotto
Free University of Bozen-Balzano, Italy

Alberto Sillitti
Free University of Bozen-Balzano, Italy

Giancarlo Succi
Free University of Bozen-Balzano, Italy

Raimund Moser
Free University of Bozen-Balzano, Italy

13.1 effort estiMAtion in Agile environMents
using Multiple projects

As in more traditional development processes also in agile and iterative methodolo-
gies, estimation of development effort without imposing overhead on the project
and the development team is of paramount importance. This analysis proposes a
new effort estimation model aimed at iterative development environments, which
are not suitable for description by traditional prediction methods. We propose a de-
tailed development methodology, discuss a number of detailed architectures of such
models (including a wealth of augmented regression models and neural networks)
and include a thorough case study of XP carried out in two real semi-industrial
projects. The results of this research evidences that in the XP environment under

DOI: 10.4018/978-1-59904-681-5.ch013

Effort Estimation 233

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

study the proposed incremental model outperforms traditional estimation techniques
most notably in later iterations of development. Moreover, when dealing with new
projects, the incremental model can be developed from scratch without resorting
itself to historic data.

Effort prediction has always been perceived as a major topic in software engineer-
ing. The reason is quite evident: many software projects run out of budget and schedule
because of an underestimation of the development effort. Since the pioneering work
by Putnam (1978), Boehm (1981; 200) and Albrecht & Gaffney (1983), there have
been many attempts to construct prediction models of software cost determination.
An overview of current effort estimation techniques, their application in industry,
and their drawbacks regarding accuracy and applicability can be found in (Lederer
& Prasad, 1995; Boehm et al., 2000; Sauer & Cuthbertson, 2003; Moløkken-Østvold
et al., 2004). The most prominent estimation model comes in the form of the so-
called COCOMO family of cost models (Boehm et al., 1995). While capturing the
essence of project cost estimation in many instances, they are not the most suitable
when we are faced with more recent technologies and processes of software devel-
opment such as agile approaches and small development teams. Moreover, models
such as COCOMO II depend quite heavily on many project-specific settings and
adjustments, whose impact is difficult to assess, collect, and quantify (Menzies et
al., 2005). What makes the situation even worse, is the fact that in agile processes
an effective collection of such metrics and the ensuing tedious calibration of the
models could be quite unrealistic. As in other fields of software engineering a major
problem in the development of effort estimation models is scarcity of experimental
data. Most case studies, surveys and experiments on effort prediction found in the
literature suffer from at one or more of several drawbacks:

In general, data coming from industrial environments are very limited and •
difficult to collect. Therefore, different studies have used the same dataset
(for example the COCOMO’81 or Kemerer dataset) for analysis and valida-
tion raising concern on the generalization capabilities and/or bias of the find-
ings (Mair et al., 2005).
Most of the studies conducted in industrial environments, in particular for •
agile development processes, use data gathered by post-mortem surveys, and
this may raise concerns about their soundness (Layman et al., 2004).
The collected data are often very coarse-grained and sometimes of low qual-•
ity. This is mainly because data collection is performed manually by devel-
opers and researchers and, as any human activity, error prone and unreliable.
Moreover, developers do not like to spend their time on other activities than
development; therefore, asking them to trace their own development effort is
likely to produce data of very poor quality (Johnson & Disney, 1998; Johnson

234 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

et al., 2003). As an example, due to this fact the Personal Software Process
(PSP) methodology is difficult to implement in industrial settings.
Any manual data collection process introduces an artifact in the develop-•
ment process that is particularly serious in agile environments where all
the “non-directly productive activities” should be banned (Poppendieck &
Poppendieck, 2003).
Traditional • effort estimation models are static as they are built at one point in
time using historical data and used for prediction of future projects. However,
in agile development with its fast plan-implement-release cycle there is a
risk that such models are outdated and not able to adapt to high volatility of
requirements, technologies, personnel or other factors.

As far as we know, no specific models have been developed for agile and itera-
tive development processes. Only a few studies deal with the idea of updating or
refining prediction models during project evolution and using effort of previous
development phases as predictor variable. Closest to our work is a recent study by
(Trendowicz et al., 2006) who incorporates into a hybrid cost estimation model
feedback cycles and possibility for iterative refinement. MacDonell and Shepperd
(2003) use project effort of previous phases of development as predictor for a
simple regression model and show that it yields better results than expert opinion.
However, both studies do not address the peculiarities of agile processes, use a
different approach for model building and do not provide any comparative studies
with traditional models. Alshayeb and Li (2003) investigate the correlation between
object-oriented design metrics and effort in agile environments, but do not consider
iterative model building or refining.

In general, traditional effort estimation models work as follows. Some predic-
tor metrics are collected or estimated at the beginning of a project and fed into a
model. The model, which is usually built upon historic data using similar projects,
predicts the total development effort. While this approach is reasonable for tradi-
tional, waterfall-like development processes where common predictor metrics such
as function or feature points, software size, formal design specifications, design
documents, etc. are known at the beginning of a project and typically do not change
too much throughout the overall project this is not the case for agile development
processes. In agile development, a project is realized in iterations and requirements
usually change from one iteration to another. At the end of each iteration, develop-
ers release the software to the customer who will eventually require new features,
and change or removal of already implemented functionalities. At the beginning of
the next iteration developers will negotiate with the customer about requirements
and develop a plan (design document) for the next iteration (in XP this process is
referred to as planning game). Therefore, standard predictor metrics proposed in

Effort Estimation 235

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the literature, in particular the ones derived from design documents, are the only
known at the beginning of the next development iteration and not a priori for the
whole project.

Being cognizant of the existing challenges as outlined above, the key objectives
of our study are outlined as follows:

We use a novel, non-invasive, tool-based approach for collecting fine grain •
effort data in a close-to an industrial, XP-like environment and integrate them
with design metrics (Sillitti et al., 2003). In particular, our non-invasive data
collection process ensures: High reliability of data, as the collection is done
automatically and does not involve manual activities. Absence of bias: in
agile processes manual data collection on effort (such as done with spread-
sheets) may alter the nature of the method itself resulting in biased data.
We consider a proposal for a new, incremental effort prediction model for •
iterative software development processes.
We carry out a thorough experimental validation of the incremental models •
and offer a comparative analysis with the existing monolithic (global) predic-
tion models.
We exploit the effectiveness of two main categories of realization of the mod-•
els such as regression (linear as well as a number of modifications including
its robust version) and neural networks. The performance of these models is
discussed along with a detailed comparative analysis.

Given the objectives above we aim at answering the following research ques-
tions:

Out of two classes of prediction models based on neural network respective •
regression techniques, which is the best model for predicting effort in itera-
tive development?
Given iterative software development processes, are incremental • effort pre-
diction models more efficient than global, monolithic models?

The results of this research are of interest for managers, developers, and custom-
ers. Developers can use the proposed incremental model for estimating effort start-
ing from second iteration of the development process. In particular, junior and less
experienced programmers may profit from such early estimates as they gain more
confidence in their subjective assessment by comparing model forecasts with their
own and actual effort data at the end of each iteration. Managers may benefit from
having a more reliable tool to allocate resources, to verify if the project is kept on

236 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

track and to make - if necessary - early adjustments to cost estimation or resched-
ule the project plan. This seems to be a crucial point in software engineering as in
general, managers tend to be over-optimistic and over-confident in estimation and
scheduling (Conrow & Shishido, 1997; Glass, 1998; Lee, 1993), and are normally
reluctant to move from initial estimates and schedules when progress slips (Mc-
Connell, 1996). An estimate should be dynamic – as the project progresses more
information becomes available – and therefore estimates more accurate (Ahituv et
al., 1999). And finally, customers may obtain more accurate information on how
many requirements can be implemented within the next iteration: they may use such
information for prioritizing and selecting requirements.

Furthermore, empirical studies like this contribute to the discussion on which
type of prediction models is the best for agile development. In addition, we enrich
the body of effort estimation models by proposing a new methodology for any kind
of iterative process. Clearly, further investigation is required to ascertain whether
the results we have obtained can be generalized to a larger class of XP-like and
other agile projects.

13.2 effort estiMAtion Models: An overvieW

13.2.1 global prediction Models

Let us highlight the essence of traditional, global prediction models encountered
in software engineering (Putnam, 1978; Boehm et al., 2000; Briand & Wieczorek,
2000; Jørgensen & Shepperd, 2007). At the beginning of a software development
project, we identify several meaningful predictor variables and collect their val-
ues. A list of predictor variables could involve size, design metrics, qualitative and
quantitative development factors (including type of development environment, ap-
plication domain, experience of developers, organizational structure, etc.). Most of
the time the models are derived from historic data and used to predict development
effort (say, point estimation or some probability distribution) for similar projects.
There are crucial model development and utilization issues that have to be clearly
underlined:

The choice of the predictor variables. This task is highly demanding as at •
the beginning of the project we may not know which variables of the project
could have a high impact on the assessment of the development effort.
While we might be tempted to collect a lot of variables (in anticipation of a •
proper compensation for the shortcoming identified so far), the process could
be time consuming, costly, and at the end lead to overly complicated models

Effort Estimation 237

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

whose development (say, estimation of parameters) could be quite complex
and inefficient (Chen et al., 2005).

In the construction of global models we rely on historic data or/and expert opin-
ion. This requires that first one has to gain experience and collect data for at least
one project and only afterwards she can construct the model and apply it to similar
projects. This is not only a long-term process, but comes with some risk that given
the unstable and highly non-stationary environment of software development, it may
lead to models whose predictive capabilities are questionable. Moreover, software
industry is moving into a direction where projects are not completed but proceeding
with new updates and deliveries in response to market demand. In such scenario it
is not obvious when to freeze the project for model building purposes.

Agile software development brings another problem to traditional effort predic-
tion models. Predictor variables usually are not known at the beginning of a project,
but become available at the beginning of each iteration as requirements change
often and fast. Under these circumstances a long-term model of effort estimation
that naturally relies on information available at the beginning of a project seems
to be of limited applicability. However, one could still contemplate the use of the
long-term, global cost estimation model and use it for reference purposes.

13.2.2 incremental prediction Models

The main idea of an incremental prediction model is that it is built after each iteration
instead of at the end of a project. Thus, it is able to accommodate to any changes
during development in a much smoother way than a global model. Moreover, we
endow the incremental model with a dynamic character by using the estimates of
effort reported in the previous iterations that are treated as an additional input. In
this way, effort prediction does not only depend on the usual predictor variables but
also on the past effort distribution itself, which may make a significant contribu-
tion for explaining future effort variation. The incremental model operates only for
iterative effort prediction as it cannot be used to predict total development effort at
the beginning of a project.The essence of the incremental model can be explained
as follows:

Model building: At the end of each iteration a new model is built using as •
input the predictor variables of that iteration and development effort of previ-
ous iterations. Thus, the main difference to the global model is that this model
is dynamic in the sense that it depends on the phase of development it is built
and past effort distribution.
Iterative effort prediction: At the beginning of a new iteration predictor •

238 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

variables are collected and fed together with past effort into the newly built
incremental model. The output of the model produces an estimation of the
cumulative development effort starting from iteration one to the end of this
iteration.

When comparing incremental models versus global ones, let us stress the following
essential differences:

An incremental model is constantly adjusted during development and evolves •
with the project; therefore, it can much better accommodate to any changes
in technology, requirements, personnel, tools, working environment, or other
occurring during project evolution.
The relative impact of different predictor metrics on • development effort is
likely to change during project evolution. An incremental model can select
the best features for each single iteration; hence, it should give more accurate
and reliable estimations.
The incremental model is useful and applicable right from second iteration •
of development. There is no need for historic data and also no risk that the
model is outdated. In particular, this is very valuable in highly volatile do-
mains where it is unlikely to find stable and general models.
Medium and small companies usually get development projects for very dif-•
ferent business environments and domains. They often face the problem to
have no expertise in the project’s problems or solution domains. An incre-
mental effort estimation model can help produce more reliable estimates and
raise confidence in their personal judgments only after a few development
iterations.

Clearly, with an incremental effort prediction model a company cannot estimate
the total development effort at the beginning of a project. This may be an important
issue for a company that is trying to decide whether they want to take on a given
software project. However, in today’s software industry companies often negotiate
with customers which and how many features have to be developed for a given budget
and period of time. In such scenarios an incremental model may help a software firm
to get a reliable estimate of the number of features that can be implemented within
one development iteration. A realistic estimate is important for a strong marketing
strategy and for being at the same time competitive and keeping business terms.

Effort Estimation 239

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

13.2.3 Models of effort prediction

Given the two fundamental modes of incremental and global modeling, we con-
template several detailed architectures of the models considering various predictor
variables and forms of mapping from these variables to the predicted development
effort. In software engineering we can encounter many types of effort prediction
models. We can recall here empirical models based on subjective judgment (An-
gelis et al., 2001; Shepperd & Schofield, 1997), regression models (Miyazaki et
al., 1994), regression trees, neural networks (Srinivasan & Fisher, 1995), theory
based models such as COCOMO II (Boehm et al., 2000), so-called hybrid models
(Trendowicz et al., 2006), and more recently Bayesian nets (Pendharkar et al.,
2005). In this research, we consider only algorithmic models that can be effectively
constructed (without human interaction) from quantitative data. Models based on
Bayesian inference could also work well for iterative development environments
as prior probabilities could be updated and adjusted as the project evolves (Pend-
harkar et al., 2005); however, they require manual operation and usually call for a
larger number of predictor variables (both quantitative and qualitative data). In agile
environments manual collection of qualitative and quantitative data is difficult to
realize, as such activities are not in line with a process that emphasizes: individuals
and interactions over processes and tools1. Therefore, considering the constraints
imposed by data collection in agile environments we restrict our analysis to two
different families of prediction models, which are representative for common types
of approaches in software engineering:

Regression models that are easy to understand and develop; we can use them •
as a reference model (straw man) to compare with other, more advanced
models. Note that most effort estimation methods considered in the past are
based on regression models (Jørgensen & Shepperd, 2007).
The use of neural networks.•

As starting point we consider the oldest and most studied type of neural networks:
a feed forward Multilayer Perceptron Neural Network. For network training we use
a fast variant of the backpropagation algorithm, namely the Levenberg-Marquardt
training method (Hagan & Menhaj, 1994). It works well if the network size – as in
our case - is small to medium. Since we apply MLP’s on small samples and use 5
input features a high number of layers and connections would allow the network
to memorize data; this would yield an almost zero training error but a large cross-
validation or generalization error (over fitting). Therefore, we start with the simplest
MLP network with a single hidden layer of neurons with hyperbolic tangent activa-
tion function and a linear output neuron. Radial Basis Functions (RBF) provides

240 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

a flexible way to generalize linear regression functions. RBF networks exhibit
properties of universal approximation (Girosi & Poggio, 1990). An RFB network
functions as follows: First, input data are mapped in a non-linear way using basis
functions (we use Gaussians); then, the final response variable is built as a linear
combination of the output of the basis functions with the network weight vector.
RBF have only been recently used for effort estimation (Shin & Goel, 2000) and
show some promising results. The difficulty with RBF models is the model selection
process: RBF are completely specified by 3m parameters where m is the number
of basis functions (we use also the terms receptive fields or neurons), which may
be considerably high for fast fluctuating target functions. Usually a modeler has to
specify the type and number of radial basis functions and the center and spread for
each basis function. There is no mathematical theory that determines the topology
of such network by using for example statistical properties of the data set to be
modeled. We use the strategy proposed by (Chen et al., 1991): initially the hidden
layer has no neurons. The following steps are repeated until the network’s mean
squared error falls below an error goal or a prefixed maximum number of neurons
have been added to the network:

The network is simulated•
The input vector with the greatest error is found•
A receptive field is added with weights equal to that vector•
The linear layer weights are redesigned by solving a set of linear equations•

The last model we analyze is the so-called General Regression Neural Network
(GRNN), which has been proposed by Specht (1991). The principal advantages
of GRNN over back-propagation networks are fast learning (the network does not
require iterative adjustments of the parameters) and convergence to the optimal
regression surface (even if the data sample is small and noisy). However, GRNN
cannot converge to poor solutions responding to local minima of the error criterion,
which may happen with iterative techniques such as back-propagation multilayer
perception.

In general, the performance of MLP, RBF, and GRNN models depends highly
on the chosen network architecture (number of layers, number of neurons, activa-
tion function, number of receptive fields, spread, etc.). While there is no general
theory behind the structural optimization of the topology of the networks, they are
developed as a result of some trial and error process. For each set of parameters,
that specify the model, we compute the cross validation error. We keep the set that
produces the lowest error and this topology of the network is deemed optimal. For
the MLP we start with 2 neurons in the hidden layer and keep adding one neuron at
a time until the leave-one-out cross validation error (LOOV-RMSE) stops decreas-

Effort Estimation 241

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

ing. Its minimum value determines the optimum number of neurons to choose for
the hidden layer. For RBF we do exactly the same: We start with one receptive field
and add one at a time until the cross-validation error stops decreasing. We repeat
this procedure for a range of spread parameters and keep the spread and number of
receptive fields that return the absolute smallest cross-validation error. The same
applies to GRNN: We minimize again the LOOV-RMSE by optimizing the spread
parameter of the network.

13.3 coMpArAtive AnAlysis using tWo cAse studies

We use the two case studies described in Chapter 12 for instantiating both traditional
and our proposed incremental effort estimation models and perform a comparative
analysis between the two estimation methods and data sets. The two projects are
denoted as project A and project B.

13.3.1 selection of predictors and output variables

Many different metrics have been proposed as effort predictors: The most common
one is for sure software size (lines of code, function or feature points, number of
requirement documents, etc.). COCOMO/COCOMO II, one of the most popular
cost estimation models uses in addition to size a wide range of so called cost driv-
ers (mostly technology and human factors). In this study we use the Chidamber
and Kemerer (CK) set of object-oriented design metrics (Chidamber & Kemerer,
1994) for effort prediction.

The CK metrics have some interesting properties, which make them in particular
attractive for the kind of prediction model we propose:

They are widely accepted both by practitioners and researchers and validated •
by several previous studies (Basili et al., 1996; Briand & Wüst, 2001).
For the purpose of • model building the CK metrics can be extracted automati-
cally from source code.
In agile development documentation, requirements elicitation or design plans •
are minimalist and only produced as far as they are really needed. Therefore,
we cannot expect to collect a lot of data before starting an iteration that could
be used for effort prediction. However, even in the most extreme case of agile
development, XP, at the beginning of a new iteration there are some planning
activities that produce at least some sort of design documents (CRC cards).
These documents can be used to estimate fairly well the CK design metrics for
the new iteration, which will be used as input variables for effort prediction.

242 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

We do not use all 6 CK metrics as predictors but exclude the NOC (number of
children) and LCOM (lack of cohesion of methods) metrics. We excluded the NOC
because in both projects its values were equal to 0 for almost all classes and hence
this metric does not contribute significantly to the explanation of variation of de-
velopment effort. Both projects do not use large inheritance hierarchies and classes
are not primarily designed for reuse. Therefore, only few classes are sub-classed.
As for LCOM several researchers have questioned its meaning and the way it is
defined by Chidamber and Kemerer (Counsell et al., 2002); the impact of LCOM
on development effort and other metrics such as maintainability is little understood
by today and therefore we decide to exclude it from this analysis.

As output variable we use the total coding effort per class in hours at any point
in time, for example at the end of the project for the global model or at the end of
each iteration for the incremental model. As said before in this context development
effort is defined as coding effort only and other activities such as planning, design-
ing, documenting are not included. For the projects under scrutiny – and in general
for agile projects – this is not a serious limitation as all non-coding activities are
reduced to a minimum and most of the actual development effort is indeed coding
effort. Furthermore, for the analyzed projects we know that developers spent one
day per week for planning activities while the rest of the time was used for actual
coding (including unit testing).

For building a global model we extract the CK metrics from the final release of
the software and use them to predict the total coding effort. For incremental models
we have different choices for computing CK metrics and coding effort: For example,
we could consider as input changes of CK metrics and coding effort per iteration or
their cumulative values starting from beginning of development. Or – by blasting up
the input space - we could even think of more complex architectures using changes
of CK metrics of previous iteration(s) and their absolute values and so on. The only
way to find out which architecture is most suitable is to try several of them and
select the one, which optimizes a given performance function (in our case prediction
accuracy). Moreover, as a general rule we follow the principle of parsimony (also
known as Occam’s Razor): If a more complex model explains data only slightly
better than a simple one the researcher should favor the simple model.

Overall, we find that using the cumulative effort of past iterations and CK de-
sign metrics of the current iteration as input variables works best for incremental
effort prediction. Such architecture uses all available data points (given the limited
number of data this is an important requirement) as it uses cumulative values and
not differences between iterations as input vectors. Moreover, it is stable and con-
vergent in the sense that the training and cross validation errors show a decreasing
trend over time.

Effort Estimation 243

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

13.3.2 peculiarities of data

Figure 1 shows a box plot of the data sets collected with PROM (Sillitti et al., 2003)
for the two projcts. It is evident that both effort and predictor variables (in particular
the WMC and RFC metrics) have outliers and/or are skewed. We do not assume that
they have been introduced by measurement errors, but they could rather indicate
that data are naturally clustered: For example, such clusters (representing different
populations) could be defined by different parts of a software system or different
developers. Unfortunately, our data samples are too small to investigate and derive
models for single clusters. Such clustering may possibly improve estimation models
and has to be addressed in a future study.

Table 1 shows the results of correlation analysis of features. As we can expect by
the definition and computation of CK metrics some of them are highly correlated
with each other (this observation is also confirmed by other researchers (Succi et
al., 2005)). Both the WMC and RFC metrics for example contain the number of
methods defined in a class. Thus, it is likely that they will be correlated to some
extent. It is interesting to note that RCF is strongly correlated with CBO (more than

Figure 1. Box plot of effort and predictor variables

244 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

to WMC). This means that it is more a measure for complexity in terms of coupling
or message passing between objects than of structural complexity of method defini-
tion and method invocations within a class. As we will see this is also reflected by
the fact that stepwise regression prefers to include either WMC and CBO or WMC
and RFC as predictors, but not both CBO and RFC metrics. Overall, correlation
analysis suggests that multicollinearity may be a problem in regression models that
use the subset of CK metrics we employ as predictors in this study.

Multicollinearity may lead to high variance of regression coefficients, while
outliers may bias them if using standard least square regression methods. We have
to address both issues in regression analysis. We overcome these problems to some
extent by using (a) techniques for reducing the dimension of input space and (b)
applying robust regression techniques that are less sensitive towards outliers.

13.4 Model Building And prediction

We want to emphasize that we first discuss models regarding their data fitting and
generalization properties. After, we use them for predicting actual development ef-
fort for future iterations. In this study we use different data for model building and
prediction. While many past studies use the same set of data for both purposes such
approach may be questioned and give biased results: (a) It could yield over-optimistic
estimates as data can be fitted to any degree of accuracy but lose completely gener-
alization properties. (b) It does not reflect a real world scenario where models have
to be built using past data and are used to predict unknown future data.

Table 1. Correlation of predictor variables. Values higher than 0.5 are set in bold
face.

Project A CBO WMC RFC DIT

CBO 1 0.52 0.84 0.47

WMC 0.52 1 0.72 -0.16

RFC 0.84 0.72 1 0.19

DIT 0.47 -0.16 0.19 1

Project B CBO WMC RFC DIT

CBO 1 0.05 0.61 0.71

WMC 0.05 1 0.51 -0.15

RFC 0.61 0.51 1 0.27

DIT 0.71 -0.15 0.27 1

Effort Estimation 245

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Moreover, we compare the prediction performance for different models and also
for the two different projects.

13.4.1 results for Model Building

13.4.1.1 Results for the Global Approach

Table 2 reports the root mean squared error (RMSE) obtained by leave-on-out
cross-validation for the training and test data set. The 4th column reports the input
variables used by the model, in particular the ones selected by stepwise regression,
and the basic architecture and parameters of neural networks.

It is interesting to observe that any neural network per se is not better than simple
regression. The MLP network for example performs worse than most regression
models. However, the RBF network, which is able to capture better local proper-
ties of single data points than an MLP network works by far best for project A. For
project B a GRNN network (which is a special kind of RBF network), which again
handles good local distortions of data yields the best results.

In general linear models work much better for project A than for project B. For
neural networks is not the case. An analysis of the distribution of data sets for both
projects reveals that data distribution for project A satisfies better the assumptions
for linear regression than the one of project B. This explains why linear regression
works better on project A. Neural networks on the other hand do not require any
particular assumptions of data distributions and therefore they work even if data are
skewed and have a lot of outliers. It is interesting to observe that although the two
projects are very similar (almost the same development environment and method-
ology, similar domain) nevertheless one has to be careful when applying models
derived from one project to the other: While on a higher level the projects may look
similar there are many hidden factors that are implicitly encoded in the collected
data. Such factors can be the cause that in one case linear regression models work
well while in the other do not. The lessons we learn from these comparative analysis
of two projects are:

Data collected for different projects may exhibit different properties even if •
the projects are very similar on a higher level (development environment, ap-
plication domain, development methodology)
Models that work well for one project do not necessarily work well for a •
similar project.
In Agile development technology, requirements, personnel, and other factors •
change very fast. Therefore, it is almost impossible to apply models derived
from one project to another.

246 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Models should be auto-adaptive and applied in the same context they have •
been derived from.

13.4.1.2 Results for the Incremental Approach

For the incremental model we have not that clear picture than for the global one:
whereas for project A again RBF outperforms all other models, this not the case
for project B. However, for project B still RBF and best regression models are very
close, as their differences in the RMSE error do not exceed a value of 0.06. And as

Table 2. Regression and neural networks for the global approach

Model RMSE training LOOV-RMSE
test

Input variables

Regression
models for
project A

L 2.12±0.19 2.10±2.71 All

S-L 2.16±0.16 1.76±2.43 CBO, WMC

QR 3.27±0.64 3.32±9.05 All

S-QR 2.94±0.29 1.64±2.48 WMC, RFC, CBO2

R 2.74±0.25 1.71±2.89 All

S-R 3.26±0.29 1.62±2.92 CBO, WMC

RPCR 2.70±0.31 1.68±2.54 All

Regression
models for
project B

L 3.26±0.06 2.72±2.68 All

S-L 3.27±0.06 2.58±2.57 WMC, RFC

QR 3.44±0.29 3.99±6.53 All

S-QR 3.33±0.12 2.97±3.60 WMC, RFC, WMC2

R 3.63±0.20 3.40±5.47 All

S-R 3.65±0.10 2.85±3.78 WMC, RFC

RPCR 4.07±0.10 2.50±3.35 All

Neural
networks -
project A

MLP 1.28±0.81 3.09±4.89 All, 2-1 architecture

RBF 0.74±0.03 1.26±1.10 All, spread=10, 12 receptive fields
in hidden layer

GRNN 2.25±0.10 2.19±3.96 All, spread=2

Neural net-
work - project

B

MLP 1.20±0.57 2.52±2.56 All, 4-1 architecture

RBF 1.12±0.03 1.77±2.53 All, spread=1.8, 17 receptive fields
in hidden layer

GRNN 0.94±0.03 1.42±1.51 All, spread=0.4

Legend: L - ordinary multi-linear regression, S-L - stepwise, multi-linear regression, QR - quadratic robust
regression, S-QR - stepwise quadratic robust regression, R - robust regression, S-R is stepwise robust regression,
RPCR - robust principal component regression. MLP - multilayer perceptron neural network RBF - radial basis
functions network. GRNN - general regression neural network.

Effort Estimation 247

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

for the global approach MLP performs by far worse than both RBF and regression
models. For project B we find that past Effort and WMC are good predictors for
development effort as they are selected as significant input features by almost all
models (the last model uses only past effort as input feature).Overall, for incremental
models we can make the following observations:

Neural networks per se are not better than regression models.•
RBF and • GRNN models seem to be very promising for effort prediction.
This could be explained by the nature of software engineering data: RBF and
GRNN networks are able to adapt well to single data points and thus deal
better with outliers and skewed data sets than other models.
Robust regression combined with a stepwise procedure is also a successful •
approach. Moreover, regression analysis suggests that past Effort is the single
most efficient effort predictor.

Although the results for the RMSE error indicate that GRNN and RBF models are
very promising for effort estimation they (as also regression models) have a relatively
high variance; therefore, we are not able to infer statistically - for example using a
Mann-Whitney test - that they are significantly better than regression models.

Incremental regression models for project B suggest that past Effort, RFC, and
WMC are the most important predictors for development effort.

13.4.2 results for iterative effort prediction

In order to determine whether an incremental model is more efficient for effort
prediction than a global one we choose the two best models for each category and
use them for iterative effort prediction in a real world scenario. This means that
we have to use the best global model of project A for predicting effort of project B
and vice versa, since a global model is available only after project conclusion and
thus cannot be used for real prediction for the same project. In practice one would
use a global model to predict future projects that are similar to the one used for
model building and/or calibration. Such scenario applies for the two case studies
considered in this paper: They are similar in size, development environment and
methodology, programming language/technology and tools used. On the other hand,
an incremental model is based on data of previous iterations and can be used to
predict effort of future iterations for the same project. Having said that, we use the
following strategy for comparing incremental models with global ones.

For predicting effort of project A we use the best global model of project B,
which is a GRNN network and compare it with the best incremental models of
project A, RBF networks. Whereas for predicting effort of project B we use the

248 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

best global model of project A, an RBF network, and compare it with the best
incremental models of project B, which are robust regression models. The results
for predicting the coding effort per class using global and incremental models are
reported in Table 3.

Overall, the results for predicting coding effort for a single class are rather fair for
both types of approaches and not very helpful in practice. The prediction at a 25%
level for example is high only for the last iteration of project A. For all but one cases
the relative error is higher than 25%. However, if we compare the relative perfor-
mance of global and incremental approach we find clear evidence of the superiority
of an incremental model in particular in later iterations of development. Moreover,
there is evidence that incremental models stabilize and converge as development
goes on leading to more and more accurate predictions. The behavior of the global
model is completely different as it shows a constant high error for all iterations.
Overall, for project A an incremental model is better than a global one for iterations
4 and 5, while for project B the incremental model outperforms the global one for
all iterations. Moreover, predictions for project A are in general more accurate than
predictions for project B. This is even more evident for the global model. Again
this sustains the claim that effort prediction models should be derived and used on

Table 3. Results for effort prediction per class for incremental and global model

Prediction
for iteration

Model Average
MRE

Median
MRE

Median
MER

PRED
(0.25)

SD

Results for
project A

3 (G)(**) GRNN 1.29±1.96 61% 0.85 26% 4.29

3 (I) RBF 2.62±3.81 127% -1.11 11% 3.15

4 (G) GRNN 1.20±1.76 61% 0.82 28% 5.55

4 (I) RBF 0.61±0.59 42% 0.66 21% 2.03

5 (G) GRNN 1.24±1.84 64% 0.83 23% 5.95

5 (I)(**) RBF 0.25±0.34 14% 0.14 73% 0.62

Results for
project B

3 (G) RBF 3.67±7.90 89% 0.74 15% 3.83

3 (I) S-QR 3.57±8.70 63% 0.56 19% 2.39

4 (G) RBF 3.56±7.64 89% 0.71 12% 8.91

4 (I)(**) R 1.21±1.80 60% 0.3 20% 2.1

5 (G) RBF 3.28±7.45 91% 0.46 15% 9.45

5 (I)(**) S-R 1.06±3.14 39% 0.25 31% 2.74

Legend: (G) - best global model and (I) best incremental model for the respective iteration. GRNN - general
regression neural network, RBF - radial basis functions network, S-QR is stepwise quadratic robust regression,
R robust regression, and S-R stepwise robust regression. (**) A Kruskal-Wallis test confirms that models flagged
with (**) outperform the alternative model for the same iteration at 0.05 level of significance regarding the MRE
value of single classes. MRE – Magnitude of relative error. MER – Magnitude of relative error to the estimate.
PRED(0.25) - % of classes with a MRE less than 25%. SD – Standard deviation.

Effort Estimation 249

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the same project as it is the case for the proposed incremental models.
In Table 4, we present the results for predicting the total coding effort per itera-

tion obtained summing up the coding effort for each single class.
Again the results emphasize that an incremental model produces (a) more ac-

curate effort prediction and (b) stabilizes during development. For example, for
iteration #4 a global model gives a relative error of 66% in project A and 88% in
project B, while an incremental model drops the relative error to 33% respective
25%. Moreover, from iteration 4 onwards the relative error for incremental effort
prediction falls under 25%, which is considered a good result in software effort
estimation.Altogether we can state that:

In general, incremental models outperform global ones for iterative effort •
prediction.
The superiority of the incremental approach is even more manifest in later •
development iterations.
The incremental approach gives very promising results for predicting the ef-•
fort of last iterations of development.

Our findings that incremental models outperform global models could also be
explained by the fact that the two projects have some subtle differences that are
hidden in the data but are not evident in domain factors – and thus we are not aware
of them. In fact if we use the global models for each project for predicting effort
for the same project we find that the results are competitive with and in part even
superior to incremental models. However, also in this case incremental models
converge to more accurate predictions and outperform global models in particular

Table 4. Prediction of total effort per iteration with the use of the incremental and
global models.

Iteration Model MRE
Project A

MER
Project A

Model MRE
Project B

MER
Project B

3 (G) GRNN 58% 1.40 RBF 40% 0.67

3 (I) RBF 71% 2.41 S-QR 41% 0.29

4 (G) GRNN 66% 1.98 RBF 88% 7.56

4 (I) RBF 33% 0.49 R 25% 0.20

5 (G) GRNN 66% 1.97 RBF 82% 4.71

5 (I) RBF 6% 0.06 S-R 22% 0.18

Legend: (G) - best global model and (I) best incremental model for the respective iteration. GRNN - general
regression neural network, RBF - radial basis functions network, S-QR - stepwise quadratic robust regression,
R - robust regression, and S-R - stepwise robust regression.

250 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

in later development iterations. Our observation again sustains the claim of other
researchers (Mohanty, 1981) that prediction models should be local models and in
general work only for data used for building or calibrating them. In this light we
may conclude that for highly volatile environments such as XP incremental models
are the only way to develop prediction models that are of real practical use. Overall,
the results enable us to answer our research hypothesis and we can state that for
the projects under scrutiny incremental models are more suitable for iterative effort
prediction than global models.

13.5 suMMing up

We have identified a number of reasons for which the suitability of the monolithic
prediction models is limited when dealing with agile software development:

Most companies using agile development are rather small (94% of software •
companies in US have less than 20 people (Fayad et al., 2000)). Thus, it is
very likely that they may not have historic data to build traditional effort
prediction models.
Agile projects change rapidly and it is difficult to anticipate that a model •
constructed with the use of data for one project would be valid for another
project.
In general, predictor variables may not be known at the start of the project but •
become available at the beginning of each iteration. Therefore, early estima-
tion of total development effort is out of reach and should be replaced by an
iterative estimation of development effort for the next future iteration.

Considering these arguments we developed an incremental, iteration-based predic-
tion model. It has the following advantages over a monolithic model:

There is no need for historic data.•
It fits naturally into iterative development cycles, as it evolves and accom-•
modates to changes from one iteration to another.
There is no risk that the model is outdated; this is in particular important •
for companies that accept projects in new application domains or with new
technologies. In such cases models based on historic data may completely
fall short.
An incremental model gives early and more frequent feedback to developers •
and managers. A short feedback cycle is important to detect early aberrations

Effort Estimation 251

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

from preset targets. In such cases a company may investigate why predict-
ed effort goals are not met or eventually re-calibrate the prediction model
(MacDonell & Shepperd, 2003).

We applied the incremental approach to two agile, semi-industrial development
projects and could evidence that it is superior to a global, monolithic prediction model,
in particular for later iterations of development. For this first validation we use the
Chidamber and Kemerer set of object-oriented design metrics as predictors and both
regression models and neural networks for model realization. It remains to future
experiments if the results hold also for other models and predictor variables.

Incremental models are stable and convergent in the sense that their cross-vali-
dation and prediction error decreases from iteration to iteration. They can be used
right from the start of development and improve their accuracy throughout project
evolution due to their iterative nature. Global models on the other hand are based
on historic data; even in the best case if we assume that they are used in exactly
the same project they have been derived from they still do not perform as good as
incremental models; this is more evident the more iterations are completed as in-
cremental models adapt themselves to project and product characteristics increasing
their predictive performance and accuracy.

Nowadays intelligent data collection and analysis tools allow easy automation of
the model building and prediction process. At the beginning of development itera-
tion they could be integrated in a planning game where customers, developers, and
managers develop a first objective and independent cost estimation.

13.6 references

Ahituv, N., Zviran, M., & Glezer, C. (1999). Top management toolbox
for managing corporate IT. Communications of the ACM, 42(4), 93–99.
doi:10.1145/299157.299177

Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of code,
and development effort prediction. IEEE Transactions on Software Engineering,
9(6), 639–648. doi:10.1109/TSE.1983.235271

Alshayeb, M., & Li, W. (2003). An empirical validation of object-oriented metrics
in two different iterative software processes. IEEE Transactions on Software Engi-
neering, 29(11), 1043–1048. doi:10.1109/TSE.2003.1245305

252 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Angelis, L., Stamelos, I., & Morisio, M. (2001). Building a software cost estima-
tion model based on categorical data. 7th International Symposium on Software
Metrics.

Basili, V. R., Briand, L., & Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10), 751–761. doi:10.1109/32.544352

Boehm, B. W. (1981). Software engineering economics. Prentice-Hall.

Boehm, B. W., Abts, C., & Chulani, S. (2000). Software development cost estima-
tion approaches–a survey. Annals of Software Engineering.

Boehm, B. W., Clark, B., Horowitz, E., Madachy, R., Shelby, R., & Westland, C.
(1995). Cost models for future software life cycle processes: COCOMO 2.0. Annals
of Software Engineering.

Briand, L. C., & Wieczorek, I. (2000). Resource estimation in software engineering
(Tech. Rep. No. ISERN-00-05). Germany: Fraunhofer Institute for Experimental
Software Engineering.

Briand, L. C., & Wüst, J. (2001). Modeling development effort in object-oriented
systems using design properties. IEEE Transactions on Software Engineering,
27(11), 963–986. doi:10.1109/32.965338

Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Transactions on Neural Networks,
2(2), 302–309. doi:10.1109/72.80341

Chen, Z., Menzies, T., & Port, D. (2005). Feature subset selection can improve soft-
ware cost estimation. 1st International Workshop on Predictor Models in Software
Engineering (PROMISE 2005).

Chidamber, S., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6), 476–493. doi:10.1109/32.295895

Conrow, E. H., & Shishido, P. S. (1997). Implementing risk management on software
intensive projects. IEEE Software.

Counsell, S., Mendes, E., & Swift, S. (2002). Comprehension of object-oriented
software cohesion: The empirical quagmire. 10th International Workshop on in
Program Comprehension.

Fayad, M. E., Laitinen, M., & Ward, R. P. (2000). Software engineering in the small.
Communications of the ACM, 43(3), 115-118. doi:10.1145/330534.330555

Effort Estimation 253

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Girosi, F., & Poggio, T. (1990). Networks and the best approximation property.
Biological Cybernetics, 63, 169–176. doi:10.1007/BF00195855

Glass, R. L. (1998). Short-term and long-term remedies for runaway projects. Com-
munications of the ACM, 41(7), 13–15. doi:10.1145/278476.278480

Hagan, M. T., & Menhaj, M. (1994). Training feedforward networks with the
Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993.
doi:10.1109/72.329697

Johnson, P. M., & Disney, A. M. (1998). Investigating data quality problems in
the PSP. 6th International Symposium on the Foundations of Software Engineering
(SIGSOFT’98).

Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., et al. (2003).
Beyond the personal software process: Metrics collection and analysis for the dif-
ferent disciplined. 25th International Conference on Software Engineering.

Jørgensen, M., & Shepperd, M. (2007). A systematic review of software develop-
ment cost estimation studies document actions. IEEE Transactions on Software
Engineering, 33(1), 33–53. doi:10.1109/TSE.2007.256943

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme program-
ming in context: An industrial case study. Agile Development Conference.

Lederer, A. L., & Prasad, J. (1995). Causes of inaccurate software development
cost estimates. Journal of Systems and Software, 31(2), 125–134.doi:doi:10.1016/
0164-1212(94)00092-2

Lee, H. (1993). A structured methodology for software development effort prediction
using the analytic hierarchy process. Journal of Systems and Software,21.

MacDonell, S., & Shepperd, M. J. (2003). Using prior-phase effort records for re-
estimation during software projects. 9th International Software Metrics Symposium
(METRICS’03).

Mair, C., Shepperd, M., & Jørgensen, M. (2005). An analysis of data sets used to
train and validate cost prediction systems. 1st International Workshop on Predictor
Models in Software Engineering (PROMISE 2005).

McConnell, S. (1996). Avoiding classic mistakes. IEEE Software.

Menzies, T., Port, D., Chen, Z., Hihn, J., & Stukes, S. (2005). Validation methods
for calibrating software effort models. 27th International Conference on Software
Engineering.

254 Effort Estimation

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Miyazaki, Y., Terakado, M., Ozaki, K., & Nozaki, H. (1994). Robust regression for
developing software estimation models. Journal of Systems and Software, 27(1),
3–16. doi:10.1016/0164-1212(94)90110-4

Mohanty, S. (1981). Software cost estimation: Present and future. Software, Practice
& Experience, 11, 103–121. doi:10.1002/spe.4380110202

Moløkken-Østvold, K., Jørgensen, M., & Talinkan, S. S. (2004). A survey on software
estimation in the Norwegian industry. 10th International Symposium on Software
Metrics (METRICS’04).

Pendharkar, C. P. C., Subramanian, G. H., & Rodger, J. A. (2005). A probabilistic
model for predicting software development effort. IEEE Transactions on Software
Engineering, 31(7), 615–624. doi:10.1109/TSE.2005.75

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile
toolkit for software development managers. Addison-Wesley Professional.

Putnam, L. H. A. (1978). A general empirical solution to the macro software sizing
and estimation problem. IEEE Transactions on Software Engineering, 4(4), 345–381.
doi:10.1109/TSE.1978.231521

Sauer, C., & Cuthbertson, C. (2003). The state of IT project management in the UK
2002-2003. Templeton College, University of Oxford.

Shepperd, M. C., & Schofield, C. (1997). Estimating software project effort us-
ing analogies. IEEE Transactions on Software Engineering, 23(11), 736–743.
doi:10.1109/32.637387

Shin, M., & Goel, A. L. (2000). Empirical data modeling in software engineering
using radial basis functions. IEEE Transactions on Software Engineering, 26(6),
567–576. doi:10.1109/32.852743

Sillitti, A., Janes, A., Succi, G., & Vernazza, T. (2003). Collecting, integrating, and
analyzing software metrics and personal software process data. 29th EUROMI-
CRO.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on
Neural Networks, 2(6), 568-576. doi:10.1109/72.97934

Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating
software development effort. IEEE Transactions on Software Engineering, 21(2),
126–137. doi:10.1109/32.345828

Effort Estimation 255

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., & Russo, B. (2005). An empirical
exploration of the distributions of the Chidamber and Kemerer object-oriented
metrics suite. Empirical Software Engineering, 10(1), 81–104. doi:10.1023/
B:EMSE.0000048324.12188.a2

Trendowicz, A., Heidrich, J., Münch, J., Ishigai, Y., Yokoyama, K., & Kikuchi, N.
(2006). Development of a hybrid cost estimation model in an iterative manner. 28th
International Conference on Software Engineering.

endnote

1 http://agilemanifesto.org/ (accessed on November 11, 2008)

256 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 14

Discontinuous Use of
Pair Programming

14.1 introduction

Pair Programming (PP) has usually considered non effective for distributed teams,
not working most of the time together (Williams et al., 2000; Baheti et al., 2002). In
this chapter we discuss the effectiveness of PP at transferring knowledge and skills
among students that met only occasionally and worked mostly independently.

The effect of geographical distance between pair programmers has been already
addressed by Baheti et al. (2002). They performed an experiment on a graduate class to
assess whether it is feasible to use distributed PP to develop software. It turned out that
distributed (i.e., geographically distant) pair programming teams can effectively develop
software, that is, with productivity (in terms of LOC/hr) and code quality (in terms of
grade awarded to the project developed) comparable to those of close-knit teams.

Kircher et al. (2001) identify the aspects of XP which require co-located program-
ming teams. The authors analyze these aspects in the distributed development of
software for collaborative productivity. They found that the effectiveness warranted
by physical proximity could not be completely substituted by any communication
tool, though various combinations turned out to be quite effective. However, their
findings are based only on the personal opinions of the participants, the authors
themselves, and no empirical evidence is provided.

DOI: 10.4018/978-1-59904-681-5.ch014

Discontinuous Use of Pair Programming 257

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

We report on the experience of a group of fifteen students doing a summer intern-
ship experience at the end of their first year of a first degree in Applied Computer
Science at the Free University of Bolzano (Italy). For three months students worked
either in companies or research centers the whole week but Friday afternoons, when
they met altogether in a university laboratory. Here, they worked on a different
project using PP. Our aim was to monitor the knowledge they acquired from such a
structured context. Even if such an environment is not distributed in the genuine sense
of the term, similar factors may affect the success of the project. Indeed problems
with non-continuous use of the same software practices, difference of environments
and requests and geographic distance can be equally experienced.

14.2 structure of the eXperiMent

As mentioned, this research deals with a group of fifteen (volunteer) students doing
a three-month summer internship.

Eleven students worked in local companies for all the working days but Friday
afternoons, when all of them met in a university laboratory for four hours to share
their experience. A group of four students worked for a research center of the Fac-
ulty – joining the others on Friday afternoons.

The environment was distributed in the sense that the students had the chance to
work together only one afternoon per week, spending the rest of the week working
in geographically distant places.

In the Friday afternoon meetings all the students had the possibility to share
their knowledge and skills by developing software using PP. This work was com-
pletely independent from what they were doing over the rest of the week. In all the
companies there were no special indications to use XP practices except for students
working for the university lab, where XP was continuously adopted.

Altogether, the use of PP was non-continuous – only on Friday afternoons – and
alternated with other coding styles.

At the end of their experience students answered to a questionnaire.

14.2.1 gQM of the experiment

To properly structure the experiment, we use the well known Goal-Questions-Metrics
(GQM) paradigm (Wohlin et al., 2000) according to the guidelines of Succi et al.
(2002):Goal:

Monitoring skills acquired in using • PP in order to investigate:
• Knowledge transfer

258 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Effectiveness of a non continuous • PP practice - alternated with a different
programming methodology
Integration of • XP skills learned at the university and practices acquired dur-
ing an industrial internship

Questions:

How much effective is the use of • PP in transferring knowledge in a distrib-
uted environment?
How much effective is • PP in a non temporary continuous work alternated
with other practices?
How much effective is the use of • PP in integrating university studies and ap-
plicative practices of a company of an industrial environment?

Metrics:

Final • questionnaire

14.2.2 structure of the Questionnaire

The final questionnaire was developed according to standard questionnaire-writing
styles. It consisted of three main parts: the first described the student’s status – work
experience and skills, the second dealt with the Internship experience and the third
reported the students’ opinion on the PP style. The questionnaire was structured by
several multi-choice questions alternated with some rating and free-style questions.
It covered topics listed in Table 1.

In the first three points of Table 1, the student’s work experience in computer
science is evaluated. It was measured by common questions on work experience
and on some aspects of team working.

Points 4 to 9 of Table 1 describe the environment of the internship. Point 4 fo-
cuses on what of the project was known before the Internship experience, such as

Table 1. Main subjects of the questionnaire

Topics

1. General work experience
2. Skills in Computer Science
3. Skills in some PP features
4. Internship: Project knowledge
5. Internship: Project structure
6. Internship: Project support

7. Internship: Communication tools
8. Internship: PP Best Aspect
9. Internship: Benefits
10. Evaluation PP: Hardest Thing
11. Evaluation PP: Non Effectiveness
12. Evaluation PP: Most Important Aspect

Discontinuous Use of Pair Programming 259

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

tools (Eclipse, NetBeans, etc.), languages (Java, C#, PHP, etc.) and approach to the
problem – how to translate requirements into code.

To evaluate the students’ degree of comprehension of the project, point 5, 6 and
7 asked students to describe the project – structure, and technical and human sup-
port – and the communication tools they used during the experience.

Points 8 and 9 measured the PP practice rooted in the students’ experience, while
points 10 to 12 asked students to give an opinion on the PP style independently
from the project.

In Table 2 we reproduce the acronyms of the measures. Besides each acronym
we put the reference number of Table 1. Points 8, 10 and 12 were in the form of
free-style questions, so they are not included in Table 2.

14.2.3 details on the sample

In this section we characterize our sample by studying the answers to the first part
of the questionnaire and the cross-correlations among them.

Fifteen students volunteered for this project. Eleven were full-time students with
some previous work experience, while four were part-time students (with part-time
jobs). In Table 3 we report the frequencies for the answers of the questionnaire
regarding the students’ previous skills and knowledge. The frequencies are based
on a sample of size fourteen, as one questionnaire was not returned. Frequencies,
Pearson’s cross-correlation coefficients and p-significance (as usual, we consider
α<0.05) are calculated using R, a well-known OS statistical tool.

We also note that the sample of the PPW variable has size five, that is, the
number of students who answered yes to the Experience in Working in Pair (WPE)
question.

From Table 3, we can infer that the majority of the students had a previous work
experience (WE), a few of them in Computer Science (WECS). More than 70% had
a good knowledge of the project they were going to start (TL, PA in Table 3). Some
students (WPE 35.7%) had already practiced PP in the past, and most of them found
it worth (PPW 80%). Students with work experience (WE) have more experience
in teamwork (WTE) than working in pair (WPE).

The cross-correlations resulting from the first part of the questionnaire (Table
4) confirm the students’ curricula. Again, we see that students’ work experience
is mainly in computer science. General team working has a good correlation with
work experience.

From Table 4 we may infer that students who experienced a general work in
pair, know and appreciate the PP practice in some of its aspects – Experience in
working in pair sharing the Same Computer (PSC) and Experience in working on
the Same Code (SC).

260 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Table 4 also shows that the four different aspects of PP are each other correlated.
This might mean that students had a somehow homogeneous experience of PP (i.e.,
they did not practice just one aspect).

Table 2. Acronyms of measures

1-2 WS Working student

WE Work experience

WECS Work experience in Computer Science

WTE Experience in working in team

WPE Experience in working in pair

PPW If WPE: Is pair programming worth?

3 PSC Experience in working in pair sharing the same computer

SC Experience in working on the same code

WD Experience in work division

SE Experience in sharing experience

4 TL Project Tools knowledge

PA Knowledge on how to translate requirements in code – Problem Approach

5 SP Switched partner more than two times

6 CP Customer’s physical presence

PS Reference Instructor’s technical support

7 T Use of telephone

NM Use of NetMeeting

IM Use of instant messenger

EM Use of e-mail

9 LC Increasing learning and comprehension

CT Increasing communication and team working

TM Increasing Time Management

OE Increasing Opportunity of experimentations

SR Increasing Self-Reliance

PSST Increasing Problem Solving and Strategy Thinking

11 SAFYC The use of PP is not effective Soon After a First Year Course

STE The use of PP is not effective for a Short Experience

BPEC The use of PP is not effective if Both Partners are not Equally Competent

PU The use of PP is not effective if the Project is Unknown

Discontinuous Use of Pair Programming 261

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

14.2.4 details on the environment

The companies selected for the internship were mainly local businesses. Some were
software houses, others non-IT organizations with an EDP department. Students
selected the companies on a First-In-First-Out basis.

To take full advantage of the internship, students were introduced to the project
with several seminars related to the experience they were about to begin. Differ-
ent subjects were presented: legal rights and duties, role of the unions, importance
of, and techniques to communicate within corporate organizations, how to secure
funds to create a start-up and so on. They were also introduced to team working
by role play. They were taught time and stress management, how to support a talk
and how to give priorities.

Table 3. Frequencies of the previous skills and knowledge of the sample

(%) General working experience (1-2)

WS WE WECS WTE WPE PPW

no 71.4% 14.3% 64.3% 42.9% 64.3% 20%

yes 28.6% 85.7% 35.7% 57.1% 35.7% 80%

n/a 0% 0% 0% 0% 0% 0%

(%) PP aspects experience (3) Project Knowledge (4)

PSC SC WD SE TL PA

no 50% 57.1% 14.3% 28.6% 28.6% 21.4%

yes 35.7% 28.6% 71.4% 57.1% 71.4% 78.6%

n/a 14.3% 14.3% 14.3% 14.3% 0% 0%

Table 4. Correlations between different aspects of students’ know how

WTE WECS CP PSC SC WD

WS 0.85
p=0.000

WE 0.57
p=0.032

PSC 0.60
p=0.023

0.92
p=0.000

WD 0.77
p=0.001

0.74
p=0.002

SE 0.69
p=0.007

0.64
p=0.015

0.88
p=0.000

WPE 0.65
p=0.012

0.53
p=0.050

262 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

At the beginning of the internship, each company assigned a task to the student.
Most of the time company assignments were part of a big project already started.
Since the students had attended a course on Java during the previous semesters, all
of them were not only able to use Java, but also to learn new languages and tools.

A company-internal reference person was selected to act as internal tutor of
the student. Additionally, some selected members of the Faculty of Computer Sci-
ence provided technical and social support to students and monitored the overall
experience.

So, almost every week a member of the university staff visited the student in
the company and reported on the student’s situation. Reports were published on an
internal web site, so each instructor could access them. Students and companies
were aware of the dates of the visits in advance, so that the internal tutor could be
present to the visit.

In the Friday afternoon meetings all the students gathered in a university labora-
tory and worked, using PP, on a project different from what they were working on
in the rest of the week. Therefore, in such meetings all the students had the chance
to communicate, to compare and to analyze their weekly experience, evidencing
similarities and differences. In this way they had the possibility of increasing their
skills by knowledge transfer.

An instructor and a virtual customer” i.e., a faculty member acting as the cus-
tomer, were always present in the room.

The Friday afternoon project was divided into independent subprojects, each
assigned to a group of four students experiencing PP. They periodically switched
partners in the team.

In each of the four teams there was a member of the group who was experienc-
ing PP the whole week.

14.3 results

We analyze the results in two parts. First, we study how communication tools were
used. Second, we report on how PP was effective in transferring knowledge and
skills among participants.

As usual, we only consider Pearson’s correlation coefficients whose p-significance
is less than 0.05.

Discontinuous Use of Pair Programming 263

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

14.3.1 use of communication tools

The two tables below provide some understanding on the use of communication
tools. The most used communication tool has been e-mail, but telephone and instant
messenger were also adopted (Table 5).

The use of telephone is negatively correlated with the tools used for coding
during the internship (Table 5). This means that students used telephone when they
had troubles with the software tools. In the same way we may say that NetMeeting
was used by students who initially knew little on how to approach the project. The
use of Instant Messenger is negatively correlated with Self-Reliance (SR) (Table 6).
These three facts might indicate that the more students think they have increased
skills, the less they use synchronous communication tools.

On the other hand, Use of E-Mail (EM) has a good correlation with the initial
ability in approaching the project (PA). From this we may instead infer that students
with increased skills preferred to use asynchronous communication tools.

To summarize, the results of this part of the questionnaire indicate that students pre-
ferred synchronous, real-time communication tools when they knew little about coding
tools or problem approach, otherwise, e-mail was the most used communication tool.

Table 6. Cross correlations between use of communication tools and knowledge of
the project

Cross Correlation

TL PA SR

T -0.73
p=0.003

NM -0.78
p=0.001

EM 0.58
p=0.031

IM -0.58
p=0.031

Table 5. Use of communication tools

(%) Communication Tools (7)

T NM EM IM

no 57.1% 85.7% 21.4% 57.1%

yes 42.9% 14.3% 78.6% 42.9%

n/a 0% 0% 0% 0%

264 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

14.3.2 Knowledge transfer and effectiveness of pp

We omit frequencies On Internship benefits and non effectiveness of PP, 80% of the
students answered positively on each benefit listed in Table 7a (except for the last
two items, for which slightly less than 50% gave a positive answer). This entails that
students actually experienced a transfer of knowledge and skills. In Table 7b less
than 50% of the students considered PP non effective whether the kind of project is
unknown and even less considered PP unfeasible for a short time experience.

From Table 8, the two abilities Increasing Learning and Comprehension (LC)
and Increasing Problem Solving and Strategy Thinking (PSST) are both correlated
to each other and with Switch partner more then two times (SP). This might mean
that switching partner more than two times during the Friday afternoon PP sessions
had a good influence in increasing global comprehension of the project and maturity
of the students.

Communication and Team working (CT) is positively related with the Virtual
Customer’s physical Presence (CP). From this we might infer that the on-site presence
of the customer (one of the XP practices) influenced favorably the communication
and teamwork skills of the students. This also suggests that PP should always be
practiced with a strong presence of the customer.

The ability to manage time is highly and significantly negatively correlated with
the non-effectiveness of a brief PP experience. By the frequency of the positive
answers (72%) to Increasing Time Management (TM) we may infer that students
think that PP helps to manage time better.

Table 7. Ranking internship benefits (a) and conditions for non-effectiveness of
PP (b)

Benefits of Internship (a)

Low	→	High Communication (CT)

Problem solving (PSST)

Learning and comprehension (LC)

Time management (TM)

Self-reliance (SR)

Opportunity to experiment (OE)

Conditions for Non-Effectiveness of PP (b)

Low	→	High Unknown project (PU)

Experience soon after a first year course (SAFYC)

Member of pair not equally competent (BPEC)

Short experience (STE)

Discontinuous Use of Pair Programming 265

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The last part of the questionnaire provided the students with the possibility
of giving a personal opinion about PP independently from the project. In Table 9
we report the most significant cross-correlations between variables that we have
extracted.

The correlation of Considering the use of PP not effective soon after a first year
course (SAFYC) with Considering the use of PP not effective for a short experience
STE and Considering the use of PP not effective if both partners are not equally
competent (BPEC) confirm well known results on the XP practices.

By the students’ answers to the free-style questions and by the individual meeting
with a faculty member we inferred that at the end of the experience the students were
conscious of the limitations and benefits of PP. In particular, conflict of personali-
ties and difference in skills caused most of the problems in PP. The most common

Table 9. Cross-correlation - condition for non-effectiveness of PP

SAFYC STE TM

SAFYC
0.64

p=0.014

STE
-0.745

p=0.002

BPEC
0.54

p=0.046

Table 8. Cross-correlations with internship benefits

PSST OE SP CP EM IM STE

LC
0.78 0.59

p=0.001 P=0.026

CT
0.68

p=0.008

TM
-0.74

p=0.002

SR
-0.58

p=0.031

PSST
0.57 0.57

p=0.032 p=0.032

OE
-0.55

p=0.042

266 Discontinuous Use of Pair Programming

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

answer to the best aspect of PP has been – as students said – “two minds working
on the same code”. This might mean that although PP attracts students, they realize
that this coding style is really involving.

To summarize, we saw that the vast majority (80%) of the students benefited from
the experience in four ways: Learning and Comprehension (LC), Communication
and Teamwork (CT), Time Management (TM), and Problem Solving and Strategy
Thinking (PSST). We saw from Table 9 that these four benefits are correlated with PP
aspects, namely Switched partner more than twice (SP), Virtual Customer Presence
(CP), and Use of PP is not effective for a short experience (STE). From this we may
infer that the benefits which participants received came from experiencing PP.

14.4 suMMing up

We performed a first analysis of the experience of a summer internship program
run on a group of fifteen students. The goal was to assess the transfer of knowledge
and skills when using PP.

The peculiarity of this case study consisted in the kind of distributed environment
and in a methodology approach in which PP was alternated with other program-
ming styles. Most of the students worked in separate companies the whole week
but Friday afternoons, when they met in a university laboratory to work on a dif-
ferent project using PP (there were no special indications to use PP when working
for the companies).

Increased communication ability was the benefit that 92% of all the students felt
to have gained. Also, the vast majority of students found their problem-solving, time
management and learning abilities improved. These benefits are correlated with the
practice of PP. Therefore, PP was effective at transferring knowledge and skills. We
also found that the students’ levels of self-reliance and project knowledge affect the
use of communication tools: the more students become conscious of their abilities
the less they use communication tools (and the more they think that meeting the
partner once a week is enough).

Our results confirm previous empirical evidence about the benefits and the good
resistance to distance hampering factors of PP. We gathered new empirical evidence
which shows that PP keeps its effectiveness also when alternated with other coding
styles. Our findings might be of help to people involved in the distributed development
of software projects (e.g., OSS), as well as to educators for planning and running
programming projects with teams composed of distance-learning students.

Discontinuous Use of Pair Programming 267

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

14.5 references

Baheti, P., Williams, L., Gehringer, E., Stotts, D., & Smith, J. (2002). Distributed
pair programming empirical studies and supporting environments (Tech. Rep. No.
TR02-010). Department of Computer Science, University of North Carolina at
Chapel Hill.

Kircher, M., Jain, P., Corsaro, A., & Levine, D. (2001). Distributed eXtreme pro-
gramming. XP 2001.

Succi, G., Marchesi, M., Pedrycz, W., & Williams, L. (2002). Preliminary analysis
of the effects of pair programming on job satisfaction. XP 2002.

Williams, L., Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strengthening
the case for pair programming. IEEE Software.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2000). Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publishers.

268 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 15

Requirements
Management

15.1 introduction

Existing literature (Boehm, 1981; Brooks, 1987; Cook, 2002) and empirical studies
(Basili & Perricone, 1984; Emam & Madhavji, 1995; Marshall & Rossman, 1989)
emphasize the importance of the Requirement Engineering (RE) activities as these
activities have a strong and positive correlation with the success of most software
projects. Four of the ten main success factors deal with RE: user involvement, clear
business objectives, minimized scope, and firm basic requirements.

RE can be broadly defined as the process of discovering, identifying, and docu-
menting the actual customer needs (Nuseibeh & Easterbrook, 2000).

This chapter focuses on Requirements Management (RM), one of the main
activities in the RE process. RM is about organizing the information and require-
ments gathered during the RE process and managing changes of these requirements
(Grehag, 2001).

As AMs and OSD highlight, one of the most challenging aspects of RM is that
the requirements gathered are seldom static. They are likely to change over time,
during the project phases and during maintenance (Berry, 2002; Harker & Eason,
1992). Consequently, changes to requirements must be managed during the whole
lifecycle of a product starting early in the elicitation phase (Lauesen, 2002).

DOI: 10.4018/978-1-59904-681-5.ch015

Requirements Management 269

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Managing changing requirements is a critical activity. In fact, requirements
changes impact on costs and time. Consequently, they affect the uncertainty and
risk of a project (Cook, 2002; Lubars et al., 1993; Stark, 1998).

Furthermore, the level of requirements uncertainty and variability may affect the
choice of the development approach to employ in a project (MacCormack & Verganti,
2003). Because of this, AMs have been proposed in order to deal with changing
requirements. These methods should help companies deliver valuable software in
situations with constant change and turbulence (Highsmith, 2002).

There are two main strategies to deal with changing requirements (Saiedian &
Dale, 2000; Grehag, 2001):

1. Defensive strategy: Trying to reduce or avoid changes (e.g., using an effective
requirements definition strategy).

2. Reactive strategy: Managing properly the changes that actually occur (e.g.,
including support to changes into the product or process adding flexibility).

We focuses on both the defensive and the reactive strategy. In order to understand
how to implement a defensive strategy, we have analysed the factors that lead to
change the requirements. In fact, addressing properly these factors allow compa-
nies to improve their requirements definition process and, consequently, reduce the
amount of change requests. Furthermore, to understand how to manage inevitable
requirements changes, we have investigated how software companies consider and
deal with requirements variability.

To address these issues, an empirical investigation has been performed interview-
ing personnel of 35 software companies. The final findings of our survey highlight
some potential areas to improve RE and some suggestions for RM.

15.2 BAcKground

15.2.1 changing requirements

To implement a defensive strategy, it is necessary to understand the factors that lead
to changing requirements. Most of them originate from problems, difficulties, or
constraints during the requirement definition process.

We have identified four main classes of potential problems during the require-
ments definition process:

270 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

1. Human cognitive constraints and lack of information/incomplete
knowledge.

2. Difficulties or barriers in the communication process.
3. Emotional and relational problems or constraints.
4. Internal and external context of the project.

These problems can affect directly or indirectly the requirements variability dur-
ing the project life cycle. This section describes briefly the following problems.

The first source of requirements problems deals with information and knowl-
edge. In particular, it refers to both the problem of too much information and lack
of information.

Too much information can results in difficulties in responding to requests for
requirements. Asking users their requirements will not necessarily yield a complete
and correct set of requirements. The possible human constraints are (Davis, 1982;
March, 1998):

• Short-term memory: This may affect the number and type of requirements
remembered by the customer

• Human bias in selection and use of data: There could be a significant bias
toward requirements based on current procedure, currently available infor-
mation, and recent events.

• Bounded rationality: Procedures for determining information requirements
may apply bounded rationality.

• Limited attention: It may influence the number of issues on which both the
customers and the analysts/developer can focus.

The lack of information can affect the ability of the customers to specify all their
requests (especially at the beginning of the project) (Verganti, 1999). Moreover,
knowledge limitations can affect the ability of the development team to understand
the problem and the domain of the customer, or to use new technologies (Curtis et
al., 1988). The lack of information regarding the point of view of all the stakehold-
ers of the projects may result in conflicts in the organization of the customer and
inside the development team (May, 1998).

The second source of requirements problems emphasizes the role of communi-
cation. The success of the requirements definition process depends largely on the
knowledge of the problems and domain of the customer. However, such knowledge
ultimately depends on how people communicate and work together (Saiedian &
Dale). RE is based on communication; it involves negotiation, discussion, and

Requirements Management 271

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

information sharing among all the stakeholders of the project (Byrd et al., 1992).
The main problems with communication during the requirements gathering activity
are caused by:

• Stakeholders’ diversity: The requirements gathering process involves
key players belonging to different communities. All of them have different
knowledge, experiences, abilities, and interests. Consequently, communica-
tion problems, conflicts, and misunderstandings among them are possible
(Byrd et al., 1992).

• Stakeholders’ language and communication channels: Many misun-
derstandings regarding the requirements depend on the notations used in
the specification and on the languages used by the different stakeholders.
Moreover, stakeholders share knowledge using mainly one communication
channel: documentation (Al-Rawas & Easterbrook, 1996).

• Poor communication: How project participants communicate can be just
as important as what they communicate. Both the customer and the analyst/
developer should listen actively to the other, avoid contradictions, rapid con-
clusions, assumptions, etc. (Saiedian & Dale).

The third source of problems during the requirement definition process focuses
on emotional and relational aspects. RE is a human-intensity activity. Accordingly,
RE needs to be sensitive to how people perceive and understand their environment,
how people interact, and how the relationships in the workplace affect their actions
and emotions (Gougen & Linde, 1993).The most dangerous and common emotions
during the requirement gathering activity are:

• Resistance: Is a process taking place within a person that takes the form of
opposition. For example, it can appear as opposition to new ideas, changes,
or technological revolutions (Saiedian & Dale).

• Fear or suspect: Many users can be reluctant to tell enquiring analysts the
way they actually work because the analyst is regarded as a representative of
the authority (Land, 1982). This usually results in a defensive attitude that
can cause incomplete requirements specification.

Software development requires collaboration among project stakeholders. Good
relationships and communication among members of the development team reduce
conflicts, misunderstandings, and promote knowledge sharing (Highsmith, 2002).

During the requirements gathering activity, collaboration between the customer
and the analyst/developer usually results in a pleasant, relaxing, and friendly at-
mosphere. This behaviour encourages trust and mutual commitment. Because of

272 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

this, the amount and the quality of the requirements gathered increase (Tan, 1992).
Moreover, it can affect positively the customer involvement.

The last sources of requirements problems highlight the importance of the inter-
nal and external context. The internal context includes those factors that the project
stakeholders can control and manage. The internal factors that can cause problems
with the requirements are:

• Type of project (complexity and duration): In a complex project, (a) the
human constraints (e.g., short-term memory, bounded rationality, limited at-
tention, etc.) during the requirements definition process tend to be stronger;
(b) it is more difficult to have all the necessary information and knowledge;
(c) the number of project participants increase causing a greater need of com-
munication and coordination; (d) misunderstandings and conflicts are more
common. The most important factor affected by the duration of the project is
the level of uncertainty (Naumann et al., 1980).

• Structure of the organizations involved in the project: Companies with
a strict separation among functions or departments tend to have communi-
cations barriers and collaboration problems. Moreover, the diversity among
project stakeholders may result in misunderstandings and internal conflicts
regarding requirements (Al-Rawas & Easterbrook, 1996). The decision mak-
ing structure may affect the importance of different requirements as well as
the person responsible for the requirements definition.

The external context involves those factors that the project participants cannot
control. Thus, they can be managed only in a reactive way. These factors affect
uniformly all the companies operating in a particular time period or environment
and result often in changing requests (Harker & Eason, 1992; Land, 1982).

• Technological progress: The speed of the innovation process cause con-
tinuous and frequent changes in the tools and technology adopted by
companies.

• Market and business stability: The economical changes force companies to
modify frequently their business strategies and goals.

• Stability of the political, institutional, and legal context: These factors
influence more the companies operating in some business areas such as soft-
ware for public administrations, government, etc.

Although these factors affect seriously the stability of the requirements, they
are not under the control of the project participants; consequently, we do not have
investigated them in this survey.

Requirements Management 273

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

15.2.2 Managing changing requirements

A proper understanding of the potential sources of changing requirements can result
in a better requirements definition and in a reduction of the change requests dur-
ing the product life cycle. However, there are changes that cannot be avoided or
reduced. For instance, requirements changes caused by the increased understanding
and experience of the stakeholders during the project. Accordingly, requirements
management needs to find means for addressing these kinds of requirements (Harker
& Eason, 1992).

One of the main reactive strategies to address requirements volatility is the
implementation of flexible software solutions (Harker & Eason, 1992). This kind
of solutions can handle changing requirements without excessive costs and time,
but they require anticipation capabilities (i.e., the capabilities to anticipate infor-
mation into the early phase of product development (Verganti, 1999).The specific
mechanisms that allow anticipation of information and reduce uncertainty at the
outset of a project are (Verganti, 1999):

Systemic learning (i.e., the capability of building knowledge by transferring •
experience from previous similar projects).
Teamwork and communication (i.e., the early involvement of all major •
actors).
Supported proactive thinking (i.e., the use in the early phases of techniques •
such as prototyping).

Implementing products with modular architectures is a common way to obtain
flexible solutions. The development team structures the system into modules in a
way that each change does not affect the interface (Berry, 2002).

Another possible reactive strategy focuses more on the flexibility of the develop-
ment process. Such flexibility can be achieved in the following ways:

Overlapping development activities (Verganti, 1999)•
Adopting an incremental delivery or an iterative development process (Harker •
& Eason, 1992)
Involving flexible resources in the product development process (Verganti, •
1999)

274 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

15.3 survey

15.3.1 design of the survey

The design of the survey follows the assumptions of Silverman (2000) and the
principles of the GQM approach (Basili, 1992). We have chosen to perform a
qualitative survey, using a semi-structured questionnaire as research methodology.
Only projects that have a single customer, that is, customer-specific projects were
considered (Lubars et al., 1993).

Given the nominal nature of most variables, the characteristics of the questions,
and the low number of data gathered, we have not used the existing non-parametric
statistical tests (e.g., binomial test and chi-square test). The statistics used are
mode, frequency count, and the relative frequency distribution (Siegel & Castel-
lan, 1988).

The sample consisted of 35 managers of software companies located in different
countries (Italy, Switzerland, Canada, and U.S.), and operating in different business
areas (telecommunication, aerospace, defence, pharmaceutical, IT, etc.).

15.3.2 Questionnaire

Questionnaires are always subject to loss of information and lack of integrity of
the collected data. A typical solution to these problems is the collection of massive
number of questionnaires (Converse & Presser, 1986). The questionnaire is intended
for managers of software companies, whose time and availability is usually very
limited. From the very beginning, we have expected a low number of respondents.
Therefore, there has been a compelling need to perfect the structure of the ques-
tionnaire and the way to administer it, in order to minimize the number of losses of
valuable information.The final form of the questionnaire has been achieved after
several drafts:

First the soundness of each question and of the questionnaire as a whole has •
been carefully checked, according to the principles of Marbach (1996).
Then, a first draft of the questionnaire has been administered to a group of •
volunteering students, and their feedback has been collected and used to pro-
duce a second draft.
Finally, the second draft of the questionnaire has then been administered to •
3 companies, and their feedback has been collected and used to produce the
final draft.

Requirements Management 275

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The questionnaire collection has been a very careful activity according to the prin-
ciples of Marbach (1996):

The questionnaire has been sent by e-mail.•
Personal or phone interview has been performed.•
The results of the interview have then been put in text, and the interviewee •
has been asked for a final check.
Only upon a positive feedback from the interviewee, the questionnaire has •
been considered accepted.

The questionnaire has been done using psychological criteria according to Converse
and Presser (1986):

The questions have been ordered from general topics to ones that are more •
specific.
The data about interviewee (age, gender, etc.) have been asked in the last sec-•
tion to avoid encroaching upon the privacy.
Oriented questions, that could cause distorted and obvious answers, have •
been avoided.

The questionnaire includes three main parts. The first describes the companies
and the main features of the requirement gathering approach used by such compa-
nies. The second investigates the impact of the factors identified in the background
section on:

Initial requirements•
Relationship between the customer and the development team•
Relationship among project stakeholders of the same • organization

Finally, the third part evaluates the importance of the changing requirements and
how companies address this problem.

15.4 results

15.4.1 general description of the companies

The average age of the interviewees is forty, nearly all (83%) are males and most
of them (71%) are manager or R&D directors. Moreover, 77% of the respondents

276 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

have a university degree, and 71% worked in the company for less than ten years.
According to the data, half of the companies have less than fifty employees, and

almost half of them have been founded before the nineties.As regard to the require-
ment gathering approach of the companies, the results show that:

• When. The requirements are gathered: only during the early phases (14%),
mostly during the early phases (44%), and constantly during all the phases
(42%).

• Who. The requirements gathering process is usually carried out by the ana-
lyst (61%), the project manager (53%), the developers (36%).

• How. The main requirement gathering techniques are: conventional tech-
niques such as interviews and questionnaires (69%), group techniques such
as focus groups (58%), and techniques based on simulation or models of the
system such as use cases and prototyping (56%). Furthermore, 42% of the
companies use tools in the requirements management process. Most of them
use these tools to support or document the communication with the custom-
ers (73%) or to assist the requirement traceability process (63%).

15.4.2 factors leading to changing requirements

We have evaluated how companies consider the requirements in terms of complete-
ness and correctness. As results show, most companies are not satisfied with the
customer ability to provide a complete and clear list of requirements, at the begin-
ning of the process (Figure 1).

The reasons for the poor requirements are showed in Figure 2. Most of the
companies consider the lack of clear business goals in the customer’s organization
the main problem. A large part of them emphasizes the importance of information
and knowledge during the requirements elicitation phase.

Regarding the relationship between the customer and the development team,
most of the companies are not much satisfied; only 5% of them are really satisfied
(Figure 3).

The dissatisfaction with the customer’s relationship is mainly due to: (a) com-
munication problems caused by the subjects diversity, (b) lack of customer involve-
ment in the project (Figure 4).

Concerning the relationships among the project stakeholders, only 11% of the
companies experience often conflicts during the requirements definition process.
Most of them (62%) declare to experience such conflicts rarely.

The majority of the conflicts during the requirement definition process (53%)
are caused by problems among representatives of different functions (Figure 5).

Requirements Management 277

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 4. Factors affecting the relationship between the customer and the develop-
ment team

Figure 1. Satisfaction with the requirements

Figure 2. Causes of the poor requirements

Figure 3. Satisfaction with the customer’s relationship

278 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

For instance, between the marketing representatives and the technical people or
between the developers and the testers.

The main reason for the conflicts among stakeholders is the structure and cul-
ture of the organizations involved in the project, followed by the diversity of the
stakeholders, and by the complexity of the projects (Figure 6).

15.4.3 changing requirements

We have evaluated how companies consider and deal with changing requirements. A
large part of companies experience requirements variability often or sometimes. Only
in few companies (3%), requirements are stable for the entire project (Figure 7).

We have investigated the main kind of requirements changes (Figure 8). The
results show that companies experience mainly scope changes (33%) and additions
(32%).

Changing requirements impact mostly on the contractual aspects and on the
quality of the architecture (Figure 9).

In order to solve the contractual problem, 17% of the companies usually renegoti-
ate the contract. Several companies (25%) prefer to solve the contractual problem
through an accurate initial analysis and contracts with special clauses for changes

Figure 5. Most difficult relationships

Figure 6. Reasons for the conflicts during the requirements definition process

Requirements Management 279

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Figure 8. Main problems with requirements

Figure 9. Effects of changing requirements

Figure 10. Main solutions for changing requirements

Figure 7. Frequency of changes in requirements

280 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

requests (Figure 10). To solve the problem of the quality of the architecture, most
of the companies (34%) implement a flexible architecture.

15.5 discussion

The elicitation of requirements is one of the first activities in the RE process
(Nuseibeh & Easterbrook, 2000). This activity includes the identification of the
system boundaries, the main stakeholders, and the goals of the system. It is often
the case that customers find it difficult to articulate clearly and completely their
requirements at the beginning of the project (Gougen & Linde, 1993; Nuseibeh &
Easterbrook, 2000).

According to the results of this survey and of other similar surveys (May, 1998),
poor requirements are a problem for the RE process (Figure 1). They can affect the
completeness and correctness of the specifications. Consequently, they can cause
changes requests in terms of additions or modification of the requirements during
the project life cycle. Due to the difficulty in eliciting a complete and correct list of
requirements at the beginning of the project, just few companies (14%) can gather
all the requirements only in the early phases of the project.

The organization of the customer affects strongly its ability to specify the require-
ments (Figure 2). For instance, the volatility of the market in which the customer oper-
ates may result in unclear and changing business goals, thus requirements. Another
important factor is the lack of knowledge about the application domain or the problem.
At the beginning of the project, it is difficult for the customer to anticipate all the infor-
mation needed for specifying completely its requests. Other studies have highlighted
the importance of this problem [Curtis et al., 1988; Gougen & Linde, 1993).

The be successful in understanding the customer and in meeting his real needs,
the development team should define customer-centered strategies and adopt com-
munication techniques that encourage customer participation and knowledge sharing
(Saiedian & Dale, 2000).

The results gathered show a low satisfaction with the customer’s relationship
(Figure 3).

Most of the companies (44%) experiences relational and communication prob-
lems caused by the diversity between the members of the development team and
the customer (Figure 4). In particular, the respondents emphasize the diversity in
terms of domain knowledge and language. Such differences may result in develop-
ers’ misunderstandings about the customer’s needs or domain-specific assumptions.
Moreover, the customers may not understand the technical issues. As a result, they
may underestimate the effort required to implement a feature or a change request
(Saiedian & Dale, 2000).

Requirements Management 281

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Respondents complain that their customers are not sufficiently involved in the
project (42%). Because of this, their relationship is mainly based on written docu-
ments and there is a lack of direct interaction with the customer. Consequently,
more requirements misunderstandings are possible. Other studies have pointed out
the importance of the customer involvement for the success of the projects (Lubars
et al., 1993).

Several companies (25%) experiences problems related to the choice of the cus-
tomer representative in the requirement gathering process. In some organizations, the
requirements are specified by intermediaries due to the internal structure (decision
making structure) or to the lack of time of the people interested in the application.
This behavior can result in incomplete or wrong requirements, requirements that
do not match the real user’s needs. This problem has been highlighted also by the
study of Curtis et al. (1988).

RE involves a lot of negotiation, discussion, and information sharing (Byrd, Cossik,
& Zmund 1992). During the requirements definition process different stakeholders
with different interests, needs, and goals should agree on a list of requirements. Such
process can result in conflicts among participants.

In contrast with the study of May (1998), stakeholder conflicts do not seem
to be a frequent event. Moreover, companies experience problems mainly among
functions representatives (Figure 5). The internal factors (e.g., the structure of the
company and the type of the project) are the main reasons for the conflicts during
the requirement definition process (Figure 6).

Most of the companies organize teams by functions or roles. Every team has
well-defined and specific tasks to accomplish, and teams interact mainly through
documents. As a result, differences among functions representatives can arise and
communication barriers could be created causing conflicts (Al-Rawas & Easter-
brook, 1996). Usually, a complex project involves a large number of stakeholders.
As the number of people increase, communication, negotiation, and agreement about
requirements are more difficult. Because of this, conflicts are possible. Another
important reason for the conflicts during the requirements definition process is the
diversity among project stakeholders (Figure 6). Diversity can inhibit communica-
tion, cause misunderstandings, and lead to conflicts.

The importance of changing requirements has been highlighted by most of the
companies (Figure 7). Due to this, a large part of them (42%) has to gather con-
stantly the requirements, during all the phases and not only at the beginning of the
project. Several studies have emphasized the importance of changing requirements

282 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

in software projects (Curtis et al., 1988; Lubars et al., 1993). The most common
forms of requirements change are scope changes, followed by additions (Figure 8).
This does not match with the results of another similar survey (Stark, 1998). In fact,
this survey pointed out additions, followed by deletion, and finally scope changes
as the most common requirements changes.

Changing requirements result often in additional costs and time. Because of this,
some of the clauses of the original contract are not more applicable or valid. This
situation cause often conflicts and discussions with the customer. According to the
data, most of the companies (25%) solve the problem trying to anticipate all the
potential requirements changes through a detailed initial analysis (Figure 10). In
this way, it is possible to write a flexible contract with special clauses that regulate
the implementation of changes requests. This solution requires good anticipation
abilities (Verganti, 1999). In contexts with high uncertainty, it is not possible to
anticipate the requirements changes at the beginning of the process. Consequently,
17% of the companies solve the contractual problem through a renegotiation of the
clauses of the original contract (Figure 10).

The graph of Belady-Lehman (Berry, 2002) shows clearly what happens to the
software structure when a program undergoes continual changes. The software
structure can be complicated to the point that it is very hard to add or change some-
thing without affecting negatively others parts or adding bugs. In order to solve
this problem, most of the companies (34%) implement flexible solutions (Figure
10). In this way, change requests can be implemented without additional costs and
time. From the experience of similar projects, companies may predict the unstable
parts of a system and encapsulate them in a specific and loosely coupled module.
This solution can be adopted only in predictable environments and in well-known
domains.

Data gathered shows other solutions to changing requirements. Some companies
(11%) highlight the importance of a greater involvement of the customers and a
more frequent communication with them. This solution allows the development
team to understand better the customers’ needs and to define more precisely their
requirements (May, 1998). To overcome changing requirements, several companies
(17%) adopt a flexible process. They deliver the application incrementally, allow-
ing the customers to test it in their domain. Consequently, the development team
retrieve important feedback for the next releases (Harker & Eason, 1992). The use
of tools for facilitating the requirements traceability can be another way to deal with
changing requirements. The development team can control the effects of changing
requirements on the different parts of the product.

Requirements Management 283

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

15.6 suMMing up

The analysis of the factors that lead to changing requirements highlights some po-
tential areas to improve RE, reduce requirements variability, and improve customer
satisfaction. In particular, companies should:

Consider the internal • organization of the customer’s company during the re-
quirements definition process. In particular, the actual business goals have to
be clearly defined.
Be aware of the initial customer’s uncertainty and the lack of information •
and knowledge about the problem, the application domain, and the potential
solutions.
Overcome the communication problems caused by the diversity between the •
analysts/developers and the customers in terms of knowledge and language.
Enhance the customer interest in the project in order to achieve a greater in-•
volvement and collaboration.
Interact with the customer’s representative that knows better the problem and •
the application domain.
Reduce the internal communication barriers among project stakeholders.•
Consider the internal context factors such as the • organization structure and
the project size.

It is interesting to notice the small emphasis that companies place on the emo-
tional problems and on the human cognitive constraints.

Regarding the requirements changes that cannot be avoided or reduced, the sur-
vey has highlighted two kinds of potential solutions. The former can be applied in
situations with low requirements uncertainty and high domain knowledge. In these
situations companies should:

Implement flexible solutions with the help of the experience of previous sim-•
ilar projects.
Write contracts with special clauses for • requirements changes.
Define and follow a formal change request procedure.•
Introduce a requirements traceability process.•

The latter can be applied in situations in which the level of existing uncertainty
does not allow the development team to anticipate or predict information. In these
situations companies should:

284 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Renegotiate the contract with the customer if the changes can affect signifi-•
cantly the costs and time of the project.
Deliver incrementally the application in order to obtain feedback from the •
customer at every release.
Communicate more frequently with the customer in order to gather informa-•
tion constantly.

The research study described was based on the idea that it is critical to under-
stand factors leading to changing requirements in order to improve RE and RM. A
central contributor to this understanding is the exploration of the main problems
and constraints in the requirements definition process. Moreover, the study has
emphasized the role of uncertainty in the RM process. In fact, companies decide
how to deal with changing requirements on the basis of the existing uncertainty
and their anticipation abilities.

15.7 references

Al-Rawas, A., & Easterbrook, S. (1996). Communication problems in requirements
engineering: A field study. 1st Westminster Conference on Professional Awareness
in Software Engineering.

Basili, V. R. (1992). Software modeling and measurement: The goal/question/
metric paradigm (Tech. Rep. No. CS-TR-2956). Department of Computer Science,
University of Maryland.

Basili, V. R., & Perricone, B. (1984). Software errors and complexity: An empirical in-
vestigation. Communications of the ACM, 27(1), 42-52. doi:10.1145/69605.2085

Berry, D. M. (2002). The inevitable pain of software development: Why there is no
silver bullet. Innovation of software and systems engineering in the future.

Boehm, B. (1981). Software engineering economics. Prentice-hall.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineer-
ing. IEEE Computer, 20(4).

Byrd, T. A., Cossik, K. C., & Zmund, R. W. (1992). A synthesis research on require-
ments analysis and knowledge acquisition techniques, MIS Quarterly.

Converse, J. M., & Presser, S. (1986). Survey questions: Handcrafting the standard-
ized questionnaire. Sage.

Requirements Management 285

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Cook, D. A. (2002). Requirements risks can drown software projects. Crosstalk.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 31(11), 1268-1287.
doi:10.1145/50087.50089

Davis, G. B. (1982). Strategies for information requirements determination. IBM
Systems Journal, 21(1).

Emam, K., & Madhavji, N. H. (1995). Measuring the success of requirements en-
gineering processes. 2nd IEEE Symposium on Requirements Engineering.

Gougen, J. A., & Linde, C. (1993). Techniques for requirements elicitation. IEEE
International Conference on Requirements Engineering.

Grehag, A. (2001). Requirements management in a life cycle perspective–a posi-
tion paper. 7th International Workshop on Requirements Engineering: Foundation
for Software Quality.

Harker, S. D. P., & Eason, K. D. (1992). The change and evolution of requirements
as a challenge to the practice of software engineering. IEEE Computer.

Highsmith, J. (2002). Agile software development ecosystem. Addison-Wesley
Professional.

Land, F. (1982). Adapting to changing user requirements. Information & Manage-
ment, 5.

Lauesen, S. (2002). Software requirements styles and techniques. Addison-Wesley
Professional.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of practice in
requirements modeling. IEEE Computer.

MacCormack, A., & Verganti, R. (2003). Managing the sources of uncertainty:
Matching process and context in software development. Journal of Product In-
novation Management, 20.

Marbach, G. (1996). Le ricerche di mercato. Utet.

March, J. G. (1998). Theories of choice and making decisions. Society, 20.

Marshall, C., & Rossman, G. B. (1989). Designing qualitative research. Sage
Publications.

May, L. J. (1998). Major causes of software project failures. The Journal of Defense
Software Engineering.

286 Requirements Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Naumann, J. D., Davis, G. B., & McKeen, J. D. (1980). Determining information
requirements: A contingency method for selection of a requirements assurance
strategy. Journal of Systems and Software, 1.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap.
IEEE Computer.

Saiedian, H., & Dale, R. (2000). Requirements engineering: Making the connec-
tion between the software developer and the customer. Information and Software
Technology, 42.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics. McGraw-Hill.

Silverman, D. (2000). Doing qualitative research. Sage Publications.

Stark, G. (1998). An examination of the effects of requirements changes on software
releases. Crosstalk.

Tan, M. (1992). The effects of verbal and nonverbal behaviors on mutual under-
standing: An empirical study. Communication of ACM.

Verganti, R. (1999). Planned flexibility: Linking anticipation and reaction in product
development projects. Journal of Product Innovation Management, 16(4), 363-376.
doi:10.1016/S0737-6782(98)00067-8

Project Management 287

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 16

Project Management

16.1 introduction

Surveys covering over 8000 projects indicate that the major sources of software
project failure lie less with shortfalls in formal methods skills and more with short-
falls in skills to deal with stakeholder value propositions (Johnson, 1999). Five of
the top six reasons of failure do not deal with programming languages, development
environment or hardware choices, but are related to communications among devel-
opers and customers (Boehm, 2002). Moreover, the updated Standish Group study,
conducted in 2000, identified 10 software success factors. The second factor is user
involvement and the third is experienced project manager. This means that most
projects fail because of people and project management issues rather than technical
issues (Thomsett, 1993). Several recent studies (Philips, 1998) indicate that project
managers are learning how to become more successful at IT project management.
To improve the software success, more highly skilled project managers are using
improved management processes.

The aim of this chapter is the investigation of the main problems in software
development and the adopted solutions from the point of view of managers. We
have performed a pre-experimental design based on 21 interviews with software
managers. We adopt the Petroski’s views (Petroski, 1982): analyze the causes of
failures can do more to advance knowledge than all the successes in the word.

DOI: 10.4018/978-1-59904-681-5.ch016

288 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Our goal is to find out differences and analogies in software management tech-
niques derived by the adoption of AMs and their effectiveness in the improvement
of the software production.

16.2 the structure of the investigAtion

16.2.1 goals, Questions and Metrics of the research

We want to determine how project management is approach dealing both with of
people (developers and clients) and with the process (planning and organization).

We use the well-known GQM model by Basili (1992) to determine the overall
structure of the study. Here below there are the details.Goals:Monitoring what a
Project Manager considers important to develop better processes, organize teams
more effectively and deal with problems faster.

Perspectives:

Main • problems in a software development process and main solutions ad-
opted for improving the situation
Evaluate the • software process planning
Estimate the relationship with the customer•
Assess the real knowledge and use of AMs focusing on their benefits and •
disadvantages

Context:

Managers in local and international software companies•

Questions:

Which is the biggest problem in software development? How have you tried •
to address it?
How much effective is • planning and organizing the software process?
How much effective is the relationship with the customer to improve the final •
satisfaction?
How much effective is the use of AMs in addressing main software •
problems?

Project Management 289

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Metrics:

Telephone questionnaire•

16.2.2 design of the experimentation

Our research can be classified as a pre-experimental design, according to classification
of Cambell and Stanley (1966), in particular it is a statistic group comparison.

We have selected two different groups: managers using AMs and managers not
using them. The adoption of AMs is the experimental variable, the effects of which
have been measured. Interviewees have been selected among managers involved in
the funded projects in our research center1. Both groups have answered a question-
naire (questionnaire is the process of observation).

The pre-experimental design has two limits. The former deals with the selection:
differences between the two groups could be affected by how the two groups have
been recruited. The involvement in the projects could have influenced managers.
The latter limit is the mortality, which is when differences in groups are due to the
lack of answers to the questionnaire. This limit does not affect our data collection
because all the selected managers have filled in the questionnaire.

16.2.3 Questionnaire

Questionnaires are always subject to loss of information and lack of integrity of
the collected data. A typical solution to these problems is the collection of massive
number of questionnaires (Converse & Presser, 1986).

The questionnaire is intended for managers of software companies, whose time
and availability is usually very limited. From the very beginning, we have expected
a low number of respondents. Therefore, there has been a compelling need to perfect
the structure of the questionnaire and the way to administer it, in order to minimize
the number of losses of valuable information.The final form of the questionnaire
has been achieved after several drafts:

First the soundness of each question and of the questionnaire as a whole has •
been carefully checked, according to the principles of Marbach (1996).
Then, a first draft of the questionnaire has been administered to a group of •
volunteering students, and their feedback has been collected and used to pro-
duce a second draft.
Finally, the second draft of the questionnaire has then been administered to •
6 companies, and their feedback has been collected and used to produce the
final draft.

290 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The questionnaire collection has been a very careful activity according to the prin-
ciples of Marbach (1996):

Potential respondents have been selected among the companies involved in •
some projects or have some relationships with our research center.
The questionnaire has been sent by e-mail.•
One of the authors of this paper has then run a phone or a personal •
interview.
The results of the interview have then been put in text, and the interviewee •
has been asked for a final check.
Only upon a positive feedback from the interviewee, the questionnaire has •
been considered accepted.

The questionnaire has been done using psychological criteria according to Converse
and Presser (1986):

The questions have been ordered from general topics to ones that are more •
specific.
The data about interviewee (age, gender, etc.) have been asked in the last sec-•
tion to avoid encroaching upon the privacy.
Oriented questions, that could cause distorted and obvious answers, have •
been avoided.

According to principles of Marbach, critical aspects of the questionnaire that could
invalidate or reduce the efficiency of the results have been carefully analyzed:

The questionnaire is quite long (26 questions) but the interview has been or-•
ganized in a lively way in order to avoid the decrease of the attention.
The use of open questions could cause misunderstandings. For this reason, •
the correctness of the answers, transcribed by the interviewer, were checked
by the interviewee.
The use of multiple choice questions could provide answers not very valu-•
able when the interviewee does not know precisely the topics. This problem
does not affect our research because the interviewees were managers with a
deep technical knowledge.

The questionnaire consists of four parts: the first analyzes the interviewee’s
status, main problems in software development and the adopted solutions; the
second deals with the planning and the organization of the software development

Project Management 291

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

process; the third evaluates the relationship with the customer; finally, the fourth
assesses the knowledge, the real use of AMs and the vantages or the disadvantages
of their use.

It includes several multi choice questions alternated with some open questions.
The topics covered in the questionnaire are listed in Table 1.

Here we list the acronyms of measures which have a significant correlation (Table
2). Besides each acronym we put the reference number of Table 1.

Table 1. Main topics of the questionnaire

ID Topic

1 Firm’s general information

2 Main software problems

3 Planning and organization of the software development process

4 Relationship with customers

5 Planning and feasibility of a project

6 Developer’s characteristics

7 Agile Methods

8 Firm and interviewee’s personal data

Table 2. Measures acronyms

Topic ID Acronym Meaning

1 CCR Changes in the customer’s requirements

1 CAT Changes in the adopted technologies

1 MC Major competition

1 MLT Major legal ties

1-2-3-4-5 O Other

1-2 THE High turnover of employees

2 DDSFT Difficulties to deliver the software with all functions in time

2 LQS Lack of qualified staff

2 HC High competition

2 RC Relationship with client

2 EDC Excessive documentation of code

2 DMRD Difficulties in managing relationships with developers

4 RMUF Requirements of too many unnecessary functions

292 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

16.2.4 statistical evaluation

An objective set of decision criteria is required to state whether a hypothesis is veri-
fied or not using a specific set of data. Such objective procedure usually involves
several steps.According to statistical techniques (Siegel & Castellan, 1988), we
proceed as follows:

• Null hypothesis (H0). The null hypothesis is: there are no differences between
the two groups from the point of view of the management approach. The
alternative hypothesis (research hypothesis) predicts differences between the
two groups.

• Statistical test. We do not know exactly the nature of the population distribu-
tion. The statistical test, which is appropriate to verify our hypothesis, is the
non-parametric statistical test.

• Significance level. In advance we decide to use α= 0.05 as our level of
significance.

• Sample size. The sample size consists of 21 software managers

We structure the results in tables showing the frequencies, percentage and the
Sperman’s correlation coefficient and p-significance.

The numeric computation of the statistical indexes has been performed using R2.

16.2.5 structure of the sample

The twenty-one interviewees are project managers in software companies.
There are 20 males and one female: it is a quasi-homogeneous distribution. The

Gini’s index is 0.09.
Nineteen managers have a university degree; two managers have a school-leaving

certificate and the average age of interviewees is forty. This means that the intervie-
wees have a deep knowledge and experience about project management.

Seventeen companies have been created after the eighties, more than 80%. There
are fifteen selected companies in Italy, five in the U.S. and one in Switzerland.

The sectors of the firms are different: consulting, service software, software
development, and so on. The majority of them have a high number of employees,
only four of them that have less than ten employees.

Project Management 293

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

16.3 results

All the companies interviewed have been exposed to changes in their software
production process.

The motivations are clear: 43% because of changes in the customers’ require-
ments, 48% because of changes in the adopted technologies and 9% because of
failure with the prior software development process (Table 3).

According to 15 managers, delivering software with all functions in time is the
main problem in software development (Table 4). There is no significant correlation
between the main problem in software development and the adoption of AMs in the
software process. A survey, made by the Standish Group on 8000 projects in the
1999, shows the same result: only 26% of the development projects were completed
on time, on budget and with all the functions originally specified.

The selected managers have adopted different solutions for the delivery of soft-
ware with all functions in time: use of new methodologies such as XP and Scrum
(5 managers), improvement of productivity process thanks to Project Managements
culture and techniques (5 managers), focus on people (clients and developers)

Table 3. Motivations for changes in the software development

Motivation for changes Frequency Percentage

CCR 9 43%

CAT 10 48%

MC 0 0%

MLT 0 0%

HTE 0 0%

O 2 9%

Table 4. Main software problems

Main software problems Frequency Percentage

DDSFT 15 71.5%

LQS 2 9.5%

HC 0 0%

RC 2 9.5%

EDC 0 0%

DMRD 0 0%

THE 0 0%

Others 2 9.5%

294 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

through an improvement of communication and knowledge transfer (small realize,
good communication between clients and developers, etc.).

The majority of managers are focus on process and people in order to improve
the performance of the company, according to the results of Thomsett (1993).

Important things depend on customers and suppliers in a particular marketplace.
Thinking about business, costumers, marketplace, process, etc., does not come easy
to programmers and programmers turned into project managers.

This means that the Project Management has a fundamental role in the solution
of software problems.

It is interesting how common planning and organization tools, such as Gantt’s chart
and Pert’s chart, are used to improve the software development process (Table 5).

Most of managers (85.7%) would like to improve the process planning even if more
than the 60% of managers are sufficiently satisfied with it (Table 6 and Table 7).

Satisfaction with the planning of projects has a good correlation with satisfaction
with client’s relationship. Anyway, the significant correlation is due to the use of
AMs in the selected companies (Table 8).

Table 5. Planning and organization of software development process

Planning Tools Frequency Percentage

Gantt’s chart 15 71.4%

Pert’s chart 9 42.9%

Critical Path Method 4 19%

Others 6 28.6%

Table 6. Improvement of process planning

Improvement of process planning Frequency Percentage

Yes 18 85.7%

No 3 14.3%

Table 7. Satisfaction with the planning of projects

Satisfaction with project planning Frequency Percentage

Not at all 2 9.5%

Not much 1 4.8%

Sufficiently 13 6.9%

Very much 5 23.8%

Project Management 295

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

For the managers that are using AMs, an improvement in the software devel-
opment planning produces also an improvement in the satisfaction with client’s
relationship.

This result is in accordance to the principles of the AMs (Beck, 1999). AMs
highlight the importance of planning and organization in projects. Planning is a
stable dialog between clients and developers. To build a good planning, a deep and
constant feedback from clients is essential. Improving planning and improving
relationships with customers are strictly related due to the direct and continuous
communication required.

In our research, high individual ability is the least ability considered by manag-
ers using AMs.

The adoption of AMs is correlated with the importance attributed to teamwork
(Table 9). The importance of developer’s high individual ability is negatively cor-
related with the adoption of AMs and with the importance of teamwork (Table 9).
The strategy of inspected AMs managers is: preference of developers who can work
in team instead of developers with high individual ability.

These results are in accordance to Schumpeter’s principles (1911): innovations
are new combinations of existing knowledge and incremental learning. The shar-
ing of knowledge facilitates the transfer of knowledge within a group and it makes
easier the development of new ideas. These results are also in accordance to the
principles of AMs (Beck, 1999), and Thomsett (1993).

Table 8. Correlation between satisfactory with planning and satisfactory with cli-
ent’s relationship

Adoption of AMs Non adoption of AMs

SWP SWC SWP SWC

SWP 0.647
p= 0.002

0.285
p= 0.457

SWC 0.647
p= 0.002

0.285
p= 0.457

Table 9. Developer’s characteristics

Adoption of AM High individual ability Good time work

Adoption of AM - 0.471
p= 0.031

0.46
p= 0.036

High individual Ability - 0.471
p= 0.031

- 0.612
p= 0.003

Good time work 0.46
p= 0.036

- 0.612
p= 0.003

296 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

AMs consider teamwork, in particular the practice of pair programming, essential
in software development in order to improve the communication and the transfer
of knowledge within the organization.

Interviewed managers have adopted several solutions to improve the three devel-
opers’ characteristics included in the questionnaire. Continuous training contributed
to improve individual abilities; teamwork ability and motivation improved through
regular communication and involvement in projects.

We have also analyzed the different approaches adopted in the relationship with
customers. There is a negative correlation between the practice of customer on site
and the use of limited contracts (Table 10). The correlation is significant only for
AMs managers. In AMs, the understating of what the customer really wants requires
a constant participation of customers in the projects. This participation implies
interactions between customers and developers and allows quick changes in the
software product. The definition of limited contracts with predefined functions and
time cannot be used by AMs managers.

The main problems in the relationships with customers are clear: variable re-
quirements during the process (71.4%) and requests to deliver the final product
too quickly (47.6%) (Table 11). The adopted solutions are different and are not
correlated with the adoption of AMs.

The last part of the questionnaire deals with the knowledge and the adoption of
AMs in the companies. Table 12 shows the most significant frequencies and cor-
relations.

About 90% of selected managers know AMs and 57% are adopting them (Table
12). It means that AMs are a well-known phenomenon and their adoption is quite
remarkable (Charette, 2003).

The main causes of non-adoption of AMs are: superficial knowledge of the
topic, resistance inside the company and from customers, big or geographically
separated development teams. These results are in accordance to the limits of XP
pointed out by Beck (1999).

Table 10. Correlation between client on site and limited contracts

Adoption of AMs Non adoption of AMs

Client on site Limited contracts Client on site Limited contracts

Client on site - 0.683
p= 0.014

- 0.632
p = 0.074

Limited contracts - 0.683
p= 0.014

- 0.632
p = 0.074

Project Management 297

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

There is a homogeneous distribution between the knowledge of AMs and the
knowledge of XP, as shown in Table 13, but managers adopting AMs also know
SCRUM.

Main problems with software development and main problems addressed with
the adoption of AMs are correlated. This means that the adoption of AMs has been
a good solution for the main software problems. In particular, all managers adopt-
ing AMs have evidenced as the main software development problem the delivery
of all functionalities in time.

Benefits derived by the introduction of AMs are the following: improvements
in the software quality, in requirements management, in customer satisfaction and
team satisfaction.

Table 11. Relationship with clients

Main problems with clients Frequency Percentage

Variable requirements during the process 15 71.4%

Requests to deliver the final product too quickly 10 47.6%

Unsatisfied customers 2 9.5%

Requirements of too many unnecessary functions 7 33.3%

Other 4 19%

Table 12. Knowledge and adoption of agile methods

AMs Frequencies Percentage

Have you ever heard about AM? Yes 19 90.5%

No 2 9.5%

Are you adopting AM? Yes 12 57.1%

No 9 42.9%

Table 13. Correlation with agile methods

AMs XP SCRUM Main problems with
software development

Have you ever heard
about AM?

1.000
p = 0.000

Are you adopting XP? 0.556
p = 0.013

Main problems solved
adopting AM

0.724
p = 0.014

298 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The main problems derived by the introduction of AMs are: lack of an ex-ante
evaluation of costs and the troubles resulting by the introduction of new concepts
(pair programming, test first, customer on site, etc.). The real difficulty seems to be
a cultural problem: people (customers and developers) are not able to accept drastic
changes in the traditional environment.

16.4 suMMing up

This chapter is a first analysis of the differences and the analogies derived by the
adoption of AMs in twenty-one selected software companies from the point of view
of project management. Our statistical research shows some interesting results.

Most of mangers indicated as the main software problem the delivery of software
with all functionalities in time. This result is unrelated with the adoption of AMs
and it has been confirmed by several studies.

Methods used to improve software are different but most of the managers adopt
solutions focused on people and process. Anyway, an important conclusion of our
work is that the managers using AMs focus more on people (customers and devel-
opers) and on the process (planning and organization) rather than managers not
adopting AMs. Agile Methods focus on people in a number of different ways, this
orientation is also confirmed in our collected data.

The correlation between the satisfaction with planning and the satisfaction
with customer shows a deep attention for the development of a constant interac-
tion between the development team and the customers. This approach generates a
constant learning, knowledge creation and knowledge sharing through a direct and
continuous communication and incremental development.

The correlation between the adoption of AMs and the preference for teamwork
among developers is another good strategy based on people. Teamwork is useful to
improve knowledge transfer, communication and coordination within an organiza-
tion. Knowledge sharing within a group makes easier its transfer and the develop-
ment of new ideas.

The customer on site practice is negatively correlated with the use of limited
contracts. According to the principles of AMs, a constant relationship with the cus-
tomer provides feedback useful to allow quick changes. In AMs projects, flexibility
is absolutely needed and it rejects the use of limited contracts.

The main problems with software development and the main problems solved
with the adoption of AMs are correlated. This might mean that the adoption of AMs
has been a good solution for delivering functionality customers quickly (Highsmith
& Cockburn, 2001).

Project Management 299

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Several results we have obtained in this chapter confirming previous experiences
and deductions (Highsmith & Cockburn, 2001; Schwaber & Beedle, 2001). The
adoption of AMs has a significant impact in practices and values of managers because
they have to focus on people and process more than the others managers do.

The use of AMs seams to provide a contribution to the improvement of the
software development process.

The analysis presented in this chapter is a quite preliminary one and further
investigation is required.

16.5 references

Basili, V. R. (1992). Software modeling and measurement: The goal/question/
metric paradigm (Tech. Rep. No. CS-TR-2956). Department of Computer Science,
University of Maryland.

Beck, K. (1999). Extreme programming explained. Addison-Wesley Professional.

Boehm, B. (2002). Six reasons for software project failure. IEEE Software.

Cambell, D. T., & Stanley, J. C. (1966). Experimental and quasi-experimental
designs for research. Houghton Mifflin Company.

Charette, R. (2003). The decision is in: Agile vs. heavy methodologies. Cutter IT
Journal, 2(19).

Converse, J. M., & Presser, S. (1986). Survey questions: Handcrafting the standard-
ized questionnaire. Sage.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business
of innovation. IEEE Computer.

Johnson, J. (1999). Turning chaos into success. Software Magazine.

Marbach, G. (1996). Le ricerche di mercato. Utet.

Petroski, H. (1992). To engineer is human: The role of failure in successful design.
Vintage Books of Random House.

Philips, D. (1998). The software project manager’s handbook principles that work
at work. IEEE Computer Society Press.

Schumpeter, J. (1911). The theory of economic development. Harvard University
Press.

300 Project Management

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Schwaber, K., & Beedle, M. (2001). Agile software development with scrum. Pren-
tice Hall.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for behavioral sci-
ences. McGraw-Hill.

Thomsett, R. (1993). Third wave project management upper Saddle River. Yourdon
Press.

endnotes

1 http://www.case.unibz.it/ (accessed on November 11, 2008)
2 http://www.r-project.org/ (accessed on November 11, 2008)

Section 4
Industrial Adoption and Tools for

Agile Development

302 Open Source Assessment Methodologies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 17

Open Source Assessment
Methodologies

Barbara Russo
Free University of Bozen-Balzano, Italy

Marco Scotto
Free University of Bozen-Balzano, Italy

Alberto Sillitti
Free University of Bozen-Balzano, Italy

Giancarlo Succi
Free University of Bozen-Balzano, Italy

Etiel Petrinja
Free University of Bozen-Balzano, Italy

17.1 introduction

The evaluation of software is a critical task for corporations that are planning to use
OSS components. The amount of OSS available is vast and often its quality is not
appropriate to adoption for real business processes. Therefore, companies have to
analyze the available solutions and chose the software that meets their functional
needs and quality standards. Different Capability Maturity Models (CMM) for
software assessment exist, however OSS is characterized by specific features that
are not appropriately handled in standard software assessment methodologies.

Project success and the software quality are a multidimensional construct and the
variety of different measures to assess its quality is rich and varies from one method-

DOI: 10.4018/978-1-59904-681-5.ch017

Open Source Assessment Methodologies 303

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

ology to the other. However, there are some characteristics of OSS that are inserted
in different methodologies. The most often considered characteristics are:

The number of developers working on the • OSS,
The number of downloads of the software,•
The developer’s satisfaction,•
The level of activity on the project,•
The time between consequent releases,•
The time to close bugs and•
The reputation in the community.•

These characteristics are added to the characteristics already measured in close-
source software. Since the code is available to everybody it can be reviewed and
assessed by using traditional methodologies that measure the level of understand-
ing, completeness, conciseness, portability, consistency, maintainability, testability,
usability, reliability, structuredness and efficiency. These assessments can be done
by everybody who is interested in the quality of the OSS.

Different OS assessment methodologies have been proposed to help users
analyze and estimate the quality of software products and the related production
processes. The most popular methodologies available to the OSS community are
the following:

Open Source Maturity Model (OSMM) from Cap Gemini (Duijnhouwer & •
Widdows, 2003)
Open Source Maturity Model (OSMM) from Navica (Golden, 2005)•
Methodology of Qualification and Selection of Open Source software (QSOS) •
(Atos-Origin, 2006)
Open Business Readiness Rating (OpenBRR) (Wasserman • et al., 2005)

All the four assessment methodologies listed are oriented mainly toward the
analyses and evaluation of OS products. Such methodologies consider some aspects
of the OSD process and try to include these elements inside the overall assessment
procedure.

17.2 open source MAturity Model
(osMM) froM cAp geMini

The Open Source Maturity Model (OSMM) provides a systematic approach for
evaluating and implementing OS products within a commercial environment. It

304 Open Source Assessment Methodologies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

describes how an OS product should be assessed to ensure that it meets all the IT
requirements that the company requires. The OSMM accomplishes this by linking
an effective FLOSS product analyses and a review of the company and its IT issues.
The OSMM enables to:

Determine the maturity of an • OS product,
Assess a • OS product’s match to the business requirements and
Compare • OS products with commercial alternatives.

The OSMM approach makes a distinction between product indicators that are
units of measure describing how the product was developed, and how it is accepted
by the community; and between application indicators that measure relevant aspects
of the product within a specific context (aspects like maintenance, training facility,
connectivity, etc.). Application indicators cannot be measured using the Capgemini’s
OSMM without gating information provided by the customers and possible future
users of the OS products.

Capgemini’s OSMM defines four product indicators groups; each of these four
groups contains a number of basic indicators. The four groups are:

Product focuses on the internals of the product.•
Integration measures the integration of the analyzed software with other •
components.
Use measures the everyday support to users.•
Acceptance group assess how the product is perceived inside the •
community.

Application indicators introduce into the assessment the specificity of the final
user of the OSS. Basically, it analyzes present and future needs of each user. The
measures inserted in the OSMM assessment are: usability, interfacing, performance,
reliability, security, proven technology, vendor independence, platform independence,
support, reporting, administration, advice, training, staffing, and implementation.

For some indicators the data is recorded in three different periods of time. The
second record is done 6 months later than the first and the third is done two years
later. This procedure shows the trend of change of some indicators that can repre-
sent better the development in time of the analyzed software. When all the scores
are collected and written down, they are combined to the final score that indicates
the suitability of the product for the given demands. Determining one single score
allows an easy comparison between different OS products.

Scores range from 1 to 5. If an indicator is not applicable for the assessed product,
the score is set to 3. This value is a threshold that does not affect the outcome of

Open Source Assessment Methodologies 305

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the whole assessment. Scores bellow 3 represents scores that cut-off OS products
from further selections.The procedure in the OSMM is composed of 7 consecutive
steps that are:

• Step 1: Product research and rough selection of appropriate solutions.
• Step 2: Scoring the product by using the product indicators.
• Step 3: Scoring by using application indicators.
• Step 4: Interviewing the customer on the importance of specific application

indicators.
• Step 5: Scoring of the application indicators together with the customer.
• Step 6: Determining score cards for product and final selection of the right

product for the specific customer.
• Step 7: The final evaluation of the OS product.

Capgemini is a private company that developed OSMM to improve its offer of
OS assessments services. Therefore, the method has a non-free license and it requires
an authorized distribution. Few metrics, that cannot be measured and calculated
deterministically, are assessed by more than one person inside the company. This
way it is guaranteed an objective score of the analyzed software product.

17.3 open source MAturity Model (osMM) froM nAvicA

The Navica’s OSMM is an assessment method that provides a formal set of assess-
ment criteria. The Barton Group report describes the OSMM as a tool that provide
additional information to pragmatic software adopters. If the software’s early adopters
do not need additional products that are delivered along the software, the pragmatic
adopters, that represent 85% of users, demand additional tools, descriptions, assess-
ments, robust support and documentation. Proprietary software usually contains
many of these additional products. On the contrary, OS developers, especially in
the beginning phases do not provide these additional products. Navica’s OSMM
offers the assessment of OS code and of additional products and it also represents
one of the additional products that help pragmatic users to adopt OSS.

The OSMM assesses the FLOSS product’s maturity in three phases.

17.3.1 phase 1: Assess element Maturity

The first phase basically identifies key product elements and assesses their maturity
level. Key elements are critical for a proper implementation of the OSS. These key
elements are: product software, support, documentation, training, product integra-

306 Open Source Assessment Methodologies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

tions and professional service. Key elements are assessed according to a four step
procedure.

• Step 1: Define Requirements allows the assessment of the OSS from specific
needs of the user.

• Step 2: Locate Resources provides addresses and links to all kind of resourc-
es that support the adoption of the analyzed OSS. Forums provide a rich
source of information about additional products that describe the analyzed
products.

• Step 3: Assess maturity is the key step where users have to determine each
element on the maturity continuum.

• Step 4: Assign maturity score to each element. The score range is from 0 to 10
points and it represents how well the element needs the user’s requirements.

Maturity scores allow the comparison of different OS products. Since there
are singular scores for each element and one general score for the whole product
it is visible if maybe in general the software is good but one element score is low.
Therefore, it provides also an indication for an improvement of one or more singular
parts of the assessed software.

17.3.2 phase 2: Assign Weighting factors

Navica’s OSMM includes in its assessment procedure also additional products not
just the software code. Therefore it provides a score list for: Software (4), Support
(2), Documentation (1), Training (1), Integration (1) and Professional service (1).
The numbers in the brackets are the default values proposed by the OSMM. Their
sum is 10. Users can change default values according to their specific needs, how-
ever the sum has to be always 10. The software code value by default is 4 and it
represents the importance of the code part of the product; however other elements
bring to the overall assessment additional positive or negative points.

17.3.3 phase 3: calculate the product’s overall Maturity score

After the assessment of each element’s score in the first phase and weighting factors
in the second phase, the scores and factors are summed to give an overall product
maturity score that ranges between 1 and 100.

Open Source Assessment Methodologies 307

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

17.4 Methodology of QuAlificAtion And
selection of open source softWAre (Qsos)

The QSOS method helps to differentiate OSS from the technical and functional point
of view. Additionally, it provides a framework that allows the set up of an efficient
risk management process. The method supports software qualification by integrat-
ing OS characteristics and it allows software comparison according to formalized
need requirements of weighted criteria. The QSOS method was developed by Atos-
Origin, an IT service provider company as a tool for its support and technological
survey services.The assessment process is divided in four interdependent steps.
The four steps are:

Step 1: Definition

The step provides definitions of various elements typology that are used later in the
assessment process. It supports the definition of software families, types of licenses
on which the OS products are offered to users and the types of the communities that
are developing and supporting the assessed software products.

Step 2: Evaluation

The objective of this step is to carry out the evaluation of the software. The results
of the step are a collection of identity card of the assessed software and a detailed
evaluation sheet by scoring criteria split on three axes:

Functional coverage,•
Risks from the user’s perspective and•
Risks from the service provider’s perspective.•

Software identity cards contain just factual data that is not scored; these data
however helps in the scoring process that is described in the evaluation sheet. OSS
identity cards contain general information about the software, existing services that
support the use of the assessed software, information about functional and technical
aspects and a synthesis section.

The scoring is inserted into the evaluation sheet and it describes and analyzes in
detail evaluations brought by new releases of the software. All criteria are scored
from 0 to 2. As an example we can take the functional coverage of the OSS; the
scores are the following:

308 Open Source Assessment Methodologies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Score 0: The functionality is not covered,•
Score 1: The functionality is just partially covered•
Score 2: The functionality is completely covered.•

The central criteria are split into five categories that are: the intrinsic durability
(maturity, adoption, development durability, etc.), industrialized solution (services,
documentation, quality assurance, etc.), integration, technical adaptability (modular-
ity, by-products) and strategy (license, copyright owners, roadmap, etc.). The QSOS
method supports the iteration of the scoring procedure and the user can score just
the five main categories or he can score also their sub criteria and therefore obtain
a finer score granularity.

Step 3: Qualification

Once the evaluation step is finished the user has to define filters translating his spe-
cific needs and constraints related to the OSS. This step introduces into the assess-
ment procedure the whole context in which the selected OSS will have to function
properly. A first level of filtering can be done using just identity cards and a detailed
filter can be done by using the functional grid defined in the second step.

Step 4: Selection

The last step is used to identify the software that best fits user’s requirements or it
can be used to compare different software products belonging to the same family. The
QSOS method supports a strict selection process and a loose selection process.

The QSOS method supports an iterative process where some of the steps can
be repeated in order to refine the assessment results. Atos-Origin developed a tool
(O3S – Open Source Selection Software) that implements the proposed method and
helps users to analyze and compare OS products according to roles present inside
the method.

17.5 open Business reAdiness rAting (openBrr)

The Business Readiness Rating (BRR) method goes a step further than the before
proposed methods and proposes an assessment that is open and flexible but at the
same time standardized. Therefore it allows a better systematic implementation and
as a result a transparent assessment of OSS and as well of close-source software.
The authors of the method are the SpikeSource centre (Centre for Open Source
Investigation at Carnegie Mellon West) and the Intel corporation. They emphasise

Open Source Assessment Methodologies 309

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the importance of an open and standard method for acceleration in the adoption
of OSS and the trustworthy in its components. A standardized assessment model
would allow sharing assessment results and the comparison of different software
products. Authors think that four crucial requirements have to be addressed for a
good software rating model:

1. The model has to highlight every prominent characteristic of the prod-
uct. It must provide a complete overview of all positive and also negative
characteristics.

2. It must be easy to understand the assessment process and the produced scores
system. The terminology has to be user friendly.

3. The model has to be flexible and it must adapt to rapid changes inside the IT
sector. The openness of the BRR method allows it extension without serious
problems.

4. The model must be consistent across different target uses. Consistency of
the model allows the comparison of diverse software products from different
domains.

Authors of the BRR model wish to provide a more detailed evaluation data and
scoring to assess the software’s business readiness in comparison with the already
available methods. They aim to provide a scientific model that contains a clear
mapping from evaluation data to scoring and to the final rating of the software.The
assessment process of the BRR method includes four phases:

Phase 1: The initial filtering

In the first phase users can roughly filter the software products according to quan-
titative and qualitative characteristics. The characteristics can be the licensing/
legal situation of the software, whether the software is standardized or not, if the
software was included inside largely adopted packages, what is its implementation
language and others.

Phase 2: Target usage assessment

This phase contains two sub tasks that are the category weighting and the metrics
weighting. The former is intended to list twelve categories (functionality, usability,
quality, security, performance, scalability, architecture, support, documentation,
adoption, community, and professionalism) from the most important to less important
and selecting just the first seven categories for further assessment. In the second

310 Open Source Assessment Methodologies

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

subtask, the user has to rank the metric within each category and assign a percentage
of importance totalling 100% over all the metrics within one category.

Phase 3: Data collection and processing

The user collects data for each metric in each category and calculates the applied
weighting for each metric.

Phase 4: Data translation

By using category ratings and weighting factors it is possible to calculate the Busi-
ness Readiness Rating score that can be published on appropriate web boards and
used by other potential adopters of specific OSS products.

17.6 references

Atos-Origin. (2006). Method for qualification and selection of open source software
(QSOS). Retrieved on November 11, 2008, from http://www.qsos.org/download/
qsos-1.6-en.pdf

Duijnhouwer, F. W., & Widdows, C. (2003). Open source maturity model. Cap
Gemini.

Golden, B. (2005). Making open source ready for the enterprise: The open source
maturity model. Navica.

Wasserman, A., Pal, M., & Chan, C. (2005). The business readiness rating model:
An evaluation framework for open source. Retrieved on November 11, 2008, from
http://www.openbrr.org/ff

Adoption of Open Source Processes in Large Enterprises 311

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 18

Adoption of Open
Source Processes in
Large Enterprises

Barbara Russo
Free University of Bozen-Balzano, Italy

Marco Scotto
Free University of Bozen-Balzano, Italy

Alberto Sillitti
Free University of Bozen-Balzano, Italy

Giancarlo Succi
Free University of Bozen-Balzano, Italy

Etiel Petrinja
Free University of Bolzano, Italy

18.1 introduction

This chapter summarizes the results of a questionnaire submitted to 50 companies and
focusing on their usage of OSS. The people interviewed are project managers.

DOI: 10.4018/978-1-59904-681-5.ch018

312 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

18.2 the study
18.2.1 trust

What are the elements (practices, tools, techniques, etc.) in the process of OSD that
allow you to trust the quality of the final product?

Some interviewee distinguished between internal OSS development and external
OSS to be adopted by the company. The answers were mainly interested on the im-
portance of the quality of the source code and the final product first, and only then
the interviewee expected additional quality issues. The quality of the OS product
is based on its utility to the company and on a list of other criteria. The most often
mentioned elements that assure the quality of an OS product are (Figure 1):

A • quality software development process
The availability and a prompt implementation of the roadmap•
Explicative • documentation and possibly some examples of the use
The product has to be tested appropriately by developers and other users (a •
large user base)
Some companies prefer a third party assessment (a major certification author-•
ity) of the product and sometimes also of the process that was followed for
the development of the final product; however, this assessment may be also
performed or replaced by previous use experiences of trusted partners like
providers, or even competitors.
The community developing the product has to use version control systems, •
bug tracking, mailing lists and other OS development tools in order to permit
a clear assessment of their development process.
The community has to be still active on the improvement of the product and •
promptly responsive to user’s questions
The license of the product must be in accordance with the use that the com-•
pany needs it for.

OS product must provide all functionalities that the company needs and these
functionalities must have a good quality level. Some interviewee answered that an
additional quality criteria for OS products is the list of (important) companies that
support and sponsor the development of the OS product.

Adoption of Open Source Processes in Large Enterprises 313

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

18.2.2 Quality Assurance

What are the aspects for verifying quality of the product you use or/and produce?

The companies interviewed use different criteria to develop and test internal OSS
and external OSS to be adopted by the company. The majority prefers to test OS
products following a combination of automatic and manual tools and the OSS to
be used and adopted has to provide necessary functions. Since there is not yet a
well established methodology for assessing OS products neither OS development
processes, the companies, either assess it according to non-OS methodologies or
they apply hybrid methodologies that take in consideration some additional specific
aspects of OSS. The size of the user community is one of the important aspects; the
response time from the community to specific requirements is another important
aspect. However, it is expected that OS developers follow industrial standards for
data formats and user interaction. Additionally, it is desired that the standards used
for developing OS are open and largely used (Table 1).

Who tests the product?

Figure 1. Trust elements

314 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Usually the OS products to be released are tested by developers themselves
first, and then often by specialized test groups that can be composed by internal
people from the company, by the component integrator, by the module’s owner or
by committers from the OS community. From the interviews, it seems that there
is not a specific person or group of persons that conduct tester on OS products;
therefore the tests are performed by different stakeholders. This is aligned with the
usual process inside the OS communities, where everyone using the software may
do tests and communicate results to the community that can improve future releases
of the software (Table 2).

Which manually test methods are used? (internal/user testing)

Table 1. Aspects for verifying the quality of OSS

Answer %

User satisfaction 75%

Standards used 75%

Testing and test suits (automatic or not) 75%

Documentation 50%

Use of metrics: bug reports 50%

Number of users - size of the community 50%

Certification of the software’s quality by a third party 50%

Process followed (ITIL, RUP) 50%

NOT CMMI (too heavy for development) 25%

Quality assurance process is followed 25%

Quality of the code, stability, security and usability of the software, features included, the
time frame

25%

Table 2. Who tests the product

Answer %

The developers inside the company 80%

The community 60%

Project owner, manager 40%

Selected users test the software 40%

A separate team 40%

Customers 20%

Quality assurance team 20%

Integrators team 20%

Adoption of Open Source Processes in Large Enterprises 315

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Manual tests of OS products in the companies interviewed do not follow any
specific methodology; nevertheless this is quite a common practice to assess the
quality of OS products. Manual tests are carried out for testing specific function-
alities in OS products or in the form of walkthroughs through the source code of
OSS. The variety of testing methodologies is rich either the companies want to use
OS products or they are developing OSS and they have to release it to the public.

Which automated testing techniques are used?

The interviewed companies use a variety of automated testing tools for testing
external OSS to be adopted and to testing their own OS products; from in-house
developed software, to external OS solutions as OpenSTA, JUnit, JMeter, Macro-
Scheduler, TestZilla, to commercial solutions that provide static and dynamic code
analyses, detailed performance and features tests.

How often, how much, and what do you test?

Tests of OSS are very frequent; often some tests are done for every smallest
change of the code usually by automatic tests. More thorough tests are conducted
when there is a code merging, before new major version releases, when users (or in
some occasions customers) report some bugs or some new functionality is inserted
into the software. Usually tests are done according to a test plan and according to
the schedule of new releases. Some of the tests interviewed companies perform are:
complete tests, delta tests and tests of whole collections of software modules.

Are new releases scheduled?

Usually new OS releases are scheduled in advance and they follow a roadmap.
However not all the companies stick to a release plan; it depends on the formality
of their software development process and on the importance of each OS project.
Some companies have also different levels of releases. Some releases provide OSS
that was tested intensively and the expected number of bugs is therefore smaller
than in minor software releases.

How regularly are releases rolled out?

New OSS releases depend on the type of the new software. Some releases are
distributed weekly, but most are rolled out every two or three months. However some
companies roll out new, bigger and major, releases once per year therefore moving
away from the very frequent releases that are a common place in OS development.

316 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

From the answers it was clear that new releases inside the companies that use and
produce OS are a bit rarer than the releases in the OS communities. This depends
on the software development process that inside the companies is usually much
more formal and rigid than in the OS communities and that cannot allow for more
regular and frequent releases.

Is it planed in which release which features will be added?

The companies we interviewed usually plan in advance which features will be
added to the OS product and in which release. They have a time plan (usually a
roadmap) for new features and they try to stick to that plan. However, in some oc-
casions and for some type of projects, not all features are planned in advance.

Is it planed in which release which bugs will be solved?

The resolving of known bugs is usually also planned in advance and often they
are solved before a major new software release. Exist the practice to solve the new
detected bug as soon as possible, and only if this is not possible immediately, inter-
viewed companies schedule a date to which the specific bug will be solved.

How is the work managed in the time of delivering a new release?

Companies act differently before new releases; some intensify the work by
working more hours and even during the weekends, on contrary other shift slightly
the release date. It depends on the size of the company and on the formality of
their software development process. However, all the companies interviewed try to
maintain a high quality level of their software. Companies following a more rigid
and elaborate software development process define exact quality gates and stop the
addition of new features to the product weeks before a new release; doing so they
can concentrate on the solution of detected bugs and do not insert potentially new
bugs inside the product.

18.2.3 general Questions

Which OSS tools are used within the company?

The companies use mainly OSS for developing other OSS. The variety of software
products is substantial. The most common products used by companies are: applica-
tion servers (middleware), development frameworks, operating systems (open and
closed source), groupware software, project management software, Eclipse, OO,

Adoption of Open Source Processes in Large Enterprises 317

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Maven, Ant, Jamon, Hibernate, ServiceMix, Cimero, Drools, Linux, Apache Web
Server, Tomcat, mySQL, PostgreSQL, Struts, JBoss, Jonas, Subversion, Bugzilla,
ThalesForge, Firefox, OpenLDAP, ObjectWeb components, Cyrus, OpenLDAP,
postfix, LemonLDAP, PHP, amanvis, ocs invertory, nageos, debian, redhat, mozilla,
thunderbird, gimp, ubuntu (for desktops), 7zip, ethereal, and others.

Proprietary products are used only when there are no OS solutions available.
Some specific problems the companies encounter maybe were not yet solved or
inserted inside an OS product. Therefore interviewed companies have to buy and
use proprietary software.

If there is a commercial alternative available, why do you choose OSS?

The most important reason for the companies we interviewed is still the price
of the license (Table 3). Nevertheless this criterion is not the only one. Often the
answers mentioned the quality of OSS in comparison with closed source software
as an important criterion, the time spend by the community to answer to problems
that users have, and they use OSS because it is more rich and innovative than
proprietary solutions. Some interviewee answered: to promote European software
industry. The availability of the source code permits to resolve specific problems
that companies have therefore improving the usability of the available software
solutions. Commercial alternatives are much more rigid on software changes and
they do not permit specific customizations.

Is an OSS product usually used/developed/modified/customized in a single location
within the company or at several locations?

The companies usually customize, use and develop OSS in a distributed environ-
ment with more locations all over the world. Some companies also use worldwide
communities that provide some solutions to specific software problems.

Table 3. Why do you choose OSS

Answer %

Cost of license 100%

Quality 70%

Easier install 70%

Community 70%

License used, ROI, adaptability, standards used 30%

To promote EU industry 30%

318 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

When and where did the project start? Had the project already roots/backgrounds
(outside of the company), that the company improved?

Companies often improve specific projects that have already started outside
companies by the community on internet. However some components of the projects
have started inside the company and have merged with outside components. The OS
projects in the companies we interviewed were in the majority of cases not more
than three years old and they were still alive and being developed.

How long does it last (approximately)?

The projects are still not finished. OS projects usually tend to live longer than
commercial solutions. Sometimes the development process can slow down but
the source code is still available on the Internet to everybody and therefore after a
dormant period of time new developers can pick up the code and continue the work
started years before.

18.2.4 roles and responsibilities

How many people were/are working in the project?

OS projects are developed by groups that contain from 2 up to 40 core developers
and up to 100 and in some cases even 1000 part time contributors. The companies
also take advantage from their OS communities if they are already formed and large
enough. Successful community OS projects usually have much more contributors,
but OS projects started by companies are hybrid entities that are influenced by some
company’s rules and processes and by some Internet OS community’s rules. The
number of developers involved in a specific OS project is strongly related to the
size and complexity of the OS project.

How much is the turnover? (annual rate of people getting into/leaving the project)

The turnover is approximately 10% in all the companies we have interviewed
however it depends on the size and time spent on the OS project. Bigger projects tend
to have a more consistent turnover of developers and people that work on them.

Please determine the participants of the project (users, developers, committers,
PMC (Project Management Committee) members, etc.) Do they have the standard
roles?

Adoption of Open Source Processes in Large Enterprises 319

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The number and type of stakeholders involved in OS projects depend on the size
and also on the type of the project. Smaller projects have a propensity to have les
participants. On the contrary, complex OS projects are developed by simple users,
by developers, committers, they are leaded by PMC members and often there are
other participants as quality managers, integrator managers, product manager, project
manager, many testers and others. In more formalized processes, the participants
usually have standard roles.

PMC members typically decide what to implement, they choose the technology
and also the architecture. They have to define the roadmap and select the features
that will be implemented in each release.

Other participants are involved in the development process with various roles.
Often different groups of users overlap in many processes; however, developers
are mainly involved in the code implementation, on contrary users and ordinary
contributors are involved mainly as testers and bug reporters.

Please determine which responsibilities the developer, committer, PMC member,
etc. have.

The responsibilities in OS projects inside the interviewed companies are con-
sistent with the onion model of OSSD. PMC members usually propose the project,
the architecture the roadmap and the features to implement; they, together with few
other developers, have the permission to change the code. Other users and commit-
ters may check the code and report for discovered bugs.

Please determine their number.

OS projects in the companies we interviewed have a limited number of internal
participants. They have usually between 2 to 6 PMC members, up to 10 internal
developers and committers and 1 to 2 project owners that are usually also project
leaders. The number of external participants varies considerably between different
projects.

Please determine how can one become a developer, committer, PMC member!

Regular users can become developers and committers by contributing, first,
simple bug reports and new code proposals and extending their contribution over
time. After a constant amount of good quality code has been sent to the project, the
user can ask the project owner to become a committer. Long period committers can
become part of the PMC group. In some companies the PMC group is composed
only by individuals internal to the company, however more developed and complex

320 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

OS projects have also external PMC members. Some companies require external
committers to sign an agreement with the company.

Is there any community within or outside of the company to make decisions?

The OS projects in the companies we interviewed are leaded mainly just by
individuals inside the company. Only in some cases the external community is
permitted to decide on some issues for OS projects. This happens only for specific
projects that count intensively on external commits.

How are decision processes arranged?

The decisions are processed differently in different kind of projects; sometimes
is the whole community that decides how to develop a feature by voting, sometimes
is the project leader that decides what to implement and how to change the archi-
tecture. In this case usually the project board periodically controls the decisions
taken by the project leader.

How do you decide about code modification, giving rights, package releases, etc?
(voting, responsibilities, etc.)

Code modifications are sometimes discussed first on forums by the community
and only then the decisions are taken by the developers and the PMC members, in
some companies the decisions are taken directly by the project leader sometimes
with the support from the PMC board. We have become aware of the fact that some
OS projects we have survived are more community oriented and therefore they
interact strongly with the community on public forums, on contrary others prefer
to maintain a company centred OS project and therefore maintain all the important
decisions inside the company.

18.2.5 Architecture definition

How is the technical architecture of the project managed? Is it planed before,
incremental?

The majority of the projects (80%) have an incremental design process for the
architecture. However some companies in their OS projects prefer to define exactly
the nucleus of the new OSS at the beginning and allow incremental design of not
central modules in a second time. This nucleus definition in some projects relays
on traditional software development patterns and is not very OS oriented. There-

Adoption of Open Source Processes in Large Enterprises 321

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

fore we have observed that some companies are still in a hybrid period where they
are moving to OSSD but they use still some traditional approaches for part of the
software development process. Design of the technical architecture is an important
part of the software development process and in some projects it is still kept inside
the companies.

What are the most important technical requirements?

Technical requirements for OS projects tend to be aligned with the most impor-
tant and widespread (open) standards (Table 4). Modularization of the architecture
is also one of the most important requests for OS projects. Some companies stress
the importance of a modular architecture to avoid some copy left problems that
can influence other close source software of the company. Other requirements are
defined from the necessities of customers and partly by the OS community. Some
additional requirements for OS projects that were mentioned during the interviews
are: accessibility, Multilanguage, interoperability with different systems, easy to
use, safe and working, hardware support, freshness of the solution and others.

Which technologies are used?

New OS projects rely strongly on the Java technology and on the whole family of
Java solutions that are: the Java language itself, Java EE, J2EE, JSP, servlets, port-
lets, and similar initiatives (Table 5). The majority of the companies we interviewed
base their development on these technologies. However there are other important

Table 4. Important technical aspects

Answer %

Standards used 40%

Modularization 40%

Other 20%

Table 5. Technologies used

Answer %

Java 75%

Perl 50%

UML 50%

Other 25%

322 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

technologies as the technologies supporting UML and RUP; other programming
languages as PHP, Perl, and JavaScript; OS and close source database solutions
such as MySQL and PostgreSQL; and network technologies as HTTP, SSH, wikis,
XSL, XML, and others. An important new technology is also the Service Oriented
Architecture (SOA) technology that nevertheless is still quite new, it is already
built-in inside some OS projects.

18.2.6 development techniques and practices

Which development methodology do you use? Can you describe it? (if it is not
standard)

The software development methodology used in the companies we have interviewed
varies considerably; Companies use many different methodologies; some very clas-
sical ones as the waterfall model, specially for safety critical modules, others modi-
fied RUP methodologies with some sporadic use of UML tools, to SCRUM and XP
methods to other variations of evolutionary methodologies and sometimes also some
internal methodologies developed by companies themselves. Some methodologies,
or part of them, are imposed by internal standards of the company others are imposed
by the technology that is used and some again are required by clients. Therefore
we did not noticed a specific methodology that is more used inside the interviewed
companies, nevertheless traditional methodologies as the waterfall model was sad
to be used in only few companies and also just for some critical modules.

Companies use different practices during the software development process as:
continuous code reviews, peer review, unit testing, load testing, continuous and often
autonomous code integration and build (Table 6). Some companies use prototype
practices and build on the next releases by solving bugs found by users in already
delivered prototypes.

Requirements are usually still collected from clients and customers and integrated
with internal company requirements; but especially in OS projects companies col-

Table 6. Development technologies

Answer %

Code reviews 60%

Unit tests 60%

Continuous integration 40%

Prototyping 20%

Adoption of Open Source Processes in Large Enterprises 323

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

lect requirements also from public mailing list, forums and wikis. Sometimes they
use data from tools as Jira, bug trackers and other source of information for new
features of the projects.

Coding standards used by companies depend mainly by the programming language
used and sometimes also by the developers involved in some projects (Table 7).

How is the maintenance of the existing code worked out?

Developers of OSS usually maintain the source code by themselves. Only after
a defined period of time this maintenance can pass to a specialized group inside
the company. Sometimes there are individuals inside the development team that
are appointed to maintain the code or fix the bugs. Some interviewed companies
analyze the developed source code and find out its maintainability that can help
them decide how to maintain the code (Table 8).

18.2.7 tools used

On which operating system is the project implemented? Is it running on other op-
erating systems? If yes, on which one(s)?

Companies use different operating systems, however the most quoted for OS de-
velopment is Linux. Nevertheless some companies together with Linux use also
the Windows operating system and sometimes also Solaris.

Table 7. Coding standards used

Answer %

Javadoc, OASIS, Java EE conventions 60%

Do not use specific code conventions 40%

Table 8. Who does the maintenance

Answer %

Developers maintain the code themselves (for a limited period). 60%

Specific internal groups do the maintenance. 40%

External groups 20%

324 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Which programming language is used for the implementation? On which plat-
form?

The mostly used programming language is Java and all its derivatives; C++ is
also quite popular. However the companies use a rich set of other languages as: C,
Python, PHP, Perl, some specific proprietary domain languages, JavaScript, Micro-
soft developed languages and others (Figure 2).

The platforms on which projects are developed are usually the same as the op-
erating system: Linux, sometimes Windows and Solaris and quite often the Java
platform as development platform (Figure 3).

The programming language and/or the platform on which the OS projects are
developed influence considerably the whole development process. Languages and
technologies can define development methodologies and considerably the efficiency
of the development process. The use of Java and Linux confirm our expectations
related to the language and the platform used by OS communities and OSSD.

Which development tools are used in the project? Do you use any tool developed
in house? Do you make these tools available to others?

Eclipse is the most frequently used development tool inside the interviewed
companies. Some use also Emacs for software development that is not based on the

Figure 2. Languages used

Adoption of Open Source Processes in Large Enterprises 325

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

java language. Other tools that are used by interviewed companies are: vi, Visual
Studio, ClearCase, Visual Source Safe, Doors, Calibre, and others (Table 9).

Do you use any tool developed in house?

Interviewed companies (60%) usually use external tools; some of them are OS
and others are proprietary. Only a limited number of OS projects (40%) are somehow
supported by tools developed inside the companies, for example some tools to test
the newly developed software and some tools to generate usage scenarios. Since the
interviewed companies are in early phases of OS development (nevertheless some
try to enter the OS community for more than five years now) they do not have many
self developed OS products to use for new products development. Probably in few
years they will continue to use software they are developing now.

Do you make these tools available to others?

Table 9. Tools used

Answer %

Eclipse 80%

Emacs 40%

Others (Visual studio, Vi, Primavera, MS Project, ClearCase, Visual Sourc Safe, Doors, Caliber,
Requisite Pro)

20%

Figure 3. Operating system used

326 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Some companies make the developed tools available as OS, some make them
available only inside the company.

Do you use other OS or commercial software?

Some companies answered that they do not use external OSS and half answered
they do use external tools. Some of the external tools they use are: UML modeller
(Rose), database modeller, DOORS, IBM tools, BEA, Maven, checkstyle, SVN,
Jira, MySQL, PostgreSQL, and some other tools.

18.2.8 features to implement

Who makes suggestions for new features? (Is there any mailing list/newsgroups
for doing this?)

The users or the customers are the main source of new features requests. OS projects
have often mailing list and forums that are available to users. Usually, suggestions
can come from everybody; however, in some cases, the suggestions from impor-
tant customers of the company have the priority before other suggestions. Since
companies develop software as their main activity and it is usually an important
source of revenue, they have to listen to requests from customers. However, the
suggestions come often from developers alone and from persons inside the company
(Table 10).

Who is deciding about new features?

In the interviewed companies the decision about which new features will be
included in OSS is usually carried out by the project manager or leader and some-
times by the whole PMC or the whole core development team. In many cases, the
customers as well can decide which features will be included in new distributions
and which not ().Table 11

Table 10. Who suggests new features

Answer %

Clients of the company Users The community 80% 80% 80%

The administration of the project Developers 40% 40%

Technical direction 20%

Adoption of Open Source Processes in Large Enterprises 327

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Who has to implement the new features?

The new features are usually implemented by developers from the companies
we have interviewed. Sometimes, these implementations are done in part also by
external developers, either committers or just developers that have produced a
service or software that is included in the new OS product. In some companies,
the work tasks are distributed hierarchically by the core team or the manager of
the project, on the contrary in other companies developers decide alone who will
develop which feature.

Is there a time plan for implementing the features?

There is always a time plan for the implementation of new features (80% always;
20% always however just for some parts of the project). The plan is usually as-
sociated with the road map of the project. Some companies plan new features and
releases in such a way that coincide with major events during the year (Christmas,
CEBIT fair, other important fairs, etc).

Which feature should be implemented first? (ranking of features by priorities)

Usually there is a priority list for some features; the priorities of specific features
depend on various criteria as:

Architectural plan to be followed•
Major • bugs detected to be solved
Customer’s wishes•
Technical point of view•
Market point of view•
Contributor’s of source code opinions•

Prioritized are features that have a higher impact on other features (Table 12).

Table 11. Who decides what to implement

Answer %

Coordinators of the project 60%

Clients of the company Managers of the informatics sector. An internal group
of developers The PMC

20% 20% 20% 20%

328 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

How priorities are assigned?

Usually, the project manager decides which features have the priority; in some
occasions after he has talked with the customers. However, often there are technical
and architectural motivations for some features to be implemented before others.
Usually, the features that are requested by more users are prioritized; complex features
are left for the time when the simplest features are already implemented. However, it
strongly depends on the type of the project. Therefore, it is difficult to trace a single
line of prioritization of features in the companies we have interviewed.

18.2.9 documentation and Bug Management

Do you have documentation of the project?

The main part of OS projects has some kind of documentation. More complex
projects have separate documentation for:

Users,•
Developers and•
Administrators.•

Often, there are also wikis and readme files. However, the amount of documen-
tation depends on the resources available for each OS project (time, payments,
contributors).

Who writes the documentation? Where? (in the implementation, in a separate
documentation, etc.)

In most of the companies, the documentation is usually written by the developers
themselves. Everyone has the responsibility to prepare part of the documentation
that explains their contribution to the project. Often, the documentation is already

Table 12. Priority of specific features

Answer %

The most requested features 75%

Features requested by clients Market point of view 50% 50%

Major bugs to be solved Technical requirements Features impacting other features 25% 25% 25%

Adoption of Open Source Processes in Large Enterprises 329

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

included inside the code with javadoc comments for example. More structured
projects and larger companies tend to have specific employees that are appointed
to write the documentation. More complex and structured projects have different
kind of documentation as a: user guide, installation guide, manuals, developers
guide, wiki, architecture guide, project plan, release notes, requirement specifica-
tions, product documentation, design, architectures, test specifications and others.
Sometimes, some contributions to the documentation come from users, mostly
internal in the company.

Does the project have a roadmap?

The interviewee answered that almost every OS project has a roadmap that
helps them to check if they are on time with the scheduled development. It also
provides an indication on what has already been developed and what is going to be
developed in the near future.

Is it useful for the developers?

The majority of the interviewees agree that the roadmap is useful for the devel-
opers and for the OS project as a whole.

Which tools are used for bug-tracking? If there are several in use, which tool has
the highest priority?

The issue/bug-tracking tools used most often are Bugzilla and Jira. However, the
number of different issue/bug-trackers is large. Other tools are: Mantis, SourceForge,
ClearCase, ClearQuest, ThalesForge, Trac, and other internal tools. Sometimes,
bugs are reported in a form of paper reports (called technical facts). Quite often,
bug reports arrive from customers and end users. Some customers prefer to use
specific issue/bug-tracking tools; therefore, these tools (sometimes commercial)
are also used inside the interviewed companies (Figure 4).

Are the issue/bug-tracking tools specialized for different persons (users, developers,
etc), or do they use the same tool for reporting bugs?

Usually, all the stakeholders use the same issue/bug-tracker, only rarely in some
specific projects they may use more than one tool.

How many bug reports do you get?

330 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

The number of bug reports varies considerably in the different projects and mainly
in different interviewed companies. Usually, around 1 to 2 per day, where there are
also included some new wishes from the users or customers. In the most long lasting
projects, the total number of bug reports can arrive to 6 thousand reports. It seems
that the number of bugs is strongly correlated with the size of the community that
uses the software. In companies that do not have large user community but only
few customers, the number of bug reports is considerably lower than in pure OS
projects with well developed user communities.

Can the bug-tracking tool be used for other purposes too? (eg., making suggestions,
looking for tasks to resolve them, etc.)

The bug tracking tool is often used also as a communication channel for express-
ing wishes, new features requests, fixing priorities, creating subtasks, assigning
responsibilities, reporting problems with the process and other issues communi-
cated by the customers or users to the developers and companies developing the
OS product. However, some companies try to keep separate bug reports and other
issues by using mailing lists for the latter.

How long does it take to solve a bug? How are priorities assigned?

The time needed to solve a bug goes from 2 days up to few months. It depends
on the severity of the bug and on the effects that it can have on other parts of the

Figure 4. Bug/issue-tracking tools used

Adoption of Open Source Processes in Large Enterprises 331

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

software. Some bugs that can create security problems or data loss problems can
be solved also in few hours. All bug reporting tools have a feature that permits to
define the severity of the reported bug. Therefore users and developers can suggest
which bugs have to be solved first.

Accordingly the priorities are assigned by the users that report the bugs, by the
developers that reproduce the bug and check which bug has the priority, by the
management of the project and sometimes by a group of developers that are ap-
pointed to solve bugs. Sometimes also the clients can suggest which bugs are more
critical for their business and therefore which have to be solved first and which one
can wait longer.

18.2.10 version control and people Management

Which version control system is used for the project?

Interviewed companies usually use Subversion as the version control system. Some
companies use also other systems as the oldest concurrent versioning system (CVS)
and systems as: GIT, PVCS, and ClearCase.

Is this tool freely available for everybody (user, company, etc.)?

Usually, the tools are available to everybody. However, sometimes the use is
limited just to project members or even just to internal personnel of the company.

Who has access to the version control system?

The interviewed companies usually permit everybody to read the content of the
version control system. However, the write permission is limited just to develop-
ers or only to the owner of the module or some core developers. The permission
rules depend on the type of the project. Inside complex projects the permissions
are strongly restricted.

Who and how can get more rights and which ones?

Committers and developers can get more rights. It depends on the quality of
the committed code and the decision of the module’s owner or team manager. The
committers that want more permission have to ask for them by themselves.

332 Adoption of Open Source Processes in Large Enterprises

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Who can be the owner of a module?

Some projects do not have module owners. However, the majority of structured
projects have module owners. These persons have to be able to manage the whole
development regarding the specified module. Therefore the community decides
on the base of the quality and amount of the code already committed by a single
developer if he is responsible and skilled enough to be the owner of a module.

How are the tasks assigned? Can one choose what to implement?

In some cases, developers can chose what they want to implement. But most usually
the project owner or the project leader assigns the tasks to each developer. In some
projects, the general tasks are assigned by a technical committee and more local tasks
are self assigned by developers. Some companies, that we have interviewed, have a
more formal and hierarchical structure and, therefore, also the tasks assignment is
carried on by specific teams and team managers. Companies developing OSS are
still quite far from the OS communities; some tasks distribution is quite rigid and
sometimes developers do not work exactly on what they really like, therefore these
projects lose an important advantage that OS development process offers.

18.2.11 Business Model

Are developers employees?

In the companies we have interviewed, the developers are usually employee of the
companies. However, some developers and committers are part of the OS community
supporting the project and they are not employed in the company.

Which advantages/disadvantages/benefits has the developer for contributing?

The developers contributing to the project has aces to some additional software
that is usually available only commercially. Some contributors collaborate inside
the project also just to improve a part of the product they are using and that they
need it for their job.

What is the goal of the project?

The answers we got are different, because the companies develop more than
one OS project each and, therefore, the goals also vary broadly. Some of the goals

Adoption of Open Source Processes in Large Enterprises 333

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

that we got as answers are: to automate repetitive tasks, to provide new tools for
building, testing and evaluating quality assurance of Linux distributions, to build
a platform for communicating company and product information to the customer,
to easy the access to Linux, to provide a Java EE infrastructure, but as well as to
improve the reputation of OS infrastructure. Therefore, nevertheless the goals of the
companies are business oriented some are also altruistic, oriented toward a further
advance of the entire OS community.

Does the company sell this product? Are there any additional services to the product
that can be sold (e.g., courses, support, extensions, etc)? If yes, which one(s)?

Some companies do not sell anything connected with developed OS projects;
others do sell services like support, update notifications, downloads, training,
support at start-up, subscription (they provide a certain level of services: support
for a problem in a specified time), projects related to the available infrastructure;
courses; requested extensions to the OS infrastructure and others. Companies we
interviewed are in the starting phases of OSD, therefore, they have already offered
some additional services connected to the OS products they develop but these
services are still being improved. OSD is only a marginal development effort for
some of the companies we interviewed therefore they do not expect big revenues
from this business in the near future.

334 Trust Elements in Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 19

Trust Elements in
Open Source

Barbara Russo
Free University of Bozen-Balzano, Italy

Marco Scotto
Free University of Bozen-Balzano, Italy

Alberto Sillitti
Free University of Bozen-Balzano, Italy

Giancarlo Succi
Free University of Bozen-Balzano, Italy

Etiel Petrinja
Free University of Bolzano, Italy

19.1 introduction

The quality of a software development process is based on a large spectrum of vari-
ous elements that must be identified and assessed. The majority of elements can be
measured quantitatively and possibly using an automatic process. Some elements,
however, are rather subjective and depend strongly on different opinions of people
using or evaluating the software development process. An automatic measurement
approach is difficult to achieve (for example by on-line questionnaires or surveys
inserted inside software products or software development tools). The foundation
for all assessments is a set of elements that will be at a certain point of development
or use measured and evaluated. This chapter provides a rationale for identifying
elements that we call trustworthy elements (TWE), the process for their identifica-

DOI: 10.4018/978-1-59904-681-5.ch019

Trust Elements in Open Source 335

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

tion, sources for the identification of key trustworthy elements and at the end a list
of the most important trustworthy elements identified.

Many just slightly different definitions about trustworthiness and trustworthy
related concepts can be found on the web and in the literature. We present here just
the most relevant definitions to our own understanding of the concept of a trust-
worthy element that is used inside this deliverable. Some of the definitions found
on the web and in the literature are the following:

Merriam-Webster’s on-line dictionary defines the concept of trustworthy •
as something being worthy of confidence; dependable; a trustworthy guide,
trustworthy information.

Other definitions found on the web and in the literature are:

• Taking responsibility for one’s conduct and obligations; trustworthy public
servants1.
“• Trustworthiness is keeping one’s word and being worthy of others’ confi-
dence: sound in principles, full of integrity, reliable and dependable” Ken
Buist.
The National Security Agency (NSA) defines a trusted system or component •
as one whose failure can break the security policy, and a trustworthy system
or component as one that will not fail. (Wikipedia)
The Committee on Information Systems Trustworthiness’ publication, Trust •
in Cyberspace, defines a trustworthy computing system as one which: Does
what people expect it to do – and not something else – despite environmental
disruption, human user and operator errors, and attacks by hostile parties.
Design and implementation errors must be avoided, eliminated or somehow
tolerated. It is not sufficient to address only some of these dimensions, nor
is it sufficient simply to assemble components are themselves trustworthy.
Trustworthiness is holistic and multidimensional. (Wikipedia)

Our definition of trustworthiness and of the trustworthy element are closer to
Wordnet’s definition, since it depends on the personal beliefs or generic trust that
people, users of OS systems and all the stakeholders, share about a specific software
development process. We use the term element for describing all the components
and aspects influencing the development and functioning of a software system.

Therefore, we define the trustworthy element as a specific factor or aspect of
the software development process, or of product results that indirectly influence
the perception of the trustworthiness of the OS development process, that influ-

336 Trust Elements in Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

ences the belief and trust of the stakeholders in the overall quality of the software
development process used inside OS projects.

This chapter focuses on the elements assuring trustworthiness of the OS de-
velopment process, which, in turn, should guarantee a high quality final product.
Often, users of OSS are mainly interested in the quality of the final product, e.g., the
source code they can inspect, the functionalities they can test or the final graphical
user interface of the OS product. However, there is a large number of advanced
OSS users that do not want just to use the product but are interested in its further
development and evolution or integration with other software products. Such users
(developers, integrators, software bundles distributors, etc.) are strongly interested
in the development process used to produce the OS product. Usually, their further
development is based on the already existent development processes or it can be
started only using support material such as documentation, mailing list archives,
roadmap specifications, testing documentation, or other results of a good develop-
ment process.

Trust is basically related to users’ belief that something is of high quality; the
trustworthiness is intrinsically related to the object. A trustworthy object has a char-
acteristic that talks about its quality. Therefore, trustworthy elements are aspects
of an object (in our case of the development process) that guarantee its quality
related to some well defined quality criteria and assessed by measurable quanti-
ties. For instance, if we can identify several quantitative measurements suitable for
characterizing the current status and the evolution over time of the number of bugs
submitted to the project, as well as the ratio of new, fixed and pendent bugs, we
will be able to quantify the trustworthiness of the software development process
regarding this aspect.

Based on the guiding elements, we have just described (trustworthy elements,
quality criteria, and measurable quantities), we have designed the research using
the Goal Question Metric (GQM) methodology (Mashiko & Basili, 1997) that
takes in consideration those elements. Additionally, the GQM methodology allows
its users to define key goals; that in our case helps to improve the quality and the
trustworthiness of the OS development process. The trustworthy elements are the
foundation for the goals we have defined. The goals defined offer an improvement
guidelines for trustworthy elements identified.

Product quality and trustworthiness are tightly connected to the trustworthi-
ness level of the software development process itself, since this is a consequence
derived from the fact that software products are the outcomes of the development
process. Their trustworthiness is also affected by the quality of the development
process and vice versa.

Trustworthy elements are strongly linked to software quality criteria. These vary
considerably and many different classifications of quality criteria exist.

Trust Elements in Open Source 337

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Many classifications contain product quality criteria, such as: conformance to
requirements, scalability, correctness, completeness, absence of bugs, fault-tolerance,
extensibility, maintainability, and documentation.

Another kind of quality criteria are related only to the source code, such as:
readability, low complexity, and low resource consumption.

Some of the factors presented above are strongly dependent on the development
process followed. We can extract from different quality criteria classification twelve
key software quality factors:

1. Understandability,
2. Completeness,
3. Conciseness,
4. Portability,
5. Consistency,
6. Maintainability,
7. Testability,
8. Usability,
9. Reliability,
10. Structure,
11. Efficiency, and
12. Security.

Such quality factors are perceived as important by people interviewed and surveyed
during our research.

19.2 trustworthy elements

The software development process provides several factors and indicators suitable
to assess its level of trustworthiness from a quantitative and qualitative point of
views. The primary indicators are the extent to which trust is incorporated in the
development process and the level of process maturity.Specific features include:

Definition of trust • requirements, considering the current and expected threat,
network, and host environments;
Definition of functional • requirements and acceptance criteria;
Use of coding standards;•
Tests and reviews for compliance with trust • requirements;
Background checks on employees and code development and • testing pro-
cesses, ensuring that certain good coding and design practices are respected

338 Trust Elements in Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

through the whole development process;
Restrictions on developer write-access to production source code and systems, •
and monitoring developer access to development systems (all of these should
be accomplished by using a good Source Code Management system).

Process maturity is an important indicator because mature processes result in a
more controlled development of source code and of the final end-user-ready prod-
uct.Some generic trustworthy elements can be identified in the OS development
process. We can classify such elements in the following areas:

• Trust: Identifies a set of elements of the development process that allow
trusting the final quality of the OS project. More specifically, the goal is to
find critical aspects when adopting or inserting OSS components in their
products. The trust rating of a certain development process could be comput-
ed as the combination of ratings obtained for every trustworthy elements that
fall in this area. Completeness, reliability, and security are important quality
factors in this area. On one hand, integrators will then be able to choose the
appropriate combination of trustworthy elements that are relevant for their
own area of interest. On the other hand, OS communities may publish their
results from their own ratings, which can be checked by system integrators
at any time. Therefore, this scenario could establish a common evaluation
framework in which system integrators could define specific requests to OS
development companies and communities, clearly defining which trustwor-
thy elements are the most relevant for their own purposes, as well as the
minimum ratings they expect from publishers of OS products to fulfill these
requirements. Moreover, OS communities could then establish their own in-
ternal development processes, setting for every case the trust rating objective
they would like to accomplish.

• Quality assurance: This area includes a set of trustworthy elements suitable for
establishing quality metrics and review processes, that could be undertaken by
OS publishers or by recognized third party entities, to ensure the quality of the
whole development process from an objective point of view. Understandability,
consistency, and maintainability are quality factors influencing this area.

• Testing: To ensure that OS products have an adequate quality, some testing
methods should be put in practice. For instance, any testing methods to detect
correctness of developed features and to ensure that these features fit users’
needs. Release cycles and methodologies should also be taken into account,
focusing on the existence of timing patterns, pre-release versions (alpha,
beta, etc.) and the type of release planning (time-driven or feature-driven).
Understandability, conciseness, completeness, maintainability, testability,

Trust Elements in Open Source 339

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

and structure can be important quality factors in this area.
• General elements: General trustworthy elements related to OS projects as

a whole, e.g., previous background of selected projects, starting date, initial
developers/community/company/groups. All these aspects can contribute to
the credibility of the development process (e.g., a project that is active for a
long time is more reliable then a newly proposed one). Portability, usability,
and efficiency are key quality factors in this area.

• Roles and responsibilities: Identifying different roles within the community
can help to classify gathered data to quantify the grade of success achieved
in trustworthy elements. The existence of formal decision processes (e.g.,
voting processes) and the distribution of responsibilities among the people
involved in the project can also provide valuable information to infer the
quality of the development process.

• Portability	and	architecture	definition: The careful selection of a software
architecture may produce products with better quality, and it should also help
to establish a good quality production process. It is obvious that portability is
an important quality factor affected by trustworthy elements identified in this
area, while efficiency may be also influenced.

• Development techniques and practices: A coherent and structured system
to distribute different tasks among the project participants can definitely im-
prove the quality of the development process. This has a direct impact over
the maintainability and structure of the software through the development
process.

• Tools: There are several well-known tools and platforms offering a conve-
nient all-in-one solution to help the start, evolution, management, and main-
tenance of OS projects. Virtually any of the quality factors already identified
may be affected by the type of development tools selected in the project.

• Decision process to implement new features: We need to identify the deci-
sion process (if any) used to make decisions about new features to be added
to an OS project. New features could potentially affect the quality of the
final product, and thus, how these decisions are taken significantly affect the
quality and trustworthiness of the development process. Again, the decision-
making process in software development projects has a direct impact in virtu-
ally any quality factors we may consider.

• Documentation and issue/bug management: This is another important
point for the overall quality of the production process. The documentation
should exist and be clear and consistent. The presence of a system for issue/
bug management aims at monitoring the quality of the development process.
Documentation and bug tracking tools have both a high impact on maintain-
ability that, according to some studies, requires about 80% of the total effort

340 Trust Elements in Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

(Conger, 1994).
• Version control and human resources management: Several factors affect

the quality of the process regarding the control, inclusion, and identification
of new code to be included in future versions. Source Code Management
(SCM) systems are a fundamental point in this area. It is also important to
know how developers of OS projects select the tasks they to undertake, as in
many communities nobody is explicitly forced to do any task. Once again,
trustworthy elements included in this section have a strong influence over
any quality factors shaping the software development process.

• Business	models	 and	work-flows: A careful study of developers motiva-
tions, along with the analysis of the economical background (communities,
companies, groups, foundations, institutions, etc.) supporting the project are
important to properly assess the quality of the process. The presence of a
homogeneous and structured work-flow, encompassing the whole develop-
ing structure facilitates the management and control of the overall devel-
opment process. Consistency is the most relevant quality factor affected by
these elements.

19.3 trustWorthy eleMents in coMpAnies

This section presents a summary of the most relevant trustworthy elements identified
in the interviews we carried out with members of European companies adopting
OSS. Summarizing the trustworthy elements identified by companies, interviewees
made a distinction between internal OSS development projects, controlled by the
company, and external OSS projects to be adopted by the company. The main concern
exhibited by all of them was to ensure the quality of the final product. That is, any
metric trying to evaluate the quality of the OS development process should be directly
oriented to guarantee the quality of the code developed and then assure the quality
of the process itself. Some critical elements recurrently identified in the interviews
were presenting clear connections with the factors previously described:

Feedback from user experiences.•
Use of SCM (Source Code Management) platforms, to control the workflow •
of the development process.
Following and enforcing a test plan, in order to systematically check new •
features and remove bugs.
Using/adhering to well-known • open standards (for representing data, ex-
changing data, storing data, programming styles and languages, etc.).
Implementing a complete quality assurance plan, analyzing potential risks •
that may arise within the development.

Trust Elements in Open Source 341

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Use a roadmap and release schedule to monitor the development pro- ◦
cess of the final product.
There should be a complete and detailed ◦ documentation, including some
examples of use of the software.
Developing community should use management tools like ◦ version con-
trol systems, bug tracking, mailing lists, and other tools to ensure that
it is possible to implement a clearly defined assessment policy of the
development process.

 ◦ OS products should have been released under a license suitable for the
company purposes.
Additional aspects like the size of the community, their response time ◦
to specific requests, the use of open, standardized, and well-known for-
mats for user interaction and data representation.

It is very interesting to notice that all the interviewees agree about the absence
of a specific methodology or strategy to quantify the quality of the OSS product
and also to analyze the trustworthiness of the development process. In many cases,
an hybrid approach is adopted, using existing methodologies with the addition of
further metrics to take into account OS projects peculiarities.

Testing methods usually include both automatic and manual checks. Testers •
are usually developers themselves, in the first place and then specialized
groups composed by other members of the company, components integra-
tors, modules manager or committers from the community.
Suggestions for new features come from any user, without any special privi-•
lege or role in the community. Suggestions from important customers have
priority. So, an interesting element to ensure trustworthiness in the develop-
ment process is to set up a system for the management of new features re-
quests, approve them, and link them to the development roadmap.
Finally, bug-tracking systems are also identified as a major source of quality •
for the final product, and thus, constitute another element of trustworthiness
for the development process.

342 Trust Elements in Open Source

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

19.4 references

Conger, S. A. (1994). The new software engineering. International Thomson Pub-
lishing.

Mashiko, Y., & Basili, V. R. (1997). Using the GQM paradigm to investigate influ-
ential factors for software process improvement. Journal of Systems and Software,
36(1), 17-32. doi:10.1016/0164-1212(95)00194-8

QualiPSo. (2008). Trust and quality in open source systems. Retrieved on November
11, 2008, from http://www.qualipso.org/

endnote

1 http://wordnet.princeton.edu (accessed on November 11, 2008)

Overview of Open Source Tools for Agile Development 343

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Chapter 20

Overview of Open
Source Tools for

Agile Development

20.1 introduction

Tools support is extremely important in Agile development. As described in the
previous chapters, the Agile development is based on the identification and the
subsequent reduction of activities that do not provide value to the customer and
the ability to change the code without including new and undetected bugs in the
code. Tools are an important step towards such objectives and Agile development
relies on them to:

Automate as much as possible activities such as testing, building, etc.•
Support the development enhancing the communication among team mem-•
bers, simplifying the modification to the source code, etc.

1. Specific tools designed to support to some Agile practices
2. General-purpose tools that are adopted to support Agile development but not

developed for this specific purpose.
3. Tools to measure the code and extract useful information

DOI: 10.4018/978-1-59904-681-5.ch020

344 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

In this section, we are going to present a set of tools belonging to both these cat-
egories, in particular: automated build tools, continuous integration, version control,
issue tracking, synchronous and asynchronous communication, project management,
testing, tools to support specific Agile practices, and measurement tools.

Table 1. Summary of the tools

Category Tool name URL1

Version control tools CVS http://www.nongnu.org/cvs/

Subversion http://subversion.tigris.org/

Automated build tools Apache Ant http://ant.apache.org/

Krysalis Centipede http://krysalis.sourceforge.net/centipede/

Apache Maven http://maven.apache.org/

Continuous integration tools CruiseControl http://sourceforge.net/projects/cruisecontrol/

Anthill OS http://www.anthillpro.com/html/products/anthillos/

Rephlux http://rephlux.sourceforge.net/

Issue tracking tools Bugzilla http://www.bugzilla.org/

Scarab http://scarab.tigris.org/

Synchronous and asynchro-
nous communication tools

MailMan http://www.gnu.org/software/mailman/mailman.html

Jabber http://www.jabber.org/

Wiki http://www.wiki.org/

Twiki http://twiki.org/

Project management tools XPlanner http://www.xplanner.org/

XPWeb http://xpweb.sourceforge.net/

XP StoryStudio http://www.xpstorystudio.com/

Testing tools Cactus http://jakarta.apache.org/cactus/

JUnit http://www.junit.org/

NUnit http://www.nunit.org/

SwingUnit https://swingunit.dev.java.net/

Tools to support specific Agile
practices

Sangam http://sangam.sourceforge.net/

FitNesse http://fitnesse.org/

TightVNC http://www.tightvnc.com/

Refactoring
Browser

http://st-www.cs.uiuc.edu/users/brant/Refactory/

Transmogrify http://transmogrify.sourceforge.net/

jMock http://www.jmock.org/

Measurement tools NCover http://ncover.sourceforge.net/

JBlanket http://csdl.ics.hawaii.edu/Tools/JBlanket/

Overview of Open Source Tools for Agile Development 345

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

This section includes a high level overview of these tools and the links to their
home pages to retrieve more information and download them. The Table 1 sum-
marizes the tools presented.

Since new tools are available every day, online resources are always the best
source of information on this topic. There are a number of web sites listing Open
Source Agile tools including the following:

http://www.agile-tools.net/ (accessed on November 11, 2008)•
http://www.xpsd.org/cgi-bin/wiki?AgileTools (accessed on November 11, •
2008)

20.2 version control tools
20.2.1 cvs

The Concurrent Versions System (CVS) is an OS version control system that keeps
track of all work and all changes in a set of files, typically the implementation of
a software project, and allows several, potentially geographically distributed de-
velopers to collaborate. It was invented and developed by Dick Grune in the ‘80s.
CVS has become popular in the OSS environment and is released under the GNU
General Public License.

CVS uses a client-server architecture: a server stores the current version of the
project and its history, and clients connect to the server to check out a complete copy
of the project, work on this copy and then later check in their changes. Typically, the
client and server connect over a LAN or over the Internet, but client and server may
both run on the same machine if CVS has the task of keeping track of the version
history of a project with only local developers. The server software normally runs
on Unix (although at least the CVSNT server supports various flavors of Windows
and Unix), while CVS clients may run on any major operating system platforms.
Several developers may work on the same project concurrently, each one editing
files within their own working copy of the project, and checking in their modifica-
tions to the server. To avoid people interfering to each other, the server only accepts
changes made to the most recent version of a file. Therefore, developers are expected
to keep their working copy up-to-date by incorporating other people changes on a
regular basis. This task is mostly handled automatically by the CVS client, requiring
manual intervention only when a conflict arises between a checked-in modification
and the yet-unchecked local version of a file. If the check-in operation succeeds,
then the version numbers of all files involved automatically increment, and the CVS
server writes a user-supplied description line, the date and the author’s name to its
log files. CVS can also run external, user-specified log processing scripts following

346 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

each commit. These scripts are installed by an entry in CVS loginfo file, which can
trigger email notification or convert the log data into a web-based format.

Clients can also compare versions, request a complete history of changes, or check
out a historical snapshot of the project as of a given date or as of a revision number.
Many OS projects allow anonymous read access, a feature that was pioneered by
OpenBSD. This means that clients may check out and compare versions with either
a blank or simple published password (e.g., anoncvs); only the check-in operation
requires a personal account and password in these scenarios.

Clients can also use the update command to bring their local copies up-to-date
with the newest version on the server. This eliminates the need for repeated down-
loading of the whole project.

CVS can also maintain different branches of a project. For instance, a released
version of the software project may form one branch, used for bug fixes, while a
version under current development, with major changes and new features, forms
a separate branch. CVS uses delta compression for efficient storage of different
versions of the same file. The implementation favors files with many lines (usually
text files); in extreme cases individual copies of each version are stored rather than
a delta.CVS has a number of limitations (most of them solved in Subversion):

Moving or renaming of files and directories are not versioned. It was imple-•
mented this way because in the past refactoring was avoided in develop-
ment processes. More recently the thinking has changed and refactoring can
be managed by an administrator as it is required. If you develop in Oracle
Forms, Cobol, Fortran, or even C++, the CVS reasoning is quite commonly
accepted; if you develop with Java or using AMs, then the CVS reasoning
may seem counterintuitive.
No versioning of symbolic links. Symbolic links stored in a version control •
system can be a security risk. Someone can create a symbolic link index.htm
to /etc/passwd and store it in the repository; when the code is exported to a
web server, the web site now has a copy of the system security file available
for public inspection. A developer may prefer the convenience and accept
the responsibility to decide what is safe to version and what is not; a project
manager or auditor may prefer to reduce the risk by using build scripts that
require certain privileges and conscious intervention to execute.
Limited support for Unicode text files and non-ASCII filenames. Unix sys-•
tems run in UTF-8 and so CVS on Unix handles UTF-8 filenames and files
natively. If you only work on Unix systems then this response seems reason-
able. However, when you work on Windows it may not.
No atomic commit.•

Overview of Open Source Tools for Agile Development 347

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Over time, developers have the need to change the CVS code significantly to
add new features, refactor the code, and improve developer productivity. CVS re-
placement projects include OpenCVS2 and Subversion. URL: http://www.nongnu.
org/cvs/

20.2.2 subversion

Subversion (SVN) is a version control system initiated in 2000 by CollabNet Inc. It
allows users to keep track of changes made to any type of electronic data, typically
source code, web pages, or design documents. Subversion is currently a popular
alternative to CVS, particularly among OS projects. Projects using Subversion include
the Apache Software Foundation, KDE, GNOME, Free Pascal, GCC, Python, Ruby,
Sakai, Samba, and Mono. SourceForge.net and Tigris.org also provide Subversion
hosting for their OS projects, Google Code and BountySource systems use it ex-
clusively. Subversion is also finding adoption in the corporate world. Subversion is
released under the Apache License.The main features of Subversion are:

Commits are true atomic operations. Interrupted commit operations do not •
cause repository inconsistency or corruption.
Renamed/copied/moved/removed files retain full revision history.•
Directories, renames, and file metadata are versioned. Entire directory trees •
can be moved around and/or copied very quickly, and retain full revision
history.
Versioning of symbolic links.•
Native support for binary files, with space-efficient binary-diff storage.•
Apache HTTP server as network server, WebDAV/DeltaV for protocol. There •
is also an independent server process that uses a custom protocol over TCP/IP.
Branching and tagging are cheap operations, independent of file size.•
Natively client/server, layered library design.•
Client/server protocol sends diffs in both directions.•
Costs are proportional to change size, not data size.•
Parsable output, including XML log output.•
Open Source licensed — “CollabNet/Tigris.org Apache-style license”•
Internationalized program messages.•
File locking for unmergeable files (“reserved checkouts”).•
Path-based authorization for svnserve.•
PHP, Python, Ruby, Perl, and Java language bindings.•
Full MIME support - the MIME Type of each file can be viewed or changed, •
with the software knowing which MIME types can have their differences
from previous versions shown.

348 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

20.3 AutoMAted Build tools
20.3.1 Apache Ant

Ant is a Java tool for build automation similar to well-known and popular tools such
as make but providing a set of new and useful functionalities including:

• Operating system independence: Build automation tools such as make,
gnumake, and nmake are operating system dependant since they are based on
functionalities offered by the underlying operating system. On the contrary,
Ant performs the different activities through Java classes that execute the
tasks that the user specifies through XML files.

• Extensibility: Ant offers several pre-defined tasks but creating new ones is very
easy extending the already existing classes. Ant tasks are implemented as Java ob-
jects; therefore, all the developed extensions can be used in any operating system.

• Easy	configuration: The configuration through an XML file is much easier
than make.

Ant is an Open Source tool that is integrated in several development environ-
ments such as Eclipse.

Usage in Agile development: the tool is essential to automate the building process.
This allows developers to automate many activities required during the integration
and the automated execution of tests. URL: http://ant.apache.org/

20.3.2 Krysalis centipede

Krysalis Centipede is an Open Source build automation tool based on Ant. It has
been developed to simplify and extend the usage of Ant, focusing on:

• Usage simplicity: Users should only start a script.
• Extensibility: Usage and installation of the extension is automated.
• Flexibility: The system supports a wide range of operations that can be con-

figured by the advanced users.

The system is extensible through auto-installing modules. Some of the already
available modules are:

• Changelog: Creates a log of the modification in HTML or XML format;
• Forrest: Automated generation of the web site of the project, automated gen-

eration of the documentation, integration of the output of other modules in
the documentation;

Overview of Open Source Tools for Agile Development 349

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• Jalopy: Automated restyle of the layout of the Java source code of an entire
project using a specific layout standard;

• Java: Automates the compilation of the source code, the generation of the
jar files, the creation of the binary distribution and/or the source code in a zip
file, the generation of the javadoc documents;

• Junit: Executes the JUnit tests and creates a report about the status of the
tests;

• Release: Creates a release, generates and sends by e-mail the announcement
of the release.

Usage in Agile development: the same as Ant but with the enhanced features
provided. URL: http://krysalis.sourceforge.net/centipede/

20.3.3 Apache Maven

Maven is an integrated system for project management able to take care of the build,
the reporting, and the documentation of a Java project. The main goal of the system
is to allow developers to understand the state of a development. To do that, Maven
tries to perform the following:

• Make the build process easy: Even if it does not eliminate the need to know
about the underlying mechanisms, it provides a lot of shielding from the
details.

• Provide a uniform build system: It builds a project using its object model
(POM) and a set of shared plug-ins. Since it provides a uniform build system,
it is easy to manage many projects.

• Provide quality project information: It provides several project information
that are extracted from the POM and from the source code including: change
log document created directly from source control, cross referenced sources,
mailing lists, dependency list, unit test reports (including coverage).

• Provide guidelines for best practices development: It collects data to sup-
port the development of best practices and makes it easy to guide a project
in that direction. For example, specification, execution, and reporting of unit
tests are part of the normal build cycle. Unit testing best practices were used
as guidelines:

o Keep the test source code in a separate, but parallel source tree ◦
o Use test case naming conventions to locate and execute tests ◦
o Have test cases setup their environment and do not rely on custom- ◦
izing the build for test preparation

350 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Moreover, the system aims at assisting the project workflow through ◦
release management and issue tracking.

• Allow transparent migration to new features: It provides an easy way for
clients to update their installations so that they can take advantage of any
changes. Therefore, the installation of new or updated plug-ins from third
parties is trivial.

Usage in Agile development: the tool allows developers to focus on the code
and not in how to automate the build. Since it provides a uniform interface, build-
ing several projects at the same time becomes easy and do not require the usage of
different tools for different purposes. URL: http://maven.apache.org/

20.4 continuous integrAtion tools
20.4.1 cruisecontrol

CruiseControl is an Open Source tool aiming at supporting the continuous integra-
tion process. The tool allows the entire automation of the building process of a
project compiling it and executing all the tests several times a day. The results of
the process are sent automatically to the developers. In this way, developers can
integrate daily their work reducing the integration problems.

CruiseControl is extensible through Java plugins. Some of the plugins provided
allow the email notification, the integration with Ant, the integration with version
contro tools such as CVS, Subversion, VSS, etc.

CruiseControl is executed as a system demon that periodically verifies if the
source code has been modified, builds the system if required, creates a log file, and
notifies the status of the building process. The schedule of such activities is user-
defined and the configuration is done through an XML file.

There is another version of the system called CruiseControl.NET specific for the
management of projects developed using the Microsoft .NET framework.

Usage in Agile development: the tool performs continuous build of the developed
system and provides detailed reports to the developers if there are problems. It can
be configured to build the system several times a day, therefore it is highly effective
to implement continuous integration and locate problems as soon as they appear in
the code. URL: http://sourceforge.net/projects/cruisecontrol/

20.4.2 Anthill os

Anthill is a tool for automating the building process based on Ant. It focuses on
simplifying the building process in environments in which there are several develop-

Overview of Open Source Tools for Agile Development 351

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

ers in charge of different modules of the final product. The system is able to build
several projects at the same time, it can be configured through a web page, its setup
is extremely easy, and can generate detailed reports about building errors.

Usage in Agile development: the same as CruiseControl but with the enhanced
features provided. URL: http://www.anthillpro.com/html/products/anthillos/

20.4.3 rephlux

Rephlux is a system able to support continuous integration specific for projects
developed in PHP. The system is based on the same concepts of CruiseControl and
provides most of its functionalities adapted to PHP. Compared to CruiseControl,
the system has some limitations such as: only Linux support, only CVS support, the
generated reports contain only a limited set of information and are provided only
through the RSS format, etc.

Usage in Agile development: the same as CruiseControl but for PHP projects.
URL: http://rephlux.sourceforge.net/

20.5 issue trAcKing tools
20.5.1 Bugzilla

Bugzilla is a tool able to help developers to keep track of bugs and collect them in
a centralized repository. It has been developed in Perl, therefore it can run on ev-
ery platform supported by this language, but the official version is only for Linux.
Commercial bug tracking tools are very expensive, therefore Bugzilla has become
very popular (also because it was developed to track bugs in the Mozilla browser
project).The main features of Bugzilla are:

Tracking of the dependences of the bugs•
Generation of bug reports•
back-end based on a database•
API for the interaction with the email, XML, console, and HTTP•
Integration with version control systems such as • CVS

Usage in Agile development: list bugs and develop test to locate them is required
to implement a high quality product. Bugs traced can include unit test to locate the
exact piece of code affected and plan the fix. URL: http://www.bugzilla.org/

352 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

20.5.2 scarab

Scarab is a very flexible issue tracking system. The main features are the following:

Data entry, query, report, notifications, collaborative comments collection, •
tracking of the issues dependences
Import and export of the configuration through an XML file•
Modular design to support the development of new functionalities•
Configuration through a web page•
Adaptable look and feel•
Support the integration with other systems•

Usage in Agile development: the same as Bugzilla but with the enhanced features
provided. URL: http://scarab.tigris.org/

20.6 synchronous And Asynchronous
coMMunicAtion tools
20.6.1 MailMan

MailMan is a system for managing mailing lists. The administrator of a list can
manage all the access rights of the users, the dispatching of the emails, the man-
agement of the archives, etc. MailMan integrated several functionalities such as:
mail-to-news gateways, anti-spam filters, and email administration.

Usage in Agile development: effective communication is important in Agile de-
velopment. Mailing lists are an effective way to provide information to all and only
the team member that are involved in a specific topic avoiding to forget someone or
to overload people not interested in a specific subject. URL: http://www.gnu.org/
software/mailman/mailman.html

20.6.2 jabber

Jabber is an open communication protocol based on XML. It has been developed
to exchange messages over the Internet in real time. Compared to other proprietary
protocols used in other tools (e.g., ICQ, Yahoo, MSN, etc.), Jabber provides several
advantages:

• Open protocol: The Jabber communication protocol is open, therefore any-
one can implement applications based on that. There are several implementa-
tions of the server, client, and development libraries.

Overview of Open Source Tools for Agile Development 353

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• Extensible: The protocol can be easily extended to satisfy specific
requirements.

• Decentralized: Anyone can install a private Jabber server.
• Secure: A Jabber server can be detached from the Jabber network to sup-

port only users in a specific organization and support secure communication
protocols.

Usage in Agile development: even if most of the Agile practices are designed to
work with co-localized teams, in many organization this is impossible. Therefore,
tools for an effective synchronous communications are required. URL: http://www.
jabber.org/

20.6.3 Wiki

A Wiki is a system for the development of web documents in a collaborative way.
All the users can modify the existing pages or create new ones. Inside a Wiki, from
every page it is possible to access an HTML web editor to modify the content of
the page. The scripting language used is a simplified version of HTML.

Usage in Agile development: this tool is useful to share knowledge among the
team members such as coding conventions, planning documents, user stories, out-
comes on daily meetings, documentation, etc. URL: http://www.wiki.org/

20.6.4 tWiki

TWiki is a structured Wiki which combine the benefits of a traditional Wiki and
a database application. The result is a collaborative database environment where
knowledge can be shared freely and where structure can be added as needed.

TWiki is an enterprise collaboration platform and knowledge management system.
Users can create web applications without knowing any traditional development.
The system is used to create web applications in an easy and fast way. Such ap-
plications include: document management systems, knowledge bases, groupware
tools, etc. All the content can be created collaboratively by the users through a web
browser. Moreover, developers can extend the functionality of the system through
specific plug-ins. TWiki support the information flow within an organization, allows
distributed teams to work together, and eliminates the bottleneck caused by a single
person that has to update the online content.The main features of the system are:

• Browser support: Pages can be created and modified using any web
browser.

• Text formatting: Simple text formatting rules.

354 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

• Multiple groups: Pages are grouped into collections to create separate col-
laboration groups.

• Search: Full text search with regular expressions.
• E-mail	notification: Users can subscribe to receive emails when something

changes in a page.
• Structured content: The information can be classified to create simple

workflow systems.
• Version control: All the changes to pages are tracked. Therefore, it is pos-

sible to access previous versions of a page highlighting the differences.
• Extensible: The system can be extended through plug-ins. Some available

plug-ins are:
ActionTrackerPlugin: ◦ Keeps track of action items in meeting minutes
and notify assignees by e-mail.
CalendarPlugin: ◦ Shows a calendar with highlighted events.
ChartPlugin: ◦ Creates charts to visualize TWiki tables.
DatabasePlugin: ◦ Allows to access data in a database.
HeadlinesPlugin: ◦ Allows to access RSS news feeds.
SlideShowPlugin: ◦ Transform pages into web-based presentations.
XpTrackerPlugin: ◦ Tracks Extreme Programming (XP) projects.

Usage in Agile development: the system provides an effective way to develop
project-specific document management systems tailored to the specific approach
used by a development team. Moreover the The XpTrackerPlugin plug-in provides
a basic support for managing XP project. URL: http://twiki.org/

20.7 project MAnAgeMent tools
20.7.1 Xplanner

XPlanner is a tool for planning and track the evolution of an XP project through a
compete set of web pages. It is different compared to traditional project manage-
ment tools because it is able to support the specific aspects of the XP methodology
providing ad hoc tools. In particular, the most interesting functionalities are:

Iteration-based planning•
Digital user stories management•
Tracking of iterations and user stories•
Tracking of the activities and automated generation of reports•
Support for the estimation•

Overview of Open Source Tools for Agile Development 355

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

Usage in Agile development: it is designed to support XP development. URL:
http://www.xplanner.org/

20.7.2 XpWeb

XPWeb is a web-based tool for managing XP projects. It includes features to sup-
port both XP-specific practices and XP adaptation of usual software development
practices such as planning, printing statistic reports, and metaphors.

Usage in Agile development: it is designed to help developers to manage XP
projects. URL: http://xpweb.sourceforge.net/

20.7.3 Xp storystudio

XP StoryStudio is a project-management system to support the development of soft-
ware projects adopting the XP method. The development of the tool started inside
Egg Plc to support the development of their internal Agile projects and it leverages
on the experience the company has in the area.

Usage in Agile development: it is designed to support XP development. URL:
http://www.xpstorystudio.com/

20.8 testing tools
20.8.1 cactus

Cactus is a tool for automating server-side Java code. The system is based on JUnit
with several extensions to simplify the development and the automated execution
of server-side tests for Java classes such as servlets, EJBs, etc.

Usage in Agile development: it is used to create automated unit tests for server-
side components. This allows developers to create automated tests for most of the
features developed and use Test-Driven Development. URL: http://jakarta.apache.
org/cactus/

20.8.2 junit

JUnit is a tool for automating unit tests. The system was designed to support Java
development but its success pushed for its adaptation to several other languages.
The system provides a simple way to develop and execute automated tests.

Usage in Agile development: it is used to create automated unit tests. This al-
lows developers to create automated tests for most of the features developed and
use Test-Driven Development. URL: http://www.junit.org/

356 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

20.8.3 nunit

NUnit is a unit-testing framework for all .NET languages. It has been ported from
JUnit and it is written entirely in C#. The system has been completely redesigned
to take advantage of the .NET language features such as custom attributes and other
reflection capabilities. NUnit brings xUnit to all .NET languages.

Usage in Agile development: it is used to create automated unit tests. This al-
lows developers to create automated tests for most of the features developed and
use Test-Driven Development. URL: http://www.nunit.org/

20.8.4 swingunit

SwingUnit is a unit test automation tool for Java Swing application. It works in
combination with JUnit to create and run unit tests that involve GUI elements. The
tool bases the execution on the meta-data associated to Swing graphical elements
and not on the pixel position information. In this way, the developed tests can be
executed in a more robust way and are not affected by elements such as screen
resolution or the position of a window.

Usage in Agile development: it simplifies the development of automated unit
tests that involve GUI elements. URL: https://swingunit.dev.java.net/

20.9 tools to support specific Agile prActices
20.9.1 sangam

Sangam is an Eclipse plug-in that allows non co-localized developers to apply the
pair programming technique. Sangam allows developers to communicate, write code
together, perform modifications to the source code, perform refactoring, and execute
the code in a shared environment. The main features provided by Sangam are:

Code development in a collaborative and interactive way•
Synchronized debugging•
Integrated messaging system•

Usage in Agile development: if co-localized pair programming is not possible
and developers need to work in pairs, this tool helps them to overcome distance and
simulate the pair programming experience. However, there are several limitations
compared to a real pair programming practice. URL: http://sangam.sourceforge.
net/

Overview of Open Source Tools for Agile Development 357

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

20.9.2 fitnesse

FitNesse is a tool for enhancing collaboration in software development focused on
acceptance testing. FitNesse is designed to enable customers, testers, and developers
to exchange information about what their software should do and to automatically
compare to what it actually does. It compares customers’ expectations to the actual
implementation of the system. FitNesse is a lightweight, open-source framework
that makes it easy for software teams to:

Define acceptance tests in a collaborative way•
Run those tests and see the results•

Usage in Agile development: the management of acceptance test is a basic re-
quirement to implement any Agile Method. URL: http://fitnesse.org/

20.9.3 tightvnc

TightVNC is a remote control tool derived from VNC. The tool allows seeing the
desktop of a remote machine and controlling it through a local mouse and keyboard.
The main features are:

• File transfer: The user can upload files from a local machine to the TightVNC
Server and download files from the server.

• Support for video mirror driver: TightVNC Server can use DFMirage mirror
driver to detect screen updates and grab pixel data improving performances.

• Scaling of the remote desktop: The user can view the remote desktop in
whole on a screen of smaller size or can zoom in the picture to see the remote
screen in more details.

• Web browser access: It includes a Java viewer that can be accessed via any
Java-enabled browser.

Usage in Agile development: the tool is useful to support distributed pair program-
ming. Even if it is not a complete solution, the usage of this system in conjunction
with other tools such as voice communication tools can provide a sufficient support
to the practice. URL: http://www.tightvnc.com/

358 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

20.9.4 refactoring Browser

This is the original refactoring tool and it is still one of the most full-featured. The
tool supports only the Smalltalk language. Several refactorings are possible and
they are organized in three categories:

1. Class based refactorings: They operate on classes, instance variables, and
class variables.
a. Create subclass: It allows you to add a new class into an existing

hierarchy.
b. Rename: It renames a class and updates every reference to it.
c. Safe remove: It removes the class if there are no references to it in the

code.
d. Add instance/class variable: It adds a variable to the class.
e. Rename instance/class variable: It renames a variable and all references

to it.
f. Remove instance/class variable: It removes a variable if it is not

referenced.
g. Push down instance/class variable: It moves the definition of a variable

from the current class to the subclasses that use the variable.
h. Pull up instance/class variable: It move the definition of a variable

from a subclass of the current class into the current class.
i. Create instance/class variable accessors: It creates getter and setter

methods for a variable.
j. Abstract instance/class variable: It runs the create accessors refactor-

ing and converts all direct calls to the variable to calls of the accessor
methods.

k. Protect/Concrete instance variable: It converts all the call to accessor
of a variable to a direct access to the variable.

2. Method based refactorings: they operate on methods and local variables.
a. Move to component: It moves a method to another class.
b. Rename: It renames all references to the method.
c. Safe remove: It removes the method if there are no references to it in

the code.
d. Add parameter: It allows adding a parameter to the method and to all

the method calls.
e. Push up: It pushes up a method into its superclass.
f. Push down: It pushes down a method into all subclasses that do not

implement the method.

Overview of Open Source Tools for Agile Development 359

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

3. Code based refactorings: They operate on individual statements and are avail-
able through a context sensitive menus.
a. Extract method: It extracts the selected code as a separate method.
b. Inline temporary: It removes the assignment of a variable and replaces

all the references with the right hand side of the assignment.
c. Convert to instance variable: It converts a temporary into an instance

variable.
d. Remove parameter: It removes an unused parameter from all the calls

of the method.
e. Inline parameter: It transforms a parameter of a method into a value

inside the method.
f. Rename temporary: It renames a temporary variable.
g. Move to inner scope: It moves the definition of a temporary variable

into the tightest scope that contains the variable and its references.

Usage in Agile development: refactoring is one of the key practices of XP to keep
the quality of the code high and avoid the degradation caused by modification and
addition of requirements. URL: http://st-www.cs.uiuc.edu/users/brant/Refactory/

20.9.5 transmogrify

Transmogrify is a Java code analysis and manipulation tool. The main goal of the
tool is supporting refactoring. It can perform the following refactorings:

Rename Symbol•
Extract Method•
Replace Temp With Query•
Inline Temp•
Pull up field•

Usage in Agile development: even if the tool is limited compared to the Refac-
tory Browser, it is able to support developers in some important activities. However,
it becomes nearly useless if the development is done using IDEs such as Eclipse
or JBuilder that provide many more functionalities. URL: http://transmogrify.
sourceforge.net/

20.9.6 jMock

jMock is a library that implements the idea of mock objects (http://www.mockobjects.
com/) to support test-driven development of Java applications. Mock objects help

360 Overview of Open Source Tools for Agile Development

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

the developer to design and test the interactions between the objects in a program
even when some of them are still not developed. The elements that do not exist are
simulated by mock objects.

jMock simplify the definition of mock objects and provides support to the speci-
fication of the interactions among objects.

Usage in Agile development: mock objects simplify the development of unit
tests and allow developers to concentrate on the piece of code they are develop-
ing making easier the testing of the application even if the entire system is not yet
developed. URL: http://www.jmock.org/

20.10 MeAsuring tools
20.10.1 ncover

NCover analyzes the source code and reports the percentage of branches that have
been taken throughout the course of the automated testing. It does that instrumenting
the source code at each branch. The system allows developers to identify:

Code areas that need additional testing.•
Dead code (code that is never executed).•
Dead files not included in the build but still in the version control system.•

An automated build process.•
Automated tests.•
A continuous integration process to regularly build and run tests before ana-•
lyzing the code coverage.

Usage in Agile development: understanding the coverage level is required to find
out if the tests are really effective or not. The test first approach is not effective if
there are significant parts of the code that are not tested. This tool allows develop-
ers to increase the effectiveness of the test ones the code has been developed.URL:
http://ncover.sourceforge.net/

20.10.2 jBlanket

JBlanket is a method coverage tool for Java code. It instruments the byte code to
trace the methods invocations during the execution of JUnit tests. The tool stores
this trace into XML files and calculates the method coverage dividing the number
of methods invoked during testing by the total number of methods. JBlanket is

Overview of Open Source Tools for Agile Development 361

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is
prohibited.

designed to provide automate support for test quality assurance according to Agile
development practices. The goal of the tool is to provide coverage criteria that make
it possible to achieve 100% coverage, throughout the development process. More
rigorous forms of coverage, such as statement, branch, or loop coverage require too
much testing resources to maintain 100% coverage in an Agile context. To make
100% coverage practical in an Agile context, the approach is to measure coverage
only at the method level and make exceptions in specific cases where the cost of
creating and maintaining test cases is not appropriate (e.g., getter and setting methods
are usually one line long and do not require any testing).

Usage in Agile development: understanding the coverage level is required to find
out if the tests are really effective or not. The test first approach is not effective if
there are significant parts of the code that are not tested. This tool allows developers
to increase the effectiveness of the test ones the code has been developed. URL:
http://csdl.ics.hawaii.edu/Tools/JBlanket/

endnotes

1 All the URLs have been accessed on November 11, 2008.
2 http://www.opencvs.org/ (Accessed on November, 11th)

 362 Conclusions

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Conclusions

This book has presented Agile Methods and Open Source identifying similarities,
differences, and complementarities.

These two areas are very active and are evolving fast. For these reasons we
expect that the influence of each other will increase in the future.

In or analysis, we have considered several aspects of the two areas including
the founding principles, the technical details, and the organizational problems.
Moreover, a number of case studies have been included to provide evidences of the
effectiveness of specific approaches. However, in most of the cases, the implemen-
tation of such techniques is not straightforward and several difficulties emerge in
their implementation in different kinds of environments.

Section 1 has compared AMs and OSSD focusing on their theoretical background
and evolution from their beginning. We have highlighted that even if they have
evolved from different communities and the basic values are expressed in differ-
ent ways, the aims, the objectives, and the actual practices are not so different and
they overlap in many cases. This investigation is just a first attempt in identifying
relationships between AMs and OSSD. In particular, more investigation is required
in the actual implementation of the Agile and OS models inside organizations (both
communities and companies) and in the definition of a set of strategies to help them
in the integration of such development approaches with the culture already existing
in the organization. Such investigations should analyze not only the development
teams but also the entire structure of the organization considering their specific
environment and the related business models as well.

Section 2 has described the adoption of some Agile practices (and processes) in
the development of OSS. Our investigation has considered some of the most com-

Conclusions 363

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global
is prohibited.

mon practices (e.g., test first and code ownership) and has evidenced that such Agile
practices are also used in OSSD. However, there are several others that have been
introduced in Section 1 and can be investigated. An interesting further research
could be the investigation of such practices in different contexts such as in com-
munities and in companies, analyzing not only the adoption of the practices but
also the differences in their adoption if the two contexts.

Section 3 has presented a framework for conducting experiments and a set of
experimental analysis related to the application in different contexts of some com-
mon development practices such as pair programming, requirements management,
and project management in Agile and non-Agile environments. Such analyses have
highlighted differences and commonalities in the application of the practices in the
considered environments. These analyses are just a first set of experimental evalu-
ations in real industrial settings; further investigations are required to enlarge both
the practices analyzed and the application environments.

Section 4 focused on the industrial adoption presenting assessment methodologies,
main adoption issues that companies face, and an overview of the available tools to
support the adoption of the practices. According to the surveys carried on, trust is
a key issue for the adoption of OSS and it relates to several aspects of the product
itself and the development process used to build it. The data presented come from
European companies (large, SMEs, and Public Administrations) and large well-
known OS communities. The investigation could be extended including different
areas, including more companies, and compare the different approaches different
kinds of companies have. Moreover, a set of guidelines for the implementation of
the assessment and the exploitation of OSS could be developed to help companies
in such activities.

Summarizing, AMs and OSSD are deeply connected through the aims, the objec-
tives, and the vision over the art of software development. They acknowledge that to
produce good software you do not need just the right tools or process but you also
need good people. There is a lot of research to carry on in this area, in particular for
helping companies in the adoption of the methodologies and the specific practices
that need to be customized to satisfy the needs of specific companies.

We hope that the analysis we have carried out will help the reader to better
understand Agile and Open Source and push him to a further investigation of the
topics.

 364 Glossary

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Glossary

Glossary of the main abbreviations used in this book:

AM: Agile Method
FSF: Free Software Foundation
GPL: General Public License
OS: Open Source
OSD: Open Source Development
OSS: Open Source Software
OSSD: Open Source Software Development
PMC: Project Management Committee
TDD: Test Driven Development
XP: eXtreme Programming

About the Authors 365

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

about the authors

Barbara Russo, PhD is associate Professor at the Faculty of Computer Sci-
ence of the Free University of Bolzano-Bozen, Italy. She has a PhD in mathematics
of the University of Trento (Italy). She was visiting researcher at the Max-Plank
Institut für Mathematik in Bonn and The University of Liverpool. Professor Russo
has experience in the coordination and development of European, national, and local
research projects. She has been reviewer for various conferences on the sector and
journals. She is local coordinator of the European Master in Software Engineering
(in 2006 awarded as the Erasums Mundus top quality program) and the BSc program
for working students in applied computer science (in 2006 awarded as national best
project of collaboration with the industrial sector by the foundation Giuseppina
Mai of the National Industrial Association). Her research interests are in the field
of empirical software engineering and software measurement. Her competences
concern statistical modelling of software data and software measurement with focus
on Open Source Software development and Agile Methods.

Marco Scotto, PhD, PEng is a software architect at i4C s.r.l., an Italian company
that delivers business intelligence solutions for the utilities market. He is focused on
development of forecasting solutions for the gas market. His interests are extreme
programming, agile methods, open source software, softwarer metrics, and J2EE ap-
plications. Previously, he worked as consultant at TXT Polymedia, a software vendor
and integrator, specialized in media & channel integration. From 2005 to 2008, he was
assistant professor at Free University of Bolzano-Bozen. In 2006, he received a PhD
in electronic and computer engineering from University of Genova. He is author of
more than 30 papers published in international conferences and journals.

366 About the Authors

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Alberto Sillitti, PhD, PEng is assistant professor at the Faculty of Computer
Science of the Free University of Bolzano-Bozen, Italy. He holds a PhD in electrical
and computer engineering received from the University of Genoa (Italy) in 2005. He
is involved in several EU funded projects related to Agile Methods and Open Source
Software in which he applies non-invasive measurement approaches. He has served as
member of the program committee of several international conferences and as program
chair of OSS 2007 in Limerick (Ireland). His research areas include agile methods, open
source development, software engineering, non-invasive measurement, web services. He
is author of more than 80 papers published in international conferences and journals.

Giancarlo Succi, PhD, PEng is professor of software engineering and Director
of the Center for Applied Software Engineering at the Faculty of Computer Science
of the Free University of Bolzano-Bozen, Italy. His research areas include Agile
Methods, Open Source Development, empirical software engineering, software
product lines, software reuse, software engineering over the Internet. He is author
of more than 150 papers published in international conferences and journals.

Raimund Moser, PhD is currently working as patent examiner at the European
Patent Office in The Hague (The Netherlands). Before that, he was assistant professor
in software engineering at the Faculty of Computer Science of the Free University of
Bolzano-Bozen, Italy. He received an MSc in physics from University of Innsbruck,
Austria, in 2000, and a PhD in electrical and computer engineering at the University of
Genova, Italy, in 2007. His main research interests include experimental software engi-
neering, software metrics, modeling software development processes, and agile software
development methods. He was involved in several research projects on software quality
and process measurement with particular emphasis on Open Source Software.

Etiel Petrinja, PhD, PEng is assistant professor at the Faculty of Computer
Science of the Free University of Bolzano-Bozen, Italy. He holds a PhD in the
interdisciplinary area of Information Management and Engineering received from
the University of Ljubljana (Slovenia) in 2007. Previously, he worked as assistant
professor at the Faculty of Civil and Geodetic Engineering of the University of
Ljubljana, Slovenia. He is involved in EU funded projects related to Open Source
Software in which he applies non-invasive measurement approaches. He has been
reviewer and member of the program committee in international conferences. His
research areas include open source development, software engineering, non-invasive
measurement, software interoperability, knowledge management. He is author of
more than 20 papers published in international conferences and journals.

Index 367

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Index

A
adopted technology changes 293
the Agile Manifesto 23, 25, 42, 192
the Agile Manifesto: change response 23,

25, 28
the Agile Manifesto: contract negotiation

23, 24
the Agile Manifesto: customer collabora-

tion 23, 24
the Agile Manifesto: documentation 23,

24, 27
the Agile Manifesto: individuals 25
the Agile Manifesto: interaction 23
the Agile Manifesto: plan adherence 23
the Agile Manifesto: processes 23, 25, 28
the Agile Manifesto: tools 23, 25
the Agile Manifesto: working software 25
agile method (AM) 41, 43, 50, 75, 79
agile methods (AMs) 20, 23, 24, 25, 28,

91, 92, 95, 98, 144, 157, 158, 160,
161, 162, 165, 167, 168, 171, 176,
177, 178, 179, 180, 187, 295, 297

Agile Modeling (AM) methodology 75, 79
agile programming practices 191
AM adoption 288, 289, 293, 295, 296,

297, 298, 299
AM introduction problems 298
AM values: humility 31

Ant 344, 348, 349, 350
Anthill 344, 350

B
big design up front anti-pattern (BDUFA)

134
bug management 328
bug reporters 314, 319, 329, 330
bugs 315, 316, 319, 322, 323, 327, 328,

329, 330, 331
bug trackers 312, 323, 329, 330
Bugzilla 344, 351, 352

C
Cactus 344, 355
Centipede 344, 348
clients 288, 293, 294, 295, 297
COCOMO cost models 233, 239, 241, 252
code ownership 127
common output 58
communication and team working (CT)

260, 264, 265, 266
communication tools 256, 259, 262, 263,

266
community roles 339
Concurrent Versions System (CVS) 95,

99, 100, 118, 344, 345, 346, 347,
350, 351

368 Index

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

coordination 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 72, 73, 74

CruiseControl 344, 350, 351
Crystal Clear 76, 77, 78, 79
Crystal methodology 75, 76, 77, 78, 79, 89
Crystal Orange 76, 77, 78, 79
customer organization 270, 275, 276, 280,

283
customer relationship problems 296
customer requirement changes 293
customer’s physical presence (CP) 260,

261, 264, 265, 266
CVSMetrics 99, 116, 121

D
data analysis, qualitative 160, 161
data analysis, standards 167, 168
data collection 158, 159, 160, 161, 162,

165, 166, 167, 168, 171, 172, 174,
175, 176, 178, 181, 183, 190, 191,
193, 194, 195, 218

data collection standards 159, 165, 167,
168, 170, 175, 176

data collection strategy 160, 165
decision process 339
dependencies 52, 54, 55, 56, 57, 58, 59,

61, 63, 66, 67, 69, 71, 72
design practices, adoption of 133
design requirements 337, 338
developers 287, 288, 291, 293, 294, 295,

296, 298
development effort 232, 233, 234, 236,

237, 238, 239, 242, 244, 247, 250,
251, 252, 253, 254

development effort estimation 232, 233,
234, 236, 237, 238, 239, 240, 241,
247, 249, 250

development practices 190, 192, 220
documentation 312, 328, 329, 336, 337,

339, 341
documentation responsibility 328
DSDM life cycle 81
DSDM life cycle: business study 81
DSDM life cycle: design and build itera-

tion 81, 82

DSDM life cycle: feasibility study 81
DSDM life cycle: functional model itera-

tion 81, 82
DSDM life cycle implementation 81, 82
DSDM life cycle: post-project 82
DSDM life cycle: pre-project 81
Dynamic System Development Method

(DSDM) methodology 75, 79, 80,
81, 82, 83, 89

E
Eclipse development process 150
Eclipse (OS tool) 144, 145, 146, 149, 150,

151
effort prediction models 235, 237, 239,

248, 250
estimation models 232, 233, 234, 237,

238, 252, 255
estimation techniques, traditional 233
experience framework 157, 158, 159, 170,

179
extreme programming (XP) 4, 9, 10, 11,

12, 13, 27, 33, 34, 39, 40, 41, 42,
43, 44, 45, 46, 49, 68, 69, 70, 71,
75, 76, 78, 80, 91, 95, 124, 135,
144, 150, 151, 160, 162, 165, 166,
167, 170, 171, 172, 173, 175, 178,
179, 188, 192, 198, 199, 201, 204,
205, 206, 207, 208, 218, 219, 220,
221, 222, 223, 224, 225, 226, 232,
234, 235, 236, 241, 250, 256, 257,
258, 264, 265, 267, 293, 296, 297,
322, 344, 354, 355, 359

F
Feature Driven Development (FDD) meth-

odology 75
feature tests 315
final product quality 336, 339, 340
FitNesse 344, 357
Free Software Foundation (FSF) 13
Funambol (OS Tool) 144, 151, 152, 153
Funambol release life cycle (RLC) 151,

153

Index 369

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

G
game theory 52, 53, 59, 64
gamma score 137, 138
generalization 208, 212, 216, 217, 221
general public license (GPL) 14, 97
general regression neural network (GRNN)

model 240, 241, 245, 246, 247,
248, 249

global prediction models 236
goal-questions-metrics (GQM) paradigm

172, 173, 174, 177, 184, 257

I
incremental prediction models 237

J
Jabber 344, 352, 353
JBlanket 344, 360, 361
jMock 344, 359, 360
JUnit 94, 116, 117, 121, 122, 144, 344,

349, 355, 356, 360

K
knowledge transfer 256, 257, 258, 262,

266

L
Lean Software Development (LSD) meth-

odology 75, 83, 88

M
MailMan 344, 352
Maven 344, 349
model building 234, 237, 241, 244, 247,

251
model building, iterative 234
model development 236

N
NCover 344, 360
NUnit 344, 356

O
open source development (OSD) 24, 25,

26, 28, 31, 34, 37, 38, 39, 51, 52,
62, 63, 64, 65, 66, 67, 71, 91, 96,
268, 303, 312, 333

open source (OS) 15, 17, 18, 19, 20, 23,
24, 25, 26, 27, 28, 31, 32, 34, 35,
37, 38, 39, 61, 63, 64, 65, 66, 67,
68, 69, 70, 91, 92, 94, 95, 96, 98,
99, 125, 133, 134, 135, 136, 144,
151, 194, 259, 303, 304, 305, 306,
307, 308, 312, 313, 314, 315, 316,
317, 318, 319, 320, 321, 322, 323,
324, 325, 326, 327, 328, 329, 330,
332, 333, 335, 336, 338, 339, 340,
341, 344, 345, 346, 347, 350

open source software development (OSSD)
20, 25, 39, 62, 319, 321, 324

open source software (OSS) 13, 15, 23,
24, 62, 266, 302, 303, 304, 305,
306, 307, 308, 309, 310, 311, 312,
313, 314, 315, 316, 317, 320, 323,
326, 332, 336, 338, 340, 341, 345

open standards 340
organization 288, 290, 291, 294, 295, 296,

298
organization assessment: communication

41, 42, 43, 48, 49
organization assessment: culture 43
organization assessment: people 42, 43, 49
organization theory 52, 59
OSD practices 312
OS drivers 10, 11, 12
OSD trust 312
OS practices 12, 13, 22
OS process adoption 312, 313, 315
OS product testing 338
OS requirements 9, 15, 16, 20, 21
OSS quality 312, 313, 314, 315, 316, 317,

319, 331, 332, 333
OS values 11, 12, 13

P
pair programming (PP) 256, 257, 258,

259, 260, 261, 262, 264, 265, 266
Pareto analysis 125, 126

370 Index

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Pareto chart 128
Pareto principle 125
Pareto rule 126, 127
people management 331
planning 288, 290, 294, 295, 298
PP experiment 256, 257, 264
PP questionnaire 257, 258, 259, 263, 265
process maturity 338
producer-consumers 55, 57, 66
product features 316
project features 314, 315, 316, 319, 323,

326, 327, 328, 330
project management 287, 288, 292, 298,

300, 331
project management committee (PMC)

318, 319, 320, 326, 327
project management software 316
project participant roles 318, 319
PROM tool 193, 195, 196, 197, 198, 199
prototype practices 322

Q
quality criteria 336, 337

R
Refactoring Browser 344, 358
refactorings 202, 206, 207, 208, 228
Rephlux 344, 351
requirement engineering (RE) 268, 269,

270, 271, 280, 281, 283, 284
requirements changes 268, 269, 273, 278,

282, 283, 286
requirements definition process 269, 270,

272, 276, 278, 281, 283, 284
requirements, gathering of 268, 272
requirements management (RM) 268, 269,

284

S
Sangam 344, 356
Scarab 344, 352
SCRUM methodology 75, 89, 135
shared resources 55, 65
simple regression model 234
software architecture 339
software characteristics: complexity 52,

59, 69
software characteristics: uncertainty 52,

53, 54, 55, 59, 60, 61, 68
software design 133, 134, 135, 138, 143
software development model metrics 191,

195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 206, 207, 208, 209,
210, 211, 219, 220, 227, 228, 230

software development practices 322
software development problems 287, 288,

289, 290, 291, 293, 294, 296, 297,
298

software development process quality 334,
336

software process planning 288
software product changes 296
software production process changes 293
software testing 91, 122
spiral development model 8, 10
strategy, defensive 269
strategy, reactive 269, 273
Subversion 344, 346, 347, 350
SwingUnit 344, 356

T
team empowerment 76, 87
test driven development (TDD) 27, 30, 92,

95, 135
Test First 95, 96, 97, 98, 99, 119, 120, 121
testing documentation 336
testing processes 337
TightVNC 344, 357
time series 136
traditional environment changes 298
Transmogrify 344, 359
trustworthy elements (TWE) 334, 335,

336, 338, 339, 340
Twiki 344

U
unit tests 100
user stories 201, 202, 208, 222

V
version control 341

Index 371

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

W
waste elimination 83, 84, 85, 87, 88
Wiki 344, 353
win-win approach 6, 7, 8, 9
win-win spiral method 7, 9

X
XP adaptations 43
XP adaptations: management 44, 49
XP adaptations: monitoring 44
XP adaptations: optimization 45
XP adaptations: process 43, 44, 45, 46, 49
XP adaptations: scheduling 43
XP adaptations: training 44
XP implementation 41, 45
XP implementation: functionality 42, 46,

47
XP implementation: project change 42, 45,

46, 49
XP implementation: requirements 42, 47,

48, 50
XP implementation: risks 41
XP implementation: scope 42, 45
XPlanner 344, 354
XP practices 30, 35, 37, 39, 40, 144, 145,

146, 150, 151, 198, 199, 205

XP practices: continuous process 36
XP practices: fine scale feedback 36
XP practices: programmer welfare 37
XP practices: shared understanding 36, 38
XP principles 30, 31, 33, 34, 35, 39
XP principles: change, embracment of 33,

34
XP principles: change, incremental 33, 34
XP principles: concrete experiments 33
XP principles: open communication 33
XP principles: play to win 33
XP principles: quality 33, 34, 39
XP principles: small initial investment 33
XP principles: teach learning 33
XP principles: work with people’s instincts

33
XP StoryStudio 344, 355
XP values 30, 31, 35, 39, 150
XP values: communication 11, 19, 31, 32,

33, 35, 36, 38, 39
XP values: courage 11, 12, 13, 31, 32, 33,

39
XP values: feedback 9, 11, 31, 32, 33, 34,

36, 37, 39
XP values: simplicity 11, 31, 32, 33, 34,

38, 39
XPWeb 344, 355

	Table of Contents
	Foreword
	Preface
	Introduction
	Historical Evolution of the Agile and Open Source Movements
	The Agile Manifesto and Open Source Software
	Values and Principles Practices in Agile and Open Source Development
	Models of Organization
	Coordination in Agile and Open Source
	Other Agile Methods
	Testing
	Code Ownership
	Design Approaches
	Case Studies
	A Framework for Collecting Experiences
	Improving Agile Methods
	Effort Estimation
	Discontinuous Use of Pair Programming
	Requirements Management
	Project Management
	Open Source Assessment Methodologies
	Adoption of Open Source Processes in Large Enterprises
	Trust Elements in Open Source
	Overview of Open Source Tools for Agile Development
	Conclusions
	Glossary
	about the authors
	Index

