

Agile Software
Development Quality
Assurance

Ioannis G. Stamelos
Aristotle University of Thessaloniki, Greece

Panagiotis Sfetsos
Alexander Technological Educational Institution of Thessaloniki, Greece

Hershey • London • Melbourne • Singapore
InformatIon scIence reference

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Assistant Managing Editor: Sharon Berger
Copy Editor: Larissa Vinci
Typesetter: Sara Reed
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.info-sci-ref.com

and in the United Kingdom by
Information Science Reference (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by Idea Group Inc. All rights reserved. No part of this publication may be reproduced, stored or distributed in any
form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies
does not indicate a claim of ownership by IGI of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Agile software development quality assurance / Ioannis Stamelos and Panagiotis Sfetsos, editors.

 p. cm.

 Summary: “This book provides the research and instruction used to develop and implement software quickly, in small iteration
cycles, and in close cooperation with the customer in an adaptive way, making it possible to react to changes set by the constant
changing business environment. It presents four values explaining extreme programming (XP), the most widely adopted agile
methodology”--Provided by publisher.

 Includes bibliographical references and index.

 ISBN 978-1-59904-216-9 (hardcover) -- ISBN 978-1-59904-218-3 (ebook)

 1. Computer software--Development. 2. Computer software--Quality control. I. Stamelos, Ioannis, 1959- II. Sfetsos, Panagiotis,
1953-

 QA76.76.D47A394 2007

 005.3--dc22

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is new, previously-unpublished material. The views expressed in this book are those of the au-
thors, but not necessarily of the publisher.

Detailed Table of Contents ...iii
Foreword .. ix
Preface .. xi
Acknowledgments ...xviii
About the Editor ... xix

Section I
Introduction: Agile Methods and Quality

Chapter I
Agile Software Methods: State-of-the-Art / Ernest Mnkandla and Barry Dwolatzky 1

Chapter II
Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to
 Stakeholders’ Needs / Eleni Berki, Kerstin Siakas, and Elli Georgiadou 23

Chapter III
What’s Wrong with Agile Methods? Some Principles and Values to Encourage
 Quantification / Tom Gilb and Lindsey Brodie... 56

Section II
Quality within Agile Development

Chapter IV
Requirements Specification using User Stories / V. Monochristou and M. Vlachopoulou 71

Chapter V
Handling of Software Quality Defects in Agile Software Development / Jörg Rech 90

Chapter VI
Agile Quality Assurance Techniques for GUI-Based Applications / Atif Memon and Qing Xie 114

Table of Contents

Section III
Quality within Agile Process Management

Chapter VII
Software Configuration Management in Agile Development / Lars Bendix and
Torbjörn Ekman .. 136

Chapter VIII
Improving Quality by Exploiting Human Dynamics in Agile Methods / Panagiotis Sfetsos
and Ioannis Stamelos .. 154

Chapter IX
Teaching Agile Software Development Quality Assurance / Orit Hazzan and Yael Dubinsky 171

Section IV
Agile Methods and Quality: Field Experience

Chapter X
Agile Software Development Quality Assurance: Agile Project Management, Quality Metrics, and
 Methodologies / James F. Kile and Maheshwar K. Inampudi ... 186

Chapter XI
Test-Driven Development: An Agile Practice to Ensure Quality is Built from the
 Beginning / Scott Mark .. 206

Chapter XII
Quality Improvements from using Agile Development Methods: Lessons Learned /
Beatrice Miao Hwong, Gilberto Matos, Monica McKenna, Christopher Nelson,
Gergana Nikolova, Arnold Rudorfer, Xiping Song, Grace Yuan Tai, Rajanikanth Tanikella,
and Bradley Wehrwein .. 221

About the Authors .. 236

Index ... 243

Foreword .. ix
Preface .. xi
Acknowledgments ...xviii
About the Editor ... xix

Section I
Introduction: Agile Methods and Quality

Chapter I
Agile Software Methods: State-of-the-Art / Ernest Mnkandla and Barry Dwolatzky 1

This chapter provides a review of the state-of-the-art of agile methodologies. However, it focuses primar-
ily on the issue of quality and quality assurance, reviewing the benefits that agile methods have brought
to software development. An analysis framework is used for systematically analyzing and comparing
agile methodologies and is applied to three of them.

Chapter II
Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to
 Stakeholders’ Needs / Eleni Berki, Kerstin Siakas, and Elli Georgiadou 23

Following the presentation of the previous chapter, the agile information systems development process
is discussed here and its quality characteristics are analyzed in detail. One important issue is raised:
how suitable and applicable are agile methods when applied on different organisational and national
situations? The text provides arguments on the basis of the authors’ experiences from various European
countries differing in their academic and work values, and information systems development industrial
practices.

Chapter III
What’s Wrong with Agile Methods? Some Principles and Values to Encourage
 Quantification / Tom Gilb and Lindsey Brodie... 56

In this chapter, arguments are provided in favour of the quantification of agile processes to reinforce
quality assurance procedures. Measuring requirements, design artefacts, and delivered results provide
the basis for sound quality estimation. The text discusses in detail the benefits of quantification and

Detailed Table of Contents

proposes the quantification approach Planguage. Interesting results from Planguage application in the
context of a Norwegian organization are given.

Section II
Quality within Agile Development

Chapter IV
Requirements Specification using User Stories / V. Monochristou and M. Vlachopoulou 71

In this chapter, the authors describe a number of approaches for managing user requirements (namely
software requirements specification, use cases, interaction design scenarios). Requirements are subject
to constant changes in modern software development and the text shows how agile methods promote
the involvement of customers/users in the process of requirement modification. The tool for assuring
requirements quality are user stories and is thoroughly discussed and illustrated in this chapter.

Chapter V
Handling of Software Quality Defects in Agile Software Development / Jörg Rech 90

This chapter discusses refactoring, an agile procedure during which, among other activities, quality
defect removal takes place. Because of time constraints, quality defects can not be removed in just one
refactoring phase. Documentation of detected quality defects is therefore necessary and the text pro-
poses a process for the recurring and sustainable discovery, handling, and treatment of quality defects
in software systems. The process is based on an annotation language, capable to register information
about quality defects found in source code.

Chapter VI
Agile Quality Assurance Techniques for GUI-Based Applications / Atif Memon and Qing Xie 114

This chapter proposes a process-based approach for assuring quality while developing in agile mode.
The authors propose a new concentric loop-based technique, which effectively utilizes resources during
iterative development. It is based on three types of testing, namely crash testing, smoke testing, and com-
prehensive testing. The overall approach is illustrated on the development of graphical user interfaces.
The GUI model used to implement the concentric-loop technique is given in detail.

Section III
Quality within Agile Process Management

Chapter VII
Software Configuration Management in Agile Development / Lars Bendix and
Torbjörn Ekman .. 136

Because of the frequent changes, multiple iterations, and software versions that occur in agile develop-
ment, software configuration management is a crucial activity. This chapter discusses the additional
requirements for software configuration management with respect to the traditional development. Typical
agile activities for configuration management are described along with general guidelines. It is argued
that an agile project can assure better quality according to the agile method and configuration manage-
ment it applies and the project particular context.

Chapter VIII
Improving Quality by Exploiting Human Dynamics in Agile Methods / Panagiotis Sfetsos
and Ioannis Stamelos .. 154

This chapter explores the management of the human resources that are involved in agile development.
Because evidently human factors are critical for the success of agile methods, there is an urgent need
for managing agile people effectively both at the corporate level and the project level. First part of the
chapter proposes and discusses a model for personnel management based on the well-known People-
CMM assessment and improvement model. In addition, the chapter proposes a model for allocating and
rotating developers in pairs while pair programming. The model is based on the fact that different types
of personalities and temperaments allow pairs that produce better quality results.

Chapter IX
Teaching Agile Software Development Quality Assurance / Orit Hazzan and Yael Dubinsky 171

This chapter differs from the rest of the book in the sense that it deals with the education of software
engineers and managers to form a culture for agile quality assurance. The text proposes a teaching frame-
work focusing on the way quality issues are perceived in agile software development environments. It
consists of nine principles, which can be adjusted according to different specific teaching environments.
The teaching framework is based on the differences between agile and traditional software development.
Overall, this chapter provides a particularly useful tool for instructors of Agile Methods.

Section IV
Agile Methods and Quality: Field Experience

Chapter X
Agile Software Development Quality Assurance: Agile Project Management, Quality Metrics, and
 Methodologies / James F. Kile and Maheshwar K. Inampudi ... 186

This chapter examines one of the hottest issues in modern software development, namely the adoption
of agile methods by highly disciplined and highly structured software development environments. It
appears that up to now, agile methods have been applied mostly to non-critical projects. The text de-
scribes how one IBM software development team has applied simultaneously several individual agile
development techniques. The authors report encouraging results, stating that they obtained increased
quality in shorter than normal time. Throughout the chapter, it is shown that the adoption of individual
agile techniques can be achieved with no additional risks.

Chapter XI
Test-Driven Development: An Agile Practice to Ensure Quality is Built from the
 Beginning / Scott Mark .. 206

This chapter describes the practice of test-driven development and the benefits it brings to quality as-
surance in an agile organization. The practice is illustrated through details of two real development
projects in an industrial setting. The author gives an industry practitioner’s perspective and discusses
various practical considerations about the adoption of the practice. Overall, it is claimed that test-driven
development is well accepted by practitioners and is a successful quality assurance technique.

Chapter XII
Quality Improvements from using Agile Development Methods: Lessons Learned /
Beatrice Miao Hwong, Gilberto Matos, Monica McKenna, Christopher Nelson,
Gergana Nikolova, Arnold Rudorfer, Xiping Song, Grace Yuan Tai, Rajanikanth Tanikella,
and Bradley Wehrwein .. 221

In this chapter, the experience of another large company, namely Siemens, with agile methodologies is
reported. The authors report that Siemens has applied agile processes in several projects with varying
characteristics. They also report that significant quality achievements have been observed. The text
discusses briefly project quality goals and practices and summarizes the lessons learned from successes
and failures while working for quality assurance in their projects. This chapter is important because it
shows how a large company pursues quality assurance results when applying agile methods.

About the Authors .. 236
Index ... 243

 ix

Foreword

After spending the summer north of the Arctic Circle, basking in the midnight sun and the warmest
weather for over 100 years in Finland, I was especially happy to find this book sitting on my desk wait-
ing to be read. Although there is no shortage of books on agile methodologies and practices, something
had been missing. The concept of quality is indeed a very important element in any software system and
development method, yet it has received little explicit attention in the agile literature. For this reason, I
am delighted to see this book contribute to this gap.

We have long known that skilled people are the most crucial resource in software development.
Back in the 1990 summer issue of American Programmer (Ed Yourdon’s Software Journal, Vol. 3, No.
7-8)—which was devoted exclusively to “Peopleware”—the editor commented that “Everyone knows
the best way to improve software productivity and quality is to focus on people.” However, it took more
than 10 years for the agile manifesto and agile methods (Extreme Programming, Scrum, Crystal, and
many others) to truly place the emphasis on people and their interaction. Since then, we have witnessed
a movement that has advanced more rapidly than any other innovation in the field of software engineer-
ing.

Software quality in agile development is not a straightforward topic. Therefore, it is essential that
a book of this kind does not aim at offering simple answers to complex problems. An edited book al-
lows the contributors to approach the topic from their particular angles in an in-depth manner. In this
book there are chapters not normally found in the agile literature dealing with, for example, metrics and
documenting defects. Some of the chapters take a controversial approach and offer new insights into
adapting agile methods in different development situations. The reader will quickly realise that these
types of arguments, studies, and suggestions are much needed in this field.

The reader can further enjoy the opportunity to select and read the contents pertaining to their
background and interests. I am happy to see that the editors have succeeded in collecting chapters that
not only build upon one another but, more importantly, form a coherent whole addressing the relevant
issues from people management to coding with experiences drawn from the industry. And all of this is
addressed from the perspective of software quality!

As an academic, I value the fact that this book includes a number of rigorously performed scientific
studies. This is particularly welcome as it enables us to answer the question why agile methods work.
To date, we have seen quite interesting anecdotal evidence that agile methods do improve quality and
even make the programmers’ work a happier one. However, this book contributes also to the scientific
discussion by providing thoughts and theories that explain the results.

Sometimes we tend to forget that one of the better ways to influence the future of software develop-
ment is to offer specific material for teachers who educate young developers in universities and other

x

educational institutes. While I believe all the chapters are of merit in this book, I am impressed to find
a chapter written for the use of educators as well.

Whether you read this book from start to finish, or piecemeal your approach iteratively, I am sure
you will find this book as valuable as I did.

Pekka Abrahamsson
Research Professor
VTT Technical Research Centre of Finland

Pekka Abrahamsson is a research professor at VTT Technical Research Centre of Finland. Cur-
rently, he is on leave from the University of Tampere where he is a full professor in the field of informa-
tion systems and software engineering. His current responsibilities include managing an AGILE-ITEA
project (http://www.agile-itea.org), which involves 22 organizations from nine European countries. The
project aims at developing agile innovations in the domain of complex embedded systems. His research
interests are centred on mobile application development, business agility, agile software production,
and embedded systems. He leads the team who has designed an agile approach for mobile application
development—the Mobile-D. He has coached several agile software development projects in industry
and authored 50+ scientific publications focusing on software process and quality improvement, agile
software development and mobile software. His professional experience involves 5 years in industry as
a software engineer and a quality manager

 xi

Preface

Agile methods drastically alter the software development processes. Agile software processes, such as
extreme programming (XP), Scrum, etc., rely on best practices that are considered to improve software
development quality. It can be said that best practices aim to induce software quality assurance (SQA) into
the project at hand. Proponents of agile methods claim that because of the very nature of such methods,
quality in agile software projects should be a natural outcome of the applied method. As a consequence,
agile software development quality assurance (ASDQA) is hoped/expected/supposed to be more or less
embedded in the agile software processes, while SQA practices are integrated across the entire life-cycle
development, from requirements through the final release. Thus, agile methods introduce a different
perspective on QA in software development.

Agile practices are expected to handle unstable and volatile requirements throughout the development
lifecycle, to deliver software with fewer defects and errors, in shorter timeframes, and under predefined
budget constraints. The iterative and incremental way of development allows both customer require-
ments revision mechanisms and customer active participation in the decision-making process. Customer
participation provides the needed feedback mechanism, ensuring customer perceived satisfaction for the
final product. It is also known that agile methods make the key business users a very strong partner in
assuring quality. Rather than completely leaving quality to the professionals, agile projects make these
key users responsible for ensuring that the application is fit for purpose. Agile development embraces
test driven development and test first design, both coming from the arena of good practices, introduc-
ing them into mainstream development, and minimizing errors and defects of the final product. Some
other practises, such as simple planning and designing, pair programming, short iteration cycles, small
releases, continuous integrations, common code ownership, and metaphor potentially reinforce quality
assurance.

It is interesting to note that the previously mentioned practices cover and support, to a significant
extent, total quality management (TQM) (see Crosby, 1979; Deming, 1986; Feigenbaum, 1961, 1991;
Ishikawa, 1985; Juran & Gryna, 1970, all referenced in Chapter II). We remind the reader that a TQM
system comprises four key common elements: (1) customer focus, (2) process improvement, (3) human
side of quality, and (4) measurement and analysis. Agile methods deal in one way or another with all
four elements. Many reports support and evangelize the advantages of agile methods with respect to
quality assurance, even if the term “quality assurance” is avoided as coming from traditional, bureau-
cratic development.

Is it so? For example, is it the case that agile methods assure quality by default, and software man-
agers/developers need not be concerned with quality issues, such as quality planning, quality audits,

xii

or quality reports? Proponents of agile methods must provide convincing answers to questions such as
“What is the quality of the software produced?” or “Which hard/soft evidence supports the superiority
of agile quality?” There has been little published work that focuses on such agile software development
quality issues. In particular, there is a literature gap in providing a critical view of agile quality, pinpoint-
ing areas where agile methods are strong, but also areas that need improvement.

Overall Objective Of the bOOk

This book pursues an ambitious goal: it attempts to provide answers to the questions and issues previ-
ously raised. It provides original academic work and experience reports from industry related to agile
software development quality assurance. Its mission is to describe fundamentals of ASDQA theory and
provide concrete results from agile software development organizations. To understand how quality is
or should be handled, the whole development process must be analyzed, measured, and validated from
the quality point of view, as it is claimed to be the rule when traditional methods are employed. It is
precisely from the quality point of view that the book looks at agile methods. The area is wide and entails
many facets that the book attempts to clarify, including:

•	 Differences and similarities between the traditional quality assurance procedures and ASDQA.
•	 Identification and evaluation of quality metrics in agile software development.
•	 Reports on the state of the art regarding quality achievements in agile methods.
•	 Investigation on how practices and tools affect the quality in agile software development.
•	 Human issues in ASDQA.
•	 Education in ASDQA concepts and techniques.

Book chapters provide theoretical discussion on ASDQA issues and/or results and lessons from
practical ASDQA application. Eventually, the book is expected to provide successful quality manage-
ment tips that can help participants in the agile software development process avoid risks and project
failures that are frequently encountered in traditional software projects. Because such task is extremely
difficult, given the variety of agile methods, the relatively limited time they have been exercised and
the scattered, often vague, information regarding agile quality from the field, this book could only be
edited, and not be written by a small authors’ group.

The book takes the form of a collection of edited chapters. Authors of the chapters cover all kinds of
activities related to agile methods: they are academicians, practitioners, consultants, all involved heav-
ily in practicing, researching, and teaching of agile methods. Authors come from almost all over the
world (North America, Europe, Asia, Africa) and are employed by all kinds of organizations involved
in agile development (universities, research institutes, small or large agile development/consulting
companies).

OrganizatiOn Of the bOOk

This book is made up of 12 chapters, organized in four sections. Section titles are the following:

Section I: Introduction: Agile Methods and Quality
Section II: Quality within Agile Development

 xiii

Section III: Quality within Agile Process Management
Section IV: Agile Methods and Quality: Field Experience

Section I: Introduction: Agile Methods and Quality provides the framework for the rest of the
book. It is particularly useful for readers not familiar with all aspects of agile methods. It reviews agile
methods and compares them with traditional approaches. Section I starts posing questions about the
quality achieved and potential problems with agile methods today. It also starts to propose solutions for
certain identified issues.

Section II: Quality within Agile Development examines how quality is pursued throughout software
development. It gives a flavour of how developers achieve quality in an agile fashion. Chapters in this
section review quality assurance when specifying requirements, when handling defects, and when user
interfaces are designed and implemented.

Section III: Quality within Agile Process Management examines how quality is pursued throughout
the handling of agile software processes. This section deals with activities that run parallel to development
or prepare the development teams for effective work. It gives a flavour of how managers achieve quality
in an agile fashion. Two chapters in this Section review quality assurance when managing agile software
configurations and when agile people are managed. Finally, a critical theme for the future is addressed,
namely the education of next generations of agile developers and managers in ASDQA issues.

Section IV: Agile Methods and Quality: Field Experience provides feedback from agile method
application. Although all chapters up to now try to capture experiences from agile projects and to in-
corporate them in theoretical frameworks, chapters of this section come right from agile companies.
Interestingly, two of the Chapters come from quite large companies, signalling the expansion of agile
methods into the realm of traditional software development. Chapters provide invaluable information
about agile project management, quality measurement, test driven development and, finally, lessons
learned from ASDQA real world application.

A brief description of each chapter follows. Chapters are organized according to the sections they
belong.

Section I: Introduction: Agile Methods and Quality

Chapter I: Agile Software Methods: State-of-the-Art

In Chapter I, Ernest Mnkandla and Barry Dwolatzky (South Africa) analyze and define agile methodolo-
gies of software development. They do so by taking a software quality assurance perspective. The chapter
starts by defining agile methodologies from three perspectives: a theoretical definition, a functional defi-
nition, and a contextualized definition. Next, a brief review of some of the traditional understandings of
quality assurance is given, and the author proceeds with certain innovations that agility has added to the
world of quality. Doing so, the text provides an understanding of the state-of-the-art in agile methodolo-
gies and quality, along with expectations for the future in this field. An analysis framework is used for
objectively analyzing and comparing agile methodologies. The framework is illustrated by applying it
to three specific agile methodologies.

Chapter II: Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Re-
spect to Stakeholders’ Needs

In Chapter II, Eleni Berki (Finland), Kerstin Siakas (Greece), and Elli Georgiadou (UK) provide an
in-depth discussion and analysis of the quality characteristics of the agile information systems develop-

xiv

ment process. They question ASDQA by exposing concerns regarding the applicability and suitability
of agile methods in different organisational and national cultures. They argue based on recent literature
reviews and published reports on the state-of-the-art in agile Methodologies. A unique feature of this
chapter is that its authors draw their experience from different European countries (Denmark, England,
Finland, Greece) with diverse academic and work values, and information systems development (ISD)
industrial practices based on different principles. They relate and compare traditional, agile, managed,
and measured ISD processes, they explore human dynamics that affect success and consensus acceptance
of a software system and propose a critical framework for reflecting on the suitability and applicability
of agile methods in the development and management of quality software systems. To achieve this, the
authors examine the different European perceptions of quality in the agile paradigm and compare and
contrast them to the quality perceptions in the established ISD methodological paradigms.

Chapter III: What’s Wrong with Agile Methods? Some Principles and Values to En-
courage Quantification

In Chapter III, Tom Gilb (Norway) proposes the quantification of agile processes to reinforce ASDQA.
He claims that agile methods could benefit from using a more quantified approach across the entire
implementation process (that is, throughout development, production, and delivery). He discusses
such things as quantification of the requirements, design estimation, and measurement of the delivered
results. He outlines the main benefits of adopting such an approach, identifying communication of the
requirements, and feedback and progress tracking as the areas that are most probable to benefit. The
chapter presents the benefits of quantification, proposes a specific quantification approach (Planguage),
and finally describes a successful case study of quantifying quality in a Norwegian organization.

Section II: Quality within Agile Development

Chapter IV: Requirements Specification user Stories

In this chapter, Vagelis Monochristou and Maro Vlachopoulou (Greece) review quality assurance in
the requirements specification development phase. Such phase is known to give a lot of problems and
injects hard to detect and correct defects in the documentation and the software itself. The authors dis-
cuss several approaches, which suggest ways of managing user’s requirements (software requirements
specification, use cases, interaction design scenarios, etc.). They emphasize the fact that many real users
requirements appear in development phases following the initial ones. One way to cope with this situation
is to involve customers/users in these development phases as well. When provided with insight about the
various sub-systems as they are developed, customers/users can re-think and update their requirements.
However, to accommodate such customer/user role within the development cycle, software organiza-
tions must take a non-traditional approach. Agile methods are this alternative approach because of the
iterative and incremental way of development they propose. Allowing for iteration and gradual system
building, user requirements revision mechanisms, and active user participation is encouraged and sup-
ported throughout the development of the system. User stories are the agile answer to the problem and
they are thoroughly discussed and illustrated in this chapter.

Chapter V: Handling of Software Quality Defects in Agile Software Development

Although the previous chapter told us how to capture and avoid problems in user requirements, defects
can still be injected in the software code. In agile software development and maintenance, the phase

 xv

that allows for continuous improvement of a software system by removing quality defects is refactoring.
However, because of schedule constraints, not all quality defects can be removed in just one refactoring
phase. Documentation of quality defects that are found during automated or manual discovery activi-
ties (e.g., pair programming) is necessary to avoid waste of time by rediscovering them in later phases.
However, lack of documentation and handling of existing quality defects and refactoring activities is
a typical problem in agile software maintenance. In order to understand the reason for modifying the
code, one must consult either proprietary documentations or software versioning systems. Jörg Rech
(Germany), the author of this chapter, describes a process for the “recurring and sustainable discovery,
handling, and treatment of quality defects in software systems.” His proposed tool for assuring quality
in this context is an annotation language, capable to register information about quality defects found in
source code, representing the defect and treatment activities of a software sub-system. One additional
benefit from using such annotation language is that it can also be useful during testing and inspection
activities.

Chapter VI: Agile Quality Assurance Techniques for GUI-Based Applications

In this chapter, Atif Memon and Qing Xie (USA) adopt a strong, process-based approach for assur-
ing quality while developing in agile mode. They discuss the need for new agile model-based testing
mechanisms, neatly integrated with agile software development/evolution and propose a new concentric
loop-based technique, which effectively utilizes resources during iterative development. They call the
inner loop “crash testing,” applied on each code check-in of the software. The second loop is called
smoke testing and operates on each day’s build. The outermost loop is called the “comprehensive testing”
loop, executed after a major version of the software is available. The authors illustrate their approach
on a critical part of today software systems, namely graphical user interface (GUI). They choose GUI
front-ends because GUI development is quite suitable for agile development and because rapid testing
of GUI-based systems is particularly challenging. They describe in detail the GUI model used to imple-
ment the concentric-loop technique.

Section III: Quality within Agile Process Management

Chapter VII: Software Configuration Management in Agile Development

Chapters in this section focus on project activities that are parallel to development and software configu-
ration management (SCM) is an essential part of any software process. Because of frequent changes,
multiple iterations and software versions, SCM is of particular importance for any agile project. In this
chapter, Lars Bendix and Torbjörn Ekman (Sweden) discuss the peculiarities of agile SCM and argue that
SCM needs to be done differently and in a more extended fashion than during traditional development.
They also define the ways in which quality is assured through the application of SCM. To do so, they
first provide a brief introduction to the focal SCM principles and list a number of typical agile activities
related to SCM. Next, they explain the reader that it is possible to define certain general SCM guidelines
for how to support and strengthen these typical agile activities. They describe the characteristics of an
agile method that are necessary in order to take full advantage from SCM and, as a consequence, to bet-
ter assure quality. Following the proposed guidelines, any agile project can obtain the best result from
SCM according to the agile method it applies and the project particular context.

xvi

Chapter VIII: Improving Quality by Exploiting Human Dynamics in Agile Methods

This chapter deals with a completely different process issue than previous chapter, namely the manage-
ment of the human resources that are involved in agile development. Panagiotis Sfetsos and Ioannis
Stamelos (Greece) argue that human factors are still critical for the success of software engineering in
general. In particular, agile methods are even more sensitive to human factors because they are heavily
based on the contribution and effort of the individuals working in the agile project. Documentation is
limited with respect to traditional development and effective inter-personal communication is neces-
sary for successful project completion. The authors describe how a large agile organization can cope
with human resource management both at the corporate level and the project level. First part of the
chapter proposes and discusses a model for personnel management based on the well-known People-
CMM assessment and improvement model. The agile organization can pursue higher model levels by
assessing its current situation and by introducing advanced human resource management practices. In
doing so, the organization must take profit from the distinguished way in which humans are involved
in agile methods and activities. Second part proposes a model that exploits developer personalities and
temperaments to effectively allocate and rotate developers in pairs for pair programming. The rationale
is that by mixing different types of personalities and temperaments, pairs become more productive and
quality is more easily assured.

Chapter IX: Teaching Agile Software Development Quality Assurance

This chapter ends the section on agile process issues dealing with the preparation of software engineers
and managers to address agile quality assurance. Authors Orit Hazzan and Yael Dubinsky (Israel) provide
a teaching framework that focuses on the way quality issues are perceived in agile software development
environments. The teaching framework consists of nine principles, which can be adjusted according to
different specific teaching environments and therefore implemented in various ways. The chapter out-
lines these principles and addresses their contribution to learners’ understanding of agile quality. The
authors enrich the discussion of their teaching framework by identifying the differences between agile
and traditional software development in general, and with respect to software quality in particular. The
material of the chapter can be used by software engineering instructors who wish to base students learn-
ing on students’ experience of the different aspects involved in software development environments.

Section IV: Agile Methods and Quality: Field Experience

Chapter X: Agile Software Development Quality Assurance: Agile Project Manage-
ment, Quality Metrics, and Methodologies

In the first chapter of the section with results end experiences from agile companies, James F. Kile and
Maheshwar R. Inampudi (IBM, USA) deal with a really hot issue, crucial for the further expansion of
agile methods. They ask whether “the adaptive methods incorporated within many of the most popular
agile software development methodologies can be successfully implemented within a highly disciplined
and highly structured software development environment and still provide the benefits accorded to fully
agile projects.” They observe that agile methods have been applied mostly to non-critical projects, by
small project teams, with vague requirements, a high degree of anticipated change, and no significant
availability or performance requirements. It is therefore questionable whether agile methods can be
applied in situations with strong quality requirements. The authors report an extremely interesting

 xvii

experience: they describe how one team adopted not one single agile method, but several individual
agile development techniques. They manage to achieve software development quality improvements,
while in parallel reducing overall cycle time. The authors propose that all is needed is a common-sense
approach to software development. Overall, they demonstrate that the incorporation of individual agile
techniques may be done in such a way that no additional risk is incurred for projects having high avail-
ability, performance, and quality requirements.

Chapter XI: Test-Driven Development: An Agile Practice to Ensure Quality is Built
from the Beginning

This chapter is written by Scott Mark (Medtronic, USA) and describes the practice of test-driven de-
velopment (TDD) and its impact on the overall culture of quality and quality assurance in an organiza-
tion. The discussion on this popular practice is based on the author’s personal experience introducing
TDD into two existing development projects in an industrial setting. He discusses basic concepts of
TDD from an industry practitioner’s perspective and he proceeds with an elaboration of the benefits
and challenges of adopting TDD within a development organization. He reports to the reader that TDD
was well-received by team members, and he is optimistic, in the sense that other teams will behave in
the same manner, provided that they are prepared to evaluate their own experiences and address the
challenges imposed by TDD.

Chapter XII: Quality Improvements from using Agile Development Methods:
Lessons Learned

This chapter, ending the session with experiences from industry (and the book), comes from another
large company, namely Siemens (USA). Beatrice Miao Hwong, Gilberto Matos, Monica McKenna,
Christopher Nelson, Gergana Nikolova, Arnold Rudorfer, Xiping Song, Grace Yuan Tai, Rajanikanth
Tanikella, and Bradley Wehrwein report that “in the past few years, Siemens has gained considerable
experience using agile processes with several projects of varying size, duration, and complexity.” The
authors build on this invaluable experience for the agile world and report that they have observed “an
emerging pattern of quality assurance goals and practices across these experiences.” They describe the
projects in which they have used agile processes. They also provide information on the processes them-
selves. They discuss briefly project quality goals and practices and present (as the chapter title promises)
the lessons learned from the successes and failures in practicing quality assurance in agile projects. The
material they provide is informative about the methods they employed for achieving the established
quality goals, leading to a first-hand understanding of the current state of ASDQA.

xviii

Acknowledgments

This book has become a reality only because of the hard work of the chapter authors. We sincerely wish
to thank them for the time they devoted to write their chapter, peer review two chapters of co-authors,
and revise their chapters according to the comments they received. We also wish to thank Dr. Sulayman
Sowe (Aristotle University) for proofreading a significant part of the book text. Finally, we would like
to thank Kristin Roth (IGI) for her guidance and useful suggestions throughout the preparation of the
material, and Idea Group Publishing for the opportunity they gave us to edit this interesting book.

Ioannis Stamelos
Panagiotis Sfetsos
Editors

 xix

About the Editors

Ioannis Stamelos is an assistant professor of computer science at the Aristotle University of Thessa-
loniki, Department of Informatics. He received a degree in electrical engineering from the Polytechnic
School of Thessaloniki (1983) and a PhD degree in computer science from the Aristotle University of
Thessaloniki (1988). He teaches language theory, object-oriented programming, software engineering,
software project management, and enterprise information systems at the graduate and postgraduate level.
His research interests include empirical software evaluation and management, software education, and
open source software engineering. Stamelos is the author of 60 scientific papers and a member of the
IEEE Computer Society.

Panagiotis Sfetsos is a lecturer of computer science at Alexander Technological Education Institute of
Thessaloniki, Greece, Department of Informatics, since 1990. His research interests include experimenta-
tion in SE, agile methods, extreme programming, software measurement, software testing, and quality.
Sfetsos received his BSc in computer science and statistics from the University of Uppsala, Sweden (1981),
and then worked for several years in software development at industry and education. He published a

xx

 xxi

Section I
Introduction:

Agile Methods and Quality

xxii

 �

Chapter I
Agile Software Methods:

State-of-the-Art

Ernest Mnkandla
Monash University, South Africa

Barry Dwolatzky
University of Witwatersrand, South Africa

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

Agile software development methodologies have
taken the concepts of software quality assurance
further than simply meeting customer require-
ments, validation, and verification. Agility innova-
tively opens new horizons in the area of software
quality assurance. A look at the agile manifesto
(Agile Alliance, 2001) reveals that agile software

development is not just about meeting customer
requirements (because even process-driven
methodologies do that), but it is about meeting
the changing requirements right up to the level
of product deployment. This chapter introduces
a technique for analyzing agile methodologies in
a way that reveals the fundamental similarities
among the different agile processes.

AbstrAct

This chapter is aimed at comprehensively analyzing and defining agile methodologies of software devel-
opment from a software quality assurance perspective. A unique way of analyzing agile methodologies
to reveal the similarities that the authors of the methods never tell you is introduced. The chapter starts
by defining agile methodologies from three perspectives: a theoretical definition, a functional defini-
tion, and a contextualized definition. Then an agile quality assurance perspective is presented starting
from a brief review of some of the traditional understandings of quality assurance to the innovations
that agility has added to the world of quality. The presented analysis approach opens a window into an
understanding of the state-of-the-art in agile methodologies and quality, and what the future could have
in store for software developers. An understanding of the analysis framework for objectively analyzing
and comparing agile methodologies is illustrated by applying it to three specific agile methodologies.

�

Agile Software Methods: State-of-the-Art

As for now, there is a reasonable amount of
literature that seeks to describe this relatively new
set of methodologies that have certainly changed
the way software development is done. Most of the
existing work is from the authors of the methodolo-
gies and a few other practitioners. What lacks is
therefore a more balanced evaluation comparing
what the original intents of the authors of agile
methodologies were, to the actual things that have
been done through agile methodologies over the
last few years of their existence as a group, and
the possible future applications.

While most of those who have applied agile
methods in their software development projects
have gained margins that are hard to ignore in the
areas of product relevance (a result of embrac-
ing requirements instability) and quick delivery
(a result of iterative incremental development),
some have not joined this new fun way to de-
velop software due to a lack of understanding the
fundamental concepts underlying agile method-
ologies. Hence, this chapter intends to give the
necessary understanding by comprehensively
defining agile methodologies and revealing how
agile methodologies have taken software quality
assurance further than traditional approaches. The
second concern resulted from more than three
years of research into agile methodology practices
where the author discovered that the individual
agile methods such as extreme programming,
scrum, and lean development etc. are not that
different from each other. The apparent differ-
ence is because people from different computing
backgrounds authored them and happen to view
the real world differently. Hence, the differences
are not as much as the authors would like us to
believe. The evaluation technique introduced here
will reveal the similarities in a novel way and
address the adoption concerns of agile method-
ologies. This also reveals what quality in an agile
context means.

chApter objectIves

The objective of this chapter is to introduce you to
the fundamentals of analyzing agile methodolo-
gies to reveal the bare bones of agile development.
After reading this chapter, you will:

•	 Understand three approaches to the defini-
tion of agile methodologies (i.e., a theoreti-
cal definition, a functional definition, and
a contextualized definition).

•	 Understand the state-of-the-art in agile
methodologies.

•	 Understand the presented framework for
objectively analyzing and comparing agile
methodologies.

•	 Understand the meaning of software quality
assurance in an agile context.

bAckground

This section will start by defining agile meth-
odologies based on what people say about agile
methodologies, what people do with agile method-
ologies, and what agile methodologies have done
to the broad area of software development.

defInIng AgIle MethodologIes

The agile software development methodologies
group was given the name “agile” when a group
of software development practitioners met and
formed the Agile Alliance (an association of
software development practitioners that was
formed to formalize agile methodologies) in
February 2001. The agile movement could mark
the emergence of a new engineering discipline
(Mnkandla & Dwolatzky, 2004a) that has shifted
the values of the software development process
from the mechanistic (i.e., driven by process
and rules of science) to the organic (i.e., driven
by softer issues of people and their interactions).

 �

Agile Software Methods: State-of-the-Art

This implies challenges of engineering complex
software systems in work environments that are
highly dynamic and unpredictable.

theoretIcAl defInItIon

After the first eWorkshop on agile methodologies
in June 2002, Lindvall et al. (2002) summarized
the working definition of agile methodologies
as a group of software development processes
that are iterative, incremental, self-organizing,
and emergent. The meaning of each term in the
greater context of agility is shown next.

1. Iterative: The word iterative is derived
from iteration which carries with it con-
notations of repetition. In the case of agile
methodologies, it is not just repetition but
also an attempt to solve a software problem
by finding successive approximations to the
solution starting from an initial minimal
set of requirements. This means that the
architect or analyst designs a full system
at the very beginning and then changes
the functionality of each subsystem with
each new release as the requirements are
updated for each attempt. This approach
is in contrast to more traditional methods,
which attempt to solve the problem in one
shot. Iterative approaches are more relevant
to today’s software development problems
that are characterized by high complexity
and fast changing requirements. Linked
with the concept of iterations is the notion of
incremental development, which is defined
in the next paragraph.

2. Incremental: Each subsystem is developed
in such a way that it allows more require-
ments to be gathered and used to develop
other subsystems based on previous ones.
The approach is to partition the specified
system into small subsystems by functional-
ity and add a new functionality with each

new release. Each release is a fully tested
usable subsystem with limited functionality
based on the implemented specifications.
As the development progresses, the usable
functionalities increase until a full system
is realized.

3. Self-organizing: This term introduces a
relatively foreign notion to the management
of scientific processes. The usual approach
is to organize teams according to skills and
corresponding tasks and let them report to
management in a hierarchical structure. In
the agile development setup, the “self-orga-
nizing” concept gives the team autonomy
to organize itself to best complete the work
items. This means that the implementation of
issues such as interactions within the team,
team dynamics, working hours, progress
meetings, progress reports etc. are left to the
team to decide how best they can be done.
Such an approach is rather eccentric to the
way project managers are trained and it re-
quires that the project managers change their
management paradigm all together. This
technique requires that the team members
respect each other and behave professionally
when it comes to what has been committed
on paper. In other words management and the
customer should not get excuses for failure
to meet the commitment and there should be
no unjustified requests for extensions. The
role of the project manager in such a setup
is to facilitate the smooth operation of the
team by liaising with top management and
removing obstacles where possible. The
self-organizing approach therefore implies
that there must be a good communication
policy between project management and the
development team.

4. Emergent: The word implies three things.
Firstly, based on the incremental nature of
the development approach the system is
allowed to emerge from a series of incre-
ments. Secondly, based on the self-organiz-

�

Agile Software Methods: State-of-the-Art

ing nature a method of working emerges
as the team works. Thirdly, as the system
emerges and the method of working emerges
a framework of development technologies
will also emerge. The emergent nature
of agile methodologies means that agile
software development is in fact a learning
experience for each project and will remain
a learning experience because each project is
treated differently by applying the iterative,
incremental, self-organizing, and emergent
techniques. Figure 1 sums up the theoretical
definition of agile methodologies.

The value of agility is in allowing the concepts
defined above to mutate within the parameters set
by the agile values and principles (For details on
agile values and principles see the agile manifesto
at http://www.agilealliance.org. . There is always
a temptation to fix a framework of software de-
velopment if success is repeatedly achieved, but
that would kill the innovation that comes with
agile development.

functIonAl defInItIon

Agile methodologies will now be defined ac-
cording to the way some agile practitioners have
understood them as they used them in real world
practice.

The term “agile” carries with it connotations
of flexibility, nimbleness, readiness for motion,
activity, dexterity in motion, and adjustability
(Abrahamsson, Salo, Ronkainen, & Warsta, 2002).
Each of these words will be explained further
in the context of agility in order to give a more
precise understanding of the kinds of things that
are done in agile development.

• Flexibility: This word implies that the rules
and processes in agile development can be
easily bended to suit given situations without
necessarily breaking them. In other words,
the agile way of developing software allows
for adaptability and variability.

• Nimbleness: This means that in agile
software development there must be quick
delivery of the product. This is usually done
through the release of usable subsystems

Figure 1. Definition of agility © copyright Ernest Mnkandla PhD thesis University of the Witwa-
tersrand

Agile
Methodologies

Iterative Incremental self-organizing emergent

planned
modification
of parts of
the system.

Assists with
modification

of design and
requirements.

develop
parts of

the system
 seperately

and integrate.
Assists with
improving

overall
methodology.

the set of tools,
techniques,

development
environment, and

requirements
emerge in

the process.

the team has the
responsibilty
of organizing
its internal
dynamics.

 �

Agile Software Methods: State-of-the-Art

within a period ranging from one week to
four weeks. This gives good spin-offs as the
customer will start using the system before
it is completed.

• Readiness for motion: In agile develop-
ment, the general intention is to reduce
all activities and material that may either
slow the speed of development or increase
bureaucracy.

• Activity: This involves doing the actual
writing of code as opposed to all the plan-
ning that sometimes takes most of the time
in software development.

• Dexterity in motion: This means that there
must be an abundance of skills in the activ-
ity of developing code. The skills referred
to are the mental skills that will arm the
developers for programming challenges and
team dynamics.

• Adjustability: This is two fold; firstly there
must be room for change in the set of activi-
ties and technologies that constitute an agile
development process, secondly the require-
ments, code, and the design/architecture
must be allowed to change to the advantage
of the customer.

According to Beck (1999), agile methodolo-
gies are a lightweight, efficient, low-risk, flexible,
predictable, scientific, and fun way to develop
software. These terms will be defined in this
context to give a functional perspective of agile
development.

• Lightweight implies minimizing everything
that has to be done in the development pro-
cess (e.g., documentation, requirements, etc.)
in order to increase the speed and efficiency
in development. The idea of minimizing
documentation is still a controversial one
as some assume agility to mean no docu-
mentation at all. Such views are however not
unfounded because some agile extremists
have expressed connotations of zero docu-

mentation claiming that the code is sufficient
documentation. As agile methodologies
approach higher levels of maturity minimiz-
ing documentation has evolved to generally
imply providing as much documentation as
the customer is willing pay for in terms of
time and money.

• Efficient means doing only that work that
will deliver the desired product with as little
overhead as practically possible.

• Low-risk implies trading on the practical
lines and leaving the unknown until it is
known. In actual fact, all software develop-
ment methodologies are designed to reduce
the risks of project failure. At times, a lot of
effort is wasted in speculative abstraction of
the problem space in a bid to manage risk.

• Predictable implies that agile methodolo-
gies are based on what practitioners do all the
time, in other words the world of ambiguity
is reduced. This however does not mean
that planning, designs, and architecture of
software are predictable. It means that agil-
ity allows development of software in the
most natural ways that trained developers
can determine in advance based on special
knowledge.

• Scientific means that the agile software
development methodologies are based on
sound and proven scientific principles. It
nevertheless remains the responsibility of
the academia to continue gathering empirical
evidence on agile processes because most
of the practitioners who authored agile
methodologies seem to have little interest
and time to carryout this kind of research.

• Fun way because at last developers are al-
lowed to do what they like most (i.e., to spend
most of their time writing good code that
works). To the developers, agility provides a
form of freedom to be creative and innova-
tive without making the customer pay for
it, instead the customer benefits from it.

�

Agile Software Methods: State-of-the-Art

Schuh (2004) defines agile development as
a counter movement to 30 years of increasingly
heavy-handed processes meant to refashion com-
puter programming into software engineering,
rendering it as manageable and predictable as
any other engineering discipline.

On a practical perspective, agile methodolo-
gies emerged from a common discovery among
practitioners that their practice had slowly drifted
away from the traditional heavy document and
process centered development approaches to
more people-centered and less document-driven
approaches (Boehm & Turner, 2004; Highsmith,
2002a; Fowler, 2002). There is a general mis-
conception that there is no planning or there is
little planning in agile processes. This is due to
the fact that the agile manifesto lists as one of
its four values the preference for responding to
change over following a plan (Agile Alliance,
2001). In fact, planning in agile projects could
be more precise than in traditional processes it
is done rigorously for each increment and from
a project planning perspective agile methodolo-
gies provide a risk mitigation approach where
the most important principle of agile planning is
feedback. Collins-Cope (2002) lists the potential
risks as: risks of misunderstandings in functional
requirements, risks of a deeply flawed architecture;
risks of an unacceptable user interface; risks of
wrong analysis and design models; risks of the
team not understanding the chosen technology et
cetera. Feedback is obtained by creating a work-
ing version of the system at regular intervals or
per increment according to the earlier planning
effort (Collins-Cope, 2002).

Besides dealing with the most pertinent risks
of software development through incremental
development, agile methodologies attack the
premise that plans, designs, architectures, and
requirements are predictable and can therefore
be stabilized. Agile methodologies also attack
the premise that processes are repeatable (High-
smith, 2001; Schwaber & Beedle, 2002). These
two premises are part of fundamental principles

on which traditional methodologies are built, and
they also happen to be the main limitations of the
traditional methodologies.

Boehm et al. (2004) view agile methodologies
as a challenge to the mainstream software develop-
ment community that presents a counter-culture
movement, which addresses change from a radi-
cally different perspective. All agile methodolo-
gies follow the four values and 12 principles as
outlined in the agile manifesto.

contextuAl defInItIon

From these definitions of agile methodologies, a
contextual definition can be derived which looks
at what agility means in terms of certain specific
software engineering concepts. Examples of that
would be concepts are software quality assurance,
software process improvement, software process
modeling, and software project management. Ag-
ile methodologies will now be defined according
to these concepts. Since this book is specifically
focused on agile software quality assurance the
definition of agile software quality assurance will
be given in more detail.

AgIle softwAre QuAlIty
AssurAnce

This section starts by summarizing the traditional
definitions of quality and then presents a summary
of the work that has been done in the area of agil-
ity and quality. References to older literature on
software quality are not intended to be exhaus-
tive, but to be simply present a fare baseline for
evaluating software quality perspectives in the
modern processes. The authors are aware of a
number of initiatives in research and academic
institutions where evaluation of quality concepts
is performed on some agile practices.

 �

Agile Software Methods: State-of-the-Art

defInIng QuAlIty

Have you ever wondered what Joseph Juran
generally considered to be a quality legend would
have said about agile processes and the quality
movement? Well, this is what he said about the
ISO 9000 when he was asked by Quality Digest
if he thought ISO 9000 had actually hindered the
quality movement; “Of course it has. Instead of
going after improvement at a revolutionary rate,
people were stampeded into going after ISO 9000,
and they locked themselves into a mediocre stan-
dard. A lot of damage was, and is, being done”
(QCI International, 2002).

According to Juran, quality is fitness for
use, which means the following two things: “(1)
quality consists of those product features that
meet the needs of the customers and thereby
provide product satisfaction. (2) Quality consists
of freedom from deficiencies” (Juran & Gryna,
1988).

Philip Crosby, who developed and taught con-
cepts of quality management, whose influence can
be found in the ISO 9000:2000 standard, which
differs from the 1994 standard in the context of
each of the eight principles, defines quality as
conformance to requirements and zero defects
(Crosby, 1984).

ISO 9000 defines quality as the totality of
characteristics of an entity that bear on its ability
to satisfy stated or implied needs. Where “stated
needs” means those needs that are specified as
requirements by the customer in a contract, and
‘implied needs’ are those needs that are identi-
fied and defined by the company providing the
product. These definitions of quality have a
general bias towards the manufacturing indus-
try although they should in general apply to all
products, nevertheless, software products are
rather complex hence they should be defined in
a slightly different way.

Weinberg defines quality simply as “the value
to some people” (Weinberg, 1991) and some have
expanded on that to mean the association of qual-

ity with human assessment, and cost and benefit
(Hendrickson, 2004).

Some software engineers have defined soft-
ware quality as follows:

1. Meyer (2000) defines software quality ac-
cording to an adapted number of quality
parameters as defined by McCall (1977),
which are correctness, robustness, extend-
ibility, reusability, compatibility, efficiency,
portability, integrity, verifiability, and ease
of use.

2. Pressman, who derives his definition from
Crosby, defines quality as a “conformance
to explicitly stated functional requirements,
explicitly documented development
standards, and implicit characteristics that
are expected of all professionally developed
software” (Pressman, 2001).

3. Sommerville (2004) defines software quality
as a management process concerned with
ensuring that software has a low number
of defects and that it reaches the required
standards of maintainability, reliability,
portability, and so on.

4. van Vliet (2003) follows the IEEE definition
of quality as stated in the IEEE Glossary of
Software Engineering Terminology, which
defines quality assurance in two ways as:
“(1) A planned and systematic pattern of
all actions necessary to provide adequate
confidence that the item or product conforms
to established operational, functional, and
technical requirements. (2) A set of activities
designed to evaluate the process by which
products are developed or manufactured”
(IEEE, 1990). van Vliet’s perspective then
combines this definition with the analysis
of the different taxonomies on quality.

5. Pfleeger (2001) aligns her perspective with
Garvin’s quality perspective, which views
quality from five different perspectives
namely; the transcendental meaning that
quality can be recognized but not defined,

�

Agile Software Methods: State-of-the-Art

user view meaning that quality is fitness
for purpose, manufacturing meaning that
quality is conformance to specification,
product view meaning that quality is tied
to inherent product characteristics, and
the value-based view meaning that quality
depends on the amount the customer is
willing to pay for the product.

6. Bass (2006) argues that the common practice
of defining software quality by dividing it

into the ISO 9126 (i.e., functionality, reli-
ability usability, efficiency maintainability,
and portability) does not work. His argu-
ment is that “in order to use a taxonomy,
a specific requirement must be put into a
category” (Bass, 2006). However, there are
some requirements that may be difficulty
to put under any category, for example,
“denial of service attack, response time for
user request, etc.” What Bass (2006) then

Table 1. Agile quality techniques as applied in extreme programming

Technique Description
Refactoring Make small changes to code, Code behaviour must

not be affected, Resulting code is of higher quality
(Ambler, 2005).

Test-driven
development

Create a test, Run the test, Make changes until the
test passes (Ambler, 2005).

Acceptance
testing

Quality assurance test done on a finished system,
Usually involves the users, sponsors, customer,
etc. (Huo, Verner, Zhu, & Babar, 2004).

Continuous
integration

Done on a daily basis after developing a number
of user stories. Implemented requirements are
integrated and tested to verify them. This is an
important quality feature.

Pair
programming

Two developers work together in turns on one
PC, Bugs are identified as they occur, Hence the
product is of a higher quality (Huo et al., 2004).

Face-to-face
communication

Preferred way of exchanging information about a
project as opposed to use of telephone, email, etc.
Implemented in the form of daily stand-up
meetings of not more than twenty minutes (Huo
et al, 2004). This is similar to the daily Scrum
in the Scrum method. It brings accountability
to the work in progress, which vital for quality
assurance.

On-site
customer

A customer who is a member of the development
team, Responsible for clarifying requirements
(Huo et al., 2004).

Frequent
customer
feedback

Each time there is a release the customer gives
feedback on the system, and result is to improve
the system to be more relevant to needs of the
customer (Huo et al., 2004).
Quality is in fact meeting customer requirements.

System
metaphor

Simple story of how the system works (Huo et al.,
2004), Simplifies the discussion about the system
between customer/ stakeholder/ user and the
developer into a non-technical format. Simplicity
is key to quality.

 �

Agile Software Methods: State-of-the-Art

proposes is the use of quality attributing
general scenarios.

From an agile perspective, quality has been
defined by some practitioners as follows:

McBreen (2003) defines agile quality assur-
ance as the development of software that can
respond to change, as the customer requires it to
change. This implies that the frequent delivery of
tested, working, and customer-approved software
at the end of each iteration is an important aspect
of agile quality assurance.

Ambler (2005) considers agile quality to be a
result of practices such as effective collaborative
work, incremental development, and iterative
development as implemented through techniques
such as refactoring, test-driven development,
modelling, and effective communication tech-
niques.

To conclude this section, Table 1 gives a sum-
mary of the parameters that define agile quality as
specifically applied in extreme programming--a
popularly used agile methodology. These aspects
of agile quality have eliminated the need for heavy
documentation that is prescribed in traditional
processes as a requirement for quality. Quality
is a rather abstract concept that is difficult to de-
fine but where it exists, it can be recognized. In
view of Garvin’s quality perspective there may
be some who have used agile methodologies in
their software development practices and seen
improvement in quality of the software product
but could still find it difficult to define quality in
the agile world.

evAluAtIng QuAlIty In AgIle
processes

So can we evaluate quality assurance in agile
processes? This can be done through:

•	 The provision of detailed knowledge about
specific quality issues of the agile pro-
cesses.

•	 Identification of innovative ways to improve
agile quality.

•	 Identification of specific agile quality tech-
niques for particular agile methodologies.

Literature shows that Huo et al. (2004) devel-
oped a comparison technique whose aim was to
provide a comparative analysis between quality
in the waterfall development model (as a repre-
sentative of the traditional camp) and quality in
the agile group of methodologies. The results of
the analysis showed that there is indeed quality
assurance in agile development, but it is achieved
in a different way from the traditional processes.
The limitations of Huo et al.’s tool however, are
that the analysis:

•	 Singles out two main aspects of quality
management namely quality assurance and
verification and validation.

•	 Overlooks other vital techniques used in
agile processes to achieve higher quality
management.

•	 Agile quality assurance takes quality issues
a step beyond the traditional software quality
assurance approaches.

Another challenge of Huo et al.’s technique is
that while the main purpose of that analysis was
to show that there is quality assurance in agile
processes, it does not make it clear what the way
forward is. Agile proponents do not seem to be
worried about comparison between agile and
traditional processes as some of the more zealous
“agilists” believe that there is no way traditional
methods can match agile methods in any situation
(Tom Poppendieck, personal e-mail 2005).

The evaluation described in this section im-
proves on (Huo et al., 2004) framework by further

�0

Agile Software Methods: State-of-the-Art

Table 2. Mapping software quality parameters to agile techniques

Software Quality
Parameters

Agile Techniques Possible Improvements

Correctness Write code from minimal
requirements. Specification
is obtained by direct com-
munication with the cus-
tomer. Customer is allowed
to change specification.
Test-driven development.

Consider the possibility of
using formal specification
in agile development,
Possible use of general
scenarios to define require-
ments (note that some
development teams are
already using this).

Robustness Not directly addressed in
agile development.

Include possible extreme
conditions in requirements.

Extendibility A general feature of all OO
developed applications.
Emphasis is on techni-
cal excellence and good
design. Emphasis also on
achieving best architecture.

Use of modeling tech-
niques for software archi-
tecture.

Reusability A general feature of all OO
developed applications.
There are some arguments
against reusability of agile
products (Turk, France,
& Rumpe, 2002; Weisert,
2002).

Develop patterns for agile
applications.

Compatibility A general feature of all OO
developed applications.

Can extra features be
added for the sake of com-
patibility even if they may
not be needed? This could
contradict the principle of
simplicity.

Efficiency Apply good coding stan-
dards.

Encourage designs based
on the most efficient algo-
rithms

Portability Practice of continuous
integration in extreme pro-
gramming.

Some agile methods do not
directly address issues of
product deployment. Solv-
ing this could be to the
advantage of agility.

Timeliness Strongest point of agility,
Short cycles, quick deliv-
ery, etc.

Integrity Not directly addressed in
agile development.

Verifiability Test-driven development is
another strength of agility.

Ease of use Since the customer is part
of the team, and customers
give feedback frequently,
they will most likely rec-
ommend a system that is
easy to use.

Design for the least quali-
fied user in the organiza-
tion.

 ��

Agile Software Methods: State-of-the-Art

identifying some more agile quality techniques
and then in an innovative way identifies the agile
process practices that correspond to each tech-
nique. The contribution of this evaluation is the
further identification of possible practices that can
be done to improve on the already high quality
achievements enjoyed by agile processes.

technIQues

The parameters that define software quality from a
top-level view can be rather abstract. However, the
proposed technique picks each of the parameters
and identifies the corresponding agile techniques
that implement the parameter in one way or anoth-
er. Possible improvements to the current practice
have been proposed by analysing the way agile
practitioners work. Of great importance to this
kind of analysis is a review of some of the intuitive
practices that developers usually apply which may
not be documented. You may wonder how much
objectivity can be in such information. The point
though is that developers tell their success stories
at different professional forums and some of the
hints from such deliberations have been captured
in this technique without following any formal
data gathering methodology. The authors believe
that gathering of informal raw data balances the
facts especially in cases where developers talk
about their practice. Once the data is gathered
formally, then a lot of prejudices and biases come
in and there will be need to apply other research
techniques to balance the facts. Tables 2 and 3
summarize the evaluation approach.

In formal software quality management, qual-
ity assurance activities are fulfilled by ensuring
that each of the parameters listed in Table 2 are
met to a certain extent in the software develop-
ment life cycle of the process concerned. A brief
definition of each of these parameters is given
according to Meyer (2000):

• Correctness: The ability of a system to per-
form according to defined specification.

• Robustness: Appropriate performance of
a system under extreme conditions. This is
complementary to correctness.

• Extendibility: A system that is easy to adapt
to new specification.

• Reusability: Software that is composed of
elements that can be used to construct dif-
ferent applications.

• Compatibility: Software that is composed
of elements that can easily combine with
other elements.

• Efficiency: The ability of a system to place
as few demands as possible to hardware
resources, such as memory, bandwidth used
in communication and processor time.

• Portability: The ease of installing the
software product on different hardware and
software platforms.

• Timeliness: Releasing the software before
or exactly when it is needed by the users.

• Integrity: How well the software protects
its programs and data against unauthorized
access.

• Verifiability: How easy it is to test the
system.

• Ease of use: The ease with which people of
various backgrounds can learn and use the
software.

softwAre process
IMproveMent

A bigger-picture view of agile processes leads to a
notion that agile methods are a group of processes
that have reduced the development timeframe of
software systems and introduced innovative tech-
niques for embracing rapidly changing business
requirements. With time, these relatively new
techniques should develop into mature software
engineering standards.

��

Agile Software Methods: State-of-the-Art

softwAre process ModelIng

The agile perspective to software process mod-
eling is that whether formal or informal when
approaches to modeling are used the idea is to
apply modeling techniques in such a way that
documentation is minimized and simplicity of
the desired system is a virtue. Modeling the agile
way has led to breakthroughs in the application of
agile methods to the development of large systems
(Ambler, 2002)

softwAre project
MAnAgeMent

The agile approach to managing software projects
is based on giving more value to the developers
than to the process. This means that manage-
ment should strive to make the development
environment conducive. Instead of worrying
about critical path calculation and Gantt chart
schedules, the project manager must facilitate
face-to-face communication, and simpler ways
of getting feedback about the progress of the
project. In agile development there is need to
be optimistic about people and assume that they
mean good hence give them space to work out
the best way to accomplish their tasks. It is also
an agile strategy to trust that people will make
correct professional decisions about their work
and to ensure that the customer is represented in
the team throughout the project.

the AgIle Methodology
evAluAtIon frAMework

All agile methodologies have striking similarities
amongst their processes because they are based
on the four agile values and 12 principles. It is
interesting to note that even the authors of agile
methodologies no longer emphasize their meth-
odology boundaries and would use practices from

other agile methodologies as long they suit a given
situation (Beck & Andres, 2004). In fact, Kent
Beck in his extreme programming (XP) master
classes frequently mentions the errors of extrem-
ism in the first edition of his book on XP (Beck,
1999). A detailed review of agile methodologies
reveals that agile processes address the same is-
sues using different real life models.

The evaluation technique presented in this
chapter reveals, for example, that lean develop-
ment (LD) views software development using
a manufacturing and product development
metaphor. Scrum views software development
processes using a control engineering metaphor.
Extreme programming views software develop-
ment activities as a social activity where develop-
ers sit together. Adaptive systems development
(ASD) views software development projects
from the perspective of the theory of complex
self-adaptive systems (Mnkandla, 2006).

Tables 3 to 6 summarize the analysis of agile
methodologies. Only a few of the existing agile
methodologies have been selected to illustrate the
evaluation technique. The first column from the
left on Tables 3, 4, and 5 lists some methodology
elements that have been chosen to represent the
details of a methodology. There is a lot of sub-
jectivity surrounding the choice of methodology
elements. It is not within the scope of this chapter
to present a complete taxonomy of methodolo-
gies. For more detailed taxonomies see Avison
and Fitzgerald (2003), Boehm et al. (2004),
Glass and Vessey (1995), and Mnkandla (2006).
Therefore, the elements used here were chosen
to reveal the similarities amongst different agile
methodologies. The importance of revealing these
similarities is to arm the developers caught up in
the agile methodology jungle wondering which
methodology to choose. While the methodology
used in your software development project may
not directly lead to the success of a project and
may not result in the production of a high qual-
ity product use of a wrong methodology will
lead to project failure. Hence, there is in wisdom

 ��

Agile Software Methods: State-of-the-Art

selecting a correct and relevant process. Most
organization may not afford the luxury of using
different methodologies for each project though
that would be ideal for greater achievements. It
also sounds impractical to have a workforce that
is proficient in many methodologies. Sticking to
one methodology and expect it to be sufficient
for all projects would also be naïve (Cockburn,
2000). This evaluation technique therefore gives
software development organizations an innovative
wit to tailor their development process according
to the common practices among different agile
methodologies. The advantage is to use many
methodologies without the associated expenses
of acquiring them.

There is a need to understand in detail each
agile methodology that will be analyzed so as to
reveal the underlying principles of the methodol-
ogy. This technique gives the background details
as to why the methodology was developed in the
first place. An answer to this question would reveal
the fundamental areas of concern of the methodol-
ogy and what fears the methodology addresses.
The prospective user of the methodology would
then decide whether such concern area is relevant
to their project. Identifying what problems the
methodology intends to solve is another concern
of this evaluation. Some methodologies have a
general bias toward solving technical problems
within the development process (i.e., extreme
programming deals with issues such as how
and when to test the code). There are other agile
methodologies that solve project management
problems (i.e., Scrum deals with issues such as
how to effectively communicate within a project).
Yet other agile methodologies solve general agile
philosophy problems (i.e., Crystal deals with issues
such as the size of the methodology vs. the size of
the team and the criticality of the project. There
may be other agile methodologies that solve a mix
of problems right across the different categories
mentioned here for example Catalyst puts some

project management aspects into XP (see www.
ccpace.com for details on Catalyst).

Evaluation of each methodology should also
reveal what sort of activities and practices are
prevalent in the methodology. This should assist
prospective users of the methodology to determine
the practices that could be relevant to their given
situation. This evaluation technique reveals that
some of the practices from different methodolo-
gies actually fulfill the same agile principles and it
would be up to the developers to decide which prac-
tices are feasible in their situation. Therefore, the
implication is that at the level of implementation
it becomes irrelevant which agile methodology
is used, for more on this concept see Mnkandla
(2006). Another aspect of agile methodologies
revealed by this evaluation technique is what the
methodology delivers at the end of the project.
When a developer looks for a methodology, they
usually have certain expectations about what
they want as an output from the methodology.
Hence, if the methodology’s output is not clearly
understood problems may result. For example if
the developer expects use of the methodology to
lead to the delivery of code and yet the aim of the
methodology is in fact to produce a set of design
artifacts such as those delivered by agile model-
ing this could lead to some problems. Finally,
this evaluation technique also reveals the domain
knowledge of the author of the methodology. In
this phase of analysis, there is no need to men-
tion any names of the authors but simply to state
their domain expertise. The benefit of revealing
the background of the methodology author is to
clarify the practical bias of the methodology, which
is usually based on the experience, and possible
fears of the methodology’s author.

Tables 3 to 5 give a summary of the analysis
of specific agile methodologies to illustrate how
this analysis technique can be used for any given
agile methodologies.

��

Agile Software Methods: State-of-the-Art

AnAlyzIng scruM

Scrum has been in use for a relatively longer
period than other agile methodologies. Scrum,
along with XP, is one of the more widely used
agile methodologies. Scrum’s focus is on the
fact that “defined and repeatable processes only
work for tackling defined and repeatable problems
with defined and repeatable people in defined and
repeatable environments” (Fowler, 2000), which
is obviously not possible. To solve the problem of
defined and repeatable processes, Scrum divides a
project into iterations (which are called Sprints) of
30 days. Before a Sprint begins, the functionality
required is defined for that Sprint and the team
is left to deliver it. The point is to stabilize the
requirements during the Sprint. Scrum empha-
sizes project management concepts (Mnkandla &
Dwolatzky, 2004b) though some may argue that
Scrum is as technical as XP. The term Scrum is
borrowed from Rugby: “A Scrum occurs when
players from each team clump closely together…in
an attempt to advance down the playing field”
(Highsmith, 2002b). Table 3 shows application
of the analysis technique to Scrum.

AnAlyzIng leAn developMent

Lean software development like dynamic systems
development method and Scrum is more a set
of project management practices than a definite
process. It was developed by Bob Charette and
it draws on the success that lean manufacturing
gained in the automotive industry in the 1980s.
While other agile methodologies look to change
the development process, Charette believes that
to be truly agile, there is need to change how
companies work from the top down (Mnkandla
et al., 2004b). Lean development is targeted at
changing the way CEOs consider change with
regards to management of projects. LD is based
on lean thinking whose origins are found in lean
production started by Toyota Automotive manu-
facturing company (Poppendeick & Poppendeick,
2003). Table 4 shows application of the analysis
technique to LD.

Table 3. Analyzing scrum methodology

Elements Description
Real Life
Metaphor

Control engineering.

Focus Management of the development process.
Scope Teams of less than 10, but is scalable to larger teams.
Process Phase 1: planning, product backlog, & design.

Phase 2: sprint backlog, sprint.
Phase 3: system testing, integration, documentation, and
release.

Outputs Working system.
Techniques Sprint, scrum backlogging (writing use cases).
Methodology
Author (two)

1. Software developer, product manager, and industry
consultant.
2. Developed mobile applications on an open technology
platform. Component technology developer. Architect of
advanced internet workflow systems.

 ��

Agile Software Methods: State-of-the-Art

AnAlyzIng extreMe
progrAMMIng

Extreme programming (XP) is a lightweight
methodology for small-to-medium-sized teams
developing software based on vague or rapidly
changing requirements (Beck, 1999). In the second
version of XP, Beck extended the definition of XP
to include team size and software constraints as
follows (Beck et al., 2004):

• XP is lightweight: You only do what you
need to do to create value for the custom-
er.

• XP adapts to vague and rapidly changing
requirements: Experience has shown that
XP can be successfully used even for project
with stable requirements.

• XP addresses software development con-
straints: It does not directly deal with project
portfolio management, project financial
issues, operations, marketing, or sales.

• XP can work with teams of any size: There
is empirical evidence that XP can scale to
large teams.

Software development using XP starts from
the creation of stories by the customer to describe
the functionality of the software. These stories are

small units of functionality taking about a week
or two to code and test. Programmers provide
estimates for the stories, the customer decides,
based on value and cost, which stories to do first.
Development is done iteratively and incremen-
tally. Each two weeks, the programming team
delivers working stories to the customer. Then
the customer chooses another two weeks worth
of work. The system grows in functionality, piece
by piece, steered by the customer. Table 5 shows
application of the analysis technique to XP.

A wAlk through the AnAlysIs
technIQue

Each of the methodology elements as represented
in Tables 3 to 5 will be defined in the context of
this analysis approach.

Methodology’s reAl lIfe
MetAphor

This element refers to the fundamental model/
metaphor and circumstances that sparked the
initial idea of the methodology. For example
watching the process followed by ants to build an
anthill could spark an idea of applying the same
process to software development.

Table 4. Analyzing lean development methodology

Elements Description
Real Life Metaphor Manufacturing and product development.
Focus Change management.

Project management.
Scope No specific team size.
Process Has no process.
Outputs Provides knowledge for managing projects.
Techniques and Tools Lean manufacturing techniques.
Methodology Author Research engineer at the US Naval Under-

water Systems Center, author of software
engineering books and papers, advisory
board in project management.

��

Agile Software Methods: State-of-the-Art

Methodology focus

The focus of the methodology refers to the spe-
cific aspects of the software development process
targeted by the methodology. For example, agile
modeling targets the design aspects of the software
development process and also considers issues
of how to model large and complex projects the
agile way.

Methodology scope

This element outlines the details to which the
methodology’s development framework is spelled
out. This is where the methodology specifies
what it covers within a project. The importance
of this parameter is to help the user to identify
the list of tasks that the methodology will help

manage. Remember a methodology does not
do everything but simply gives guidelines that
help in the management of a project. The scope
of a software development project is relevant in
determining the size of the team.

Methodology process

This parameter describes how the methodology
models reality. The model may be reflected in the
life cycle or development process of the meth-
odology. The model provides a means of com-
munications, captures the essence of a problem
or a design, and gives insight into the problem
area (Avison et al., 2003). The importance of this
parameter is that it gives the user a real worldview
of the series of activities that are carried out in
the development process.

Table 5. Analyzing extreme programming

Elements Description
Real Life Metaphor Social activity where developers sit together.
Focus Technical aspects of software development.
Scope Less than ten developers in a room. Scalable

to larger teams.
Process Phase 1: Writing user stories.

Phase 2: Effort estimation, story prioritiza-
tion.
Phase 3: Coding, testing, integration testing.
Phase 4: Small release.
Phase 5: Updated release.
Phase 6: Final release (Abrahamsson et al,
2002).

Outputs Working system.
Techniques and Tools Pair programming, refactoring, test-driven

development, continuous integration, system
metaphor.

Methodology Authors
(two)

1. Software developer (Smalltalk). Strong
believer of communication, reflection, and
innovation. Pattern for software. Test-first
development.
2. Software developer (Smalltalk). Director
of research and development. Developed the
Wiki. Developed Framework for Integrated
Test (Fit).

 ��

Agile Software Methods: State-of-the-Art

Methodology outputs

This parameter defines the form of deliverables to
be expected from the methodology. For example
if an organization purchased lean development
methodology today, would they get code from
application of the methodology, or would they get
some documents, etc (Avison et al., 2003). Each
agile methodology will give different outputs
hence the user can choose the methodology that
gives them the output they require.

technIQues And tools

This parameter helps the user to identify the tech-
niques and tools applicable to the methodology.
Tools may be software applications that can be
used to automate some tasks in the development
process, or they can be as simple as whiteboards
and flip charts. In fact, it is the use of tools that
makes the implementation of a methodology
enjoyable. Organizations therefore tend to spend
a lot of money acquiring tools and training staff
on tools. As technology evolves and new tools
emerge, more acquisitions and training are usu-
ally done. However, most agile methodologies do
not specify tools and most agile practitioners use

open source tools, which reduces potential costs
on software tools.

Each methodology has its own techniques
that may be relevant or irrelevant to the problem
at hand. Examples of techniques in extreme
programming would be pair programming, and
the scrum meeting in Scrum methodology. The
user then analyzes these techniques in relation
to the present project, to determine need for the
techniques and include variations that will be part
of tailoring the methodology.

Methodology Author

This parameter defines the domain knowledge
of the methodology author. The benefit of doing
this is to clarify the background from which the
methodology was conceived. There is no need
to mention the name of the author or a detailed
biography of the methodology author.

Table 6 summarizes the phase of the analysis
where all the practices are brought together and
similar practices are identified across different
methodologies.

Table 6 classifies the practices using the su-
perscripts 1, 2, 3, 4, and 5. The practices with

Table 6. Identifying similarities among the practices

Practices
XP The planning process1, small releases2, metaphor, test-

driven development2, story prioritization3, collective
ownership3, pair programming3, forty-hour work week3,
on-site customer4, refactoring5, simple design5, and con-
tinuous integration5.

LD Eliminate waste1, minimize inventory1, maximize flow2,
pull from demand2, meet customer requirements2, ban
local optimization2, empower workers3, do it right the
first time4, partner with suppliers4, and create a culture of
continuous improvement5.

Scrum Capture requirements as a product backlog1, thirty-day
Sprint with no changes during a Sprint2, Scrum meeting3,
self-organizing teams3, and Sprint planning meeting4.

��

Agile Software Methods: State-of-the-Art

the same superscript implement the same agile
principle.

•	 “1” represents practices that deal with plan-
ning issues such as requirements gathering.
The three methods shown here use different
terms but the principle is to capture minimal
requirements in the simplest available way
and start coding.

•	 “2” represents practices that deal with im-
provement of quality in terms of meeting
the volatile requirements.

•	 “3” represents practices that facilitate freely
working together of developers, effective
communication, empowered decision-mak-
ing, and team dynamics issues.

•	 “4” represents practices that deal with quick
delivery of the product.

•	 “5” represents practices that deal with agile
quality assurance property of ensuring that
the product is improved continuously until
deployment.

When the similar practices are identified, the
developers can then decide to select and tailor
some practices to their environment according
to relevance, and project and customer priorities.
You will notice that the choice of the activities of
the development process according to this analy-
sis have shifted from focusing on the individual
methodologies to a focus on practices.

Issues And controversIes
surroundIng AgIle
developMent

software development common
ground

This section looks at issues that are done in a
similar way among different software develop-
ment methodologies. Most software development
processes in use today involve some of the follow-

ing activities: planning, estimation, and schedul-
ing of the tasks, design, coding, and testing, and
deployment and maintenance. What varies among
the different processes is the sequence followed
in implementing each of the phases, and the level
of detail to which each phase is carried out. Some
methodologies may implement all of the activities
and some partial methodologies may specialize
in just a few. The other difference is in the way
the process values the people involved in the de-
velopment activities and what value is attached to
the customer in relation to what needs to be done.
These differences mark the major boundaries
among software development methodologies.

Agile development higher ground

This section looks at issues that are done in a
peculiar way by agile methodologies. The role of
the domain expert in agile methodologies is rather
unique. Software development experts with practi-
cal experience in this field have a lot of knowledge
that can be classified as tacit knowledge due to
the fact that it is gained through practice and is
not written down in any form. Tacit knowledge is
difficult to quantify hence this concept remains
quite subjective in the implementation of agile
methodologies. However, the strength of using
tacit knowledge rests in the team spirit that puts
trust on experts to do what they know best within
their professional ethics. This in fact is what
differentiates the “agile movement” from other
development processes. Another hot issue about
agile development is the concept of self-organizing
teams. This concept means that agile develop-
ment teams are allowed to organize themselves
the best way they want in order to achieve the
given goals. As a result of applying this concept,
managing agile projects becomes different from
the traditional approaches to project management.
The role of a project manager becomes more of a
facilitator than a controller. Detailed discussions
on what has become known as “agile project
management” can be found in Highsmith (2004)

 ��

Agile Software Methods: State-of-the-Art

and Schwaber (2004) and at http://finance.groups.
yahoo.com/group/agileprojectmanagement/.

Agile methodologies also emphasize on light
documentation. This concept has been quite
controversial since agile methodologies started.
The main reason for the controversy is that the
traditional methodologies have always associated
documentation with proper planning, software
quality assurance, deployment, user training,
maintenance, etc. Agile methodologists however,
believe that documentation should be minimum
because of the associated expenses. In agile
methodologies, the general belief is that correctly
written code is sufficient for maintenance. The
Test first technique, which was originally an XP
practice and is now widely applied in other agile
methodologies is another peculiar agile practice
(though its origins may be from earlier processes).
The test first technique is a software develop-
ment approach that implements software design
through writing tests for each story before the
code is written. The test code then amounts to
design artifacts and replaces the need for design
diagrams etc.

challenges faced by Agile
development

This section looks at issues that are still grey areas
to agile methodologies. One of the interesting
issues about agility is what is going to happen
to the issues of innovative thinking embedded
in agile development as the processes attain
higher and higher levels of maturity and quality
assurance. Are we going to see a situation where
agility retires and fails to be agile? Another area
of software development that is always heavily
debated at agile gatherings is the area of how to
cost projects that are developed the agile way.
The main difficulty is estimating the cost of an
entire project based on iterations. There has been
some effort towards dealing with this challenge
especial at big agile conferences, for example
the extreme programming and agile processes

in software engineering held in Europe once per
year (see www.XP2006.org). Another example
is the Agile Development Conference also held
once per year in the USA (see www. agiledevel-
opmentconference.com).

As agile processes begin to enter grounds such
as enterprise architecture, patterns, and software
reuse, their software process jacket is getting
heavier and heavier and if this is not watched
by agile proponents we might have a situation
sometime in the future where another software
development revolution emerges to maintain the
legacy of agility.

the future trends of AgIle
softwAre developMent

Agile methodologies are certainly moving toward
higher levels of maturity due to a number of
things. The first contribution to agile maturity is
the availability of comprehensive sources of sim-
ple descriptive and analytical information about
agile methodologies. The second contribution to
agile maturity is the growth in academic research
interest in agility, which has resulted in a lot of
empirical data being collected and scientifically
analyzed to prove and disprove anecdotal data
about agile processes. The third contribution to
agile maturity is the massive exchange of practical
experiences amongst the different practitioners
involved in agile software development. The gen-
eral direction of the agile movement seems to be
towards more and more demand for the adoption
of agile practices by the larger organizations that
have been traditionally associated with traditional
processes. There have been reports of higher de-
mands for agile consultancy and training as more
and more organizations adopt agile development
practices, Poppendieck (personal communication,
November 07, 2005) said there was more demand
in North America, Europe, and even Japan where
his book on lean software development sold more
than ten thousand copies. Another interesting

�0

Agile Software Methods: State-of-the-Art

development by the agile alliance is their offer
to sponsor agile research. This will certainly go
a long way in boosting the process maturity of
agile methodologies.

conclusIon

In this chapter, an overview of agile methodologies
was presented without going into the details of
describing each existing agile methodology. The
focus of the chapter was to provide an informed
review of agile methodologies that included a
comprehensive definition of what agility and agile
quality assurance is all about. The approach to
the definition as presented in this chapter was to
give a theoretical definition, which is the perspec-
tive of those who are philosophical about agile
methodologies, a practical definition, which is the
perspective of those who are on the development
work floors, and a contextual definition, which is
a perspective based on the different contexts of
the activities of the software development process.
In order to enhance understanding of the agile
processes, an analysis model was presented. The
philosophy of this technique is to cut deep into
each given agile methodology and reveal the core
values, principles, and practices of the methodol-
ogy so as to compare the common activities among
different agile processes. The aim of doing such
an analysis is to provide a technique for striking
the balance between these two extremes: “getting
lost in the agile methodology jungle and holding
onto one methodology.” The benefit of using this
analysis method is the attainment of a deeper
understanding of all the agile methodologies
analyzed. This should lay the ground for train-
ing and adoption of agile methodologies from a
generic point of view rather than worrying about
individual agile methodologies.

references

Abrahamsson, P., Salo, O., Ronkainen, J., &
Warsta, J. (2002). Agile software development
methods: Review and analysis. VVT Publications,
(478), 7-94.

Agile Alliance. (2001). Manifesto for agile soft-
ware development. Retrieved May 2, 2005, from
http://www.agilemanifesto.org

Ambler, S. W. (2002). Agile modeling. John Wiley
and Sons.

Ambler, S. W. (2003). Agile database techniques:
Effective strategies for the agile software devel-
oper (pp. 3-18). John Wiley & Sons.

Ambler, S. (2005). Quality in an agile world.
Software Quality Professional, 7(4), 34-40.

Avison, D. E., & Fitzgerald, G. (2003). Information
systems development: Methodologies techniques
and tools. McGraw-Hill.

Bass, L. (2006, January). Designing software
architecture to achieve quality attribute
requirements. Proceedings of the 3rd IFIP Summer
School on Software Technology and Engineering
(pp. 1-29). South Africa.

Beck, K. (1999). Extreme programming ex-
plained: Embrace change (pp. 10-70). Reading,
MA: Addison-Wesley.

Beck, K., & Andres, C. (2004). Extreme program-
ming explained: Embrace change. Addison-Wes-
ley Professional.

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed (1st ed.,
pp. 165-194, Appendix A). Addison-Wesley.

Brandt, I. (1983). A comparative study of infor-
mation systems development methodologies,
Proceedings of the IFIP WG8.1 Working Confer-
ence on Feature Analysis of Information Systems
Design Methodologies. In T. W. Olle, H. G. Sol,

 ��

Agile Software Methods: State-of-the-Art

& C. J. Tully (Eds.), Information systems design
methodologies: A feature analysis (pp. 9-36).
Amsterdam: Elsevier.

Cockburn, A. (2000). Selecting a project’s meth-
odology. IEEE Software, 64-71.

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile
software development (pp. 11-52). Fraunhofer
Center for Experimental Software Engineering,
Maryland, DACS SOAR 11 Draft Version.

Collins-Cope, M. (2002). Planning to be agile?
A discussion of how to plan agile, iterative, and
incremental developments. Ratio Technical Li-
brary White paper. Retrieved January 20 from
http://www.ration.co.uk/whitepaper_12.pdf

Fowler, M. (2000). Put your process on a diet.
Software Development, 8(12), 32-36.

Fowler, M. (2002). The agile manifesto: Where it
came from and where it may go. Martin Fowler
article. Retrieved January 26, 2006, from http://
martinfowler.com/articles/agileStory.html

Glass, R. L., & Vessey, I. (1995). Contemporary
application domain taxonomies. IEEE Software,
63-76.

Hendrickson, E. (2004). Redefining quality,
Retrieved January 12, 2006, from http://www.
stickyminds.com/sitewide.asp?Function=edetai
l&ObjectType=COL&ObjectId=7109

Highsmith, J. (2001). The great methodologies
debate: Part 1: Today, a new debate rages: Agile
software development vs. rigours software devel-
opment. Cutter IT Journal, 14(12), 2-4.

Highsmith, J. (2002a). Agile software develop-
ment: Why it is hot! (pp. 1-22). Cutter Consortium
white paper, Information Architects.

Highsmith, J. (2002b). Agile software development
ecosystems (pp. 1-50). Addison-Wesley.

Highsmith, J. (2004). Agile project management.
Addison-Wesley.

Huo, M., Verner, J., Zhu, L., & Babar, M. A.
(2004). Software quality and agile methods.
Proceedings of the 28th Annual International
Computer Software and Applications Conference
(COMPSAC04). IEEE Computer.

IEEE. (1990). IEEE standard glossary of software
engineering terminology. IEEE Std 610.12.

Juran, J. M., & Gryna, F. M. (1988). Juran’s qual-
ity control handbook. Mcgraw-Hill.

Lindvall, M., Basili, V. R., Boehm, B., Costa, P.,
Dangle, K., Shull, F., Tesoriero, R., Williams, L.,
& Zelkowitz, M. V. (2002). Empirical findings in
agile methods. Proceedings of Extreme Program-
ming and agile Methods: XP/agile Universe (pp.
197-207).

Marick, B. (2001). Agile methods and agile test-
ing. STQE Magazine, 3(5).

McBreen, P. (2003). Quality assurance and testing
in agile projects. McBreen Consulting. Retrieved
January 12, 2006, from http://www.mcbreen.
ab.ca/talks/CAMUG.pdf

Meyer, B. (2000). Object-oriented software
construction (pp. 4-20). Prentice Hall PTR.

Mnkandla, E., & Dwolatzky, B. (2004a). Balanc-
ing the human and the engineering factors in
software development. Proceedings of the IEEE
AFRICON 2004 Conference (pp. 1207-1210).

Mnkandla, E., & Dwolatzky, B. (2004b). A sur-
vey of agile methodologies. Transactions of the
South Africa Institute of Electrical Engineers,
95(4), 236-247.

Mnkandla, E. (2006). A selection framework for
agile methodology practices: A family of meth-
odologies approach. PhD thesis, University of
the Witwatersrand, Johanneburg.

Pfleeger, S. L. (2001). Software engineering:
Theory and practice. Prentice Hall.

��

Agile Software Methods: State-of-the-Art

Poppendeick, M., & Poppendeick, T. (2003).
Lean software development: An agile toolkit for
software development managers (pp. xxi-xxviii).
Addison Wesley.

Pressman, R. S. (2001). Software engineering a
practitioner’s approach. McGraw-Hill.

QCI International. (2002). Juran: A life of qual-
ity: An exclusive interview with a quality legend.
Quality Digest Magazine. Retrieved January 12,
2006, from http://www.qualitydigest.com/aug02/
articles/01_article.shtml

Schuh, P. (2004). Integrating agile development
in the real world (pp. 1-6). MA: Charles River
Media.

Schwaber, K., & Beedle, M. (2002). Agile soft-
ware development with SCRUM (pp. 23-30).
Prentice-Hall.

Schwaber, K. (2004). Agile project management
with Scrum. Microsoft Press.

Sol, H. G. (1983). A feature analysis of information
systems design methodologies: Methodological

considerations. Proceedings of the IFIP WG8.1
Working Conference on Feature Analysis of Infor-
mation Systems Design Methodologies. In T. W.
Olle, H. G. Sol, & C. J. Tully (Eds.), Information
systems design methodologies: A feature analysis
(pp. 1-7). Amsterdam: Elsevier.

Sommerville, I. (2004). Software engineering.
Addison-Wesley.

Turk, D., France, R., & Rumpe, B. (2002).
Limitations of agile software processes. Proceed-
ings of the Third International Conference on
eXtreme Programming and Agile Processes in
Software Engineering (pp. 43-46).

van Vliet, H. (2003). Software engineering: Prin-
ciples and practice. John Wiley & Sons.

Weinberg, G. M. (1991). Quality software manage-
ment (Vol. 1), Systems Thinking. Dorset House.

Weisert, C. (2002). The #1 serious flaw in extreme
programming (XP). Information Disciplines,
Inc., Chicago. Retrieved January 2006, from
http://www.idinews.com/Xtreme1.html

 23

Chapter II
Agile Quality or Depth

of Reasoning?
Applicability vs. Suitability with
Respect to Stakeholders’ Needs

Eleni Berki
University of Tampere, Finland

Kerstin Siakas
Alexander Technological Educational Institution of Thessaloniki, Greece

Elli Georgiadou
University of Middlesex, UK

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

AbstrAct

This chapter provides a basis for discussion and analysis of the quality characteristics of the agile in-
formation systems development (AISD) process, and exposes concerns raised regarding the applicability
and suitability of agile methods in different organisational and national cultures. The arguments are
derived from recent literature reviews and reports on the state-of-the-art in agile methodologies. We
also reflect on our own research and experience in three European countries with different academic
and work values, and information systems development (ISD) industrial practices based on diverse
principles. Examining the different perceptions of quality in the agile software development paradigm
by comparing and contrasting them to the quality perceptions in the established ISD methodological
paradigms, we aim at: (i) exploring the relationship of traditional, agile, managed, and measured ISD
processes, (ii) making the human dynamics that bear on the success and consensus acceptance of IS
more explicit, and (iii) establishing a critical framework/approach for reflecting on the suitability and
applicability of agile methods in the development and management of quality software systems.

24

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

IntroductIon

Agile methods have pervaded many application
domains of software development and many
claim that this has occurred because agile meth-
ods (DSDM, XP, Crystal, SCRUM, ...) advocate
end-user participation and satisfaction by focus-
ing on systems realisation, requirements change,
and testing as the means to achieving a “correct”
information system (Beck, 2000, 2003; Beck &
Fowler, 2001). On the other hand, it is argued that
the agility of these new methods might lead to
more complex and not well-documented systems
and to a fragmented software development pro-
cess (Boehm & Turner, 2003a, 2003b; Marciniak,
1994). Our motivation to examine these arguments
in this chapter derives from (a) scientific and (b)
practical perspectives. Naturally, a fragmented,
unpredictable, and non-measurable IS process
does not add to the established scientific rules that
must guide software development. In that respect,
the use of computational principles combined with
lightweight methods, which support continuous
change, might be the answer for agile quality,
particularly for software component-based de-
velopment in a post-modern information society
(Berki, Georgiadou, & Holcombe, 2004; Siakas,
Balstrup, Georgiadou, & Berki, 2005b).

Considering, though, the post-technological
state of the global software industry, an ISD
method customisation to the needs of diverse
and different organisational and national cultures
points rather to further argumentation for the
general applicability and suitability of the agile
methods paradigm. There is an obvious need for
further research in order to understand the require-
ments of quality and the requirements of agile
quality in particular, within different cultural and
social contexts and, perhaps, the need to identify
controllable and uncontrollable quality factors for
agile ISD (Georgiadou, Siakas, & Berki, 2003).
IS quality requires knowledge of different or-
ganisational and national cultures on the methods
and tools used, on the ways they are used and,

most importantly, on the ways people perceive
quality and quality assurance (Berki, 2006; Ross
& Staples, 1995; Siakas, Berki, Georgiadou, &
Sadler, 1997). Awareness and application of total
quality management principles and the influence
of human involvement and commitment are yet
unresolved and largely non-researched issues in
different cultural (organisational and national)
contexts. Therefore, specialised knowledge is
required in order to assess, assure, and certify
the quality of agile software development.

It is, yet, questionable if risks and project fail-
ures that are frequently encountered in traditional
software projects could be diminished or avoided
(Siakas, Georgidaou, & Berki, 2005a) by adopting
an agile approach. It is, however, argued that agile
methods make the key business users a very strong
partner in assuring quality (Beck, 2000, 2003;
Beck et al., 2001). We presume that in a mature
IS society, rather than completely leaving quality
to the professionals, agile development projects
will perceive the key ISD stakeholders, and end-
users in particular, as co-responsible for ensuring
that the application fits the purpose. At present,
however, one needs to compare and contrast the
agile development process (agile methods and the
life cycle they support) to traditional methods.
Based on the results of comparisons one could,
afterwards, analyse, measure, validate, and verify
the method suitability and applicability derived
from the agile methodology deployment. From the
software quality assurance’s point of view, new
or/and older software quality properties could be
the key attributes for constructing process and
product quality principles when both traditional
and agile development methods are employed
in ISD.

Throughout this chapter, we proceed to a three
axis quality examination of the agile methodology
paradigm, outlined as follows: The chapter firstly
considers a historical perspective and a discussion
over process and product quality measurements in
traditional software development (method and life
cycle models). In order to provide an overview of

 25

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

the European perspective on the software process
and software product quality measurements, we
present supportive data drawn from case studies
and questionnaires in recent cultural factors-
oriented research that was carried out in four (4)
European countries, namely Finland, Denmark,
the UK, and Greece (Siakas, 2002; Siakas, Berki,
& Georgiadou, 2003). We subsequently comment
on recent research findings regarding software
process and product measurements kept during
traditional ISD. There are, of course, many con-
trollable and uncontrollable factors in measuring
ISD. Considering the latter, we attempt to identify
and deduce suitable process and product metrics/
metametrics for an agile ISD approach.

Following from the latter and considering
that there are controllable and uncontrollable fac-
tors that influence any ISD process, the second
axis of the chapter’s discussion considers soft
(uncontrollable and probably non-measurable)
issues of agile ISD. This analysis elaborates on
stakeholders’ participation, change management,
cultural and national differences, and knowl-
edge creation and sharing. These are significant
managerial issues and in today’s agile and lean
management development approaches are often
considered to be the cornerstones for productivity,
interactivity, communication, and trust in ISD
teams (Berki, Isomäki, Jäkälä, 2003; Manninen
& Berki, 2004).

Finally, we examine the hard issues and quality
properties (rather controllable and measurable
factors) that agile methods openly claim they
achieve, these being implementability, modifi-
ability, and testability. Investigating the influ-
ence of method engineering (ME) in the agile
paradigm, two, rather contradictory, observations
are analysed: (i) Agile methodology tool support
identifies method expressability and stakeholder
communication to be problems that appear fre-
quently in both traditional and agile development
methods, while (ii) continuous change of require-
ments (modifiability), and possibly quality of
re-engineering and reverse engineering (central

issues for re-factoring), could better be facilitated
with the adoption of metamodelling and method
engineering rules in MetaCASE and Computer
aided method engineering (CAME) environments
(Berki, Lyytinen, Georgiadou, & Holcombe, 2002;
Kelly et al., 1996; Tolvanen, 1998).

A HIstorIcAL PErsPEctIVE For
soFtWArE ProcEss And
Product QuALItY IMProVEMEnt

Long before the agile paradigm, in fact since
1968, software engineers have tried to emulate
traditional engineering in order to address quality
problems and IS failures with varying degrees of
success (Georgiadou, 2003b; Sommerville, 2001).
A significant source of experience was gained
from quality assurance processes practised in
the manufacturing industry, such as statistical
process control (SPC) (Burr & Georgiadou,
1995). The emphasis has been gradually shifted
from software product improvement to software
process improvement, where information systems
development methods (ISDMs) have long been
employed to manage the software process.

Quality trends in Information
systems development

In the ’80s and ’90s emphasis was put on software
process improvement (SPI) with the appearance of
quality standards and guidelines, such as ISO9001
(ISO, 2005), capability maturity model integrated
(CMM/CMMI) (Paulk et al., 1993), software
process improvement (SPI), SPICE / ISO-15504
(Dorling, 1993), and Bootstrap (Kuvaja, 1999).
More recently the Kaizen method of incremental
improvements (Vitalo, Butz, & Vitalo, 2003), six
sigma (George, 2003), lean manufacturing (Pop-
pendieck & Poppendieck, 2003), and product life
cycle management (PLM) (Grieves, 2005; Saa-
ksvuori & Immonen, 2003) have been adopted
by practitioners. This signifies the recognition of

26

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

the fact that life cycle costs are front-loaded (i.e.,
more effort, time, and costs are required at the
beginning of the life cycle). Agile development
advocates that it is not necessary to make all
the design decisions up front. Instead, the agile
process and its products are constantly being
improved because the developers engage in per-
petual value development through brainstorming,
flexible thinking and continuously maturing and
improved commitment and decision-making.

Proliferation of Methods in the
software development Life cycle

During the last 40 years, several ISDMs have been
established (Figure 1) that have been characterised
as hard (technically oriented), soft (human-cen-
tered), hybrid (a combination of hard and soft),
and specialised (application-oriented) (Avison &
Fitzgerald, 2003; Berki et al., 2004; Georgiadou
& Milankovic-Atkinson, 1995). Hard methodolo-
gies span the range of structured, object-oriented,
and formal methods. Soft methodologies are
exemplified by the soft systems method (SSM)
(Checkland, 1981; Checkland & Scholes, 1990)
and effective technical and human interaction
for computer-based systems (ETHICS) (Mum-
ford, 1983, 2003). Figure 1 provides a historical
overview of the approximate year of introduction
of the main exponents of prescriptive and agile

methods over the last 40 years. Acronyms can be
found in Appendix A.

Agile software development methods fall
within the hybrid, thus a combination of hard and
soft, paradigm (Berki, 2006). Extreme program-
ming (XP) for example builds on principles first
used by Checkland (1981) and Mumford (1983)
in SSM and ETHICS methodologies respectively
and later on by the dynamic systems development
method (DSDM) (Stapleton, 1997). In particular,
the agile paradigm was built on a foundation which
encapsulates user participation, time boxing, (the
amount of features released in a fixed amount of
time), and frequent delivery of product.

By applying one of the available methodolo-
gies to the development of software, insights were
gained into the problems under consideration and,
thus, software product and process quality could
be addressed more systematically (Berki et al.,
2002). The final software-based IS should, nor-
mally and traditionally, comply with the quality
requirements of timeliness, relevance, accuracy,
and cost effectiveness.

From traditional Isd to Agile Isd:
user Involvement and Problem
solving

The application of solely hard or soft methods
led to IS with problematic functionality and

Figure 1. Forty years of information systems development methodologies

 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

? A
d-

ho
c

 N
C

C

 Z

 JS
D

ST

R
A

D
IS

SS

M

E
T

H
IC

S
L

ea
n

D
ev

el
op

m
en

t
SS

A
D

M

M
ul

tiv
ie

w

In
fo

rm
at

io
n

En
gi

ne
ri

ng

Y
or

do
n

 C

oa
d-

Y
ou

rd
on

 O

M
T

D

SD
M

SC

R
U

M

C
BD

eX

tr
em

e
Pr

og
ra

m
m

in
g

C
rt

ys
ta

l
A

SD

FD
D

IS

D

A
M

 27

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

stakeholder dissatisfaction. Inevitably IS were
also constructed with specialised (application-
oriented) methods with no stakeholder satisfac-
tion solutions or compliance to the most recent
academic knowledge and related scientific reason-
ing. The appearance of hybrid methods, such as
multiview (Avison & Wood Harper, 1990), indi-
cated the need to integrate soft and hard issues.
Hybrid methods concentrated on hard issues, such
as implementability (Holcombe & Ipate, 1998),
structuredness (Avison et al., 2003), and test-
ability (Berki, 2004) and on soft issues, such as
user participation (Mumford, 1983, 2003), conflict
analysis (Checkland et al., 1990), and stakeholder
communication (Berki et al., 2003). Emphasis on
testing at many stages (including acceptance test-
ing) was practised using the V and W life cycle
models (Burr et al., 1995).

Traditional IS development had some user
involvement, usually at the two ends of the devel-
opment process, namely the feasibility study phase
and the system acceptance phase; without, though,
widely employing formal testing techniques (such
as acceptance testing). The prototyping approach
signalled the need for ongoing user participation.
The dynamic interaction of the two constituencies,
namely the users and the developers, is represented
in Figure 2, which emphasises the possibility

of generating many alternative solutions to a
problem in a continuous interaction, trade-offs
and “accommodations” throughout the process
(Georgiadou et al., 1995).

Moreover, the level of user participation is
inherent in each methodology. In fact, we argue
that a methodology is as strong as the user involve-
ment it supports (Berki, Georgiadou, & Siakas,
1997). Traditional participative methodologies
(see SSM and ETHICS) place a strong emphasis
on managerial and social issues and, usually,
devote extra time and effort during the early
stages of the systems life cycle. This moulds the
development process and the type of the solution(s)
achieved, also dependent on the lifecycle model.
For instance, waterfall model emphasis, step-
wise refinement, and problem reduction, while
prototyping approach denotes an evolutionary
and sometimes state transition approach. User
involvement is mainly through discussions with
the developers and participation in walkthroughs,
reviews, and inspections. Larman (2004) argues
that lessons learned from prototyping and iterative
development as well as cyclic models, such as the
spiral model, paved the way for the evolution of
the agile paradigm.

Comparing the early aims of software en-
gineering as a discipline to handle the unfore-

Figure 2. The components in the development process: The “balanced” interaction—prototyping

M
e

t
h

o
d o

l
o g

y

user

developer problem

solution

worries

conflicts

additional requirements

models

structures
technical knowhow

business knowhow

s o l
u t i

o n s

usability

efficiency

28

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

seen software crisis of the 60s by a disciplined
method(ology) to the aims of the Agile Manifesto
(2001), one could conclude that there is, now, a
new software engineering challenge. Attributing
though the appearance of the agile methods to a
traditional method(ology) crisis (Berki, 2006)
might lead to a deeper understanding of the
reasons that agile methods have been accepted,
discussed, and/or criticised in equal measures.
Notwithstanding, traditional ISDMs have retained
a role as quality assurance instruments for the
software development process, and there has
been substantial evidence in theory and practice
for living up to such expectations (Avison et al.,
1990; Boehm & Turner, 2003a, 2003b Jayaratna,
1994).

ProcEss And Product
QuALItY MEtrIcs In
trAdItIonAL And AGILE
soFtWArE dEVELoPMEnt

Failure and success of IT/IS projects have been
discussed since the early 70s when organisations
started to use computer technology to harness the
ability of their information systems (Lyytinen
& Hirschheim, 1987). IT project failures have
been widely reported and studied (Dalcher &
Genus, 2003; Heeks, 2002; Moussa & Schware,
1992). Failures range from total malfunction to
abandonment, rejection, and non-use. Statistics
presented in Johnson and Foote (1988) revealed
that five out of six software projects were consid-
ered unsuccessful, and approximately a third of
software projects were cancelled. The remaining
projects delivered software at almost double the
expected budget and time to develop than origi-
nally planned.

Considerable advances have also been achieved
by the introduction of methods and tools for the
systematic planning and control of the develop-
ment process (Avison et al., 2003; Berki, 2001;
Georgiadou, 2003b; Jackson, 1994; Jayaratna,

1994). Despite these efforts, systems continue
to fail with dramatic frequency (Dalcher et al.,
2003). Systems development methodologies have
been proposed and used to address the problems
of ambiguous user requirements, non-ambitious
systems design, unmet deadlines, exceeded
budgets, poor quality software with numerous
“bugs” and poor documentation. These and other
factors made IS inflexible to future changes and
difficult to maintain.

Quality and software Process
Improvement

Software process improvement (SPI) has become
a practical tool for companies where the quality of
the software is of high value (Järvinen, 1994). In
a technical report with results from 13 organisa-
tions, and with the number of post-release defect
reports used as a measure, Herbsleb, Carleton,
Rozum, Siegel, and Zubrow (1994) showed that
due to software process improvement (SPI), the
products and business value (especially return on
investment – ROI) was improved. It is generally
considered that a well documented and a repeat-
able process is essential for developing software
products of high quality. There is also evidence
that the use of standards and process assessment
models has a positive impact on the quality of the
final software product (Kitchenham & Pfleeger,
1996).

The software engineering community has
gradually moved from product quality-centred
corrective methods to process quality-centred,
preventive methods, thus shifting the emphasis
from product quality improvement to process
quality improvement. Inspections at the end of
the production line have long been replaced by
design walkthroughs and built-in quality assur-
ance techniques throughout the development
life cycle (Georgiadou et al., 2003). Quality is
an elusive, complex concept (Berki et al., 2004)
and software quality depends on the opinions and
attitudes of the stakeholders, who are concerned

 29

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Table 1. Values in traditional SPI and in agile paradigms

SPI Agile
Processes and tools Individuals and interactions
Comprehensive documentation Workable software
Contract negotiation Customer collaboration
Change through following a plan Change through fast response

Table 2. Quality factors in the basic principles and values of SPI and agile paradigms

Quality factors SPI Agile
Philosophy Empowerment Innovative, participative, em-

powerment
Lifestyle Work-orientated Life-orientated
Approach Plan driven and

prescriptive processes
Process driven--rigid--bureau-
cratic

Flexible
Evolutionary, adaptive, itera-
tive, incremental

Driving forces Management commitment and
leadership (Deming, 1986)

Technically competent and
motivated developers

Customer involvement Early and late stages in life
cycle

Throughout life cycle

Customer participation Encouraged—Customer Focus Imperative user participation
Communication Formal Informal
Teams Inter-group coordination

(Humphrey, 1995; Deming,
1986)

Self-organising teams

Responsiveness Bureaucratic delays Quick responses
Knowledge creation Tacit, Formal, Explicit Tacit, Informal, Explicit
Knowledge sharing Desirable, Formal Imperative, Informal
Documentation Maximum Minimum
Changing requirements Processes have to be followed Adaptability to changes

throughout the development
process (Berki, 2001; 2004)

Testing Late in life cycle Test first (Holcombe, 2005)
Error detection Inspection (Gilb & Graham) Pair programming (XP) (Beck,

2001; 2003)
Progress reviews Formal peer reviews (CMMI) Continuous peer reviews
Requirements elicitation Planned and infrequent Daily stand-up meeting
Tool support Tools supporting different

phases of the life cycle—frag-
mented

Automated testing tools—Inte-
grated CASE (I-CASE)

Delivery of product Planned Frequent—loose plan
QA function Formalised—Separated Informal—Embedded

30

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

with different quality attributes (Siakas & Geor-
giadou, 2005; Siakas et al., 1997). Quality is in
the eye of the stakeholder!

Evidence for the emphasis on process quality is
also that ISO certification does not certify product
quality but takes into consideration that a stated
and documented process is followed. Similarly,
well-known and recognised assessment models
like CMM / CMMI (CMM, 2005; Paulk, 1993,
1995; Paulk, Curtis, & Chrissis, 1993), BOOT-
STRAP (Haase, 1992; Haase & Messnarz, 1994;
Kuvaja, Similä, Kranik, Bicego, & Saukkonen,
1994), and SPICE / ISO15504 (Dorling, 1993) con-
centrate on the assessment of the process quality
and not on the quality of the final product.

Critically reflecting and summarising on the
values and principles of traditional software
process improvement (SPI) and agile paradigms,
Tables 1 and 2 provide a comparative review on
the trends and shifts that the two approaches are
based on. Firstly, Table 1 outlines the values of
SPI and agile approaches. Table 2 continues to
expose the quality factors and the special features/
principles through which quality is encapsulated
for the software development process, and/or is
built in for the software product, being that a
workable prototype—a frequent release or the
final product itself.

AGILE MEtHod(oLoGY): A nEW
trEnd WItH LIttLE QuALItY
AssurAncE or InHErEnt
QuALItY FActors?

Apart from the quality properties of imple-
mentability, changeability, and testability, agile
methods have re-introduced a stakeholder—or
user—centred approach relating to requirements
conformance, concentrating on the software/in-
formation products’ frequently released versions
in order to ensure competitive advantage, end-user
acceptance, and general stakeholder satisfac-
tion. Factors, though, that affect the quality of

software (and their interconnected nature) need
to be identified and controlled (Georgiadou et
al., 2003) to ensure predictable and measurable
totality of features and quality characteristics of
the particular software.

There is significant evidence that culture
influences on how people perceive quality and
quality assurance (Berki, 2006; Ross et al., 1995;
Siakas et al., 1997), and that there are differences
amongst IS professionals from different nations
(Couger & Adelsberger, 1988; Couger, Borovitz,
& Zviran, 1989; Couger, Halttunen, & Lyytinen,
1991; Holmes, 1995; Ives & Järvenpää, 1991; Keen,
1992; Kumar & Bjorn-Andersen, 1990; Palvia,
Palvia, & Zigli, 1992, Siakas, 2002). Revisiting
this chapter’s main research question: Does the
much praised applicability of agile methods fit
different organisational and national cultures
and human needs in a world of turbulent quality
perspectives under the globalisation of software
development? The following section considers
this question in the context of measurement and
other factors.

WHAt to MEAsurE And HoW
to IMProVE QuALItY In AGILE
soFtWArE dEVELoPMEnt?

It has long been recognised that measures provide
insights into the strengths and weaknesses of both
process and product. To measure is to know. If you
cannot measure it, you cannot improve it (Wil-
liam Thomson, later Lord Kelvin (1824-1907);
DeMarco, 1982). Hence, the “why to measure”
is understood and accepted, but the decision on
“what to measure,” “how to measure,” “when to
measure,” and, in particular, “who measures” and
“for whom” becomes crucial if benefits are to
be gained by particular groups (Berki, 2001). In
turn, we need to understand which stakeholders
and why they will benefit from measurements
and improvements, and in the long run, who is
the most suitable to measure and bring about

 31

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

reforms, changes, and improvements in the
software products and processes. The following
two sections take a closer look at the role of mea-
surement and estimation in traditional software
development while the two sections after them
intend to introduce the concepts and attributes
of measurement and estimation, regarding pro-
cess and product quality improvement, in agile
software development.

the role of software Measurement
in software Quality Assurance

Hennel (1988) and Fenton (1991) believe that inter-
nal attributes are the key to improving software
quality and can be measured in terms of the code.
Many traditional software engineering methods
provide rules, tools, and heuristics for producing
software products. They show how to provide
structure in both the development process and
the products themselves such as documents and
code. These products have properties (internal
attributes) such as modularity, re-use, coupling,
cohesiveness, redundancy, D-structuredness,
and hierarchy. They aim to assure reliability,
maintainability, and usability for users, and also
assure high productivity and cost-effectiveness
for managers/sponsors.

External attributes (Fenton, 1991; Hennell,
1991; Georgiadou, 1994) such as understand-
ability and maintainability are behavioural, and
their associated metrics are both qualitative and
quantitative. They are always obtained indirectly
through the use of surrogate measures. In gen-
eral, product measurement affords us with direct
metrics (in terms of counts such as NLOC and
ratios such as density of calls), whereas process
measurement invariably takes the indirect route
of surrogacy and use of indicators and indices
(Georgiadou, 1994, 2001; Kitchenham, 1996).

In the light of the previous and examining the
relevant direct, indirect and surrogate measures
that are kept or/and could be kept in agile paradigm
methodologies, Table 3 characterises the nature
of these measurements.

the role of cost Estimation Models
in traditional Isd

In traditional software development, cost esti-
mation models such as the original COCOMO
(COnstructive COst MOdel) (Boehm, 1981) and
subsequent versions (COCOMO Web site, 2006)
aimed at estimating the cost, effort, and schedule
when planning new development activities, ac-
cording to software development practices that
were commonly used in the 1970s through the

Table 3. Measurement in agile software development

Agile Measures: Direct/Indirect/Surrogate
User satisfaction Surrogate
Changing requirements Direct
Frequent delivery of working software Direct
User participation Indirect
Developer motivation and trust Indirect/Surrogate
Efficiency through face-to-face conversation Indirect
Working software—the primary measure of progress Indirect
Sustainable development Surrogate
Continuous attention to technical excellence and good
design enhances agility

Indirect

Simplicity (delivery of essentials functionalities) Surrogate
Self-organising teams Surrogate
Regular reflection and tuning of teams behaviour Indirect

32

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

1980s. COCOMO and its variations link inter-
nal and external attributes (see earlier section)
providing rough estimates of software costs.
Accuracy is necessarily limited because of the
difficulty to account for differences in hardware
constraints, personnel quality and experience, use
of different tools and techniques, and other project
attributes that may have a significant influence
on cost. Effort-predicting metrics must inevitably
be available fairly early on in the development
life cycle if management teams are expected to
commit expenditure and plan the timing of deliv-
ery. In addition, Beizer (1990) observed that it is
important to be aware of the purpose of a metric;
moreover, confusing an effort-predicting metric
with a defect-predicting metric can nullify the
metric’s usefulness.

Product or Process Quality
Measurements in Agile software
development?

Could flexible agile quality metrics exist for
the agile software development process and its
deliverables? The agility here refers to the ability
to continuously modify both cost and effort using
parameters such as function points and lines of code.
For instance, a recent variation of COCOMO and
associated Web-based tools is the Agile COCOMO
II, which facilitates cost estimation and enables
adjustments to “estimates by analogy through
identifying the factors that will be changing and by
how much” (Agile COCOMO Web site, 2006).

Gilb (2006) suggests that the agile methods
paradigm would benefit, if it included “stakeholder
metrics” for focusing on critical requirements,
measuring progress, and enabling response to
feedback. In suggesting so, Gilb (2006) asserts
the need for agile development to focus on the
most critical stakeholder quantified and measur-
able requirements and the need to keep track of
changes and plans for better progress in shorter

project cycles. However, rigorous and flexible
agile metrication procedures could be difficult to
establish for the requirements of agile software
development. Evidentially there is no concrete,
established scientific procedure to do so and,
furthermore, neither vast industrial nor academic
substantial proof for keeping quantifiable mea-
sures in agile software development projects.

Some agile metrics, for instance, have been
reported and used by a research team in the Israeli
army. The reported results support the stated
goal, that is to “enable an accurate and profes-
sional decision-making process for both short- and
long-term purposes” (Dubinsky, Talby, Hassan,
& Keren, 2006).

On the other hand, agile metrics are not them-
selves very different from traditional metrics (see
also Table 3). The difference in “agility” probably
refers to the method and speed of collection. Since,
though, agile methods advocate lean documenta-
tion and frequent delivery of product, agility in
estimation and continuous adjustment is necessary
so that projects are delivered on time and within
budget. In order for this iterative process to suc-
ceed, we must assume the practice of a mature
process within the organisation.

At capability maturity model (CMM) level
5—the optimising level—quantitative feedback
data drawn from the process allows continuous
process improvement. At this maturity level
(Humphrey, 1995; Zahran, 1998), data gather-
ing must be automated and the emphasis should
be shifted from product maintenance to process
analysis and improvement. Managing the agile
development process, and any process, requires
the collection of suitable metrics, which will
provide holistic insights into the strengths and
weaknesses of the process, assuring general
stakeholder satisfaction.

 33

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

tEstInG, IMProVEMEnt, And
rE-EnGInEErInG FActors In
trAdItIonAL And In AGILE LIFE
cYcLE ProcEssEs

Efforts to model the process gave us numerous
life cycle models, ISD methodologies, quality
models, and process maturity models (Berki et al.,
2002). A study of different life cycle models was
carried out (Georgiadou, 2003b; Georgiadou et al.,
1995) with particular emphasis on the position of
testing in the whole of the life cycle. The study
so far recognised that more mature life cycles,
and hence more mature software engineering
processes, moved testing and other quality as-
surance techniques to the earliest stages of the
development life cycle.

A juxtaposition of a historical introduction of
the models to the CMM scale (Figure 3) demon-
strates that between 1970 and 2000, as we moved
from the waterfall model (which appeared as early
as in 1956) to incremental models, the maturity
of the underlying process was increasing. In the
case of agile development methods, the testing
activities are frequent and central for stakeholder

satisfaction. There are even approaches with stake-
holder requirements testing before development,
hence, the maturity of the software development
process continuously raises with the awareness
and advanced practices of testing!

 Nevertheless, cyclic development models,
incremental prototyping (Pressman, 2000; Shep-
perd, 1995), and rapid application development
(RAD) (Bell & Wood-Harper, 1992) offered
mechanisms for monitoring, timing, and qual-
ity of deliverables. Prototyping maximizes the
probability of achieving completeness because
of the principle of delivering workable versions
upon user acceptance. The need for continuous
improvement was widely recognized, and is
encapsulated by the concept of Kaizen (“Kai”
meaning school and “Zen” meaning wisdom),
which is a Japanese word meaning “many small
improvements” (Imai, 1986).

According to Beck (2000, 2001), traditional
lifecycle models are inadequate and should be
replaced by incremental design and rapid pro-
totyping, using one model from concept to code
through analysis, design, and implementation. In
other words, design starts while still analysing

Figure 3. The evolution of the life cycle model maturity (Georgiadou, 2003b)

NCC

Waterfall

Waterfall
with

Feedback

1970 1975 1985 1990 1995 20001980

V-model
W-model OO-modelsPrototyping

X-model
??

RAD
Client-server

1 2 3

CMM

ad hoc repeatable

Process Assessment Scale

manageddefined optimised
4 5

34

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

and coding starts soon after starting the detailed
design. Portions of the design are tested along with
implementation. Extreme programming (XP),
for instance, is one of the agile or lightweight
methodologies to denote a breakaway from too
many rules and practices.

The XP approach is considered successful
since it stresses customer satisfaction upon de-
sign, testing, implementation, subsequent and
on-going customer participation, and feedback.
The particular methodology was designed to
deliver the software a customer needs when it is
needed. XP (and most other agile methods) em-
power developers to confidently respond to and
test changing customer requirements, even late
in the life cycle (Beck, 2002; Holcombe, 2005).
Acceptance of changes also empowers the custom-
ers and end-users, but do additional requirements
violate the requirements specification and do
they invalidate carefully tested and documented
requirements within previous modelling efforts?
Unless, of course, the continuous re-structuring
and re-engineering of requirements specification
empowers reverse engineering and re-factoring.
Refactoring, an agile concept and different from
rearranging code activity, whereupon the strength
of testing lies therein, perhaps indicates that
frequent requirements change doesn’t preclude
changing functionality. The following sections
take a closer look to re-engineering, restructuring,
reverse engineering and refactoring with reference
to the agile development paradigm.

software design Quality Factors

We are interested in both internal and external
quality attributes because the reliability of a pro-
gram is dependent not just on the program itself,
but on the compiler, machine, and user. Also,
productivity is dependent on people and project
management. It is often necessary to use surrogate
measures for complex external attributes (Fenton
& Pfleeger, 1997; Kitchenham, 1996).

 Legacy code accounts for more than 80% of
the total effort in the whole of the community
(Polymenakou, 1995). The extent to which the in-
dustry is still using 30 or even 40-year-old systems
became all too apparent with the Millennium bug,
which was an unintended consequence of much
earlier design decisions and testing limitations.
Maintenance of existing code requires under-
standing of the requirements and the behaviour
of the system as well as of new technologies,
such as new database management systems,
new programming languages, new methods, and
tools that cater for change and re-use. Legacy
code may need drastic restructuring, and often
reverse engineering due to inadequate or absent
documentation to facilitate re-engineering.

The Four Rs: Re-Engineering,
Re-Structuring, Re-Use, Re-Factoring

When considering software development we
generally think of a natural process starting from
the concept, going through the specification,
design, implementation, and delivery of product
(going live) which in turn reaches obsolescence.
This process (modelled by different life cycles)
is known as forward engineering. In contrast,
reverse engineering starts from a product and
in reverse order generates specifications (Press-
man, 2000). Legacy code without accompanying
documentation (or with documentation, which has
long ceased to keep in step with modifications) is
often a serious problem. The dilemma is whether
to reverse-engineer or to embark onto develop-
ment from scratch. Cost and time constraints
play a significant part in the resolution of this
dilemma.

A more frequent activity is the re-engineering
or restructuring of code for the purpose of improv-
ing its performance and/or as a result of changing
requirements and hence, sometimes, changing
functionality. Here, we need to at least ensure the
preservation of the existing functionality (unless

 35

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

parts of it are not required) and to also enhance
problematic areas and add new functionality as
required. Re-engineering of existing code needs
to be planned and managed according to speci-
fied rules of acceptance thresholds and tolerance.
Again, the costs of reengineering may be just
as high if not higher than the costs for forward
engineering (developing from scratch).

Reuse has long been advocated as the key to
productivity improvement. Fenton (1991) speci-
fies private reuse as the extent to which modules
within a product are reused within the same
product whilst public reuse is the proportion of
a product, which was constructed (Fenton, 1991).
The problem with reuse is whether a system is
reusable. Often it is necessary to restructure
existing code before reuse can be made possible.
Funding a reuse program can be expensive, and it
is difficult to quantify the cost reductions expected
from reuse (Sommerville, 2001). It is desirable that
components (modules) should be highly cohesive
and loosely coupled with other components. The
authorised re-user of the components must have
confidence in that the components will behave as
specified and will be reliable. The components
must have associated documentation to help the
re-user understand them and adapt them to a new
application. In recent years, much promise came
from the OO paradigm and component-based
development (CBD).

Agile methodologies, and XP in particular,
introduced the concept of re-factoring as a process
of “changing a software system in such a way that
it does not alter the external behaviour of the code
yet improves its internal structure” (Fowler, 1999).
Fowler advocates that re-factoring is typically
carried out in small steps. After each step, you
are left with a working system that is functionally
unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps.
In so doing, re-factoring does not preclude chang-
ing functionality; it supports that it is a different,
from re-arranging code, activity.

The key insight is that it is easier to rearrange
the code correctly if you do not simultaneously
try to change its functionality. The secondary
insight is that it is easier to change functional-
ity when you have clean (re-factored) code. The
expectation is that re-factored code will be more
maintainable, which in turn, will result in ef-
ficiency and cost savings. The cyclic nature of
re-factoring also improves understanding in the
development team, and ensures the reuse of tried
and tested code. Re-factoring, therefore, improves
the overall quality of software.

Notwithstanding, agile methods have, to-date,
failed to propose measures for process or product
improvement. Additionally, one can envisage cost
over-runs, which can neither be predicted nor con-
trolled. The re-engineering metrics developed by
Georgiadou (1994, 1995, 1999) provide indicators
as to whether legacy code can be restructured or
developed from scratch. Re-factoring is in effect
a re-engineering activity. If we hope to control the
costs and time of delivery, benefits could be gained
from adopting metrics such as the re-engineering
factor rho (ρ) (Georgiadou, 1995) and the associated
productivity gains in agile development.

non-MEAsurAbLE And
uncontroLLAbLE QuALItY
FActors In AGILE soFtWArE
dEVELoPMEnt

In knowledge intensive organisations, strategic
decisions should be based on the development
and improvement of their own resources (Conner
& Prahalad, 1996). This also means development
of a flexible organisational culture, which can
quickly respond to various business situations
(Rantapuska, Siakas, Sadler, & Mohamed, 1999).
One of the basic features in agile methodologies
is to embrace changing requirements with a quick
response. No detailed plans are made. Instead,
changing requirements is considered a necessity

36

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

to sustain and improve the customers’ competi-
tive advantage.

 The previous meta-requirements of ag-
ile software development can be critical and
uncontrollable quality factors while develop-
ing human-centred software for technological
products and organisational, societal, personal,
and interpersonal information systems (see e.g.,
Koskinen, Liimatainen, Berki, & Jäkälä, 2005).
When designing huma-centered systems require-
ments flexibility as well as the debate between
changeability vs. stability of the object domain of
software are central questions for quality consid-
ering different stakeholders intersts and values.
The following section briefly refers to the research
findings on recent quality measurements made
for software development process in European
countries and summarises the conclusions from
previous published work by the authors of this
chapter. The three subsequent sections scrutinise
the concepts of knowledge sharing, cultural fac-
tors, and stakeholder participation as soft issues
and unpredictable software quality factors within
the agile paradigm.

current Practices and
Measurements Kept for software
Quality: A European Perspective

In a comparative study carried out in the form
of triangulation (quantitative and qualitative in-

vestigation) in four counties, namely Denmark,
Finland, Greece, and the UK, cultural differences
in software development and their influence on
software quality were investigated (Georgiadou
et al., 2003; Siakas, 2002; Siakas et al., 2003;
Siakas & Balstrup, 2000; Siakas & Georgiadou,
2002). The questionnaire was sent to organisations
developing software for own use or for sale, and
normally kept formal measures of software qual-
ity. In total, 307 questionnaires were completed.
In addition, field-studies were undertaken in
several organisations. In total, 87 interviews were
conducted in Finland, Denmark, and Greece with
software developers at different levels and with
different positions in the organisations. Following
the initial verification phase, observations were
carried out in a Danish organisation for a period
of two months (Siakas et al., 2000). The objective
of using observations was to investigate in more
depth the research problem of organisational and
national culture diversity and their influence on
software quality management practices and to
verify the findings. Amongst other findings, we
proved that there are statistically significant dif-
ferences in the responses on the degree to which
formal quality measures are kept depending on
the country of origin. Figure 4 depicts some of
the research findings.

 From Figure 4 we observe that amongst the
software development organisations taking part

Figure 4. Measures of the quality of the software process

0,00%
5,00%

10,00%
15,00%

20,00%

25,00%
30,00%

35,00%

40,00%
45,00%

50,00%

Greece Finland UK Denmark

not at all
a little
quite a lot
very much so

 37

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

in the study, Greece is the country that keeps
measures of the quality of the software develop-
ment process to the highest degree. The sum of
the values for “quite a lot” or “very much so” is
61.9% for Greece, 44.7% for Denmark, 42.6% for
Finland, and 42.5% for the UK. The significance
of the Chi-square is 0.002, which indicates that the
null-hypothesis, that the responses are similar for
all countries, can be rejected. This means that we
have statistically proved that there are significant
differences in responses depending on country of
origin.

The research study itself was the starting
point to examine and classify in a typology the
different organisational and national cultural
factors and their influence in software qual-
ity management strategies. In what follows
we draw from these conclusions and attempt
their re-framing and examination within the
agile paradigm principles and strategies for
stakeholders’ involvement.

Knowledge creation and transfer in
Agile development

Knowledge is an active part of human working
practice. Malhotra (1997) lists four concerns
regarding knowledge creation in organisations,
namely:

• Dynamic and continuously evolving nature
of knowledge.

• Tacit and explicit dimensions in knowledge
creation.

• Subjective, interpretative, and meaning
making base of knowledge creation.

• Constructive nature of knowledge cre-
ation.

Knowledge evolves continuously as the indi-
vidual adapts to amplifications and innovations
from their peer workmates. Working knowledge is
at a great proportion tacit, which means that people
rely on their earlier experiences, perceptions, and

internalised knowledge instead of expressing
knowledge by explicit procedures. Successive
knowledge creation also requires voluntary ac-
tions including openness, scrutiny, and reluctance
to different views and interpretations.

New knowledge always begins with the indi-
vidual. The individual’s self-interest determines
in which informal knowledge creation processes
to participate (Chen & Edgington, 2005). Indi-
viduals also tend to hoard knowledge for various
reasons (Bock, Zmud, Kim, & Lee, 2005); one
reason being the cultural value system of the team,
organisation, or country (Siakas & Mitalas, 2004).
Within a single culture certain beliefs, values,
procedural norms, attitudes, and behaviours are
either favoured or suppressed (Siakas et al., 2003).
Making personal knowledge available to others is
a central activity in knowledge creation. Explicit
knowledge is formal and systematic, while tacit
knowledge is highly personal (Nonaka, 1998). The
constructive learning process in work places is
revealed through bottom-up knowledge creation
spread from individual to individual in the sociali-
sation process (Nonaka & Takeuchi, 1995).

Because of extensive customer involvement
in the agile development process, and the direct
feedback through frequent face-to-face commu-
nications between customers, representatives,
and developers, there is an efficient transfer of
individual knowledge. Pair-programming, pair-
rotation across programming pairs and feature
teams, and peer-reviews could also facilitate
tacit knowledge creation and transfer (Boehm
& Turner, 2003a, 2003b; Luong & Chau, 2002).
Organisations and teams expect their members
to keep up-to-date by continuously obtaining
internal and external information relating to their
profession. Team members reflect in action, ac-
cumulate, and refine the knowledge required for
completing their tasks (context) through a process
of learning-by-doing (Garud & Kumaraswamy,
2005). Initial tacit knowledge created in the work-
ing practice is only the first step in the organi-
sational knowledge creation process according

38

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

to Nonaka et al. (1995). In addition, knowledge
is sometimes introduced into organisational use
by making it first explicit and then transferring
back to the members of the organisation. In agile
methodologies, this part seems to be disregarded.
Individuals may maximise personal benefit, but
to transform tacit knowledge into organisational
knowledge (if possible) is not an easy task, because
tacit knowledge is human capital that ‘walks out
the door at the end of the day” (Spiegler, 2005).

In order to utilise the individual knowledge
and transfer it into organisational knowledge, the
organisation needs to strategically align organi-
sational learning investment with organisational
value outcome taking into account both current
and future organisational tasks. The organisa-
tion has more control over a formal or structured
knowledge creation process (Chen et al., 2005).
However, deliberate knowledge management
(KM) involves more than sponsorship of initia-
tives at and across different organisational levels
(Garud et al., 2005). It also involves an active
process of causing intended consequences. The
organisational culture, including the organisa-
tional structure, processes, and procedures, is
important for avoiding organisational knowledge
dilution, creating, transferring, and sustaining
organisational knowledge. Recently, there were
indications for an emergent need for integrat-
ing KM and agile processes (Holz, Melnik, &
Schaaf, 2003).

In agile development, documentation is kept
to a minimum (Agile manifesto, 2005). Docu-
mentation is seen as a non-productive and non-
creative task resulting in static documents that
seldom reflect reality and are hardly ever used
after they are created. The question seems to be
how much return on investment (ROI) and added
business value are provided by documentation.
Agile development focuses on executable docu-
mentation, also called agile testing (Pettichord,
2002), namely self-documented code, which is
code including comments, self-describing vari-
able names, and functions, as well as test cases,

needed to accomplish the project. Some high-level
conceptual documentation such as user stories
(short descriptions of features in requirements),
high-level architectural design, and/or documen-
tation of high-risk components are usually also
created to define a contract model or to support
communication with an external part (Amber,
2005). This type of documentation accomplishes
a high-level road map, which can be useful for
projects newcomers and post-mortem analysis.

The close collaboration of team-members,
including stand-up meetings, peer-reviews, pair-
rotation, and pair-programming in agile develop-
ment ensure knowledge of each other’s work and
therefore improve domain knowledge and quality
of the deliverables. Automated documentation
tools, such as design tools, may be used for the fi-
nal documentation, while during the development
frequent iterations would cause version problems
(Manninen et al., 2004). Research has shown that
there is a visible conflict related to the amount of
documentation that should be kept (Karlström &
Runeson, 2005); a balance between how much
work to put into documentation and the usefulness
of documentation has to be found.

customer Involvement vs.
End-user(s) representative or
consensus Participation

The distinction between predictive (plan-driven)
and adaptive (agile) recognises the fact that achiev-
ing plan milestones does not necessarily equate to
customer success (Mellor, 2005). In order to ensure
conformance to requirements, user satisfaction,
and competitive advantage agile development
involves the user in the entire process. However,
customer identification can be difficult, and may
require the identification of suitable internal cus-
tomer representative(s) providing a single point of
contact both for the team and senior management
on a daily basis. The high iteration frequency in
agile development also provides opportunities for
product feedback on conformance to requirements

 39

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

(Karlström et al., 2005). The emphasis on user
viewpoints relating to the characteristics of the
final product (user-centred approach) in combina-
tion with a daily feedback mechanism increases
the rate of feedback on performed work and the
speed of discovering erroneous functionality at
an early development stage (Siakas et al., 2005;
Karlström et al., 2005).

Developer motivation, commitment, and
satisfaction are key elements for success (Abra-
hamsson, 2002; Siakas et al., 2003) due to the
fact that they recognise the actual need of a
quality outcome and to the importance of their
role in the creation process (feelings of personal
ownership). The high iteration frequency also
has consequences for contracts variables, such
as scope, price and time and thus the contracts
need to be flexible (Geschi, Sillitti, & Succi,
2005). This, in turn, may be a drawback for the
customer’s cost-analysis plans.

organisational and national culture
Issues: Is Agility Acceptable and
suitable for all cultures?

The basis of agile development lies in small teams
working in co-located development environments
developing non-safety critical software (Abra-
hamsson, 2005). Agile development relies on
self-directed teams consisting of highly skilled,
motivated, and innovative software engineers,
who are collaborative in team work and self-
organised, active learners. These characteristics
impose a competitive environment with potential
cultural, political, and social implications. Inte-
grating agile approaches and philosophies into
traditional environments with existing “legacy”
staff and processes is difficult (Boehm et al.,
2003a, 2003b). The focus on agility and simplic-
ity, people-orientation, and final product delivery
in agile development indicates many degrees
of freedom and individual skills building. This
is opposed to process orientation and maturity
approaches through frameworks of policies and

procedures, organisational rules, and regulations
that empower developers and technical staff by
giving a back-to-basics sense to their work (Boehm
et al., 2003a, 2003b; DeMarco & Boehm, 2002;
Karlström et al., 2005). Competent agile teams
that possess the necessary mix of technical skills,
people expertise, and agility are built on cohesive
team environments and are committed to the com-
mon goals. However, generating group identity
may prove difficult (Boehm et al., 2003a, 2003b).
The main issues though seem to be changes in
values and attitudes in organisational culture and
function and synchronisation of teams based on
communication, leadership, and trust (Jäkälä &
Berki, 2004). The larger the organisation and the
more traditional, the more difficult is a cultural
change in the organisation (Siakas, 2002).

The agile approach to software development
has the characteristics of a group of people that
differentiate themselves from others through a
whole set of shared values, visions, principles,
ideals, practices, etc, that emerge in the interac-
tion between members of a group. The extreme
programming (XP) pioneers for example, draw at-
tention to four XP values, namely, communication,
simplicity, feedback, and courage, the underlying
basis for the 12 principles which are translated
into practices (Robinson & Sharp, 2003). These
practices are the artefacts of the XP culture.

Having a consistent culture is important for
consensus and agreement, as well as for avoid-
ance of friction due to cultural clashes within
the team and the whole organisation. The social
characteristics of the team members are important.
Employment of technically highly competent and
competitive software professionals generates the
basis for the creation of a strong team/organisa-
tional culture. The agile culture requires active
involvement of all team members and seems to be
most suitable in Democratic-type of organisations,
which have horizontal hierarchy emphasising
flexibility and spontaneity (Siakas et al., 2000).
This type of organisation generates initiative and
responsibility approaches; the leadership style is

40

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

that of coordination and organisation. The organi-
sation has flexible rules and problems are solved by
negotiations. Employees are encouraged to make
contribution to the decision-making process and
to the development of the organisation in gen-
eral. Democratic organisations can be said to be
people-oriented. Examples of countries belonging
to the Democratic type are some Scandinavian
countries, Anglo-Saxon countries, and Jamaica
(Siakas et al., 2000).

The globalisation of software development,
involving virtual teams and offshore outsourc-
ing, increases complexity. The management of
large, global organisations, dependent on people
with different underlying norms, values, and
beliefs, experiences difficulties when applying
traditional management approaches (Siakas et
al., 2005). Despite significant improvements in
ICT, the complexity will increase even more if
agile software development is introduced in such
global settings. By nature, agile development
facilitates pair-programming, pair-reviews,
and pair-rotation, and thus, could not be fa-
cilitated among virtual teams. Additional na-
tional differences in working values, attitudes,
and time-zone differences will be difficult to
overcome.

Having to consider so many differences and
desires for empowerment of developers and end-
users, suitability and applicability of an agile
method in a particular organisational, cultural,
or national setting still remains questionable.
Moreover, method customisation and adaptability
issues are not completely resolved for maximum
designer and end-user involvement. XP (and most
other agile methods) empower developers to con-
fidently respond to and test changing customer
requirements, even late in the life cycle (Beck,
2002; Holcombe, 2005). Acceptance of changes
also empowers the customers but do additional
customer requirements violate the requirements
specification and do they invalidate previous
modelling efforts? Unless, of course, the require-
ments specification is empowered by a method

which is flexible, customisable to designers and
to end-users needs. This, of course, moves the
problem to a more abstract level, that of method
metamodelling and method engineering. The next
section explores these issues further in the context
of this chapter and of this book.

tHE nEEd For ForMAL
MEtAModELLInG And AGILE
MEtHod EnGInEErInG
PrIncIPLEs WItH suItAbLE tooL
suPPort

Assuming that the benefits of using agile methods
are remarkable and unquestionable, how could
practitioners and software project managers
choose among agile and non-agile methods? How
could someone evaluate the “agility” or “agile-
ness” of an agile method as this is defined in the
agile manifesto (2005) (Cockburn, 2004), and as
is defined by many other supporters? Moreover,
how could systems analysts and designers con-
struct and/or adopt an agile method if they are
not fully satisfied with the ones currently avail-
able? Otherwise, how could the quality proper-
ties of requirements changeability (and therefore
specification modifiability), implementability
(and therefore specification computability), and
frequent deliverable artefacts’ testability be es-
tablished and assured? The answer(s) probably lie
in utilising cost-effective technology and existing
MetaCASE tools (Berki, 2004). Implementability,
changeability, and testing, as hinted in the agile
manifesto and as praised by the agile methodol-
ogy supporters, are considered as the significant
difference quality properties offered in agile
software development teams. Moreover, and
turning to soft issues of collaboration and com-
munication between end-users and IS designers,
how could the properties of communicability and
synergy among stakeholders be ensured for the
agile method to be used?

 41

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Because method, application, software, and
process engineers want to create their own
knowledge-oriented methods, document their
own tool environment, and design their software
development processes, they frequently resort
to metamodels and method engineering (ME)
principles (Berki, 2001). In so doing, assurance
is granted for customised and flexible methods
and for maximum designer involvement and user
participation (Berki, 2004, 2006; Georgiadou
et al., 1998). Bridging the gaps that traditional
non-agile design methods created, the utilisation
of MetaCASE and computer-assisted method en-
gineering (CAME) tools (Berki, 2001; Tolvanen,
1998) for the evaluation and/or construction of
an agile process model (method) could be the
answer to the quality assurance required for agile
methods.

Agileness and its Meaning in terms
of Method Engineering

Representing the rules of metamodelling and
method engineering in the context of MetaCASE
(CASE-Shells) and CAME tools, a proposal to
model agile and formal process models in CAME
environments requires to utilise meta-design
knowledge patterns that facilitate collaboration
and interaction. In order to construct an agile
method, many quality properties such as the ones
previously mentioned are required.

Method flexibility and adaptability to accom-
modate changes is of foremost importance. When
requirements, specifications, and programming
artefacts undergo changes after frequent end-users
feedback, methods’ models and techniques need
to be extended and integrated in order to facilitate
the accommodation of new stakeholders’ needs.
Expressing and understanding method techniques
and models in terms of their dynamics requires the
utilisation of formal meta-concepts to define new
representations of a method syntactically and se-
mantically. Furthermore, a generic and agile method
model should possess computational characteristics

for facilitating frequent future implementations and
their redesign in a testable way (Berki, 2001).

the need for Agile Method
Engineering (AME) with cAME tools

The expansion and use of agile methods and the
associated technology gave rise to more demand-
ing modelling processes among the ISD stakehold-
ers. On the one hand, the need for preserving the
consistency, correctness, and completeness of
the associated artefacts of every developmental
stage indicated the need for advanced software
and groupware tool use and shared and agreed
work and method models for communication and
collaboration. On the other hand, more abstrac-
tion, analytical, and communication skills are
constantly required to collaborate with a variety
of stakeholders. These integrated requirements
assisted in realising the need for more coopera-
tion and interaction in the IS life cycle and, at the
same time, the need to capturing the computational
characteristics and the dynamic knowledge of a
method. The diverse cognitive needs of human
behaviour and interaction (Huotari & Kaipala,
1999), in particular, gave rise to expressive soft-
ware systems modelling through shared process
models that represent agreed views. People
change and their opinions and requirements con-
stantly change, too. Systems engineers that use
agile methods need evolutionary and expandable
models to capture modelling concepts and com-
municate them with others (Berki, 2004).

Existing MetaCASE technology offers to
humans possibilities to formalise the systems
development processes and lead to standardisation
and integration of agile methods and tools with
quality assurance procedures. The great chal-
lenges though of MetaCASE technology will be
to provide guidance on implementation strategies
and facilitate the requirement for testing of agile
modelling processes and products. Some of the
MetaCASE tools that can be used to construct
agile methods in a dynamic and computational

42

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

way are CoCoA (complex covering aggregation),
MetaView, NIAM (Nijssen’s information analysis
method), and Object-Z. Not all, though, are fully
automated for complete use as MetaCASE tools.
Moreover, they do not offer method testability
(Berki, 2004, 2006). The exception is MetaEdit+, a
multi-method, and a multi-tool CASE and CAME
platform, which offers the modelling power to
construct an agile method with its method work-
bench to varying degrees of support (Kelly et al.,
1996; Tolvanen, 1998;).

A Formal Method Workbench to
built-In Quality When constructing
Agile Methods

MetaEdit+ establishes a versatile and powerful
multi-tool environment that could enable flexible
creation, maintenance, manipulation, retrieval,
and representation of design information among
multiple developers. MetaEdit+ is a multi-user
tool constructed to involve as many possible
developers and multi-users in a flexible creation
of, a suitable to their needs, method. The tool
has been used worldwide in academia and in in-
dustry but it has mainly been utilised in systems
development in Scandinavian countries, that is
the democratic type of countries (see previous
section entitled: “Organisational and National
Culture Issues: Is Agility Acceptable and Suitable
for all Cultures?”).

Being of such nature and created to address
the needs for participation and maximum user
involvement, MetaEdit+ could point to and ap-
praise the suitability and applicability of an agile
method with respect to stakeholders’ needs. As
a computer aided method engineering (CAME)
environment with a method workbench, it offers
an easy-to-use, yet powerful environment for
agile method specification, integration, change
management, and re-use (Kelly, et al., 1996;
Rossi, 1998; Tolvanen, 1998). The tool could also
facilitate method implementations in a computable

manner and could provide capture of frequently
changing requirements and testing (Berki, 2001,
2004), both requirements of foremost importance
in agile systems development. For instance, at
MetaEdit+ an agile method (and any method)
could be represented as a Graph, Table, or Ma-
trix, having the following semantic and syntactic
meta-design constructs:

• Graphs: Sets of graphical objects and their
connections.

• Objects: Identifiable design entities in every
technique/method.

• Properties: Attributes of graphs, objects,
relationships, and roles.

• Relationships: Associations between ob-
jects.

• Roles: Define the ways in which objects
participate in specific relationships.

The method workbench is a significant part of
MetaEdit+ tool. The basic architectural structure
that is used to create the products of all levels
(i.e., methods and their instances) is GOPRR. As
outlined earlier, GOPRR recognises in a method’s
generic structure (and therefore in its instances)
the semantic concepts of objects and relationships,
which both possess properties and roles. When
creating new method specifications in MetaEdit+,
the metamodeller should firstly concentrate on
the constructs of a method (Kelly, et al., 1996;
Rossi, 1998; Tolvanen, 1998). In doing so, he or
she must use the GOPRR metamodel to guide
the whole metamodelling process as well as the
assisting drawing, hypertext, etc. tools that are
offered with MetaEdit+ and are depicted in the
MetaEdit+’s architecture, which is presented in
Appendix B.

Naturally, this way of metamodelling offers
a degree of integration but limited expressability
for data and process dynamics. Methods are pro-
cess models that transform data continuously but
very few dynamic methods exist in MetaCASE

 43

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

tool support (Berki, 2004; Tolvanen, 1998). And,
finally, formalised generic guidelines of a “process
for modelling an agile method” together with
formal testing procedures and suitable method
engineering metrics should be incorporated in
the meta-design process of the next generation
of MetaCASE and CAME tools. Furthermore,
hypertext facilities are under development in order
to express explicit knowledge (knowledge about
method’s constructs) more accurately but also
facilitate the expression of tacit knowledge, that
is the feedback mechanisms and opinions among
stakeholders at many different levels.

the need for an Agile, Formal,
Generic Metamodel

It is argued that computability and implementation
issues in method metamodelling can be captured
with more abstract and classic computational mod-
els (Berki, 2001; Holcombe & Ipate, 1998). With
this choice, the method’s computational quality
properties can be documented and communicated
as implementation details for the system design-
ers, when the purpose is to analyse the given
stakeholders needs and design and implement
them into a software system. Such a facility can
be offered by the CDM-FILTERS model (Berki,
2001), which provides an integrated specification
platform for agile software development with the
agile paradigm qualities and values (see again
Tables 1 and 2).

CDM-FILTERS stands for a Computational
and Dynamic Metamodel as a Flexible and Inte-
grating Language for Testing, Expressing, and Re-
engineering Systems. It was constructed as a result
of a large survey in metamodelling technology
and existing MetaCASE and CAME tools and as a
promise to overcome severe limitations that were
observed in software development with traditional
information systems development methodologies
in the last 40 years (see Figure 1). As a metamodel,
CDM-FILTERS is based on machines (general
finite state machines) that provide the inherent

quality properties of changeability as dynamic
models and specification computability by deriv-
ing implementable designs. Moreover, machines
are testable computational models, known for the
finite state machine standard procedure for test-
ing in early phases of specification and design.
As a framework, CDM-FILTERS recognises the
evolutionary and frequently changing nature of
systems and their stakeholders and facilitates stan-
dard feedback and communication mechanisms
among them. (Berki, 2001, 2004).

Thus, with CDM-FILTERS as an agile method
engineering instrument, it will be possible to
evaluate and integrate existing methods and build
and test methods by revealing and testing at the
same time the implementation details of the pro-
totype code that needs to be frequently released.
This conceptual computational modelling, which
is hereby suggested for agile software development
processes, is based on dynamic metarepresenta-
tions of methods, and is achieved by capturing
the method’s pragmatics, semantics, and syntax
as machines specifications, which are general,
dynamic, and testable computational models
(Berki, 2001, 2004). This systemic (holistic)
metamodelling and process-based approach can
offer a smooth transition between the systems
development phases by improving the communi-
cation channels for stakeholders in requirements
engineering and re-engineering, and by mapping
the exact testable artefacts of one stage to those of
the next (Berki, 2001), which is a major challenge
in traditional software systems engineering and
in the agile software development processes.

dIscussIon, concLusIVE
rEMArKs, And FuturE
rEsEArcH consIdErAtIons

In identifying the reasons for the popularity of
agile methods and state-of-the-art in software
engineering, we examined the quality of agile
software development processes and analysed

44

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

socio-technical and organisational factors related
to quality information systems and stakeholders’
involvement and satisfaction. Contemporary
agile methods, compared to traditional software
development methods, still need to demonstrate
further practicality, applicability, their “generic”
suitability, and finally, their potential for quality
assurance. Some research projects from industry
and academia (Abrahamsson et al., 2002; Berki,
2004; Sfetsos, Angelis, Stamelos, & Bleris, 2004)
mostly report on the advantages of agile methods.
Supporters of agile methods, though, must provide
convincing answers to questions such as what is
the quality of the software produced, or which
evidence supports the superiority of agile quality
attributes over pure scientific reasoning as this is
employed in traditional SE development methods
and software tools that support them?

There has been little research work that focuses
on agile software development quality issues,
while limited industrial practice, often contra-
dicted by the academia, disproves the benefits
claimed from agile method(ology) use. Moreover
and more often the evidence of the superiority
of the agile methods, coming from academia or
industry, are contradicting and bound to other un-
controlled experimental factors. Certainly, opin-
ions and observations on agile development have
not been derived from formal measurements. No
matter how strong the beliefs on the applicability
and suitability of agile methods are, these remain
subjective claims, and they do not constitute a
formal proof of the agile method deployment or,
rather, of the quality function deployment.

The XP community, for instance, believes
that design information should allow the design
to be captured in a form that is machine process-
able and the components to be reused smoothly
integrated. However, software development tools
should control the management of this agile
development process, enabling the top-down
development of applications up to code genera-
tion and bottom-up development to include and
provide for reengineering of existing codes, fully

integrated with the development environment.
Furthermore, MetaCASE and CAME tools should
be foremost utilised to construct an agile, flexible
to the stakeholders and especially to end-users
needs, development method.

Societal norms, which are expressed by the
value system shared by the majority of a society,
have influenced the development of structures and
ways of functioning of organisations (Hofstede,
2001). People in a particular organisational set-
ting or software development team share values,
beliefs, attitudes, and patterns of behaviour (or
not!). The agile approach can be considered to be
a culture in its own right aiming at socially-con-
structed and user-accepted software. The question
of course remains open if the socially-constructed
part of reality suits for agile method engineer-
ing. The literature examined in this chapter has
suggested that higher customer involvement also
results in higher quality, especially in terms of
meeting requirements. Agile methodologies em-
phasise user satisfaction through user participa-
tion, recognition of and response to continuous
changing requirements, and frequent delivery
of products together with adaptive and iterative
software development by self-organising teams,
which recognise that team-members are compe-
tent professionals, able to choose and follow an
adaptive process. A further research question that
rises is to which degree agile methods cater for
representative and consensus end-user participa-
tion like the traditional ETHICS methodology (see
in Mumford, 1983; 2003) caters for? Maximum
stakeholder and user involvement in an agile
development process does not necessarily mean
maximum end-user involvement. Otherwise,
end-users are not very willing to frequently pro-
vide feedback on software artefacts and other
devliverables. Hence, usability engineering and
cognitive systems engineering principles need
to be taken onboard for an agile, holistic design
process that encounters human beings, their
opinions and feelings.

 45

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Frequent delivery of product (incremental),
user-involvement, and adaptability to changing
or erroneously understood requirements has in
recent years been the domain of agile software
development. Maintainability, reliability, pro-
ductivity, and re-engineering issues are all con-
nected to timeliness, which is a demand of agile
software development by adopting a frequent
product release approach in shorter deliverable
cycles. Timeliness and how it is achieved is an
issue that has not been adequately researched.
Hence, the answer to the question whether agile
methods are time-consuming or time-effective
remains open for future investigation.

As exposed in this chapter, process and product
metrics are useful indicators of improvement.
Direct measures of internal characteristics are
by far the easiest to obtain. However, external
characteristics (such as commitment, job satisfac-
tion, user satisfaction, and knowledge transfer)
are complex and often not measurable in simple
terms. Measurement activities can only be suc-
cessful if the development process is mature. This
presupposes commitment at all levels within an
organisation. Knowledge creation and experi-
ence sharing could be formalised and reused in
a continuously improving cycle.

A further emerging research question is how
will agile methods accommodate the need to keep
metrics with the philosophy of minimal documen-
tation? We propose that the use of automated data
capture will improve the process and ultimately
the product. Future research should probably point
to an agile collection of metrics rather than agile
metrics, that is the agility will be shifted in the
process and not in the actual product metrics, in
order to overcome the dangers inherent in the
agile philosophy of minimal documentation.
These can, perhaps, be addressed by automation
tools, efficient ways of data/feedback collection,
data/information organisation, organisational
memory information systems, procedures for
making knowledge explicit, data mining, and

requirements changed versions documentation
procedures.

Extensions of agile methods constructs,
through metamodelling and method engineering
principles, to include metrication procedures and
be supported by automated tools is also possible
in future. The latter could prove particularly fruit-
ful for continuous recording of product metrics
to draw comparisons before and after re-factor-
ing. In general, software tools that could support
agile methods and agile processes need to be rich
in communication and collaboration features in
order to realise participative design decisions and
requirements management challenges. According
to Damian and Zowghi (2003), who report on a field
study with cross-functional stakeholder groups,
requirements management in multi-site software
development organisations, due to increasing
globalisation of the software industry, demands
to address the following groups of problems: (i)
cultural diversity, (ii) inadequate communication,
(iii) ineffective knowledge management, and (iv)
time zone differences. The previous resulted in
inadequate participation, difficulties in require-
ments’ common understanding, delays in deliver-
ables, ineffective decision-making meetings, and a
reduced level of trust, to name just but a few, real
software development stakeholders’ problems.

We propose that in an agile, global software
development, situations similar to the previously
mentioned problematic circumstances could be
supported by suitable groupware, hypertext, e-
mail, video-conferencing, or other stakeholder-
and end-user-centred information and commu-
nication technologies. These process quality-ori-
ented facilities could allow them to inform and be
informed on requirements’ change, express own
opinions, and willingly provide feedback upon
frequent information retrieval on the product’s
development progress. Equally important is to
have access to reports on similar success or failure
stories on agile development project teams. Such
reports will allow a deeper study to the levels of

46

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

knowledge, communication, and trust that are
required to operate in a project team.

According to Holcombe et al. (1998), there
is little empirical evidence of the superiority of
one method over another and that can be seen
clearly in large-scale projects where methodologi-
cal problems are more obvious. Moreover, there
seems to be a crisis of intellectual respectability in
the method selection and evaluation subject. Not
only the evaluation and quality assurance of the
methods under use are weak, the selection of the
types of system and problem to focus on (method
application domain) restricts the suitability and
applicability of any method. In order to convince,
in a scientific manner, that a method A is better
than a method B in large design projects (where
most of the problems really lie), we must present
rigorous evidence drawn from carefully controlled
experiments of suitable complexity. This is, more
or less, impossible in practical terms. Is there
an alternative approach? The use of theoretical
models of computing systems can provide some
alternative approaches (Berki, 2001; Berki, 2006;
Holcombe et al., 1998).

The interest for agile methodology designers,
therefore, should be in identifying and using
general and understandable, groupware-oriented
structures that adequately capture the features
of changeable specifications, testable computa-
tions, collaboration and feedback mechanisms for
frequent communication. This can be achieved
in terms of specialised and sufficiently general
design structures that can capture the richness
and testedness of domain specifications, consid-
ering at the same time people’s cognitive needs
(Huotari et al., 1999) and maximum participation
and, therefore, empowerment (Berki, 2001). On
the other hand, it is important for the various IS
stakeholders to state clearly their objectives and
expectations from the software products, in order
for agile software developers to respond to these
characteristics and define the agile final product
and agile work processes with features that reflect
these required objectives.

Yet, links, opinions, and insights from various
related contexts and contents need to be provided
for agile software development teams to reach a
level of maturity. Notwithstanding the culture of
the agile methods paradigm promotes significant
working values and exposes scientific knowl-
edge principles in software and IS development
that have not been combined and utilised in a
similar way before. In order, however, for agile
methodologies to finally present an integrated
solution based on holistic communication rules
within appropriate structures, researchers will
have to answer a future research question. That
will need to capture the modelling of the seman-
tics, pragmatics, and semiotics of systems’ and
stakeholders’ requirements and thus provide the
scientific ground for usability engineering in dif-
ferent cultural contexts.

It is questionable and not, yet, clear if agile
and lightweight methods cater for a flexible,
lightweight quality or if traditional development
methods provide scientific reasoning that is not
offered by agile methods. The latter is probably
inherent in the nature of agile methodology since it
is considered a cooperative game of invention and
communication that utilises poetry, Wittgenstein’s
philosophical concepts, and participative games
(see Cockburn, 2002). Cockburn (2002) further
defines agile software development as the use of
light but sufficient rules of project behaviour and
the use of human and communication-oriented
rules. On the other hand, “agility” is described as
dynamic, context-specific, aggressively change-
embracing, and growth-oriented. “It is not about
improving efficiency, cutting costs, ... It is about
succeeding in emerging competitive arenas, and
about winning profits, market share, and custom-
ers ...” (Goldman, Nagle, & Preiss, 1995).

In assisting developers to make judgements
about the suitability and applicability of agile
development methods, Miller and Larson (2006)
support that the intentions of an actor are vital to a
further deontological analysis, while a utilitarian
analysis forces a broad view of who is affected

 47

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

by an act. Hence, further utilitarian analysis will
assist software engineers to think professionally
about the consequences for other stakeholders
and especially consider the end-users consensus
participation, while a deontological viewpoint will
always guarantee a “proper,” ethical decision.

suMMArY

This chapter examined and analysed the trends
and challenges that exist in traditional software
development and in agile software development,
in a critical manner. The chapter concluded by
committing to the motivation and accomplishment
of the agile manifesto initial expectations and
ambitions, that is the consideration of a flexible
approach in software development by adopting
scientific and communication principles for
ISD. The belief that these aims can be achieved
is emphasised by the suggestion of utilising
metamodelling and ME technology. For instance,
the generic process architectural constructs of
the CDM-FILTERS metamodel encapsulate both
communicative and scientific quality properties,
which can be utilised in agile method engineer-
ing. The latter can automatically be utilised by
MetaCASE and CAME tools, which offer an ad-
equate platform that support stakeholder-centred
and -originated quality requirements for a flexible
construction of agile methods.

This work supports the combination of creative
intuition and engineering principles to transform
stakeholders’ requirements to adequate human-
centred information systems. Stakeholders’
needs will be mirrored successfully in a natural,
smooth, and unambiguous manner, if the software
artefacts’ transformation will be based on agile
methods that serve as a communicative platform
for understanding, and offer total quality assur-
ance.

Considering that commercial applicability
with scientific reasoning is likely to increase in
ongoing research, the development perspectives

for collaborative business values and academic
values will, in turn, maximise the likelihood of
suitable ISD methods. The ultimate contribu-
tion of this analysis could be a critical thinking
framework that will provide a dialectical instru-
ment for re-assessing and re-framing the potential
applicability and suitability of agile methods
construction and adoption. That metacognitive
and meta-constructivist method knowledge itself
could give agile, improved ways of work to evalu-
ate and model information systems and people’s
needs in a scientific and progressive manner.

rEFErEncEs

Abrahamsson, P. (2002). The role of commitment
in software process improvement. PhD thesis,
University of Oulu, Department of Information
Processing Science and Infotech, Finland.

Abrahamsson, P. (2005). Project manager’s
greetings: Agile greetings. Agile Newsletter,
1(1), 2004.

Abrahamsson, P., Salo, O., Ronkainen, J., &
Warsta, J. (2002). Agile software development
methods: Review and analysis. Espoo, Finland:
VTT Publications.

Agile COCOMO Web site. (2006). Retrieved May
3, 2006, from http://sunset.usc.edu/cse/pub/re-
search/AgileCOCOMO/

Agile Manifesto Web site. (2005). Retrieved
November 27, 2005, from http://www.agilema-
nifesto.org/

Amber, S. (2005). Agile documentation: Strate-
gies for agile software development. Retrieved
November 28, 2005, from http://www.agilemodel-
ing.com/essays/agileDocumentation.htm

Avison, D., & Fitzgerald, G. (2003). Information
systems development: Methodologies, techniques,
and tools (3rd ed.). UK: McGraw-Hill Publishing
Company.

48

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Avison, D., & Wood-Harper, T. (1990). Mul-
tiview: An exploration in information systems
development. Oxford: Blackwell Scientific Pub-
lications.

Beck, K. (2000). Extreme programming ex-
plained: Embrace change. Reading, MA: Addison
Wesley Longman.

Beck, K. (2001). Extreme programming explained.
Software Quality Week, San Francisco, May.

Beck, K. (2003). Test driven development: By
example. Boston: Addison Wesley.

Beck, K., & Fowler, M. (2001). Planning extreme
programming. Boston: Addison Wesley.

Beizer, B. (1995). Foundations of software testing
techniques. The 12th International Conference
& Exposition on Testing Computer Software,
Washington, DC.

Beizer, B. (1990). Software testing techniques (2nd
ed.). Van Nostrand Reinhold.

Bell, S., & Wood-Harpet, A. T. T. (1992). Rapid
information systems development: A non-special-
ist’s guide to analysis and design in an imperfect
world. McGraw-Hill.

Berki, E., (2004). Formal metamodelling and agile
method engineering in MetaCASE and CAME
tool environments. In K. Tigka & P. Kefalas (Eds.),
The 1st South-East European workshop on formal
methods. Thessaloniki: SEERC.

Berki, E. (2006, March). Examining the quality
of evaluation frameworks and metamodeling
paradigms of information systems development
methodologies. In E. Duggan & H. Reichgelt
(Eds.), Measuring information systems delivery
quality. Hershey, PA: Idea Group Publishing.

Berki, E., Georgiadou, E., & Holcombe, M. (2004).
Requirements engineering and process modelling
in software quality management: Towards a ge-
neric process metamodel. The Software Quality
Journal, 12, 265-283.

Berki, E., Georgiadou, E., & Siakas, K. (1997,
March 7-9). A methodology is as strong as the user
involvement it supports. International Symposium
on Software Engineering in Universities – ISSEU
97 (pp. 36-51). Rovaniemi.

Berki, E., Isomäki, H., & Jäkälä, M., (2003).
Holistic communication modeling: Enhancing
human-centred design through empowerment. In
D. Harris, V. Duffy, M. Smith, & C. Stephanidis
(Eds.), Cognitive, social, and ergonomic aspects
(Vol. 3 of HCI International) (pp. 1208-1212). Her-
aklion, Crete: Lawrence Erlbaum Associates.

Berki, E., Lyytinen, K., Georgiadou, E., Hol-
combe, M., & Yip, J. (2002). Testing, evolution,
and implementation issues in metacase and
computer assisted method engineering (CAME)
environments. In G. King, M. Ross, G. Staples, &
T. Twomey (Eds.), Issues of quality management
and process improvement. The 10th International
Conference on Software Quality Management,
SQM02. Limerick: Computer Society.

Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee,
J. N. (2005). Behavioural intention formation
in knowledge sharing: Examining the roles of
extrinsic motivators. Socio Psychological Forces
and Organisational Climate. MIS Quarterly, 29(1),
87-111, March.

Boehm, B. W. (1981). Software engineering eco-
nomics. Prentice Hall.

Boehm, B., & Turner, R. (2003a). Using risk to
balance agile and plan-driven methods. Computer,
36(6), 57-64.

Boehm, B., & Turner R. (2003b). Balancing agility
and discipline: A guide for the perplexed. Addison
Wesley Professionals.

Burr, A., & Georgiadou, E. (1995). Software
development maturity—a comparison with other
industries (5th ed.). World Congress on Total Qual-
ity, India, New Delhi.

 49

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Checkland, P. (1981). Systems thinking, systems
practice. Chichester, UK: Wiley.

Checkland, P., & Scholes J. (1990). Soft systems
methodology in action. Toronto: John Wiley &
Sons.

Chen, A. N. K., & Edgington, T. M. (2005).
Assessing value in organizational knowledge
creation: considerations for knowledge workers.
MIS Quarterly, 29(2), 279-309.

Cockburn, A. (2004). Agile software development.
Cockburn-Highsmith Series. Addison-Wesley.

COCOMO Web site. (2006). Retrieved May 3,
2006, from http://sunset.usc.edu/research/coco-
mosuite/index.html

Conner, K., & Prahalad, C. (1996). A resource-
based theory of the firm: Knowledge versus op-
portunism. Organization Science, 7(5), 477-501.

Couger, J. D., & Adelsberger H. (1988). Compar-
ing motivation of programmers and analysts in
different socio/political environments: Austria
compared to the United States. Computer Person-
nel, 11(4), 13-17.

Couger, J. D., Borovitz, I., & Zviran, M. (1989).
Comparison of motivating environments for
programmer/analysts and programmers in the
U.S., Israel, and Singapore in Sprague. In R/H.
JR (Ed.), Proceedings of the 22nd Annual Hawaii
International Conference on Systems Sciences
(pp. 316-323). Washington, DC: IEEE Computer
Society Press.

Couger, J. D., Halttunen, V., & Lyytinen, K.
(1991). Evaluating the motivating environment in
Finland compared to the United States—a survey.
European Journal of Information Systems, 1(2),
107-112.

Dalcher, D., & Genus, A. (2003). Avoiding IS/IT
implementation failure. Technology Analysis and
Strategic Management, 15(4), 403-407.

Damian, D. E., & Zowghi, D. (2003). RE challenges
in multi-site software development organisations.
Requirements Engineering, 8(3), 149-160.

DeMarco, T. (1982). Controlling software proj-
ects: Management, measurement, & estimation.
Englewood Cliffs, NJ: Prentice Hall.

DeMarco, T., & Boehm, B. (2002). The agile
methods fray. Computer, 35(6), 90-92.

Deming, W. E. (1986). Out of the crisis: Quality,
productivity, and competitive position. MA.

Dorling, A. (1993). Spice: Software process im-
provement and capability determination. Software
Quality Journal, 2(93), 209-224.

Dubinsky, Y., Talby, D., Hassan, O., & Keren,
A. (2006). Agile metrics at the Israeli Air force.
Retrieved January 21, 2006, from http://www.
cs.huji.ac.il/~davidt/papers/Agile_Metrics_Ag-
ileUnited05.pdf

Fenton, N. (1991). Software metrics—A rigorous
approach. Chapman & Hall.

Fenton, N., & Pfleeger, S. (1997). Rigorous &
practical approach. PWS Publishing Company.

Fowler, M. (1997). UML distilled. Addison
Wesley.

Fowler, M. (1997). Analysis patterns: Reusable
object models. Addison Wesley.

Fowler, M. (1999). Refactoring: Improving the
design of existing code. Addison-Wesley.

Garud, R., & Kumaraswamy, A. (2005). Vi-
cious and virtuous circles in the management
of knowledge: The case of Infosys technologies.
MIS Quarterly, 29(1), 9-33, March.

George, M. (2003). Lean six sigma for service: how
to use lean speed and six sigma quality to improve
services and transactions. McGraw Hill.

50

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Georgiadou, E. (2003a). GEQUAMO—A Ge-
neric, Multilayered, Customisable, Software
Quality Model. Software Quality Management
Journal, December

Georgiadou, E., (2003b). Software Process and
Product Improvement: A Historical Perspec-
tive. Cybernetics, and Systems Analysis, 11(4),
125-142.

Georgiadou, E., & Keramopoulos, E. (2001, April).
Measuring the understandability of a graphical
query language through a controlled experiment.
The 9th International Conference on Software
Quality Management, SQM 2001, University of
Loughborough, UK.

Georgiadou, E., & Milankovic-Atkinson, M.
(1995, November). Testing and information sys-
tems development life cycles. The 3rd European
Conference on Software Testing Analysis and
Review (EuroSTAR’95), London.

Georgiadou, E., & Sadler, C. (1995, April). Achiev-
ing quality improvement through understanding
and evaluating information systems development
methodologies. The 3rd International Conference
on Software Quality Management, SQM’95,
Seville, Spain.

Georgiadou, E., Hy, T., & Berki, E. (1998). Auto-
mated qualitative and quantitative evaluation of
software methods and tools. The 12th International
Conference of the Israel Society for Quality,
November-December, Jerusalem.

Georgiadou, E., Karakitsos, G., & Sadler, C.
(1994b). Improving the program quality by us-
ing the re-engineering factor metric ρ. The 10th
International Conference of the Israel Society for
Quality, November 1994.

Georgiadou, E., Karakitsos, G., Sadler, C., Sta-
sinopoulos, D., & Jones, R. (1994a). Program
maintainability is a function of structuredness.
Software Quality Management. Edinburg, Scot-

land: Computational Mechanics Publications,
August 1994.

Georgiadou, E., Siakas, K., & Berki, E. (2003).
Quality improvement through the identification
of controllable and uncontrollable factors in
software development, EuroSPI 2003 (European
Software Process Improvement Conference) (pp.
IX-45), Graz, Austria, 10-12.

Geschi, M., Sillitti, A., Succi, G., & Panfilis, G.
(2005). Project management in plan-based and
agile companies. IEEE Software, 22(3), 21-27

Gilb, T. (2006). Software project management,
adding stakeholder metrics to agile projects.
Retrieved January 21, 2006, from http://www.
gilb.com/Download/AgileEvo.pdf

Goldman, S., Nagle, R., & Preiss, K. (1995).
Competitors and virtual organisations. New York:
John Wiley & Sons.

Grieves, M. (2005). Product life cycle manage-
ment driving the next generation of lean thinking,
McGraw-Hill.

Haase, V. H. (1992, May). Bootstrap: Measuring
software management capabilities. First Find-
ings in Europe. Proceedings of the 4th IFAC/IFIP
Workshop, Austria.

Haase, V., & Messnarz, R. (1994). Bootstrap:
Fine-tuning process assessment. IEEE Software,
11(4), 25-35.

Hennell, M. A. (1991). How to avoid systematic
software testing, Software Testing. Verification
Reliability, 1(1), 23-30.

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J.,
& Zubrow, D. (1994). Benefits of CMM-based
software process improvement: Initial results.
Technical Report, CMU/SEI-94-TR-13, August.

Hofstede, G. (2001). Culture’s consequences:
Comparing values, behaviours, institutions,

 51

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

and organisations(2nd ed.). Thousand Oaks, CA;
London: Sage Publications.

Holcombe, M. (2005, June 18-23). Extreme
programming and agile processes in software
engineering. The 6th International Conference,
XP 2005, Sheffield, UK (Lecture Notes in Com-
puter Science).

Holcombe, M., & Ipate, F. (1998). Correct systems:
Building a business process solution. Springer-
Verlag.

Holmes M. C. (1995). The relationship of cross-
cultural differences to the values of information
systems professionals within the context of systems
development. PhD dissertation, Denton, Texas.

Holz, H., Melnik, G., & Schaaf, M. (2003).
Knowledge management for distributed agile pro-
cesses: models, techniques, and infrastructures.
The 1st Workshop on Knowledge Management
for Distributed Agile Processes: Models, Tech-
niques, and Infrastructures, June 9-11, Germany.
Retrieved January 25, 2006, from http://www.
dwm.unihildesheim.de/homes/schaaf/WET-
ICE03/content.html

Humphrey, W. (1995). A discipline for software
engineering. Reading, MA: Addison Wesley.
Huotari, J., & Kaipala, J. (1999). Review of HCI
research—Focus on cognitive aspects and used
methods. Proceedings of T. Kakola (Ed.), IRIS 22
Conference: Enterprise Architectures for Virtual
Organisations. Jyvaskyla, Finland, Keuruselka:
Jyvaskyla University Printing House.

Imai, M. (1986). Kaizen, the key to Japan’s com-
petitive success. The Kaizen Institute.

ISO. (2005). Retrieved November 16, 2005, from
http://www.iso.org/

Ives, B., & Järvenpää, S. (1991). Applications
of global information technology: Key issues
for management. MIS Quarterly, 15(1), 33-49,
March.

Jackson, M. (1994). Problems, methods, and
specialisation. Software Engineering Journal,
9(6), 249-255.

Jäkälä, M., & Berki, E. (2004, March 24-26).
Exploring the principles of individual and group
identity in virtual communities. In P. Commers,
P. Isaias, & N. M. Baptista (Eds.), Proceed-
ings of the 1st IADIS Conference on Web-Based
Communities (pp. 19-26). Lisbon: International
Association for the Development of Information
Society (IADIS).

Järvinen, J. (1994). On comparing process assess-
ment results: BOOTSTRAP and CMM. Software
Quality Management, SQM94 (pp. 247-261),
Edinburgh.

Jayaratna, N. (1994). Understanding and evalu-
ating methodologies: NIMSAD—A systemic
framework. Berkshire, UK; McGraw Hill.

Johnson, R.E., & Foote, B. (1988). Designing
reusable classes. Journal of OO Programming,
1(2), 22-35.

Karlström, D., & Runeson, P. (2005). Combining
agile methods with stage-gate project manage-
ment. IEEE Software, 22(3), 43-49.

Keen P. W. (1992). Planning globally: Practi-
cal strategies for information technology in the
transnational firm. In S. Palvia, R. Palvia, & R.
Zigli (Eds.), The global issues of information
technology management (pp. 575-607). Hershey,
PA: Idea Group Publishing.

Kelly, S., Lyytinen, K., & Rossi, M. (1996). Me-
taEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In
P. Constantopoulos, J. Mylopoulos, & Y. Vas-
siliou (Eds.), Advances in Information Systems
Engineering, Proceedings of the 8th International
Conference CAiSE ’96, pp. 1-21.

Kitchenham, B. (1996). Software metrics: Mea-
surement for software process improvement.
NCC, Blackwell.

52

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Kitchenham, B., & Pfleeger, S. L. (1996). Soft-
ware quality: The elusive target. IEEE Software,
13(1), 12-21.

Koskinen, M., Liimatainen, K., Berki, E., & Jäkä-
lä, M. (2005, January 2-5). The human context of
information systems. In R. H. Sprague, Jr. (Ed.),
The Proceedings of the 38th Hawaii International
Conference on Systems Sciences (HICSS 2005)
(pp. 219a-234). Conference CDROM, IEEE Com-
puter Society, IEEE, Los Alamitos, California.

Kumar, K., & Bjorn-Andersen, N. (1990). A
cross-cultural comparison of IS designer values.
Communications of the ACM, 33(5), 528-238,
May 1990.

Kuvaja, P. (1999). New developments in software
process improvement. Keynote Speech in Soft-
ware Quality Management Conference (SQM
99). Southampton. Retrieved from http://www.
bootstrap-institute.com/assessment.htm

Kuvaja, P., Similä, J., Kranik, L., Bicego, A., Sauk-
konen, S., & Koch, G. (1994). Software process
assessment and improvement—The BOOTSTRAP
approach. Cambridge, MA: Blackwell Publish-
ers.

Larman, C. (2004). Agile and iterative develop-
ment: A manager’s guide. Addison-Wesley.

Luong, F., & Chau, T. (2002). Knowledge man-
agement in agile methods. Retrieved from sern.
ucalgary.ca/courses/SENG/ 609.24/F2002/slides/
KM.ppt

Lyytinen, K., & Hirschheim, R. (1987). Informa-
tion systems failures—a survey and classification
of the empirical literature. Oxford surveys in
information technology. In P. I. Zorkoczy (Ed.),
Oxford University Press, 4, 257-309

Malhotra, Y. (1997, August 15-17). Knowledge
management in inquiring organizations. Proceed-
ings of 3rd Americas Conference on Information
Systems (Philosophy of Information Systems

Mini-track) (pp. 293-295). Indianapolis, IN.

Manninen, A., & Berki, E. (2004). Coordinat-
ing the quality of requirements change and
organisational communication—An evaluation
framework for requirements management tools.
In D. Edgar-Neville, M. Ross, & G. Staples (Eds.),
New approaches to software quality. Software
quality management XII. University of Kent at
Canterbury, British Computer Society.

Marciniak, J. (1994). Encyclopaedia of software
engineering. In B. Randell, G. Ringland, & B.
Wulf (Eds.), Software 2000: A view of the future.
ICL and the Commission of European Communi-
ties. John Wiley & Sons.

Mellor, S. (2005). Adapting agile approaches to
your project needs. IEEE Software, 22(3), 17-34,
May/June.

Miller, K. W., & Larson, D. (2005). Agile software
development: Human values and culture. IEEE
Technology and Society, 24(4), 36-42.

Moussa, A., & Schware, R. (1992). Informatics
in Africa: Lessons from World Bank experience.
World Development, 20(12), 1737-1752.

Mumford, E. (1983). Designing human systems for
new technology: The ETHICS method. Retrieved
from http://www.enid.u-net.com/C1book1.htm

Mumford, E. (2003). Redesigning human systems.
Hershey, PA: Idea Group Publishing.

Nonaka, I. (1998). The knowledge-creating com-
pany. Harvard Business Review on Knowledge
Management. Harvard Business School Press.

Nonaka, I., & Takeuchi, H., (1995). The knowledge
creating company: How Japanese companies
create the dynamics of innovation. Oxford Uni-
versity Press.

Palvia, S., Palvia, R., & Zigli, R. (1992). The global
issues of information technology management.
Hershey, PA: Idea Group Publishing.

 53

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Paulk, M. C. (1993). Comparing ISO 9001 and
capability maturity model for software. Software
Quality Journal, 2(4), 245-256.

Paulk, M. C. (1995, June 20-22). The rational
planning of [software]: Projects. Proceedings of
the First World Congress for Software Quality,
ASQC, San Francisco.

Paulk, M. C., Curtis, B., & Chrissis, M. B. (1993).
Capability maturity model (Version 1.1). IEEE
Software, 10(4), 19-27, July.

Pettichord, P. (2002). Agile testing, What is it?
Can it work? Retrieved November 28, 2005, from
http://www.io.com/~wazmo/papers/agile_test-
ing_20021015.pdf

Pfleeger, L. (1998). Software engineering, theory,
and practice. Prentice Hall.

Polymenakou, S. (1995, December). Unlocking
the secrets of information systems failures: The
key role of evaluation. The 5th Greek Conference
in Computing, Athens (pp. 505-519).

Poppendieck, M., & Poppendieck, T. (2003).
Lean software development: An agile toolkit
for software development managers. The Agile
Software Development Series.

Pressman, R. (2000). Software engineering: A
practitioner’s approach (European Adaptation).
Ch. 19, Fifth Edition.

Rantapuska, T., Siakas, K., Sadler, C., & Moha-
med, W. (1999, September 9-11). Quality issues of
end-user application development. The 4th Interna-
tional Conference on Software Process Improve-
ment—Research into Education and Training,
INSPIRE ’99, Crete, Greece (pp. 77-89).

Robinson, H.M, & Sharp, H. (2003). XP culture:
Why the twelve practices both are and are not the
most significant things. Proceedings of the Agile
Development Conference (ADC’03).

Ross, M., & Staples, G. (1995, April). Maintaining
quality awareness. The 3rd International Confer-

ence on Software Quality Management, SQM95,
Seville (pp. 369-375).

Rossi, M. (1998). Advanced computer support for
method engineering: Implementation of CAME
environment in MetaEdit+. PhD thesis. Jyvas-
kyla Studies in Computer Science, Economics,
and Statistics. Jyvaskyla, Finland: Jyvaskyla
University.

Saaksvuori, A., & Immonen, A. (2003). Product
life cycle management. Springer Verlag.

Sfetsos, P., Angelis, L., Stamelos, I., & Bleris, G.
(2004, June). Evaluating the extreme program-
ming system—an empirical study. The 5th Inter-
national Conference on Extreme Programming
and Agile Processes in Software Engineering,
Garmisch-Partenkirchen, Germany.

Shepperd, M. (1995). Foundation of software
measurement. Prentice Hall International (UK).

Siakas, K. V. (2002). SQM-CODE: Software
quality management—cultural and organisa-
tional diversity evaluation. PhD thesis, London
Metropolitan University.

Siakas, K., & Balstrup, B. (2005, November 9-11).
Global software; Sourcing by Virtual Collabora-
tion? EuroSPI 2005 (European Software Process
Improvement and Innovation, Conference), Bu-
dapest, Hungary.

Siakas, K. V., & Georgiadou, E. (2000, Sep-
tember 7-9). A new typology of national and or-
ganisational cultures to facilitate software quality
management. The 5th International Conference
on Software Process Improvement—Research
into Education and Training, INSPIRE 2000,
London.

Siakas, K. V., & Georgiadou, E. (2002). Empirical
measurement of the effects of cultural diversity on
software quality management. Software Quality
Management Journal, 10(2), 169-180.

54

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

Siakas, K., & Georgiadou, E. (2003, April 23-25).
The role of commitment for successful software
process improvement and software quality man-
agement. The 11th Software Quality Management
Conference, SQM 2003 (pp. 101-113). Glasgow,
UK.

Siakas, K., & Georgiadou, E. (2005). PERFUMES:
A scent of product quality characteristics. The 13th
Software Quality Management Conference, SQM
2005, March, Glouchestershire, UK.

Siakas, K. V., & Mitalas, A. (2004). Experiences
from the use of the personal software process (PSP)
in Greece. Analysis of cultural factors in the 9th
International Conference on Software Process
Improvement—Research into Education and
Training, INSPIRE 2004 (pp. 11-21). Kent, UK.

Siakas, K., Balstrup, B., Georgiadou, E., & Berki,
E. (2005b, April). Global software development:
The dimension of culture, IADIS (International
Association for development of the Information
Society). International Virtual Multi Conference
on Computer Science and Information Systems
(MCCSIS 2005)—SEA (Software Engineering
and Applications).

Siakas, K. V., Berki, E., & Georgiadou, E.
(2003). CODE for SQM: A model for cultural
and organisational diversity evaluation. EuroSPI
2003 (European Software Process Improvement
Conference) (pp. IX, 1-11). Graz, Austria.

Siakas, K., Berki, E., Georgiadou, E., & Sadler,
C. (1997). The complete alphabet of quality soft-
ware systems: conflicts and compromises. The 7th
World Congress on Total Quality & Qualex 97
(pp. 603-618). New Delhi, India.

Siakas, K., Georgidaou, E., & Berki, E. (2005a).
Agile methodologies and software process im-
provement, IADIS (International Association
for Development of the Information Society).
International Virtual Multi Conference on
Computer Science and Information Systems
(MCCSIS 2005)—SEA (Software Engineering
and Applications).

Sommerville, I. (2001). Software engineering (6th
ed.). Pearson Education.

Spiegler, I. (2005). Knowledge management: A
new idea or a recycled concept? Communications
of the Association for Information Systems (AIS),
3(14), 1-23.

Stapleton, J. (1997). DSDM: A framework for busi-
ness centred development. Addison-Wesley.

Tolvanen, J.-P. (1998). Incremental method engi-
neering with modeling tools. PhD thesis, Jyvaskyla
Studies in Computing, University of Jyvaskyla.

Vitalo, R. L., Butz, F., & Vitalo, J. (2003). Kaizen
desk reference standard. Lowrey Press.

Zahran, S. (1998). Software process improve-
ment: Practical guidelines for business success.
Reading, MA: Addison-Wesley.

 55

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders’ Needs

AMDD Agile Model Driven Development
ASD Adaptive Software Development
CBD Component-Based Development
CMM Capability Maturity Model
DSDM Dynamic Systems Development Method
ETHICS Effective Technical and Human Implementation of Computer-

Based Work Systems
FDD Feature Driven Development
IE Information Engineering
IS Information Systems
ISD Information Systems Development
ISDM Information Systems Development Methodology
IT Information Technology
ICT Information and Communications Technology
JSD Jackson Structured Development
NCC National Computing Centre
OMT Object Modelling Technique
SSADM Structured Systems Analysis and Design Method
SSM Soft Systems Method
STRADIS Structured Analysis and Design of Information Systems
TQM Total Quality Management
VDM Vienna Development Method
XP Extreme Programming
Z Z Specification

APPEndIx b: tHE MEtAEdIt+ tooL ArcHItEcturE
(MEtAPHor WEb sItE)

APPEndIx A: AcronYMs And dEscrIPtIon

Draw W indow

Matrix Edito r

Repository
Br owser

Work S pace

Transformation
Tool

Hy pertext Tool

Metamodelling
Tools

Query Editor

Meta engine

Meta engineRe pository

Network

Instance of
Metaedit+

56

Chapter III
What’s Wrong with

Agile Methods?
Some Principles and Values
to Encourage Quantification

Tom Gilb
Independent Consultant, Norway

Lindsey Brodie
Middlesex University, UK

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

Agile software methods (Agile Alliance, 2006)
have insufficient focus on quantified performance
levels (that is, metrics stating the required quali-
ties, resource savings, and workload capacities)
of the software being developed. Specifically,
there is often no quantification of the main rea-

sons why a project was funded (that is, metrics
stating the required business benefits, such as
business advancement, better quality of service,
and financial savings). This means projects can-
not directly control the delivery of benefits to
users and stakeholders. In turn, a consequence
of this is that projects cannot really control the
corresponding costs of getting the main benefits.

AbstrAct

Current agile methods could benefit from using a more quantified approach across the entire imple-
mentation process (that is, throughout development, production, and delivery). The main benefits of
adopting such an approach include improved communication of the requirements, and better support for
feedback and progress tracking. This chapter first discusses the benefits of quantification, then outlines
a proposed approach (Planguage), and finally describes an example of its successful use (a case study
of the “Confirmit” product within a Norwegian organization, “FIRM”).

 57

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

In other words, if you don’t estimate quantified
requirements, then you won’t be able to get a
realistic budget for achieving them. See Figure
1 for a scientist’s (Lord Kelvin’s) opinion on the
need for numerical data!

Further, quantification must be utilized
throughout the duration of an agile project, not
just to state requirements but to drive design, as-
sess feedback, and track progress. To spell this
last point out, quantification of the requirements
(what do we want to control?) is only a first step
in getting control. The next steps, based on this
quantification, are design estimation (how good
do we think our solutions are?) and measure-
ment of the delivered results (how good were
the solutions in practice?). The key issue here is
the active use of quantified data (requirements,
design estimates, and feedback) to drive the project
design and planning.

One radical conclusion to draw, from this lack
of quantification, is that current conventional
agile methods are not really suitable for devel-
opment of industrial products. The rationale for
this being that industry is not simply interested
in delivered “functionality” alone; they probably
already have the necessary business functions at
some level. Projects must produce competitive
products, which means projects must deliver spe-
cific performance levels (including qualities and
savings). To address this situation, it is essential

that the explicit notion of quantification be added
to agile concepts.

See Figure 2 for a list of the benefits to agile
development of using quantification.

dEFInInG QuALItY

The main focus for discussion in this chapter will
be the quality characteristics, because that is where
most people have problems with quantification.
A long held opinion of one of the authors of this
chapter (Tom Gilb) is that all qualities are capable
of being expressed quantitatively (see Figure 3).

A Planguage definition of “quality” is given in
Figure 4. Planguage is a planning language and
a set of methods developed by Tom Gilb over the
last three decades (Gilb, 2005). This next part of
the chapter will outline the Planguage approach
to specifying and using quantitative requirements
to drive design and determine project progress.

QuAntIFYInG rEQuIrEMEnts

Planguage enables capture of quantitative data
(metrics) for performance and resource require-
ments. A scalar requirement, that is, either a
performance or resource requirement, is speci-
fied by identifying a relevant scale of measure

Figure 1. A statement made by Lord Kelvin on the importance of measurement (http://zapatopi.net/kel-
vin/quotes.html)

"In physical science the first essential step in the direction of learning any subject is to find
principles of numerical reckoning and practicable methods for measuring some quality
connected with it. I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be
the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of
Science, whatever the matter may be.”
 Lord Kelvin, 1893

58

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

and stating the current and required levels on
that scale. See Figure 5, which is an example of
a performance requirement specification. Notice
the parameters used to specify the levels on the
scale (that is, Past, Goal, and Fail).

EVALuAtInG dEsIGns

Impact estimation (IE) is the Planguage method
for evaluating designs. See Table 1, which shows
an example of a simple IE table. The key idea of
an IE table is to put the potential design ideas
against the quantified requirements and estimate
the impact of each design on each of the require-
ments. If the current level of a requirement is
known (its baseline, 0%), and the target level is
known (its goal or budget depending on whether
a performance requirement (an objective) or a
resource requirement respectively, 100%), then
the percentage impact of the design in moving
towards the performance/resource target can be

calculated. Because the values are converted into
percentages, then simple arithmetic is possible to
calculate the cumulative effect of a design idea
(sum of performance and sum of cost) and the
performance to cost ratio (see Table 1). You can
also sum across the designs (assuming the designs
are capable of being implemented together and
that their impacts don’t cancel each other out) to
see how much design you have that is addressing
an individual requirement.

Table 1 also shows how you can take into
account any uncertainties in your estimates. An
additional feature, not shown here, is to assess the
credibility of each estimate by assigning a cred-
ibility factor between 0.0 and 1.0. Each estimate
can then be multiplied by its credibility factor to
moderate it.

While such simple arithmetic does not repre-
sent the complete picture, it does give a convenient
means of quickly identifying the most promising
design ideas. Simply filling in an IE table gives a

Figure 2. What can we do better in agile development (or “at all”) if we quantify requirements

• Simplify re is less need for copious

documentation as the developers are focused on a clearer, simpler ‘ message’);

• Communicate quality goals much better to all parties (that is, users, customers, project

management, developers, testers, and lawyers);

• Contract f). R eward teams for results

achieved. T his is possible as success is now measurable;

• Motivate technical people to focus on real business results;

• E valuate solutions/designs/architectures against the

• Measure evolutionary project progress towards quality goals and get early & continuous

improved estimates for time to completion;

• Collect numeric historical data about designs, processes, organizational structures for future

improvements and to benchmark against similar organizations!

Figure 3. Tom Gilb’s opinion that all qualities can be expressed numerically

The Principle of “Quality Quantification”
All qualities can be expressed quantitatively, “qualitative” does not mean unmeasurable.
 Tom Gilb

 59

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

much better understanding of the strengths and
weaknesses of the various designs with respect
to meeting all the requirements.

Table 1 simply shows estimates for potential
design ideas. However, you can also input the ac-
tual measurements (feedback) after implementing
the design ideas. There are two benefits to this:
you learn how good your estimates were for the
design ideas implemented, and you learn how
much progress you have made towards your target
levels. You can then use all the IE table data as a
basis to decide what to implement next.

EVoLutIonArY dELIVErY

The final Planguage method we will discuss is
evolutionary project management (Evo). Evo
demands include the following:

• That a system is developed in a series of
small increments (each increment typically
taking between 2% and 5% of the total project
timescale to develop).

• That each increment is delivered for real use
(maybe as Beta or Field trial) by real “us-
ers” (any stakeholder) as early as possible
(to obtain business benefits and feedback,
as soon as possible).

• That the feedback from implementing the
Evo steps is used to decide on the contents
of the next Evo step.

• That the highest value Evo steps are delivered
earliest, to maximize the business benefit.

Note that “delivery” of requirements is the key
consideration. Each delivery is done within an Evo
step. It may, or may not, include the building or

Figure 4. Planguage definition of “quality”

Definition of Quality
Quality is characterized by these traits:
• A quality describes ‘how well’ a function is done. Qualities each describe the partial
effectiveness of a function (as do all other performance attributes).
• Relevant qualities are either valued to some degree by some stakeholders of the system - or
they are not relevant. Stakeholders generally value more quality, especially if the increase is free,
or lower cost than the stakeholder-perceived value of the increase.
• Quality attributes can be articulated independently of the particular means (the designs and
architectures) used for reaching a specific quality level, even though achievement of all quality
levels depend on the particular designs used to achieve quality.
• A particular quality can potentially be a described in terms of a complex concept, consisting of
multiple elementary quality concepts, for example, ‘Love is a many-splendored thing!’
• Quality is variable (along a definable scale of measure: as are all scalar attributes).
• Quality levels are capable of being specified quantitatively (as are all scalar attributes).
• Quality levels can be measured in practice.
• Quality levels can be traded off to some degree; with other system attributes valued more by
stakeholders.
• Quality can never be perfect (no fault and no cost) in the real world. There are some valued
levels of a particular quality that may be outside the state of the art at a defined future time and
circumstance. When quality levels increase towards perfection, the resources needed to support
those levels tend towards infinity.
 (Gilb 2005)

60

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

creation of the increment (some Evo steps may
simply be further rollout of existing software).

Development of necessary components will
occur incrementally, and will be continuing in
parallel while Evo steps are being delivered to
stakeholders. Most development will only start
when the decision has been taken to deliver it as
the next Evo step. However, there probably will

be some increments that have longer lead-times
for development, and so their development will
need to start early in anticipation of their future
use. A project manager should always aim to “buf-
fer” his developers in case of any development
problems by having in reserve some components
ready for delivery.

Figure 5. Example showing Planguage parameters used to specify a performance requirement: “Screen
Usability.”

Table 1. An example of a simple IE table (Gilb, 2005)

 Design Ideas->

Requirements:
Goals and Budgets

Idea 1
Impact

Estimates

Idea 2
Impact

Estimates

Sum for
Requirement

(Sum of
Percentage
Impacts)

Sum of
Percentage
Uncertainty

Values

Safety
Deviation

Reliability
300 <-> 3000 hours MTBF

1950hr
(1650hr)

±0

1140hr
(840hr)
±240 92% ±9% -108%

 61%±0 31%±9%

Usability
20 <-> 10 minutes

19min.
(1min.)

±4

14min.
(6 min.)

±9 70% ±130% -130%
10%±40% 60%±90%

Maintenance
1.1M <-> 100K/year US$

1.1M $/Y
(0 K$/Y)
±180K

100K S/Y
(1 M$/Y)

±720K 100% ±90% -50%
0%± 18% 100%±72%

Sum of Performance 71% 191%
Capital

0 <-> 1 million US$
500K

(500K)
±200K

100K
(100K)
±200K 60% ±40% -10%

50%±20 10%±20

Sum of Costs 50% 10%
 Performance to Cost Ratio 1.42

(71/50)
19.10

 (191/10)

Tag: Screen Usability.
Scale: The average number of errors per thousand defined [Transactions] made by system users.
Meter: System to maintain counts for the <different types of error messages> sent to screen.
Past [Order Entry]: 531 ← As measured by Order Entry Department using existing system.
Goal [Order Entry]: < 200 ← Sales Manager.
Fail [Order Entry]: > 400 ← Sales Manager.

 61

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

Planguage Approach to change

It is important to note that the quantified require-
ments, designs, and implementation plans are
not “frozen,” they must be subject to negotiated
change over time. As Beck points out, “Everything
in software changes. The requirements change.
The design changes. The business changes. The
technology changes. The team changes…The
problem isn’t change, per se,…the problem,
rather, is the inability to cope with change when
it comes” (Beck, 2000).

Planguage’s means of dealing with change
are as follows:

• Performance and resource requirements are
quantified to allow rapid communication of
any changes in levels.

• IE tables allow dynamic reprioritization of
design ideas and help track progress towards
targets.

• Evo enables all types of change to be catered
for “in-flight” as soon as possible. There is
regular monitoring of the best next Evo step
to take.

dEscrIPtIon oF tHE
PLAnGuAGE ProcEss

To summarize and show how the methods (for
quantifying requirements, evaluating designs,
and evolutionary delivery) described earlier in
this chapter fit together, here is a description of
the Planguage process for a project:

1. Gather from all the key stakeholders the
top few (5 to 20) most critical goals that
the project needs to deliver. Give each goal
a reference name (a tag).

2. For each goal, define a scale of measure and
a “final” goal level. For example:

 • Reliable:
 • Scale: Mean Time Between Failure.
 • Goal: 1 month.

3. Define approximately four budgets for your
most limited resources (for example, time,
people, money, and equipment).

4. Write up these plans for the goals and bud-
gets (Try to ensure this is kept to only one
page).

5. Negotiate with the key stakeholders to for-
mally agree the goals and budgets.

6. Draw up a list of initial design ideas: En-
sure that you decompose the design ideas
down into the smallest increments that can
be delivered (these are potential Evo steps).
Use impact estimation (IE) to evaluate your
design ideas’ contributions towards meeting
the requirements. Look for small incre-
ments with large business value. Note any
dependencies, and draw up an initial rough
Evo plan, which sequences the Evo steps. In
practice, decisions about what to deliver in
the next Evo step will be made in the light
of feedback (that is when the results from
the deliveries of the previous Evo steps are
known). Plan to deliver some value (that
is, progress towards the required goals) in
weekly (or shorter) increments (Evo steps).
Aim to deliver highest possible value as
soon as possible.

7. Deliver the project in Evo steps.

	 •	 Report to project sponsors after each Evo
step (weekly or shorter) with your best
available estimates or measures, for each
performance goal, and each resource
budget. On a single page, summarize
the progress to date towards achieving
the goals and the costs incurred.

•	 Discuss with your project sponsors and
stakeholders what design ideas you

62

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

should deliver in the next Evo step. This
should be done in the light of what has
been achieved to date and what is left
to do. Maximizing the business benefit
should be the main aim.

8. When all goals are reached: “Claim success
and move on.” Free remaining resources for
more profitable ventures.

cAsE studY oF tHE
“conFIrMIt” Product

Tom Gilb and his son, Kai taught the Planguage
methods to FIRM (future information research
management), a Norwegian organization. Subse-

quently, FIRM used these methods in the develop-
ment of their Confirmit product. The results were
impressive, so much so that they decided to write
up their experiences (Johansen, 2004). In this
section, some of the details from this Confirmit
product development project are presented.

use of Planguage Methods

First, 25 quantified requirements were speci-
fied, including the target levels. Next, a list of
potential design ideas (solutions) was drawn up
(see Figure 8 for an example of an initial design
idea specification).

The impacts of the potential design ideas on
the requirements were then estimated. The most
promising design ideas were included in an Evo

Figure 6. Planguage’s 10 values for an agile project based around Beck’s four values for XP (Beck,
2000, p. 29)

Ten Planguage Values for an Agile Project
Simplicity
 1. Focus on real stakeholder values.
 Communication
 2. Communicate stakeholder values quantitatively.
 3. Estimate expected results and costs for weekly steps.
 Feedback
 4. Generate useful results weekly, to stakeholders, in their environment.
 5. Measure all critical aspects of the attempt to generate incremental results.
 6. Analyze deviation from initial estimates.
 Courage
 7. Change plans to reflect weekly learning.
 8. Immediately implement valued stakeholder needs, next week.
 Don’t wait, don’t study (‘analysis paralysis’), and don’t make excuses. Just Do It!
 9. Tell stakeholders exactly what you will deliver next week.
 10. Use any design, strategy, method, process that works quantitatively well - to get your
 results. Be a systems engineer, not just a programmer. Do not be limited by your ‘craft’
 background in serving your paymasters.

 63

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

plan, which was presented using an impact esti-
mation (IE) table (see Tables 2 and 3, which show
the part of the IE table applying to Evo Step 9.
Note these tables also include the actual results
after implementation of Evo Step 9). The design
ideas were evaluated with respect to “value for
clients” vs. “cost of implementation.”. The ones
with the highest value-to-cost ratio were chosen for
implementation in the early Evo steps. Note that
value can sometimes be defined by risk removal
(that is, implementing a technically challenging
solution early can be considered high value if
implementation means that the risk is likely to
be subsequently better understood). The aim was
to deliver improvements to real external stake-
holders (customers, users), or at least to internal
stakeholders (for example, delivering to internal
support people who use the system daily and so
can act as “clients”).

An IE table was used as a tool for controlling
the qualities; estimated figures and actual mea-
surements were input into it.

On a weekly basis:

1. A subset of the quality requirements (the 25
quality requirements defined initially, for
delivery after 12 weeks to customers) was
selected to work on by one of four parallel
teams.

2. The team selected the design ideas they
believed would help them reach the quality
requirement levels in the next cycle.

3. The team implemented their chosen design
ideas and measured the results.

4. The results were input into the IE table.
Each next Evo step was then decided based
on the results achieved after delivery of the
subsequent step.

Note, the impacts described for Confirmit 8.0
(the baseline (0%) “Past” levels) are based on
direct customer feedback and internal usability
tests, productivity tests, and performance tests
carried out at Microsoft Windows ISV laboratory
in Redmond USA. The actual results were not
actually measured with statistical accuracy by
doing a scientifically correct large-scale survey
(more intuitive methods were used).

the results Achieved

Due to the adoption of Evo methods, there were
focused improvements in the product quality lev-
els. Table 4 gives some highlights of the 25 final
quality levels achieved for Confirmit 8.5. Table 5
gives an overview of the improvements by func-
tion (that is, product component) for Confirmit
9.0. No negative impacts are hidden. The targets
were largely all achieved on time.

Figure 7. Planguage policy for project management

Planguage Project Management Policy
• The project manager and the project will be judged exclusively on the relationship of

progress towards achieving the goals vs. the amounts of the budgets used.
• The project team will do anything legal and ethical to deliver the goal levels within the

budgets.
• The team will be paid and rewarded for benefits delivered in relation to cost.
• The team will find their own work process and their own design.
• As experience dictates, the team will be free to suggest to the project sponsors (stakeholders)

adjustments to “more realistic levels” of the goals and budgets.

64

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

The customers responded very favorably (see
Figure 9).

On the second release (Confirmit 9.0) using
Planguage, and specifically the Evo method, the
Vice President (VP) of marketing proudly named
the Evo development method on the FIRM Web
site (see Figure 10. A line executive bragging
about a development method is somewhat ex-
ceptional!).

Details of the quantified improvements were
also given to their customers (see Figure 11, which
is an extract from the product release for Confirmit
9.0 published on the organization’s Web site).

Impact on the developers

Use of Evo has resulted in increased motivation
and enthusiasm amongst the FIRM developers
because it has opened up “empowered creativity”
(Trond Johansen, FIRM Project Director). The
developers can now determine their own design
ideas and are not subject to being dictated the
design ideas by marketing and/or customers who
often tend to be amateur technical designers.

Daily, and sometimes more often, product
builds, called continuous integration (CI), were
introduced. Evo combined with CI, is seen as

Figure 8. A brief specification of the design idea “Recoding”

Recoding:

Type: Design Idea [Confirmit 8.5].

Description: Make it possible to recode a marketing variable, on the fly, from Reportal.

Estimated effort: four team days.

Table 2. A simplified version of part of the IE table shown in Table 3. It only shows the objective, “pro-
ductivity” and the resource, “development cost” for Evo Step 9, “recoding” of the marketing research
(MR) project. The aim in this table is to show some extra data and some detail of the IE calculations.
Notice the separation of the requirement definitions for the objectives and the resources. The Planguage
keyed icon “<->” means “from baseline to target level.” On implementation, Evo Step 9 alone moved
the productivity level to 27 minutes, or 95% of the way to the target level

EVO STEP 9: DESIGN IDEA: “Recoding”
Estimated Scale
Level

Estimated
% Impact

Actual
Scale Level

Actual
% Impact

REQUIREMENTS
Objectives
Usability.Productivity
65 <-> 25 minutes

Past: 65 minutes.
Tolerable: 35 minutes.
Goal: 25 minutes.

65 – 20 =
45 minutes

50% 65 - 38 =
27 minutes

95%

Resources
Development Cost
0 <-> 110 days 4 days 3.64% 4 days 3.64%

 65

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

Table 3. Details of the real IE table, which was simplified in Table 2. The two requirements expanded in
Table 1 are highlighted in bold. The 112.5 % improvement result represents a 20-minute level achieved
after the initial 4-day stint (which landed at 27 minutes, 95%) . A few extra hours were used to move
from 27 to 20 minutes, rather than use the next weekly cycle.

DESCRIPTION OF REQUIREMENT / WORK TASK PAST CURRENT
STATUS

Usability.Productivity: Time for the system to generate a survey. 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research (MR)
report.

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report set and
distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with Confirmit
Web services without any user documentation or any other aid.

15 min 5 min

Workload Capacity.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 seconds and a response time
< 500 milliseconds, given a defined (Survey-Complexity) and a defined (Server
Configuration, Typical).

250 users 6000 users

Table 4. Improvements to product quality levels in Confirmit 8.5

Step 9
Design = ‘Recoding’

Current
Status

Improvements Goals

Estimated impact Actual impact

Units Units % Past Tolerable Goal Units % Units %
 Usability.Replaceability (feature count)
1.00 1.0 50.0 2 1 0
 Usability.Speed.New Features Impact (%)
5.00 5.0 100.0 10 15 5
10.00 10.0 66.7 20 15 5
40.00 0.0 0.0 40 30 10
 Usability.Intuitiveness (%)
0.00 0.0 0.0 0 60 80
 Usability.Productivity (minutes)
20.00 45.0 112.5 65 35 25 20.00 50.00 38.00 95.00

 Development resources
 101.0 91.8 0 110 4.00 3.64 4.00 3.64

66

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

a vehicle for innovation and inspiration. Every
week, the developers get their work out onto the
test servers and receive feedback.

By May 2005, FIRM had adopted the approach
of using a “Green Week” once monthly. In a
Green Week, the internal stakeholders are given
precedence over the client stakeholders and can
choose what product improvements they would
like to see implemented. The FIRM developers
chose to focus on the evolutionary improvement
of about 12 internal stakeholder qualities (such
as testability and maintainability).

Initial Difficulties in Implementing
Planguage

Even though Planguage was embraced, there were
parts of Planguage that were initially difficult to
understand and execute at first. These included:

• Defining good requirements (“Scales” of
measure) sometimes proved hard (they only
had one day training initially, but after the
first release saw the value in a week’s train-
ing!).

Table 5. Some detailed results by function (product component) for Confirmit 9.0

FUNCTION PRODUCT
QUALITY

DEFINITION (quantification) CUSTOMER
VALUE

Authoring Intuitiveness Probability that an inexperienced user can
intuitively figure out how to set up a defined
simple survey correctly.

Probability increased
by 175%
(30% to 80%)

Authoring Productivity Time in minutes for a defined advanced
user with full knowledge of Confirmit 9.0
functionality to set up a defined advanced
survey correctly.

Time reduced by
38%

Reportal Performance Number of responses a database can contain if
the generation of a defined table should be run
in 5 seconds.

Number of responses
increased by 1400%

Survey Engine Productivity Time in minutes to test a defined survey and
identify four inserted script errors, starting
from when the questionnaire is finished
to the time testing is complete and ready
for production. (Defined Survey: Complex
Survey, 60 questions, comprehensive
JScripting.)

Time reduced by
83% and error
tracking increased
by 25%

Panel
Management

Performance Maximum number of panelists that the system
can support without exceeding a defined time
for the defined task with all components of the
panel system performing acceptably.

Number of panelists
increased by 1500%

Panel
Management

Scalability Ability to accomplish a bulk-update of X
panelists within a timeframe of Z seconds.

Number of panelists
increased by 700%

Panel
Management

Intuitiveness Probability that a defined inexperienced user
can intuitively figure out how to do a defined
set of tasks correctly.

Probability increased
by 130%

Figure 9. An example of pilot customer (Microsoft) feedback

 “I just wanted to let you know how appreciative we are of the new ‘entire report’ export
functionality you recently incorporated into the Reportal. It produces a fantastic looking report,
and the table of contents is a wonderful feature. It is also a HUGE time saver.”

 67

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

• It was hard to find “Meters” (that is, ways
of measuring numeric qualities, to test the
current developing quality levels), which
were practical to use, and at the same time
measured real product qualities.

• Sometimes it took more than a week to de-
liver something of value to the client (this

was mainly a test synchronization problem
they quickly overcame).

• Testing was sometimes “postponed” in order
to start the next step. Some of these test
postponements were then not in fact done
in later testing.

Figure 10. Comments by FIRM’s VP of marketing, Kjell Øksendal

Figure 11. Confirmit 9.0 release announcement from the FIRM Web site (http://www.firmglobal.com).
It gives detail about the method and the quantified product results

“FIRM, through evolutionary development, is able to substantially increase customer value by
focusing on key product qualities important for clients and by continuously asking for their
feedback throughout the development period. Confirmit is used by the leading market research
agencies worldwide and Global 1000 companies, and together, we have defined the future of
online surveying and reporting, represented with the Confirmit 9.0.”

News release

2004-11-29: Press Release from FIRM

New version of Confirmit increases user productivity up to 80 percent

NOVEMBER 29th, 2004: FIRM, the world’s leading provider of online survey & reporting software, today

announced the release of a new version of Confirmit delivering substantial value to customers including increased

user productivity of up to 80 percent.

FIRM is using Evolutionary (EVO) development to ensure the highest focus on customer value through early and

continuous feedback from stakeholders. A key component of EVO is measuring the effect new and improved

product qualities have on customer value. Increased customer value in Confirmit 9.0 includes:

* Up to 175 percent more intuitive user interface*

* Up to 80 percent increased user productivity in questionnaire design and testing*

* Up to 1500 percent increased performance in Reportal and Panel Management*

68

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

Lessons Learned with respect to
Planguage, Especially the Evo
Method

Some of the lessons learned about the use of
Planguage, and especially the Evo method, in-
cluded:

• Planguage places a focus on the measurable
product qualities. Defining these clearly and
testably requires training and maturity. It is
important to believe that everything can be
measured and to seek guidance if it seems
impossible.

• Evo demands dynamic re-prioritization of
the next development steps using the ratio
of delivering value for clients vs. the cost
of implementation. Data to achieve this is
supplied by the weekly feedback. The great-
est surprise was the power of focusing on
these ratios. What seemed important at the
start of the project may be replaced by other
solutions based on gained knowledge from
previous steps.

• An open architecture is a pre-requisite for
Evo.

• Management support for changing the
software development process is another
pre-requisite, but this is true of any software
process improvement.

• The concept of daily builds, CI, was valuable
with respect to delivering a new version of
the software every week.

• It is important to control expectations. “Be
humble in your promises, but overwhelm-
ing in your delivery” is a good maxim to
adopt.

• There needed to be increased focus on
feedback from clients. The customers will-
ing to dedicate time to providing feedback
need identifying. Internal stakeholders (like
sales and help desk staff) can give valuable
feedback, but some interaction with the
actual customers is necessary.

• Demonstrate new functionality automati-
cally with screen recording software or early
test plans. This makes it easier for internal
and external stakeholders to do early test-
ing.

• Tighter integration between Evo and the test
process is necessary.

conclusion of the case study

The positive impacts achieved on the Confirmit
product qualities has proved that the Evo process
is better suited than the waterfall process (used
formerly) to developing the Confirmit product.

Overall, the whole FIRM organization em-
braced Planguage, especially Evo. The first re-
lease, Confirmit 8.5, showed some of Planguage’s
great potential. By the end of November 2004
with the second release (Confirmit 9.0), there was
confirmation that the Evo method can, consistently
and repetitively, produce the results needed for
a competitive product. Releases 9.5 and 10.0 of
Confirmit continued this pattern of successful
product improvements delivered to the customers
(as of November 2005).

It is expected that the next versions of Confirmit
will show even greater maturity in the understand-
ing and execution of Planguage. The plan is to
continue to use Planguage (Evo) in the future.

cHAPtEr suMMArY

Use of quantified requirements throughout the
implementation of a project can provide many
benefits as has been demonstrated by the FIRM
organization’s use of Planguage (including
Evo).

The key messages of this chapter can be sum-
marized in 12 Planguage principles (see Figure 12).
By adopting such principles, agile methods would
be much better suited for use in the development
of industrial products.

 69

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

rEFErEncEs

Agile Alliance. (2006). Retrieved June 2006, from
http://www.agilealliance.com/

Beck, K. (2000). Extreme programming ex-
plained: Embrace change. Addison-Wesley.

Gilb, T. (2005). Competitive engineering: A
handbook for systems engineering. Requirements
engineering, and software engineering using
Planguage. Elsevier Butterworth-Heinemann.

Figure 12. Twelve Gilb Planguage principles for project management/software development

Twelve Planguage Principles
1. Control projects by a small set of quantified critical results (that is, not stories, functions,
features, use cases, objects, etc.). Aim for them to be stated on one page!
2. Make sure those results are business results, not technical.
3. Align your project with your financial sponsor’s interests!
4. Identify a set of designs. Ensure you decompose the designs into increments of the smallest
possible deliverables.
5. Estimate the impacts of your designs, on your quantified goals.
6. Select designs with the best performance to cost ratios; do them first.
7. Decompose the workflow and/or deliveries, into weekly (or 2% of budget) time boxes.
8. Give developers freedom, to find out how to deliver those results.
9. Change designs, based on quantified experience of implementation (feedback).
10. Change requirements, based in quantified experience (new inputs).
11. Involve the stakeholders, every week, in setting quantified goals.
12. Involve the stakeholders, every week, in actually using increments.

Johansen, T. (2004). FIRM: From waterfall to
evolutionary development (Evo) or how we rap-
idly created faster, more user-friendly, and more
productive software products for a competitive
multi-national market. Proceedings of Euro-
pean Software Process Improvement (EuroSPI),
Trondheim, Norway, November 10-12, 2004. In T.
Dingsøyr (Ed.), Lecture Notes in Computer Sci-
ence 3281, Springer 2004. See also Proceedings
of INCOSE 2005 (Johansen and Gilb 2005) and
FIRM Website, http://www.confirmit.com/news/
release_20041129_confirmit_9.0_mr.asp/ (Last
Accessed: June 2006).

70

What’s Wrong with Agile Methods? Some Principles and Values to Encourage Quantification

Section II
Quality within

Agile Development

 71

Chapter IV
Requirements Specification

using User Stories
V. Monochristou

IT Consultant, GNOMON, Informatics, S. A., Greece

M. Vlachopoulou
University of Macedonia, Greece

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

AbstrAct

Collecting and analyzing user requirements is undoubtedly a really complicated and often problematic
process in software development projects. There are several approaches, which suggest ways of manag-
ing user’s requirements; some of the most well-known are IEEE 830 software requirements specification
(SRS), use cases, interaction design scenarios, etc. Many software experts believe the real user require-
ments emerge during the development phase. By constantly viewing functional sub-systems of the whole
system and participating, in fact, in all phases of system development, customers/users can revise their
requirements by adding, deleting, or modifying them. However, in order for this to become possible, it
is important to adopt a totally different approach than the traditional one (waterfall model approach),
concerning not only the management of user’s requirements, but also the entire software development
process in general. Agile methodologies represent this different approach since the iterative and in-
cremental way of development they propose includes user requirements revision mechanisms and user
active participation throughout the development of the system. The most famous approach concerning
requirements specification among the supporters of the agile methodologies is probably user stories.
User stories and their main characteristics are thoroughly demonstrated in this chapter. After reading
this chapter, the authors hope that the reader may have gained all the basic understanding regarding
the use of user stories.

72

Requirements Specification using User Stories

IntroductIon

Collecting and analyzing user requirements
is undoubtedly a really complicated and often
problematic “process” in software development
projects. There are several approaches, which
suggest ways of managing user’s requirements;
some of the most well known are IEEE 830 soft-
ware requirements specification (SRS), use cases,
interaction design scenarios, etc.

The success of the final product depends
mainly on the success of the previous “process.”
But how is this “success” defined? Some suggest
that the main indicator of success is the compliance
of the final product with the initially documented
requirements of the customer/user. However, is
it plausible to document the real requirements of
the customer/user when the entire specification
“process” starts and ends before the software
development has even started? In addition,
after completing this “process,” these up-front
documented requirements are “locked” without
any chance of revision due to the fact that they
are often used as the main part of contractual
agreements.

A 2001 study performed by M. Thomas (2001)
in the UK analyzing 1,027 projects showed that
82% of failed projects report the use of waterfall
practices as number one cause of failure, includ-
ing detailed, up-front requirements. Moreover,
a Standish group study presented at XP2002
Conference by Jim Johnson reports that when
requirements are specified early in the lifecycle,
45% of features are never used, 19% are rarely
used, and 16% are sometimes used.

Since 1986, Parnas and Clements (1986) al-
leged that it is extremely difficult to write down
all the requirements of a system up-front and then
to develop it perfectly. Mainly this is because:

•	 Users and customers do not usually distin-
guish exactly from the beginning what they
want.

•	 Even if the developers identify all the re-
quirements from the beginning, many of
the necessary details will appear during the
development of the system.

•	 Even if all the necessary details could be
known up-front, humans are incapable of
comprehending so many details.

•	 Even if humans were capable of compre-
hending all the details, product and project
changes occur.

•	 People make mistakes.

Many software experts believe that the real user
requirements emerge during the development of
a system. By constantly viewing functional sub-
systems of the whole system, and participating in
fact in all phases of system development, a user
can revise his or her requirements by adding, de-
leting, or modifying them. However, in order for
this to become possible, it is important to adopt
a totally different approach than the traditional
one (waterfall model approach), concerning not
only the management of user’s requirements, but
also the entire software development process as a
whole. Agile methodologies represent this differ-
ent approach since the iterative and incremental
way of development they propose includes user
requirements revision mechanisms and user ac-
tive participation throughout the development of
the system.

Rather than making one all-encompassing set
of decisions at the outset of a project, we spread
the decision-making across the duration of the
project. (Cohn, 2004)

User stories is probably the most famous ap-
proach concerning requirements specification
among the supporters of the agile methodologies.
User stories and their main characteristics are
thoroughly demonstrated in this chapter.

It has to be stressed that due to their recent
appearance, the available bibliography concern-
ing the user stories is not so extensive. One of the

 73

Requirements Specification using User Stories

most detailed and solid analysis on user stories
is Cohn’s (2004) User Stories Applied: For Agile
Software Development, a book that was the in-
spiration and also the main source of knowledge
and understanding for this chapter.

bAcKGround

the traditional Approach:
common Pitfalls

“Οn traditional software development projects
we talk about capturing the requirements as if we
are engaged in a hunt to cage some wild beasts
that lurk in the jungle” (Cohn, 2004). Davies
(2005) further alleges that “Requirements are
not out there in the project space and waiting to
be captured.”

A traditional requirements specification docu-
ment describes the functionalities of a desired
software system and acts as both means of com-
munication and data storage. The overall goal
of this document is to provide all the necessary
information to the development team so as to
implement an executable software system, which
complies with written user requirements.

The traditional approach (based mainly on
the waterfall software life cycle) is to specify
the requirements for the whole system up front.
That means that both customer/user and the
development team have to gain a complete
understanding of the final system in the begin-
ning of the development phase. Moreover, these
requirements are “locked” and can not be altered
during the implementation of the system. In this
case, requirements documents are used either as a
contract model or as a tool of solving any disputes
or misunderstandings.

The idea behind requirements engineering is to
get a fully understood picture of the requirements
before you begin building the software, get a
customer sign-off to these requirements, and then

set up procedures that limit requirements changes
after the sign-off. (Fowler, 2005)

By using the traditional approach, require-
ments documents produced are (Davies, 2005):

• Unidirectional: Documents are a one-way
communication medium. After capturing the
requirements, usually through interviews,
information flows from author (usually a
business analyst) to reader (customer/user).
Customer/user has little or no opportunity to
feedback (asks questions, contributes ideas
and insights). On the other hand, documents
may not be as precise as they should be
causing misleads to the development team.
When working under time-pressure, the
development team may have to make its own
assumptions on the intended meaning, and
this can lead to the development of wrong
functionalities in the software system.

• Selective: Documents usually include the
author’s (usually a business analyst) per-
sonal perspective on the system. Following
traditional development process, it is as-
sumed that the development team does not
need to know much about the users’ needs
and the business environment affecting the
system development since requirements are
chosen purely on business grounds. The
development team is limited to the techni-
cal implementation of the system rather
than contributing ideas on how to achieve
business values.

• Freezing: The traditional approach is to
specify the requirements for the whole
system up-front and then “lock” the require-
ments. This approach does not take into
account the constantly and rapidly altered
technological and business environment.
As Davis (2005) says, “When we freeze
requirements early, we deny the chance to
adapt the system to a changing context.”

74

Requirements Specification using User Stories

Fowler (2005) mentions the “unpredictability
of requirements,” According to this, requirements
are always changing and this is the norm for three
main reasons:

1.	 Difficulties	on	estimation:	Resulting main-
ly from the fact that software development
is a design activity, and thus hard to plan
and estimate the cost, but also from the fact
that it depends on which individual people
are involved. Therefore, it is hard to predict
and quantify.

2. Software’s intangible nature: The real
value of a software feature is discovered
when the user sees and probably uses early
versions of the software. At this time, the
customer/user is more likely to understand
what features are valuable and which ones
are not. It is more than obvious that this
“process” can cause changes in the initially
agreed requirements.

3.	 Business’s	environment	changing	nature:	
Today, and especially during the last decade,
business environments and the fundamental
business forces are changing too fast, re-
sulting in constant changes to the software
features. “What might be a good set of
requirements now, is not a good set in six
months time. Even if the customers can fix
their requirements, the business world isn’t
going to stop for them” (Fowler, 2005).

Supporters of the agile software development
methods strongly believe that development teams
should take into consideration the unpredictability
of requirements. As predictability of requirements
may be a rare reality (with the exception of some
projects for organisations [e.g., NASA, Army]
where predictability is vital), they insist that a
more adaptive approach should be followed.

the Agile Approach

Agile methods are based on quite a different ap-
proach that includes:

• Iterative development (small versions of the
system with a subset of the required features
in short development cycles).

•	 Customer collaboration (customer in fact
participates in all phases of software imple-
mentation).

•	 Constant communication (daily face-to-
face communication between project team
members).

•	 Adaptability (last minute changes are al-
lowed).

It is also important to mention that one of the
agile manifesto’s principles states: “Welcome
changing requirements, even late in development.
Agile processes harness change for the customer’s
competitive advantage.”

This principle is one of the most important
arguments against agile methodologies. The crit-
ics insist that something like this is practically
impossible to be effective in a software project
because any important change that needs to be
done in a final stage is simply impossible; and
even if it was possible, the total cost and time
required would be increased excessively.

From their point of view, “agilists” argue that
since the requirements are not crystal-clear at
the beginning of any project but they essentially
emerge during development, the appropriate
“environment” needs to be created so that the
acceptance of new or modified requirements (even
in final stages) should be possible.

Using agile methods, system features are built
iteratively and incrementally. Small versions of
the system are continuously presented to the
customer/user, so as to use his or her feedback to
refine the system in the next iteration. Following

 75

Requirements Specification using User Stories

this process, “agilists” believe that user require-
ments emerge during the project.

Iterative development allows the development
team to deal with changes in requirements. This
presupposes that plans are short term and refer
to a single iteration. At the end of each iteration,
the team, with the participation of the customer,
plans the next iteration and the required features/
requirements to be included in that iteration.

The agile requirements approach includes a
number of practices that differentiate it from the
traditional one. Based on Ambler (2005a), the
agile approach embraces among others:

• Active stakeholder participation: The
stakeholder participates in the requirements
process by writing and prioritizing require-
ments, and by providing domain knowledge
and information to the developers. “Your
project stakeholders are the requirements
experts” (Ambler, 2005a).

• Take	 a	 breadth-first	 approach:	 Instead
of the big modeling up-front (BMUF) ap-
proach, agilists suggest that it is better to at-
tempt to obtain a wider picture of the system
in the beginning, trying to quickly gain an
overall understanding of the system. Details
can be added later when it is appropriate.

• Lean	documentation:	Instead of compre-
hensive documentation that requires a lot
of effort and has doubtable results, agilists
consider that a more lean approach, where
documentation is as simple as it can pos-
sibly be, is more appropriate for software
development. In fact, agilists suggest that
the development team should create docu-
mentation only when it is necessary, and
with the precondition that “the benefit of
having documentation is greater than the
cost of creating and maintaining it” (Ambler,
2005b).

• Small	requirements:	Small requirements
are much easier to understand, estimate,
prioritize, build, and therefore manage.

• Training	on	the	techniques:	Everyone in the
development team, including project stake-
holders, should have a basic understanding
of the requirements modeling techniques.
This implies that stakeholders should gain,
primarily, a broad understanding why these
techniques are utilized and in which way.

• Adoption	 of	 stakeholder	 terminology:	
Technical terminology and jargon should
be avoided as it may prove to be difficult for
stakeholders to comprehend. Stakeholders’
participation cannot be fully accomplished
if their terminology (business terminology)
is not used. As Constantine and Lockwood
(1999) say, “avoid geek-speak.”

At this point, it is very important to mention
that applying agile methods in a project for the
first time implies a cultural change for most
organisations. The adoption of agile methods
presupposes a new way of project management
and every day business operations for the cus-
tomer, totally different from the traditional one.
Without the genuine support of senior manage-
ment, active stakeholder participation will likely
not be successful, jeopardizing the success of the
overall project.

usEr storIEs

A short description

User stories are one of the primary development
artifacts for extreme programming (XP) project
teams. They are brief descriptions of features
containing just enough information for the de-
velopers to produce a reasonable estimate of the
effort to implement it.

XP creator Beck (2000) defines a user story
as: “One thing the customer wants the system to
do. Stories should be estimable at between one
to five ideal programming weeks. Stories should
be testable. Stories need to be of a size that you

76

Requirements Specification using User Stories

can build a few of them in each iteration” (Beck
& Fowler, 2000).

User stories are unstructured sentences written
by the customer with a title and a short paragraph
describing the purpose of the story, without techni-
cal terms, aiming to define what a proposed system
needs to do for them. They focus on user/business
needs, goals, and benefits.

An interesting definition is also the one given
by Wake (2003): “A pidgin language is a simpli-
fied language, usually used for trade, that allows
people who can’t communicate in their native lan-
guage to nonetheless work together. User stories
act like this. We don’t expect customers or users
to view the system the same way that program-
mers do; stories act as a pidgin language where
both sides can agree enough to work together
effectively.”

Another way to view a user story is that it’s
a reminder for a future conversation between
the customer and developers. This conversation
takes place usually during iteration planning
meeting where the customer/user together with
the development team are discussing the details
of the stories chosen to be included in the cur-
rent iteration.

Furthermore, in every user story, one or
more acceptance tests are written down, so as
to verify that the user story has been correctly
implemented.

Using Jeffries terminology (2001), stories in
XP have three components: Cards (their physi-
cal medium), Conversation (the discussion sur-
rounding them), and Confirmation (tests that
verify them).

Typically, the stories are written on 8×13cm
paper index cards, although an electronic copy may
be used. Lately, some software tools like XPlan-
ner, VersionOne, TargetProcess, Rally, and Select
Scope Manager, have appeared, but also in-house
tools based on Microsoft Access are referenced.
On the other hand, more generic software such
as spreadsheets and defect trackers can be used.
Some examples of user stories follow:

Story card 2 includes also some indicative
acceptance tests.

user stories and “the Planning
Game”

As it is mentioned previously, user stories are
used for summarizing user’s required features
in extreme programming (XP). According to
Wake (2002, p. 2), an XP project has three main
phases:

1. “A release planning phase, where the
customer writes stories, the programmers
estimate them, and the customer chooses the
order in which stories will be developed;

Figure 1. Example story card 1

Figure 2. Example story card 2

A doctor can seach for a Patient’s Medical Record (PMR) by Name, Personal ID
Number, and National Security Number.

A doctor can edit a PMR only by inserting an extra passwork.

 • Try to open a PMR by leaving the password field empty
 • Try to open a PMR by using an invalid password

 77

Requirements Specification using User Stories

2. An iteration phase, where the customer
writes tests and answers questions, while
the programmers program; and

3. A release phase, where the programmers
install the software and the customer ap-
proves the result.”

More specifically, user stories are a central
part of the “Planning game,” one of the 12 core
practices of XP, whose purpose is to rapidly
develop a high-level plan for the next release or
iteration. The customer and development team
cooperate to produce the maximum business
value as rapidly as possible. The planning game
takes place at various levels (i.e., release planning
game, iteration planning game). “In the release
planning game, the goal is to define the set of fea-
tures required for the next release. It is centered
around user stories. The customer writes stories,
the programmers estimate the stories, and the
customer plans the overall release. The iteration
planning game is similar. The customer chooses
the stories for the iteration and the programmers
estimate and accept the corresponding tasks.”
(Wake, 2002, p. 8)

The basic steps during the planning game are
always the same:

•	 Customer writes user stories to describe
the desired features/requirements. It is
possible, especially in the beginning, for
the development team to help or even to
suggest new stories to the customer during
an initial story writing workshop. However,
“… responsibility for writing stories resides
to the customer and cannot be passed to the
developers” (Cohn, 2004).

•	 Development team estimates the required
effort for each user story to turn into working
code in terms of story points. Usually, “the
estimates are in terms of ideal engineering
days--days where there are no interruptions,
no software or hardware glitches, and the
implementation moves smoothly” (Hayes,

2002). Story points can also be estimated
in terms of an ideal hour of work, an ideal
week of work, or as a measure of their rela-
tive complexity (i.e., story A is 2 times more
complex than story B).

•	 Development team estimates how much
effort (story points) can be completed in a
single iteration (given time interval). The
term velocity is used in this case. It has to
be stressed that the team’s velocity defines
the total productivity (in terms of story
points) of a specific development team in
a particular iteration, excluding possible
overtimes, extra developer’s effort, and so
on.

•	 Customer decides which stories to include
in the release by prioritizing them. With the
necessary information from the developers,
customer prioritizes the stories according
to the chosen technique. According to the
MoSCoW rules technique applied in DSDM,
features could be prioritized as:

•		Must-have features, which are essential
to the system and cannot be left out.

•		Should-have features, which are im-
portant to the system but the project’s
success does not rely on these. Due to
time constraints some of them could be
left out of the release.

•		Could-have features, which will be
left out if time runs out, without any
impact.

•		Won’t	have	this	time features, which
are desired ones that are shifted to the
next release.

Furthermore, Beck (2000) suggests that stories
can also be sorted by means of:

•	 “Value: Business sorts the stories into three
piles: (1) those without which the system will
not function, (2) those that are less essential

78

Requirements Specification using User Stories

but provide significant business value, and
(3) those that would be nice to have.

• Risk: Development sorts the stories into
three piles: (1) those that they can estimate
precisely, (2) those that they can estimate
reasonably well, and (3) those that they
cannot estimate at all.”

Independently of the technique, the final goal is
to sort the stories in a way that the business value
gained will be maximized as much as possible.

•	 Finally, the whole team (customer and the
development team together) plan the current
iteration by defining the constituent tasks of
each story chosen in this iteration, and by al-
locating one developer/pair of programmers
for each task. At this meeting (the iteration
planning meeting), the chosen stories will
be discussed in detail and the tasks will
be estimated in order to avoid over-alloca-
tion.

Although user stories are small by their
“nature,” “projects are generally well served by
disaggregating them into even smaller tasks.”
This happens firstly because it is more likely that
a story will be implemented by more than one
developer/pair, and secondly because of the fact
that stories “are not to-do lists for developers”
(Cohn, 2004).

The acronym SMART has been suggested by
Wake (2003) for describing the characteristics of
good tasks. More detailed, tasks should be:

• Specific:	It should be clear enough what is
involved in a task.

• Measurable: Tasks should be measurable in
the sense that there are measures “proving”
their completion.

• Achievable: The developer undertaking
a specific task should expect to be able to
accomplish it. That means that the devel-
oper should have the necessary technical
“qualifications” to do the task.

Figure 3. The planning game

Customer

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

writes stories

Development
Team

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

estimates story points and
team’s velocity

4

4

5

2

7

8

4

9

3

2

6

3

the Planning Game

Customer

prioritizes stories and
plans the release

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

4

5

2

7

6

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla
6

3

9

Development
Team

Customer plan the iterations

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla
5

2

7

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla
6

4

4

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla

blablablablablabla

blablablablablabla
blablablablablabla
blablablablablabla

blablabla
3

9

2

Iteration 1

Iteration 2

Iteration 3

 79

Requirements Specification using User Stories

•	 Relevant: Although stories are disaggregat-
ing into tasks for the benefit of developers, “a
customer should still be able to expect that
every task can be explained and justified”
(Wake, 2003).

• Time-Boxed:	Tasks should be limited to a
specific duration. It is not expected to have
an accurate estimation, but it is important
to have a rough indication of the duration so
that developers may know when they should
start to worry.

The following figure shows the way “The
planning game” works:

It has to be stressed that during the planning
game and before the next iteration, due to the
“knowledge” the customer and the team obtain
throughout the previous iterations, it is possible
that new stories will emerge, whereas some other
stories will be modified or even canceled.

Main Attributes for Good stories

There are six main attributes that a story has to
fulfill in order to be characterized as good. Wake
(2003) has suggested the acronym INVEST for
these six attributes. A good story has to be:

1. Independent: User stories should not
have interdependencies between them.
Otherwise, it is likely to face problems and
difficulties not only in prioritization and
planning but also in estimation.

2. Negotiable: When writing user stories, it has
to be kept in mind that they are negotiable.
As mentioned previously, user stories are
short descriptions of the desired features
from the customer’s perspective, and not de-
tailed requirements themselves. The details
of each story are negotiated in conversations
between the customer and the development
team during development.

3.	 Valuable	to	users	or	customers:	As user
stories are written by customers/users, they
have to describe features that are valuable
to them. Stories that are only valued by
developers and therefore mainly focused
on technological and programming aspects
should be avoided. “Developers may have
(legitimate) concerns, but these framed in a
way that makes the customer perceive them
as important” (Wake, 2003).

Cohn (2004) points out: “It is very possible that
the ideas behind these stories are good ones but
they should instead be written so that the benefits
to the customers or the user are apparent. This
will allow the customer to intelligently prioritize
these stories into the development schedule.”

4.		 Estimatable:	 It is essential for stories to
be estimatable in a way that developers
can estimate the size of the story (in terms
of story points). The better the developers
estimate the story points the better the
customer will prioritize and schedule the
story’s implementation.

Being not estimatable can be critically af-
fected by:

•	 The size and the complexity of a story.
•	 Insufficient domain knowledge.
•	 Insufficient technical knowledge and team’s

experience.

5. Small: “A good story captures the essence,
not the details. Over time, the card may
acquire notes, test ideas, and so on, but we
don’t need these to prioritize or schedule
stories” (Wake, 2003).

A story must have the right size in order to
be easy to estimate, plan, and prioritize. A small
story is more likely to get a more accurate esti-
mation. Stories should represent time between a

80

Requirements Specification using User Stories

few man-days of work up to a few man-weeks
of work. The usage of index cards, except where
the story is likely to include conversation details,
notes, and acceptance tests, helps to keep the
story small.

There is also an interesting opinion about the
size of the title of a good story: “We like to enforce
the 5-word rule when writing stories. If your title
contains more than five words, then it probably
needs refactoring. (…) it is a good exercise to pick
out stories that violate this rule and re-examine
them.” (Industrial Logic, 2004)

6. Testable: A good story should be testable.
“Writing a story card carries an implicit
promise: I understand what I want well
enough that I could write a test for it” (Wake,
2003).

Acceptance tests included in the story card
should be executed so as to verify that the user
story has been correctly implemented. By pass-
ing these tests, it is considered that the story has
been successfully developed.

Acceptance tests are most useful when auto-
mated. Considering the fact that following agile
methods, software is developed incrementally,
automated tests can help the development team
to test constantly and rapidly every change.

Finally, it is normal that there will be some user
stories that cannot be automated. For example, “…
a user story that says, “A novice user is able to
complete common workflows without training”
can be tested but cannot be automated. Testing this
story will likely involve having a human factors
expert design a test that involves observation of
a random sample of representative novice users”
(Cohn, 2004).

user roles, Personas, and
Extreme characters

Most of the times, requirements are written with
the assumption that the system will be used by

one generic type of user. What about users that
do not belong to the generic type of user?

The use of user roles, personas, or even extreme
character technique can prove to be extremely
helpful in writing better stories and mainly in
minimizing the possibility of omitting important
stories.

A user role is a collection of defining attributes
that characterize a population of users and their
intended interactions with the system.” (Cohn,
2004, p. 32). Moreover, “a user role is a particular
kind of relationship between some users and a
system. (…) A role is an abstraction, a collection of
characteristic needs, interests, expectations, and
behaviors. (Constantine & Lockwood, 2006)

Some examples of user roles could be the
following:

• Doctor: A user that uses the system in order
to see past medical data necessary for his
prediction, and/or to insert new data after
the medical examination has finished.

• Appointments	Secretary: A user that uses
the system in order to reserve doctors’ ap-
pointments hours, upon patients requests,
and to create patient medical record insert-
ing demographical details for first time
patients.

• Nurse: A user that uses the system in order
to see and/or insert data concerning the
medical condition, as well as the possible
special nutrition and medication instructions
given by the doctors.

During the process of identifying the vari-
ous user roles of a system, it is usual to discover
overlaps, interconnections, and relationships
among user roles. Sometimes, “one role may be
a specialization of another more general role,
one role may be composed of other roles, and
roles may otherwise depend on each other.”
(Constantine et al., 2006). In order to avoid this,

 81

Requirements Specification using User Stories

Cohn (2004) proposes that the following steps
may help a team to identify and select a useful
set of user roles:

• Brainstorming	an	initial	set	of	user	roles:	
In a meeting where both the customer and
as many developers as possible take part,
all the participants start to write down the
user roles they picture. Every time a new
user role is found, the author informs the
whole group. When it becomes difficult to
find new roles, the meeting is over. Usually,
such a meeting should not exceed 15-20
minutes. Although this meeting may not
identify all of the user roles, it is sure that
the overwhelming majority are identified.

• Organizing the initial set: Once the brain-
storming meeting has finished, the group
organizes the set of the user roles accord-
ing to their relationships and their possible
overlaps.

• Consolidating roles: The user roles, which
the group decides, that are of great similarity
are consolidated into fewer, more generic
ones. At the same time, user roles that have
nominal significance to the success of the
system are thrown away.

• Refining	roles:	Finally, the group describes
each user role by defining its basic attributes.
A user role card may ideally include the
following attributes:

• “The frequency with which the user will use
the software.

• The user’s level of expertise with the do-
main.

• The user’s general level of proficiency with
computers and software.

• The user’s level of proficiency with the
software being developed.

• The user’s general goal for using the soft-
ware. Some users are after convenience,
others favor a rich experience, and so on.”
(Cohn, 2004, p. 37)

A sample user role card appears in Figure 4.
Cooper (1999) has proposed a variation on user

roles called Personas. “Rather than abstracting the
essential features of a relationship, personas are
described as if they were real, specific persons,
with personality, detailed history, and complete
background.” (Constantine et al., 2006).

A persona describes an imaginary named user
of the system. The description includes fictitious
details such as demographic details and personal-
ity characteristics, or even a picture. In order for
the use of personas to be helpful for the project,
it has to be assured that the personas chosen
represent the system’s end-users.

A Persona example follows:

Tom is a 45-year-old cardiologist with a lot of
experience in his domain. He works in AAA
Hospital nine years. He is married and has two
daughters. Although he is an early adopter of new
practices and novelties in his area of expertise,
his familiarity with computers is limited only on
Web browsing and e-mail exchanging. However,

Figure 4. A sample user role card

User Role: Doctor

The user will be forced to use the system on a daily basis, in order to extract and insert medical data
to Patient Medical Records. He is not quite familiar with the use of computers in general, and up to
now he was not utilizing any software related to his occupation. Usefulness and friendliness of the
system is important, and no special training should be required.

82

Requirements Specification using User Stories

he is in favor of utilizing the software system being
developed, as he recognizes its benefits.

Although the creation of a persona “can be a
fun exercise, the concrete detail can obscure fea-
tures of the underlying role that are essential for
good design” (Constantine et al., 2006). Moreover,
“there is a risk that using personas to represent
the user will not make up for real-life feedback
from an actual user. Using personas should, if
used, be seen as a complimentary to instead of
a substitution of users” (Toxboe, 2005). Finally,
personas’ descriptions are often full of unneces-
sary details that do not contribute anything to
the development team and sometimes can also
be misleading.

Hence, a combination of using both user roles
and personas for selected roles, particularly for
some crucial (for the success of the project) roles,
may be extremely useful. Following this combi-
nation may help the team to better describe the
primary user roles and consequently it is more
possible to understand better the needs of the
system’s end-users.

Djajadiningrat, Gaver, and Frens (2000) went
a step further. They have proposed the use of ex-
treme	characters.	More specifically, they allege
that by considering some extreme characters (e.g.,
a drug dealer) as possible users of the system can
lead to the appearance of stories that would be
difficult to picture otherwise.

On the other hand, it is not clear whether these
new stories are important to the system, or if the
number of the possible end-users “fit” to these
stories is significant, in order for their develop-
ment to be cost-effective.

techniques for creating user stories

Four main techniques have been suggested for
creating user stories:

1. User Interviews: One of the most widely
acceptable techniques for gathering require-

ments is definitely the user interview. In user
stories, the main goal is to interview real
users of the proposed system. Alternatively,
when this is not possible, user proxies (see
next paragraph “User Proxies”) replace real
users.

 Although most of the people are familiar
with interviews and consider them a simple
procedure, a really successful interview is
a rare reality. The most difficult part is to
get users real needs. This can happen only
if the questions help the user to express his
or her more in-depth opinions, thoughts,
and expectations from the system. In fact,
the interview should look like a friendly
conversation without unnecessary severity.
As Cohn (2004, p. 47) alleges, questions in
interviews should be “Open-ended” and
“Context-free.”

2. Questionnaires: Questionnaires may also
be used in cases where there is large number
of users and is essential to get answers on
specific questions. Difficulties arise from the
fact that questionnaires exclude the possibil-
ity of exchanging information with the user.
Therefore, questionnaires are inappropriate
for writing new stories, but they can be used
for specifying details in existing ones.

3. Observation: One additional interesting
technique is to observe users’ “reactions”
and collect their feedback when working
with the software. Of course, this technique
presupposes that a significant number of
real users are available for as long as it
takes. If it is possible observation may be
extremely helpful, but unfortunately this is
not the case all the time. There are project
time restrictions and difficulties in accessing
real users.

4. Story-writing	 workshops:	 User stories
proponents consider this technique as the
most effective way for writing stories.
Development teams and users/customers
take part in this workshop with the goal to

 83

Requirements Specification using User Stories

write as many stories as they can, focus-
ing mainly on quantity and not on quality.
According to Cohn (2004, p. 49), “A good
story-writing workshop combines the best
elements of brainstorming and low-fidel-
ity prototyping.” The steps that take place
during the workshop can be summarized as
following:

•	 Primary user roles and/or personas are
identified.

•	 Main screen of the system is drawn and basic
actions of primary user roles/personas are
described.

•	 Primary stories are generated by the actions
described.

•	 Additional stories are generated by the
conversation that follows.

Depending on the project, a combination of
the techniques described in this section may be
used, resulting in a more effective and compre-
hensive outcome.

user Proxies

User stories’ final quality and effectiveness relies
largely on the participation of real users on the
customer team. However, on some projects, it is
difficult or even impossible to have “on call” real
users that will write the stories.

In this case, and according to Cohn (2004),
the involvement of user	proxies could prove to
be useful. User proxies are not real users, but for
the duration of the project, they could be con-
sidered as their representatives making all the
necessary decisions. Some indicative types of
user proxies, which may be used instead of real
users, are following:

• Users’	manager:	 In projects that are for
internal use instead of access to one or more
users, users’ manager may be the person
that is on-site. It has to be kept in mind that

although he may be one of the real users of
the system, it is possible that his perception,
needs, and priorities from the system may
be totally different from his subordinates.

• IT	manager:	Again, in projects for internal
use, the IT manager of the customer could
be assigned to be the user proxy. Special
attention should be given to the fact that
often, IT managers consider the introduction
of new, sophisticated technology as higher
priority.

• Salespersons/marketing	 department:	
Usually they understand the target market
and the real user needs more than anyone
else. However, their priorities are mainly
affected by the overall “attractiveness” of
the system and the consequent sales result.
Salespersons are focused on the points they
know or assume they will convince the
prospective customer/buyer of.

• Domain	experts:	May also be proved very
helpful resources, but their usefulness de-
pends on whether their experience is simi-
lar to the level of expertise of the system
implemented. Their experience may lead
to a more complicated system than it was
supposed to be.

• Business/system	 analysts:	 Analysts are
frequently used as user proxies and most of
the times their involvement could be charac-
terized as successful for the project because
“they have one foot in the technology world
and one foot in the domain of the software”
(Cohn, 2004, p. 61). However, some analysts
believe their experience and knowledge are
quite enough, and therefore conversation
with users could be minimized. It is more
than obvious that this perception may lead
to wrong assumptions.

Conclusively, although the participation of
real users may be ideal for writing good user
stories, when this is impossible, the use of user
proxies, under some conditions, may also lead to

84

Requirements Specification using User Stories

the same result. More specifically, because of the
shortcomings that each user proxy has, using the
right combination (depending on the project and
the target users) of user proxies may eliminate
these shortcomings.

On the other hand, the early release of a beta
version may open an additional communication
path to real users, helping to “discover” the dif-
ference between real users’ perception and the
initial user proxies’ view of the system.

Acceptance testing

In user stories, acceptance tests are part of the
story. More specifically, tests are written in the
story card before the coding starts.

Ideally, tests are specified by customer/us-
ers. “The customers write tests story-by-story.
The question they need to ask themselves is,
“What would have to be checked before I would
be confident that this story was done?” (Beck,
2000). However, most of the times, it is hard for
a customer to write acceptance tests without the
assistance of a programmer or a tester. “That’s
why an XP team of any size carries at least one
dedicated tester. The tester’s job is to translate the
sometimes vague testing ideas of the customer into
real, automatic, isolated tests.” (Beck, 2000).

Tests are usually written as details when
customers and developers discuss a story for the
first time, but mainly at the iteration planning
meeting (before the iteration starts) when stories
are discussed more explicitly. At this point, de-
velopers may also write some additional stories
in cases where they estimate by experience that
the implementation may be complicated and ad-
ditional points should be tested.

As the customer writes tests, it is more than pos-
sible that tests will cover only functional aspects
of the system. Although these tests are crucial
for the success of the system, there are also some
aspects of the system that developers have to test.
According to Cohn (2004, p. 72), other important
types of testing, which have to be considered

are usability testing, performance testing, user
interface testing, stress testing, etc.

Because of their large number and the neces-
sity for constant execution, agilists propose that
acceptance tests should be automated as much as
possible. Two of the most popular tools are FIT
and FitNesse.

user stories and Quality

Quality assurance in the requirements manage-
ment process defined as the compliance with a
quality standard such as ISO, TickIT, etc., is one
of the central critique points against user stories.
In order to be more precise, quality assurance is
one of the most controversial issues when utiliz-
ing agile methods.

As it was mentioned earlier in this chapter,
agilists believe that requirements emerge during
the development phase of the system, therefore,
the overall quality of the final system is critically
dependent on the challenging task of uncovering
the “real” customer requirements. User stories, ac-
cording to their supporters, provide the appropri-
ate framework toward this direction, contributing
thereby in the successful delivery of a final system
meeting nearly to the fullest the customer needs.
This way, high levels of customer satisfaction are
achieved, which subsequently is accounted by
many as the number one quality criterion.

In accordance to this, it is important to men-
tion that the Institute of Electrical and Electronic
Engineers (IEEE) defines quality in a software
system as “the degree to which a system, com-
ponent or process meets customer or user needs
or expectations.”

Extreme programming (XP) considers qual-
ity of the software produced to be the highest
priority. This is accomplished through a series
of continuous testing at two basic levels:

1. At a first level, quality of the code is maxi-
mized through test	 driven	 development
and unit testing. “Each class implemented

 85

Requirements Specification using User Stories

must have programmer-developed unit tests,
for everything that “could possibly break.”
These tests are to be written during coding
of the class, preferably right before imple-
menting a given feature. Tests are run as
frequently as possible during development,
and all unit tests in the entire system must
be running at 100% before any developer
releases his code” (Jeffries, 2006).

2. At a second level of testing called func-
tional testing, the quality of the system
from the business perspective is attempted
to be assured. This is achieved through the
constant customer/user participation who
writes the user stories and respectively ac-
ceptance tests with the help of the develop-
ment team. Customer/user is the one that
verifies their accomplishment. According
to Crispin (2001), “If the customer is clear
about his acceptance criteria and these are
reflected accurately in the acceptance tests,
we’re much more likely to achieve the level
of quality the customer wants.” Moreover,
an acceptance test “helps verify that a story
works correctly by documenting what inputs
are supplied to a system and what outputs
are expected” (Reppert, 2004).

In “Extreme Programming Explained,” Beck
(2000) describes these two levels of testing as
internal and external quality. “External quality
is quality as measured by the customer. Internal
quality is quality as measured by the program-
mers.” In fact, by using acceptance tests, the
external quality of the system is likely to be
maximized.

Finally, Crispin’s (2001) view is an illustrative
example of how quality is treated in XP, and gener-
ally in agile methods: “When I started working on
XP projects, I realized it wasn’t about MY quality
standards—it was the customers.”

Benefits and Limitations of
user stories

There are many positive aspects concerning
user stories in contrast with the traditional ap-
proaches. Some of the user stories’ advantages
are mentioned next:

•	 They favor face-to-face communication
instead of written requirements. Constant
conversations between the development
team and the customer/users may help to
overcome	written	language inaccuracies,
and help to maintain a close relationship with
the customer. This close relationship results
in more	 effective	 knowledge	 transfer
across the team and facilitates the active
participation of the users in designing
the behavior of the system. In this case, the
term “participatory design” is used (Kuhn
& Muller, 1993; Schuler & Namioka, 1993)
in contrast to the “traditional” approach
where users are not part of the team and all
the decisions on the design of the system are
made by designers who only study users’
written requirements.

•	 Since stories are written by users, they
are	 more	 comprehensible to them than
any other technique. Moreover, their small
size, their persistence to simplicity, and the
avoidance of technical jargon enforce the
previous characteristic.

•	 They are suitable for iterative develop-
ment. “Stories work well for iterative devel-
opment because of how easy it is to iterate
over the stories themselves. (…) I can write
some stories, code, and test those stories, and
then repeat as often as necessary.” (Cohn,
2004, p. 149). Stories may be written and
revised while the development takes place
and knowledge of the team becomes more
specific.

86

Requirements Specification using User Stories

On the other hand, some of the limitations of
user stories could be summarized as follows:

•	 As it is mentioned previously, traditional
requirement documents are also used as a
contract model signed usually before the
development phase starts, and as a tool of
solving any disputes or misunderstandings
that may emerge during the development.
Although contracts do not assure project
success, managers are accustomed to this
since it is presumed that contracts can secure
them against any future problems. Therefore,
it is difficult for them to accept a less “se-
cure” approach where user’s requirements
do not constitute the technical annex of a
contract.

•	 There are cases where requirements trace-
ability is obligatory because of internal Qual-
ity Systems (e.g., ISO 9001, TickIT). This
may require additional documentation and
a more bureaucratic “attitude” that comes
in sharp contrast with the agile approach.
However, agilists insist that it is possible
to reach the golden mean by adopting a
lightweight solution that fulfils basic quality
system’s documentation requirements but
also enables agility.

•	 Although customer participation throughout
the project decreases the risk of system to
end a failure, in some cases it may be dif-
ficult or it may be a significant cost for the
customer.

•	 On large projects with large teams, com-
munication problems may occur, since face
to face conversations and meetings with the
participation of the whole team may be hard
to organize on a constant basis.

user stories in comparison

Apart from user stories, the three more com-
mon approaches to user requirements are IEEE
830 software requirements specification (SRS),

use cases, and interaction design scenarios. The
main differences between user stories and these
approaches are described briefly in the following
paragraphs:

• IEEE 830-style approach implies that all the
requirements of the system will be written
by analysts (with the assistance of some us-
ers) who will “imagine” the planned system
even before the development starts. This
approach does not take into consideration
the benefit of users’ feedback once they see
part or an early version of the system. Every
change in the initially agreed requirements
is con sidered as “change of scope” and
therefore should be avoided or in the worst
case minimized.

Moreover, as customers/users hardly partici-
pate actively in requirements specification (their
participation is usually limited to few interviews),
it is common that the requirements agreed do not
entirely cover user’s/business’ goals.

Finally, requirements documents “produced”
are usually extremely large with many details.
Producing such documents is not only time
consuming but it is likely that customers/users
may not understand all the details included in
the document.

• According to Cohn (2004, p. 140) “Use cases
are written in a format acceptable to both
customers and developers so that each may
read and agree to use cases. The purpose of
the use case is to document an agreement
between the customer and the development
team. Stories, on the other hand, are written
to facilitate release and iteration planning,
and to serve as placeholders for conversa-
tions about the users’ detailed needs.”

Another important difference is in their
level of detail. As stories are written on index
cards, their size is limited and therefore their

 87

Requirements Specification using User Stories

development time is easier to be estimated (by
definition the implementation of a story should
be competed in a single iteration). In contrast, use
cases almost always cover a much larger scope
and their implementation is independent of any
time considerations.

Moreover, documentation “produced” during
use cases’ specification is kept after software re-
lease to aid in software maintenance. On the other
hand, user stories are not preserved as software
documentation and are often discarded after the
project ends.

Finally, it is usual for use cases to include user
interface details that could lead to preconceptions
in an early stage.

• Like the previous approaches, interaction
design scenarios contain much more de-
tails than user stories, focusing mainly on
describing the personas (see section “User
Roles, Personas, and Extreme Characters”)
and their interaction with the system. More-
over, they usually cover a much larger scope
than stories. In fact, most of the times, one
scenario may be equal to many stories.

FuturE trEnds

As it is cited many times in this chapter, user sto-
ries are one of the primary development artifacts
for extreme programming (XP) project teams.
Bibliography was used to bound user stories with
extreme programming since they originated as
part of XP. Today, many authors suggest that user
stories could be used also with other agile methods.
Cohn for example, in “User Stories Applied: For
Agile Software Development” dedicates a whole
chapter describing how user stories can be used
effectively with SCRUM.

Moreover, the use of extreme programming is
constantly growing while the adoption level of ag-
ile methodologies in general is rapidly increased.

A few data from research supporting this aspect
are distinctively cited:

• The Software Development Times Magazine
(July 2003 Issue) published the research re-
sults of an Evans Data Corporation research,
according to which a rate of 9% of North
America companies totally use XP method
in their projects.

• A Cutter Consortium research (Charette,
2001) conducted among 200 managing direc-
tors/IT managers constituting a respective
sample from the point of the geographical
allocation of the companies’ type and size,
recorded that during 2001, 21% of the par-
ticipants used agile methodologies to more
than 50% of their projects. Additionally, in
the year 2002, 34%, and in 2003, almost half
of the participants expected that more than
50% of their projects would be conducted
using agile methodologies.

• The research of Giga Information Group
(Sliwa, 2002) in 2002 anticipated that in a
period of the following 18 months, 2/3 of
IT companies in the U.S. would mostly use
agile methods in their projects.

As most of the “agilists” strongly recom-
mend user stories as the appropriate technique
for gathering user requirements, it is more than
possible that the rise of agile methods will drift
the adoption of user stories.

CONCLUSION

User stories are not just another technique on man-
aging user requirements. User stories as part of
agile methods propose a totally different approach
based on customer active participation through-
out the implementation of a system. A customer,
with the help of the development team, writes the
requirements in his “language,” prioritizes them,

88

Requirements Specification using User Stories

and finally writes the acceptance tests. “Agilists”
believe that this constant customer participation
increases drastically the possibility of delivering
a system closer to the real user requirements.

However, despite the many positive and in-
novative (“revolutionary” for some) aspects of
the user stories, development teams globally are
still trusting and using traditional approaches
with comprehensive documentation arguing
about the effectiveness of user stories. The main
reason behind this skepticism is the fact that,
usually, written user’s requirements represent
the subject of signed contracts. These contracts
operate as a means of solving any disputes or
misunderstandings between the parties, and their
absence frightens mainly the top management.
In addition to this, the adoption of user stories
and agile methods principles in general, require
a change on the “company’s culture,” something
difficult to be accepted by large, bureaucratic
organisations.

But, as in one of the four agile manifesto’s
values quoted, “People and interactions over
processes and tools,” what is more important is
the genuine, honest, and constant cooperation with
the customer; this targets to the development of
relations of trust rather than the exact and absolute
compliance with the terms and conditions of a
contract which, even though it is necessary, does
not presuppose the success of a project.

Furthermore, in accordance with another
agile manifesto’s value, “Responding to change
over following a plan,” user stories and iterative
development allow the development team to ac-
cept changes in users requirements derived from
experiences gained during development.

Conclusively, although user stories appearance
is very recent, and their use is not so extensive,
it looks like they can solve many of the limita-
tions of the traditional approaches. And as user
requirements specification is considered as one of
the main factors of a project success, it is possible
that using user stories may enhance the success
rate of software projects in general. Nevertheless,

before adopting a more agile approach based on
user stories, it has to be taken into account that
user stories have also limitations. “Due to the need
for direct communication, XP is only viable for
small co-located teams with access to an onsite
customer. Large distributed teams may need to
rely on more documentation and adopt RUP or
other less agile processes.” (Davies, 2001)

RefeRences

Ambler, S. (2005a). Agile requirements best
practices. Retrieved December 28, 2005, from
http://www.agilemodeling.com/essays/agileRe-
quirementsBestPractices.htm

Ambler, S. (2005b). Agile documentation: strate-
gies for agile software development. Retrieved
December 28, 2005, from http://www.agilemodel-
ing/com/essays/agileDocumentation.htm

Beck, K. (2000). Extreme programming ex-
plained; embrace change. Reading, MA: Addison
Wesley.

Beck, K., & Fowler, M. (2000b). Planning extreme
programming. Reading, MA: Addison Wesley.

Charette, R. (2001). The decision is in agile versus
heavy methodologies. Cutter Consortium, e-
Project Management Advisory Service, Executive
Update, 2(19), 1-3.

Cohn, M. (2004). User stories applied: For agile
software development. Reading, MA: Addison-
Wesley.

Constantine, L. L., & Lockwood L. A. (1999).
Software for use: A practical guide to the models
and methods of usage-centered design. Reading,
MA: Addison-Wesley.

Constantine L. L., & Lockwood Ltd Website
(2006). Frequently asked questions. Retrieved
January 18, 2006, from http://www.foruse.com/
questions/index.htm#5

 89

Requirements Specification using User Stories

Cooper, A. (1999). The inmates are running the
asylum. Indianapolis: SAMS.

Crispin, L. (2001). Is quality negotiable? Retrieved
June 28, 2003, from www.xpuniverse.com/2001/
xpuPapers.htm

Davies, R. (2001). The power of stories. Presented
at XP2001 Conference, Sardinia.

Davies, R. (2005). Agile requirements. Methods
& Tools, 13(3), 24-30, Fall 2005.

Djajadiningrat, J. P., Gaver, W. W., & Frens, J.
W. (2000). Interaction relabelling and extreme
characters: Methods for exploring aesthetic in-
teractions. Symposium on Designing Interactive
Systems 2000 (pp. 66-71).

Fowler, M. (2005). The new methodology. Re-
trieved December 29, 2005, from http://martin-
fowler.com/articles/newMethodology.html

Hayes, S. (2002). The problems of predictive
development. Methods & Tools, 10(4), 22-26,
Winter, 2002.

Jeffries, R. (2001). Essential XP: Card, conversa-
tion, confirmation. Retrieved December 29, 2005,
from http://www.xprogramming.com/xpmag/
EXPCardConversationConfirmation.htm

Jeffries, R. (2006). XP questions and an-
swers—quality assurance. Retrieved April 12,
2006, from http://www.xprogramming.com/qa/
xp_q_and_a_QA.htm

Industrial Logic Inc. Web site. (2004). Storytell-
ing. Retrieved January 17, 2006, from http://www.
industrialxp.org/storytelling.html

Kuhn, S., & Muller, M. (1993). Introduction to
the special section on participatory design. Com-
munications of the ACM, 36(6), 24-28.

Parnas, D. L., & Clements, P. C. (1986). A rational
design process: How and why to fake it. IEEE
Transactions on Software Engineering, 12(2),
251-257.

Reppert, T. (2004). Don’t just break software make
software. Better Software, 18-23.

Schuler, D., & Namioka, A. (1993). Participatory
design: Principles and practices. Hillsdale, NJ:
Erlbaum.

Sliwa, C. (2002). Users warm up to agile program-
ming. Computer World, 36(12), 8.

Stapleton, J. (2003). DSDM: Business focused
development. Reading, MA: Addison-Wesley.

Thomas, M. (2001). The modest software engineer.
Retrieved January 29, 2006, from www.safety-
club.org.uk/resources/164/MartynThomas.pdf

Toxboe, A. (2005). Introducing user-centered
design to eXtreme programming. Copenhagen
Business School, Department of Informatics.

Wake, W. C. (2002). Extreme programming ex-
plored. Reading, MA: Addison Wesley.

Wake, W. C. (2003). INVEST in good stories and
SMART tasks. Retrieved December 29, 2005, from
http://xp123.com/xplor/xp0308/index.shtml

90

AbstrAct

Software quality assurance is concerned with the efficient and effective development of large, reliable,
and high-quality software systems. In agile software development and maintenance, refactoring is an
important phase for the continuous improvement of a software system by removing quality defects like
code smells. As time is a crucial factor in agile development, not all quality defects can be removed
in one refactoring phase (especially in one iteration). Documentation of quality defects that are found
during automated or manual discovery activities (e.g., pair programming) is necessary to avoid wasting
time by rediscovering them in later phases. Unfortunately, the documentation and handling of exist-
ing quality defects and refactoring activities is a common problem in software maintenance. To recall
the rationales why changes were carried out, information has to be extracted from either proprietary
documentations or software versioning systems. In this chapter, we describe a process for the recurring
and sustainable discovery, handling, and treatment of quality defects in software systems. An annotation
language is presented that is used to store information about quality defects found in source code and
that represents the defect and treatment history of a part of a software system. The process and annota-
tion language can not only be used to support quality defect discovery processes, but is also applicable
in testing and inspection processes.

Chapter V
Handling of Software

Quality Defects in Agile
Software Development

Jörg Rech
Fraunhofer Institute for Experiemental Software Engineering (IESE), Germany

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

 91

Handling of Software Quality Defects in Agile Software Development

IntroductIon

The success of software organizations—espe-
cially those that apply agile methods—depends on
their ability to facilitate continuous improvement
of their products in order to reduce cost, effort,
and time-to-market, but also to restrain the ever
increasing complexity and size of software sys-
tems. Nowadays, industrial software development
is a highly dynamic and complex activity, which
is not only determined by the choice of the right
technologies and methodologies, but also by the
knowledge and skills of the people involved. This
increases the need for software organizations to
develop or rework existing systems with high
quality within short periods of time using auto-
mated techniques to support developers, testers,
and maintainers during their work.

Agile software development methods were
invented to minimize the risk of developing
low-quality software systems with rigid process-
based methods. They impose as little overhead
as possible in order to develop software as fast
as possible and with continuous feedback from
the customers. These methods (and especially
extreme programming (XP)) are based upon
several core practices, such as simple design,
meaning that systems should be built as simply
as possible and complexity should be removed,
if at all possible.

In agile software development, organizations
use quality assurance activities like refactoring
to tackle defects that reduce software quality.
Refactoring is necessary to remove quality de-
fects (i.e., bad smells in code, architecture smells,
anti-patterns, design flaws, negative design
characteristics, software anomalies, etc.), which
are introduced by quick and often unsystematic
development. As time is a crucial factor in agile
development, not all quality defects can be re-
moved in one refactoring phase (especially in one
iteration). But the effort for the manual discovery,
handling, and treatment of these quality defects

results in either incomplete or costly refactoring
phases.

A common problem in software maintenance is
the lack of documentation to store this knowledge
required for carrying out the maintenance tasks.
While software systems evolve over time, their
transformation is either recorded explicitly in a
documentation or implicitly through a versioning
system. Typically, problems encountered or deci-
sions made during the development phases get lost
and have to be rediscovered in later maintenance
phases. Both expected and unexpected CAPP
(corrective, adaptive, preventive, or perfective)
activities use and produce important information,
which is not systematically recorded during the
evolution of a system. As a result, maintenance
becomes unnecessarily hard and the only coun-
termeasures are, for example, to document every
problem, incident, or decision in a documentation
system like bugzilla (Serrano & Ciordia, 2005).
The direct documentation of quality defects that
are found during automated or manual discovery
activities (e.g., code analyses, pair programming,
or inspections) is necessary to avoid wasting time
by rediscovering them in later phases.

In order to support software maintainers
in their work, we need a central and persistent
point (i.e., across the product’s life cycle) where
necessary information is stored. To address this
issue, we introduce our annotation language,
which can be used to record information about
quality characteristics and defects found in
source code, and which represents the defect and
treatment history of a part of a software system.
The annotation language can not only be used
to support quality defect discovery processes,
but is also applicable for testing and inspection
processes. Furthermore, the annotation language
can be exploited for tool support, with the tool
keeping track and guiding the developer through
the maintenance procedure.

Our research is concerned with the develop-
ment of techniques for the discovery of quality

92

Handling of Software Quality Defects in Agile Software Development

defects as well as a quality-driven and experience-
based method for the refactoring of large-scale
software systems. The instruments developed
consist of a technology and methodology to sup-
port decisions of both managers and engineers.
This support includes information about where,
when, and in what configuration quality defects
should be engaged to reach a specific configuration
of quality goals (e.g., improve maintainability or
reusability). Information from the diagnosis of
quality defects supports maintainers in select-
ing countermeasures and acts as a source for
initiating preventive measures (e.g., software
inspections).

This chapter targets the handling of quality
defects in object-oriented software systems and
services. It is concerned with the theory, method-
ology, and technology for the handling of defects
that deteriorate software qualities as defined in
ISO 9126 (e.g., maintainability, reusability, or per-
formance). We describe the relevant background
and related work concerning quality defects and
quality defect handling in agile software proj-
ects, as well as existing handling techniques and
annotation languages. The subsequent section
encompasses the morphology of quality defects
as well as their discovery techniques. As the core
of this chapter, we present the techniques for
handling quality defects after their discovery in
an agile and time-critical environment and define

an annotation language to record information
about quality defects and their history in source
code. Thereafter, a section is used to describe
the annotation language that is used to record
the treatment history and decisions in the code
itself. Finally, we summarize several lessons
learned and requirements one should keep in mind
when building and using quality defect handling
methods and notations in an agile environment.
At the end of this chapter, we summarize the
described approach and give an outlook to future
work and trends.

bAckground

This section is concerned with the background
and related work in agile software engineering,
refactoring, and quality defects. It gives an over-
view of quality defect discovery, the documenta-
tion of defects, as well as source code annotation
languages.

Agile software development

Agile software development methods impose as
little overhead as possible in order to develop
software as fast as possible and with continuous
feedback from the customers. Agile methods have

Figure 1. Agile software development (here the XP process)

Spike
Prototyping

Release
Planning

Development
Iteration

A cceptance
Test

user stories

Architectural
spike

spike

small releases

Pair Programming
(sQA)

Next Iteration

unit testing / test
first (sQA)

test first (sQA)

 93

Handling of Software Quality Defects in Agile Software Development

in common that small releases of the software
system are developed in short iterations in order to
create a running system with a subset of the func-
tionality needed for the customer. Therefore, the
development phase is split into several activities,
which are followed by small maintenance phases.
In contrast to traditional, process-oriented SE,
where all requirements and use cases are elicited,
agile methods focus on few essential requirements
and incrementally develop a functional system in
several short development iterations.

Today, extreme programming (XP) (Beck,
1999) is the best-known agile software devel-
opment approach. 0 shows the general process
model of XP, which is closely connected to
refactoring, basically being its cradle (Beck &
Fowler, 1999).

These agile methods (and especially extreme
programming (XP)) are based upon 12 principles
(Beck, 1999). We mention four of these principles,
as they are relevant to our work.

1. Planning Game is the collective planning of
releases and iterations in the agile develop-
ment process and is necessary for quickly
determining the scope of the next release.
If the requirements for the next iteration
are coherent and concise, more focus can
be given to one topic or subsystem without
making changes across the whole system.

2. Small releases are used to develop a large
system by first putting a simple system into
production and then releasing new versions
in short cycles. The smaller the change to the
system, the smaller the risk of introducing
complexity or defects that are overlooked
in the refactoring (or SQA) phases.

3. Simple design means that systems are built
as simply as possible, and complexity in the
software system is removed, if at all possible.
The more understandable, analyzable, and
changeable a system is, the less functional-
ity has to be refactored or reimplemented
in subsequent iterations or maintenance
projects.

4. Refactoring is necessary for removing
qualitative defects that are introduced by
quick and often unsystematic development.
Decision support during refactoring helps
the software engineer to improve the sys-
tem.

In the highly dynamic processes used in
agile methods, teams and organizations need
automated tools and techniques that support their
work without consuming much time. Especially
in the refactoring phase, where the software is
revised, automation can be used to detect qual-
ity defects such as code smells (Fowler, 1999),
antipatterns (Brown, Malveau, McCormick, &
Mowbray, 1998), design flaws (Riel, 1996), design
characteristics (Whitmire, 1997), or bug patterns
(Allen, 2002). Techniques from KDD support the
refactoring of software systems (Rech, 2004),
and techniques from knowledge management
can foster experience-based refactoring (Rech
& Ras, 2004).

Quality defect discovery

A central research problem in software mainte-
nance is still the inability to change software easily
and quickly (Mens & Tourwe, 2004). To improve
the quality of their products, organizations often
use quality assurance techniques to tackle defects
that reduce software quality. The techniques for
the discovery of quality defects are based upon
several research fields.

• Software Inspections (Aurum, Petersson,
& Wohlin, 2002; Ciolkowski, Laitenberger,
Rombach, Shull, & Perry, 2002), and espe-
cially code inspections are concerned with
the process of manually inspecting software
products in order to find potential ambigui-
ties as well as functional and non-functional
problems (Brykczynski, 1999). While the
specific evaluation of code fragments is

94

Handling of Software Quality Defects in Agile Software Development

probably more precise than automated
techniques, the effort for the inspection is
higher, the completeness of an inspection
regarding the whole system is smaller, and
the number of quality defects searched for
is smaller.

• Software testing (Liggesmeyer, 2003) and
debugging is concerned with the discovery
of defects regarding the functionality and
reliability as defined in a specification or
unit test case in static and dynamic environ-
ments.

• Software product metrics (Fenton & Neil,
1999) are used in software analysis to mea-
sure the complexity, cohesion, coupling, or
other characteristics of the software product,
which are further analyzed and interpreted
to estimate the effort for development or to
evaluate the quality of the software product.
Tools for software analysis in existence today
are used to monitor dynamic or static aspects
of software systems in order to manually
identify potential problems in the architec-
ture or find sources for negative effects on
the quality.

Furthermore, several specific techniques for
quality defect discovery already exist (Marinescu,
2004; Rapu, Ducasse, Girba, & Marinescu, 2004).
Most of the tools such as Checkstyle, FindBugs,
Hammurapi, or PMD analyze the source code
of software systems to find violations of project-
specific programming guidelines, missing or
overcomplicated expressions, as well as poten-
tial language-specific functional defects or bug
patterns. Nowadays, the Sotograph can identify
“architectural smells” that are based on metrics
regarding size or coupling (Roock & Lippert,
2005).

But the information from these techniques
and the resulting CAPP or refactoring activities
are typically lost after some time if they are not
documented in external documents or defect man-
agement systems (e.g., bugzilla). And even these

external data sources are prone to get lost over
several years of maintenance and infrastructure
changes. The only information that will not get
lost is typically the source code itself.

refactoring

Beside the development of software systems, the
effort for software evolution and maintenance is
estimated to amount to 50% to 80% of the overall
development cost (Verhoef, 2000). One step in the
evolution and development of software systems
is the process of reworking parts of the software
in order to improve its structure and quality (e.g.,
maintainability, reliability, usability, etc.), but not
its functionality. This process of improving the in-
ternal quality of object-oriented software systems
in agile software development is called refactor-
ing (Fowler, 1999). While refactoring originates
in from the agile world, it can, nevertheless, be
used in plan-driven (resp. heavyweight) software
engineering. In general, refactoring (Fowler,
1999; Mens et al., 2004) is necessary to remove
quality defects that are introduced by quick and
often unsystematic development.

The primary goal of agile methods is the
rapid development of software systems that are
continuously adapted to customer requirements
without large process overhead. During the last
few years, refactoring has become an important
part in agile processes for improving the structure
of software systems between development cycles.
Refactoring is able to reduce the cost, effort, and
time-to-market of software systems. Develop-
ment, maintenance, and reengineering effort
are reduced by restructuring existing software
systems (on the basis of best practices, design
heuristics, and software engineering principles),
especially in the process of understanding (the
impact of new changes in) a system. A reduction
of effort also reduces the length of projects and
therefore, cost and time-to-market. Furthermore,
refactoring improves product quality and there-
fore is able to reduce the complexity and size of

 95

Handling of Software Quality Defects in Agile Software Development

software systems. Especially in agile software
development, methods as well as tools to sup-
port refactoring are becoming more and more
important (Mens, Demeyer, Du Bois, Stenten,
& Van Gorp, 2003).

However, performing manual discovery of
quality defects that should be refactored result
in either very short or costly refactoring phases.
While several automations for refactoring have
already been developed (e.g., “extract method”
refactoring), the location, analysis, and removal
is still an unsystematic, intuitive, and manual
process. Today, several techniques and methods
exist to support software quality assurance (SQA)
on higher levels of abstraction (e.g., requirement
inspections) or between development iterations
(e.g., testing). Organizations use techniques like
refactoring to tackle quality defects (i.e., bad
smells in code (Beck & Fowler, 1999), architecture
smells (Roock et al., 2005), anti-patterns (Brown
et al., 1998), design flaws (Riel, 1996; Whitmire,
1997), and software anomalies (IEEE-1044, 1995),
etc.) that reduce software quality.

Refactoring does not stop after discovery;
even if we had solved the problem of discover-
ing every quality defect possible, the information
about the defect, the rationales of whether it is
removed (or not), and the refactorings used have
to be documented in order to support maintainers
and reengineers in later phases. If one knows how
to remove a specific quality defect or a group of
quality defects, one still needs support, as it is not
clear where and under which conditions refactor-
ing activities should be used. Furthermore, product
managers need support to organize chains of refac-
torings and to analyze the impact of changes due to
refactorings on the software system. Analogously,
quality managers and engineers need information
to assess the software quality, identify potential
problems, select feasible countermeasures, and
plan the refactoring process as well as preventive
measures (e.g., code inspections).

defect documentation

Today, various repositories exist for document-
ing of information about defects, incidents, or
other issues regarding software changes. This
information can be stored in configuration man-
agement systems (e.g., CVS, SourceSafe), code
reuse repositories (e.g., ReDiscovery, InQuisiX),
or defect management systems.

The last category is also known as bug tracking
(Serrano et al., 2005), issue tracking (Johnson &
Dubois, 2003), defect tracking (Fukui, 2002), or
source code review systems (Remillard, 2005).
They enable a software engineer to record in-
formation about the location, causes, effects, or
reproducibility of a defect. Typical representatives
of defect management systems are open-source
variants such as Bugzilla (Serrano et al., 2005),
Scarab (Tigris, 2005), Mantis (Mantis, 2005),
or TRAC (TRAC, 2005). Commercial versions
include Tuppas (Tuppas, 2005), Census from
Metaquest (MetaQuest, 2005), JIRA from At-
lassian (Atlassian, 2005), or SSM from Force10
(Force10, 2005). These tools are predominantly
used in defect handling to describe defects on
the lower abstractions of software systems (i.e.,
source code) (Koru & Tian, 2004) separated from
the code.

Defect classification schemes (Freimut, 2001;
Pepper, Moreau, & Hennion, 2005) like ODC (Or-
thogonal Defect Classification) (Chillarege, 1996)
are used, for example, in conjunction with these
tools to describe the defects and the activity and
status a defect is involved in. The ODC process
consists of an opening and closing process for
defect detection that uses information about the
target for further removal activities. Typically,
removal activities are executed, but changes,
decisions, and experiences are not documented
at all—except for small informal comments when
the software system is checked into a software
repository like CVS.

96

Handling of Software Quality Defects in Agile Software Development

From our point of view, the direct storage of
information about defects, decisions about them,
or refactorings applied in the code (as a central
point of information) via annotation languages
such as JavaDoc (Kramer, 1999), doxygen (van
Heesch, 2005), or ePyDoc (Loper, 2004) seems
to be a more promising solution. The next section
describes the relevant background and related
work for annotation languages, which are used
to record historical information about the evolu-
tion of a code fragment (e.g., a method, class,
subsystem, etc.).

source code Annotation Languages

Annotation languages such as JavaDoc (Kramer,
1999), ePyDoc (ePyDoc, 2005), ProgDOC (Simo-
nis & Weiss, 2003), or Doxygen (van Heesch, 2005)
are typically used to describe the characteristics
and functionality of code fragments (i.e., classes,
methods, packages, etc.) in the source code itself
or in additional files. Today several extensions,
especially to JavaDoc, are known that enable us
to annotate which patterns (Hallum, 2002; Tor-
chiano, 2002), aspects (Sametinger & Riebisch,
2002), or refactorings (Roock & Havenstein,
2002) were or will be used on the source code,
and which help us to describe characteristics such
as invariants, pre-/ post-conditions, or reviewer
names (JSR-260, 2005; Tullmann, 2002). These
extensions to the annotation language are called
taglets. They are used by doclets in the extraction
using, for example, the JavaDoc program. These
tools collect the distributed information blocks
and generate a (online) documentation rendered
in HTML or another file format (e.g., PDF) for
better viewing. Typically, these documentations
describe the application program interface (API)
as a reference for software engineers. Similarly,
tools and notations like Xdoclet offer additional
tags that are used to generate many artifacts such
as XML descriptors or source code. These files
are generated from templates using the informa-

tion provided in the source code and its JavaDoc
tags.

Typical content of code annotations is, for
example, used to describe the:

•	 Purpose of a class, field, or method.
•	 Existence of (functional) defects or work-

arounds.
•	 Examples of using the code fragment.

In the following sections and tables, we de-
scribe the tags currently available for annotating
source code using JavaDoc. JavaDoc is a name
for an annotation language as well as the name
of a tool from Sun Microsystems to generate
API documentation and is currently the industry
standard for documenting software systems in
Java. The tool uses the tags from the JavaDoc
language to generate the API documentation in
HTML format. It provides an API for creating
doclets and taglets, which allows extending the
system with one’s own tags (via taglets) and the
documentation with additional information (via
doclets).

As listed in 0, JavaDoc currently consists of
19 tags that might be used to describe distin-
guished information (e.g., such as return values
of a method) or to format text passages (e.g., to
emphasize exemplary source code). The standard
tags appear as “@tag” and might include inline
tags, which appear within curly brackets “{@
tag}.” Inline tags only appear within, respectively
behind, standard tags or in the description field
(e.g., “@pat.name … {@pat.role …}”).

Developers can use the JavaDoc tags when
documenting source code in a special comment
block by starting it with “/**” and ending it with
“*/.” A tag is indicated by using an “@” (“at”) sign
right before the tag name. An example of a JavaDoc
comment used for a method is in Box 1.

As an extension to JavaDoc, four refactoring
tags were developed in Roock et al. (2002) as
described in 0.

 97

Handling of Software Quality Defects in Agile Software Development

/** Start of JavaDoc comment
* Sorts an array using quicksort Description of the method
* @author John Doe Indicate the author
* @param productArray Describe a parameter
* @return Array The sorted array Describe the return value
*/ End of JavaDoc comment

Table 1. General tags of the JavaDoc annotation language
Tag Description Origin Type
@author May appear several times and indicates who has created or modified the

code.
JavaDoc 1.0 Context

@param Describes one parameter of a method (or template class). JavaDoc 1.0 Function
@return Describes the returned object of a method. JavaDoc 1.0 Function
@throws Describes the (exception-) objects that are thrown by this method. JavaDoc 1.2 Function
@exception Synonym for @throws. JavaDoc 1.0 Function
@version States the version of this code structure. JavaDoc 1.0 Context
@since States the version since when this code was implemented and available

to others.
JavaDoc 1.1 Context

@deprecated Indicates that this code structure should not be used anymore. JavaDoc 1.0 Status
@see Adds a comment or link to the “See also” section of the documentation.

May link to another part of the documentation (i.e., code).
JavaDoc 1.0 Reference

@serialData Comments the types and order of data in a serialized form. JavaDoc 1.2 Context
@serialField Comments a ObjectStreamField. JavaDoc 1.2 Context
@serial Comments default serializable fields. JavaDoc 1.2 Context
<@code> Formats text in code font (similar to <code>). JavaDoc 1.5 Format
<@docRoot> Represents the relative path to the root of the documentation. JavaDoc 1.3 Reference
<@inherit-
Doc>

Copies the documentation from the nearest inherited code structure. JavaDoc 1.4 Reference

<@link> Links to another part of the documentation (i.e., code structure) as the
@see tag but stays inline with the text and is formated as “code.”

JavaDoc 1.2 Reference

<@linkPlain> Identical to <@link> but is displayed in normal text format (i.e., not
code format).

JavaDoc 1.4 Reference

<@literal> Displays text without interpreting it as HTML or nested JavaDoc. JavaDoc 1.5 Format
<@value> The value of a local static field or of the specified constant in another

code.
JavaDoc 1.4 Reference

Table 2. Refactoring tags by Roock et al. (2002)

Tag Description
@past Describes the previous version of the signature.
@future Describes the future signature of the element.
@paramDef States the default value expected for a parameter. The syntax is @paramDef <parameter> =

<value>.
@default Defines the default implementation of an abstract method.

Box 1.

98

Handling of Software Quality Defects in Agile Software Development

Table 3. Pattern tags by Torchiano (2002)

Tag Description
@pat.name States the standard name of the pattern as defined in (Gamma, Richard, Johnson, & Vlissides,

1994) (and other).
<@pat.role> Inline-tag of pat.name that describes the part of the pattern that is represented by this element

(e.g., “Leaf” in a composite pattern).
@pat.task Describes the task performed by the pattern or its role.
@pat.use Describes the use of the pattern or a role, typically by a method.

Table 4. Other tags

Tag Description
@contract Defines bounds of a parameter (or other value). Syntax is “@contract <requires> <min> <=

<parameter> <= <max>.”
@inv, @invariant States an invariant. Syntax is “@inv <boolean expression>.”
@pre States the precondition for a method.
@post States the postcondition for a method. This includes information about side effects (e.g.,

changes to global variables, fields in an object, changes to a parameter, and return values (ex-
cept if stated in @return).

@issue Indicates a new requirement or feature that could be implemented. Syntax is @issue [descrip-
tion ...].

@reviewedBy Indicates a code review for the associated class/interface was completed by a reviewer. Syntax
is @reviewedby <name> <date> [notes ...].

@license Indicates the copyright license used for this code fragment. Syntax is @license [description ...].
@category Annotates the element with a free attribute / category. @category <category>.
@example @example <description>.
@tutorial Link to a tutorial.
@index Defines the text that should appear in the index created by JavaDoc.
@exclude States that this element should not be included in the API by the JavaDoc command.
@todo Indicates that further work has to be done on this element.
@internal Comments to this element that are internal to the developer or company.
@obsolete Used if deprecated elements are actually removed from the API.
@threadSafe Indicates whether this element is threadsafe.
@pattern Formally describes a pattern existence with the syntax @pattern <pattern name>.<instance

name> <role name> <text>.
@aspect Describes an aspect existence with the syntax @aspect <name> <text>.
@trace Describes a pattern existence with the syntax @trace <name> <text>.

 99

Handling of Software Quality Defects in Agile Software Development

To note the existence of patterns in a software
system as well as the task and role as described in
the pattern definitions, several tags were developed
by Torchiano (2002) and are listed in 0.

Furthermore, several other groups of annota-
tions exist for various purposes. The following tags
are from Roock et al. (2002) (@contract), Kramer
(1998) (@inv, @pre, @post), Tullmann (2002) (@
issue, @todo, @reviewedBy, @license), Samet-
inger et al. (2002) (@pattern, @aspect, @trace),
and JSR-260 (2005) (@category, @example, @
tutorial, @index, @exclude, @todo, @internal,
@obsolete, @threadSafe).

The characteristics of source code annotation
languages can be differentiated by the number of
tags and the formality of their expressiveness.
We differentiate between three categories of
formality:

1. Formal: An explicit and unambiguous speci-
fication of the content. A formal tag might
include an informal section like a descrip-
tion or note to the formal part (e.g., the tag
“param” in JavaDoc has an informal part
to describe the meaning of the parameter).
In particular, the formal part of a tag must
be processable by a computer.

2. Semi-formal: A structured or formal rep-
resentation that is ambiguous or not directly
processable by a computer.

3. Informal: An unstructured and possibly
ambiguous specification of content.

In summary, the tags used in JavaDoc and its
extensions can be used to describe characteristics
of the source code on a relatively granular or semi-
formal level. The processing of these annotations
can be used to generate API documentations with
additional information about patterns, aspects,
or signature changes. The recording of quality
defects discovered and refactorings applied as
well as rationales or experiences about their ap-
plication can only be accomplished using free
text in the API description.

Furthermore, these annotation languages and
their extensions have different target areas in the
field of software quality assurance in order to store
information about tests, inspections, patterns, and
refactorings. 0 shows a comparison of several
annotation languages in relevant areas.

Quality defects and Quality defect
discovery

The main concern of software quality assurance
(SQA) is the efficient and effective development of
large, reliable, and high-quality software systems.
In agile software development, organizations use
techniques like refactoring to tackle “bad smells in
code” (Beck et al., 1999), which reduce software

Table 5. Annotation languages in comparison

Language Extension # of
Tags Test Info Inspection Info Pattern Info Refactoring

Info

JavaDoc 1.5

Standard 19 No No No No
Roock et
al. 5 Semi-Formal

(1) No No Informal (4)

Torchiano 10 No No Semi-Formal
(3) No

Samet-
inger et al. 3 No No Informal (3) No

Tullmann 4 No Informal (1) No No
Kramer 3 Informal (3) No No No
JSR-260 9 No No No No

100

Handling of Software Quality Defects in Agile Software Development

qualities such as maintainability, changeability,
or reusability. Other groups of defects that do
not attack functional, but rather non-functional
aspects of a software system are architecture
smells (Roock & Lippert, 2004), anti-patterns
(Brown et al., 1998), design flaws (Riel, 1996;
Whitmire, 1997), and software anomalies in
general (IEEE-1044, 1995).

In this chapter, we use the umbrella term
quality defects (QD) for any defect in software
systems that has an effect on software quality
(e.g., as defined in ISO 9126), but does not directly
affect functionality. Whether the quality defect is
automatically discoverable (Dromey, 1996, 2003)
or not (Lauesen & Younessi, 1998), an annotation
language and method that can be used to support
the handling of quality defects should record in-
formation about quality characteristics and qual-
ity defects in order to represent their status and
treatment history. This section will elaborate on
this concept and describe several quality defects,
their interrelation, symptoms, and effects.

Today, various forms of quality defects exist
with different types of granularity. Some target
problems in methods and classes, while others
describe problems on the architecture or even
process levels. In this chapter, we only focus on
quality defects on the code level. The representa-
tives on this level are:

• Code Smells: The term code smell is an
abbreviation of “bad smells in code,” which
were described in Beck et al. (1999). Today,
we have many code smells that are semi-for-
mally described and can be used for manual
inspection and discovery. There are at least
38 known code smells with 22 in Fowler
(1999), 9 new ones in Wake (2003), 5 new
ones in Kerievsky (2005), and 2 in Tourwe
and Mens (2003). Code smells are indicators
for refactoring and typically include a set
of alternative refactoring activities in their
description, which might be used to remove
them.

• Architectural Smells: Very similar to code
smells are architectural smells that describe
problems on the design level. Yet, the 31
architectural smells described in Roock et
al. (2005) do not only apply on the design
level but also on the code level. They typi-
cally describe problems regarding classes in
object-oriented software and interrelations
between them.

• Anti-Patterns: Design patterns (Gamma
et al., 1994) and anti-patterns (Brown et
al., 1998) represent typical and reoccurring
patterns of good and bad software architec-
tures and were the start of the description
of many patterns in diverse software phases
and products. While patterns typically state
and emphasize a single solution to multiple
problems, anti-patterns typically state and
emphasize a single problem to multiple solu-
tions. An anti-pattern is a general, proven,
and non-beneficial problem (i.e., bad solu-
tion) in a software product or process. It
strongly classifies the problem that exhibits
negative consequences and provides a solu-
tion. Built upon similar experiences, these
anti-patterns represent “worst-practices”
about how to structure or build a software
architecture. An example is the “lava flow”
anti-pattern, which warns about developing
a software system without stopping some-
times and reengineering the system. The
larger and older such a software system
gets, the more dead code and solidified (bad)
decisions it carries along.

• Bug Patterns: These patterns are concerned
with functional aspects that are typically
found in debugging and testing activities. In
Allen (2002), 15 bug patterns are described,
which describe underlying bugs in a software
system.

• Design Flaws and (Negative) Design Char-
acteristics: Whitmire (1997) describes nine
distinct and measurable characteristics of an
object-oriented design. These characteristics

 101

Handling of Software Quality Defects in Agile Software Development

such as “similarity” describe the degree to
which two or more classes or domain-level
abstractions are similar in terms of their
structure, function, behavior, or purpose.

• Design Heuristics: Design heuristics pro-
vide support on how to construct software
systems and, in a way, define quality defects
by their absence. They range from the “in-
formation hiding” principle to guidelines
such as “Eliminate irrelevant classes from
your design.” There are 61 design heuristics
described in Riel (1996) and 14 principles
described in Roock et al. (2005).

As listed, there are many quality defects of
various granularities and they are described in
different forms. To give a more concrete idea
of quality, we describe two of them in the fol-
lowing:

1. Long Method: In object-oriented program-
ming, one should pay attention to the fact
that methods are not too long. The longer
a method, the more difficult it is to be un-
derstood by a developer. Comprehensibility
and readability are negatively affected by the
length of a method and thus negatively affect
maintainability and testability. Moreover,
a short understandable method typically
needs less comments than a long one. An-
other advantage of short methods is the fact
that a developer does not constantly scroll

and break his reading flow. The most obvi-
ous method for discovering long methods
is the metric number of lines (LOC) per
method. But the question of which method
is too long and constitutes a problem is not
easily answered. This must either be speci-
fied or found by detecting anomalies from
the standard distribution. Nevertheless,
a method exceeding this threshold value
must not necessarily be shortened if other,
more important, quality constraints would
be negatively affected.

2. Shotgun Surgery: This denotes the problem
that several classes are always changed in
the same group, for example, if the system
is adapted to a new database scheme and
the same two classes are changed each time.
The expandability of the system is thus
constrained, and if one class is forgotten
during a change, it is more likely to fail.
The discovery of shotgun surgery is very
difficulty and requires either change metrics
or specified rules.

While these problems might not represent
problems that have a directly tangible effect on
quality, they might become problematic in future
evolution or refactoring activities and should be
removed as fast as possible—if the time is avail-
able. These are only two of many described qual-
ity defects. Nevertheless, they show that quality
defects describe problems on different levels of

Figure 2. Conceptual model of the quality defect ontology (software product level)

fosters causes causes

So
lv

ed
 b

y

pr
ev

en
ts

P re-dis pos ition S ymptomDefect

T reatment

P revention

C aus e

102

Handling of Software Quality Defects in Agile Software Development

complexity and might occur in parallel in one
situation (i.e., in one code fragment).

0 depicts the general model for the concepts
that are used to describe quality defects and that
are linked to them. A software system might have
predispositions that foster or enable the creation
of quality defects. These defects themselves have
causes that are responsible for the defects being
integrated into the system. The quality defects
might have a negative as well as a positive ef-
fect on specific qualities and are perceivable via
specific symptoms. Finally, the defects are solved
or removed via specific treatments after they are
discovered, or the causes might be prevented by
special preventive measures.

In software engineering (SE) and especially
in the case of quality defects for a software prod-
uct, the context of a defect can be described as
listed in 0.

In the example on the right side, the predisposi-
tion “bad architecture” causes a “cluttered func-
tionality,” which results in a “shotgun surgery”
defect. This quality defect can be discovered by
the symptom of “recurring changes to the same
set of software units” and might be removed by
the “inline class” refactoring. A prevention of this
problem would be a “good” systematic architecture
with clear separation of functionality (e.g., in the
form of a pattern-based architecture).

Handling of Quality defects

Typically, during agile development with short
iterations, several quality defects are introduced
into the software system and are discovered es-
pecially in the refactoring phase. To facilitate the
annotation of source code and the processing of

Table 6. Examples for software engineering techniques

Example 1 Example 2
Predisposition Data processing system Lack of good architecture/design
Cause Large data processing algorithms Distributed functionality
Defect “Long method” “Shotgun surgery”
Side-effects of defect Increase analyzability effort Increased maintenance effort
Symptom Many lines of code Recurrent changes to the same units
Treatment Extract method Inline class(es)
Side-effects of treatment Increased subroutine calls (worsens

performance)
Divergent change

Prevention Optimize algorithm (phase) Pattern-based architecture

Figure 3. The quality defect discovery and handling process model

Quality defect Handling

Discover
Defects

Code &
V ersions

Plan
Removal

A nalyze
Defect

M ark
Code

Refactor
Code

Document
Change

A nalyze
Cause

Quality Ef fects

SW
Dev.

Prevention

Quality
M odel

QM
Dev.

QD
M odel

QDD
Techniques

A nnotation
Language

 103

Handling of Software Quality Defects in Agile Software Development

quality defect removal, a mechanism to store the
information from the QDD process is required.

the Handling Process

In the following, the general process of quality
defect discovery and refactoring is depicted. 0
shows the process model that is either initiated
during software development or during a special
maintenance (resp. refactoring) activity.

In the execution of the process, the following
sub-processes are performed:

• Discover Defects: Manual or automatic
quality defect discovery techniques are
used to analyze the source code and ver-
sions thereof from the software repository.
Potential quality defects are identified and
the affected code (of the most current ver-
sion) is annotated.

• Plan Removal: Based on the discovered
quality defects (annotated with a special
tag) and a previously defined quality model,
a sequential plan for the refactoring of the
software system (or part thereof) is con-
structed.

• Analyze Defects: The software engineer
processes the list of potential quality de-
fects based on their priority, analyzes the
affected software system (or part thereof),
and decides if the quality defect is truly
present and if the software system can be
modified without creating too many new
quality defects.

• Refactor Code: If the quality defect is to
be removed from the software system, the
engineer is briefed about the existing qual-
ity defects and their rationales as well as
about available refactorings, their impact
on software quality, and previously made
experiences with the kind of quality defect
and refactoring at hand.

• Mark Code: If a potential quality defect
is unavoidable or its removal would have
a negative impact on an important quality
(e.g., performance), this decision is recorded
in the affected part of the software system
to prevent future analysis of this part.

• Document Change: After the refactoring or
marking, the software system is annotated
with specific tags about the change or deci-
sion, and the experience about the activity
is recorded within an experience database
(i.e., a database in an experience factory
(Basili, Caldiera, & Rombach, 1994b) for
storing, formalizing, and generalizing
experiences about software development
and refactoring activities (e.g., to construct
defect patterns from multiple similar defect
descriptions)).

• Analyze Cause: Statistics, information, and
experiences about the existence of quality
defects in the software systems are fed back
into the early phases of the software develop-
ment process to prevent or at least reduce
their reoccurrence. Preventive measures
include, for example, software requirement
inspections or goal-oriented training of
employees. Furthermore, information about
dependencies between qualities, quality de-
fects, and refactorings are fed back into the
quality model development process in order
to continuously improve the techniques for
quality model development.

decision support in Handling

In order to support decisions about what to refac-
tor in a software system, we developed several
methods and techniques. The following questions
act as the guiding theme for the development and
enactment of decision-making (i.e., the “plan
removal” or “refactor code” phase) as well as
understanding (i.e., the “analyze defect” or “docu-
ment change” phase) in refactoring phases:

104

Handling of Software Quality Defects in Agile Software Development

• Decision problem 1: Which quality defects
should be refactored and which might stay
in the system?

• Decision problem 2: In which sequence
should one refactor multiple quality defects
in order to minimize effort?

• Comprehension problem 1: How does one
understand and detect the quality defect in
the concrete situation?

• Comprehension problem 2: How does one
understand the refactoring in the concrete
situation and its effect on the software sys-
tem?

• Decision problem 3: Which refactoring
should one use if multiple ones are avail-
able?

• Comprehension problem 3: Which infor-
mation should one record after refactoring
or marking for later evolution, maintenance,
or reengineering activities?

• Decision problem 4: Did the understanding
of the problem or the refactoring result in
valuable experience that should be recorded
to support later activities (possibly by oth-
ers)?

• 	Comprehension problem 5: How should
one record the experience?

decision support in software
refactoring

Our approach encompasses several methods for
supporting the decision of where, when, and in
what sequence to refactor a software system as
depicted in 0. Beginning from the left upper corner
and going counterclockwise, knowledge about
quality defects from defect discovery processes
is used to retrieve experiences associated with
similar defects from previous refactorings. These
experiences are used to handle quality defects in
the defect removal phase. Additionally, suitable
experiences are augmented by so-called micro-
didactical arrangements (MDA) (Ras, Avram,
Waterson, & Weibelzahl, 2005), which initiate
learning processes and aim at improving the
understandability, applicability, and adaptability
of the experience in the specific context.

As shown in 0, we define six phases, based on
the quality improvement paradigm (QIP) (Basili,
Caldiera, & Rombach, 1994a), for the continuous
handling of quality defects. In contrast to the qual-
ity defect handling process as depicted in 0, these
phases are not concerned with quality defects in
a specific product, but with the learning process
about the quality defects themselves and their

Figure 4. Experience-based semi-automatic reuse of refactoring experiences

selected
refactoring
experience

software Verification
e.g., Inspections

software Validation
e.g., Code Testing

software diagnosis
e.g., Code Analysis,
Mining

refactoring
Experiences

defects
e.g., Bugs,
Code smells

micro-didactical
Arrangement (mdA)

e.g., augmented
refactoring experiences

software documents
e.g., Code, Designs, …

defect removal
Phase

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learning
goal

LEb Pb
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

selection of Experience
e.g., Inspections

Defect Discovery

Creation of MDAs

 105

Handling of Software Quality Defects in Agile Software Development

effect on the software qualities. 0 represents the
realizations of phase 2 (“discover defect”), phase 3
(“plan removal”), and phase 4 (the “quality defect
handling” block).

In 0, we first start with the definition of the
quality model consisting of qualities that should
be monitored and improved. For example, this
may result in different goals (i.e., quality as-
pects), as reusability demands more flexibility
or “openness,” while maintainability requires
more simplicity. Phase 2 is concerned with the
measurement and preprocessing of the source code
to build a basis for quality defect discovery (i.e.,
“discover defects”). Results from the discovery
process (i.e., quality defects) are represented and
prioritized to plan the refactoring in phase 3 (i.e.,
“plan removal”). Here, the responsible person has
to decide which refactorings have to be executed
(i.e., “analyze defect”) in what configuration and
sequence, in order to minimize work (e.g., change
conflicts) and maximize the effect on a specific
quality. In phase 4, the refactoring itself is (or is
not) applied to the software system (i.e., “Refactor
Code” or “Mark Code”) by the developer, which
results in an improved product. Phase 5 compares
the improved product with the original product to
detect changes and their impact on the remaining
system (i.e., “analyze cause”). Finally, in phase
6, we document the experiences and data about
the refactoring activity, changes to the software
system, and other effects in order to learn from

our work and continuously improve the model of
relationships between quality, refactorings, and
quality defects.

As indicated previously, the KDD sub-pro-
cesses are grouped in phase 2. We select source
code from a specific build, preprocess the code,
and store the results in the code warehouse, ana-
lyze the data to discover quality defects, discover
deviations from average behavior, cluster code
blocks with severe or multiple quality defects,
and represent discovered and prioritized quality
defects to the user.

An Example of ds for Qdd

For example, we may detect a method in an ob-
ject-oriented software system that has a length of
300 LOC. As described in Fowler (1999), this is
a code smell called long method. A long method
is a problem especially in maintenance phases, as
the responsible maintainer will have a hard time
understanding the function of this method.

One suitable refactoring for the mentioned
code smell might be the refactoring simply called
extract method: the source code of the long
method is reviewed to detect blocks that can be
encapsulated into new (sub-)methods. Experiences
with the extract method refactoring are used to
support the decision on where, when, how, and
if the refactoring has to been implemented. For
example, the developer might remark that every
block of code that has a common meaning, and
could be commented respectively, could also be
extracted into several smaller methods. Further-
more, the developer might note that the extraction
of (sub-) methods, from methods implementing
complex algorithms, can affect the performance
requirements of the software system and therefore
might not be applicable.

Additionally, the generation of new methods
might create another smell called “large class”
(i.e., the presence of too many methods in a class),
which might complicate the case even further.
Finally, the new experiences are annotated by

Figure 5. Quality-driven refactoring

6. report 6. report
changechange

4. refactor 4. refactor
ProductProduct

3. Plan 3. Plan
refactoringrefactoring

1. define 1. define
QualitiesQualities

2. 2. AnalyzeAnalyze
ProductProduct

5. monitor 5. monitor
QualityQuality

refactoring refactoring
ExperiencesExperiences

106

Handling of Software Quality Defects in Agile Software Development

the developer and stored in the refactoring ex-
perience base.

While this example only touches a simple
quality defect and refactoring, more complex
refactorings influence inheritance relations or
introduce design patterns (Fowler, 1999).

An Annotation Language to support
Quality defect Handling

This section describes, defines, and explains a
language that will be used to annotate code frag-
ments that are either contaminated by quality
defects or checked by a software engineer and
cleared of quality defects. As described in the
background section, several annotation languages
for the annotation of source code already exist
that are not adequate. This new language is used
to keep decisions about quality defects persistent
and over time builds a “medical history” of the
source code fragment (e.g., a class).

goals and characteristics of
Annotation Languages

All annotation languages represent a basis for
describing additional information about the
software system directly at the code level. Target
groups (or users) for the documentation/annota-
tion language are:

• Developers, who want to use the source
code and acquire information via the API
descriptions (e.g., for software libraries).

• Testers, who want to develop test cases and
need information about the pre- and post-
conditions as well as the functionality to be
tested.

• Maintainers, who want to evolve the system
and need information about existing qual-
ity defects, rationales for their persistence
(e.g., refactoring would cause loss of perfor-
mance), or past refactorings (e.g., to update

the software documentation such as design
documents).

In our case, an annotation language that is
targeted at supporting the handling of quality
defects should encompass several key aspects.
The requirements for such an annotation language
should cover uses such as:

• Annotate change for later understanding by
the same and other readers (e.g., maintain-
ers).

• Mark fragment that a quality defect is de-
tected but can or must stay in the system.

• Note membership in a larger quality defect
or refactoring activity that encompassed
multiple code fragments for later impact
analyses.

• Annotate quality aspects for later reuse,
etc.

• Tag additional information in the code
fragment freely or based on a classification
(e.g., “problematic class,” “quicksort algo-
rithm,” “part of subsystem X”) to support
later reuse or maintenance/reengineering
activities (similar to social software or Web
2.0 approaches).

We identified the following information blocks
of an annotation language that should be recorded
with an annotation language and that are based
on the six knowledge types from knowledge
management (Mason, 2005):

• Know-what: Record the currently present
quality defects that were found manually or
automatically.

• Know-how: Record the transformation
history (similar to the medical history of a
human patient).

• Know-why: Record the rationales why a
refactoring was applied or why a quality
defect is still present in order to prevent

 107

Handling of Software Quality Defects in Agile Software Development

recurrent defect analysis or refactoring at-
tempts.

• Know-where: Record the location in the
annotated code as well as associated code
fragments that where changed as well.

• Know-who: Record the tool or person (i.e.,
developer or maintainer) who applied the
refactoring.

• Know-when: Record the time or version
when the quality defect was found or the
refactoring was applied. This could also be
used to define a trigger when a refactoring
has to be applied (e.g., if several other (larger)
refactorings or design decision have to be
made).

• Context: Record the frame of reference
or context in which the quality defect was
discovered. This includes especially the
quality model used to decide which quality
defect has a higher priority over other quality
defects.

The following requirements for tags and other
constructs in such an annotation language to sup-
port refactoring and maintenance activities are:

• Unambiguous: The names of tags, quality
defects, refactorings, or other reoccurring
terms should be unique and used consistently
throughout the system.

• Machine-readable: The syntax of tags
should be formal, exact, and consistent to
avoid confusion and enable the interpreta-
tion and usage by supporting systems (e.g.,
defect discovery tools).

• Local completeness: The power of the
syntax should be large enough to cover all
existing cases. Full comprehensiveness is
probably not possible except by allowing
informal free text attributes.

• Flexibility: The syntax should not limit the
extension by new tags or tag attributes.

• Independence: Tags should describe infor-
mation that is mutually exclusive, and the

occurrence of two or more tags should be
independent from one another.

Beside the additional documentation of the
software system, the annotation language will
increase the semantic coupling between code
fragments and reduce the presence of quality
defects such as “shotgun surgery.”

RAL: The Refactoring Annotation Language

The refactoring annotation language (RAL)
is used to record the currently existing quality
characteristics, symptoms, defects, and refac-
toring of a code fragment regarding a specific
quality model. Furthermore, it is used to store the
rationales and treatment history (e.g., sequence
of refactorings).

In the following tables, the core set of tags
from RAL are described based on the JavaDoc
syntax and using existing JavaDoc and supportive
tags, that are used in the description and will be
described after the core tags. Information blocks
starting with a double cross “#” indicate an ID or
standardized term from an external, controlled
vocabulary or taxonomy.

A symptom tag as defined in 0 describes a
metric or characteristic of the code fragment and
is used as an indicator for the statistical or rule-
based identification of quality defects. The tag
acts as an annotation of a specific symptom from
a controlled vocabulary in order to have a unique
identifier and a reference for further information
about the symptom. The since tag from JavaDoc
is used to identify the version based on which the
quality symptom was first calculated.

The quality defect as defined in 0 represents a
code smell, antipattern, etc. present in this code
fragment. It is used to annotate a specific quality
defect from a controlled vocabulary in order to
have a unique identifier and reference for more
information about a specific quality defect type
and potential treatments. The since tag from Ja-

108

Handling of Software Quality Defects in Agile Software Development

vaDoc is used to identify the version where the
quality defect was first noticed.

A refactoring tag as defined in 0 is a descrip-
tion of a single refactoring that was applied for
removing one or more quality defects. Optionally,
a project-internal URI to other code fragments
directly affected by the refactoring (e.g., if two
classes interchange a method during the same
refactoring) can be stated.

The quality model tag as defined in 0 is used
as a reference to the quality model that defines
which quality characteristics are important, what
priority or decision model lies beneath, and which
quality defects are relevant to a specific part of the
software system. Optionally, it refers to a URI of
a file containing the specific (machine-readable)
quality model.

The supportive tags used in the previous tag
descriptions are given in 0.

Depending on the processor that would render a
quality documentation from these tags, some tags
might be used only once and inherited by lower
levels. For example, the quality model tag needs
only be stated once (e.g., for the whole project)
or twice (e.g., for the client and server part) in a
software system.

RAL is primarily used to annotate source
code. Therefore, in order to annotate documents
of higher abstraction, like UML-based design
documents (e.g., platform-independent models in
MDA) using the XMI Format or formal require-
ment documents, similar languages (probably
based on other languages such as JavaDoc) need
to be defined.

Table 7. The @symptom tag

Tag Syntax @symptom <#Symptom-ID> <@value value> <@since #version>
Example @symptom “LOC” @value “732” @since 1.2

Table 8. The @defect tag

Tag Syntax @defect <#QD-ID> <@since #version> <@status #Status> <@rationale text>
Example @defect “Long Method” @since 1.2 @status “untreated”

Table 9. The @refactoring tag

Tag Syntax @refactoring <#Refactoring-ID> <@rationale text> <@status #Status> <@link fragment> <@
author name>

Example @refactoring “Extract Method” “Applied as quality model rates maintainability higher than per-
formance” @status “treated” @link “ExtractedMethod” @author “John Doe”

Table 10. The @quality-model tag

Tag Syntax: @quality-model Name <@see file>
Example @quality-model “QM-Dep1-Project2” @see

Table 11. Support tags

Tag Description

@status “@status #status” indicates the current status of the superior tag or source code using the vocabulary
“discovered,” “inWork,” “treated,” or (deliberately) “untreated.”

@rationale “@rationale text” declares a rationale about the existence or status of the superior tag or source code.

 109

Handling of Software Quality Defects in Agile Software Development

Handling Quality defects using rAL

Software annotation languages like JavaDoc or
Doxygen and extensions like RAL can now be used
to document the functionality, structure, quality,
and treatment history of the software system at
the code level. The formal basis of the language
enables tools to read and write this information
automatically to generate special documents or
trigger specific actions.

The core tags @symptom, @defect, and @
refactoring build on top of each other and
might be recorded by several different tools. This
enables the intertwined cooperation of different
tools, each with a specific focus, such as to cal-
culate metrics or to discover quality defects. For
example, one tool might measure the source code
and its versions to extract numerical and histori-
cal information and write it into @symptom tags
(e.g., lines of code). Another tool might analyze
this information to infer quality defects (e.g.,
“long method”) that are recorded in @defect
tags. Finally, a tool might offer refactorings to a
developer or a maintainer during his work and
note applied refactorings or rationales in explicit
@refactoring tags.

Developers and maintainers of a software
system are supported in the handling of quality
defects in the following activities:

• Repetitive refactoring of a specific kind
of quality defect (e.g., “large method”), as
they do not have to switch between different
defects or refactoring concepts.

• Reuse of knowledge about the refactoring of
specific quality defects to judge new quality
defects.

• Recapitulation of the change history of the
code fragment to update software documen-
tation such as design documents.

• Retrieval of information about persons who
developed or refactored this part of the sys-
tem and should know about its purpose and
functionality.

• Product or quality managers of the software
system might use the information to:

• Evaluate the quality based on information
extracted via the tags about the amount or
distribution of quality defects.

• Analyze specific dates or groups of persons
that might have introduced specific kinds
of quality defects and might need further
training.

summAry And outLook

Agile software development methods were
invented to minimize the risk of developing
low-quality software systems with rigid process-
based methods. They impose as little overhead
as possible in order to develop software as fast
as possible and with continuous feedback from
the customers. To assure quality, agile software
development organizations use activities such
as refactoring between development iterations.
Refactoring, or the restructuring of a software
system without changing its behavior, is neces-
sary to remove quality defects (i.e., bad smells in
code, architecture smells, anti-patterns, design
flaws, software anomalies, etc.) that are introduced
by quick and often unsystematic development.
However, the effort for the manual discovery of
these quality defects results in either incomplete or
costly refactoring phases. Furthermore, software
quality assurance methods seem to ignore their
recurring application.

In this chapter, we described a process for the
recurring and sustainable discovery, handling, and
treatment of quality defects in software systems.
We described the complexity of the discovery
and handling of quality defects in object-oriented
source code to support the software refactoring
process. Based on the formal definition of qual-
ity defects, we gave examples of how to support
the recurring and sustainable handling of quality
defects. The annotation language presented is
used to store information about quality defects

110

Handling of Software Quality Defects in Agile Software Development

found in source code and represents the defect and
treatment history of a part of a software system.
The process and annotation language can not
only be used to support quality defect discovery
processes, but also has the potential to be applied
in testing and inspection processes.

Recapitulating, we specified an annotation
language that can be used in agile software main-
tenance and refactoring to record information
about quality defects, refactorings, and rationales
about them. Similar annotation languages such as
JavaDoc or doxygen as well as third party exten-
sions are not able to encode this information in a
machine-readable and unambiguous format.

The proposed framework including the
handling process promises systematic and semi-
automatic support of refactoring activities for
developers, maintainers, and quality managers.
The approach for recording quality defects and
code transformations in order to monitor refactor-
ing activities will make maintenance activities
simpler and increase overall software quality.
Likewise, the user monitors daily builds of the
software to detect code smells, identical quality
defects, or groups thereof, and initiates repetitive
refactoring activities, minimizing effort caused
by task switches.

rEQuIrEmEnts for QuALIty
dEfEct HAndLIng In AgILE sE

When building systems and languages for quality
defect handling in agile software development,
several requirements should be kept in mind.

The annotation language in the form of a code
annotation language like JavaDoc or in the form
of an external documentation such as a Defect
Tracking system or a Wiki should be integrated
into the programming language used and into the
development environment. If it is not integrated,
the information might easily be lost due to the
high workload and time constraints in agile de-
velopment. Especially in an agile environment,

the developers, testers, and maintainers should
be burdened with as little additional effort as
possible.

Therefore, the more formal the descriptions
of an annotation language are and the more in-
formation can be extracted from the code and
development environment (e.g., from the refactor-
ing techniques), the less information is required
from the developers.

outLook

The trend in research is to increase automation of
the mentioned processes in order to support the
developers with automated refactoring or defect
discovery systems.

We expect to further assist software engineers
and managers in their work and in decision mak-
ing. One current research task is the development
of taglets and doclets to generate specific evolution
documents. Furthermore, we are working on the
analysis and synthesis of discovery techniques
with statistical and analytical methods based
on textual, structural, numerical, and historical
information.

Although we can record and use this infor-
mation in several applications, we currently do
not know if the amount of information might
overwhelm or annoy the developer and main-
tainer. If dozens of quality defects are found and
additional refactorings are recorded, this might
be confusing and should be hidden (e.g., in an
editor of the IDE) from the developer. Very old
information (e.g., from previous releases of the
software) might even be removed and stored in
an external document or database.

rEfErEncEs

Allen, E. (2002). Bug patterns in Java. New York;
Berkeley, CA: Apress.

 111

Handling of Software Quality Defects in Agile Software Development

Atlassian. (2005). JIRA Web site. Retrieved
October 6, 2005, from http://www.atlassian.
com/software/jira/

Aurum, A., Petersson, H., & Wohlin, C. (2002).
State-of-the-art: Software inspections after 25
years. Software testing. Verification and Reli-
ability, 12(3), 133-154.

Basili, V. R., Caldiera, G., & Rombach, D. (1994a).
The goal question metric approach. In Encyclope-
dia of software engineering (1st ed., pp. 528-532).
New York: John Wiley & Son.

Basili, V. R., Caldiera, G., & Rombach, H. D.
(1994b). Experience factory. In J. J. Marciniak
(Ed.), Encyclopedia of software engineering (Vol.
1, pp. 469-476). New York: John Wiley & Sons.

Beck, K. (1999). eXtreme programming eX-
plained: Embrace change. Reading, MA: Ad-
dison-Wesley.

Beck, K., & Fowler, M. (1999). Bad smells in code.
In G. Booch, I. Jacobson, & J. Rumbaugh (Eds.),
Refactoring: Improving the design of existing
code (1st ed., pp. 75-88). Addison-Wesley Object
Technology Series.

Brown, W. J., Malveau, R. C., McCormick, H. W.,
& Mowbray, T. J. (1998). AntiPatterns: Refactor-
ing software, architectures, and projects in crisis.
New York: John Wiley & Sons, Inc.

Brykczynski, B. (1999). A survey of software
inspection checklists. Software Engineering
Notes, 24(1), 82-89.

Chillarege, R. (1996). Orthogonal defect classifica-
tion. In M. R. Lyu (Ed.), Handbook of software
reliability engineering (pp. xxv, 850 p.). New
York: IEEE Computer Society Press.

Ciolkowski, M., Laitenberger, O., Rombach, D.,
Shull, F., & Perry, D. (2002). Software inspections,
reviews, and walkthroughs. Paper presented at the
24th International Conference on Software Engi-
neering (ICSE 2002), New York, USA, Soc.

Dromey, R. G. (1996). Cornering the chimera.
IEEE Software, 13(1), 33-43.

Dromey, R. G. (2003). Software quality—Pre-
vention versus cure? Software Quality Journal,
11(3), 197-210.

ePyDoc. (2005). Epydoc Web site. Retrieved May
10, 2005, from http://epydoc.sourceforge.net/

Fenton, N. E., & Neil, M. (1999). Software metrics:
Successes, failures, and new directions. Journal
of Systems and Software, 47(2-3), 149-157.

Force10. (2005). Software support management
system (SSM) Web site. Retrieved October 6, 2005,
from http://www.f10software.com/

Fowler, M. (1999). Refactoring: Improving the de-
sign of existing code (1st ed.). Addison-Wesley.

Freimut, B. (2001). Developing and using defect
classification schemes (Technical Report No.
IESE-Report No. 072.01/E). Kaiserslautern:
Fraunhofer IESE.

Fukui, S. (2002). Introduction of the software
configuration management team and defect track-
ing system for global distributed development.
Paper presented at the 7th European Conference
on Software Quality (ECSQ 2002), Helsinki,
Finland, June 9-13, 2002.

Gamma, E., Richard, H., Johnson, R., & Vlis-
sides, J. (1994). Design patterns: Elements of
reusable object-oriented software (3rd ed., Vol.
5). Addison-Wesley.

Hallum, A. M. (2002). Documenting patterns.
Unpublished Master Thesis, Norges Teknisk-
Naturvitenskapelige Universitet.

IEEE-1044. (1995). IEEE guide to classification
for software anomalies. IEEE Std 1044.1-1995.

Johnson, J. N., & Dubois, P. F. (2003). Issue track-
ing. Computing in Science & Engineering, 5(6),
717, November-December.

112

Handling of Software Quality Defects in Agile Software Development

JSR-260. (2005). Javadoc Tag Technology Up-
date (JSR-260). Retrieved October 6, 2005, from
http://www.jcp.org/en/jsr/detail?id=260

Kerievsky, J. (2005). Refactoring to patterns.
Boston: Addison-Wesley.

Koru, A. G., & Tian, J. (2004). Defect handling
in medium and large open source projects. IEEE
Software, 21(4), 54-61.

Kramer, D. (1999, September 12-14). API docu-
mentation from source code comments: A case
study of Javadoc. Paper presented at the 17th Inter-
national Conference on Computer Documentation
(SIGDOC 99), New Orleans, LA.

Kramer, R. (1998). iContract—The Java(tm)
Design by Contract(tm) Tool. In Technology of
object-oriented languages and systems, TOOLS
26 (pp. 295-307). Santa Barbara, CA: IEEE
Computer Society.

Lauesen, S., & Younessi, H. (1998). Is software
quality visible in the code? IEEE Software, 15(4),
69-73.

Liggesmeyer, P. (2003). Testing safety-critical
software in theory and practice: A summary. IT
Information Technology, 45(1), 39-45.

Loper, E. (2004). Epydoc: API documentation
extraction in python. Retrieved from http://epydoc.
sourceforge.net/pycon-epydoc.pdf

Mantis. (2005). Mantis Web site. Retrieved Octo-
ber 6, 2005, from http://www.mantisbt.org/

Marinescu, R. (2004, September 11-14). Detec-
tion strategies: Metrics-based rules for detecting
design flaws. Paper presented at the 20th Inter-
national Conference on Software Maintenance,
Chicago, IL.

Mason, J. (2005). From e-learning to e-knowl-
edge. In M. Rao (Ed.), Knowledge management
tools and techniques (pp. 320-328). London:
Elsevier.

Mens, T., Demeyer, S., Du Bois, B., Stenten,
H., & Van Gorp, P. (2003). Refactoring: Current
research and future trends. Electronic Notes in
Theoretical Computer Science, 82(3), 17.

Mens, T., & Tourwe, T. (2004). A survey of soft-
ware refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-139.

MetaQuest. (2005). Census Web site. Retrieved
October 6, 2005, from http://www.metaquest.
com/Solutions/BugTracking/BugTracking.html

Pepper, D., Moreau, O., & Hennion, G. (2005,
April 11-12). Inline automated defect classifica-
tion: A novel approach to defect management.
Paper presented at the IEEE/SEMI Advanced
Semiconductor Manufacturing Conference and
Workshop, Munich, Germany.

Rapu, D., Ducasse, S., Girba, T., & Marinescu,
R. (2004). Using history information to improve
design flaws detection. Paper presented at the 8th
European Conference on Software Maintenance
and Reengineering, Tampere, Finland.

Ras, E., Avram, G., Waterson, P., & Weibelzahl,
S. (2005). Using Weblogs for knowledge sharing
and learning in information spaces. Journal of
Universal Computer Science, 11(3), 394-409.

Rech, J. (2004). Towards knowledge discovery
in software repositories to support refactoring.
Paper presented at the Workshop on Knowledge
Oriented Maintenance (KOM) at SEKE 2004,
Banff, Canada.

Rech, J., & Ras, E. (2004). Experience-based
refactoring for goal-oriented software quality
improvement. Paper presented at the 1st Interna-
tional Workshop on Software Quality (SOQUA
2004), Erfurt, Germany.

Remillard, J. (2005). Source code review systems.
IEEE Software, 22(1), 74-77.

Riel, A. J. (1996). Object-oriented design heuris-
tics. Reading, MA: Addison-Wesley.

 113

Handling of Software Quality Defects in Agile Software Development

Roock, S., & Havenstein, A. (2002). Refactor-
ing tags for automatic refactoring of framework
dependent applications. Paper presented at the
Extreme Programming Conference XP 2002,
Villasimius, Cagliari, Italy.

Roock, S., & Lippert, M. (2004). Refactorings in
großen Softwareprojekten: Komplexe Restruktu-
rierungen erfolgreich durchführen (in German).
Heidelberg: dpunkt Verlag.

Roock, S., & Lippert, M. (2005). Refactoring in
large software projects. John Wiley & Sons.

Sametinger, J., & Riebisch, M. (2002, March
11-13). Evolution support by homogeneously
documenting patterns, aspects, and traces.
Paper presented at the 6th European Conference
on Software Maintenance and Reengineering,
Budapest, Hungary.

Serrano, N., & Ciordia, I. (2005). Bugzilla,
ITracker, and other bug trackers. IEEE Software,
22(2), 11-13.

Simonis, V., & Weiss, R. (2003, July 9-12).
PROGDOC—a new program documentation
system. Paper presented at the 5th International
Andrei Ershov Memorial Conference (PSI 2003)
Perspectives of System Informatics, Novosibirsk,
Russia.

Tigris. (2005). Scarab Web site. Retrieved October
6, 2005, from http://scarab.tigris.org/

Torchiano, M. (2002, October 3-6). Documenting
pattern use in Java programs. Paper presented at
the Proceedings of the International Conference

on Software Maintenance (ICSM), Montreal,
Que., Canada.

Tourwe, T., & Mens, T. (2003). Identifying refac-
toring opportunities using logic meta program-
ming. IEEE Computer, Reengineering Forum;
Univ. Sannio. In Proceedings 7th European
Conference on Software Maintenance and Reen-
gineering, Los Alamitos, CA (xi+2420 2091-2100).
IEEE Comput. Soc.

TRAC. (2005). TRAC Web site. Retrieved October
6, 2005, from http://projects.edgewall.com/trac/

Tullmann, P. (2002). Pat’s taglet collection.
Retrieved October 6, 2005, from http://www.
tullmann.org/pat/taglets/

Tuppas. (2005). Tuppas Web site. Retrieved
October 6, 2005, from http://www.tuppas.com/
Defects.htm

van Heesch, D. (2005). Doxygen—a documenta-
tion system. Retrieved from http://www.doxygen.
org/

Verhoef, C. (2000, September 5-7). How to
implement the future? Paper presented at the
Proceedings of the 26th EUROMICRO Confer-
ence (EUROMICRO2000), Maastricht, The
Netherlands.

Wake, W. C. (2003). Refactoring workbook (1st
ed.). Pearson Education.

Whitmire, S. A. (1997). Object-oriented design
measurement. New York: John Wiley & Sons.

114

Chapter VI
Agile Quality Assurance

Techniques for GUI-Based
Applications

Atif Memon
University of Maryland, USA

Qing Xie
Accenture Technology Labs, USA

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

Agile software development has had a significant
impact on the development of software applica-
tions that contain a graphical user interface (GUI).
GUIs are by far the most popular means used to
interact with today’s software. A GUI uses one
or more metaphors for objects familiar in real
life such as buttons, menus, a desktop, the view

through a window, a trash can, and the physical
layout in a room. Objects of a GUI include ele-
ments such as windows, pull-down menus, but-
tons, scroll bars, iconic images, and wizards. A
software user performs events to interact with the
GUI, manipulating GUI objects as one would real
objects. For example, dragging an item, discard-
ing an object by dropping it in a trash can, and
selecting items from a menu are all familiar events

AbstrAct

This chapter motivates the need for new agile model-based testing mechanisms that can keep pace with
agile software development/evolution. A new concentric loop-based technique, which effectively utilizes
resources during iterative development, is presented. The tightest loop is called crash testing, which
operates on each code check-in of the software. The second loop is called smoke testing, which operates
on each day’s build. The third and outermost loop is called the “comprehensive testing” loop, which
is executed after a major version of the software is available. Because rapid testing of software with a
graphical-user interface (GUI) front-end is extremely complex, and GUI development lends itself well
to agile processes, the GUI domain is used throughout the chapter as an example. The GUI model used
to realize the concentric-loop technique is described in detail.

 115

Agile Quality Assurance Techniques for GUI-Based Applications

available in today’s GUI. These events may cause
changes to the state of the software that may be
reflected by a change in the appearance of one or
more GUI objects.

Recognizing the importance of GUIs, software
developers are dedicating an increasingly large
portion of software code to implementing GUIs-
-up to 60% of the total software code (Mahajan
& Shneiderman, 1996; Myers, 1993a, 1995a,
1995b; Myers & Olsen, 1994). The widespread
use of GUIs is leading to the construction of
increasingly complex GUIs. Their use in safety-
critical systems is also growing (Wick, Shehad,
& Hajare, 1993).

GUI-based applications lend themselves to
the core practices of agile development, namely
simple planning, short iteration, and frequent
customer feedback. GUI developers work closely
with customers iteratively enhancing the GUI
via feedback. Although agile processes apply
perfectly to GUI software, integration testing
of the GUI for overall functional correctness
remains complex, resource intensive, and ad
hoc. Consequently, GUI software remains largely
untested during the iterative development cycle.
Adequately testing a GUI is required to help
ensure the safety, robustness, and usability of an
entire software system (Myers, Hollan, & Cruz,
1996). Testing is, in general, labor and resource
intensive, accounting for 50-60% of the total cost
of software development (Gray, 2003; Perry, 1995).
GUI testing is especially difficult today because
GUIs have characteristics different from those of
traditional software, and thus, techniques typically
applied to software testing are not adequate.

Testing the correctness of a GUI is difficult
for a number of reasons. First of all, the space of
possible interactions with a GUI is enormous, in
that each sequence of GUI events can result in a
different state, and each GUI event may need to
be evaluated in all of these states (Memon, Pol-
lack, & Soffa, 1999, 2000b). The large number of
possible states results in a large number of input
permutations (White, 1996) requiring extensive

testing. A related problem is to determine the
coverage of a set of test cases (Memon, Soffa, &
Pollack, 2001c). For conventional software, cov-
erage is measured using the amount and type of
underlying code exercised. These measures do not
work well for GUI testing because what matters
is not only how much of the code is tested, but in
how many different possible states of the software
each piece of code is tested. An important aspect
of GUI testing is verification of its state at each
step of test case execution (Memon, Pollack, &
Soffa, 2000a). An incorrect GUI state can lead
to an unexpected screen, making further execu-
tion of the test case useless since events in the
test case may not match the corresponding GUI
elements on the screen. Thus, the execution of
the test case must be terminated as soon as an
error is detected. Also, if verification checks are
not inserted at each step, it may become difficult
to identify the actual cause of the error. Finally,
regression testing presents special challenges for
GUIs because the input-output mapping does
not remain constant across successive versions
of the software (Memon & Soffa, 2003e; Myers,
Olsen, & Bonar, 1993b). Regression testing is
especially important for GUIs since GUI devel-
opment typically uses an agile model (Kaddah,
1993; Kaster, 1991; Mulligan, Altom, & Simkin,
1991; Nielsen, 1993).

The most common way to test a GUI is to wait
until the iterative development has ended and the
GUI has “stabilized.” Testers then use capture/re-
play tools (Hicinbothom & Zachary, 1993) such
as WinRunner (http://mercuryinteractive.com)
(Memon, 2003a) to test the new major GUI version
release. A tester uses these tools in two phases:
a capture and then a replay phase. During the
capture phase, a tester manually interacts with
the GUI being tested, performing events. The tool
records the interactions; the tester also visually
“asserts” that a part of the GUI’s response/state
be stored with the test case as “expected output”
(Memon & Xie, 2004c; Memon, Banerjee, &
Nagarajan, 2003d). The recorded test cases are

116

Agile Quality Assurance Techniques for GUI-Based Applications

replayed automatically on (a modified version
of) the GUI using the replay part of the tool. The
“assertions” are used to check whether the GUI
executed correctly. Another way to test a GUI
is by programming the test cases (and expected
output) using tools (Finsterwalder, 2001; White,
2001) such as extensions of JUnit including
JFCUnit, Abbot, Pounder, and Jemmy Module
(http://junit.org/news/extension/gui/index.htm).
The previous techniques require a significant
amount of manual effort, typically yielding a small
number of test cases. The result is an inadequately
tested GUI (Memon, Nagarajan, & Xie, 2005a).
Moreover, during iterative development, develop-
ers waste time fixing bugs that they encounter in
later development cycles; these bugs could have
been detected earlier if the GUI had been tested
iteratively.

The agile nature of GUI development requires
the development of new GUI testing techniques
that are themselves agile in that they quickly test
each increment of the GUI during development.
This chapter presents a process with supporting
tools for continuous integration testing of GUI-
based applications; this process connects modern

model-based GUI testing techniques with the
needs of agile software development. The key
idea of this process is to create concentric test-
ing loops, each with specific GUI testing goals,
requirements, and resource usage. Instances
of three such loops are presented. The tightest
loop called the crash testing loop operates on
each code check-in (e.g., using CVS) of the GUI
software (Xie & Memon, 2005). It is executed
very frequently and hence is designed to be very
inexpensive. The goal is to perform a quick-and-
dirty, fully automatic integration test of the GUI
software. Software crashes are reported back to
the developer within minutes of the check-in.
The second loop is called the smoke testing loop,
which operates on each day’s GUI build (Memon
et al., 2005a; Memon & Xie, 2004b; Memon &
Xie, 2005b; Memon, Banerjee, Hashish, & Na-
garajan, 2003b). It is executed nightly/daily and
hence is designed to complete within 8-10 hours.
The goal of this loop is to do functional “refer-
ence testing” of the newly integrated version of
the GUI. Differences between the outputs of the
previous (yesterday’s) build and the new build are
reported to developers. The third, and outermost

Figure 1. Different loops of continuous GUI integration testing

Major Version Releasen
Major Version Releasen

Daily Buildi
Daily Buildi Daily Build3

Daily Build3

Daily Buildi
Daily Buildi

Daily Build100
Daily Build100

CVS
Check-inj

Crash Testing

Smoke Testing

Comprehensive GUI Testing

 117

Agile Quality Assurance Techniques for GUI-Based Applications

loop is called the “comprehensive GUI testing”
loop. It is executed after a major version of the
GUI is available. The goal of this loop is to con-
duct comprehensive GUI integration testing, and
hence is the most expensive. Major problems in
the GUI software are reported. An overview of
this process is shown in Figure 1. The small octa-
gons represent frequent CVS code check-ins. The
encompassing rectangles with rounded corners
represent daily increments of the GUI. The large
rectangle represents the major GUI version. The
three loops discussed earlier are shown operating
on these software artifacts.

A novel feature of the continuous testing
process is a GUI model that is obtained by using
automated techniques that employ reverse engi-
neering (Memon, Banerjee, & Nagarajan, 2003c).
This model is then used to generate test cases, cre-
ate descriptions of expected execution behavior,
and evaluate the adequacy of the generated test
cases. Automated test executors “play” these test
cases on the GUI and report errors.

The specific contributions of this work in-
clude:

1. Three distinctive product- and stakeholder-
oriented, novelty (agile) approaches, and
techniques that may be applied to the broad
class of event-driven software applica-
tions.

2. Comprehensive theoretical and practical
coverage of testing in the context of agile
quality.

The remainder of this chapter will present an
overview of existing approaches used for GUI
testing and describe the continuous testing pro-
cess, including the three concentric testing loops,
the GUI model used for automated testing, and
future trends.

bAckground

software testing

We now give an overview of software testing
techniques. The goal of testing is to detect the
presence of errors in programs by executing the
programs on well-chosen input data. An error is
said to be present when either (1) the program’s
output is not consistent with the specifications, or
(2) the test designer determines that the specifica-
tions are incorrect. Detection of errors may lead to
changes in the software or its specifications. These
changes then create the need for re-testing.

Testing requires that test cases be executed on
the software under test (SUT) and the software’s
output be compared with the expected output by
using a test oracle. The input and the expected
output are a part of the test suite. The test suite is
composed of tests each of which is a triple <iden-
tifier, input, output>, where identifier identifies
the test, input is the input for that execution of
the program, and output is the expected output
for this input (Rothermel & Harrold, 1997). The
entire testing process for software systems is done
using test suites.

Information about the software is needed to
generate the test suite. This information may be
available in the form of formal specifications or
derived from the software’s structure leading to
the following classification of testing.

•	 Black-box testing (also called functional
testing (Beizer, 1990) or testing to specifica-
tions): A technique that does not consider the
actual software code when generating test
cases. The software is treated as a black-box.
It is subjected to inputs and the output is veri-
fied for conformance to specified behavior.
Test generators that support black-box test-
ing require that the software specifications

118

Agile Quality Assurance Techniques for GUI-Based Applications

be given as rules and procedures. Examples
of black-box test techniques are equivalence
class partitioning, boundary value analysis,
and cause-effect graphing.

•	 	White-box testing (also called glass-box
testing (Beizer, 1990) or testing to code): A
technique that considers the actual imple-
mentation code for test case generation. For
example, a path oriented test case generator
selects a program’s execution path and gen-
erates input data for executing the program
along that path. Other popular techniques
make use of the program’s branch structure,
program statements, code slices, and control
flow graphs (CFG).

No single technique is sufficient for complete
testing of a software system. Any practical testing
solution must use a combination of techniques to
check different aspects of the program.

gui testing steps

Although GUIs have characteristics such as user
events for input and graphical output that are dif-
ferent from those of conventional software and
thus require the development of different testing
techniques, the overall process of testing GUIs is
similar to that of testing conventional software.
The testing steps for conventional software, ex-
tended for GUIs, follow:

•	 	Determine What to Test: During this first
step of testing, coverage criteria, which are
sets of rules used to determine what to test
in a software application, are employed. In
GUIs, a coverage criterion may require that
each event be executed to determine whether
it behaves correctly.

•	 	Generate Test Input: The test input is an
important part of the test case and is con-
structed from the software’s specifications
and/or from the structure of the software.
For GUIs, the test input consists of events

such as mouse clicks, menu selections, and
object manipulation actions.

•	 	Generate Expected Output: Test oracles
generate the expected output, which is used
to determine whether or not the software ex-
ecuted correctly during testing. A test oracle
is a mechanism that determines whether or
not the output from the software is equiva-
lent to the expected output. In GUIs, the
expected output includes screen snapshots
and positions and titles of windows.

•	 	Execute Test Cases and Verify Output:
Test cases are executed on the software and
its output is compared with the expected
output. Execution of the GUI’s test case
is done by performing all the input events
specified in the test case and comparing the
GUI’s output to the expected output as given
by the test oracles.

•	 	Determine if the GUI was Adequately
Tested: Once all the test cases have been
executed on the implemented software, the
software is analyzed to check which of its
parts were actually tested. In GUIs, such
an analysis is needed to identify the events
and the resulting GUI states that were tested
and those that were missed. Note that this
step is important because it may not always
be possible to test in a GUI implementation
what is required by the coverage criteria.

After testing, problems are identified in the
software and corrected. Modifications then lead
to regression testing (i.e., re-testing of the changed
software).

•	 	Perform Regression Testing: Regression
testing is used to help ensure the correct-
ness of the modified parts of the software as
well as to establish confidence that changes
have not adversely affected previously tested
parts. A regression test suite is developed
that consists of (1) a subset of the original
test cases to retest parts of the original

 119

Agile Quality Assurance Techniques for GUI-Based Applications

software that may have been affected by
modifications, and (2) new test cases to test
affected parts of the software, not tested by
the selected test cases. In GUIs, regression
testing involves analyzing the changes to the
layout of GUI objects, selecting test cases
that should be rerun, as well as generating
new test cases.

Any GUI testing method must perform all of
the previous steps. As mentioned earlier, GUI test
designers typically rely on capture/replay tools to
test GUIs (Hicinbothom et al., 1993). The process
involved in using these tools is largely manual
making GUI testing slow and expensive.

A few research efforts have addressed the
automation of test case generation for GUIs. A
finite state machine (FSM) based modeling ap-
proach is proposed by Clarke (1998). However,
FSM models have been found to have scaling
problems when applied to GUI test case genera-
tion. Slight variations such as variable finite state
machine (VFSM) models have been proposed by
Shehady and Siewiorek (1997). These techniques
help scalability but require that verification checks
be inserted manually at points determined by the
test designer.

Test cases have been generated to mimic novice
users (Kasik & George, 1996). The approach uses
an expert to generate the initial path manually and
then use genetic algorithm techniques to generate
longer paths. The assumption is that experts take
a more direct path when solving a problem using
GUIs whereas novice users often take longer paths.
Although useful for generating multiple scripts,
the technique relies on an expert to generate the
initial script. The final test suite depends largely
on the paths taken by the expert user. The idea is
using a task and generating an initial script may be
better handled by using planning, since multiple
scripts may be generated automatically according
to some predetermined coverage criteria.

Agile testing

There are several feedback-based mechanisms
to help manage the quality of software applica-
tions developed using agile techniques. These
mechanisms improve the quality of the software
via continuous, rapid QA during iterative im-
provement. They differ in the level of detail of
feedback that they provide to targeted developers,
their thoroughness, their frequency of execution,
and their speed of execution. For example, some
mechanisms (e.g., integrated with CVS) provide
immediate feedback at change-commit time by
running select test cases, which form the commit
validation suite. Developers can immediately see
the consequences of their changes. For example,
developers of NetBeans perform several quick
(Web-enabled) validation steps when checking
into the NetBeans CVS repository (http://www.
netbeans.org/community/guidelines/commit.
html). In fact, some Web-based systems such as
Aegis (http://aegis.sourceforge.net/) will not allow
a developer to commit changes unless all com-
mit-validation tests have passed. This mechanism
ensures that changes will not stop the software
from “working” when they are integrated into
the software baseline. Other, slower mechanisms
include “daily building and smoke testing” that
execute more thorough test cases on a regular (e.g.,
nightly) basis at central server sites. Developers
do not get instant feedback; rather they are e-
mailed the results of the nightly builds and smoke
tests. Another, still higher level of continuous QA
support is provided by mechanisms such as Skoll
(Memon et al., 2004a) that continuously run test
cases, for days and even weeks on several builds
(stable and beta) of the evolving software using
user-contributed resources. All these mechanisms
are useful, in that they detect defects early dur-
ing iterative development. Moreover, since the
feedback is directed towards specific developers
(e.g., those who made the latest modifications),
QA is implicitly and efficiently distributed.

120

Agile Quality Assurance Techniques for GUI-Based Applications

tHE AgILE guI tEstIng
ProcEss

Recent research in automated GUI testing has
focused on developing techniques that use GUI
models for testing. This section consolidates these
techniques to provide an end-to-end solution that
addresses the challenges of agile GUI develop-
ment. This section presents details of the overall
process shown in Figure 1 and its loops.

Users interact with a GUI by performing events
on some widgets such as clicking on a button,
opening a menu, and dragging an icon. During
GUI testing, test cases consisting of sequences
of events are executed on the GUI. Earlier work
demonstrated that simply executing each event in
isolation is not enough for effective GUI testing
(Memon et al., 2001c). Test oracles are used to
determine whether the test cases failed or passed
(Memon et al., 2000a). The agile concentric loops
differ in the way they generate test cases and
test oracles. These differences lead to varying
degrees of effort required by the test designer
during testing. Each of these loops, their goals,
and requirements are discussed in subsequent
sections.

crash testing

The goal of crash testing is to create test cases
that can quickly test major parts of the GUI fully
automatically without any human intervention.
More specifically, crash testing generates and
executes test cases and oracles that satisfy the
following requirements.

•	 	The crash test cases should be generated
quickly on the fly and executed. The test
cases are not saved as a suite; rather, a
throwaway set of test cases that require no
maintenance is obtained.

•	 	The test cases should broadly cover the
GUI’s entire functionality.

•	 	It is expected that new changes will be made
to the GUI before the crash testing process
is complete. Hence, the crash testing process
will be terminated and restarted each time
a new change is checked-in. The crash test
cases should detect major problems in a
short time interval.

•	 	The test oracle simply needs to determine
whether the software crashed (i.e., termi-
nated unexpectedly during test case execu-
tion).

Details of the crash testing process have
been presented in earlier reported work (Xie et
al., 2005). An empirical study presented therein
showed that the crash testing process is efficient
in that it can be performed fully automatically,
and useful, in that it helped to detect major GUI
integration problems. The feedback from crash
testing is quickly provided to the specific devel-
oper who checked in the latest GUI changes. The
developer can debug the code and resubmit the
changes before the problems effect other develop-
ers’ productivity.

smoke testing

Smoke testing is more complex than crash testing
and hence requires additional effort on the part
of the test designer. It also executes for a longer
period of time. Moreover, the smoke testing pro-
cess is not simply looking for crashes—rather its
goal is to determine whether the software “broke”
during its latest modifications. More specifically,
GUI smoke testing has to produce test cases that
satisfy the following requirements:

•	 	The smoke test cases should be generated
and executed quickly (i.e., in one night).

•	 	The test cases should provide adequate cov-
erage of the GUI’s functionality. As is the
case with smoke test cases of conventional
software, the goal is to raise a “something
is wrong here” alarm by checking that GUI

 121

Agile Quality Assurance Techniques for GUI-Based Applications

events and event-interactions execute cor-
rectly.

•	 	As the GUI is modified, many of the test
cases should remain usable. Earlier work
showed that GUI test cases are very sensitive
to GUI changes (Memon, Pollack, & Soffa,
2001a). The goal here is to design test cases
that are robust, in that a majority of them
remain unaffected by changes to the GUI.

•	 	The smoke test suite should be divisible
into parts that can be run (in parallel) on
different machines.

•	 	The test oracle should compare the current
version’s output with that of the previous
version and report differences.

Feasibility studies involving smoke testing
(Memon et al., 2005a; Memon et al., 2005b)
showed that GUI smoke testing is effective at
detecting a large number of faults. Testers have to
examine the test results and manually eliminate
false positives, which may arise due to changes
made to the GUI. The combination of smoke and
crash testing ensures that “crash bugs” will not be
transmitted to the smoke testing loop. Such bugs
usually lead to a large number of failed and unex-
ecuted test cases, causing substantial delays.

comprehensive guI testing

Comprehensive GUI testing is the most expensive,
and hence the least frequent executed testing loop
during GUI evolution. Since GUI development
is iterative, valuable resources are conserved by
employing a model-based approach for this loop.
Hence, this loop must produce test cases that
satisfy the following requirements:

•	 	The test cases should cover the entire func-
tionality of the GUI.

•	 	The test cases should be generated from a
model of the GUI. As the GUI evolves, this
model is updated by the developers.

•	 	The test oracle should also be generated from
the same model. Hence, the model should
encode the expected GUI behavior.

•	 	During test execution, the test cases should
be capable of detecting all deviations from
the GUI specifications represented in the
model.

Earlier work used a specialized encoding of
GUI events (in terms of preconditions and effects)
to generate test cases (Memon et al., 2001a) and
test oracles (Memon et al., 2000a). An AI Planner
was used to generate the test cases. The test cases
revealed all deviations from the specifications.

guI Model

As previously noted, all the test cases and oracles
for the agile GUI testing process are generated
automatically using model-based techniques. This
section describes the model and how it is used for
test automation.

The representation of the model (called the
event-flow model) contains two parts. The first
part encodes each event in terms of preconditions
(i.e., the state in which the event may be executed),
and effects (i.e., the changes to the state after the
event has executed). The second part represents
all possible sequences of events that can be ex-
ecuted on the GUI as a set of directed graphs. Both
these parts play important roles for various GUI
testing tasks. The preconditions/effects are used
for goal-directed test-case generation (Memon
et al., 2001a) and test oracle creation (Memon et
al., 2000a) for comprehensive testing. The second
part is used for graph-traversal based test-case
generation (Memon et al., 2005b) for smoke and
crash testing. The test oracle for smoke and crash
testing does not need to be derived from the GUI
model. In case of smoke testing, the oracle looks
for differences between the previous and modi-
fied GUIs. In case of crash testing, the oracle is
hand-coded to look for software crashes.

122

Agile Quality Assurance Techniques for GUI-Based Applications

Modeling Events

An important part of the event-flow model is the
behavior of each event in terms of how it modifies
the state of a GUI when it is executed. Intuitively,
the state of the GUI is the collective state of each
of its widgets (e.g., buttons, menus) and containers
(e.g., frames, windows) that contain other widgets
(these widgets and containers will be called GUI
objects). Each GUI object is represented by a set
of properties of those objects (background color,
font, caption, etc.).

Formally, a GUI is modeled at a particular
time t in terms of:

•	 	Its objects O = {o1, o2, ..., om}, and
•	 	The properties P = {p1, p2, ..., pm} of those

objects. Each property ip is represented as
a binary Boolean relation, where the name
of the relation is the property name, the
first argument is the object o1∈	O and the
second argument is the value of the property.
Figure 2(a) shows the structure of properties.
The property value is a constant drawn from
a set associated with the property in question:
for instance, the property “background-color”
has an associated set of values, {white, yellow,
pink, etc.}. Figure 2(b) shows a button object

called Button1. One of its properties is called
Caption and its current value is “Cancel.”

The set of objects and their properties can be
used to create a model of the state of the GUI.

Definition: The state of a GUI at a particular
time t is the set P of all the properties of all the
objects O that the GUI contains.

A complete description of the state would con-
tain information about the types of all the objects
currently extant in the GUI, as well as all of the
properties of each of those objects. For example,
consider the Open GUI shown in Figure 3(a). This
GUI contains several objects, three of which are
explicitly labeled; for each, a small subset of its
properties is shown. The state of the GUI, partially
shown in Figure 3(b), contains all the properties
of all the objects in Open.

Events performed on the GUI change its state.
Events are modeled as state transducers.

Definition: The events E = {e1, e2, ..., en} as-
sociated with a GUI are functions from one state
of the GUI to another state of the GUI.

Since events may be performed on different
types of objects, in different contexts, yielding
different behavior, they are parameterized with
objects and property values. For example, an
event set-background-color(w, x) may be defined in
terms of a window w and color x. The parameters w
and x may take specific values in the context of a
particular GUI execution. As shown in Figure 4,
whenever the event set-background-color(w19, yel-
low) is executed in a state in which window w19 is
open, the background color of w19 should become
yellow (or stay yellow if it already was), and no
other properties of the GUI should change. This
example illustrates that, typically, events can only
be executed in some states; set-background-color(
w19, yellow) cannot be executed when window
w19 is not open.

Figure 2(a). The structure of properties, and (b)
A Button object with associated properties

 123

Agile Quality Assurance Techniques for GUI-Based Applications

Figure 3(a). The Open GUI with three objects explicitly labeled and their associated properties, and
(b) the State of the Open GUI

Figure 4. An Event Changes the State of the GUI.

124

Agile Quality Assurance Techniques for GUI-Based Applications

It is of course infeasible to give exhaustive
specifications of the state mapping for each event.
In principle, as there is no limit to the number of
objects a GUI can contain at any point in time,
there can be infinitely many states of the GUI. Of
course in practice, there are memory limits on the
machine on which the GUI is running, and hence
only finitely many states are actually possible, but
the number of possible states will be extremely
large. Hence, GUI events are represented using
operators, which specify their preconditions and
effects:

Definition: An operator is a triple <Name,
Preconditions, Effects> where:

• Name identifies an event and its param-
eters.

• Preconditions is a set of positive ground
literals p(arg1, arg2), where p is a property
(i.e., p∈P). Pre(Op) represents the set of
preconditions for operator Op. A literal is
a sentence without conjunction, disjunction
or implication; a literal is ground when all
of its arguments are bound; and a positive
literal is one that is not negated. An operator
is applicable in any state Si in which all the
literals in Pre(Op) are true.

• Effects is also a set of positive or negative
ground literals p(arg1, arg2), where p is a
property (i.e., p∈P). Eff(Op) represents the
set of effects for operator Op. In the resulting
state Sj, all of the positive literals in Eff(Op)
will be true, as will all the literals that were
true in Si except for those that appear as
negative literals in Eff(Op).

For example, the following operator represents
the set-background-color event discussed earlier:

• Name: set-background-color(wX: window, Col:
Color)

• Preconditions: current(wX,TRUE), back-
ground-color(wX, oldCol), oldCol ≠ Col

• Effects: background-color(wX, Col) where
current and background-color are properties
of window objects.

The previous representation for encoding op-
erators is the same as what is standardly used in
the AI planning literature (Pednault, 1989; Weld,
1994; Weld, 1999). This representation has been
adopted for GUI testing because of its power to
express complex actions.

generating test cases for the
comprehensive testing Loop

Test case generation for the comprehensive testing
loop leverages previous work on using AI planning
(Memon et al., 2001a). Because of this previous
work, the operators are described in the PDDL
language that is used by AI planners. Planning
is a goal-directed search technique used to find
sequences of actions to accomplish a specific task.
For the purpose of test-case generation, given a
task (encoded as a pair of initial and goal states)
and a set of actions (encoded as a set of operators),
the planner returns a sequence of instantiated
actions that, when executed, will transform the
initial state to the goal state. This sequence is
the test case. If no such sequence exists then the
operators cannot be used for the task and thus the
planner returns “no plan.”

creating test oracle for the
comprehensive testing Loop

The comprehensive GUI testing loop contains
the most complex test oracle. A test oracle is a
mechanism that determines whether a piece of
software executed correctly for a test case. The
test oracle may either be automated or manual;
in both cases, the actual output is compared to a
presumably correct expected output. Earlier work
(Memon et al., 2000a) presented the design for
a GUI test oracle; it contains three parts (1) an

 125

Agile Quality Assurance Techniques for GUI-Based Applications

execution monitor that extracts the actual state
of a GUI using reverse engineering technology
(Memon et al., 2003c) as a test case is executed on
it, (2) an oracle procedure that uses set equality to
compare the actual state with oracle information
(i.e., the expected state), (3) the oracle informa-
tion for a test case <S0, e1; e2; ...; en> is defined
as a sequence of states S1; S2; ...; Sn such that Si
is the expected state of the GUI after event ei is
executed.

Operators are used to obtain the oracle informa-
tion. Recall that the event-flow model represents
events as state transducers. The preconditions-
effects-style of encoding the operators makes it
fairly straightforward to derive the expected state.
Given the GUI in state Si –1, the next state Si (i.e.,
the expected state after event ei is executed) may
be computed using the effects of the operator Op
representing event ei via simple additions and de-
letions to the list of properties representing state
Si –1. The next state is obtained from the current
state Si –1 and)(OpEff as follows:

1. Delete all literals in Si –1 that unify with a
negated literal in Eff(Op), and

2. Add all positive literals in Eff(Op).

Going back to the example of the GUI in
Figure 4 in which the following properties are
true before the event is performed: background-
color(w19, blue), current(w19,TRUE). Application of
the previous operator, with variables bound as
set-background-color(w19, yellow), would lead to

the following state: background-color(w19, yellow),
current(w19,TRUE) (i.e., the background color of
window w19 would change from blue to yellow).
During test-case execution, this expected state
is used to check the correctness of the GUI’s
actual state.

Note that a literal that is not explicitly added
or deleted in the operator’s effects remains un-
changed (i.e., it persists in the resulting state). This
persistence assumption built into the method for
computing the result state is called the “STRIPS
assumption.” A complete formal semantics for
operators making the STRIPS assumption has
been developed by Lifschitz (1986). It turns
out that this persistence assumption makes the
operators compact and easy to code since there
is no need to consider unchanged widgets and
their properties.

Thus, given a test case for the comprehensive
testing loop and the operators of the GUI, the
expected state can be derived by iterative appli-
cation of the two previous steps. This expected
state is used to create a test oracle during test-
case execution.

Modeling Event Interactions

The goal is to represent all possible event inter-
actions in the GUI. Such a representation of the
event interaction space is used for automated test
case generation for the smoke and crash testing
loops. Intuitively, a graph model of the GUI is
constructed. Each vertex represents an event

Figure 5. The event Set Language opens a modal window

126

Agile Quality Assurance Techniques for GUI-Based Applications

(e.g., click-on-Edit, click-on-Paste). In subsequent
discussion for brevity, the names of events are
abbreviated (e.g., Edit and Paste). An edge from
vertex x to vertex y shows that an event y can be
performed immediately after event x. This graph
is analogous to a control-flow graph in which
vertices represent program statements (in some
cases basic blocks) and edges represent possible
execution ordering between the statements. A state
machine model that is equivalent to this graph
can be constructed—the state would capture the
possible events that can be executed on the GUI
at any instant; transitions cause state changes
whenever the number and type of available events
changes. For a pathological GUI that has no
restrictions on event ordering and no windows/
menus, such a graph would be fully connected.
In practice, however, GUIs are hierarchical, and
this hierarchy may be exploited to identify groups
of GUI events that may be modeled in isolation.
One hierarchy of the GUI and the one used in this
research is obtained by examining the structure
of modal windows (Standard GUI terminology;
see details at msdn.microsoft.com/library/en-
us/vbcon/html/vbtskdisplayingmodelessform.
asp and documents.wolfram.com/v4/AddOns/
JLink/1.2.7.3.html.) in the GUI.

Definition: A modal window is a GUI win-
dow that, once invoked, monopolizes the GUI
interaction, restricting the focus of the user to a
specific range of events within the window, until
the window is explicitly terminated.

The language selection window is an example
of a modal window in MS Word. As Figure 5
shows, when the user performs the event Set
Language, a window entitled Language opens and
the user spends time selecting the language, and
finally explicitly terminates the interaction by
either performing OK or Cancel.

Other windows in the GUI that do not restrict
the user’s focus are called modeless windows; they
merely expand the set of GUI events available to
the user. For example, in the MS Word software,
performing the event Replace opens a modeless
window entitled Replace (Figure 6).

At all times during interaction with the GUI,
the user interacts with events within a modal
dialog. This modal dialog consists of a modal
window X and a set of modeless windows that
have been invoked, either directly or indirectly
from X. The modal dialog remains in place until
X is explicitly terminated.

Definition: A modal dialog (MD) is an or-
dered pair (RF, UF) where RF represents a modal

Figure 6. The event Replace opens a modeless window

 127

Agile Quality Assurance Techniques for GUI-Based Applications

window in terms of its events and UF is a set
whose elements represent modeless windows
also in terms of their events. Each element of UF
is invoked (i.e., window is opened) either by an
event in RF or UF.

Note that, by definition, a GUI user cannot
interleave events of one modal dialog with events
of other modal dialogs; the user must either
explicitly terminate the currently active modal
dialog or invoke another modal dialog to execute
events in different dialogs. This property of modal
dialogs enables the decomposition of a GUI into
parts—each part can be tested separately. As will
be seen later, interactions between these parts are
modeled separately (as an integration tree) so that
the GUI can be tested for these interactions.

Event interactions within a modal dialog may
be represented as an event-flow graph. Intuitively,
an event-flow graph of a modal dialog represents
all possible event sequences that can be executed
in the dialog. Formally, an event-flow graph is
defined as follows.

Definition: An event-flow graph for a modal
dialog MD is a 4-tuple <V, E, B, I> where:

1. V is a set of vertices representing all the
events in MD. Each v ∈	V represents an
event in MD.

2. E ⊆	V ×	V is a set of directed edges between
vertices. Event ej follows ei iff ej may be per-
formed immediately after ei. An edge (vx,
vy) ∈ E iff the event represented by vy follows
the event represented by vx.

3. B ⊆	V is a set of vertices representing those
events of MD that are available to the user
when the modal dialog is first invoked.

4. B ⊆	V is the set of events that open other
modal dialogs.

An example of an event-flow graph for the Main
modal dialog (i.e., the modal dialog that is avail-
able to the user when the application is launched)
of MS WordPad is shown in Figure 7. To increase

readability of the event-flow graph, some edges
have been omitted. Instead, labeled circles have
been used as connectors to sets of events. The
legend shows the set of events represented by
each circle. For example, an edge from Save to
 is a compact represent of a collection of edges
from the event Save to each element in the set
represented by . At the top of the figure are the
vertices, File, Edit, View, Insert, Format, and Help,
that represent the pull-down menu of MS Word-
Pad. They are events that are available when the
Main modal dialog is first invoked; they form the
set B. Once File has been performed in WordPad
any of the events in may be performed; there
are edges in the event-flow graph from File to
each of these events. Note that Open is shown as a
dashed oval. This notation is used for events that
open other modal dialogs; About and Contents are
also similar events. Hence, for this modal dialog
I = {all events shown with dashed ovals}. Other
events such as Save, Cut, Copy, and Paste are all
events that don’t open windows; they interact with
the underlying software.

Once all the modal dialogs of the GUI have
been represented as event-flow graphs, the remain-
ing step is to identify interactions between modal
dialogs. A structure called an integration tree is
constructed to identify interactions (invocations)
between modal dialogs.

Definition: Modal dialog MDx invokes
modal dialog MDy if MDx contains an event ex
that invokes MDy.

Intuitively, the integration tree shows the
invokes relationship among all the modal dialogs
in a GUI. Formally, an integration tree is defined
as:

Definition: An integration tree is a triple < N,
R, B >, where N is the set of modal dialogs in the
GUI and R is a designated modal dialog called the
Main modal dialog. B is the set of directed edges
showing the invokes relation between modal dia-

128

Agile Quality Assurance Techniques for GUI-Based Applications

logs (i.e., (MDx, MDy)∈B iff MDx invokes MDy,
where MDx and MDy are both modal dialogs).

Figure 8 shows an example of an integration
tree representing a part of the MS WordPad’s GUI.
The vertices represent the modal dialogs of the MS
WordPad GUI and the edges represent the invokes
relationship between the modal dialogs. The tree
in Figure 8 has an edge from Main to FileOpen
showing that Main contains an event, namely Open
(see Figure 7) that invokes FileOpen.

This decomposition of the GUI makes the over-
all testing process intuitive for the test designer
since the test designer can focus on a specific part
of the GUI. Moreover, it simplifies the design
of the algorithms and makes the overall testing
process more efficient.

Developing the event-flow model manually
can be tedious and error-prone. Therefore, a tool
called the “GUI Ripper” has been developed to
automatically obtain event-flow graphs and the
integration tree. A detailed discussion of the tool
is beyond the scope of this chapter; the interested
reader is referred to previously published work
(Memon et al., 2003c) for details. In short, the GUI
Ripper combines reverse engineering techniques
with the algorithms presented in previous sections
to automatically construct the event-flow graphs
and integration tree. During “GUI Ripping,” the
GUI application is executed automatically; the
application’s windows are opened in a depth-first
manner. The GUI Ripper extracts all the widgets
and their properties from the GUI. During the

Figure 7. Event-flow graph for the Main modal dialog of MS WordPad

 129

Agile Quality Assurance Techniques for GUI-Based Applications

reverse engineering process, in addition to widget
properties, additional key attributes of each widget
are recovered (e.g., whether it is enabled, it opens
a modal/modeless window, it opens a menu, it
closes a window, it is a button, it is an editable
text-field). These attributes are used to construct
the event-flow graphs and integration tree.

As can be imagined, the GUI Ripper is not
perfect (i.e., parts of the retrieved information
may be incomplete/incorrect). Common examples
include (1) missing windows in certain cases (e.g.,
if the button that opens that window is disabled
during GUI Ripping), (2) failure to recognize
that a button closes a window, and (3) incor-
rectly identifying a modal window as a modeless
window or vise versa. The specific problems that
are encountered depend on the platform used
to implement the GUI. For example, for GUIs
implemented using Java Swing, the ripper is un-
able to retrieve the contents of the “Print” dialog;
in MS Windows, is unable to correctly identify
modal/modeless windows. Recognizing that such
problems may occur during reverse engineering,
tools have been developed to manually “edit” the
event-flow graphs and integration tree and fix
these problems.

A test designer also does not have to code
each operator from scratch since the reverse en-
gineering technique creates operator templates
and fills-in those preconditions and effects that
describe the structure of the GUI. Such precondi-
tions and effects are automatically derived during
the reverse engineering process in a matter of
seconds. Note that there are no errors in these
templates since the structure has already been

manually examined and corrected in the event-
flow graphs and integration trees. The number of
operators is the same as the number of events in
the GUI, since there is exactly one operator per
executable event.

obtaining test cases for smoke and
crash testing Loops

Test case generation for the smoke and crash test-
ing loops employ graph traversal of the event-flow
graph. More specifically, a GUI test case is of the
form <S0, e1; e2; ...; en>, where S0 is a state of the
GUI in which the event sequence e1; e2; ...; en is
executed. The simplest way to generate test cases
is for a tester to start from one of the vertices in
the set B of the main modal dialog’s event-flow
graph. Note that these events are available to a
GUI user as soon as the GUI is invoked. The event
corresponding to the chosen vertex becomes the
first event in the test case. The tester can then
use one of the outgoing edges from this vertex to
perform an adjacent event. The tester can continue
this process generating many test cases. Note that
a tester who uses a capture/replay tool to gener-
ate test cases is actually executing this process
manually without using our formal models.

As noted earlier, if performed manually (us-
ing capture/replay tools), the previous process is
extremely labor intensive. With the event-flow
model, numerous graph-traversal techniques may
be used to automate it. The order in which the
events are covered will yield different types of
test cases. For smoke and crash testing, the tester
must generate test cases that (1) cover all the events

Figure 8. An integration tree for a part of MS WordPad

130

Agile Quality Assurance Techniques for GUI-Based Applications

in the GUI at least once, and (2) cover all pairs of
event-interactions at least once. In terms of event-
flow graphs, all the edges should be covered by
the test cases, thereby ensuring that all events and
event interactions are covered. Similar types of
such techniques have been used in previous work
(Memon et al., 2004b). As mentioned earlier, the
GUI model is not needed for test oracle creation
for the smoke and crash testing loops.

All the previous techniques have been put
together to realize the agile GUI testing process
shown in Figure 1.

FuturE trEnds

Although this chapter has presented the agile
testing concept in terms of GUIs, there is a clear
need to extend this work to other event-driven
applications, which are becoming increasingly
popular; testing these applications faces many
of the challenges mentioned earlier for GUIs.
Numerous researchers have already started to
model various classes of software using their
event-driven nature. For example, Welsh, Culler,
and Brewer (2001) have modeled Web applications
as a network of event-driven stages connected by
queues; Duarte, Martins, Domingos, and Preguia
(2003) have described an extensible network based
event dissemination framework; Gu and Nahrstedt
(2001) have presented an event-driven middleware
framework; Cheong, Liebman, Liu, and Zhao
(2003) have presented a model for event-driven
embedded systems; Sliwa (2003) has described
how event-driven architectures may be used to
develop complex component-based systems;
Holzmann and Smith (1999) have modeled device
drivers as event-driven systems; and Carloganu
and Raguideau (2002) have described an event-
driven simulation system. Researchers need to
extend the ideas presented in this chapter to the
general class of event-driven software.

Similarly, although this work has been pre-
sented using event-flow graphs, it is applicable

to software that can be modeled using state-
machine models. Indeed a state machine model
that is equivalent to an event-flow graph can be
constructed—the state would capture the possible
events that can be executed on the GUI at any in-
stant; transitions cause state changes whenever the
number and type of available events changes. Since
such applications are also being developed using
agile techniques, software testing research must
develop new agile mechanisms to test them.

concLusIon

This chapter outlined the need for an agile model-
based testing mechanism to keep up with agile
evolution of software. The example of GUI-based
applications was used throughout the chapter.
Three existing GUI testing techniques were com-
bined to develop a new process for model-based
agile GUI testing. The new process was novel in
that it consisted of three iterative sub-processes,
each with specific testing goals, resource demands,
and tester involvement. The model used to realize
this process was discussed.

Each of the three presented techniques has been
evaluated in previously reported work and found
to be practical. The crash testing approach has
been applied on several open-source applications
and used to report previously unknown faults in
fielded systems; the entire process required a mat-
ter of hours with no human intervention (Xie et
al., 2005). The smoke testing technique has also
been applied to perform testing of nightly builds
of several in-house GUI systems (Memon et al.,
2005b). The comprehensive testing technique has
also been evaluated both for the first time (Memon
et al., 2001a) and regression testing (Memon et
al., 2003e).

GUIs belong to the wider class of event-driven
software. The increasing popularity of event-
driven software applications, together with the
increased adoption of agile development meth-
odologies fuels the need for the development of

 131

Agile Quality Assurance Techniques for GUI-Based Applications

other, similar quality assurance techniques for
this wider class. The software testing research
community needs to understand emerging de-
velopment trends, and to develop new techniques
that leverage the resources available during agile
development. The concepts presented in this
chapter take the first step towards providing such
agile testing techniques.

AcknoWLEdgMEnts

The authors thank the anonymous reviewers
whose comments played an important role in
reshaping this chapter. The authors also thank
Bin Gan, Adithya Nagarajan, and Ishan Banerjee
who helped to lay the foundation for this research.
This work was partially supported by the US
National Science Foundation under NSF grant
CCF-0447864 and the Office of Naval Research
grant N00014-05-1-0421.

rEFErEncEs

Beizer, B. (1990). Software testing techniques
(2nd ed.). New York: International Thomson
Computer Press.

Carloganu, A., & Raguideau, J. (2002). Claire: An
event-driven simulation tool for test and validation
of software programs. Proceedings of the 2002
International Conference on Dependable Systems
and Networks (p. 538). Los Alamitos, CA: IEEE
Computer Society.

Cheong, E., Liebman, J., Liu, J., & Zhao, F. (2003).
Tinygals: A programming model for event-driven
embedded systems. Proceedings of the 2003 ACM
symposium on Applied Computing (pp. 698-704).
New York: ACM Press.

Clarke, J. M. (1998). Automated test generation
from a behavioral model. Proceedings of the
11th International Software Quality Week. San
Francisco: Software Research, Inc.

Duarte, S., Martins, J. L., Domingos, H. J., &
Preguia, N. (2003). A case study on event dissemi-
nation in an active overlay network environment.
Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (pp. 1-8). New
York: ACM Press.

Finsterwalder, M. (2001). Automating acceptance
tests for GUI applications in an extreme program-
ming environment. Proceedings of the 2nd Inter-
national Conference on eXtreme Programming
and Flexible Processes in Software Engineering
(pp. 114-117). New York: Springer.

Gray, J. (2003). What next? A dozen informa-
tion-technology research goals. Journal of ACM,
50(1), 41-57.

Gu, X., & Nahrstedt, K. (2001). An event-driven,
user-centric, qos-aware middleware framework
for ubiquitous multimedia applications. Pro-
ceedings of the 2001 International Workshop on
Multimedia Middleware (pp. 64-67). New York:
ACM Press.

Hicinbothom, J. H., & Zachary, W. W. (1993).
A tool for automatically generating transcripts
of human-computer interaction. Proceedings of
the Human Factors and Ergonomics Society 37th
Annual Meeting, Vol. 2 of SPECIAL SESSIONS:
Demonstrations (pp. 1042). Santa Monica, CA:
Human Factors Society.

Holzmann, G. J., & Smith, M. H. (1999). A practi-
cal method for verifying event-driven software.
Proceedings of the 21st International Conference
on Software Engineering (pp. 597-607). Los
Alamitos, CA: IEEE Computer Society.

Kaddah, M. M. (1993). Interactive scenarios for
the development of a user interface prototype.
Proceedings of the 5th International Conference
on Human-Computer Interaction, Vol. 2 of I.
Software Interfaces (pp. 128-133). New York:
ACM Press.

132

Agile Quality Assurance Techniques for GUI-Based Applications

Kasik, D. J., & George, H. G. (1996). Toward
automatic generation of novice user test scripts.
Proceedings of the Conference on Human Fac-
tors in Computing Systems: Common Ground
(pp. 244-251). New York: ACM Press.

Kaster, A. (1991). User interface design and evalu-
ation: Application of the rapid prototyping tool
EMSIG. Proceedings of the 4th International Con-
ference on Human-Computer Interaction, Vol. 1
of Congress II: Design and Implementation of
Interactive Systems: USABILITY EVALUATION;
Techniques for Usability Evaluation (pp. 635-
639). New York: ACM Press.

Lifschitz, V. (1986). On the semantics of STRIPS.
In M. P. Georgeff & A. L. Lansky (Eds.), Reason-
ing about actions and plans: Proceedings of the
1986 Workshop (pp. 1-9). San Francisco: Morgan
Kaufmann.

Mahajan, R., & Shneiderman, B. (1996). Visual &
textual consistency checking tools for graphical
user interfaces. Technical Report CS-TR-3639,
University of Maryland, College Park, May.

Memon, A. M. (2001b). A comprehensive frame-
work for testing graphical user interfaces (Doc-
toral dissertation, University of Pittsburgh, 2001).
Dissertation Abstracts International, 62, 4084.

Memon, A. M. (2002). GUI testing: Pitfalls and
process. IEEE Computer, 35(8), 90-91.

Memon, A. M. (2003a). Advances in GUI testing.
In M. V. Zelkowitz (Ed.), Advances in Computers
(Vol. 57). Burlington, MA: Academic Press.

Memon, A. M., & Soffa, M. L. (2003e). Regression
testing of GUIs. Proceedings of the 9th European
Software Engineering Conference (ESEC) and 11th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (pp. 118-
127). New York: ACM Press.

Memon, A. M., & Xie, Q. (2004b). Empirical
evaluation of the fault-detection effectiveness of

smoke regression test cases for GUI-based soft-
ware. Proceedings of the International Confer-
ence on Software Maintenance 2004 (ICSM’04)
(pp. 8-17). Los Alamitos, CA: IEEE Computer
Society.

Memon, A. M., & Xie, Q. (2004c). Using tran-
sient/persistent errors to develop automated test
oracles for event-driven software. Proceedings of
the International Conference on Automated Soft-
ware Engineering 2004 (ASE’04) (pp. 186-195).
Los Alamitos, CA: IEEE Computer Society.

Memon, A. M., & Xie, Q. (2005b). Studying the
fault-detection effectiveness of GUI test cases for
rapidly evolving software. IEEE Transactions on
Software Engineering, 31(10), 884-896.

Memon, A. M., Banerjee, I., Hashish, N., &
Nagarajan, A. (2003b). DART: A framework for
regression testing nightly/daily builds of GUI ap-
plications. Proceedings of the International Con-
ference on Software Maintenance (pp. 410-419).
Los Alamitos, CA: IEEE Computer Society.

Memon, A. M., Banerjee, I., & Nagarajan, A.
(2003c). GUI ripping: Reverse engineering of
graphical user interfaces for testing. Proceed-
ings of the 10th Working Conference on Reverse
Engineering (pp. 260-269). Los Alamitos, CA:
IEEE Computer Society.

Memon, A. M., Banerjee, I., & Nagarajan, A.
(2003d). What test oracle should I use for ef-
fective GUI testing? Proceedings of the IEEE
International Conference on Automated Software
Engineering (pp. 164-173). Los Alamitos, CA:
IEEE Computer Society.

Memon, A., Nagarajan, A., & Xie, Q. (2005a).
Automating regression testing for evolving GUI
software. Journal of Software Maintenance and
Evolution: Research and Practice, 17(1), 27-64.

Memon, A. M., Pollack, M. E., & Soffa, M. L.
(1999). Using a goal-driven approach to generate

 133

Agile Quality Assurance Techniques for GUI-Based Applications

test cases for GUIs. Proceedings of the 21st Inter-
national Conference on Software Engineering
(pp. 257-266). New York: ACM Press.

Memon, A. M., Pollack, M. E., & Soffa, M. L.
(2000a). Automated test oracles for GUIs. Pro-
ceedings of the ACM SIGSOFT 8th International
Symposium on the Foundations of Software En-
gineering (pp. 30-39). New York: ACM Press.

Memon, A. M., Pollack, M. E., & Soffa, M. L.
(2000b). Plan generation for GUI testing. Pro-
ceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling
(pp. 226-235). Menlo Park, CA: AAAI Press.

Memon, A. M., Pollack, M. E., & Soffa, M. L.
(2001a). Hierarchical GUI test case generation
using automated planning. IEEE Transactions on
Software Engineering, 27(2), 144-155.

Memon, A. M., Porter, A., Yilmaz, C., Nagara-
jan, A., Schmidt, D. C., & Natarajan, B. (2004a).
Skoll: distributed continuous quality assurance.
Proceedings of the 26th IEEE/ACM International
Conference on Software Engineering (pp. 459-
468). New York: ACM Press.

Memon, A. M., Soffa, M. L., & Pollack, M. E.
(2001c). Coverage criteria for GUI testing. Pro-
ceedings of the 8th European Software Engineer-
ing Conference (ESEC) and 9th ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering (FSE-9) (pp. 256-267).
New York: ACM Press.

Mulligan, R. M., Altom, M. W., & Simkin, D. K.
(1991). User interface design in the trenches: Some
tips on shooting from the hip. Proceedings of
ACM CHI’91 Conference on Human Factors in
Computing Systems, Practical Design Methods
(pp. 232-236). New York: ACM Press.

Myers, B. A. (1993a). Why are human-computer
interfaces difficult to design and implement?
Technical Report CS-93-183, Carnegie Mellon
University, School of Computer Science.

Myers, B. A. (1995a). State of the art in user
interface software tools. Human-computer in-
teraction: Toward the year 2000. San Francisco:
Morgan Kaufmann Publishing.

Myers, B. A. (1995b). User interface software
tools. ACM Transactions on Computer-Human
Interaction, 2(1), 64-103.

Myers, B. A., & Olsen, JR., D. R. (1994). User
interface tools. Proceedings of ACM CHI’94
Conference on Human Factors in Computing
Systems, TUTORIALS (Vol. 2, pp. 421-422). New
York: ACM Press.

Myers, B. A., Hollan, J. D., & Cruz, I. F. (1996).
Strategic directions in human-computer interac-
tion. ACM Computing Surveys, 28(4), 794-809.

Myers, B. A., Olsen, JR., D. R., & Bonar, J. G.
(1993b). User interface tools. Proceedings of ACM
INTERCHI’93 Conference on Human Factors in
Computing Systems: Adjunct Proceedings, Tutori-
als (p. 239). New York: ACM Press.

Nielsen, J. (1993). Iterative user-interface design.
IEEE Computer, 26(11), 32-41.

Pednault, E. P. D. (1989). ADL: Exploring the
middle ground between STRIPS and the situation
calculus. Proceedings of KR’89 (pp. 324-331). San
Francisco: Morgan Kaufmann Publisher.

Perry, W. (1995). Effective methods for software
testing. New York: John Wiley & Sons.

Rothermel, G., & Harrold, M. J. (1997). A safe,
efficient regression test selection technique. ACM
Transactions on Software Engineering and Meth-
odology, 6(2), 173-210.

Shehady, R. K., & Siewiorek, D. P. (1997). A
method to automate user interface testing using
variable finite state machines. Proceedings of the
27th Annual International Conference on Fault-
Tolerant Computing (pp. 80-88). Los Alamitos,
CA: IEEE Computer Society.

134

Agile Quality Assurance Techniques for GUI-Based Applications

Sliwa, C. (2003). Event-driven architecture
poised for wide adoption. COMPUTERWORLD.
Retrieved May 12, 2005, from http://www.com-
puterworld.com/softwaretopics/software/appdev/
story/0,10801,81133,00.html

Weld, D. S. (1994). An introduction to least com-
mitment planning. AI Magazine, 15(4), 27-61.

Weld, D. S. (1999). Recent advances in AI plan-
ning. AI Magazine, 20(1), 55-64.

Welsh, M., Culler, D., & Brewer, E. (2001). Seda:
An architecture for well-conditioned, scalable
internet services. Proceedings of the 18th ACM
Symposium on Operating Systems Principles
(pp. 230-243). New York: ACM Press.

White, L. (1996). Regression testing of GUI event
interactions. Proceedings of the International
Conference on Software Maintenance (ICSM’96)
(pp. 350-358). Los Alamitos, CA: IEEE Computer
Society.

White, L., Almezen, H., & Alzeidi, N. (2001).
User-based testing of GUI sequences and their
interactions. Proceedings of the 12th International
Symposium Software Reliability Engineering
(pp. 54-63). Los Alamitos, CA: IEEE Computer
Society.

Wick, D. T., Shehad, N. M., & Hajare, A. R.
(1993). Testing the human computer interface
for the telerobotic assembly of the space station.
Proceedings of the 5th International Conference
on Human-Computer Interaction, Special Ap-
plications (Vol. 1, pp. 213-218). New York: ACM
Press.

Xie, Q., & Memon, A. M. (2005). Rapid crash
testing for continuously evolving GUI-based
software applications. Proceedings of the Inter-
national Conference on Software Maintenance
2005 (pp. 473-482). Los Alamitos, CA: IEEE
Computer Society.

 135

Agile Quality Assurance Techniques for GUI-Based Applications

Section III
Quality within

Agile Process Management

136

Chapter VII
Software Configuration
Management in Agile

Development
Lars Bendix

Lund Institute of Technology, Sweden

Torbjörn Ekman
Lund Institute of Technology, Sweden

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

In traditional software development organisations,
software configuration management (SCM) is
often pushed onto the projects by the quality as-
surance (QA) organisation. This is done because
SCM in part can implement some QA measures
and in part can support the developers in their work
and therefore helps them to produce better quality.
The same holds true for agile methods—SCM

can directly and in-directly contribute to better
QA on agile projects.

Software configuration management (SCM)
is a set of processes for managing changes and
modifications to software systems during their
entire life cycle. Agile methods embrace change
and focus on how to respond rapidly to changes
in the requirements and the environment (Beck,
1999a). So it seems obvious that SCM should be
an even more important part of agile methods

AbstrAct

Software configuration management (SCM) is an essential part of any software project and its impor-
tance is even greater on agile projects because of the frequency of changes. In this chapter, we argue
that SCM needs to be done differently and cover more aspects on agile projects. We also explain how
SCM processes and tools contribute both directly and indirectly to quality assurance. We give a brief
introduction to central SCM principles and define a number of typical agile activities related to SCM.
Subsequently, we show that there are general SCM guidelines for how to support and strengthen these
typical agile activities. Furthermore, we establish a set of requirements that an agile method must satisfy
to benefit the most from SCM. Following our general guidelines, an agile project can adapt the SCM
processes and tools to its specific agile method and its particular context.

 137

Software Configuration Management in Agile Development

than it is of traditional development methods.
However, SCM is often associated with heavily
process-oriented software development and the
way it is commonly carried out might not transfer
directly to an agile setting. We believe there is a
need for SCM in agile development but that ist
should be carried out in a different way. There
is a need for the general values and principles of
SCM, which we consider universal for all develop-
ment methods, and there is a need for the general
techniques and processes, which we are certain
will be of even greater help to agile developers
than they are to traditional developers.

There are some major differences in agile proj-
ects compared to traditional projects that heavily
influence the way SCM can—and should—be
carried out. Agile methods shift the focus from
the relation between a project’s management and
the customer to the relation between developers

and the customer. While traditional SCM focuses
on the projects and company layers in Figure 1,
there is a need to support developers as well when
using SCM in agile projects. Shorter iterations,
more frequent releases, and closer collaboration
within a development team contribute to a much
greater stress on SCM processes and tools.

Agile methods are people-oriented rather than
process-oriented and put the developer and the
customer in focus. As a consequence, SCM has
to shift its primary focus from control activities
to that of service and support activities. The main
focus on audits and control needs to be replaced
by a main focus on supporting the highly iterative
way of working of both the team and the devel-
opers, as seen in Figure 2. From a QA point of
view, the control measures are moved down to
the developers themselves with the purpose of
shortening the feedback loop in agile methods. So

Figure 1. The different layers of SCM

Figure 2. The main development loops in agile

138

Software Configuration Management in Agile Development

SCM does not directly contribute to the QA on an
agile project, this is the task of the processes that
the agile method in question prescribes. However,
by supporting said processes and making them
easier and safer to practice SCM indirectly is a
big factor in QA on agile projects.

The traditional process-oriented view of SCM
has also lead to several misconceptions of agile
methods from an SCM point of view. The lack
of explicit use of SCM and its terminology has
lead quite a few people to conclude that agile
methods are not safe due to an apparent lack of
rigorous change management. However, a lot of
SCM activities are actually carried out in agile
methods although they are not mentioned explic-
itly. Bendix and Hedin (2002) identify a need
for better support from SCM, in particular for
refactoring in order for this practice to be viable.
Koskela (2003) reviews agile methods in general
from an SCM point of view and concludes that
only a few of the existing agile methods take
SCM explicitly into account. He also notices that
most methods highly value SCM tool support but
that SCM planning has been completely forgot-
ten. There is thus a need to provide guidance for
using SCM or for implementing SCM in agile.
The SCM literature mostly takes the control-
oriented view of SCM (Berlack, 1992; Buckley,
1993; Hass, 2003; Leon, 2005) and there is very
little written about team- and developer-oriented
support activities (Babich, 1986; Mikkelsen &
Pherigo, 1997; Bendix & Vinter, 2001; Berczuk
& Appleton, 2003). These activities are the ones
that can benefit agile methods the most and should
therefore be emphasized more when used in an
agile setting. However, it is important to stress
that agile methods need the whole range of SCM
support from developer through to customer.

In the next section, we provide background
information about SCM for those who are not
so familiar with SCM, and describe and define a
number of SCM-related agile activities to estab-
lish a terminology. In Section 3, we give general
guidelines for how these agile activities can be

supported by SCM and how agile methods could
benefit from adopting more SCM principles. We
also provide pointers to literature where more
details can be found. Future trends for SCM in
the agile context are described in Section 4, and
in Section 5 we draw our conclusions.

bAcKGround

This section gives an introduction to the concepts
and terminology in SCM that serve as a back-
ground for the analysis in following sections.
We also define and describe activities in agile
methods that are related to SCM or affected by
SCM in one way or the other.

scM Activities

SCM is a method for controlling the develop-
ment and modifications of software systems and
products during their entire life cycle (Crnkovic,
Asklund, & Persson Dahlqvist, 2003). From this
viewpoint, SCM is traditionally divided into the
following activities: configuration identifica-
tion, configuration control, configuration status
accounting, and configuration audit (Leon,
2005). These activities reflect mostly the part of
a development project with relations to the cus-
tomer. However, since agile methods are often
more developer centric, there is also a need for a
more developer-oriented view of SCM than the
traditional control-oriented view above. Typi-
cal developer-oriented aspects of SCM include:
version control, build management, workspace
management, concurrency control, change man-
agement, and release management (Bendix &
Vinter, 2001). We present each activity from a
general perspective and explain both its purpose
and what is included in the activity. After this
introduction, the reader should be familiar with
these basic SCM concepts and their purpose,
so we can use them for our analysis in the next
section.

 139

Software Configuration Management in Agile Development

Configuration Identification

Configuration identification is the activity where
a system is divided into uniquely identifiable
components, called configuration items, for the
purpose of software configuration management.
The physical and functional characteristics of each
configuration item are documented including its
interfaces and change history. Each configuration
item is given a unique identifier and version to
distinguish it from other items and other versions
of the same item. This allows us to reason about
a system in a consistent way both regarding its
structure and history. Each item can be either a
single unit or a collection (configuration) of lower
level items allowing hierarchical composition.
During configuration identification a project
baseline and its contents are also defined, which
helps to control change as all changes apply to
this uniquely defined baseline.

Configuration Control

Software is very different from hardware as it can
be changed quickly and easily, but doing so in an
uncontrolled manner often leads to chaos. Con-
figuration control is about enabling this flexibility
in a controlled way through formal change control
procedures including the following steps: evalu-
ation, coordination, approval or disapproval, and
implementation of changes. A proposed change
request typically originates from requests for
new features, enhancement of existing features,
bug reports, etc. A request is first evaluated by
a Change Control Board (CCB) that approves
or disapproves the request. An impact analysis
is performed by the CCB to determine how the
change would affect the system if implemented.
If a request is approved, the proposed change
is assigned to a developer for implementation.
This implementation then needs to be verified
through testing to ensure that the change has been
implemented as agreed upon before the CCB can
finally close the change request.

Configuration Status Accounting

Developers are able to track the current status of
changes by formalizing the recording and report-
ing of established configuration items, status of
proposed changes, and implementation of ap-
proved changes. Configuration status accounting
is the task to provide all kinds of information
related to configuration items and the activities
that affect them. This also includes change logs,
progress reports, and transaction logs. Configu-
ration status accounting enables tracking of the
complete history of a software product at any time
during its life cycle and also allows changes to be
tracked compared to a particular baseline.

Configuration Audits

The process of determining whether a configura-
tion item, for instance a release, conforms to its
configuration documents is called configuration
audit. There are several kinds of audits each
with its own purpose but with the common goal
to ensure that development plans and processes
are followed. A functional configuration audit
is a formal evaluation that a configuration item
has achieved the performance characteristics and
functions defined in its configuration document.
This process often involves testing of various
kinds. A physical configuration audit determines
the conformity between the actual produced con-
figuration item and the configuration according to
the configuration documents. A typical example
is to ensure that all items identified during con-
figuration identification are included in a product
baseline prior to shipping. An in-process audit
ensures that the defined SCM activities are being
properly applied and controlled and is typically
carried out by a QA team.

Version Control

A version control system is an invaluable tool
in providing history tracking for configuration

140

Software Configuration Management in Agile Development

items. Items are stored, versions are created, and
their historical development is registered and
conveniently accessible. A fundamental invariant
is that versions are immutable. This means that
as soon as a configuration item is given a version
number, we are assured that it is unique and its
contents cannot be changed unless we create a
new version. We can therefore recreate any ver-
sion at any point in time. Version control systems
typically support configuration status accounting
by providing automatic support for history track-
ing of configuration items. Furthermore, changes
between individual versions of a configuration
item can be compared automatically and vari-
ous logs are typically attached to versions of a
configuration item.

Build Management

Build management handles the problem of put-
ting together modules in order to build a running
system. The description of dependencies and
information about how to compile items are given
in a system model, which is used to derive object
code and to link it together. Multiple variants
of the same system can be described in a single
system model and the build management tool
will derive different configurations, effectively
building a tailored system for each platform or
product variant. The build process is most often
automated, ranging from simple build scripts
to compilation in heterogeneous environments
with support for parallel compilation. Incremen-
tal builds, that only compile and link what has
changed, can be used during development for fast
turn around times, while a full build, rebuilding
the entire system from scratch, is normally used
during system integration and release.

Workspace Management

The different versions of configuration items in a
project are usually kept in a repository by the ver-
sion control tool. Because these versions must be

immutable, developers cannot be allowed to work
directly within this repository. Instead, they have
to take out a copy, modify it, and add the modified
copy to the repository. This also allows developers
to work in a controlled environment where they are
protected from other people’s changes and where
they can test their own changes prior to releasing
them to the repository. Workspace management
must provide functionality to create a workspace
from a selected set of files in the repository. At
the termination of that workspace, all changes
performed in the workspace need to be added to
the repository. While working in the workspace,
a developer needs to update his workspace, in a
controlled fashion, with changes that other people
may have added to the repository.

Concurrency Control

When multiple developers work on the same
system at the same time, they need a way to
synchronize their work; otherwise it may happen
that more than one developer make changes to the
same set of files or modules. If this situation is not
detected or avoided, the last developer to add his
or her changes to the repository will effectively
erase the changes made by others. The standard
way to avoid this situation is to provide a locking
mechanism, such that only the developer who
has the lock can change the file. A more flexible
solution is to allow people to work in parallel and
then to provide a merge facility that can combine
changes made to the same file. Compatible changes
can be merged automatically while incompatible
changes will result in a merge conflict that has
to be resolved manually. It is worth noticing that
conflicts are resolved in the workspace of the
developer that triggered the conflict, who is the
proper person to resolve it.

Change Management

There are multiple and complex reasons for
changes and change management needs to cover all

 141

Software Configuration Management in Agile Development

types of changes to a system. Change management
includes tools and processes that support the orga-
nization and tracking of changes from the origin
of the change to the approval of the implemented
source code. Various tools are used to collect data
during the process of handling a change request. It
is important to keep traceability between a change
request and its actual implementation, but also to
allow each piece of code to be associated to an
explicit change request. Change management is
also used to provide valuable metrics about the
progress of project execution.

Release Management

Release management deals with both the formal
aspects of the company releasing to the customer
and the more informal aspects of the developers
releasing to the project. For a customer release, we
need to carry out both a physical and a functional
configuration audit before the actual release. In
order to be able to later re-create a release, we
can use a bill-of-material that records what went
into the release and how it was built. Releas-
ing changes to the project is a matter of how to
integrate changes from the developers. We need
to decide on when and how that is done, and in
particular on the “quality” of the changes before
they may be released.

Agile Activities

This section identifies a set of agile activities that
either implement SCM activities or are directly
affected by SCM activities. The presentation
builds on our view of agile methods as being in-
cremental, cooperative, and adaptive. Incremental
in that they stress continuous delivery with short
release cycles. Cooperative in that they rely on
teams of motivated individuals working towards
a common goal. Adaptive in that they welcome
changing requirements and reflect on how to be-
come more effective. While all activities presented
in this section may not be available in every agile

method, we consider them representative for the
agile way of developing software.

Parallel Work

Most projects contain some kind of parallel work,
either by partitioning a project into sub-projects
that are developed in parallel, or by implementing
multiple features in parallel.

Traditional projects often try to split projects
into disjoint sub-projects that are later combined
into a whole. The incremental and adaptive nature
of agile methods requires integration to be done
continuously since new features are added as their
need is discovered. Agile methods will therefore
inevitably lead to cooperative work on the same,
shared code base, which needs to be coordinated.
To become effective, the developers need support
to work on new features in isolation and then merge
their features into the shared code base.

Continuous Integration

Continuous integration means that members of a
team integrate their changes frequently. This al-
lows all developers to benefit from a change as soon
as possible, and enables early testing of changes
in their real context. Continuous integration also
implies that each member should integrate changes
from the rest of the team for early detection of
incompatible changes. The frequent integra-
tion decreases the overall integration cost since
incompatible changes are detected and resolved
early, in turn reducing the complex integration
problems that are common in traditional projects
that integrate less often.

Regular Builds

Agile projects value frequent releases of software
to the customer and rapid feedback. This implies
more frequent builds than in traditional projects.
Releases, providing added value to the customer,
need to be built regularly, perhaps on a weekly

142

Software Configuration Management in Agile Development

or monthly basis. Internal builds, used by the
team only, have to be extremely quick to enable
rapid feedback during continuous integration and
test-driven development. This requires builds to
be automated to a large extent to be feasible in
practice.

Refactoring

The incremental nature of agile methods requires
continuous Refactoring of code to maintain high
quality. Refactorings need to be carried out as
a series of steps that are reversible, so one can
always back out if a refactoring does not work.
This practice relies heavily on automated testing
to ensure that a change does not break the system.
In practice, this also means that it requires quick
builds when verifying behavioural preservation
of each step.

Test-Driven Development

Test-driven development is the practice that test
drives the design and implementation of new
features. Implementation of tests and production
code is interleaved to provide rapid feedback on
implementation and design decisions. Automated
testing builds a foundation for many of the pre-
sented practices and requires extremely quick
builds to enable a short feedback loop.

Planning Game

The planning game handles scheduling of an
XP project. While not all agile methods have an
explicit planning game, they surely have some
kind of lightweight iterative planning. We em-
phasize planning activities such as what features
to implement, how to manage changes, and how
to assign team resources. This kind of planning
shares many characteristics with the handling of
change requests in traditional projects.

scM In An AGILE contEXt

In the previous section, we defined some agile
activities that are related to SCM and we also
outlined and described the activities that make up
the field of SCM. In this section, we will show how
SCM can provide support for such agile activi-
ties so they succeed and also how agile methods
can gain even more value from SCM. It was
demonstrated in Asklund, Bendix, and Ekman
(2004) that agile methods, in this case exempli-
fied by XP, do not go against the fundamental
principles of SCM. However, it also showed that,
in general, agile methods do not provide explicit
nor complete guidance for using or implement-
ing SCM. Furthermore, the focus of SCM also
needs to shift from control to service and support
(Angstadt, 2000) when used in agile. SCM does
not require compliance from agile, but has a lot
of good advice that you can adapt to your project
if you feel the need for it—and thus value people
and interactions before tools and processes (Agile
Manifesto, 2001).

In this section, we first look at how SCM can
support and service the agile activities we defined
in the previous section. Next, we look at how agile
methods could add new activities and processes
from SCM and in this way obtain the full benefit
of support from SCM.

How Can SCM Techniques Support
Agile?

SCM is not just about control and stopping
changes. It actually provides a whole range of
techniques and processes that can service and sup-
port also agile development teams. Agile methods
may tell you what you should do in order to be
agile or lean, but in most cases, they are also very
lean in actually giving advice on how to carry
out these agile processes. In this sub-section, we
show how SCM techniques can be used to support
and strengthen the following SCM-related agile
activities: parallel work, continuous integration,

 143

Software Configuration Management in Agile Development

regular builds, refactoring, test-driven develop-
ment, and planning game.

Parallel Work

Agile teams will be working in parallel on the
same system. Not only on different parts of the
system leading to shared data, but also on the
same parts of the system, leading to simultaneous
update and double maintenance. Babich (1986)
explains all the possible problems there are when
coordinating a team working in parallel—and
also the solutions.

The most common way of letting people work
in parallel is not to have collective code ownership,
but private code ownership and locking of files
that need to be changed. This leads to a “split and
combine” strategy where only one person owns
some specific code and is allowed to change it.
Industry believes that this solves the problem,
but the “shared data” problem (Babich, 1986)
shows that even this apparently safe practice has
its problems (e.g., combining the splits). These
problems are obviously present if you practise
parallel work as well. In addition, we have to
solve the “simultaneous update” problem and
the “double maintenance” problem, when people
actually work on the same file(s) in parallel.

The “shared data” problem is fairly simple
to solve—if the problem is sharing, then isolate
yourself. Create a physical or virtual workspace
that contains all of the code and use that to work
in splendid isolation from other people’s changes.
Obviously you cannot ignore that other people
make changes, but having your own workspace,
you are in command of when to “take in” those
changes and will be perfectly aware of what is
happening.

The “simultaneous update” problem only oc-
curs for collective code ownership where more
people make changes to the same code at the
same time. Again, the solution is fairly simple,
you must be able to detect that the latest version,
commonly found in the central repository, is not

the version that you used for making your changes.
If that is not the case, it means that someone has
worked in parallel and has put a new version into
the repository. If you add your version to the
repository, it will “shadow” the previous version
and effectively undo the changes done in that
version. If you do not have versioning, the new
version will simply overwrite and permanently
erase the other person’s changes. Instead you
must “integrate” the parallel changes and put the
resulting combined change into the repository or
file system. There are tools that can help you in
performing this merge.

The “double maintenance” problem is a con-
sequence of the “protection” from the “shared
data” problem. In the multiple workspaces, we
will have multiple copies of every file and ac-
cording to Babich (1986) they will soon cease to
be identical. When we make a change to a file in
one workspace, we will have to make the same
change to the same file in all the other workspaces
to keep the file identical in all copies. It sounds
complicated but is really simple, even though it
requires some discipline. Once you have made a
change, you put it in the repository and—sooner
or later—the other people will take it in from
the repository and integrate it if they have made
changes in parallel (see the “simultaneous update”
problem).

A special case of parallel work is distributed
development where the developers are physically
separated. This situation is well known in the
SCM community and the described solutions
(Bellagio & Milligan 2005) are equally appli-
cable to distributed development as to parallel
work. There are solutions that make tools scale
to this setting as well. Distributed development
is thus not different from parallel work from an
SCM perspective, as long as the development
process that SCM supports scales to distributed
development.

In summary, we need a repository where we
can store all the shared files and a workspace
where we can change the files. The most impor-

144

Software Configuration Management in Agile Development

tant aspect of the repository is that it can detect
parallel work and that it can help us in sorting
out such parallel work. Also it should be easy and
simple to create whole workspaces. Most version
control tools are able to do that and there is no
need to use locking, which prevents real parallel
work, since optimistic sharing works well. We
must thus choose a tool that can implement the
copy-merge work model (Feiler, 1991).

Continuous Integration

In traditional projects, the integration of the
contributions of many people is always a painful
process that can take days or even weeks. There-
fore, continuous integration seems like a mission
impossible, but this is actually not the case. The
reason why integration is painful can be found
in the “double maintenance” problem (Babich,
1986)—the longer we carry on the double main-
tenance without integrating changes, the greater
the task of integration will be. So there are good
reasons for integrating as often as possible, for
instance after each added feature.

Integrating your change into the team’s shared
repository is often a two-step process. The reason
is that tools usually cannot solve merge conflicts
and re-run automated tests to check the quality in
one step. First, you have to carry out a “download”
(or subscription) integration where you take all the
changes that have been added to the repository
since you last integrated and integrate them into
your workspace, as shown in Figure 3, where a box
represents a new version of the configuration. If

nothing new has happened, you are safe and can
do the “upload” (or publication) integration, which
simply adds your changes as the latest versions in
the repository. If something has changed in the
repository, it can be either new versions of files
that you have not changed—these can simply be
copied into your workspace—or files that you have
changed where there may be conflicting changes.
In the latter case you have to merge the repository
changes into your own changes. At this point, all
other people’s changes have been integrated with
your changes and your workspace is up-to-date,
so you could just add the result to the repository.
However, you should check that the integration
actually produced a viable result and check the
quality of it. This can be done by running a set
of quality tests (e.g., unit tests, acceptance tests),
and if everything works well, then you can add
the result to the repository—if your workspace is
still up-to-date. Otherwise, you have to continue
to do “download” integrations and quality checks
until you finally succeed and can do the “upload”
integration, as shown in Figure 3.

This way of working (except for the upload
quality control) is implemented in the strict long
transactions work model (Feiler, 1991). You will
notice that in this process, the upload integration
is a simple copy of a consistent and quality as-
sured workspace. All the work is performed in
the download integration. Following the advice
of Babich (1986), this burden can be lessened if
it is carried out often as the changes you have to
integrate are smaller. So for your own sake you
should download integrate as often as possible.

Figure 3. Download and upload integration

 145

Software Configuration Management in Agile Development

Moreover, for the sake of the team you should up-
load (publish) immediately when you have finished
a task or story so other people get the possibility
to synchronize their work with yours.

What we have described here is the common-
ality between the slightly different models and
approaches presented in Aiello (2003), Appleton,
Berczuk, and Konieczka (2003a, 2003b, 2004a),
Appleton, Berczuk, and Cowham (2005), Farah
(2004), Fowler and Foemmel (2006), Moreira
(2004) and Sayko (2004). If you are interested in
the details about how you can vary your approach
to continuous integration depending on your
context, you can consult the references.

Continuous integration leads to an increased
velocity of change compared to traditional devel-
opment. This puts additional strains on the inte-
gration process but is not a performance problem
on the actual integration per se. However, there
may be performance issues when the integration
is combined with a quality gate mechanism used
to determine whether changes are of sufficient
quality to be integrated in the common repository
or not. Even if this quality gate process is fully
automated, it will be much slower than the actual
merge and upload operation and may become a
bottleneck in the integration process. It may there-
fore not always be possible to be true to the ideal
that developers should carefully test their code
before uploading their changes in which case you
could use a more complex model for continuous
integration (Fowler & Foemmel, 2006) that we
will describe next under regular builds.

Regular Builds

When releases become frequent it also becomes
important to be able to build and release in a
lean way. If not, much time will be “wasted” in
producing these releases that are needed to get
customer feedback. Making it lean can be done
in three ways: having always releasable code in
the repository, performing a less formal release

process, and automation of the build and release
processes.

Before you can even think about releasing
your code, you have to assure that the code you
have is of good quality. In traditional development
methods this is often done by a separate team that
integrates the code and does QA. In agile, this is
done by the developers as they go. The ideal situ-
ation is that the code in the repository is always
of the highest quality and releasable at any time.
This is not always possible and you can then use
a mix between the traditional way and the agile
ideal by having multiple development lines. The
developers use an integration line to check in
high quality code and to stay in sync with the rest
of the developers. The QA-team uses a separate
line to pull in changes from the integration line
and does a proper and formal QA before they
“promote” the approved change to the release
line, as seen in Figure 4.

In agile methods, there is a general tendency
to move the focus of QA from coming late in
the development process, just before release, to
being a centre of attention as early as possible in
the development process. This means that agile
can do with a less formal release process than
traditional projects because much of the work has
already been done. However, there is still a need
to do physical and functional audits and to work
with bill-of-materials such that earlier releases can
be re-created again if needed. In agile methods,
functional audits can be carried out by running the
acceptance tests. They are the specification of the
requirements that should be implemented. To be
really sure that we have implemented everything
we claim, we should check the list of acceptance
tests against the list of requirements we claim
have been implemented in this release. We also
need to check whether all the files that should be
in the release (e.g., configuration files, manual,
documentation, etc.) are actually there.

When releasing becomes a frequent action,
there is a much greater need to automate it. The

146

Software Configuration Management in Agile Development

actual creation of the release can be automated by
using build tools; acceptance tests and the veri-
fication that all files are there can be automated
by writing simple scripts.

More information about regular builds can be
found in Appleton and Cowham (2004b).

Refactoring

Refactoring is an important part of agile methods
but also to some extent in traditional methods.
The purpose of a Refactoring is not to implement
new functionality, but rather to simplify the code
and design.

In general, there are two different situations
where you do refactorings: as part of a story to
simplify the code before and/or after the imple-
mentation of the story’s functionality; and archi-
tectural refactorings that are needed to implement
a whole new set of features. In both cases, the two
main problems are that a refactoring may touch
large parts of the code and that the refactoring
should be traceable and possible to undo. The latter
means that there is the need for version control
tool to keep track of the steps of each refactoring
and make it possible to back out of a refactoring
if it turns out that is does not work.

The fact that refactorings tend to be “global”
possibly affecting large parts of the code, puts even
greater strains on the continuous integration since
there are more possibilities of merge conflicts.
The recommendation for successful application
of continuous integration is to integrate very often

to reduce the risk of merge conflicts. The same
goes for refactorings that should be split up into
many small steps that are integrated immediately
when they are done.

If you need to refactor code to facilitate the
ease of implementing a story, then this refactoring
should be seen as a separate step and integrated
separately—the same goes if you need to refac-
tor after the implementation of the story. For the
architectural refactorings, we need to split the
refactoring up into smaller tasks such that there
will be as little time as possible between integra-
tions to lower the risk of merge conflicts. Larger
refactorings should also be planned and analysed
for impact such that it is possible to coordinate
the work to keep down the parallel work, or at
least to make people aware of the fact that it is
going on.

For a more specific treatment of the problems
architectural refactorings can cause to SCM tools
and the continuous integration process and how
these problems can be dealt with, we refer the
reader to Ekman and Asklund (2004) and Dig,
Nguyen, and Johnson (2006).

Test-Driven Development

The short version of test-driven development
is design a little—where you design and write
tests, code a little, and finally run the tests to get
feedback. Here the crucial part is to get feedback
on what you have just changed or added. If that
cannot happen very quickly, test-driven develop-

Figure 4. Working with integration and release lines

 147

Software Configuration Management in Agile Development

ment breaks down with respect to doing it in small
increments. If you want to run your tests after
writing a little code, you must be able to re-build
the application you want to test very quickly—if
you have to wait too long you are tempted to not
follow the process as it is intended.

So what is needed is extremely quick re-builds,
a matter of a few minutes or less, and the good
news is that SCM can provide that. There are
techniques for doing minimal, incremental builds
that will give you a fast turn-around time, so you
can run your tests often without having to wait too
long. Make (Feldman, 1979) is the ancestor of all
minimal, incremental build tools, but there exists
a lot of research on how to trade “consistency”
of a build for time (Adams, Weinert, & Tichy,
1989; Schwanke & Kaiser, 1988). For the small
pair development loop in Figure 2, we might be
satisfied with less than 100% consistency of the
build as long as it is blisteringly fast. For the big
team development loop in Figure 2 (i.e., integrating
with others), speed might not be that important
while consistency of the build is crucial. A prop-
erly set up SCM system will allow developers to
have flexible build strategies that are tailored to
specific parts of their development cycle.

Another aspect of test-driven development is
that if we get an unexpected result of a test-run,
then we have to go bug hunting. What is it that
has caused the malfunction? If you run tests often,
it means that you introduced the bug in the code
that you wrote most recently—or as Babich puts
it “an ounce of derivation is worth a pound of
analysis” (Babich, 1986)—meaning that if we can
tell the difference in the code between now and
before, we are well under way with finding the
bug. Version control tools provide functionality
for showing the difference between two versions
of the same file and some tools can even show
the structural differences between two versions
of a configuration.

Planning Game

Agile methods use stories, or similar lightweight
specification techniques, as the way that customers
specify the requirements of the system, and ac-
ceptance tests to specify the detailed functionality.
These stories specify changes to the system and
correspond to change requests when analyzed
from an SCM perspective. The stories, or change
requests, have to be estimated for implementation
cost by the developers and then prioritised and
scheduled by the customer during the planning
game. For someone coming from SCM this sounds
very much like the traditional way of handling
change requests: an impact analysis has to be
carried out to provide sufficient information for
the Change Control Board to be able to make its
decision whether to implement the change re-
quest, defer it, or reject it. So we can see that the
parallel to estimation in agile is impact analysis
(Bohner & Arnold, 1996) in traditional SCM.
Likewise, the parallel to the customer prioritising
is the chair of the Change Control Board taking
decisions (Daniels, 1985). For the planning game
to work properly, it is important that everyone is
aware of what his or her role is—and that they
seek information that will allow them to fill that
role well. It is also important to be aware of the
fact that the traditional formal change request
handling process can indeed—and should—be
scaled to fit the agility and informality that is
needed in an agile method.

How Can SCM Add More Value to
Agile?

In agile methods, there is very much focus on
the developers and the production process. In the
previous sub-section, we have seen how many
of these processes can be well supported by
techniques and principles from SCM. However,
agile methods often overlook the aspects of SCM

148

Software Configuration Management in Agile Development

that deal with the relation to the customer and
where traditional SCM has special emphasis. In
the following, we look at the traditional SCM as
represented by the four activities of configuration
identification, configuration control, configura-
tion status accounting, and configuration audit
(Leon, 2005). For each activity, we describe what
new activities and processes could be added to
agile methods to help provide a more covering
support for the development team.

Configuration Identification

The most relevant part of configuration identi-
fication for agile methods is the identification
and organisation of configuration items. Some
artefacts are so important for a project that they
become configuration items and go into the shared
repository. Other artefacts (e.g., sketches, experi-
ments, notes, etc.) have a more private nature and
they should not be shared in order not to confuse
other people. However, it may still be convenient
to save and version some of the private artefacts
to benefit from versioning even though they are
not configuration items. They can be put into the
repository but it is very important that the arte-
facts, configuration items and not, are structured
in such a way that it is absolutely clear what a
configuration item is and what a private artefact
is. Structuring of the repository is an activity that
is also important when it contains only configura-
tion items.

Configuration identification is an SCM activ-
ity that traditionally is done up-front, which goes
against the agile philosophy. However, there can
be some reason in actually trying to follow the
experience that SCM provides. Rules for identify-
ing configuration items should be agreed upon,
such that they can be put into the repository and
information about them shared as early as possible.
More importantly, though, is that the structuring
of configuration items should not be allowed to
just grow as the project proceeds, because most

SCM tools do not support name space version-
ing (Milligan, 2003) (i.e., handling structural
changes to the repository while retaining the
change history).

Configuration Control

The part of configuration control that deals with
the handling of change requests is taken care of
by a planning game or similar activity. However,
two important aspects of configuration control
are neglected by most agile methods: tracking
and traceability.

In traditional SCM, change requests are
tracked through their entire lifetime from concep-
tion to completion. At any given point in time, it is
important to know the current state of the change
request and who has been assigned responsibility
for it. This can benefit agile methods too as they
also need to manage changes and coordinate the
work of different people. In some agile methods
there is an explicit tracker role (chromatic, 2003)
that is responsible for this activity.

Traceability is an important property of
traditional SCM and is sometimes claimed to
be the main reason for having SCM. It should
be possible to trace changes made to a file back
to the specific change request they implement.
Likewise, it should be possible to trace the files
that were changed when implementing a certain
change request. The files that are related to a
change request are not just source code files,
but all files that are affected by that change (e.g.,
test cases, documentation, etc). Another aspect
of traceability is to be able to know exactly what
went into a specific build or release—and what
configurations contain a specific version of a
specific file. The main advantage of having good
traceability is to allow for a better impact analysis
so we can be informed of the consequences of
changes and improve the coordination between
people on the team.

 149

Software Configuration Management in Agile Development

Configuration Status Accounting

This activity should be seen as a service to every-
one involved in a project including developers and
the customer, even though it traditionally has been
used primarily by management and in particular
project managers. Configuration status accounting
can be looked at as simple data mining where you
collect and present data of interest. Many agile
methods are very code centred and the repository
is the place where we keep the configuration items
that are important for the project, so it is natural
to place the meta-data to mine in the same reposi-
tory. Configuration status accounting does not
need to be an upfront activity like configuration
identification, but can be added as you discover
the need. However, you should be aware that the
later you start collecting data to mine, the less
data and history you get to mine. Usually this is
seen as an activity that benefits only managers,
but there can be much support for the develop-
ers too—all you have to do it to say what kind of
meta-data you want collected and how you want
it to be presented. If you do not document changes
in writing, then it is important that you can get
hold of the person that did a change; when you
have shared code, then it is important to see who
is currently working on what.

Configuration Audit

Configuration audit can be looked at as a verifica-
tion activity. The actual work, considered as a QA
activity, has been done elsewhere as part of other
processes, but during the configuration audits,
it gets verified that it has actually been carried
out. The functional configuration audits verify
that we have taken care of and properly closed
all change requests scheduled for a specific build
or release. The physical configuration audit is a
“sanity check” that covers the physical aspects
(e.g., that all components/files are there—CD, box,
manual) and that it can actually be installed. Even
though configuration audit is not directly a QA

activity, it contributes to the quality of the product
by verifying that certain SCM and QA activities
have actually been carried out as agreed upon.
Configuration audits are needed not because we
mistrust people, but because from time to time
people can be careless and forget something. The
basis for automating the functional configuration
audit in agile is there through the use of unit and
acceptance tests.

SCM Plans and Roles

You definitely need to plan and design your SCM
activities and processes very carefully on an agile
project. Moreover, they have to be carried out
differently from how they are done on traditional
projects and the developers will need to know
more about SCM because they are doing more
of it on an agile project.

This does not imply that you should write big
detailed SCM plans the same way as it is being
done for traditional projects. The agile manifesto
(Agile Manifesto, 2001) values working software
over comprehensive documentation. The same
goes for SCM where you should value working
SCM processes over comprehensive SCM plans.
In general, what needs to be documented are
processes and activities that are either complex
or carried out rarely. The documentation needs to
be kept alive and used—otherwise it will not be
up-to-date and should be discarded. We can rely
on face-to-face conversation to convey informa-
tion within a team when working in small groups
and maybe even in pairs. However, if the team
grows or we have a high turnover of personnel,
that might call for more documentation. If pos-
sible, processes should be automated, in which
case they are also documented.

In general, agile projects do not have the same
specialization in roles as on traditional projects.
Everyone participates in all aspects of the project
and should be able to carry out everything—at
least in theory. This means that all developers
should have sufficient knowledge about SCM

150

Software Configuration Management in Agile Development

to be able to carry out SCM-related activities
by themselves. There will, for instance, not be
a dedicated SCM-person to do daily or weekly
builds or releases on an agile project. However, to
do the design of the SCM-related work processes,
even an agile team will need the help of an SCM
expert who should work in close collaboration
with the team such that individuals and interac-
tion are valued over processes and tools (Agile
Manifesto, 2001).

SCM Tools

In general, SCM is very process centric and
could, in theory, be carried out by following these
processes manually. However, agile methods try
to automate the most frequently used processes
and have tools take care of them (e.g., repository
tools, build tools, automated merge tools, etc).
Fortunately, the requirements that agile methods
have to SCM tooling are not very demanding
and can, more or less, easily be satisfied by most
tools. For this reason, we do not want to give any
tool recommendations or discuss specific tools,
but rather focus on the general requirements and
a couple of things to look out for. Furthermore,
most often, you just use the tool that is given or
the selection is based on political issues.

Using parallel work, we would need a tool
that works without locking and thus has powerful
merge capabilities to get as painless an integra-
tion as possible. Using test-driven development,
we need to build very often so a fast build tool
is very helpful—and preferably it will be flex-
ible such that we can sometimes choose to trade
speed for consistency. Working always against
baselines, it would be nice if the repository tool
would automatically handle bound configurations
(Asklund, Bendix, Christensen, & Magnusson,
1999) so we should not do that manually.

However, a couple of things should be taken
into account about SCM tooling. Because of refac-
toring and the fact that the architecture is grown
organically, there will be changes to the structure

of the files in the repository. This means that if
the tool does not support name space versioning
(Milligan, 2003), we will have a harder time because
we lose history information and have no support
for merging differing structures. However, this
can be handled manually and by not carrying out
structural changes in parallel with other work. It
is much more problematic to actually change your
repository tool in the middle of a project. Often you
can migrate the code and the versions but you lose
the meta-data that is equally as valuable for your
work as the actual code. Therefore, if possible, you
should try to anticipate the possible success and
growth of the project and make sure that the tool
will scale to match future requirements.

FuturE trEnds

While resisting the temptation to predict the fu-
ture, we can safely assume that the increased use
and awareness of SCM in agile development will
result in a body of best practices and increased
interaction between agile and SCM activities.
Furthermore, we expect to see progress in tool
support, including better merge support and in-
creased traceability to name a few.

Continuous integration is an activity that has
already received much attention and is quite ma-
ture and well understood. Many other SCM-related
activities require continuous integration and we
expect to see them mature accordingly when that
foundation is now set. This will result in new best
practices and perhaps specific SCM-related sub-
practices to make these best practices explicit.
A first attempt to specify SCM sub-practices for
an agile setting is presented in Asklund, Bendix,
and Ekman. (2004) and we expect them to mature
and more sub-practices to follow.

SCM tools provide invaluable support and we
envision two future trends. There is a trend to
integrate various SCM-related tools into suites
that support the entire line of SCM activities.
These tools can be configured to adhere to pretty

 151

Software Configuration Management in Agile Development

much any desired development process. They may,
however, be somewhat heavyweight for an agile
setting and as a contrast, we see the use of more
lightweight tools. Most SCM activities described
in this chapter can be supported by simple merge
tools with concurrency detection.

Parallel work with collective code ownership
can benefit from improved merge support. Current
merge tools often operate on plain text at the file
level and could be improved by using more fine-
grained merge control, perhaps even with syntactic
and partially semantics aware merge. An alterna-
tive approach is to use very fine-grained merge
combined with support for increased awareness
to lower the risk of merge conflicts. The increased
use of SCM will also require merge support for
other artefacts than source files.

The use of SCM in agile development will
enable better support for traceability and track-
ing of changes. A little extra effort can provide
bi-directional traceability between requirements,
defects, and implementation. However, more ex-
perience is needed to determine actual benefits
in an agile context before one can motivate and
justify this extra “overhead.”

SCM is being used more and more in agile
methods, despite not being mentioned explicitly.
However, it is often carried out in the same way
as in traditional projects, but can benefit from
being adapted to this new setting. The practices
presented in this chapter adapt SCM for agile
methods but more widespread use will lead to
even more tailored SCM. In particular, SCM
practices will be further refined to fit an agile
environment and probably lead to more agile
SCM. Some of these ideas may indeed transfer to
traditional projects, providing more lightweight
SCM in that setting as well.

concLusIon

SCM provides valuable activities that enhance
the QA for agile development. The main quality

enhancement does not stem directly from SCM but
indirectly by supporting other quality enhancing
activities. Traceability is, for instance, crucial to
evaluate any kind of quality work, and configu-
ration audits verify that SCM and QA activities
have been carried out.

We have shown how typical agile activities
can be supported directly by SCM techniques
while retaining their agile properties. For instance,
continuous integration demands support from
SCM tools and processes to succeed while build
and release management can help to streamline
the release process to enable frequent releases.
SCM can thus be used to support and strengthen
such developer-oriented activities.

SCM is traditionally very strong in aspects
that deal with the relation to the customer. Agile
methods can benefit from these activities as well.
Configuration control allows precise tracking of
progress and traceability for each change request.
Lightweight SCM plans simplify coordination
within a team and help in effective use of other
SCM-related activities. These are areas that are of-
ten not mentioned explicitly in agile literature.

There is, in general, no conflict between
agile methods and SCM—quite the contrary.
Agile methods and SCM blend well together
and enhance each other’s strengths. Safe SCM
with rigorous change management can indeed
be carried out in an agile project and be tailored
to agile requirements.

SCM tools provide help in automating many
agile activities, but we must stress that what is
important are the SCM processes and not so much
a particular set of tools. There are also many agile
activities that could be supported even better by
enhanced tool support. For instance, current merge
tools are often fairly poor at handling structural
merges such as refactorings; often this results
in loss of version history and traceability, and
incomprehensible merge conflicts.

Many agile teams already benefit from SCM,
but we believe that a more complete set of SCM
activities can be offered to the agile community.

152

Software Configuration Management in Agile Development

Tailored processes and tools will add even more
value and may indeed result in SCM activities
that are themselves agile, which may even have
an impact on more traditional software develop-
ment methods.

rEFErEncEs

Adams, R., Weinert, A., & Tichy, W. (1989).
Software change dynamics or half of all ADA
compilations are redundant. Proceedings
of the 2nd European Software Engineering
Conference,Coventry, UK.

Agile Manifesto (2001). Manifesto for agile soft-
ware development. Retrieved June 1, 2006, from
http://agilemanifesto.org/

Aiello, B. (2003). Behaviorally speaking: Continu-
ous integration: Managing chaos for quality! CM
Journal, September.

Angstadt, B. (2000). SCM: More than support
and control. Crosstalk: The Journal of Defence
Software Engineering, March.

Appleton, B., & Cowham, R. (2004b). Release
management: Making it lean and agile. CM
Journal, August.

Appleton, B., Berczuk, S., & Konieczka, S.
(2003a). Continuous integration: Just another
buzz word? CM Journal, September.

Appleton, B., Berczuk, S., & Konieczka, S.
(2003b). Codeline merging and locking: Con-
tinuous updates and two-phased commits. CM
Journal, November.

Appleton, B., Berczuk, S., & Konieczka, S.
(2004a). Continuous staging: Scaling continuous
integration to multiple component teams. CM
Journal, March.

Appleton, B., Berczuk, S., & Cowham, R. (2005).
Branching and merging: An agile perspective.
CM Journal, July.

Asklund, U., Bendix L., Christensen H. B., &
Magnusson, B. (1999, September 5-7). The unified
extensional versioning model. Proceedings of the
9th International Symposium on System Configu-
ration Management, Toulouse, France.

Asklund, U., Bendix, L., & Ekman, T. (2004,
August 17-19). Software configuration manage-
ment practices for extreme programming teams.
Proceedings of the 11th Nordic Workshop on
Programming and Software Development Tools
and Techniques, Turku, Finland.

Babich, W. A. (1986). Software configuration
management: Coordination for team productivity.
Addison-Wesley.

Beck, K. (1999a). Embracing change with extreme
programming. IEEE Computer, 32(10), 70-77.

Beck, K. (1999b). Extreme programming ex-
plained: Embrace change. Addison-Wesley.

Bellagio, D. E., & Milligan, T. J. (2005). Software
configuration management strategies and IBM
Rational ClearCase. IBM Press.

Bendix, L., & Vinter, O. (2001, November 19-23).
Configuration management from a developer’s
perspective. Proceedings of the EuroSTAR 2001
Conference, Stockholm, Sweden.

Bendix, L., & Hedin, G. (2002). Summary of the
subworkshop on extreme programming. Nordic
Journal of Computing, 9(3), 261-266.

Berczuk, S., & Appleton, S. (2003). Software con-
figuration management patterns: Effective team-
work, Practical Integration. Addison-Wesley.

Berlack, H. R. (1992). Software configuration
management. John Wiley & Sons.

Bohner, S. A., & Arnold, R. S. (1996). Software
change impact analysis. IEEE Computer Society
Press.

 153

Software Configuration Management in Agile Development

Buckley, F. J. (1993). Implementing configuration
management: Hardware, software, and firmware.
IEEE Computer Society Press.

Chromatic. (2003). Chromatic: Extreme program-
ming pocket guide. O’Reilly & Associates.

Crnkovic, I., Asklund, U., & Persson Dahlqvist,
A. (2003). Implementing and integrating product
data management and software configuration
management. Artech House.

Daniels, M. A. (1985). Principles of configuration
management. Advanced Applications Consul-
tants, Inc.

Dig, D., Nguyen, T. N., & Johnson, R. (2006).
Refactoring-aware software configuration man-
agement (Tech. Rep. UIUCDCS-R-2006-2710).
Department of Computer Science, University of
Illinois at Urbana-Champaign.

Ekman, T., & Asklund, U. (2004). Refactoring-
aware versioning in eclipse. Electronic Notes in
Theoretical Computer Science, 107, 57-69.

Farah, J. (2004). Making incremental integration
work for you. CM Journal, November.

Feiler, P. H. (1991). Configuration management
models in commercial environments (Tech. Rep.
CMU/SEI-91-TR-7). Carnegie-Mellon University/
Software Engineering Institute.

Feldman, S. I. (1979). Make—A program for main-
taining computer programs. Software—Practice
and Experience, 9(3), 255-265.

Fowler, M., & Foemmel, M. (2006). Continuous
integration. Retrieved June 1, 2006, from http://
www.martinfowler.com/articles/continuousIn-
tegration.html

Hass, A. M. (2003). Configuration management
principles and practice. Addison-Wesley.

Koskela, J. (2003). Software configuration man-
agement in agile methods. VTT publications: 514,
VTT Tietopalvelu.

Leon, A. (2005). Software configuration manage-
ment handbook. Artech House.

Mikkelsen, T., & Pherigo, S. (1997). Practical
software configuration management: The Late-
night developer’s handbook. Prentice Hall.

Milligan, T. (2003). Better software configuration
management means better business: the seven
keys to improving business value. IBM Rational
white paper.

Moreira, M. (2004). Approaching continuous
integration. CM Journal, November.

Sayko, M. (2004). The role of incremental integra-
tion in a parallel development environment. CM
Journal, November.

Schwanke, R. W., & Kaiser, G. E. (1988, January
27-29). Living with inconsistency in large systems.
Proceedings of the International Workshop on
Software Version and Configuration Control,
Grassau, Germany.

154

Chapter VIII
Improving Quality by

Exploiting Human Dynamics
in Agile Methods

Panagiotis Sfetsos
Alexander Technological Educational Institution of Thessaloniki, Greece

Ioannis Stamelos
Aristotle University, Greece

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

AbstrAct

Theory and experience have shown that human factors are critical for the success of software engineering
practices. Agile methods are even more sensitive in such factors because they rely heavily on personal
efforts with limited guidance from process manuals, allowing freedom in choosing solutions, inter-per-
sonal communications, etc. This fact raises important issues for the management of software engineers
that are expected to apply agile methods effectively. One such issue at the agile organization executive
level is human resource management, which should take into account agile development peculiarities,
work competencies needed, agile workforce planning, etc. Another issue at the micro-management level
is agile workforce management within the development process (e.g., team planning for a specific task
or project) where individual human features will undoubtedly affect delivered quality and ultimately the
task/project degree of success. This chapter deals with one problem at each level of management in an
agile company applying extreme programming, one of the most diffused agile methods. In particular,
the first part of the chapter proposes and discusses a model for personnel management based on the
well known People-CMM1 assessment and improvement model, while the second one proposes a model
that exploits developer personalities and temperaments to effectively allocate and rotate developers in
pairs for pair programming.

 155

Improving Quality by Exploiting Human Dynamics in Agile Methods

IntroductIon

Software engineering practices extensively in-
volve humans under different roles (managers,
analysts, designers, developers, testers, quality
assurance experts, etc.) (Pfleeger, 2001; Sommer-
ville, 2004). Software activities are still mostly
based on individuals’ knowledge and skills. On the
other hand, in theory, agile methods put particular
emphasis on people and their interactions. Agile
organizations are expected to value individuals
and interactions over processes and tools (Beck,
2000), but this fundamental consideration is of-
ten ignored and underestimated. Employment of
people in agile projects presents both challenges
and opportunities for managers. They should avoid
pitfalls in managing agile software engineers such
as assigning a developer to the wrong task, and
they should exploit human competencies to assure
high productivity and quality. As a consequence,
people management is of paramount importance
for agile organizations’ success.

Often large organizations, applying both agile
and traditional methodologies, have to integrate
new processes with existing ones. These compa-
nies face cultural problems highlighted by differ-
ences between agile and traditional teams, and
problems caused by distribution of work across
multiple teams in large and complex projects
(Cockburn, 2002; Highsmith, 2000; Lindval et
al., 2004). On the other hand, small organizations
are more dependent on skilled and experienced
developers and are often facing problems related
to human issues such as unpleasant conditions
or relations among staff (Sfetsos, Angelis, &
Stamelos et al., 2006a).

Regardless of its size, any organization apply-
ing agile methods must develop its own assessment
and improvement processes for two reasons:

•	 To assure personnel quality at the corporate
level, for example, to address workforce-
related problems such as bad staffing,
inadequate training, bad competency, and

performance management, to mention some
of the most important.

•	 To assure and exploit personnel qualities at
the project/team level, for example, to iden-
tify early and understand the effects of its
developer characteristics (skills, personali-
ties, temperaments), effectively combining
them to address problems quickly and im-
prove communication and collaboration.

The rest of this chapter is organized in two
separate sections. The first section deals with
human resource management at the corporate
level. It focuses on extreme programming (XP),
which is analyzed from the perspective of the
people capability maturity model (P-CMM), a
five-level model that prescribes a framework for
managing the development of people involved
in software development processes. An analysis
is provided showing that an XP organization,
starting typically from the Managed Level (Level
2), would potentially successfully address most
of the P-CMM Level 2 and 3 practices, and can
reach Level 4 and 5 by applying quantitative
measurements for improving performance of
the competency-based processes. Eventually, an
adaptive P-CMM assessment and improvement
process model is proposed, which can be used by
any XP organization for the successful implemen-
tation of its workforce management.

The second section provides a concrete ex-
ample of how to assure quality at the project/team
level; a pair formation and allocation model is
built based on developer personalities and tem-
peraments. A thorough and systematic analysis
of human dynamics in pair programming, the
most popular of XP practices, is provided aiming
at the improvement of quality. First, the salient
characteristics of the different personalities and
temperaments on communication, knowledge
management, and decision making in pair pro-
gramming are analyzed. The results of a study
investigating the impact of developer personalities
and temperaments on communication and col-

156

Improving Quality by Exploiting Human Dynamics in Agile Methods

laboration-viability in pair programming, using
the Keirsey Temperament Sorter (KTS) (Keirsey
& Bates, 1984), are reported. Next, an adaptive
pair formation/rotation process model for the
identification, interpretation, and the effective
combination of developer variations to improve
pair effectiveness is described.

AssurIng Personnel
QuAlIty At the corPorAte
level: PeoPle cAPAbIlIty
MAturIty Model And extreMe
PrAMMIng

Evaluation and assessment (E&A) are critical ac-
tivities in software engineering both for products
and processes (Pfleeger, 2001). E&A models are
also critical for organizations and people. They
typically provide E&A structured in the form of
levels; organizations achieve higher levels when

they manage to design and effectively implement
sets of processes and practices that are advanced
with respect to those of the previous level. One
widely accepted and used E&A model is CMM
(Paulk, Curtis, Chrissis, & Weber, 1993), and
its newest version CMM-I (Chrissis, Konrad, &
Shrum, 2003).

As was discussed previously in Introduction,
people, people quality, and people management are
essential for agile companies. As a consequence,
E&A people management models may help agile
companies improve their people management
processes and policies, assuring agile personnel
quality. However, no such models capable to
produce agile organization assessment have been
proposed up to now. In the next, one such model,
based on CMM people counterpart, namely People
CMM, is outlined.

People CMM, first published in 1995 and re-
vised 2001 (version 2) (Curtis, Hefley, & Miller,
1995, 2001), is a five-level model that focuses on

Table 1. Process areas of the People CMM: Version 2

Maturity
Level

Focus Key Process Areas

5
Optimizing

Continuously improve and
align personal, workgroup,
and organizational capa-
bility.

•	 Continuous workforce innovation.
•	 Organizational performance align-

ment.
•	 Continuous capability improvement.

4
Predictable

Empower and integrate
workforce competencies
and manage performance
quantitatively.

•	 Mentoring.
•	 Organizational capability manage-

ment.
•	 Quantitative performance manage-

ment.
•	 Competency-based assets.
•	 Empowered workgroups.
•	 Competency integration.

3
Defined

Develop workforce com-
petencies and workgroups,
and align with
business strategy and
objectives.

•	 Participatory culture.
•	 Workgroup development.
•	 Competency-based practices.
•	 Career development.
•	 Competency development.
•	 Workforce planning.
•	 Competency analysis.

2
Managed

Managers take responsi-
bility for managing and
developing their people.

•	 Compensation
•	 Training and development.
•	 Performance management.
•	 Work environment.
Communication and coordination staff-
ing

1
Initial

Workforce practices ap-
plied inconsistently.

(no KPAs at this level)

 157

Improving Quality by Exploiting Human Dynamics in Agile Methods

continuously improving the management and
development of the human assets of a software
systems organization. People CMM, like most
other capability maturity models, is a staged
model for organizational change consisting of five
maturity levels through which an organization’s
workforce practices and processes evolve. Each
maturity level, representing a higher level of
organizational capability, is composed of several
key process areas (KPAs) that identify clusters of
related workforce practices (see Table 1).

At the initial maturity level (Level 1), work-
force practices are performed inconsistently and
frequently fail to achieve their intended purpose.
Managers usually rely on their intuition for manag-
ing their people. To achieve the managed maturity
level (Level 2), the organization implements the
discipline of performing basic workforce prac-
tices. While maturing to the defined level (Level
3), these practices are tailored to enhance the
particular knowledge, skills, and work methods
that best support the organization’s business. To
achieve the predictable maturity level (Level 4),
the organization develops competency-based,
high-performance workgroups, and empirically
evaluates how effectively its workforce prac-
tices meet objectives. To achieve the optimizing
maturity level (Level 5), the organization looks
continually for innovative ways to improve its
workforce capability and to support the workforce
in their pursuit of professional excellence.

Practices of a key process area must be
performed collectively achieving a set of goals
considered important for enhancing workforce
capability. People CMM can be applied by an
organization in two ways: as a guide for imple-
menting improvement activities and as a standard
for assessing workforce practices. As a guide, the
model helps organizations in selecting high-prior-
ity improvement actions, while as an assessment
tool describes how to assess workforce capability.
Due to limited space, the reader should consult
(Curtis et al., 1995, 2001) for details about the key
process areas. In the rest of this section we will

examine XP from the People CMM perspective,
presenting a brief summary of the KPAs effect
in each maturity level and analyzing only those
KPAs we consider successfully addressed by XP
practices and values.

the InItIAl level
(MAturIty level 1)

At the initial level, work force practices are often
ad hoc and inconsistent and frequently fail to
achieve their intended purpose. This means that
in some areas, the organization has not defined
workforce practices, and in other areas, it has not
trained responsible individuals to perform the
practices that are established. Managers usually
find it difficult to retain talented individuals and
rely on their intuition for managing their people.
Turnover is high so the level of knowledge and
skills available in the organization does not grow
over time because of the need to replace experi-
enced and knowledgeable individuals who have
left the organization.

XP is a high-disciplined methodology, thus
organizations applying XP tend to retain skilled
people, develop workforce practices, and train
responsible individuals to perform highly co-
operative best practices. Most of XP practices,
especially pair programming, encourage the
tacit transmission of knowledge and promote
continuous training. Managers and coaches in XP
organizations are well prepared to perform their
workforce responsibilities. We consider that most
XP organizations bypass the initial level.

Key Process AreAs At the
MAnAged level
(MAturIty level 2)

The key process areas at managed level focus on
establishing basic workforce practices and elimi-
nating problems that hinder work performance.

158

Improving Quality by Exploiting Human Dynamics in Agile Methods

At the managed level, an organization’s attention
focuses on unit-level issues. An organization’s ca-
pability for performing work is best characterised
by the capability of units to meet their commit-
ments. This capability is achieved by ensuring
that people have the skills needed to perform their
assigned work and by implementing the defined
actions needed to improve performance. Staffing
is designed to establish basic practices by which
talented people are recruited, selected among job
candidates, and assigned to tasks/projects within
the organization. Knowledge intensive XP organi-
zations setting skill requirements at a higher level
must coordinate their staff selection activities to
attract developers capable to implement demand-
ing XP practices, such as pair programming, test
driven development, etc. The purpose of commu-
nication is to establish a social environment that
supports effective interaction and to ensure that
the workforce has the skills to share information
and coordinate their activities efficiently. In the
XP process, communication is the most signifi-
cant of the four prized values, starting from the
early phase of the development process (planning
game) and being implemented in most of the other
practices (i.e., pair programming, testing, etc.).
The purpose of work environment is to establish
and maintain physical working conditions that
allow individuals to perform their tasks efficiently
without distractions. For XP teams (usually small,
2-12 persons), one large room with small cubbies
at the side is used. All team members (program-
mers, coach, customer, etc.) work together in this
room. Performance management is designed to
establish objective criteria against which unit and
individual performance can be measured, and to
enhance performance and feedback continuously.
Skills obtained by the successful implementation
of XP practices are capable to boost performance.
XP addresses with success requirement changes
through user stories in planning game, continuous
integrations, and small releases. Pair program-
ming with continuous code reviews, faster code
production, and learning of both programming

techniques and problem domain increases per-
formance. Testing, minimizing defect rates, and
on-site customer providing feedback often and
early are also significant factors affecting posi-
tively performance. The same effect is obtained
with simple design, common code ownership,
and metaphor. The purpose of training and de-
velopment is to ensure that all individuals have
the skills required to perform their assignments.
XP addresses successfully training needs by
rotating developers in pair programming and by
involving them in significant practices such as
planning game, testing, refactoring, and meta-
phor. Compensation is designed to provide all
individuals with payment and benefits based on
their contribution and value to the organization.
Apart from compensation, 40-hours a week is
a practice benefiting both developers and or-
ganization. Consequently, we consider that XP
organisations would address P-CMM Level 2
KPAs without problems.

Key Process AreAs At the
defIned level
(MAturIty level 3)

In order to mature into the defined level, basic
workforce practices that have been established for
units (managed level) are tailored to enhance the
particular knowledge, skills, and work methods
that best support the organization’s business. At
this level, organization addresses organizational
issues, developing a culture of professionalism
based on well-understood workforce competen-
cies. Competency analysis, competency develop-
ment, and competency-based practices are de-
signed to identify, develop, and use the knowledge,
skills, and process abilities required by workforce
to perform the organization’s business activities,
respectively. Career development is designed to
ensure that individuals are provided opportunities
to develop workforce competencies enabling them
to achieve career objectives. Workgroup develop-

 159

Improving Quality by Exploiting Human Dynamics in Agile Methods

ment on the other hand strives to organize work
around competency-based process abilities. All
the previously mentioned process areas contribute
in creating a participatory culture, which gives the
workforce full capability for making decisions that
affect the performance of business activities. They
also assist in workforce planning, which refers to
coordination of workforce activities with current
and future business needs. An XP organization
can enhance workforce competencies by:

•	 Providing opportunities for individuals to
identify, develop, and use their skills and
knowledge involving them in the imple-
mentation of the XP practices, and by

•	 Using the skills and knowledge of its work-
force as resources for developing the work-
force competencies of others (e.g., through
pair programming).

XP teams, amalgamating technical and busi-
ness people with divergent backgrounds and skills,
keep the most significant role in identification,
development, and use of competency practices.
Competency practices starts with pair program-
ming that helps managers and developers to
identify, develop, and use available knowledge
and skills. Technical competencies related to
methodologies, project-based knowledge, and
tool usage are improved by planning game,
pair programming, test-driven development,
refactoring, simple design, and common code
ownership. Knowledge and skills, obtained by
gradual training and successful projects, enhance
organization’s knowledge repository. The XP
process establishes a high participatory culture
(pair programming and other practices), spreading
the flow of information within the organization,
and incorporating the knowledge of developers
into decision-making activities, providing them
with the opportunity to achieve career objectives.
Iterative and incremental development with small
releases assist in work-force planning, which refers
to coordination and synchronization of workforce

activities with current and future business needs.
Consequently, we consider that XP organizations
are well prepared to successfully address most of
the P-CMM Level 3 KPAs.

Key Process AreAs At the
PredIctAble level
(MAturIty level 4)

In maturing to the predictable level, the organi-
zational framework of workforce competencies
that has been established in the defined level is
both managed and exploited. The organization
has the capability to predict its performance and
capacity for work even when business objectives
are changed through a culture of measurement
and exploitation of shared experiences. The key
processes introduced in this level help organiza-
tions quantify the workforce capabilities and the
competency-based processes it uses in perform-
ing its assignments. Competency integration is
designed to improve the efficiency and agility of
interdependent work by integrating the process
abilities of different workforce competencies.
The purpose of empowered workgroups is the
creation of workgroups with the responsibility
and authority to determine how to conduct their
business activities more effectively. Competency-
based assets is designed to capture the knowl-
edge, experience, and artefacts developed while
performing competency-based processes for en-
hancing capability and performance. Quantitative
performance management is designed to predict
and manage the capability of competency-based
processes for achieving measurable performance
objectives. Organizational capability manage-
ment is designed to quantify and manage the
capability of the workforce and of the critical
competency-based processes they perform. Men-
toring is designed to transfer the lessons obtained
through experience into a work-force competency
to improve the capability of other individuals or
workgroups.

160

Improving Quality by Exploiting Human Dynamics in Agile Methods

XP is a team-based process helping work-
groups to develop more cohesion, capability, and
responsibility. Team-based practices, compe-
tency practices, training, and mentoring are the
key process areas most benefiting from pairing.
Mentoring in pair programming is a never-ending
process, transferring inter-personal knowledge
in an informal way (Williams & Kessler, 2002;
Williams, Kessler, Cunningham, & Jefferies,
2000). Recent research studies have shown that
the assimilation time came down from 28 days
to 13 days, the mentoring time was reduced from
32% to 25%, and the training effort was cut down
by half (Williams et al., 2002). XP process re-
quires that developers implement best practices
in extreme levels using proven competency-based
activities in their assignments. Managers trust
the results that developers produce and the XP
organization preserves successful results in its
repository and exploits them as organizational as-
sets. Organizational assets can be used effectively
again and again as corporate standards, increas-
ing productivity and spreading learning rapidly
through the organization. Managers trusting team
competencies empower teams by transferring to
them responsibility and authority for performing
committed work. Developers define milestones for
coordination, integrating their competency-based
activities into a single process. This process, con-
stituted from different workforce competencies,
should be institutionalized by organization, which
begins to manage its capability quantitatively.
The performance of each unit and team should
be measured enabling organizations performance
to become more predictable. The integration of
the people processes with business processes
and measuring of the co-relations between the
two will help an XP organization to mature up
to this level.

Key Process AreAs At the
oPtIMIzIng level
(MAturIty level 5)

The process areas at the optimizing level focus on
continuous improvement of workforce capability
and practices. These practices cover issues that
address continuous improvement of methods for
developing competency at both the organizational
and the individual level. The organization uses the
results of the quantitative management activities
established at level 4 to guide improvements at
this level. Continuous capability improvement
provides a foundation for individuals and work-
groups to continuously improve their capability
for performing competency-based processes.
Organizational performance alignment enhances
the alignment of performance results across
individuals, workgroups, and units with orga-
nizational performance and business objectives.
Continuous workforce innovation is designed
to identify and evaluate improved or innova-
tive workforce practices and technologies, and
implement the most promising ones throughout
the organization.

XP practices, especially pair programming
with pair rotation, help increasing the knowledge
level of the individuals and subsequently of the
team. As mentioned in level 4, this knowledge
enriches organization’s knowledge repository
providing both individuals and workgroups the
ability to continuously improve their capabilities.
This improvement occurs through incremental
advances from the implementation of the XP
practices. The results from measurements at level
4 and the culture of improvements established by
the continuous implementation of the XP prac-
tices can help the XP organization to mature up
to this level.

 161

Improving Quality by Exploiting Human Dynamics in Agile Methods

An AdAPtIve PeoPle cMM
AssessMent Process Model
to Assess xP orgAnIzAtIons

The process model we suggest is an adaptive peo-
ple CMM assessment process model in the sense
that the XP organization assesses itself against
the process areas defined in each maturity level
(focusing mostly on those previously discussed),
and decides what course of action to take and how
to address the improvement areas. The model (see
Figure 1) is divided into three stages:

• Input, where the people process currently
used by the XP organization and the adap-
tive people CMM framework are entered
into the process.

• Operation, where the assessment process
takes place.

• Output, where the results of the assessment
process, in the form of a new improved
process, are adopted by the people process
management task and are communicated to
the organization.

The main assessment process starts with a gap
analysis (Curtis et. al., 1995, 2001), where organi-
zation’s workforce activities are examined against

people CMM to identify gaps or shortcomings.
This kind of analysis helps the organization to
measure progress. Gap analysis can be conducted
as a guided workshop session led by a qualified
assessor or facilitator. Typical steps are:

1. An assessor or a small team of assessors
consisting of managers and developers is
selected and trained in the people CMM.
After a short presentation describing the
People CMM and the purpose of the survey,
the program manager or facilitator assigns a
specific process area and the proper evalu-
ation questionnaire to assessors.

2. Each assessor scores and comments on the
process areas individually in the question-
naire, evaluating the organization against
each criteria item, and determining how
well the organization satisfies the described
practices. Questionnaires can be filled in a
group session.

3. Program manager or facilitator picks up
questionnaires, elaborates scores and com-
ments analyzing responses, and prioritizes
results for discussion.

4. Program manager or facilitator convokes a
consensus meeting focusing on key areas
with low scores (i.e., areas needing improve-

Figure 1. An adaptive people CMM assessment process model for assessing XP- organizations

162

Improving Quality by Exploiting Human Dynamics in Agile Methods

ment). Meeting leads to agreement on key
improvement areas based on overall assess-
ment and comes to a consensus on prioritized
inputs.

5. Summary reports are written, describing the
results for both the developer and the man-
ager questionnaires. These reports provide
team members with information about the
consistency with which workforce practices
are performed and about the major issues
related to them. Reports provides both sum-
mary statistical data and written comments
related to questions.

The assessment results are firstly incorporated
into the work-force practices and secondly the
improved workforce practices are established
and communicated to the organization. Analyti-
cally:

•	 Responses are analyzed and a summary
presentation is delivered to the organiza-
tion.

•	 The recommended action plans and detailed
improvement activities are prioritized and
incorporated into the workforce manage-
ment task cycle plan to address identified
areas for improvement. These steps in the
assessment must be repeated in short period
times (i.e., every year) to keep the assess-
ment up to date, to evaluate the progress of
previously deployed assessment processes,
and to use the results to feed the yearly
planning cycle.

After the application of the improved process,
the next step is to move into the establishing
phase where a program of continuous workforce
development is established. In this phase, a pro-
gram of workforce development is integrated with
corporate process improvement, linking together
improved workforce practices with organization’s
workforce process. Improved workforce practices
are continuously used incorporating a culture of

excellence. The step is to move into the commu-
nication phase where strengths, shortcomings,
changes in organizational structure or processes,
action plans, and detailed actions that must be
taken to improve practices are communicated to
the entire organization.

exPloItIng Personnel
QuAlItIes At the Project/teAM
level: AssessIng And
IMProvIng PAIr ProgrAMMIng
effectIveness bAsed on
develoPer PersonAlItIes

As discussed in the Introduction, one of agile
organizations major concerns must be careful
personnel management at the project/team level.
Apart from correct handling of individual techni-
cal skills, how could developer personality and
temperament types be used to obtain improved
performance and ultimately increased software
quality levels? This section exemplifies such
personnel treatment by providing a model for pair
formation and allocation in pair programming.

human Issues in Pair Programming

Extreme programming bases its software devel-
opment process on a bunch of intensely social
and collaborative activities and practices (Beck,
2000). The intent of these practices is to capital-
ize on developer’s unique skills, experiences,
idiosyncrasies, and personalities, considering
them as the first-order impact on project success.
Pair programming, a popular practice not only in
XP, is a disciplined practice in which the overall
development activity is a joint effort, a function
of how people communicate, interact, and col-
laborate to produce results.

In the past few years, pair programming has
received increased interest not only as a best
practice in extreme programming, but also as
a standalone programming style. It is an inten-

 163

Improving Quality by Exploiting Human Dynamics in Agile Methods

sively social and collaborative activity practiced
by two developers working together at one ma-
chine (Beck, 2000). One of the developers is the
driver—creating artefacts (e.g., code, designs),
and the other is the navigator—peer reviewing
the driver’s output and thinking of alternatives.
Developers must periodically switch roles and
partners so that the overall development activity
is a joint effort. Creativity becomes a function of
how developers communicate, interact, and col-
laborate to produce results (Beck, 2000). When
working in pairs, their personal preferences, traits,
and characteristics have a strong influence on
their decisions and actions.

Up to now, organizations and managers have
faced pair programming as a rough technical proc-
ess (Sfetsos et al., 2006a, Sfetsos, Stamelos, Ange-
lis, & Deligiannis, 2006b). But as in any software
process, there exist human factors that can not
be easily identified and understood well enough
to be controlled, predicted, or manipulated. On
the other hand, performance and effectiveness
problems always exist and must be addressed
successfully. Such problems are not addressable
through the known improvement approaches, as
most of them focus on processes or technology,
not on people. The primary role of people has been
largely ignored up to now and no efforts have been
devoted to increase developers’ communication,
collaboration, and ultimately effectiveness or to
address pair problems and failures. Beck states that
management has much to gain from psychology
to understand where and why slowdowns occur
(Beck, 2000). Cockburn claims that only develop-
ers with different personalities and with the same
experience, if effectively combined, can minimize
communication gaps (Cockburn, 2002). This
means that management must utilize processes,
which first identify and understand developers’
personalities and then effectively combine their
potential strengths, fostering communication and
collaboration. However, one critical question that
still remains to be answered is which personality
types should be combined in pair formations and
rotations?

In the rest of the chapter, we will try to answer
this research question and we will propose an
adaptive pair formation/rotation process model
for the identification, interpretation, and the ef-
fective combination of developer variations. We
base our approach on Cockburns’ team ecosystems
as described in his Teams as Ecosystems (Cock-
burn, 2002), on the findings of two field studies,
the first at the North Carolina State University
(Katira et al., 2004) and the second at 20 soft-
ware development teams in Hong Kong (Gorla
& Lam, 2004), on the findings of a survey of 15
agile companies (Sfetsos et al., 2006a), and on the
results of a controlled experiment we conducted
(Sfetsos et al., 2006b).

We consider pairs as adaptive ecosystems in
which physical structures, roles, and developer
personalities all exert forces on each other. They
are adaptive because developers through pair ro-
tations, can create, learn, and respond to change.
In these ecosystems, the overall development
activity becomes a joint effort, a function of how
paired developers communicate, interact, and
collaborate to produce results. However, different
personalities express different natural preferences
on communication, information, and knowledge
handling and sharing, decision-making, and prob-
lem solving (Cockburn, 2002; Highsmith, 2002).
Personalities are not right or wrong, they just are,
and can be more or less effective, more or less
appropriate for different roles and tasks. They can
be turned into powerful tools instead of dividing
obstacles, contributing to success if effectively
combined (Ferdinandi, 1998). By understanding
developer variations and knowing what motivates
them, we can facilitate the pair formation and
pair rotation process, allowing individuals to
work in areas in which they are strong. Laplante
and Neil claim that: “Having understood people
motivations, it becomes easier to seek win-win
solutions or avoid causing problems” (Laplante
& Neil, 2006).

164

Improving Quality by Exploiting Human Dynamics in Agile Methods

Pair Programming roles and Actions

Paired developers must succeed in many formal or
informal assigned roles, either pair2 or functional3,
such as the role of a leader, mentor, coordinator,
facilitator, innovator, analyser, tester, decision
maker, negotiator, and that of a peer reviewer,
to mention some of the most significant. To ac-
complish all these different roles, developers must
deploy a broad set of interpersonal skills, which
complement each other, ensuring effective pair
interrelationship and cohesion. Literature does
not provide guidelines for the optimal distribution
of roles and tasks among the paired developers.
However, managers should assign roles and tasks
according to the strong points of developer per-
sonalities effectively combining their talents and
strengths in pair rotations.

communication and collaboration

Communication is one of the four prized values
in XP, but its impact on pair performance and
effectiveness has not been empirically investi-
gated. In particular, pair programming assumes
that developers with frequent, easy, face-to-face
communication will find it easier to develop soft-
ware, get quick feedback, and make immediate
corrections in their development course. But as
software grows and pairs rotate, communication
paths spread and grow, thus increasing the effort
for successful communication. Therefore, col-
laboration and personal contact among developers
must be further improved, eliminating prob-
lems and smoothening possible differences and
conflicts. Developer communication, as people
communication in general, is never perfect and
complete depending on developers’ personality
preferences.

Collaboration is defined as an act of shared
creation. It differs from communication in the
sense that it involves joint and active participation
in all paired activities, especially in the creation
of working software, in decision-making, and in

knowledge management (Highsmith, 2002). In
pair programming, many important decisions,
which must be made quickly and well are often
left to developers. Decisions are made, but the
question is what criteria are used and what is the
scope of the decisions. Managers must facilitate
pair decision-making, taking into account devel-
oper personality preferences and motivations, in
addition to the level of knowledge and information
possessed by the pair, linking successful decisions
to good performance and effectiveness. The same
holds for transferring and sharing knowledge.
During pair programming sessions, explicit and
tacit knowledge are transferred and shared be-
tween developers. Tacit knowledge is managed
first through face-to-face communication and
subsequently through developer rotation, simple
workable code, and extensive unit tests.

Identifying and understanding
Personalities and temperaments

Two widely used tools to assist in the identifi-
cation of personality and temperament types
are the Myers-Briggs Type Indicator (MBTI4)
(Myers, 1975) and the Keirsey Temperament
Sorter (KTS) (Keirsey et al., 1984). The MBTI,
a 94-item questionnaire, focuses on four areas of
opposite behavior preferences forming 16 different
personality types. It is used to quickly identify
where people get their energy, how they gather
information, how they make decisions, and which
work style they prefer. The four pairs of prefer-
ences are Extraverting (E) and Introverting (I),
Sensing (S) and iNtuiting (N), Thinking (T) and
Feeling (F), and Judging (J) and Perceiving (P).
The KTS, a 70-item questionnaire, classifies the
16 personality types into four temperament types:
Artisan (SP), Guardian (SJ), Idealist (NF), and Ra-
tional (NT). We used the hardcopy of the Keirsey
Temperament Sorter5 to identify and interpret the
personality inventories of the participants in one
experiment with pair programming. In Table 2,
we summarise the salient characteristics of each

 165

Improving Quality by Exploiting Human Dynamics in Agile Methods

personality type and our suggestions for exploit-
ing them in pair programming.

In Table 3, we summarize the temperaments
salient characteristics and our suggestions for
their use in pair programming.

It is good to have variety of pairs—extroverts
and introverts, abstract and concrete thinkers,
orderly and random approaches—with people
who enjoy diving into details before deciding
and others who decide quick and are guided by
perception. Therefore, it is up to organizations
and managers to effectively combine developer

diversities in pair rotations, allowing individu-
als to work in roles and tasks in which they can
actually succeed.

An Adaptive Pair formation and
rotation Process Model

In a recent field research study (Sfetsos et al.,
2005a), we found out that software companies
applying pair programming experienced problems
due to human factors. In interviews, developers
pinpointed that the most important problem they

Personality Type Salient Characteristics Suggested use in Pair
Programming

Extroverts •	 Get energy from the outside world, experi-
ences, and interactions.

•	 Talk easily.

•	 Suitable for interactions
with users and manage-
ment.

•	 May be good drivers.
Introverts •	 Get energy from within themselves, from

internal thoughts, feelings, and reflections.
•	 Prefer finished ideas, prefer to read and think

about something before start talking.
•	 Prefer to be silent.

•	 Might not be suitable for
pair programming.

•	 Must be handled with
care in meetings.

•	 May become navigators.
Sensors •	 Gather information linearly through senses.

•	 Observe what is happening around.
•	 Recognize the practical realities of a situation.
•	 Take things literally and sequentially.
•	 Concentrate on details.
•	 Prefer tangible results clearly described.

•	 Probably the most
capable programmers.

Intuitives •	 Gather information more abstractly
•	 See the big picture of a situation or problem.
•	 Focus on relationships and connections be-

tween facts.
•	 Good at seeing new possibilities and different

ways of doing things.

•	 Probably the most
capable system and ap-
plication analysts.

Thinkers •	 Make objective decisions.
•	 Are logical, critical, and orderly.
•	 Prefer to work with facts.
•	 Examine carefully cause and effect of a choice

or action.
•	 Can apply problem-solving abilities.

•	 Suitable for making pair
decisions.

•	 Suitable for problem-
solving situations.

Feelers •	 Make subjective decisions.
•	 Are driven by personal values.
•	 Likes to understand, appreciate, and support

others.
•	 Are more people-oriented.

•	 Are good pair and team-
builders.

•	 Are good in relations
with other pairs.

Judgers •	 Live in an orderly and planned way, with
detailed schedules.

•	 Prefer things decided and concluded.
•	 Prefer to avoid last-minute stresses.

•	 May be good navigators.
•	 Generally combines well

with a perceiver.

Perceivers •	 Live in a flexible, spontaneous way.
•	 Rely on experience.
•	 Leave open issues.
•	 Explore all possibilities.
•	 Find difficulty with decision-making.
•	 Often relies on last minute work.

•	 May be good drivers.
•	 Generally combines well

with a Judger.

Table 2. The salient characteristics of personality types with respect to pair programming

166

Improving Quality by Exploiting Human Dynamics in Agile Methods

are facing is the unpleasant relations with their
pair-mates. Besides, managers stated that such
problems can not be addressed easily because
most improvement programs focus on processes
or technology, not on people. However, in general,
literature and published empirical studies on pair
programming do not delve in issues concerning
developers’ personalities and temperaments and
how they should be effectively combined, so as to
match their potential roles and tasks. In another
recent case study (Katira et al., 2004), it was ob-
served that undergraduate students seem to work
better with partners of different personality type.
In order to obtain concrete evidence that supports
or rejects the hypothesis that the combination of
developers with different personalities and with

the same experience can minimize communica-
tion and collaboration gaps, we conducted a formal
controlled experiment with the participation of
84 undergraduate students. The objective of the
experiment was to compare pairs comprised of
mixed personalities with pairs of the same per-
sonalities, in terms of pair effectiveness (Sfetsos
et al., 2006b). Pair effectiveness (similar to team
effectiveness, Sundstrom, Meuse, & Futrell, 1990)
was captured through: pair performance—meas-
ured by communication, velocity, productivity,
and customer satisfaction (passed acceptance
tests), and pair viability—measured by devel-
opers’ satisfaction, knowledge acquisition, and
participation (communication satisfaction ratio,
nuisance ratio, and driver or navigator preference).

Table 3. The salient characteristics of temperament types with respect to pair programming

Temperament Type Salient Characteristics Suggested use in Pair Programming
Artisans (SP)
(Sensing-Perceiving)

•	 Prefer concrete communica-
tions.

•	 Prefer a cooperative path to goal
accomplishment.

•	 Possess a superior sense of tim-
ing.

•	 Prefer practical solutions.
•	 Are lateral thinkers.

•	 Good as start-up persons.
•	 Effective brainstormers.
•	 May be good in decision making.
•	 May exhibit adaptability and be in-

novative.

Guardians (SJ)
(Sensing-Judging)

•	 Prefer concrete communica-
tions.

•	 Prefer more a utilitarian ap-
proach.

•	 Are traditionalists and stabiliz-
ers.

•	 Prefer rules, schedules, regula-
tions, and hierarchy.

•	 Prefer that things remain as are.

•	 May be good in estimations (e.g.
from user stories).

•	 May be good in resource manage-
ment.

•	 May be good in planning game,
contracts.

•	 Are considered very responsible,
succeed in assigned tasks.

Idealists (NF)
(Intuitive-Feeling)

•	 Prefer more abstract communi-
cations.

•	 Prefer more a utilitarian ap-
proach.

•	 Prefer to guide others.
•	 Excellent communicators.

•	 Will contribute to pair spirit and
morale.

•	 Are good in personal relationships.
•	 Are good in interaction with users

and management.
•	 May be forward and global thinkers.

Rationalists (NT)
(Intuitive-Thinking)

•	 Prefer more abstract communi-
cations.

•	 Prefer a cooperative path to goal
accomplishment.

•	 Are natural-born scientists, theo-
rists, and innovators.

•	 Possess highly valuing logic and
reason.

•	 Prefer competence and excel-
lence.

•	 Are good in subtask identification.
(e.g., in splitting user stories)

•	 Are good in long-range plans (i.e.,
planning game)

•	 Are good in analysis and design.
•	 Are considered good in inventing

and configuring.

 167

Improving Quality by Exploiting Human Dynamics in Agile Methods

Considering the importance of communication in
pair performance, we included the communication
variable in the experiment variables system. The
results of the experiment have shown that there
is significant difference between the two groups,
indicating better performance and viability for
the pairs with mixed personalities.

Based on the findings of the three field stud-
ies, the results of the experiment and having the
theory that considers pairs as adaptive ecosys-
tems as framework, we propose an adaptive pair
formation/rotation process model (see Figure 2).
This model can help organizations and manag-
ers build high-performance pairs out of talented
developers. It describes three main phases: the
setup phase, the assessment phase, and the im-
provement phase. The setup phase includes the
identification, understanding, and interpretation
of the developer personalities—temperaments.
The assessment phase includes a gap analysis and
the construction or review of a set of guidelines
and policies for pair formation/rotations. The
improvement phase includes mini retrospectives

(communication-collaboration reviews) for pair
evaluation, and the establishment of the improved
pair rotation process. In detail, the set of actions,
which must be successively taken are:

1. Identify developer personalities and tem-
peraments using the KTS or the MBTI
tool, creating personality and temperament
inventories.

2. Understand and interpret the impact of
developer personalities and temperaments
on communication and collaboration us-
ing existing personality and temperament
inventories to find their strong and weak
points.

3. Assess existing situation analytically:

•	 Perform gap analysis. First start noticing
developer strengths, weaknesses, and oddi-
ties. Notice how some developers:
	Fit their roles and task.
	Exhibit a steady performance.

Figure 2. An adaptive pair formation/rotation process model

Setup phase Assessment phase Improvement phase

168

Improving Quality by Exploiting Human Dynamics in Agile Methods

	Take unnecessary risks, while others are
conservative.

	Construct a set of conventions and policies
that might work well for them, suiting
their strengths and weaknesses.

		Order pair formations/rotations for
pair programming projects, combining
strengths to minimize weaknesses, as-
signing the roles and tasks to developers
by their strong points of their personali-
ties.

4. Monitor developer and pair performance in
regular mini retrospectives (communication-
collaboration reviews), helping developers
learn about themselves and how they will
effectively communicate and collaborate.
Retrospectives for people reviews are used
in ASD (Adaptive Software Development
(Highsmith, 2000) and DSDM (Dynamic
Systems Development Method) (Stapleton,
1997).

5. Establish improved pair formation/rotation
process, communicate the results.

conclusIon

In the first part of this chapter, we analysed XP
from the P-CMM perspective and proposed an
adaptive P-CMM assessment and improvement
process model for improving workforce quality in
XP organizations, providing stepwise guidelines
for its implementation. An agile organization’s ma-
turity from the P-CMM perspective derives from
the repeatedly performed workforce practices, and
the extent to which these practices have been inte-
grated into the organizations’ repository. The more
mature an organization, the greater its capability
for attracting, developing, and retaining skilled
and competent employees it needs to execute its
business. Agile methods, in particular extreme
programming, through their repeatable practices
lead to an improved workforce environment with
learning, training, and mentoring opportunities,

improving workforce competencies. We believe
that organizations practicing XP should not have
problems in addressing most of the P-CMM level
2 and 3 KPAs. XP organizations, starting usually
from the managed level (level 2), have to make
relatively limited adjustments in their workforce
practices to manage other key process areas. Using
measures on the performance of competency-based
processes can mature an XP organization into level
4. The continuous improvement of competency-
based processes, using the results of measurements,
can mature an XP organization into level 5. We
described an adaptive people CMM assessment
process model for assessing XP organizations and
stepwise guidelines for its implementation.

In the second part of the chapter, we focused
on human factors in pair programming, the heart
of the XP practices’ implementation. Considering
pairs as adaptive ecosystems, we investigated how
developers with different personalities and tem-
peraments communicate, interact, and collaborate
to produce results. In particular, we established
the impact of developers’ natural preferences and
traits on the assigned roles, communication, deci-
sion-making, and knowledge management. Based
on the findings of three field studies, the results of
an experiment, and using as framework the theo-
retical background of agile methods, we propose
an adaptive pair formation/rotation process model,
which identifies, interprets, and effectively com-
bines developer variations. The proposed model
can help organizations and managers improve pair
effectiveness, by matching developers’ personal-
ity and temperament types to their potential roles
and tasks, effectively exploiting their differences
in pair formations and rotations.

references

Beck, K. (2000). Extreme programming ex-
plained: Embrace change. Reading, MA: Ad-
dison-Wesley.

 169

Improving Quality by Exploiting Human Dynamics in Agile Methods

Chrissis, M. B., Konrad, M., & Shrum, S. (2003).
CMMI: Guidelines for process integration and
product improvement. Boston: Addison-Wesley.

Cockburn, A. (2002). Agile software development.
Boston: Addison-Wesley.

Curtis, B., Hefley, W. E., & Miller, S. (1995, Sep-
tember). People capability maturity model (CMU/
SEI-95-MM-002 ADA300822). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon
University.

Curtis, B., Hefley, W. E., & Miller, S. (2001,
July). People capability maturity model Version
2.0, (CMU/SEI-2001-MM-01). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mel-
lon University.

Ferdinandi, P. (1998, September/October). Facili-
tating collaboration. IEEE Software, 92-98.

Gorla, N., & Lam, Y. W. (2004, June). Who should
work with whom? Building effective software
project teams. Communications of ACM, 47(6),
79-82.

Highsmith, J. (2000). Adaptive software devel-
opment: A collaborative approach to managing
complex systems. New York: Dorset House.

Highsmith, J. (2002). Agile software development
ecosystems. Boston: Addison Wesley.

Katira, N., Williams, L., Wiebe, E., Miller, C.,
Balik, S., & Gehringer, E. (2004). On understand-
ing compatibility of student pair programmers.
SIGCSE’04 (pp. 3-7).

Keirsey, D., & Bates, M. (1984). Please Under-
stand Me, Del Mar, California: Prometheus Book
Company.

Laplante, P., & Neil, C. (2006). Antipatterns.
Identification, refactoring, and management.
Boca Raton, FL: Auerbach Publications.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C.,
Stupperich, M., Kiefer, D., May, J., & Kähkönen,
T. (2004, December). Agile software develop-
ment in large organizations. Computer, IEEE,
37(12), 26-24.

Myers, I. (1975). Manual: The Myers-Briggs type
indicator. Palo Alto, CA: Consulting Psycholo-
gists Press.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber,
C. V. (1993). Capability maturity model for soft-
ware, Version 1.1. Software Engineering Institute:
Capability Maturity Modeling, 82.

Pfleeger, S. (2001). Software engineering: Theory
and practice (2nd ed.). NJ: Prentice-Hall, Inc.

Sfetsos, P., Angelis, L., & Stamelos, I. (2006a,
June). Investigating the extreme programming
system—An empirical study. Empirical Software
Engineering, 11(2), 269-301.

Sfetsos, P., Stamelos, I., Angelis, L., & Deligi-
annis, I. (2006b, June). Investigating the impact
of personality types on communication and col-
laboration—Viability in pair programming—An
empirical study. The 7th International Conference
on eXtreme Programming and Agile Processes in
Software Engineering (XP2006), Finland.

Sommerville, I. (2004). Software engineering (7th
ed.). Addison Wesley.

Stapleton, J. (1997). DSDM, dynamic systems
development method: The method in practice.
Harlow, UK: Addison-Wesley.

Sundstrom, E., De Meuse, K., & Futrell, D. (1990,
February). Work teams. American Psychologist,
45, 120-133.

Williams, L., & Kessler, R. (2002). Pair program-
ming illuminated. Boston: Addison-Wesley.

Williams, L., Kessler, R., Cunningham, W., &
Jefferies, R. (2000, July/August). Strengthening
the case for pair-programming. IEEE Software,
17, 19-25.

170

Improving Quality by Exploiting Human Dynamics in Agile Methods

endnotes

1 The people capability maturity model (P-
CMM) was developed by the Software En-
gineering Institute (SEI) at Carnegie Mellon
University (Curtis et al., 1995, 2001).

2 Roles that developers must undertake into
pairs, usually informally assigned (e.g.,
leader, mentor).

3 Roles defined by the individual’s technical
skills and knowledge (e.g., tester).

4 Myers-Briggs type indicator and MBTI are
registered trademarks of the Myers-Briggs
type indicator trust.

5 See http://keirsey.com/cgi-bin/keirsey/kcs.
cgi

 171

Chapter IX
Teaching Agile Software

Development Quality Assurance
Orit Hazzan

Technion – Israel Institute of Technology, Israel

Yael Dubinsky
Technion – Israel Institute of Technology, Israel

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

Quality assurance (QA) is an integral and essential
ingredient of any engineering process. Though
there is a consensus among software practitioners
about its importance, in traditional software de-
velopment environments conflicts may still arise
between software QA people and developers (Van
Vliet, 2000, p. 125).

Agile software development methods emerged
during the past decade as a response to the char-
acteristics problems of software development
processes. Since the agile methods introduced a
different perspective on QA, we will call the agile
approach toward quality issues agile quality—AQ,
and will focus, in this chapter, on the teaching of
AQ. By the term AQ, we refer to all the activities
(e.g., testing, refactoring, requirement gathering)

AbstrAct

This chapter presents a teaching framework for agile quality—that is, the way quality issues are perceived
in agile software development environments. The teaching framework consists of nine principles, the
actual implementation of which is varied and should be adjusted for different specific teaching environ-
ments. This chapter outlines the principles and addresses their contribution to learners’ understanding
of agile quality. In addition, we highlight some of the differences between agile software development
and plan-driven software development in general, and with respect to software quality in particular.
This chapter provides a framework to be used by software engineering instructors who wish to base
students learning on students’ experiences of the different aspects involved in software development
environments.

172

Teaching Agile Software Development Quality Assurance

that deal with quality as they are manifested and
applied in agile software development environ-
ments. It is important to emphasize that the term
AQ does not imply that quality changes. To the
contrary, the term AQ reflects the high standards
that agile software methods set with respect to
software quality.

Based on our extensive experience of teach-
ing agile software development methods both
in academia and in the software industry1, we
present a teaching framework for AQ. The teach-
ing framework consists of nine principles, the
actual implementation of which is varied and
should be adjusted for different specific teach-
ing environments (e.g., academia and industry to
different sizes of groups). This chapter outlines
the principles and addresses their contribution to
learners’ understanding of AQ.

In the next section, we highlight some of the
differences between agile software development
and plan-driven2 software development in general,
and with respect to software quality in particu-
lar. Then, we focus on the teaching of AQ. We
start by explaining why quality should be taught
and, based on this understanding, we present
the teaching framework for AQ, which suggests
an alternative approach for the teaching of AQ.
Finally, we conclude.

Agile vs. Plan-driven software
development

In this section, we highlight some of the main
differences between agile software development
and traditional, plan-driven software develop-
ment. Before we elaborate on these differences,
we present our perspective within which we wish
to analyze these differences.

Traditional software development processes
mimic traditional industries by employing some
kind of production chain. However, the failure
of software projects teaches us that such models
do not always work well for software develop-
ment processes. In order to cope with problems

that result from such practices, the notion of a
production chain is eliminated in agile software
development environments and is replaced by
a more network-oriented development process
(Beck, 2000). In practice, this means that in agile
teams, the task at hand is not divided and allo-
cated to several different teams according to their
functional description (for example, designers,
developers, and testers), each of which executes
its part of the task. Rather, all software develop-
ment activities are intertwined and there is no
passing on of responsibility to the next stage in
the production chain. Thus, all team members are
equally responsible for the software quality. We
suggest that this different concept of the develop-
ment process results, among other factors, from
the fact that software is an intangible product,
and therefore it requires a different development
process, as well as a different approach toward
the concept of software quality, than do tangible
products.

Agile development Methods vs.
Plan-driven development Methods

During the 1990s, the agile approach toward soft-
ware development started emerging in response
to the typical problems of the software industry.
The approach is composed of several methods and
it formalizes software development frameworks
that aim to systematically overcome characteristic
problems of software projects (Highsmith, 2002).
Generally speaking, the agile approach reflects the
notion that software development environments
should support communication and information
sharing, in addition to heavy testing, short releases,
customer satisfaction, and sustainable work-pace
for all individuals involved in the process. Table 1
presents the manifesto for agile software develop-
ment (http://agilemanifesto.org/).

Several differences exist between agile
software development methods and plan-driven

 173

Teaching Agile Software Development Quality Assurance

methods. Table 2 summarizes some of these dif-
ferences.

AQ vs. Plan-driven QA

In plan-driven software development environ-
ments, the main concept related to software
quality is quality assurance, which, according
to Sommerville (2001), is “The establishment of
a framework of organizational procedures and
standards which lead to high-quality software”
(p. 537). Though this definition inspires an orga-
nizational roof for quality assurance processes,
in reality, in many software organizations quality
assurance is associated with a specific stage of
a typical software development process and is
usually carried out by the QA people who are

not the developers of the code whose quality is
being examined.

To illustrate the agile software development ap-
proach toward quality, we quote Cockburn (2001),
who describes quality as a team characteristic:

Quality may refer to the activities or the work
products. In XP, the quality of the team’s program
is evaluated by examining the source code work
product: “All checked-in code must pass unit tests
at 100% at all times.” The XP team members also
evaluate the quality of their activities: Do they
hold a stand-up meeting every day? How often
do the programmers shift programming partners?
How available are the customers for questions? In
some cases, quality is given a numerical value, in
other cases, a fuzzy value (“I wasn’t happy with
the team moral on the last iteration”) (p. 118).

Table 1. Manifesto for agile software development

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:
	Individuals and interactions over processes and tools.
	Working software over comprehensive documentation.
	Customer collaboration over contract negotiation.
	Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the
left more.

Table 2. Several differences between agile and plan-driven software development methods

Agile Software Development
Methods

Plan-Driven Software Develop-
ment Methods

Process orien-
tation

The development process is
formulated in terms of activities
that all team members apply on a
daily basis.

The development process is formu-
lated in terms of stages, in which
each team member has one defined
role in the process.

Formulation
of require-
ments

Requirements are formulated in
a gradual process during which
customers and developers im-
prove their understanding of the
developed product. This process
enables natural evolution.

Requirements are formulated in
one of the first stages of the proj-
ect. Therefore, the cost of imple-
menting a change in requirements
increases the later in the process it
is introduced.

Customer
involvement

Customers are available for dis-
cussion, clarifications, etc., in all
stages of the software develop-
ment process.

Primary contact with the custom-
ers occurs at the beginning of the
development process.

174

Teaching Agile Software Development Quality Assurance

As can be seen, within the framework of
agile software development, quality refers to the
entire team during the entire process of software
development and it measures the code as well
as the actual activities performed during the
development process, both in quantitative and
in qualitative terms. Accordingly, the term qual-
ity assurance does not appear in agile software
development as a specific stage.

In Table 3, we summarize some of the no-
ticeable differences between the attitude toward
quality of agile software development methods
and of plan-driven methods, as it is manifested
in many software organizations.

 We note that these previous perspectives are
clearly also reflected in the cultures of the two
approaches toward software development. While
in the context of plan-driven development, confer-
ences are held that are dedicated to QA issues,
conferences that target the community of agile
software developers subsume all aspects of the de-
velopment process, including AQ. This difference
might, of course, be attributed to the maturity of
the plan-driven software development approach;
still, the observation is interesting by itself.

tEAcHInG AGILE soFtWArE
dEVELoPMEnt QuALItY

Why teach QA?

Naturally, software engineers should be educated
for quality. The importance of this belief is re-
flected, for example, in the Software Engineer-
ing volume3 of the Computing Curricula 2001,
in which software quality is one of the software
engineering education knowledge areas (p. 20),
and is described as follows:

Software quality is a pervasive concept that af-
fects, and is affected by all aspects of software
development, support, revision, and maintenance.
It encompasses the quality of work products de-
veloped and/or modified (both intermediate and
deliverable work products) and the quality of the
work processes used to develop and/or modify the
work products. Quality work product attributes
include functionality, usability, reliability, safety,
security, maintainability, portability, efficiency,
performance, and availability. (p. 31)

Table 3. Some differences between AQ and plan-driven QA

Agile Quality (AQ) Plan-Driven QA
Who is responsible for
software quality?

All development team
members

The QA team

When are quality-related
topics addressed?

During the entire software
development process; qual-
ity is one of the primary
concerns of the develop-
ment process

Mainly at the QA/testing
stage

Status of quality-related
activities relatively to
other software development
activities

Same as other activities Low (Cohen, Birkin, Gar-
field, & Webb, 2004)

Work style Collaboration between all
role holders

Developers and QA
people might have con-
flicts (Cohen et al., 2004)

 175

Teaching Agile Software Development Quality Assurance

Furthermore, the software engineering code of
ethics and professional practice4, formulated by an
IEEE-CS/ACM Joint Task Force, addresses qual-
ity issues and outlines how software developers
should adhere to ethical behavior. Table 4 presents
the eight principles of the Code. Note especially
Principle 3, which focuses on quality.

Based on the assumption that the concept of
quality should be taught as part of software engi-
neering education, the question that we should ask
at this stage is, How should quality be taught? Later
in this section, we present our perspective on this
matter. We suggest that the nature of the software
development methods that inspire a curriculum
is usually reflected in the curriculum itself. For
example, in traditional software engineering and
computer science programs, QA is taught as a
separate course, similar to the way in which it is
applied in reality in plan-driven software devel-
opment processes. Based on our teaching experi-
ence of agile software development methods, we
propose that when teaching the concept of quality
is integrated into a software engineering program
that is inspired by agile software development,
quality-related issues should and are integrated
and intertwined in all topics. This idea, as well as

others, is illustrated in the next section in which
we present the teaching framework we have de-
veloped for teaching agile software development
and illustrate how AQ integrated naturally into
this teaching framework.

teaching Framework for AQ

This section is the heart of our chapter. In what
follows, we introduce our teaching framework,
which is composed of nine principles, presented
in Table 5 as pedagogical guidelines. Each of
the principles is illustrated with respect to the
teaching of AQ.

As can be seen, all principles put the learners
at the center of the discussion while referring to
two main aspects—cognitive and social. Spe-
cifically, Principles 1, 2, 3, and 7 emphasize the
learning process from a cognitive perspective
while Principles 4, 5, 6, 8, and 9 highlight the
learning process from a social perspective. We
note that this is not a dichotomy, but rather, each
principle addresses both aspects to some degree.
Accordingly, in what follows, the principles are
presented in such an order that enables a gradual

Table 4. Principles of the software engineering code of ethics and professional practice

1. Public: Software engineers shall act consistently with the public interest.
2. Client and Employer: Software engineers shall act in a manner that is in the best

interests of their client and employer, consistent with the public interest.
3. Product: Software engineers shall ensure that their products and related modifi-

cations meet the highest professional standards possible.
4. Judgment: Software engineers shall maintain integrity and independence in their

professional judgment.
5. Management: Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of software development and
maintenance.

6. Profession: Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. Colleagues: Software engineers shall be fair to and supportive of their col-
leagues.

8. Self: Software engineers shall participate in lifelong learning regarding the prac-
tice of their profession and shall promote an ethical approach to the practice of the
profession.

176

Teaching Agile Software Development Quality Assurance

mental construction of the learning environment
that this teaching framework inspires.

Specifically, for each principle we first de-
scribe how it is expressed when agile software
development concepts are taught, and then how
it is applied in the teaching of AQ.

This presentation style is consistent with our
perspective of the teaching of AQ. As mentioned
previously, agile software development inspires
a development environment in which all activi-
ties involved in software development processes
are intertwined, and the notion of a production
chain is eliminated. Accordingly, when we teach
AQ we do not separate it from the teaching of the
software development process (in our case, agile
software development) but, rather, AQ is taught as
part of the software development process in the
same spirit in which the entire agile development
process is taught.

This section presents, in fact, the application of
our teaching framework for software development
methods (presented in Dubinsky & Hazzan, 2005
and in Hazzan & Dubinsky, 2006) for the case
of AQ. In Dubinsky and Hazzan (2005), we also
outline the evolutionary emergence of the teach-
ing framework and describe its implementation
in a specific course (including detailed schedule
and activities).

Principle 1: Inspire the Agile
Concept Nature

This is a meta-principle that integrates several of
the principles described later on in this section and,

at the same time, is supported by them. It suggests
that complex concepts in software development,
such as quality or a software development method,
should not be lectured about, but rather, their spirit
should be inspired. In other words, the teaching
of a complex (agile) concept should not be based
solely on lecturers but rather, the learning of the
main ideas of such concepts is more valuable if a
“learning by doing” approach is applied and the
(agile) concept is applied, performed, and used
by the learners. Such an experience improves the
learners experience and skills in the said agile
concept, and at the same time, provides the teacher
with opportunities to elicit reflection processes.

The application of this principle is expressed
by active learning (Silberman, 1996) on which
the next principle elaborates, and should take
place in an environment that enables the actual
performance of the agile concept.

In the case of teaching AQ, this principle im-
plies that the learning occurs in an environment
in which it would be natural to illustrate and feel
the interrelation between AQ and the other activi-
ties that take place in agile software development
environments. For example, the extreme program-
ming practice of whole team, which states that “a
variety of people work together in interlinking
ways to make a project more effective” (Beck &
Andres, 2004, p. 73), should be applied in order
to inspire agile software development. In such
software development environments, when the
teacher asks the learners to expose and reflect on
the relationships between AQ and the other activi-

Table 5. Teaching framework
• Principle 1: Inspire the agile concept nature.
• Principle 2: Let the learners experience the agile concept as much as possible.
• Principle 3: Elicit reflection on experience.
• Principle 4: Elicit communication.
• Principle 5: Encourage diverse viewpoints.
• Principle 6: Assign roles to team members.
• Principle 7: Be aware of cognitive aspects.
• Principle 8: Listen to participants’ feelings toward the agile concept.
• Principle 9: Emphasize the agile concept in the context of the software world.

 177

Teaching Agile Software Development Quality Assurance

ties, connections between AQ and other activities
performed in this environment become clear.

Principle 2: Let the Learners
Experience the Agile Concept as Much
as Possible

This principle is derived directly from the previous
one. In fact, these two principles stem from the
importance attributed to the learners’ experimen-
tal basis, which is essential in learning processes
of complex concepts. This assertion stands in line
with the constructivist perspective of learning
(Davis, Maher, & Noddings, 1990; Confrey, 1995;
Kilpatrick, 1987), the origins of which are rooted
in Jean Piaget’s studies (Piaget, 1977).

Constructivism is a cognitive theory that
examines learning processes that lead to mental
constructions of knowledge based upon learners’
knowledge and experience. According to this
approach, learners construct new knowledge by
rearranging and refining their existing knowledge
(Davis et al., 1990; Smith, diSessa, & Roschelle,
1993). More specifically, the constructivist ap-
proach suggests that new knowledge is constructed
gradually, based on the learner’s existing mental
structures and in accordance with feedback that
the learner receives both from other people with
whom he or she interacts and from the different
artifacts that constitute the learning environments.
In this process, mental structures are developed
in steps, each step elaborating on the preceding
ones. Naturally, there may also be regressions
and blind alleys.

We suggest that quality in general, and AQ
in particular, are complex concepts. Therefore,
their gradual learning process should be based
on the learners’ experience. One way to support
and enhance such a gradual mental learning
process is to adopt an active-learning teaching
approach according to which learners are active
to the extent that enables a reflective process
(which is addressed by another principle later on
in this chapter).

We do not claim that lecturing should be ab-
solutely avoided in the process of teaching AQ; in
fact, some aspects of AQ can and should be taught
by means of lectures. Our experience, however,
teaches us that the more learners experience AQ
and reflect upon it, the more they improve their
understanding of the essence of the topic, as well
as their professional skills.

To illustrate how this principle is applied in
the case of AQ, we focus on acceptance tests.
Here, active learning is expressed in several
ways. First, learners are active in the definition
of the software requirements. Second, learners
define the acceptance tests and verify that they
meet the requirements. Third, they develop the
acceptance tests. And fourth, they are guided to
reflect both on each individual step and on the
entire process. Such a complete process provides
learners with a comprehensive message that both
highlights each element of the AQ process and
at the same time connects each of its elements
to the others.

Principle 3: Elicit Reflection on
Experience

The importance of introducing reflective pro-
cesses into software development processes has
been already discussed (Hazzan, 2002; Hazzan
& Tomayko, 2003). This approach is based on
Schön’s Reflective Practitioner perspective
(Schön, 1983, 1987). Indeed, it is well known in
the software industry that a reflective person,
who learns both from the successes and failures
of previous software projects, is more likely to
improve his or her own performance in the field
(Kerth, 2001).

According to this principle, learners should be
encouraged to reflect on their learning processes
as well as on different situations in the software
development process in which they participated.
We note that reflection processes should not be
limited to technical issues, but rather should
also address feelings, work habits, and social

178

Teaching Agile Software Development Quality Assurance

interactions related to the software development
processes.

In order to elicit learners’ reflective processes,
learners should be offered verbal and written
means for self-expression. The ability to express
one’s reflections and impressions gives learners
the feeling that their thoughts and feelings are
of interest to the instructors. Naturally, such
reflective processes might also elicit criticism
and complaints. In this spirit, learners should be
encouraged to express not only positive ideas,
but also negative feelings and suggestions for
improvement.

The teaching of AQ is a good opportunity to
illustrate this principle since it allows us to address
the different facets of AQ. First, we can address
the technical aspect of AQ, asking learners to
reflect on the actual processes of applying AQ.
Specifically, learners can be asked to describe the
process they went through, to indicate actions that
improved their progress and actions that blocked
progress and should be improved, and to suggest
how the AQ process itself could be improved.
Second, affective aspects can be referred to dur-
ing the reflection process. For example, learners
can be asked to describe their feelings during the
AQ process and specifically indicate actions that
encouraged them, as well as actions that discour-
aged them, in their pursuit of the AQ process.
Finally, social issues can be addressed in such
reflection processes. For example, learners can
be asked to indicate what teamwork actions sup-
ported the AQ process and which interfered with
that process and to suggest how such interactions
should be changed so as to support the AQ process.
Furthermore, experience learners can be asked to
reflect both during the AQ process and after it is
completed—processes that Schön calls in-action
and on-action reflection, respectively.

Principle 4: Elicit Communication

Communication is a central theme in software de-
velopment processes. Indeed, the success or failure

of software projects is sometimes attributed to
communication issues. Accordingly, in all learn-
ing situations we aim at fostering learner-learner,
as well as learner-teacher communication.

When communication is one of the main in-
gredients of the learning environment, the idea
of knowledge sharing becomes natural. Then, in
turn, knowledge sharing reflects back on com-
munication. This principle can be applied very
naturally in the context of AQ since it is a multi-
faceted concept. During the AQ learning process,
learners can be asked to identify its different
facets (such as, the developer perspective, the
customer perspective, its fitness to the organiza-
tional culture) and to allocate the learning of its
facets to different team members—first learning
them, and then subsequently teaching them to the
other team members in the stage that follows. In
the spirit of agile software development, it is ap-
propriate to assign the different aspects that are
to be learned to pairs of learners (rather than to
individuals) in order to foster learning processes.
When the team members present what they have
learned to their teammates, not only do they share
their knowledge, but further communication is
enhanced.

Another way to foster communication is to
use metaphors or “concepts from other worlds.”
Metaphors are used naturally in our daily life, as
well as in educational environments. Generally
speaking, metaphors are used in order to under-
stand and experience one specific thing using the
terms of another thing (Lakoff & Johnson, 1980;
Lawler, 1999). Communication, which is based
on the metaphor’s concept-world, refers not only
to instances in which both concept-worlds cor-
respond to one another, but also to cases in which
they do not. If both concept-worlds are identical,
the metaphor is not a metaphor of that thing, but
rather the thing itself. Specifically, metaphors can
be useful even without specifically mentioning the
concept of metaphor. For example, the facilitator
may say: “Can you suggest another concept-world
that may help us understand this unclear issue.”

 179

Teaching Agile Software Development Quality Assurance

Our experience indicates that learners have no
problem suggesting a varied collection of con-
cept-worlds, each highlighting a different aspect
of the said problem and together supporting the
comprehension of the topic under discussion.

Principle 5: Encourage Diverse
Viewpoints

This perspective is based on management theo-
ries that assert the added value of diversity (cf.
the American Institute for Managing Diversity,
http://aimd.org). In the context of agile software
development, it is appropriate to start by quoting
Beck et al. (2004):

Teams need to bring together a variety of skills,
attitudes, and perspectives to see problems and
pitfalls, to think of multiple ways to solve prob-
lems, and to implement the solutions. Teams need
diversity. (p. 29)

We argue that this perspective is correct also
with respect to AQ, as explained next.

Naturally, the more diverse a team is, the more
diverse the perspectives elicited are. These diverse
viewpoints may improve software development
processes in general, and the execution of AQ in
particular. Specifically, in this context diversity
has several benefits. First, learners are exposed
to different perspectives that they can use when
communicating with people from different sectors
and of different opinions. Second, the developed
software product itself may be improved because
when different perspectives are expressed with
respect to a specific topic, the chances that subtle
issues will emerge are higher. Consequently, ad-
ditional factors are considered when decisions are
made. Third, the creation process is questioned
more when diverse opinions are expressed and,
once again, this may result in a more argument-
based process based on which specific decisions
are made. Finally, we believe that diversity reduces
resistance to new ideas and creates an atmosphere

of openness toward alternative opinions. In the
case of learning AQ, which inspires different work
habits than the ones most learners are familiar
with, such openness to a different perspective is
especially important.

Principle 6: Assign Roles to Team
Members

This principle suggests that each team member
should have an individual role in addition to the
personal development tasks for which he or she
is responsible. Based on our agile teaching and
research practice, we have identified 12 roles, each
of which is related to at least one aspect of software
development, several of which are related to AQ
(Dubinsky & Hazzan, 2004a). See Table 6.

The role assignment serves as a means for
distributing the responsibility for the project
progress and quality among all team members.
The rationale for this practice stems from the fact
that one person (or a small number of practitioners)
can not control and handle the great complexity
involved in software development projects. When
accountability is shared by all team members, each
aspect of the entire process is treated by single
team member, yet, at the same time, each team
member feels personally responsibility for every
such aspect. Indeed, both the software project
and all team members benefit from this kind of
organization.

More specifically, our research shows that
the accumulative impact of these roles increases
the software quality both from the customer’s
perspective and from the development perspec-
tive, for several reasons. First, the roles address
different aspects of the development process
(management, customer, code) and together en-
compass all aspects of a software development
process. Second, such a role assignment increases
the team members’ commitment to the project. In
order to carry out one’s role successfully, each
team member must gain a global view of the de-
veloped software, in addition to the execution of

180

Teaching Agile Software Development Quality Assurance

his or her personal development tasks. This need,
in turn, increases one’s responsibility toward the
development process. Third, the need to perform
one’s role successfully increases the team mem-
bers’ involvement in all parts of the developed
software and leads him or her to become familiar
with all software parts. If team members have
only a limited view and are aware only of their
own personal development tasks, they will not
be able to perform their personal roles properly.
Alternatively, the proposed role scheme supports
knowledge sharing, participants’ involvement and
enhanced performances.

The software quality and the quality of the de-
velopment process are reflected by three measures
that serve as AQ teaching-metrics. The first is the
role time measure (RTM). The RTM measures
the development-hours/role-hours ratio, or in other

words, the time invested in development tasks
relative to the time invested in role activities.
The second measure is the role communication
measure (RCM), which measures the level of
communication in the team at each development
stage. The third measure is the role management
measure (RMM), which measures the level of the
project management. Data illustration of these
metrics, taken from a specific academic project,
can be found in Dubinsky and Hazzan (2004b).

Principle 7: Be Aware of Cognitive
Aspects

This principle addresses two issues. The first deals
with the idea of inspiring a process of on-going
and gradual improvement. The second addresses

Table 6. Roles in agile teams

Role Description
Leading Group
Coach Coordinates and solves group problems, checks the Web forum and

responds on a daily basis, leads development sessions.
Tracker Measures the group progress according to test level and task estima-

tions, manages studio boards, manages the group diary.
Customer Group
End user Performs on-going evaluation of the product, collects and processes

feedback received from real end-users.
Customer Tells customer stories, makes decisions pertaining to each iteration,

provides feedback, defines acceptance tests.
Acceptance
tester

Works with the customer to define and develop acceptance tests, learns
and instructs test-driven development.

Maintenance Group
Presenter Plans, organizes, and presents iteration presentations, demos, and time

schedule allocations.
Documenter Plans, organizes, and presents project documentation: process docu-

mentation, user’s guide, and installation instructions.
Installer Plans and develops an automated installation kit, maintains studio

infrastructure.
Code Group
Designer Maintains current design, works to simplify design, searches for refac-

toring tasks and ensures their proper execution.
Unit tester Learns about unit testing, establishes an automated test suite, guides

and supports others in developing unit tests.
Continuous
integrator

Establishes an integration environment, publishes rules pertaining to
the addition of new code using the test suite.

Code
reviewer

Maintains source control, establishes and refines coding standards,
guides and manages the team’s pair programming.

 181

Teaching Agile Software Development Quality Assurance

the fact that software development should be ad-
dressed by the individuals involved on different
levels of abstraction.

It is clear that software development is a
gradual process conducted in stages, each one
improving upon those preceding it. In many cases,
this improvement takes place in parallel to an
improvement in the developers understanding of
the developed application. Indeed, this principle is
closely derived from the constructivist approach
presented in the previous discussion of Principle
2. Accordingly, the learning environment should
specifically inspire that feeling of gradual learning
and elicit reflection processes when appropriate
(cf. Principle 3).

We briefly present two illustrative scenarios
that describe how this principle can be applied in
practice. When learners try to achieve a consen-
sus with respect to a topic of which their current
knowledge is insufficient, the instructor/facilitator
should guide them to postpone their final deci-
sion until a later stage. Sometimes, the instruc-
tor should guide the team to make a temporary
decision based on their current knowledge, and
explicitly state that in the future they will be
able to update, refine, and even change the deci-
sion just made. In other cases when learners are
deadlocked the moderator/instructor can stop
the discussion, reflect on what has transpired,
and suggest to move on, explaining that it might
make more sense to readdress the issue currently
blocking the development progress at a later stage
when the learners’ background and knowledge
can solve the said problem.

As mentioned before, this principle is also re-
lated to thinking on different levels of abstraction.
In a previous paper (Hazzan & Dubinsky, 2003),
we suggested that during the process of software
development, developers are required to think on
different abstraction levels and to shift between
abstraction levels, and explain how several agile
practices (such as, refactoring and planning game)
support this shift between abstraction level. In
other words, developers must shift from a global

view of the system (high level of abstraction) to
a local, detailed view of the system (low level of
abstraction), and vise versa. For example, when
trying to understand customers’ requirements
during the first stage of development, develop-
ers should have a global view of the applica-
tion (high level of abstraction). When coding
a specific class, a local perspective (on a lower
abstraction level) should be adopted. Obviously,
there are many intermediate abstraction levels
in between these two levels that programmers
should consider during the process of software
development. However, knowing how and when
to move between different levels of abstraction
does not always come naturally, and requires some
degree of awareness. For example, a developer may
remain at an inappropriate level of abstraction for
too long a time, while the problem he or she faces
could be solved immediately if the problem were
viewed on a different (higher or lower) level of
abstraction. The required shift to that different
abstraction level might not be made naturally,
unless one is aware that this may be a possible
step toward a solution.

This principle suggests that instructors or
workshop facilitators who teach agile AQ should
be aware of the abstraction level on which each
stage of each activity is performed. Based on this
awareness, they then should decide whether to
remain on this abstraction level, or, alternatively,
whether there is a need to guide the participants to
think in terms of a different level of abstraction.
For example, when learners are engaged in design
activities and tend to move to details related to
the code level, it is important to guide them to
stay at the appropriate (higher) level of abstrac-
tion. It is further suggested that the instructor
or facilitator explicitly highlight the movement
between abstraction levels and discuss with the
learners the advantages that can be gained from
such moves.

We note that the role assignment mentioned in
the discussion of Principle 6 can also be viewed
as a means to encourage learners to look, think

182

Teaching Agile Software Development Quality Assurance

and examine the development process from
different abstraction levels. More specifically,
if a team member wishes to perform his or her
individual role successfully, that is, to lead the
project in the direction that the role specifies, he
or she must gain a more global (abstract) view of
the developed application.

Principle 8: Listen to Participants’
Feelings Toward the Agile Concept

The adoption of AQ requires a conceptual change
with respect to what a software development
process is. In practice, when learners express
emotional statements against some aspect of AQ,
we propose to take advantage of this opportunity
and encourage participants to describe the subject
of the said statement as it is manifested in their
current software development environment. As
it turns out, in many cases these descriptions
elicit problems in the currently used approach.
Then, we explain how AQ attempts to overcome
the problematic issues just raised. For example,
when a statement is made against the test-driven
development approach, it is a good opportunity to
ask the person making this statement to describe
the testing process that he or she is currently us-
ing. In some cases, this in itself is sufficient: The
question highlights the test-driven development
approach toward the discussed issue, and conse-
quently, in many cases, the facial expression of
the person expressing the objection immediately
changes.

In all teaching situations, we propose to try
sympathizing with and legitimizing learners’
feelings, and being patient until learners start
becoming aware of the benefits that can be gained
from the new approach. In many cases, learners’
objections disappeared in part after a short while.
One plausible explanation is that they begin to
realize that the new approach might actually sup-

port their work and improve the quality of their
developed products.

Principle 9: Emphasize the Agile
Concept in the Context of the Software
World

This principle closes the circle that opened with the
first principle—Inspire the nature of the learned
concept, in our case—AQ. We believe that part
of this inspiration is related to the connections
made between the concept taught and the world of
software engineering. Since the world of software
engineering has witnessed relatively many cases
in which new terms emerged and shortly after
turned out to be no more than buzzwords, when
teaching a new concept that requires developers
to adopt a different state of mind, it is preferable
to connect the new idea to the world of software
development, and in our case, to connect AQ to
other agile ideas. This can be done, for example,
by presenting the learners with specific problems
faced by the software industry (for example,
the high rate of software projects that do not
fit customer requirements), illustrating how the
taught idea may help overcome them. Learners
will then, hopefully, feel that, on the one hand,
they are being introduced to a new idea that is
not detached from the software industry world
and is not just a passing fashion, and on the other
hand, that the new approach toward quality is-
sues emerged as a timely answer to the needs of
the software industry and that it will be useful to
them in the future.

In the case of teaching AQ, the need for AQ
may be first explained and some problems related
to traditional QA processes may be outlined.
Such a broad perspective enables learners to
understand the place of the agile approach in the
software industry in general, and in particular, to
observe that AQ is a topic that is still undergoing
development.

 183

Teaching Agile Software Development Quality Assurance

suMMArY

The set of principles presented in this chapter
aims to establish a teaching framework within
which we teach agile software development in
general, and AQ in particular. A closer look at
the teaching framework reveals that, in fact, its
nature is similar to that of agile software develop-
ment environments. Specifically, as agile software
development inspires the notion of a single com-
prehensive framework in which all activities are
performed by all team members in short cycles,
with the different activities mutually contribut-
ing to one another, the framework described in
this chapter also inspires an integrative teaching
framework in which all principles should be ad-
hered to at the same time, with different focuses
as appropriate. Furthermore, as the assimilation
of agile software development takes place in
stages, the adoption of this teaching framework
should also be carried out gradually, according
to the culture of the environments into which the
teaching framework is assimilated.

AcknoWLEdGMEnts

Our thanks are extended to the Technion V.P.R.
Fund—B. and the G. Greenberg Research Fund
(Ottawa) for their support of this research.

rEFErEncEs

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Beck, K., & Andres, C. (2004). Extreme pro-
gramming explained: Embrace change (2nd ed.).
Boston: Addison-Wesley.

Boehm, B., & Turner, R. (2004). Balancing
agility and discipline. Reading, MA: Pearson
Education Inc.

Cockburn, A. (2001). Agile software development.
Boston: Addison-Wesley.

Cohen, C. F., Birkin, S. J., Garfield, M. J., & Webb,
H. W. (2004). Managing conflict in software test-
ing, Communications of the ACM, 47(1), 76-81.

Confrey J. (1995). A theory of intellectual de-
velopment. For the Learning of Mathematics,
15(2), 36-45.

Davis, R. B., Maher, C. A., & Noddings, N. (1990).
Constructivist views on the teaching and learning
of mathematics. Journal for Research in Math-
ematics Education, Monograph Number 4, The
National Council of Teachers of Mathematics.

Dubinsky, Y., & Hazzan, O. (2004a). Roles in agile
software development teams. The 5th International
Conference on Extreme Programming and Agile
Processes in Software Engineering (pp. 157-166).
Garmisch-Partenkirchen, Germany.

Dubinsky, Y., & Hazzan, O. (2004b). Using a
roles scheme to derive software project metrics.
Quantitative Techniques for Software Agile Pro-
cesses Workshop, Proceedings (and selected for
the Post-Proceedings) of SIGSOFT 2004, Newport
Beach, CA.

Dubinsky, Y., & Hazzan, O. (2005). A framework
for teaching software development methods. Com-
puter Science Education, 15(4), 275-296.

Fowler, M., & Beck, K. (2002). Planning extreme
programming. Boston.

Hazzan, O. (2002). The reflective practitioner
perspective in software engineering education.
The Journal of Systems and Software, 63(3),
161-171.

Hazzan, O., & Dubinsky, Y. (2003). Bridging
cognitive and social chasms in software develop-
ment using extreme programming. Proceedings
of the 4th International Conference on eXtreme
Programming and Agile Processes in Software
Engineering (pp. 47-53). Genova, Italy.

184

Teaching Agile Software Development Quality Assurance

Hazzan, O., & Dubinsky, Y. (2006). Teaching
framework for software development methods.
Poster presented at the ICSE Educator’s Track.
Proceedings of ICSE (International Conference
of Software Engineering) (pp. 703-706), Shang-
hai, China.

Hazzan, O., & Tomayko, J. (2003). The reflective
practitioner perspective in eXtreme programming.
Proceedings of the XP Agile Universe 2003 (pp.
51-61). New Orleans, LA.

Highsmith, J. (2002). Agile software developments
ecosystems. Boston: Addison-Wesley.

Kerth, N. (2001). Project retrospective. New York:
Dorset House Publishing.

Kilpatrick, J. (1987). What constructivism might
be in mathematics education. In J. C. Bergeron, N.
Herscovics, & C. Kieran (Eds.), Proceedings of the
11th International Conference for the Psychology
of Mathematics Education (PME11) (Vol. I, pp.
3-27). Montréal.

Lakoff, G., & Johnson, M. (1980). Metaphors we
live by. The University of Chicago Press.

Lawler, J. M. (1999). Metaphors we compute by.
In D.J. Hickey (Ed.), Figures of thought: For col-
lege writers. Mountain View, California: Mayfield
Publishing.

Piaget, J. (1977). Problems of equilibration. In
M. H. Appel, & L. S. Goldberg (Eds.), Topics in
cognitive development, volume 1: Equilibration:
Theory, research, and application (pp. 3-13). New
York: Plenum Press.

Schön, D. A. (1983). The reflective practitioner.
New York: BasicBooks.

Schön, D. A. (1987). Educating the reflective
practitioner: Toward a new design for teaching
and learning in the profession. San Francisco:
Jossey-Bass.

Silberman, M. (1996). Active learning: 101 strate-
gies to teach any subject. Boston: Pearson Higher
Education.

Sommerville, I. (2001). Software engineering (6th
ed.). Reading, MA: Addison-Wesley.

Smith, J. P., diSessa, A. A., & Roschelle, J. (1993).
Misconceptions reconceived: A constructivist
analysis of knowledge in transition. The Journal
of the Learning Sciences, 3(2), 115-163.

Van Vliet, H. (2000). Software engineering:
Principles and practice. New York: John Wiley
& Sons.

EndnotEs

1 For further information about our work,
please visit our Web site Agile Software
Development Methods and Extreme
Programming (http://edu.technion.ac.il/
Courses/cs_methods/eXtremeProgram-
ming/XP_Technion.htm).

2 The term “plan-driven” was introduced by
Boehm et al. (2004), who divide the software
development methods prevalent today into
“agile” and “plan-driven.”

3 This volume is part of the Joint Task Force
on Computing Curricula 2001 carried out
by the Computer Society of the Institute for
Electrical and Electronic Engineers (IEEE-
CS) and the Association for Computing
Machinery (ACM): http://sites.computer.
org/ccse/SE2004Volume.pdf

4 ACM Code of Ethics and Professional Con-
duct: http://www.acm.org/constitution/code.
html

 185

Teaching Agile Software Development Quality Assurance

Section IV
Agile Methods and Quality:

Field Experience

186

Chapter X
Agile Software Development

Quality Assurance:
Agile Project Management,

Quality Metrics, and
Methodologies

James F. Kile
IBM Corporation, USA

Maheshwar R. Inampudi
IBM Corporation, USA

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

AbstrAct	

Of great interest to software development professionals is whether the adaptive methods found in agile
methodologies can be successfully implemented in a highly disciplined environment and still provide the
benefits accorded to fully agile projects. As a general rule, agile software development methodologies
have typically been applied to non-critical projects using relatively small project teams where there are
vague requirements, a high degree of anticipated change, and no significant availability or performance
requirements (Boehm & Turner, 2004). Using agile methods in their pure form for projects requiring
either high availability, high performance, or both is considered too risky by many practitioners (Boehm
et al., 2004; Paulk, 2001). When one investigates the various agile practices, however, one gets the im-
pression that each may still have value when separated from the whole. This chapter discusses how one
team was able to successfully drive software development quality improvements and reduce overall cycle
time through the introduction of several individual agile development techniques. Through the use of a
common-sense approach to software development, it is shown that the incorporation of individual agile
techniques does not have to entail additional risk for projects having higher availability, performance,
and quality requirements.

 187

Agile Software Development Quality Assurance

IntroductIon

Traditional software development approaches,
perhaps best represented by the capability ma-
turity model for software (SW-CMM) (Paulk,
Curtis, Chrissis, & Weber, 1993) and its successor
the capability maturity model for software inte-
gration (CMMI®) (Chrissis, Konrad, & Shrum,
2003), focus on a disciplined approach to software
development that is still widely used by organiza-
tions as a foundation for project success. While
the strength of traditional development methods
is their ability to instill process repeatability and
standardization, they also require a significant
amount of organizational investment to ensure
their success. Organizations that have done well
using traditional approaches can also fall victim
of their success through a strict expectation that
history can always be repeated (Zhiying, 2003)
when the environment becomes uncertain.

Agile development practices have frequently
been presented as revolutionary. There is some
evidence, however, that they can offer an alter-
native common-sense approach when applied to
traditional software engineering practices (Paulk,
2001). Perhaps they can be used in part to improve
the development processes of projects that do not
fit the usual agile model (e.g., critical systems
with high availability requirements)? Indeed, it
has been suggested that project risk should be the
driving factor when choosing between agile and
plan-driven methods (Boehm et al., 2004) rather
than overall project size or criticality. This implies
that certain components of any project may be
well suited to agility while others may not.

This chapter discusses how agile methods were
used on one team to successfully drive software
development quality improvements and reduce
overall cycle time. This is used as a framework for
discussing the impact of agile software develop-
ment on people, processes, and tools. Though the
model project team presented is relatively small
(eight people), it has some decidedly non-agile

characteristics: It is geographically distributed,
it has no co-located developers, the resulting
product has high performance and reliability re-
quirements, and the organization’s development
methodology is decidedly waterfall having gained
CMM® Level 5 compliance. Therefore, some of the
fundamental paradigms that serve as the basis for
successful agile development—extreme program-
ming (Beck & Andres, 2005), for example—do
not exist. Nevertheless, they were successfully
able to implement several agile practices while
maintaining high quality deliverables and reduc-
ing cycle time.

chapter	organization

This chapter is organized as follows:

1. Background: Some history is given about
our model project team and what led them
to investigate agile methods. The concept
of using a hybrid plan- and agile-driven
method is also introduced.

2. Approaching Selection: How did our model
project team decide which agile practices to
use and which ones to discard? This section
discusses the risk-based project management
and technical approach used.

3. Implementation: This section presents how
each selected agile practice was incorporated
into the software development process.

4. Impact: How did the project team know the
implemented agile practices were providing
some benefit? This section talks generically
about some of the metrics that were used
to compare the project to prior projects
performed by the same team and the impact
the selected methods had on the project.

5. Future Trends: A brief discussion about
what path will be taken to approach follow-
on projects.

6. Conclusion.

188

Agile Software Development Quality Assurance

bAckground

How doth the little busy bee
Improve each shining hour,
And gather honey all the day
From every opening flower!

Isaac Watts, Divine Songs, 20, Against Idleness
and Mischief, 1715

This chapter introduces several concepts about
integrating agile software development tech-
niques into a project that does not have typical
agile characteristics. The information provided
identifies the conditions that were present at the
time our profiled project team began to incorporate
agile practices into their decidedly traditional
development approach. We begin with a history
of a project development team that was unable
to meet the expectations of its customer and was
unsatisfied with the progress they were making
toward meeting their goal of quickly develop-
ing a quality product that supported both high
availability and high performance. Though the
conditions identified are specific to this project
and project team, one will most likely find them
familiar.

Following an overview of the project and proj-
ect team, a brief summary is given of some of the
existing alternative development methodologies
that formed the basis of the team’s decision to
attempt to integrate agile techniques. Though a
short section, it provides some additional insight
into the investigatory nature underway to improve
the team’s results.

This background presents the reader with a
contextual overview that will serve to ground the
topics discussed later in the chapter. It provides a
starting point from which the remaining discus-
sions are based. Because a real project team is
being profiled, both the name of the project and
the product has been obscured throughout the
chapter.

Project	and	Historical	context

In 2003, a project was undertaken to replace an
existing Web application used almost daily by a
significant number of individuals (almost 450,000
users). This would not be an ordinary application
rewrite, however. When the business analyzed
how the product was being used and what its
perceived shortcomings were, it became clear
that the application needed to be taken in a whole
new direction. A project was therefore undertaken
to create an entirely new application—one that
would incorporate the base functionality of the
original application, yet include a significant
number of functional improvements, usability
enhancements, and external dependencies. This
was not the first attempt at replacing this applica-
tion (a prior attempt ended in failure), but it was
certainly the most bold.

This original rewrite project became troubled
as requirements seemed to never stabilize and criti-
cal milestones were continuously missed. Though
it was a medium-sized project with approximately
18 individuals on the development team, there were
almost as many analysts, testers, and reviewers
and perhaps an equal number of stakeholders. It
had the classic characteristics of what Ed Your-
don calls a “death march”—a project in which an
unbiased risk assessment would determine that
the likelihood of failure is extremely high (Your-
don, 2004). Though the project was considered a
success both in delivery and quality, the personal
sacrifices were extremely costly. It left the entire
team feeling that there needed to be a change in
how future projects would be managed and how
to adapt to rapid change in the future.

Back to Basics

Interestingly, even though it was recognized that
things would have to change, the first change that
was made was to be sure the team adhered to what
they did not hold fast to the first time: the tradi-

 189

Agile Software Development Quality Assurance

tional software engineering life cycle. Though
this may seem somewhat counterintuitive, part
of the problems faced during the original “death
march” project had to do with not maintaining
proper control over changes, agreeing to a scope
that could not possibly be contained within the time
allotted for the project, and not properly evaluating
risks and dependencies. In other words, the project
team needed to be able to walk before it could
run. Since traditional development methodologies
were well known and had generally predictable
results, they would provide the basis upon which
any future process changes would be based.

Several Small Successes

In our experience, it is a common occurrence that
several smaller upgrade releases follow large ap-
plication enhancements or new application imple-
mentations—this was no exception. As the project
team was re-learning the basics of the software
engineering process, there were two opportunities
to immediately put it to work and identify which
areas were ripe for true improvement. The first
was a 2-month cycle of enhancements. It was
a small project, but there was still a significant
staff on board to complete the work. Unlike the
first project, this one adhered to the traditional
software engineering process and was successful
with respect to schedule, cost, and quality. The
business customer was satisfied and somewhat
relieved that the delivery was uneventful.

The second project of enhancements was
slightly larger in scope, but used less staff and,
therefore, had a longer duration. Again, a tradi-
tional software development process was followed
and the project was successful with regard to
schedule, cost, and quality. This second project
became a true proof point for the team and was a
source of confidence in their abilities. They proved
that they could maintain control over these types
of projects and deliver high quality work. On the
other hand, even though requirements change ac-
tivity was similar to what occurred in the original

project, their ability to control the change was
through rejection or re-negotiation—they were
unable to accept late changes that might have
improved the overall product. A prime example
of this was in the area of end user usability. In the
traditional software development process being
used, ensuring that an application is usable had
to be done after the application was essentially
complete (during user acceptance). Unfortunately,
this meant that there would be no time remaining
in the development cycle to address any changes
prior to releasing the upgraded product. The im-
plication was that these types of “enhancements”
would always have to wait for a follow-on release
to be implemented.

The project team also began to recognize that
their integration and subsequent testing phases
consumed a significant part of the development
schedule. Even though the project was generally
under control, integration had become a time of
heroic sleep deprivation to ensure the schedule was
met. It was not the same situation as occurred in
the original rewrite project, but it was significant
enough that the team recognized that this part of
the development process needed to be addressed
differently.

Rapidly Changing Business Needs

Though our profiled project team could now be
considered successful—after all, they were able
to deliver on a set of scope within a defined period
of time at a defined cost and with good quality
results—the process modifications that they made
did not allow them to keep up with the rapidly
changing needs of the business. The business could
not afford to have 6-9 month development cycles
with no changes to the original scope. The releases
they sought to put out were time sensitive. They
also wanted the amount of functionality contained
within each release to remain somewhat flexible.
Instead, as new ideas arose, they would be added
to a list of ever-increasing “future requirements”
or handled as changes that would adjust the end

190

Agile Software Development Quality Assurance

date of the release. There was also the nagging
problem of not being able to incorporate usability
defect corrections easily into the release where
the defects were found without adding a separate
“usability” test period with corrections prior to the
final user acceptance test period. As it was, they
were subjecting users to usability issues that would
not be corrected until a follow-on release.

Finally, the business was looking for more out
of the team and the team was looking for a better
way to do things. Traditional software develop-
ment practices appeared to be only part of the
solution. They had learned to walk, but weren’t
sure yet how to run.

Delivery Challenges

As more and more functional enhancements were
requested by the business, the team began to run
into additional delivery challenges. Though qual-
ity, cost, and schedule were under control, they
were unable to build in the most important features
fast enough for the business. In fact, they found
that their cycle time to complete a project had
actually elongated. In essence, they had traded the
chaos of the original schedule for its opposite and
found that both didn’t really solve their problem
(though not being in chaos was infinitely better).
They also found that just “following the process”
had a chilling effect on their customer relationship.
The practice of locking down requirements and
stopping change made them appear unresponsive
and prone to not delivering value. Though the
initial releases following the large rewrite were
successful, the sense of pending frustration was
becoming palpable. Again, the team recognized
that they needed to do something different.

Technical Challenges

Technical challenges do not always get the same
attention as other facets of software development
when discussing the speed of delivery or quality
for the final product, but it was a real concern to

our profiled project team. Their customer was
not only business-savvy, but had a keen inter-
est in directing which technologies were used.
This meant that some portion of the technical
solution was imparted to the development team
through the requirements gathering process.
This could include individual technologies or,
in one instance, the final production platform’s
specifications. To accommodate these types of
requirements required a bit of experimentation
to ensure they would work. This was something
that the traditional development process did not
easily support since some of the requirements
themselves would derive additional requirements
once investigated.

Hybrid	Methodologies

Using a hybrid of adaptive and traditional software
development methodologies is not as new and
radical as it may at first appear. Though some of
the concepts related to iterative development and
other agile-like techniques can be traced back to at
least two decades before the first mass-produced
computer was even built (Larman & Basili, 2003),
the “traditional” waterfall software development
model had gained acceptance by the late 1960s
when it was proposed that engineering disciplines
should be used to tame wild software schedules
(Naur & Randell, 1968). It derives its name from
the fact that each step has distinct input and exit
criteria that is supported by the surrounding steps
(Figure 1). Unfortunately, the model assumes that
a project goes through the process only once and
that the implementation design is sound (Brooks,
1995).

Soon after being proposed, enhancements
started to appear. Over time, several evolutionary
techniques were developed as a compliment or
replacement to the basic waterfall model including
modified waterfalls, evolutionary prototyping,
staged delivery, and the spiral model (Boehm,
1988; McConnell, 1996). Each enhancement

 191

Agile Software Development Quality Assurance

recognized a failing in the original waterfall ap-
proach and proceeded to address them within the
replacement models.

Why Use a Hybrid?

Why use a hybrid development model and not
adopt a single approach? The answer to this ques-
tion is related to the amount of risk one can afford
in their project schedule, cost, and quality. Pure
waterfall models operate best with systems that
require high reliability and need to be scaleable
(McConnell, 1996). Our profiled project team
and application has high reliability and high
performance as key requirements, but they also
have a highly volatile business environment in
which the priority of functional enhancements
frequently changes.

There is also a bit of a comfort factor in alter-
ing something one already understands; One need
only learn the new techniques that replaces the
original rather than an entirely new process. Over
time as new techniques are introduced, the old
process will no longer exist in its original form
and the organization may be following a totally
new methodology—one that meets their needs.

APProAcHIng	 selectIon

Guess if you can, choose if you dare.

Pierre Corneille, Héraclius, act IV, sc. IV, 1674

Great deeds are usually wrought at great risks.

Herodotus, Histories, VII, 50, c. 485 – c. 425
B. C.

One of the most difficult things when imple-
menting process change is deciding which changes
to make. The entire exercise is a study in risk
management since choosing the wrong thing may
impact the team’s ability to deliver. Recall that
after the tumultuous project of 2003, our profiled
project team was able to deliver on time, on cost,
and at a reasonable level of quality—though there
was some room for improvement in the area of
quality. Their challenge was to deliver faster and
be more adaptable to changes that were brought
forward within the development cycle. They rec-
ognized that changes needed to be made to make
the team’s delivery better, but they wanted to be
sure that those changes did not undo the predict-
ability they had worked so hard to attain.

The team approached these changes from two
perspectives: Project management and technical.
From a project management perspective, selected
changes would need to be those that would en-
hance the delivery or quality of the project. From
a technical perspective, the changes would need
to be reasonable and able to enhance practitioner
productivity and delivery. Making changes to
one’s development process is a unique experi-
ence; No two projects are the same. However,
there seems to be at least two constants that we
will address in the following sections prior to
discussing process selection: Fear of change and
overcoming that fear.

Figure 1. A traditional waterfall development
model

192

Agile Software Development Quality Assurance

Fearing	change

Though our profiled project team recognized
that there was something that needed to be done
to make them a better team that could adapt to
changes, deliver more quickly, and produce high
quality results, some feared that tinkering with
what was working could push them toward the
ad hoc development process that they had already
rejected. Even though they were not delivering
quickly and the customer could not be character-
ized as completely happy, their projects seemed
under control and they were no longer working
90-hour weeks.

The fear of change was manifest in several
dimensions for our profiled project team. Each
one, though, could be counterbalanced with a
fear of not changing. This made for an interesting
dance of conflicting emotions around what should
be changed and what should be left alone. On one
hand, they had proven their competence to their
executive management. If they changed the way
they do things and failed, they risked something
that was tied directly to their self worth. Coun-
tering that emotion was the fear of not changing:
If their customer was unhappy, the view of their
competence may erode regardless.

overcoming	Fear

Fortunately for our profiled project team, their
fear of not changing eventually outweighed their
fear of change. They were able to recognize that
if they did nothing, the situation they would find
themselves in would be far worse than if they
had not tried at all. Their customer was looking
for something new and if the changes could be
presented in that light, small bumps in the road
may be looked upon more as a learning experi-
ence, than failure.

The project management and technical lead-
ership team began to brainstorm. They came up
with a plan that would make any change they
implemented participative at all levels of the

project and conservative so that they could assess
the impact and determine if the change was good
for the project. Agile practices seemed to make a
lot of sense, but a piecemeal approach to change
(advocated by those same agile practices) also
seemed prudent. They decided that before they
implemented any change, they would make sure
their customer understood what they were doing
and was supportive. In a sense, this approach
helped them bridge the chasm between fear of
change and the consequences of not changing.

It should be noted that although the project
team was able to come to the conclusion that they
should change and was able to overcome their fears
by making some practical decisions, this was not
an easy or quick process. It developed over time
and with the help of the relationships they had
built with others in the organization.

Process	selection

Implementing changes within any organization
takes time and must be participative at all levels
to be successful (Manns & Rising, 2005). To
overcome the fear of making changes, the team
had decided to do it in small steps—a conserva-
tive approach that would assist their evaluation
of the change when the project was complete.
They began by addressing two areas that seemed
to cause the most trouble: Requirements priori-
tization and putting out a version of the release
to the customer early so that initial tests—and
more importantly usability tests—could be
completed in time to provide feedback that could
then be incorporated into the code base prior to
deployment. Changes would still be controlled,
but because there were to be multiple iterations,
there would also be multiple integrations and
system tests; they would have some flexibility to
incorporate small changes from the first cycle into
the second assuming they could keep the quality
of the release high and they planned enough time
for these anticipated changes.

 193

Agile Software Development Quality Assurance

When the team found they had some suc-
cess (see “Impact”) with their initial changes,
they became more emboldened. They suggested
and implemented more changes. We discuss the
areas that were addressed earliest in the next
several sections. They are presented along with
the reasoning behind each so that the reader can
understand why each was chosen by the project
team. Later in the chapter, a discussion ensues
about how each practice was specifically imple-
mented from a technical standpoint and the cycle
time and quality impacts of each.

Prioritizing Requirements

One of the most difficult things facing our pro-
filed project team was their joint ability with
their customer to prioritize their requirements.
On any given day, the priority may change. What
seemed to be missing was a way to quantify the
requirements in a manner that would permit a
reasonable prioritization. In some cases, a require-
ment may be highly desired, but its cost would
make implementation prohibitive. In other cases,
a requirement may be somewhat desired, but its
cost would make implementation highly desirable.
A process was needed to quickly assess require-
ments and have the customer prioritize them so
that the team was always aware of what features
and functions were desired next.

Iterative Development

Partially to address their overall product quality
and to gain early feedback on how a release was
progressing, the team decided that some form of
iterative development should be implemented.
Creating products iteratively goes back to an in-
vention theory from the 1920s and 1930s (Larman
et al., 2003). It is a proven technique for address-
ing product quality and change. As you will see,
the team’s first foray into iterative development

was only partially successful and required some
additional process changes.

Continuous Integration

Perhaps the most frustrating part of the develop-
ment process for our profiled project team was the
“integration” cycle. This was where the system
was put together so that it could be functionally
tested as a whole. Part of the frustration with this
process was that there was no easy way to see
the entire system in operation from end to end
without going through a lot of tedious build steps.
To address this, the team decided that they would
need to automate their builds and would need to
permit any team member to create a locally run-
ning version of the full system at any time.

Addressing integration took on additional
importance with respect to iterative development.
If the team wished to create rapid iterations in the
future, they could not do so without addressing
the integration and build process.

Automation

One area the team thought they could gain im-
provements in both quality and cycle time was
in the area of automation. It has long been un-
derstood that design and code inspections could
significantly and positively impact the quality of
a product, but the time to perform the inspections
could be prohibitive for a large product. Indeed,
testing also fell into this same category—large
benefit, but time consuming. To address the
latter concerns, the team identified automating
critical reviews and testing as one of their top
priorities. Tools such as JUnit, JTest, Rational
Performance Tester, Findbugs (http://findbugs.
sourceforge.net/), SA4J (http://www.alphaworks.
ibm.com/tech/sa4j), and Parasoft’s WebKing
would be used (and re-used) to reduce their cycle
time while improving quality.

194

Agile Software Development Quality Assurance

IMPleMentAtIon

For the things we have to learn before we can do
them, we learn by doing them.

Aristotle, Nicomachean Ethics, II, 1, ca. 384-322
B. C.

Deciding which processes to alter as discussed
in “Approaching Selection” was only one facet of
implementing change. Each area that was selected
required a corresponding implementation action
(or actions). This section of our chapter focuses on
those actions that were taken to address overall
quality and cycle time. Of interest are some of
the reasons why certain actions were taken. As
you will see, the way agility was worked into
our profiled project team’s project can serve as a
model for other project using a hybrid develop-
ment methodology where teams are looking for
incremental or evolutionary (rather than revolu-
tionary) process improvements.

Improving	Quality

Perhaps one of the most vexing problems faced
after the tumultuous 2003 project and even in
the small step enhancement projects undertaken
in 2004, was the fact that defects were being
discovered and corrected late in the development
cycle when they were most time consuming and
most expensive to correct. Adjusting the defect
detection curve such that it afforded an earlier
indication into what was wrong and provided the
ability to make early corrections was considered
of paramount importance to improving overall
code and product quality.

After taking a retrospective look back at
how the product itself was developed, it became
clear that not everything had been created in a
manner that would be considered optimal. There
were architectural and design flaws that were not
necessarily apparent when the original version of
the application was created, but began to impose

limitations on development as enhancements were
being considered—limitations that had the result
of increasing the amount of time and money it
would take to make those enhancements.

In addition, the original project team that
worked on the first version of the product in 2003
was quite large. Due to the ad hoc nature of that
project, no coding standards had been defined or
adhered to. This meant that each functional area
of the application was implemented and behaved
differently. In effect, the application had internal
vertical silos of discrete functionality.

Changes surrounding the quality of the ap-
plication needed to address each of these issues:
Defect detection and correction, architectural
and design dependencies, and the silo effect of
independently created functions. The sections that
follow provide a general overview of what was
implemented to address each of these concerns.
We begin with a discussion about the project’s
quality management plan. From there, we intro-
duce the concept of “technical stories” as a way
the project team codified the refactoring of existing
inefficient architectural and design constructs.
Next is a description of what was done to move
the defect detection and correction curve earlier
in the development cycle. This is followed by a
description of some of the methods and tools that
would be used to enforce best coding practices.
Finally, an explanation of how continuous inte-
gration might be used to improve overall code
quality is given.

Quality	Management	Plan

Being a traditional waterfall project with a struc-
tured approach to development meant that our
profiled project team had implemented a qual-
ity management plan for each of their projects.
Typically, this plan would identify, along industry
standard lines, the percentage and aggregated
number of defects that one could expect by project
phase, how those defects would be detected (e.g.,

 195

Agile Software Development Quality Assurance

inspection, testing, etc.) and how they would be
removed.

Rather than discard the quality management
plan, the team thought it important to take the time
to update it with the strategy they would employ
to address the quality of the product. Though
such a document may be derided as defying the
“barely sufficient” nature of an agile project, the
team found it useful to document an internal goal
for the overall detection and correction of defects
and the strategy they were going to use for their
early elimination from the product. This docu-
ment also gave them a baseline from which they
could measure their intended results with their
actual results.

The quality management plan, therefore,
became a document that identified the goals the
team would strive to achieve and the techniques
they would employ to integrate agile practices
into their development process. It no longer
specified only industry standard information to
which the project would attempt to comply, but a
much higher standard to which the project team
wished to be held. These changes are evident in
each of he implementation practices outlined in
the following sections. Each, however, was first
identified as part of the project’s quality manage-
ment plan.

technical	stories

One thing that was identified quickly by the
profiled project team was that innovation could
often be introduced into a project that would also
satisfy a business requirement. In other words, the
way new function was added began to have both
a technical component in addition to the business
component. These so-called “technical stories”
became part of the requirements gathered after
each release and, later on, iteration. They were
influenced by a retrospective look at what went
well and what did not go so well during each de-
velopment cycle. As a result of these reflections,
the architecture of the application was reduced

and simplified through refactoring. This had the
net effect of reducing the cost of ownership and
change while improving the overall quality of the
application by consolidating change points. The
approach the team took is similar to the “user
stories” concept in extreme programming.

A few possible outcomes of these “technology
stories” include:

• Cost reduction as a result of simplifica-
tion.

• Architecture simplification through refactor-
ing.

• Improvement in the throughput or perfor-
mance of an individual application module
or area.

• Architectural changes that will re-align the
application with the long-term strategy of
the organization.

defect	detection	and	correction

The continuous feedback provided to the devel-
opment team through the use of iterative devel-
opment and continuous integration paired with
automation and reuse supplied them with the
opportunity to detect and correct defects earlier
in the development cycle and improve overall
quality. Recalling some of the difficulties the
project team had with late usability changes and
the difficulty they had integrating the system,
two practices were introduced: Test case reuse
and test case automation.

Test Case Reuse

When a project is undertaken to enhance an
existing product, a common scenario that many
developers face is the re-introduction of defects
from prior releases when a new feature is added
without understanding the overall purpose of the
module (or function). One way to combat this is
to retain the unit and functional test cases from
release to release and execute them prior to and

196

Agile Software Development Quality Assurance

during each build of the system. By integrating
execution of the test cases with the build process,
one can be assured that existing functionality is
not compromised by changes made to the product;
Either the new changes are incorrect or the test
case is no longer valid. This reduces the number
of undetected defects in a release and improves
the overall quality of the application. Instead of
finding issues during integration or system test-
ing, they can be found and corrected prior to or
during each system build. The theory is that the
closer the defect is detected to when the change
is made, the easier it will be to recall what was
changed and fix it. An example of the process
followed appears in Figure 3.

Automated Test Case Execution

Agile principles encourage developers to adopt
test-driven development. Whether a project fol-
lows a pure agile approach, a hybrid approach (as
was used here), or a traditional methodology, there

Figure 3. Test case reuse process

Figure 2. Technology-based proposals in release planning

 197

Agile Software Development Quality Assurance

is value in testing code in an automated fashion
at the unit and function level. Retaining these test
cases so that all developers can execute them in
an automated fashion to ensure that their changes
do not break the system is an agile principle that
was implemented for this project team to measure
project progress, address interim code quality,
and assist in the development of new classes or
methods. It should be noted that since these test
cases were being built upon an existing product
that did not have them initially, they were first
built against those areas that required change.
Those cases remained available as subsequent
projects were undertaken.

Two tools were used to automate test case ex-
ecution. The first, not surprisingly, was JUnit for
unit testing. For functional testing, IBM’s Rational
Function Tester was used. This latter tool easily
integrates with the build process and provides an
automated functional regression testing platform

for client-based and Web-based applications. A
sample report appears in Figure 4.

enforce	coding	Practices

One area of quality that is oftentimes not ad-
dressed by a project team is the way code will
be written. Documenting the coding standards
up front is helpful, but it will not ensure that an
individual will not violate the project’s standards
or best coding practices in general. Rather than
implement a series of manual code inspections,
several tools were implemented to ensure best
practice compliance.

Automated Code Reviewers

Tools such as Parasoft’s JTest, RAD Code Re-
viewer, and WebKing can be plugged right into
the developer’s IDE. They help ensure that code
is written according to a standard the team has

Figure 4. Automated functional test cases using Rational Functional Tester

198

Agile Software Development Quality Assurance

set. They also can catch common mistakes and
identify problem areas that may need to be ad-
dressed. Each developer on the project team was
required to install the plug-ins into their develop-
ment environment and execute the review process
prior to checking the code in or integrating it into
the system build. An example of some of the rules
used appears in Figure 5.

Tools such as IBM’s Rational Application
Developer Code review tool can be used to show
the details and the nature of a violation including
the class name and the line number of the code
where the violation occurred (see Figure 6).

Automated Static and Stability Analysis

Static analysis tools such as Findbugs (http://find-
bugs.sourceforge.net/) and Structural Analyzer
for Java (SA4J) (http://www.alphaworks.ibm.
com/tech/sa4j) can be embedded into the build
process to verify the quality of the build. These
tools produce reports for the development team

that help them understand potential run time
defects either due to the way something was
implemented or by finding architectural anti-pat-
terns that can reduce the application’s stability in
the production environment.
	
“continuous”	Integration

One of the extreme programming practices that
our profiled project team readily adopted was
the concept of continuous integration. Recall
that one of the most difficult project activities
was the integration of created components into
a functioning whole. It was felt that if the inte-
gration of the application could become more
continuous—more agile—it would be possible
to see the system working earlier, identify and
remove integration defects in closer proximity
to when they were introduced, and enforce the
view that the system must always be kept in an
operational state.

Figure 5. Example automated code review rules

 199

Agile Software Development Quality Assurance

Automating the Build

The primary barrier to continuous integration was
an onerous build process. One of the technical
stories, therefore, was to automate the product
build such that it could be started by any developer
in their own workspace and in the integration
environment (under the proper controls). Apache’s
ANT (http://ant.apache.org), as the de facto stan-
dard for build automation, would be used as the
foundation for this automated build process. In
addition to automating the build itself, the script
would also incorporate several of the code verifi-
cation steps identified earlier: functional analysis,
structural analysis, functional test verification,
coding practices, etc.

the	build	Process

The following process provides a general overview
of the steps to be followed by the automated build

process identified in several technical stories for
the application.

• Pull the latest checked-in source software
from the library control system (CVS).

• Execute automated code analysis tools on the
extracted code to verify the code’s look and
feel and identify any anti-patters violations
of best practices in the code base.

• Build an EAR package and execute all exist-
ing JUnit test cases against the code package
and push the results to a build status Web
page.

• Install the application into the runtime en-
vironment.

• Execute the automated functional test cases
using Rational Functional Tester and publish
the results to the build status Web page.

• Execute an overall architectural quality
check using structural analysis tools (e.g.,
SA4J).

Figure 6. Example code review automation (IBM Rational Code Reviewer)

200

Agile Software Development Quality Assurance

A graphical representation of this process
appears in Figure 8.

Mapping the Build Framework to the
Development Process

Every time a developer adds code to the system
either as part of an iteration or as part of a release,
the overall integration with existing code (and code
written by others) is taken care of by the build
process. This process is depicted in Figure 9.

IMPact

Nothing quite new is perfect.

Marcus Tullius Cicero, Brutus, 71, c. 106 B.C.-
43 B.C.

What was the overall impact of the changes that
were made? By and large, the impact was positive.
The team proved they could successfully integrate
agile techniques into a traditional development
process. What follows is a summary of some of

the results. It should be noted that these are results
from one team and that the experiment would need
to be expanded to others to assess its validity in a
broader context. Regardless, some of the results
are rather remarkable.

Requirements Prioritization:
time Boxing the Schedule

As identified in the “Approaching Selection”
section, instead of beginning with a fixed set of
requirements from which a project sizing and
project plan was derived, the most important
requirements were identified and given a rough
sizing. Based upon this rough sizing, the require-
ments were re-ordered. The schedule was broken
down into discrete “time boxes” that dictated how
much would be spent and how many features
could be contained within a particular iteration
or a project. Anything that could not fit would be
re-prioritized into a follow-on project (or iteration).
This method permitted the customer to introduce
what they considered the most important features
into the product and regularly deliver function to

Figure 7. Example static analysis report

 201

Agile Software Development Quality Assurance

the business. Since the estimation at the beginning
was by necessity a rough order of magnitude,
as the team began the work additional adjust-
ments would be made to the scope. If the size of
a feature grew beyond what could be contained
within a project, it would be discarded (or, if truly
important, the date would change). If the size of
a feature was smaller than what was originally
anticipated, additional features would be added
from the prioritized list (see Figure 10).

Using this approach, customer satisfaction
increased from essentially failing on the first
project to 97.3% on the first project that used
this approach—they recognized that the project

Figure 8. Automated build tools stack

Figure 9. Continuous integration using automated tools

team was willing to help them meet their goals
and change the way they do things in support of
those goals. (Note: This satisfaction rating was
for the entire release and most likely reflects the
improvement in quality—discussed later—as well
as the way requirements were prioritized.)

Iterative Development

Breaking each release into smaller iterations
had a three-fold impact on the projects. First, the
customer was able to see the results of built-in
features earlier. This allowed them to re-assess
the priority of the remaining requirements against

Automated Structural Analysis
(using SA4J like tools)

Automated Functional Test Case Execution
(using Rational Functional Tester like tools)

Automated Unit Test Cases
(using JUnit/JUnitEE like tools)

Automated Code Analysis
(using RAD Code Reviewer and FindBugs like tools)

Build Process—Foundation
(Based on ANT scripts)

New features

Release Plan

Unfinished
Tasks

Iteration
Planning

New funtionality or pending
features, if containable as per

the time-box planning

User stories

Pending work from
previous iteration

To the next fix pack or release planning

New Iteration

Iteration Plan

Add more code

Automated functional, unit
testing, & quality analysis

Development Build
Process

202

Agile Software Development Quality Assurance

changes that they may wish to implement. From
a customer satisfaction perspective, the team was
beginning to be seen as much more flexible—yet,
the project was still under control.

The second area of positive impact area was the
team’s ability to have usability testing done on the
parts of the application as they were produced. This
meant that any usability defects identified could
be rolled in to the next iteration and would be in
the final build rather than waiting six months for
a follow-on project to be commissioned. This had
the net effect of improving end user satisfaction to
above 85%—which was a significant improvement
from 76% given the size of the population.

The third area of impact was in the quality of
the final product. Since the system was being “put
together” more frequently (also see the discussion
on continuous integration results), the amount of
time spent cleaning up integration errors was sig-
nificantly reduced. While the initial 2003 project
had greater than 400 user acceptance defects, less
than a year later the user acceptance phase for all
of the iterations combined had three defects (one
of severity 3 and two of severity 4).

As we mentioned, not everything was posi-
tive. The way the team initially implemented
iterations was not as clean as it could be. They
were rushing at the end of the first iteration to get
function working. This lesson learned was built
into their second project—they more discretely
planned the iterations so that they would have
enough time to put the system together prior to
the interim review by the customer. Interestingly,
when they automated the build and began to use
a more continuous form of integration, this ad-
ditional planning was no longer required.

continuous	Integration

Perhaps one of the biggest gains the project
team saw from a quality perspective was as a
result of implementing their version of continu-
ous integration. As previously discussed, this
involved automating the build process such that
testing occurred at each run and the system
always remained in a workable state. Creating
the build process cost approximately 100 labor
hours to the team. The amount of time saved in
integration and integration testing, however, was
300 hours and almost two weeks cycle time. On
the project it was implemented in, the additional
time was used to contain additional features that
originally did not fit in the planned time boxes.
For future projects, the additional time will be
factored into the schedule as available for general
development.

Automation

Although automation took on various forms
including the creation of the automated build
used for continuous integration, there were some
additional positive impacts to cost and quality.
For example, even though there was a cost to
modifying automated test cases from release to
release, that cost was minimal compared to creat-
ing a new test suite each time or executing all of
the test cases manually. Some interesting statis-
tics were gathered from project to project. The
original project in 2003 used 12.7% of its overall
budget (hours) to conduct functional and system
testing (not user acceptance testing where most
of the defects were eventually found). Through

Figure 10. Time boxed requirements prioritization

Create a list of features during
pre-concept phase of a project

Work with the customer team
to prioritize the features and the
delivery time expectations for

each of those features

Bundle these requirements to
create versions or releases of

the product

Create project plans based
on schedule expectations of

the customer

 203

Agile Software Development Quality Assurance

automation and reuse of the test case library, the
two subsequent similarly sized projects consumed
5.8% and 5.2% of their budget on function and
system testing respectively.

Recall that automation also added several tools
that checked the stability and quality of the code.
Perhaps the best measure of impact on the project
is that after incorporating the recommendations
for coding standard best practices and address-
ing structural weaknesses, the amount of time
required to maintain it was reduced by almost
10%. In a world where operation budgets are con-
strained, this was considered a significant under
run. Most of it related to the reduced amount of
call support from people who were having trouble
using the application or finding obscure errors
that had not been caught in the project team’s
own testing.

Future	 trends

In our opinion, the trend toward using agile soft-
ware development practices in general and as a
way to enhance the quality of products developed
using traditional practices will continue. As with
the profiled project team used as the basis for this
chapter, we also see a trend toward using risk to
identify which practices may work best in a par-
ticular environment. That will mean that projects
that are not thought of as being able to easily use
agile practices to enhance quality or reduce cycle
time and cost today—such as those with high
availability requirements or high performance
requirements—may have an agile component in
the future.

smaller	and	More	Frequent	releases

Developing a product in a piecemeal fashion
predates computing by several decades. The
concept of creating incremental releases to
products initially grew from a desire to improve
quality (Larman et al., 2003). Recent evidence

has continues to show that smaller, more frequent
releases have a positive impact on the overall
quality of a software development project (see
Madsen, 2005, for example). Several “heavier”
methodologies such as the rational unified process
always embraced iterations and even that has had
its share of agile practices introduced as process
improvements (Ambler, 2006). We expect this
trend toward smaller, incremental releases with
agile components to continue.

reviews

Another future trend in agile quality management
seems to be the return of peer reviews. Agile prac-
tices typically rely on up front test cases to ensure
quality, but some of the current literature indicates
that peer reviews still play an important role in
software development. Some recent research has
been conducted on focusing reviews on the most
important aspects of a particular project based
upon risk and the perceived value of a particular
review (Lee & Boehm, 2005). This suggests that
reviews themselves may also be moving toward
a sufficiency model similar to agile. It will be
interesting to see if a review structure will appear
as part of pure agile practices.

More	Hybrids

As with our profiled project team, not everyone
is willing or able to move to completely agile
approaches for their software development either
due to perceived complexity or performance and
availability requirements. We believe that the
evolutionary introduction of agile practices into
traditional organizations will continue, but altera-
tions may be required for an organization to derive
value as in Svensson and Host (2005). Perhaps the
largest focus area in the next couple of years will
be in project management. Project managers will
need to not only drive the implementation of agile
practices, but also need to understand their impact
on their project(s) (Coram & Bohner, 2005). In all

204

Agile Software Development Quality Assurance

of these cases, we believe risk will most likely be
the deciding factor for when agile methods are
used and when they are not.

conclusIon

This chapter discussed how one team was able to
successfully drive software development quality
improvements while reducing overall cycle time
through the introduction of several individual
agile development techniques. Through piecemeal
change to their existing development processes,
they were able to make significant improvements
over time. This common-sense approach to soft-
ware development showed that the incorporation
of agile techniques does not have to entail addi-
tional risks for projects that have high availability,
performance, and quality requirements.

reFerences

Ambler, S. W. (2006). The agile edge: Unified and
agile. Software Development Retrieved January
8, 2006, from http://www.sdmagazine.com/docu-
ments/s=9947/sdm0601g/0601g.html

Beck, K., & Andres, C. (2005). Extreme pro-
gramming explained: Embrace change (2nd ed.).
Boston: Addison-Wesley.

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed. Boston:
Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software
development and enhancement. Computer, 21(5),
61-72.

Brooks, F. P. (1995). The mythical man-month (An-
niversary Edition). Boston: Addison-Wesley.

Chrissis, M. B., Konrad, M., & Shrum, S. (2003).
CMMI: Guidelines for process integration and
product improvement. Boston: Addison-Wesley.

Coram, M., & Bohner, S. (2005, April 3-8). The
impact of agile methods on software project
management. Paper presented at the 12th IEEE
International Conference and Workshops on
the Engineering of Computer-Based Systems
(ECBS’05), Greenbelt, Maryland, USA.

Larman, C., & Basili, V. R. (2003). Iterative and
incremental development: A brief history. Com-
puter, 36(6), 47-56.

Lee, K., & Boehm, B. (2005, May 17). Value-based
quality processes and results. Paper presented at
the 3rd Workshop on Software Quality (3-WoSQ),
St. Louis, Missouri.

Madsen, K. (2005, October 16-20). Agility vs.
stability at a successful start-up: Steps to prog-
ress amidst chaos and change. Paper presented
at the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05),
San Diego, CA,.

Manns, M. L., & Rising, L. (2005). Fearless
change: Patterns for introducing new ideas.
Boston: Addison-Wesley.

McConnell, S. (1996). Rapid development: Taming
wild software schedules. Redmond, Washington:
Microsoft Press.

Naur, P., & Randell, B. (1968, October 7-11).
Software engineering: Report on a Conference
Sponsored by the NATO Science Committee. Paper
presented at the 1st NATO Software Engineering
Conference, Garmisch, Germany.

Paulk, M. C. (2001). Extreme programming
from a CMM perspective. IEEE Software, 18(6),
19-26.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber,
C. V. (1993). Capability maturity model for soft-
ware, Version 1.1. Software Engineering Institute:
Capability Maturity Modeling, 82.

 205

Agile Software Development Quality Assurance

Svensson, H., & Host, M. (2005, March 21-23).
Introducing an agile process in a software main-
tenance and evolution organization. Paper pre-
sented at the 9th European Conference on Software
Maintenance and Reengineering (CSMR’05),
Manchester, UK.

Yourdon, E. (2004). Death march (2nd ed.). Upper
Saddle River, NJ: Prentice Hall.

Zhiying, Z. (2003). CMM in uncertain envi-
ronments. Communications of the ACM, 46(8),
115-119.

206

Chapter XI
Test-Driven Development:

An Agile Practice to Ensure Quality
is Built from the Beginning

Scott Mark
Medtronic, Inc.

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

The spirit of agile methods begins with the promise
that whatever software components are built will
be of high quality. Agile methods move quality
assurance upstream in the software development
process, and the most relevant of these methods is
the principle of test-driven development (TDD).
The essence of TDD is that quality assurance
methods are not a sieve through which applica-
tion code is pushed at the end of a long, drawn
out development process. Rather, the development
cycle begins with capturing test cases as execut-
able system components themselves. These testing

components are then used to drive the development
process and deliver components that, by defini-
tion, satisfy the quality requirements as they are
set out in the test cases. In its purest form, the
developer1 begins by writing a test case that fails
and then proceeds to implement the functionality
that causes the test to succeed. When this practice
is followed carefully, the code that becomes the
final product is guaranteed to pass all currently
identified test cases.

 The goal of this chapter is to explain the
changes to the traditional development process
in order to drive it with quality assurance, and
illustrate the overall impacts on software quality,

AbstrAct

This chapter describes the practice of test-driven development (TDD) and its impact on the overall
culture of quality in an organization based on the author’s experience introducing TDD into four ex-
isting development projects in an industrial setting. The basic concepts of TDD are explored from an
industry practitioner’s perspective before elaborating on the benefits and challenges of adopting TDD
within a development organization. The author observed that TDD was well-received by team members,
and believes that other teams will have this same experience if they are prepared to evaluate their own
experiences and address the challenges.

 207

Test-Driven Development

process velocity, and developer productivity. The
perspectives on TDD presented in this chapter
are based on the author’s experience introducing
these techniques on four Web application develop-
ment projects in a large enterprise setting. These
projects will be described and the teams’ good
and bad experiences with TDD will be explored.
The intention of this chapter is to share the ex-
periences, both good and bad, of these teams
while using TDD so that other practitioners can
anticipate or evaluate similar effects in their own
environments.

WhAt Is test-drIven
development (tdd)?

Test-driven development is the practice of imple-
menting executable tests before implementing
functional components, and using the activity of
testing to propel the implementation of functional
components. For purposes of this discussion, the
essential components of the test-driven develop-
ment practice are the following:

• Tests are authored by the developer before
implementation.

• Tests are “easily” executed by the developer
working on the implementation.

• Tests are at the unit- or component-level.

tests are Authored by the developer
before Implementation

TDD is a quality improvement process that ul-
timately is a form of organizational change. A
key aspect of this is the transformation of every
developer into a tester. Organizations that have
separate roles for authoring tests have not com-
pleted this transformation—testing will remain a
back-and-forth process of transfer. So a require-
ment of TDD is that the developer who will be
implementing functionality begins by writing the
test to verify the implementation.

tests are “easily” executed by the
developer Working on the
Implementation

This is of course a very subjective metric, but is a
key requirement nonetheless. The core of the TDD
practice is that running tests is part of the mo-
ment-to-moment development process. For TDD
purposes, tests should be kept at a practical level of
granularity with a consideration toward execution
time. Low execution times ensure that these tests
can in practice be run frequently and continuously
during the work of implementation.

tests are at the unit- or
component-level

There are various levels of testing within the larger
landscape of software quality assurance such as
unit, functional, system, integration, and user
acceptance testing. It is certainly not the goal of
TDD to address all of these aspects of testing. TDD
promises to increase the amount of quality that is
built-in from the start, and encourages developers
to think upfront about testability. This is achieved
by testing the aspects immediately in front of the
developer at the unit- and component-levels of
implementation. A unit test is a test that focuses
on a given implementation construct (a .java file
in Java, a .c file in C/C++, etc.). A component test
is a test that focuses on an atomic system com-
ponent, such as an interface in Java, that might
front a number of implementation constructs in
the implementation.

As we proceed to higher levels of granularity
throughout the system, test-driven development
starts to dissolve into more integration-oriented
testing methods. As more and more layers are
integrated into the working, testable system, the
setup and cycle times of execution increases to
the point where some of the benefits of test-driven
development diminish. Some of these tests can
be automated and some can be written before
the implementation. Automated tests written

208

Test-Driven Development

at the integration level often drive refactoring
more than they drive initial development. So
integration-level tests are not the primary focus
of TDD practices. A key motivation of TDD is to
ensure that unit-level defects do not seep into the
integration phase where they consume valuable
time and resources.

the components of
test-drIven development

This section will more thoroughly define the
technical components or building blocks of TDD.
There are four major components (see Figure 1)
to a TDD framework:

•	 Test cases.
•	 Test suites.
•	 Test fixtures.
•	 Test harnesses.

test cases

The test case is the primary building block for
TDD. The test case is the initial code that the
developer writes to exercise an interface and
drive implementation. Test cases contain the

basic assertions that indicate expected behavior
from the implementation. The most important
code written for TDD will be written in the test
cases, and this code will drive the interface of
the implementation.

test fixtures

Test fixtures provide support services for tests in
the way of setting up proper pre- and post-condi-
tions. By far the most common use of test fixtures
is to prepare and dispose of necessary test data
against which tests will be run. Fixtures can be
responsible for creating test objects, establishing
any required dependencies, or mocking.

test suites

A test suite is a collection of test cases that are
intended to be executed together as a unit. Test
cases might be organized into suites according
to functional groups, application tiers, or com-
mon fixture needs. There is often a hierarchical
arrangement of test suites with suites containing
other suites and so on. Suites are used mainly
for convenience and to indicate which tests are
intended to be run as a group.

Figure 1. The components of test-driven development

 209

Test-Driven Development

test harnesses

The test harness is the highest level component in
the TDD framework. The harness is the founda-
tion that ties all of the other testing components
into an executable set. At a minimum, a harness
provides an execution environment in which tests
can be run and output captured. Harnesses might
also include features to ease the process of TDD,
such as supporting services for more convenient
fixture building or formatted reporting of test ex-
ecution results. By far the most popular harnesses
for TDD are the family of xUnit frameworks, such
as JUnit, NUnit, and CPPUnit, which were based
on the original SUnit framework created by Kent
Beck for Smalltalk (Beck, 1999).

WhAt Are AlternAtIves to
test-drIven development?

Software testing has typically been treated as
a topic to be addressed late in the development
cycle by many project methodologies. Often after
software components are considered “complete”
by software development teams, they are deliv-
ered to a testing team, at which time an intensive
testing phase begins. In traditional “waterfall”
methodologies, the testing phase is literally a
protracted phase that is ultimately considered a
pre-deployment phase. This phase is essentially
the combination of all forms of testing (unit, func-
tional, integration) in a single phase that occurs
after the conclusion of most major development
across the scope of an entire system. In more
iterative methodologies such as the Rational*®
Unified Process, a system is broken down into
smaller components for the purpose of construc-
tion and deployment (Krutchen, 2000). While this
is an effective risk-mitigation strategy, testing is
often still seen as a post-construction activity2

even though it occurs multiple times during a
given project’s lifecycle.

Testers are frequently considered to be “super
users” of a system and in these cases, the overall
quality of the system depends tenuously on their
skills of discovery. Testers are often expected
to take requirements of varying quality and ex-
trapolate them into scripted test scenarios. These
scenarios are documented as a narrative and are
typically executed manually. In some cases, execu-
tion of these cases can be automated but in tradi-
tional practice, this is late-stage automation.

The end stages of traditional projects end up
being heavy negotiation phases in which the de-
velopment team and sponsors pour over the set of
identified defects and unmet requirements. Such
lists are often extensive as they cover a broad
range of defects across the range of functional-
ity implemented in the system. Furthermore, the
defects are not limited to integration- and deploy-
ment-level defects (which are more understandable
at that late integration phase), but instead include
many unit-level defects in base functionality.
While these situations are certainly symptomatic
of other methodological concerns that many agile
practices address, TDD practices have signifi-
cantly limited the extent of such discussions in
the author’s experience.

Test-driven development often involves auto-
mation, but test-driven development is more than
just the act of test automation. As we will see,
there are a number of testing automation practices
that are not, strictly speaking, test-driven prac-
tices—for example, using automated acceptance
tools such as Fitnesse3 to write acceptance scripts
after implementation.

bAckground

 The perspectives on TDD presented in this chapter
are based on the author’s experience of applying
TDD to four software projects in an industrial
setting. These projects were implemented in the
corporate IT organization at a Fortune 250 medi-

210

Test-Driven Development

cal technology company. These projects were all
browser-based Web applications.

the projects

Project A was an information portal targeted at
healthcare professionals who are customers of
the company. Users complete a self-registration
process, indicate their information preferences,
and are required to login to view the site. The site
then presents personalized navigation and content
to users based on the user’s professional specialties
and geographic location. Content managers have
additional access to post content to the site. This
project consists of approximately 51,000 lines of
code (LOC) and was developed by a team of six
developers and an application architect.

Project B was an information portal targeted
at internal field employees of the company. Users
login to view the site and information is personal-
ized automatically based on job role information
in other corporate systems. Content is personal-
ized to users based on job levels and geographic
location. Content managers have additional access
to post content to the site. This project consists of
approximately 16,000 lines of code (LOC) and
was developed by a team of three developers and
an application architect.

Project C was a tool to assist internal field em-
ployees in generating pricing quotes for customers.
Users have role-based access to different customer
accounts and need to search available products to
build a list of products for a quote. This system
uses remote messaging to interface with backend
enterprise systems that provided price informa-
tion. This project consists of approximately 8,000
lines of code and was developed by two developers
and an application architect.

Project D was a tool used by customer service
agents to track customer requests related to insur-
ance reimbursement. Agents interact with both
customers and internal field employees when cre-
ating requests and are able to dynamically generate
reports to respond to answer status requests and

report performance to upper management. This
project consists of approximately 16,000 lines of
code and was developed by two developers and
an application architect.

the people

The staff on all projects consisted of both em-
ployees and contract developers with at least
four years of Java development experience. De-
velopers had varying levels of experience with
the specific development tools and frameworks
used to build the applications, but were able to
be productive with those technologies in a short
time. However, only three of the developers had
any prior experience writing automated program-
mer tests. The remaining developers had varying
levels of informal exposure to unit testing, such
as reading articles in trade publications or books.
No developers had any formal training in TDD
before or during these projects.

the Approach

Developers used Eclipse, JUnit, and Ant in an in-
dividual development environment. Test coverage
was focused on interfaces that were integration
points among subsystems in the applications.
Developers were expected to write their own test
classes and run them frequently through Eclipse
during their regular development activity. As part
of the standard development environment, Ant
scripts were provided that run the entire suite of
tests. The entire suite was run prior to deploy-
ing builds to a testing environment, and in some
cases continuous integrations ran the test suite
on a more frequent and regular basis.

lessons leArned
And best prActIces

Overall, the development teams involved in the
aforementioned projects decided that TDD prac-

 211

Test-Driven Development

tices were a beneficial addition to the projects.
Developers generally felt that using TDD made
them feel more confident that their code met re-
quirements and would not require re-work. Teams
determined that the following lessons learned and
best practices contributed to those feelings.

tests really do need to be “easily”
executed

The notion of tests being subjectively “easy” to
execute was introduced earlier as a defining char-
acteristic of TDD. But team members definitely
felt that they were more inclined to execute tests
if they ran simply (automated test fixtures and
test setup) and rapidly. The longer tests took to
run, the more frequently developers would lapse
into “test after” practices—just working on the
implementation and writing tests later.

smaller is better

Teams felt that writing “small” tests was more ef-
fective. Small in this sense meant that individual
test methods were very focused around testing a
small amount of functionality. Large test methods
tended to require large amounts of fixture setup
and resetting and became more difficult to read.
Writing small test methods with descriptive names
tended to be more self-documenting and easier
to maintain over time.

the only Implementable
requirement is a testable
requirement

A self-respecting TDD purist would state that
for every functional requirement there should
be a test, as a matter of principle. That is to say
if you are able to describe a functional business
requirement that can possibly be implemented
as working software, then you should also be
able to describe a software test to verify that the
requirement was in fact implemented.

While this view is a bit extreme, it suggests
a useful thought experiment for even the more
realistic TDD practitioner. A developer who is
properly “test-infected” will receive a functional
requirement or enhancement request and will first
think about the test. Where in the test suite would
such a requirement best be verified? What are pre-
and post-conditions for the functional scenario?
What are boundary and exception conditions, and
what should fallback behavior be in those cases?
Beck comments that there are just two simple
rules involved—writing failing automated tests
before writing implementations and removing
duplication (Beck, 2003)4.

It might not be possible or practical to first
implement a test for every possible scenario of
every identified requirement. But it is a sign of
healthy test-infection when a developer thinks
through the verification process before implemen-
tation, and implements tests for critical aspects
of the implementation (most frequent, highest
risk, etc.).

base test coverage on risk
Assessment

The question of test coverage can be a bit contro-
versial in the world of TDD. One might think that
100% test coverage is essential for true TDD. It’s
possible that in a situation of doing brand-new,
greenfield development with full management
support for TDD and quality that this is attainable.
However, this is often not the case on development
projects5. More often than not, TDD practices will
be introduced during the maintenance of existing
code, or there might not be full support in the
organization for the practice of TDD. The answer
to the coverage question is that you should have
the proper amount of test coverage on a system,
as well as that subjective term can be applied to
a given set of circumstances.

Coverage can be measured objectively using
test coverage tools that become part of the overall
testing harness. Coverage tools are responsible

212

Test-Driven Development

for reporting which lines of production code are
executed during the execution of testing code.
These tools might be used during the initial de-
velopment of testing code, but are more often used
as part of integration activities to audit for proper
test coverage. Summary coverage is reported in
terms of the overall percentage of code that is
executed during tests. Coverage tools also report
specific lines of code that are not executed at all
during tests, so that additional coverage can be
added. Some coverage tools, such as Clover6 for
testing Java code, provide this detailed view in the
form of browsable HTML pages with highlight-
ing to allow developers to more easily navigate
to untested code.

Our teams felt that 100% coverage was not
practical. While the notion of 100% coverage is
appealing standing on its own, it is not always
practical or possible to achieve this metric due
to various concerns (schedule demands or orga-
nizational support, for example). Our teams used
informal processes of identifying key areas of
risk, based on the following criteria to identify
where test coverage was most critical:

•	 Requirements were compliance-oriented.
•	 Functionality required interfaces with other

systems.
•	 Implementation required contributions from

other teams.
•	 Functional components required more ex-

pensive integration testing iterations (due
to resource availability, time-consuming
manual testing processes, etc.).

Our teams identified requirements for testing
during the high-level design process. While decid-
ing questions of overall design direction, the teams
would also identify which functional areas were to
be the focus of TDD. This approach proved to be
a successful method of gaining the advantages of
TDD in critical areas, while mitigating concerns
around time spent in test development.

Integrate tests into a continuous
Integration process

A perhaps less obvious gain when using test-driven
development is that you will be encouraged to
build your code more incrementally that you might
otherwise do. Test-driven development follows a
simple rhythm of defining an interface, writing
a test against the interface, and then writing the
implementation until the test passes. This rhythm
lends itself very well to the notion of biting off
small pieces of functionality at a time, and continu-
ally expanding the implementation. Developers
do this with great confidence because their ever-
growing test suite promises to alert them if any
defects are introduced along the way.

Test-driven development leads to a certain
“food pellet” effect in this regard—developers
often favor smaller increments because they are
more quickly able to receive the feedback on
whether they have introduced defects. This fact
makes test-driven development a very natural
enabler for increased agility on projects.

As this behavior becomes more and more
common during the daily individual develop-
ment process, teams also are better positioned
to implement a continuous integration practice.
Continuous integration is an important agile
development technique in which the process of
integrating is automated. In continuous integra-
tion, a scheduled and automated process pulls the
latest code from source control and then compiles,
tests, packages, and deploys the code to an integra-
tion environment. This process is run extremely
frequently—often multiple times during the work
day. The goal of continuous integration is to alert
the development team as soon as possible when
there are conflicting changes and allow the team
to respond sooner than in a more traditional pro-
cess of integrating manually and less frequently.
Some continuous integration frameworks, such
as CruiseControl7, include additional features
such as email notification of build success or
failure, and Web-based reporting of test results

 213

Test-Driven Development

that greatly enhance a team’s ability to respond
to integration issues.

Teams following TDD practices are much bet-
ter positioned for continuous integration because
they will have a rich set of automated tests ready
to be run. Running a full suite of automated tests
is a valuable aspect of continuous integration, so
TDD teams will be far ahead of teams that are
writing tests later or not at all. Test-driven teams
will arguably also have a more “well-gardened” set
of tests that play well together, as the developers
are in the habit of running tests continuously in
their own development environments.

Continuous integration could be considered a
form of test-driven packaging and deployment.
The practice of writing tests first encourages
developers to implement a design that is easily
testable. Likewise, the practice of setting up a
continuous integration environment encourages
developers to implement a build and deployment
process that is easily automated. Many more teams
practice TDD than practice continuous integration
and there is far more literature on the practice of
TDD. But teams that practice TDD should consider
continuous integration the next major step down
the path of improve code quality.

use mocking to Address
components with runtime
dependencies

A frequent issue in writing automated unit tests
has to do with the issue of runtime dependencies.
Production code often has more elaborate depen-
dencies beyond the inputs to a given method, which
are typically parts of the test fixture. Examples are
dependencies on the availability of data sources,
remote services, file system resources, and trans-
ports (such as an HTTP environment). The answer
for addressing these additional dependencies is
the use of mocking.

Mocking involves the use of objects that im-
personate more complex runtime components.

These mock objects are used just for the purpose
of testing, and implement the minimum amount
of behavior that is required by objects or compo-
nents that are under test. There are almost always
extra objects created in test scenario as part of
the fixture. But the key difference between those
objects and mock objects is that mock objects are
stand-ins or façades for a more complex system
of objects. The other test objects included in the
fixture are typically valid object instances that
consist of invented test data, but are valid object
instances nonetheless.

The use of mock objects is invaluable when
there is critical testing to be performed around
objects with complex runtime dependencies. Some
production-quality frameworks, such as the Spring
framework8, include mock objects that do most of
the heavy lifting so the developer can focus more
on writing the core tests. However mocking can
also add significant overhead to test fixtures if
the developer is solely responsible for creating
the mock objects. In these cases, the developer
should consider the return on effort for creat-
ing a more elaborate fixture, or should consider
refactoring critical logic out of dependent objects
to increase testability.

Teams Feel More Confident Making
changes

Our teams felt much more confident making
significant functional changes when TDD was
used. This feeling was especially evident when
fixing defects discovered during the integration
process or when implement enhancements to
existing functionality. When developers could
begin these tasks by executing a passing test suite
and then writing new failing test (or modifying
existing tests as appropriate so that they failed),
they were much more confident that they were
meeting the requirements they were given.

214

Test-Driven Development

Teams Feel More Confident about
the design

TDD arguably encourages better design because
the interface developer must first think of the
client’s needs. The test is the first client of the
implementation and the developer is the first
customer. The test is also a form of software
documentation, which again increases overall
quality. The test is a readable form of functional
documentation that explicitly defines a functional
software component. While this form of docu-
mentation might not adequately address higher
business concerns or concepts around the func-
tional requirements, it can explicitly demonstrate
business rules in action. Tests might even been
seen as a form of interactive documentation, as
they can continually be added to when exploring
boundary conditions or new requirements. In our
experience, these factors contributed to a higher
level of design satisfaction on teams.

tdd as a refactoring enabler

As a follow-up to the previous point, teams con-
firmed that TDD enabled much more productive
refactoring. While this point has been discussed

in literature (Beck, 1999), our teams certainly felt
more confident in practice that refactoring was
much easier to address when code was written
using a TDD approach.

The code travels with its own suite for re-
certification, so changes can be more safely made
later. The existence of ready-to-run tests enables
maintenance developers to more confidently ad-
dress enhancements and ensure system stability
during later updates.

loose coupling and
component-based design
enable testability

As we have discussed previously, the practice
of TDD requires upfront thinking about design
because the developer is writing a client before
the implementation. Before arriving at that
point, some basic principles of good application
architecture and design can be applied in order
to ensure that the overall system is constructed
in a highly testable fashion.

Loose coupling of components is perhaps
the most important principle that applies. Well-
defined interfaces between subsystems greatly
enhance the developer’s ability to start small and

Figure 2. Example of subsystems in an enterprise Web application

 215

Test-Driven Development

build a well-tested component for integration
into a larger overall system. At the very least,
development teams should agree on high-level
subsystems or tiers and discuss interface needs
between those components.

Figure 2 illustrates a typical subsystem ar-
chitecture for a Web application with access to a
local database as well as remote services.

A component-based architecture such as this
enables a given subsystem to more easily be
developed in isolation using TDD techniques.
Implementation considerations of other sub-
systems can be safely disregarded so that the
developer can focus on the core implementation
of the given subsystem. We will later see how
dependency mocking can assist with crossover
areas and integration points.

Use of loosely coupled subsystems as a de-
sign technique has additional long-term benefits
for defect isolation during maintenance phases.
Future developers will have a much easier time
isolating defects to a given subsystem, and will
more likely be able to address defects by modify-
ing the test suite and implementation for just a
given subsystem.

new roles for Architects and testers
during the development process

Test-driven development certainly empowers
developers to become their own first testers. As
important as this is, there are also impacts on
the traditional roles of application architects and
functional testers in the TDD world.

Architects must be able to ensure that the
overall application design encourages testability.
Architects must consider issues such as the follow-
ing and determine their impacts on testability:

• Are there runtime dependencies that must
be mocked for testing?

• Are subsystems and components properly
isolated for testing discrete functionality?

• Is there a “culture of testing” on the team,
so that test-driven development practices
will be consistently followed?

Testers become a new type of subject-matter
expert (SME) for developers on the topic of writing
tests. Testers at the very least can help developers
identify key rules for testing and corner cases that
will drive refactoring. On larger teams or more
critical systems, the testers might take an even
more active role, at least at the outset. Testers
might pair program with developers when writing
interfaces and initial tests.

Integrate testing best practices into
coding best practices

Writing tests involves writing additional code and
test code should follow coding guidelines just as
the implementation code does. But for testing
code, teams should additionally define standards
test-specific concerns. The following items are
examples of topics to cover when defining testing
best practices:

•	 Proper approaches for setting up test fixtures
programmatically.

•	 Process for setting up environments—such
as loading test data or frameworks for creat-
ing mock objects.

•	 Methods for assembling test cases into test
suites.

•	 Scripts and processes for executing suites.

chAllenges In tdd

While teams felt overall that TDD was an effec-
tive practice, it is not without its challenges. Many
of these are perhaps the natural experiences of
teams that are new to TDD, but there were real
considerations in our experience.

216

Test-Driven Development

Difficult to Get Started with TDD

Our experience was that many developers were
interested in TDD, but had a hard time getting
started writing their first test classes. Developers
seemed confused about how to write assertions
around code that did not yet exist or weren’t quite
sure where to begin writing tests within the context
of a class design they had in mind. A mitigation
strategy for this issue is to use mentoring or pair-
ing to help developers get their first tests written,
at least at a high level. A more experienced TDD
developer can write initial rough tests, and coach
the newer TDD developer through the process of
expanding the tested scenarios.

There are sometimes organizational factors at
work here. When there is a setting that encourages
“just getting things done” or very rapid delivery,
developers sometimes had a difficult time carv-
ing out time to write their first tests. Even if they
have some tests written before implementation,
writing tests was sometimes dropped lower on
the priority list in favor of showing progress on
functional code. If teams want to adopt TDD
practices, our experience was that they needed
to allow developers periods of lower productiv-
ity during early stages of adoption to acclimate
themselves to the TDD approach.

unique challenges with tdd and
existing code

There is a tremendous volume of existing pro-
duction code that has no existing automated unit
tests, and a significant portion of total developer
time in an organization is spent maintaining this
existing code. While it might not be as easy to
introduce TDD practices on such code, it is not
impossible. Our teams found that the quality of
the overall design was the largest determining fac-
tor for how challenging it will to introduce TDD.
Obviously, better designs with more isolation and
loose coupling will lend themselves more easily to
automated testing. But in any event, if code was

not designed with automated testing in mind9 it
will likely require some amount of refactoring to
become testable.

The process of introducing automated tests
onto existing untested code should not be done
wholesale, but should rather be done gradually
in keeping with Agile principles of building to
requirements and continuously delivering value
(rather than embarking on extremely long term
re-engineering efforts). The introduction of testing
should be considered part of the defect and en-
hancement process. The required process change
is that all defects will be verified with failing tests
before being fixed, and passing tests will be writ-
ten against affected areas before implementing
test-first enhancements.

The developer must refactor the interface that
requires testing in order to make it testable. This
usually involves breaking dependencies and sim-
plifying the interface so that an elaborate fixture
is not required. A less desirable alternative is to
implement mocking for the dependencies. This
is less desirable because developer-implemented
mocking is considered less valuable overall than
refactoring the production code to improve code
quality. And improving code quality is the primary
goal of TDD in the first place!

Fowler (2004) described this process of gradual
improvement over time while progress to an over-
all vision of reengineering as the “StranglerAp-
plication.” Fowler models his description after the
Strangler vine, which symbiotically grows on top
of a tree, but eventually overcomes and kills the
tree. Likewise, introducing automated tests and
TDD practices onto existing code should be seen
as a Strangler vine that will eventually kill off the
last bits of untestable code from a system.

coverage is a recurring
conversation

Our teams felt that 100% coverage was not a
practical goal in our environment, so instead
pursued partial coverage based on informal risk

 217

Test-Driven Development

assessment. A consequence of this direction
was that appropriate coverage was an ongoing
conversation. Although the team valued the
agile nature of determining test coverage from a
business value standpoint, conversations on the
topic were by definition very subjective rather
than objective. Teams pursuing deliberate partial
coverage should be prepared with strategies for
bringing such conversations to closure so they
don’t consume valuable development time.

but are tests Just more code to
Write? And isn’t this someone
else’s Job?

For developers that are new to unit testing and
test-driven development, writing test cases in
code might just appear to be additional work. It
certainly looks like additional work—its extra
code that they didn’t have to write before! Writ-
ing tests is an investment in the future. Some
developers will immediately see the value of
TDD; others will need to stick with it for awhile
before realizing the value. Reluctant developers
will gradually come around as they see tests in
other areas of an application fail unexpectedly
after making changes. The test suite will start to
be less of a burden and more of a safety net.

Sometimes there is resistance to TDD not
because it implies additional tasks but because
it seems to imply additional responsibility. Tra-
ditional role delineations might have developers
thinking that they are responsible for design and
implementation and someone else is responsible
for finding defects. The answer here lies in the
fact that the developer’s responsibility is to imple-
ment the requirements, and TDD should be seen
as an advantageous method for ensuring those
requirements are met.

Automation Alone does not make for
test-driven development

It is worth emphasizing that there are many forms
of automated testing, but automation alone does
not make these test-driven development practices.
The following are some typical automated test-
ing practices, and while they certain contribute
to overall system quality, they do not strictly fall
under the umbrella of test-driven development.

User Interface Integration Testing

Full integration tests are sometimes run at the
user interface level. Scripting is used to simu-
late user actions in the actual user interface, as
a means of full regression testing of all involved
system components. But in this case the system
must be functionally complete for the tests to be
executed, so this practice is certainly not driving
development.

Load or Stress Testing

Load or stress testing is the practice of simulat-
ing heavy usage in a system. This is sometimes
done to verify a non-functional requirement for
system usage, such as number of concurrent us-
ers or transaction throughput. In other cases, this
is a form of resiliency testing to determine the
usage level at which some system components
will fail or malfunction. This method of testing
is almost exclusively done through automation
and scripting. But here again the system must be
functionally complete for the tests to be executed,
so this practice is not driving development.

User Acceptance Testing

User acceptance tests are increasingly being
executed through automation using tools such

218

Test-Driven Development

as Fitnesse. These tools allow users to specify
the fixtures around tests, and then execute the
tests themselves. There are ultimately coded test
cases that execute behind the scenes, using the
provided fixtures. But this type of testing is not
considered TDD for the obvious reasons that it
is automated, is not executed directly by the de-
veloper, and is executed after the implementation
rather than before.

objective productivity and Quality
Improvements are debatable

Several studies (Erdogmus, Morisio, & Torchiano,
2005; George & Williams, 2003; Geras & Miller,
2004; Maximilien & Williams, 2003, Reifer, 2002)
have explored the effects of using TDD vs. “test
last” or “no test” development and assessed the
impacts on developer productivity and product
quality. Many studies did indicate a positive im-
pact on product quality (Erdogmus et al., 2005;
George et al., 2003; Geras et al., 2004; Maximilien
et al., 2003), in one case even asserting that de-
fects dropped by 50% (Maximilien et al., 2003),
but researchers often had small sample sizes that
they considered to be threats to validity. Changes
in productivity were reported to be either neutral
(Erdogmus et al., 2005) or negative (Erdogmus
et al., 2005; George et al., 2003; Maximilien et
al., 2003). The author does not have quantitative
data around productivity on the four projects
in question, so cannot comment objectively on
productivity. While researchers have various
explanations for these findings, there is not defini-
tive, objective evidence to say that TDD makes
developers or teams more productive.

Interestingly enough, a survey (Reifer, 2002)
indicated an increase in productivity when us-
ing TDD; the survey was not coupled with any
objective assessment. This fits with the authors
experience—all developers using TDD practices
on these projects shared that they felt more confi-
dent in their designs and code, and that they felt
more productive. These less measurable benefits

might be of value to readers from other perspec-
tives such as maintaining staff morale and com-
mitment to quality.

Overall, these findings and experiences make
TDD a harder prospect to “sell up” in a large
organization. Without more conclusive objective
data, teams wanting to introduce TDD practices
into their organizations need to base their cases
on less tangible benefits, or do their own objec-
tive evaluations in their own environments to
determine if TDD is well suited.

WhAt’s next for
test-drIven development?:
future trends

The practice of TDD is well defined in current
literature and it is gradually becoming a standard
behavior in the development process, especially
for teams that embrace extreme programming
(XP) or agile techniques.

Integrations and plug-ins for many popular
IDEs provide useful tools for test generation and
execution. There are also many useful reporting
tools to help teams digest summary test execution
results when running a large test suite. However
many of these tools currently help developers
generate skeleton test suites that still require code
to become useful tests. Improvements to these
tools might come in the form of integration with
code analysis tools that will suggest assertions to
put inside the tests themselves. The ruby on rails
development framework automatically generates
stub test classes for declared implementation
classes independent of an IDE integration—this is
considered a core service of the framework10. This
concept of integrating tests and implementation
will likely become more common in development
frameworks as the practice of TDD increases.

Core language enhancements will certainly
influence how TDD is practiced, with features such
as assertions, annotations, and other declarative
programming11 techniques playing a major role.
Many current TDD practitioners believe that tests

 219

Test-Driven Development

should be kept as focused as possible, and that tests
with elaborate fixtures should really be broken
apart into smaller tests. This will probably not
be the case as more and more languages include
the above features. These features can be used
to perform equivalent tests on production code
during execution, and therefore will encourage
developers to skip writing tests at a very fine-
grained level and instead focus on writing higher
level integration tests.

conclusIon

There are many ways that TDD can take root in an
organization, team, or individual. At the organiza-
tion level, it can be the top-down promotion of the
idea that quality is everyone’s responsibility, not
just the designated Quality Assurance team. At
the team level, it can be a means of saving cost
and time in the development cycle by ensuring
that the expensive cycles of human-performed
integration tests are used wisely for performing
true integration tests rather than discovering
defects that should be caught earlier. At the indi-
vidual level, it can be the realization that writing
tests first can prevent tedious re-coding later and
can be far easier than breakpoint debugging for
ensuring that code meets expectations.

There are many benefits to adopting TDD,
but it is not without challenges. Learning new
behaviors, making additional decisions around
coding standards, and deciding on test coverage
are just a few challenges teams will confront when
adopting TDD. Awareness of these challenges
will help teams address them upfront, and might
also serve as an example for teams to continually
evaluate what challenges they face in their own
environment. TDD is not a panacea for all test-
ing concerns in developing software, but it can
certainly contribute to a team’s commitment to
improving the quality of their software.

references

Beck, K. (1998). Kent Beck’s guide to better
smalltalk. Cambridge, UK: Cambridge Univer-
sity Press.

Beck, K. (2002). Test-driven development: By
example. Boston: Addison Wesley.

Erdogmus, H., Morisio, M., & Torchiano, M.
(2005). On the effectiveness of the test-first ap-
proach to programming. IEEE Transactions on
Software Engineering, 31(3), 226-237.

Fowler, M. (2004). StranglerApplication blog
entry on martinfowler.com. Retrieved January
30, 2006, from http://www.martinfowler.com/
bliki/StranglerApplication.html

George, B., & Williams, L. (2003). A structured
experiment of test-driven development. Informa-
tion and Software Technology, 46, 337-342.

Geras, A., Smith, M., & Miller, J. (2004). A
prototype empirical evaluation of test driven
development. Paper presented at 10th International
Symposium on Software Metrics (METRICS
’04), Chicago.

Krutchen, P. (2000). The rational unified pro-
cess: An introduction. Boston: Addison-Wesley
Professional.

Maximilien, E. M., & Williams, L. (2003). As-
sessing test-driven development at IBM. Presented
at the 25th International Conference on Software
Engineering, Portland, OR.

Rainsberger, J. B., & Stirling, S. (2005). JUnit
recipes. Greenwich, CT: Manning Publications,
Co.

Reifer, D. (2002). How good are agile methods?
IEEE Software, 16-18, July/August.

220

Test-Driven Development

AddItIonAl resources

JUnit: http://www.junit.org
CPPUnit: http://cppunit.sourceforge.net/
PyUnit: http://pyunit.sourceforge.net/
NUnit: http://www.nunit.org/
DBUnit: http://dbunit.sourceforge.net/
JWebUnit: http://jwebunit.sourceforge.net/
HttpUnit: http://httpunit.sourceforge.net/
HtmlUnit: http://htmlunit.sourceforge.net/
CruiseControl:
 http://cruisecontrol.sourceforge.net/
FitNesse: http://fitnesse.org
Clover: http://www.cenqua.com/clover/

endnotes

* Rational® Unified Process is a registered trade-
mark of IBM Corporation.

1 For the sake of simplicity, all comments will
refer to a single developer running tests. In
practice, TDD is a very common practice
combined with pair programming in the
extreme programming (XP) methodology.
Pairing is another valuable but sometimes
controversial topic altogether.

2 RUP purists will note here that the RUP
is considered a use-case driven process,
and use cases are seen as predecessors to
test cases. From a process standpoint, the
requirements are perhaps more readily test-
able or lend themselves to testability, but the
process itself is not test-driven in the sense
that it does not specify the construction of
testing components before functional com-
ponents. TDD can nonetheless be applied
to a process based on RUP.

3 See http://fitnesse.org/ for additional infor-
mation.

4 Beck eloquently and concisely states that
TDD “encourages simple designs and
test suites that inspire confidence” (Beck,
2003).

5 The authors of JUnit Recipes (Rainsberger,
Stirling, 2005) note that they almost always
need to deal with legacy code. The value of
applying TDD to existing code should not
be underestimated.

6 See http://www.cenqua.com/clover/ for ad-
ditional information.

7 See http://cruisecontrol.sourceforge.net/ for
additional information.

8 Spring provides very useful mocks for HTTP,
JNDI, and JDBC components. See http://
www.springframework.org for additional
information.

9 Automated testing is a non-functional re-
quirement, and in this case the developer
is really enhancing the code to meet new
requirements.

10 See API documentation at http://www.
rubyonrails.org/ for additional informa-
tion. Test stub generation is built into the
“scripts/generate model” command.

11 Declarative programming is the practice of
stating end conditions as fact declarations,
and allowing an underlying framework to
take care of procedural concerns to arrive at
the declared state. Procedural programming,
on the other hand, is defined by algorithms
that are responsible for processing and state
transition.

 221

Chapter XII
Quality Improvements from
using Agile Development

Methods:
Lessons Learned

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Beatrice Miao Hwong
SIEMENS, USA

Gilberto Matos
SIEMENS, USA

Monica McKenna
SIEMENS, USA

Christopher Nelson
SIEMENS, USA

Gergana Nikolova
SIEMENS, USA

Arnold Rudorfer
SIEMENS, USA

Xiping Song
SIEMENS, USA

Grace Yuan Tai
SIEMENS, USA

Rajanikanth Tanikella
SIEMENS, USA

Bradley Wehrwein
SIEMENS, USA

AbstrAct

In the past few years, Siemens has gained considerable experience using agile processes with several
projects of varying size, duration, and complexity. We have observed an emerging pattern of quality as-
surance goals and practices across these experiences. We will provide background information on the
various projects upon which our experiences are based, as well as on the agile processes used for them.
Following the brief discussion of goals and practices, this chapter will present the lessons learned from
the successes and failures in practicing quality assurance in agile projects. We aim at informing fellow
agile developers and researchers about our methods for achieving quality goals, as well as providing
an understanding of the current state of quality assurance in agile practices.

222

Quality Improvements from using Agile Development Methods: Lessons Learned

IntroductIon

Since the declaration of the agile manifesto (Beck
et al., 2001) in February 2001, agile software de-
velopment methods have enjoyed a proliferation
leading to the spawning of variants and a prosely-
tizing of agile methods as silver bullets (Brooks,
1987). Many Siemens organizations are turning
to agile methods in order to shorten product de-
velopment timelines. Siemens Corporate Research
(SCR), the R&D center for Siemens in the U.S.,
has even formed its own agile development group.
This chapter will discuss project experiences that
this SCR group has been involved in to show how
quality is approached in agile development.

The background section that follows will
provide an overview of seven projects in which in-
house agile processes were used. Next, there will
be a discussion of common quality assurance (QA)
goals and practices amongst these projects. This

discussion will lead up to the section on lessons
that we have learned so far and then conclusions
for improving QA in future agile projects.

bAckground

Within this section, we introduce two Siemens
in-house agile processes, along with seven projects
in which they were employed. The first process,
named S-RaP (an acronym for Siemens Rapid
Prototyping), is a UI (user interface)-centered
workflow-oriented approach that targets primar-
ily the exploration of complex business require-
ments. The second process, entitled UPXS, is a
combination of traditional and agile practices
(Unified Process (Jacobson, Booch, & Rumbaugh,
1999), eXtreme Programming (Beck, 1999), and
Scrum (Schwaber & Beedle, 2001)) that aims to

Figure 1. S-RaP process model (Nelson & Kim, 2004) (image by Kathleen Datta)

 223

Quality Improvements from using Agile Development Methods: Lessons Learned

support full-blown product development (even
product-lines).

sIEMEns AgILE ProcEssEs

s-raP

The S-RaP (Gunaratne, Hwong, Nelson, & Rudo-
rfer, 2004; Hwong, Laurance, Rudorfer, & Song,
2004; Nelson & Kim, 2004; Song, Matos, Hwong,
Rudorfer, & Nelson, 2004; Song, Matos, Hwong,
Rudorfer, & Nelson, 2005; Tai, 2005) process
evolved to provide rapid prototyping solutions
for Siemens customers. An S-RaP project starts
with the identification and prioritization of a set
of business features by the customer and proceeds
according to the “time-boxing” technique (Mc-
Connell, 1996). The features with higher priority
are developed first and then the remaining features
are addressed as time permits. An illustration of
the iteration, concurrency, and coupling of the
S-RaP process is presented in Figure 1.

S-RaP development is concentrated around
two key artifacts:

Storyboard

The features planned for development are or-
ganized into workflows. These workflows are
pictured and described in the context of stories
within the Storyboard. An example of one such
Storyboard appears as Figure 2.

The Storyboard is the requirements and test-
ing specification for the developers and a means
to establish and communicate a common product
vision among all stakeholders. It is evolved itera-
tively, integrating customers and domain experts
to work together with the development team to-
ward the identification of new, and clarification
of existing, requirements. Due to the limitation
of static content, the Storyboard alone might not
be capable of clarifying the full semantics of the
user interface and the workflow interactions.
This problem is solved by the availability of an
interactive prototype early on.

Figure 2. Sample screenshot of Storyboard (Song et al., 2005)

224

Quality Improvements from using Agile Development Methods: Lessons Learned

Prototype

During development, the software prototype
provides the customer with a working representa-
tion of the final deliverable at an early stage. This
gives the customer a hands-on testing experience
with what has been developed, which helps to
validate existing ideas and oftentimes generates
new ones. The developers start the prototyping
and testing activities as soon as some workflow
features become stable. They select the develop-
ment tasks autonomously and provide the team
leads with coarse time-effort estimation.

Note that both activities—Storyboarding and
prototyping—run quasi-concurrently. While the
UI designers and requirements engineers model
the UI and its functionality in the Storyboard, the
developers implement the related features in the
prototype. The iterative, quasi-concurrent evolu-
tion of these two artifacts allows dynamic con-
sideration and integration of the customer needs
(requirements) in the process and supports the
delivery of a product which meets these needs.

uPXs

UPXS (Pichler, 2006; Smith & Pichler, 2005) is
an agile development methodology that combines
principles from the unified software development
process (UP), XP, and Scrum. Developed for a
high-profile Siemens project, the process was
designed to address the needs of a large distrib-
uted agile project. With a foundation of Scrum’s
team structure and activities, UPXS adds the
project timeline model and phases of UP, along
with iteration and task planning and development
practices from XP.

Similar to S-RaP, UPXS is executed in time-
boxed iterations of 10 to 20 working days. Itera-
tions begin with the selection and prioritization
of a subset of features to implement from the
product backlog. The initial backlog is created by
the product owner to establish and prioritize the
full set of features in the final deliverable. Unlike

in S-RaP, UPXS prescribes the creation and use
of more traditional artifacts, though they are cre-
ated iteratively and evolve throughout the project.
These artifacts include use cases, requirements
documents, and software architecture documents.
Project management is performed using project
and iteration backlog documents to maintain a
prioritized record of remaining tasks. and burn-
down charts are used to track sprint progress.
Daily Scrum meetings allow synchronization of
team members and the escalation of any blocking
points for the Scrum team. Similarly, a daily Scrum
of Scrums meeting facilitates communication
between Scrum teams and gives management an
ongoing awareness of project status. Addition-
ally, the Scrum of Scrum aids in coordinating
distributed teams.

An important motivation behind UPXS is to
provide greater predictability and risk manage-
ment to project leaders. For this reason, UPXS
takes daily and weekly progress as an input for
feature selection and prioritization for coming
iterations. Although the manner is not as hands-
on as in S-RaP, product walkthroughs at the
end of each iteration keep the product owner
well informed of the current state and quality
of the evolving software deliverables. With the
four major phases into which iterations are
grouped—Inception, Elaboration, Construction,
and Transition—there are also milestone check-
points for project management to evaluate the
overall progress of the project.

Agile Projects

Over the past few years, the processes previously
described were employed in a number of different
projects. The experiences mentioned in later sec-
tions are taken from the seven projects we present
in this section. Table 1 outlines the specific agile
characteristics of these projects and is followed
by more in-depth descriptions.

 225

Quality Improvements from using Agile Development Methods: Lessons Learned

Project A1: Medical Marketing
Prototype

Project A1 was an S-RaP project focused on
building upon an inherited prototype to produce
a marketing demo of new advanced features and a
modernized look and feel for an emerging software
product. The application ran in a Web browser and
used simple HTML and JavaScript technologies.
Deadlines were fixed but features were often
negotiated during the actual development. Since
the product was intended for marketing purposes,
the customer needed a reliable solution with a
high fidelity UI.

Project A2: Medical Marketing
Prototype

When the customer in Project A1 desired an
advanced set of features that could not be easily
done with its existing architecture, Project A2
was born. Project A2 was also an S-RaP project,
but unlike its parent, A2 produced a prototype
that consisted of a 3-tier architecture with an
HTML-based UI, a server component, and an
underlying database layer. The customer had
decided to incorporate more workflows and an

underlying database layer to enable dynamic
configuration of workflows and application data.
Thus, the customer desired a more maintainable
and adaptable solution that was still reliable and
also had a high fidelity UI.

Project b: Medical requirements
Elicitation Prototype

Project B is a smaller S-RaP project that produced
a prototype starting from a vague statement of
customer needs. There was no existing software
upon which to base this prototype. Thus, it was
critical to the project’s success for requirements
to be elicited and refined efficiently. Develop-
ers participated in defining the requirements by
providing suggestions on how to model the inter-
action features that were not yet fully specified,
which contributed to their practical viability. The
customer’s main desire was to elicit, specify, and
verify requirements for features of a new product.
The development of a high-fidelity UI prototype
delivered not only the clarified requirements but
also a demonstration tool that could be used for
collecting further feedback from prospective
clients.

Table 1. Project characteristics

226

Quality Improvements from using Agile Development Methods: Lessons Learned

Project c: Medical Product

Project C is another S-RaP project that produced
a small 3-tier product. Although S-RaP was
originally developed for prototyping purposes,
this project showed that the prototyping process
could also support the development of a finished
commercial product. Project C lasted 1.5 years
and began as a prototype used to explore UI,
ease-of-use, and performance issues, after which
development began on a second prototype that
evolved into the final deliverable. The practice
of S-RaP principles helped us collect useful in-
formation that influenced the requirements and
design of the final solution. In terms of quality
goals, the focus was initially on high security,
so as not to compromise personal data, as well
as a highly attractive and easy-to-use UI. Once
these goals were met, the focus shifted towards
performance.

Project d: communications Platform

Project D is a UPXS project that began with a
mostly centralized co-located team and has ex-
panded into a worldwide-distributed project to
develop a groundbreaking platform upon which
future communications applications will run. In
true agile manner, this n-tier service-oriented
framework continues to be developed in parallel
with Project E, supporting its ongoing needs.
With a final deliverable that has no UI, this proj-
ect had quality goals focused on achieving high
reliability, portability, maintainability, security,
and performance.

Project E: communications Product

Project E is a UPXS project with a large number
of distributed teams working on a product that
will replace several legacy applications. The Web-
based application interfaces with databases and
communication hardware, and runs on the frame-
work that is simultaneously evolving in Project

D. The main goal of this project is to produce a
high quality UI that integrates functionality from
the legacy applications in a performance-enhanc-
ing and highly intuitive way. At the same time,
this product serves as a source of requirements
elicitation and refinement for Project D.

Project F: building technologies
requirements Elicitation Prototype

Project F is the smallest S-RaP project yet, which
aimed to elicit, refine, and mature the requirements
for a next generation product. This prototype cli-
ent-server Web application was intended to serve
as a form of requirements specification for the
development of a new product that would integrate
functionality from and replace several legacy
applications. Since the functionality stemmed
from existing applications, the focus was more
on developing an innovative, high-fidelity UI that
would still be intuitive and useful to customers
of the existing applications.

QuALIty AssurAncE:
goALs And PrActIcEs

“QA (for agile methods) is looking at the same
deliverables (as with plan-driven methods). But
the process used to create the deliverables does
affect how QA works” (McBreen, 2002). Our
experiences have shown us that the cycle of cus-
tomer involvement—constant re-estimation, and
constant reprioritization of scope and features—is
an inherent mechanism of agile methods that leads
to high software quality.

common Quality goals and
Practices

Although each of our projects focused on their
own set of quality goals, there were several com-
mon goals that were important to all of them.
The following outlines these goals and the QA

 227

Quality Improvements from using Agile Development Methods: Lessons Learned

practices that we applied to achieve them in one
or more of our projects.

Goal 1: The final deliverable should exhibit a
high degree of correctness of implementation.

Incorporating testing practices as soon as
possible and on multiple levels (unit, integration,
and system) was a technique we used to ensure
correctness of implementation. For example, in
our UPXS projects, developers wrote unit tests,
which were continuously run as part of the build
process. Simultaneously, a test team developed
and ran integration and system tests.

A similar measure of correctness in our S-
RaP projects was achieved by acceptance testing,
which directly involved the customer. Unlike
traditional acceptance testing that starts once the
final product is delivered, acceptance testing in
S-RaP was a constant and continuous process.
With the end of each iteration, the customer could
execute acceptance tests on the part of the system
that was delivered.

Collective ownership was another technique
used to help ensure correctness of implementation
by encouraging developers to look at and improve
each other’s code. This form of peer review, like
the XP practice of pair programming, increases
knowledge sharing amongst developers, and can
expose deficiencies in the implementation. In our
UPXS projects, this resulted in explicit commu-
nication of improved or best practices for specific
development tasks on several occasions.

Goal 2: The final deliverable is well suited to the
expressed needs of the customer.

One of the key practices we have used to
achieve this goal is to incorporate the customer
in planning and verification activities throughout
the project. Without beginning-to-end involve-
ment of the customer in a project, it is possible
that the resulting software is unsuitable for
the customer’s needs despite meeting all the

customer’s requirements. These needs should be
captured in the requirements; however, a situation
of this nature can arise when there is a mismatch,
miscommunication, or omission of key project
requirements.

By ensuring that the customer is involved
in every aspect of the project, from planning of
requested features and definition of requirements
to continued verification of software deliverables,
misconceptions are reduced, and the result is a
product more in line with the expressed customer
needs.

Goal 3: The final deliverable is easy-to-under-
stand, easy-to-learn, and easy-to-use.

Since the customer is the key stakeholder who
decides if the final deliverable is attractive, easy-
to-understand, easy-to-learn, and easy-to-use, our
technique for achieving this goal focuses on early
and frequent customer involvement. From very
early stages, we involve the customer in hands-on
walkthroughs of the working software. The early
feedback from this method drives development
toward achieving this goal right from the outset.
In our S-RaP projects, the Storyboard drove the
customer feedback cycle.

Goal 4: At any stage of development, code is easily
analyzable, modifiable, and extensible.

Throughout the development of the software
deliverable, it is necessary to accommodate con-
stantly changing requirements without requiring
significant rework, as well as embrace require-
ments for new features. Several practices we have
successfully used to maintain code simplicity
include keeping designs simple and refactoring,
as discussed in Lesson 9, which can be found in
the Lessons Learned section.

Additionally, since later modifications to
software are often necessary, we practiced test-
driven development to ensure that these changes
are smoothly integrated. Unit tests are particularly

228

Quality Improvements from using Agile Development Methods: Lessons Learned

useful for ensuring early and continuous regres-
sion testing. The availability of a large number of
tests of sufficient breadth and depth of functional-
ity, in combination with high code coverage, is a
significant contributor to achieving modifiability,
because it provides developers with the confidence
to make changes knowing that they have a suite
of unit tests as a safety net.

LEssons LEArnEd

From the seven different project experiences that
this chapter draws upon, each with a different set
of goals, we learned many lessons about the ap-
plication of our agile methodologies and practices.
This section generalizes these lessons and presents
them in their order of significance.

Lesson 1: Use “living” documents whose lives
are determined by the project’s needs.

Our experience generally confirms the vi-
ability of development with a reduced emphasis
on producing detailed documentation, which is
one of the values of the agile manifesto (Beck et
al., 2001). In both the prototyping and product-
oriented projects, we saw that the most important
forms of documentation were the “living” docu-
ments, which informally captured multiple views
of a specific problem and addressed different
stakeholders’ concerns. Such living documents
were available to all team members for editing,
thereby constituting a collaboration and com-
munication medium. Most of the targeted docu-
ments that dealt with a specific architectural or
product-related issue had a short shelf life and
became stale and out-of-sync with the evolving
code base. We have found that the best way of
representing and discussing requirements is in a
form that is very close to both the users’ intuitive
understanding of needs, and to the developers’
understanding of context and presentation for the
solution. Such a collaborative medium has been

a significant aid to requirements gathering and
forming an understanding and consensus between
team members charged with different roles and/or
bringing different skills and perspectives to the
table (e.g., domain knowledge vs. UI and interac-
tion design vs. implementation skill.

In our S-RaP projects, we used Microsoft Of-
fice PowerPoint as a tool to present the sequence
that illustrated a feature of interest, earlier intro-
duced as the Storyboard. All stakeholders tied
to a Storyboard could add screen wireframes, or
screenshots from the evolving product or related
applications, and then use the presentation edit-
ing facilities of PowerPoint to annotate the image
with the desired product functionality. Similarly,
the notes section of the PowerPoint presentation
was used for the textual description of the specific
interactions and data issues related to each slide’s
illustration. Though not without its shortcom-
ings, we found the Storyboard to be effective in
providing information that is useful to software
developers, while preserving the immediate in-
tuitive nature of a graphically aided interaction
sequence.

Documents that succinctly capture the most
relevant requirement details from stakeholders,
like the Storyboard, are very useful from the
development team standpoint. When formal re-
quirements engineering (RE) processes are used,
the result can be very detailed, inter-correlated
documents that still fail to present the global view
that connects the requirements to their purpose.
From our project experiences, it has made a big
difference when the development team pushes for
the use of consolidated, interactive communica-
tion formats that embody specific input from all
stakeholders in a project (i.e., UI, Usability, RE,
etc.). Though its contents may prove redundant
with the artifacts of other contributors, it will en-
able more efficient progress—the results of which
should eventually be captured more formally.

We have also experienced projects without
living documents. Often times the lack of these
documents, also referred to as “boundary objects”

 229

Quality Improvements from using Agile Development Methods: Lessons Learned

(Gunaratne et al., 2004), leads to frustration within
teams, and miscommunications between teams.
Without these documents, team members often
struggled to find correct and up-to-date informa-
tion pertinent to their tasks. These documents
provide a necessary medium for communication
amongst and across teams to ensure a common
understanding.

Lesson 2: Development needs to be proactive with
the customer by providing solution alternates in
a form easily grasped by the customer.

The agile development team is responsible for
ensuring the project progress, and that implies
that they must push for the identification and
implementation of solutions for any problems
that the product needs to address. The customer
or product owner is responsible for making deci-
sions on project direction, and doing it in a timely
manner in order to allow the developers to proceed
on the priority areas. The general loop of decision
requests starts with the development group, which
identifies an issue that needs clarification, and
then shifts to the product owner, who may need
to ask other stakeholders for more information
before a decision can be made. There are two
specific approaches to improve the efficiency of
the decision-making process:

•	 Imposing decision deadlines on the product
owner, and

•	 Proactively providing the product owner
with a selection of viable solutions (instead
of just asking a general question about the
issue).

Short decision deadlines are a simple way of
tightly integrating the product owner into the time
schedule constraints of the development team.
The proactive approach of partially elaborating
promising solutions before submitting them to the
product owner for a decision plays a much more
important role in speeding up the innovation and

solution cycle between the developers and their
customers. It is our experience that a product
owner or domain expert, faced with an open-ended
question on what they would like to see in a given
feature, is more likely to make a detailed deci-
sion if they are provided with examples that they
can use to reason about their preferred solution.
Since the domain expert is commonly a critical
resource, providing them with some exploratory
results related to the decisions under consideration
helps to maximize the impact of their involvement.
We have seen very good results from doing some
Storyboarding of viable solution alternatives and
adding that information to the decision request
presented to the client.

Lesson 3: Inexpert team members can be agile;
however, the learning curve will be significant for
those who lack technical expertise.

One common complaint about agile develop-
ment is that in most cases their success depends
on having teams of experts (Turner & Boehm,
2003), both in the technical and the application
domains. On the contrary, in our agile experiences,
we have seen team members with less-than-expert
domain knowledge quickly adapt to developing
in an agile environment. Most of our projects
included a significant number of team members
who had minimal experience and knowledge in
agile development and the project’s domain. In
Projects A1 and A2, developers who had a mid-
level proficiency in the selected software technol-
ogy but no domain knowledge were able to start
contributing within a couple days.

This is not to say that no technical expertise
or domain knowledge is required for new mem-
bers to be integrated into an agile development
process. Our experience has been that members
with below-level technical skills will face a steep
learning curve that is magnified by the nature
of agile development. The quick evolution of
the developed code means that less experienced
developers cannot benefit from any stable code

230

Quality Improvements from using Agile Development Methods: Lessons Learned

infrastructure to use as a reference. For instance,
one such developer in Project E had good domain
knowledge but below-average technical skills,
and this individual was never able to reach a
level of parity with the other developers. On the
other hand, pairing new members with experts
decreased the learning time for new members.
Daily meetings, as used in Project B, helped in
making performance issues more transparent.

It has also been observed that new members
need to adjust to the unfamiliar demands of an
agile process. For example, developers’ code
changes have to be completed, integrated, and
tested in hours or days, instead of weeks. Develop-
ers also need to be able to shrug off the fact that a
new decision, project constraint, or requirement
could suddenly make their envisioned designs or
previous work obsolete. Additionally, as customer
demands change during product development, new
code segments and interfaces may appear that
need to be learned quickly. Code refactoring can
change an interface that was finally agreed upon
last week to something completely different this
week. Developers also have to learn to fix or work
around broken builds to avoid being blocked—un-
able to continue with development. These are just
a subset of the demands we have seen placed on
developers in an agile environment.

Although most developers with adequate
technical experience found the agile process intui-
tive, we have also seen technically skilled team
members, unaccustomed to agile environments,
having a difficult time adjusting. On more than
one occasion, especially in Project E, we experi-
enced team members who could not adjust to the
more free-form nature of agile processes. Scrum
masters or other leaders had to follow a more
prescriptive approach with these team members.
Small, detailed tasks were often specified, and
specific milestones, within iterations, were set for
these tasks to be completed and then reviewed.

Lesson 4: Agile methodologies must be practiced
with a culture of proactive communication to allow
new members to acclimate quickly.

With practices such as self-documenting code
(Martin, 2003; McConnell, 2004) and just-enough
documentation (Beck, 1999; Turner & Boehm,
2003), the successful execution of agile develop-
ment is dependent on team members receiving
information through electronic correspondence,
informal discussions, meetings, or the code itself.
One side effect of using minimal documentation
is that there is no explicit source explaining how
people in the development team know what they
know. “Agile methods rely heavily on commu-
nication through tacit, interpersonal knowledge”
(Turner & Boehm, 2003). From the standpoint of
new team members, it is difficult to identify the
correct sources for necessary information. In S-
RaP, we address this problem with the Storyboard,
but in general, we found that it is important for
all team members to proactively communicate
with new members to help them transition into
the project.

Lesson 5: Agile development needs agile project
planning (Song et al., 2004).

Project planning should be the most agile part
of agile development, starting with a coarse scop-
ing and chunking of deliverables, and then refin-
ing the estimates as the progress provides more
data. In agile development, a great emphasis is
placed on achieving timely delivery against tightly
scheduled milestones. Unfortunately, estimates
for project deadlines may often be derived from
only the initial understanding of requirements,
as was our experience in Project E. Since this set
of requirements is expected to be incomplete and
vague, such estimates will often be unreliable. In
the case of Project E, unrealistic deadlines set
in the early stages were perceived as a source of

 231

Quality Improvements from using Agile Development Methods: Lessons Learned

problems throughout the project due to continu-
ously reported delays. In this particular project,
we were able to get back on track with the pre-
set milestones through task reprioritization and
scope adjustment.

Lesson 6: To achieve high customer satisfac-
tion in agile development, collecting novice user
feedback is just as important as regular customer
feedback.

The most visible strength of agile development
is in being able to achieve high customer satisfac-
tion. Customers that are highly involved in the
definition and refinement of project goals tend to
be happier with the final result. An interesting
effect of the constant involvement of customer
representatives (i.e., product owners or domain
experts) is that their expectations are affected.
In Project B we realized this could also have a
negative impact when a separate customer repre-
sentative was presented with the final prototype
and found it not-at-all intuitive, even though the
customer representative who had been involved
with the project had been very satisfied with the
intuitiveness of the UI. Thus, the perception of
intuitive quality of the product can be quite dif-
ferent for a first-time user. Novice user feedback
would not only have helped in discovering this
usability issue, but also in estimating the training
needs and detecting any embedded idiosyncrasies
that detract from the product’s overall quality.

Lesson 7: Collocation, when necessary, is
best practiced within small teams (Song et al.,
2004).

Although collocation is a key practice of
many agile development methodologies that
foster informal, lightweight communication and
leads to quick effective problem solving, it is not
critical for all project teams to be collocated. Full-
time collocation or even physical or geographic
proximity is not required for teams working on

well-partitioned vertical slices. In Project E, for
example, after one of the collocated development
teams moved to Greece, a vertical slice was as-
signed to this team, and this move caused virtually
no disruption in the project schedule. For projects
A1 and A2, we used instant messaging, telecon-
ferencing, and online meetings to compensate for
lack of collocation.

Depending on the size and scope of the project,
our “small teams” consisted of 2 to 12 members.
These smaller teams generally benefited from
quick informal discussions with members working
on similar tasks. However, with larger teams of
more than 12, such as in Project E, this practice
proved to be oftentimes more distracting than
beneficial.

Lesson 8: Decomposing project tasks to assign to
different teams works best with vertical slices.

Across our projects, we have seen multiple
ways of decomposing the projects for concurrent
development. Decomposition into vertical slices of
functionality, where each sub-team was respon-
sible for a UI segment and shared responsibility for
its supporting layers, worked very well, provided
that the sub-teams communicated about their work
on common components. Continuous integration,
nightly builds, and constant regression testing also
helped to alleviate the headaches of integrating
multiple vertical slices in projects D and E.

Although decomposition into horizontal layers
worked well if the infrastructure layer had stable
requirements that did not require refinement, it
can also lead to more problems with synchroni-
zation. In Projects D and E, two simultaneously
evolving projects, where the latter depended on
the former, horizontal decomposition was used (in
addition to vertical decomposition), and this raised
complex issues of compatibility and synchroniza-
tion between co-dependent iterative development
activities. The communication that was needed
in order to synchronize these activities was at the

232

Quality Improvements from using Agile Development Methods: Lessons Learned

level of what is usually only available within a
team, not between collaborating teams.

Another benefit of doing vertical decomposi-
tion of project functionality is that it allows partial
decompositions and sharing of tasks between
teams. The shared tasks encourage the sharing
of developers across teams, and allow members
of distinct teams to take over the communication
and coordination responsibility for the specific
shared components.

Lesson 9: Where practical, postpone refactor-
ing until several instances of the part under
consideration (component, behavior, etc.) are
implemented.

Many of our projects were characterized by
parts that were largely similar to each other. For
example, Projects A1 and A2 included interac-
tions that significantly resembled each other. For
Project E, many UI implementation aspects varied
only slightly in design. Such strong similarities,
coupled with agile development’s rapid nature and
its emphasis on doing just enough for a specific
delivery, lead quite naturally to the use of a copy-
and-paste style of software development. We found
that implementing several features independently
in this manner accentuated the points of com-
monality, as well as the points of difference. This
translated into implementation-level requirements
that might not have otherwise been foreseen. It
is precisely these requirements that provided the
strongest guidance to refactoring.

While this approach has certain drawbacks,
it is important to note that its negative effects
are mostly indirect. For example, copy-and-paste
leads to more maintenance work on the code or
embedded documentation, but it generally does
not lead to functional errors in and of itself. We
have found that the opposite approach of trying
to over-engineer reusable implementations too
early tends to lead to both types of problems,
functional failures and increased code develop-
ment and maintenance cost.

That said, one caveat on this approach emerges
from Project E: The act of refactoring copy-pasted
portions of code is only manageable when the
copy-pasted fragment has not proliferated too
much in the code base. In Project E, the presen-
tation-layer (Java Server Pages) was developed
separately but concurrently by several developers
in distributed teams to meet a specific visual lay-
out/look-and-feel. However, even as these pages
produced correct output, their internal document
structures were different enough to create a main-
tenance nightmare without refactoring. The sheer
number of these pages, coupled with the speed
with which they were completed, amounted to a
sizeable refactoring task; estimates for the ad-
ditional effort were difficult for the development
team to make.

The task of refactoring is a complex undertak-
ing that is comprised of three separate subtasks:
Recognizing an appropriate refactorable chunk,
devising a refactoring solution, and adjusting/re-
placing the code that would be made obsolete by
that solution. The point of this lesson targets the
first of these subtasks to avoid premature over-en-
gineering of such code bits—a lesson we consider
quite important. The point of this caveat, however,
is to warn against the potential bottleneck that the
last subtask can become in agile development. If
too much code is subject to refactoring, then the
additional effort to adjust/replace this code will
be difficult to estimate and can be unexpectedly
substantial.

Finally, there are situations where the devel-
opment team has far more control and internal
knowledge, and where the early and proactive
engineering of reusable and scalable solutions is
mostly a positive approach. The overall software
architecture for a product, for example, will usu-
ally be defined very early in the project, and these
aspects tend to remain largely stable. Wherever
the development team can identify improvements
to the architecture or components which they
consider useful from the development reuse stand-
point, those are more likely to be stable since they

 233

Quality Improvements from using Agile Development Methods: Lessons Learned

often do not depend on the modifications of the
explicit user interaction which may be requested
by the customer.

Lesson 10: A high level of customer satisfaction
can still be achieved, even if the resulting deliv-
erables do not entirely meet expectations.

Due to the increased emphasis on customer
communication and involvement in agile pro-
cesses, we have found that the resulting customer
satisfaction is based less on the quality of the
deliverables than in traditional approaches. Cer-
tainly, the quality of the product still matters, but
the quality of the working relationship can be
just as important. In customer feedback surveys
from Projects A1 and A2, an appreciation for the
quality of the interaction with the development
team was expressed alongside noted deficiencies
in the final software deliverable. This suggests
that when the customer feels that their needs are
well understood and is pleased with the commu-
nication and interactions during the project, the
likely result is a satisfied customer.

concLusIon

Quality assurance has been an integral part of
agile development that has stemmed from pro-
cess-inherent practices as well as practices for
addressing specific quality goals. What makes
quality assurance work so differently (McBreen,
2002) with agile projects is the way that quality
goals are defined and negotiated throughout the
project. From the seven project experiences that are
discussed in this chapter, we were able to identify
several common high-level quality goals and the
different practices that were practiced to achieve
them. Not every technique used was implemented
perfectly in our projects, and not every technique
was able to achieve a quality goal on its own. We
attempt to address these areas of deficiency by

dedicating a major portion of this chapter to the
lessons that we have learned.

From the implicit suggestions in the lessons
learned section for improving QA in agile projects,
we feel the most important is: Actively attempt
to capture and exploit informal communications.
Our experiences have shown how valuable the in-
formation such as electronic correspondence, side
discussions, and even code itself can be. When we
used Storyboards in certain projects, we found that
this way of capturing the informal communica-
tions between stakeholders helped new developers,
as well as customers, get up to speed quicker and
exposed difficult-to-predict issues. Moreover, in
projects where informal communications were
not captured, extra individual efforts were often
made by team members to ascertain relevant
information in order to understand requirements
or complete programming tasks. Although the
use of this particular living document is not a
cure-all, the informal knowledge that it stores has
helped us achieve a high level of software quality
in functionality and usability.

For our own purposes, this chapter has also
suggested that it is important to identify quality
goals early on in the project, even though they
may change. Not only does this keep the entire
team mindful of these goals but it also allows
for the planning of QA practices that will help
us achieve them. In this way, QA can become
agile—if a new quality goal is introduced in an
iteration, appropriate QA practices can be selected
and incorporated.

As the agile development group at Siemens
Corporate Research, we are interested in iden-
tifying metrics for measuring software quality
in agile projects. Although the success of QA
practices in agile development projects is often
measured by customer satisfaction, we recognize
the need for measuring how agile processes and
other factors influence software quality. We found
that the specific ISO (ISO/IEC, 2003) metrics for
measuring software quality were often vague,

234

Quality Improvements from using Agile Development Methods: Lessons Learned

irrelevant, or unsuitable. With better metrics,
we hope to make more concrete contributions to
advance the understanding of quality assurance
in agile projects.

rEFErEncEs

Beck, K. (1999). eXtreme programming explained:
Embrace change. Addison Wesley.

Beck, K. et al. (2001). Manifesto for agile software
development. Retrieved November 21, 2005, from
http://agilemanifesto.org/

Brooks, F.P. Jr. (1987, April). No silver bullet:
Essence and accidents of software engineering.
Computer Magazine, 20(4), 10-19.

Gunaratne, J., Hwong, B., Nelson, C., & Rudorfer,
A. (2004, May). Using evolutionary prototypes to
formalize product requirements. Paper presented
at Workshop on Bridging the Gaps II: Bridging
the Gaps Between Software Engineering and
Human-Computer Interaction, ICSE 2004, Ed-
inburgh, Scotland.

Hwong, B., Laurance, D., Rudorfer, A., & Song,
X. (2004, April). User-centered design and agile
software development processes. Paper presented
at Workshop on Bridging Gaps Between HCI and
Software Engineering and Design, and Bound-
ary Objects to Bridge Them, 2004 Human Fac-
tors in Computing Systems Conference, Vienna,
Austria.

ISO/IEC 9126: Software engineering—Product
quality. (2003). Switzerland: ISO.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process. Read-
ing, MA: Addison Wesley Longman.

Martin, R. C. (2003). Agile software development:
Principles, patterns, and practices. Prentice
Hall.

McBreen, P. (2002). Quality assurance on agile
processes. Software Craftsmanship Inc., Talks.
Retrieved May 3, 2006, from http://www.mcbreen.
ab.ca/talks/CAMUG.pdf

McConnell, S. (1996). Rapid development. Red-
mond, WA: Microsoft Press.

McConnell, S. (2004). Code complete (2nd ed.).
Redmond, WA: Microsoft Press.

Nelson, C., & Kim, J. S. (2004, November).
Integration of software engineering techniques
through the use of architecture, process, and
people management: An experience report.
Proceedings of Rapid Integration of Software
Engineering Techniques, 1st International Work-
shop, RISE 2004, LNCS 3475 (pp. 1-10). Berlin &
Heidelberg: Springer-Verlag.

Pichler, R. (2006, January 19). Agile product devel-
opment: Going agile at Siemens communications.
Presented at OOP 2006, Munich, Germany.

Schwaber, K., & Beedle, M. (2001). Agile software
development with Scrum. Prentice Hall.

Smith, P. G., & Pichler, R. (2005, April). Agile
risks/agile rewards. Software Development, 50-
53. Retrieved May 3, 2006, from http://www.ddj.
com/showArticle.jhtml;jsessionid=H1VRQ0BO1
INWEQSNDBECKH0CJUMEKJVN?articleID
=184415308

Song, X., Matos, G., Hwong, B., Rudorfer, A., &
Nelson, C. (2004, November). People & project
management issues in highly time-pressured
rapid development projects. Paper presented at
EuroSun 2004, Cologne, Germany.

Song, X., Matos, G., Hwong, B., Rudorfer, A.,
& Nelson, C. (2005, August). S-RaP: A concur-
rent prototyping process for refining workflow-
oriented requirements. Proceedings of the 13th
IEEE International Conference on Requirements
Engineering (pp. 416-420). IEEE Conference
Publishing Services.

 235

Quality Improvements from using Agile Development Methods: Lessons Learned

Tai, G. (2005, May). A communication architec-
ture from rapid prototyping. Proceedings of the
2005 Workshop on Human and Social Factors
of Software Engineering (pp. 1-3). New York:
ACM Press. DOI= http://doi.acm.org/10.1145/
1083106.1083120

Turner, R., & Boehm, B. (2003, December).
People factors in software management: Lessons
from comparing agile and plan-driven methods.
The Journal of Defense Software Engineering.
Retrieved May 3, 2006, from http://www.stsc.hill.
af.mil/crosstalk/2003/12/0312Turner.pdf

236

About the Authors

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Lars Bendix is an associate professor at Lund Institute of Technology, Sweden, where he initiated
the Scandinavian Network of Excellence in Software Configuration Management as a framework for
collaboration between academia and industry. Software configuration management has been one of his
main research interests for more than a decade. Bendix teaches the subject at university, has given several
tutorials for industrial audiences, and has worked with many companies to improve their configuration
management practices. He is also involved in his department’s software engineering teaching that is
based around the use of eXtreme Programming. He received his master’s degree in computer science
from Aarhus University, Denmark (1986) and his PhD from Aalborg University, Denmark (1996).

Eleni Berki is an assistant professor of software development at the Department of Computer Sci-
ences, University of Tampere, Finland. Previously she was a researcher/principal investigator at the
Information Technology Research Institute and assistant professor of group technologies in Jyväskylä
University, Finland. Berki obtained her PhD in process metamodelling and information systems method
engineering (2001) in UK. Her teaching and research interests include testing, security and trust, virtual
communities, information and communication technologies, computational models, multidisciplinary
approaches for software engineering, knowledge representation frameworks, and requirements engineer-
ing, whereon she supervises MSc and PhD students. She has worked as a systems analyst, a designer,
and an IS quality consultant in industry, and has a number of international academic and industrial
projects. She has been active in the development, delivery, and coordination of virtual and distance
e-learning initiatives in collaboration projects in European and Asian countries. She has authored and
co-authored more than 50 publications in world congresses, international forums, books, and journals
and has given a number of talks in international conferences. Berki has been a professional member
of the Institute of Electrical and Electronic Engineers (IEEE), the British Computer Society (BCS),
and the United Kingdom Higher Education Academy within which she participates in organising and
scientific conference committees, reviewing, and evaluation, and other collaboration projects. She has
been a visiting lecturer in a number of UK Universities, the University of Sorbonne Paris-1 in France,
and University of Crete in Greece.

 237

About the Authors

Lindsey Brodie is currently studying for a PhD at Middlesex University, UK. She holds an MSc in
information systems design. She edited Tom Gilb’s latest book, Competitive Engineering. Previously
she worked for many years for International Computers Limited (ICL), UK, carrying out technical
project support, product support (operating system and database support), and business process and
management consultancy. Brodie is a member of the British Computer Society and a Chartered Engineer
(MBCS CITP CEng).

Yael Dubinsky is a visiting member of the human-computer interaction research group at the De-
partment of Computer and Systems Science at La Sapienza, Rome, Italy, and an adjunct lecturer in
the computer science department at the Technion-Institute of Technology. Her research examines the
implementation of agile software development methods in software teamwork, focusing on software
process measurement and product quality. She received her BSc and MSc in computer science and PhD
in science and technology education from the Technion-Israel Institute of Technology. Dubinsky is a
member of IEEE and IEEE Communications Society.

Barry Dwolatzky is professor of information engineering and director of the Information Engi-
neering Research Programme at the University of the Witwatersrand, Johannesburg, South Africa.
After obtaining his PhD from the University of the Witwatersrand (1979), he spent 10 years in Britain
carrying out post-doctoral research at UMIST in Manchester, Imperial College in London, and at the
GEC-Marconi Research Centre in Chelmsford, Essex. He returned to his alma mater as a senior lecturer
in 1989. Dwolatzky’s current research interests are in software engineering and in the use of geospatial
information by utilities in developing countries. He is academic director of the Johannesburg Centre
for Software Engineering (JCSE) at Wits University.

Torbjörn Ekman is a researcher at Lund Institute of Technology, Sweden, where he has been working
within the LUCAS Center for Applied Software Research for the last five years. He is currently working
in the PalCom integrated project in EU’s 6th Framework Programme. His interest for software configura-
tion management in agile methods started during the development of an eXtreme Programming course,
which has now been running for four years. Other research interests include tool support ranging from
refactoring aware versioning to compiler construction. Ekman received his master’s degree in computer
science and engineering (2000) and his PhD (2006) from Lund University, Sweden.

Eli Georgiadou is a principal lecturer of software engineering in the School of Computing Sci-
ence, Middlesex University, London, UK. Her teaching includes comparative methodologies, evalu-
ation of methods and tools, systems development, software quality management, and knowledge and
project management. She has worked in industry in the UK and in Greece, and has extensive expertise
in curriculum development and pedagogic issues gained in the UK, in Europe (primarily in Greece,
Spain, and Finland), and further afield (such as in China, Egypt, and Vietnam). Georgiadou’s research
includes software quality, requirements engineering, information systems development methodologies,
metamodelling, measurement, knowledge management, and process improvement but also in pedagogic
issues, such as resource based open and distance learning. She has published over 90 refereed papers in
journals and international conferences. She has organised and chaired a number of international confer-
ences, workshops, and technology transfer initiatives. She currently coordinates the European Affairs
and International Exchanges in her school and serves on various reviewing and scientific committees.

238

About the Authors

Tom Gilb has been an independent consultant, teacher, and author since 1960. He works mainly
with multinational clients; helping improve their organizations, and their systems engineering methods.
Gilb’s latest book is Competitive engineering: A handbook for systems engineering, requirements engi-
neering, and software engineering using planguage (2005). Other books are Software inspection (Gilb
& Graham, 1993) and Principles of software engineering management (1988). His Software metrics
book (1976, Out of Print) has been cited as the initial inspiration (IBM, Radice) for what is now CMMI
Level 4. Gilb’s key interests include business metrics, evolutionary delivery, and further development
of his planning language, Planguage.

Beatrice Miao Hwong is a member of the technical staff in the Requirements Engineering Program
of the software engineering department at Siemens Corporate Research in Princeton, NJ. She has led
efforts most recently in process tailoring and requirements engineering in automotive, medical, and
automation business units of Siemens. Hwong has a BS in electrical engineering from Tufts University,
an MS from Cornell University, an MS CICE from University of Michigan, and a PhD in computer
engineering from Rutgers University.

Maheshwar K. Inampudi is the lead IT architect for IBM’s On Demand Workplace expertise loca-
tion system (BluePages, and several other intranet applications). His additional responsibilities include
the architecture and solution design for several of IBM’s internal offerings as well as collaborating with
the CIO’s office and IBM Research in helping design applications using the latest SOA methodologies.
He helps showcase IBM’s emerging technologies such as WebSphere eXtended Deployment (XD)
and IBM’s IntraGrid Grid Computing Architectures. Inampudi holds a BS in computer science from
Pune University and is currently pursuing a certification degree in advanced project management from
Stanford University. Recent interests include leveraging emerging technologies, such as autonomic
computing and grid computing.

Jim F. Kile is a PMI certified project management professional (PMP) and senior business area
manager at International Business Machines Corporation working in Southbury, CT. He is responsible
for managing a team of more than 135 individuals worldwide who develop, deploy, and maintain ap-
plications in support of IBM’s internal corporate human resources. Kile holds a BBA in management
information system from Western Connecticut State University (1989), an MS in information systems
from Pace University (1995), and is currently pursuing his doctorate at Pace University. Throughout his
career, he has created and piloted different project management and software development methodolo-
gies to improve the art and science of software development.

Monica McKenna is a member of the technical staff at Siemens Corporate Research, USA. She has
more than 20 years experience in software design and development.

Scott Mark is an enterprise application architect for Medtronic, Inc, the world’s leading medical
technology company. His primary areas of expertise are the application of agile methods in the archi-
tecture and design of personalized information portals. He has applied agile methods in the context
of dynamic content personalization for several large-scale, globalized systems. He has significant ap-
plication development leadership experience, including disseminating development best practices and

 239

About the Authors

pattern-based design approaches in a large enterprise. He is skilled in the use of agile modeling and test-
first development practices to enable lean project execution. Scott is a member of the Java Community
Process (JCP) organization and was an early participant on the Expert Group for the JSR 170--Content
Repository for Java Technology specification. He also has a strong background in technical writing and
online information architecture and delivery.

Gilberto Matos is a member of the technical staff in the requirement engineering and rapid proto-
typing group at Siemens Corporate Research, USA. He has been involved in a number of internal and
external software prototype and product development projects within Siemens over the last 8 years,
mostly in technical lead roles. His research is centered on the methods and software support tools for
faster and more accurate representation of user requirements in an executable form. Matos received his
PhD in computer science from the University of Maryland at College Park.

Atif Memon is an assistant professor at the Department of Computer Science, University of Mary-
land. He received his BS, MS, and PhD in computer science in 1991, 1995, and 2001 respectively. He
was awarded a Gold Medal in BS. He was awarded Fellowships from the Andrew Mellon Foundation
for his PhD research. He received the NSF CAREER award in 2005. Memon’s research interests include
program testing, software engineering, artificial intelligence, plan generation, reverse engineering, and
program structures. He is a member of the ACM and the IEEE Computer Society.

Ernest Mnkandla lectures in the School of Information Technology at Monash University, South
Africa. He has submitted a PhD thesis at the School of Electrical & Information Engineering at the
University of the Witwatersrand, Johannesburg, South Africa in the area of agile software development
methodologies. He has lectured in this area and has presented several papers on agile methodologies
and project management within Africa, Europe, and the Pacific Islands. Mnkandla completed a Btech
(honours) in electrical engineering at the University of Zimbabwe (1992) and completed an MSc (Comp.
Sc) at the National University Science and Technology in Zimbabwe (1997). His current research is
in the adoption and quality assurance issues in agile methodologies. Mnkandla also does research in
security policies for the implementation of wireless technologies.

Vagelis Monochristou holds a BSc in applied informatics from the University of Macedonia, Depart-
ment of Applied Informatics (Thessaloniki, Greece), as well as an MSc in insurance and risk management
from the CITY Business School, (City University, London, England). Since 2003, he is a PhD Candidate
in the department of applied informatics in the University of Macedonia (Thessaloniki, Greece), and
his research has been focused on the area of agile methods and the possibilities of their adoption in the
Greek IT Market. Since 2000, Monochristou works as an IT consultant and has significant experience
in business modelling, user requirements analysis as well as in software project management.

Christopher Nelson is an associate member of the technical staff in the software engineering depart-
ment of Siemens Corporate Research, Princeton, NJ. His research has been in the areas of UI intensive
software, agile processes, and global software development. Nelson received his BS in computer science
and engineering from Bucknell University. He is currently attaining his master of software engineering
degree from Carnegie Mellon University, Pittsburgh, PA.

240

About the Authors

Gergana Nikolova is a graduate student in computer science at the Technische Universität München.
She recently worked within the rapid prototyping and requirements engineering group in the Software
Engineering Department at Siemens Corporate Research. Niklova has contributed greatly towards the
definition of a reference model for S-RaP (Siemens Rapid Prototyping)—an in-house prototyping pro-
cess. Thus, her research focus has been in software development processes, particularly requirements
engineering and rapid prototyping.

Orit Hazzan is an associate professor in the Department of Education in Technology and Science
at Technion–Israel Institute of Technology. Her research interests are in human aspects of software
engineering, particularly relating to agile software development and extreme programming develop-
ment environments. She is coauthor (with Jim Tomayko) of Human Aspects of Software Engineering
(Charles River Media, 2004). She received her PhD in mathematics education from the Technion–Israel
Institute of Technology. Orit is a member of ACM and the ACM Special Interest Group on Computer
Science Education.

Jörg Rech is a scientist and project manager of the Fraunhofer IESE. He earned a BS (Vordiplom)
and an MS (Diplom) in computer science with a minor in electrical science from the University of Kai-
serslautern, Germany. He was a research assistant at the software engineering research group (AGSE)
by Prof. Dieter Rombach at the University of Kaiserslautern. His research mainly concerns knowledge
discovery in software repositories, defect discovery, code mining, code retrieval, software analysis,
software visualization, software quality assurance, and knowledge management. Rech published a
number of papers, mainly on software engineering and knowledge management and is a member of the
German Computer Society (Gesellschaft für Informatik, GI).

Arnold Rudorfer is the program manager for requirements engineering with worldwide responsibil-
ity at Siemens Corporate Research in Princeton, NJ. He has more than 12 years experience in product
development and business consulting leading international projects. His main research interests are agile
development techniques, requirements engineering as well as product management and marketing of
software products. Rudorfer enjoys working with customers and his high-performance team to deliver
solutions to Siemens businesses. Also, he is a certified Bootstrap and SPICE assessor.

Kerstin Siakas is an assistant professor at the Department of Informatics at the Alexander Techno-
logical Educational Institute of Thessaloniki, Greece since 1989. Her teaching includes software quality
management, management information systems, and project management. She has developed and led
large information systems projects in multinational companies in both Sweden and Greece. She has a
PhD in software quality management from London Metropolitan University. Her research spans a range
of issues in information systems quality, requirements, knowledge, and outsourcing management, in
particular in cultural and organisational issues of the software development process, but also in pedagogic
issues, such as technology based distance learning. Siakas has published around 50 refereed papers in
different journals and international conferences.

Xiping Song is a senior member of the technical staff in the Software Engineering Department at
Siemens Corporate Research, USA. In over a decade of working at Siemens, Song has been involved in

 241

About the Authors

many software development projects. He has worked as an architect for the Soarian project, designing
the architecture for this key Siemens health service product. He designed the load-balancing strategy for
deploying the product at the Siemens data center. Now, he is focusing on research on medical workflows.
Song received a PhD from University of California at Irvine.

Grace Yuan Tai works as a member of the rapid prototyping and requirements engineering group
within the Software Engineering Department at Siemens Corporate Research, USA. She is normally
based in Princeton, but was working in Munich on a globally distributed agile project while working on
this book chapter. She came to Siemens with a BS in computer science from the University of Michi-
gan and has contributed to the research area of human and social factors in software engineering. Tai
will continue to pursue her research interests as a master’s student at RWTH Aachen starting October
2006.

Rajanikanth Tanikella is an associate member of the Technical Staff in the Software Engineering
Department of Siemens Corporate Research, Princeton, NJ. Aside from software quality and testing
related projects and prototypes for mobile devices, Tanikella has been involved in a number of agile
development projects. He holds a BS in computer science from the State University of NY at Stony
Brook and a MS in computer science from the New Jersey Institute of Technology. In his abundant free
time, Tanikella does office work.

Qing Xie received her BS degree from South China University of Technology, Guangzhou, China
(1996). She received the MS degree in computer science from the University of Maryland (2003). She
is currently a PhD student in the Department of Computer Science at the University of Maryland. Her
research interests include software testing, software maintenance, mutation techniques, and empirical
studies. She is a student member of the ACM, the IEEE, and the IEEE Computer Society.

M. Vlachopoulou is an associate professor at the University of Macedonia, Department of Applied
Informatics, Greece. Her studies include:

•	 Degree in business administration, Aristoteles University of Thessaloniki, Greece.
•	 Degree in law, Aristoteles University of Thessaloniki, Greece.
•	 Postgraduate degree studies in marketing, University of Mannheim, Germany, and MBS in busi-

ness administration, Aristoteles University of Thessaloniki.
•	 PhD in marketing information systems, University of Macedonia, Department of Applied Informatics,

Greece.

Vlachopoulou’s main fields of research include: marketing information systems, e-business/e-marketing
models, internet marketing plan, e-learning, new technologies and informatics in marketing, electronic
commerce, ERP, and CRM systems, supply chain management (SCM) systems, knowledge management,
e-supply chain management, e-logistics, virtual organization/enterprise modeling, and agile methods.
She is the author and co-author of several books, mainly in the area of e-marketing, and has numerous
publications in International Journals, Volumes, and International Conference Proceedings.

242

About the Authors

Bradley Wehrwein is an associate member of the Technical Staff in the Software Engineering
Department at Siemens Corporate Research in Princeton, New Jersey, USA. He received his BS in
computer science from the University of Massachusetts. His research interests include user interface,
Web technologies, and agile software processes.

Index 243

A
acceptance test 84
activity 5
adaptability 74
adaptive

ecosystem 163
systems development (ASD) 12

adjustability 5
agile

concept 182
development 136–153, 187
information systems development (AISD) 23
method 24, 56–70, 74

engineering (AME) 41
metrics 32
quality 23–55, 24, 171

assurance 114–135
software

development 1, 90–113, 171–185
method 1–22

testing 119
workforce planning 154

Agile Alliance 2
agilist 9, 75
agility 3–4, 32, 39, 46
annotation language 96
anti-pattern 100
architectural

smell 100
automated static 198
automation 193, 203

B
big modeling up-front (BMUF) 75
black-box testing 117
brainstorm 81
build

management 140
process 199

C
capability maturity model (CMM) 32
career development 158
COCOMO 31
code

annotation 96
inspection 95
smell 100

collaboration 164
commitment 39
communication 74, 158, 164, 178
compatibility 11
competency integration 159
comprehensive testing 114
concurrency control 140

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Index

244 Index

configuration
audit 149
audits 139
control 139, 148
identification 139, 148
status accounting 148

continuous integration (CI) 67, 141, 144, 150, 202
control flow graph (CFG) 118
correctness 11
cost

estimation model 31
reduction 195

crash testing 116, 120, 129
culture 159
customer 38, 72, 78

collaboration 74

D
decision-making 26
defect

classification scheme 95
detection 194
management system 94

depth of reasoning 23–55
design flaw 100
dexterity 5
double maintenance 143
dynamic systems development method (DSDM) 26

E
ease of use 11
efficiency 11
efficient 5
empowered workgroup 159
ETHICS 26–27
evaluation and assessment (E&A) 156
event-flow

graph 127, 130
model 121

Evo method 68
extendibility 11
extreme

character 82
programming (XP) 12, 15, 34, 39, 75–

76, 84, 93, 155

F
face-to-face communication 74, 164
fear 192
finite state machine (FSM) 119

flexibility 4, 107
forward engineering 34
functional testing 117
future information research management (FIRM) 63

G
gap analysis 161
geek-speak 75
Gilb, Tom 58
glass-box testing 118
graphical-user interface (GUI) 114–135

Ripper 128–129
Ripping 128–129

H
human dynamics 154–170

I
impact estimation (IE) 59, 62
in-action reflection 178
independence 107
information systems development (ISD) 23

method (ISDM) 25
integration 150
integrity 11
iterative 3

development 202

K
key process area (KPA) 157
knowledge 9, 37

management (KM) 38

L
language 85
learner

-learner communication 178
-teacher communication 178

library control system 200
lightweight 5
lines of code (LOC) 210
low-risk 5

M
machine-readable 108
mature process 32
maturity 157
mentoring 159, 168
method engineering (ME) 41

Index 245

micro-didactical arrangement (MDA) 104
modal

dialog 126
window 126

modeless window 126
motion 5
motivation 39

N
nimbleness 4
novice user 119

O
on-action reflection 178
open architecture 68
organizational performance 160

P
pair

effectiveness 166
performance 166
programming 90

role 164
viability 166

parallel work 141, 143
participatory culture 159
pattern 100
people capability maturity model (P-CMM) 155
performance management 158
persona 81
personnel 162

quality 155
plan-driven

quality assurance (QA) 173
Planguage 59
planning game 142
portability 11
predictable 5
productivity 207
prototyping 224

Q
quality 1, 6–7, 23, 25, 30, 58, 206–220

assurance (QA) 2, 9, 84, 136, 171, 186–
205, 221–222

defect (QD) 92, 100, 102–103
discovery 99

improvement 207, 221–234
test 144

quantification 56
quantitative performance management 159
questionnaire 82

R
re-engineering 34
re-structuring 34
re-use 34
refactoring 34, 94, 142, 146

annotation language (RAL) 107
regression testing 118
release management 141
return on investment (ROI) 28
reusability 11
reverse engineering 34
risk

assessment 211
removal 63

robustness 11
role

assignment 181
communication measure (RCM) 180
management measure (RMM) 180

S
satisfaction 39
scientific 5
Scrum 14
self-organizing 3
Siemens

Corporate Research (SCR) 222
Rapid Prototyping (S-RaP) 222

smoke testing 120, 129
social interaction 177
software

configuration management (SCM) 136
development 26, 30, 171
engineering (SE) 102
inspection 93
process

improvement (SPI) 28
modeling 12

product metrics 94
project management 12
quality 90–113

assurance (SQA) 95, 99
requirements specification (SRS) 71
testing 94, 117

stability analysis 198
stakeholder 30, 61, 117

246 Index

participation 75
statistical process control (SPC) 25
story-writing workshop 82
storyboarding 224

T
tacit knowledge 164
taglet 96
team planning 154
test

-driven development (TDD) 142, 146, 206–220
harness 209

timeliness 11
total quality management 24
traditional software development 172
training 158

U
unidirectional 73
usability 8

test 192
user

acceptance test 217
interface (UI) 222
interview 82
requirements 71
role 80
stories 71–89

V
variable finite state machine (VFSM) 119
verifiability 11
version control system 139

W
waterfall

model 71
software development 190

work environment 158
workforce planning 159
workgroup development 158
work habits 177

