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approach to building business systems that parallels that of object oriented software. They describe

how business knowledge can be identified, encapsulated, and shared, as well as how reusable process

modules can be developed to offer the systems flexibility. The book provides practical templates

required for accelerating integration, analysis, and design. Mitra and Gupta lay the foundation of a

new paradigm in which computers manipulate meanings, not blind symbols.
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Foreword

The health and well-being, and today the very survival, of an enterprise depend on its

ability to respond and adapt in timely, innovative, and effective manners. The relatively static

behaviors of the past have been changed unalterably by the explosion of telecommunication

and information technologies/capabilities as typified through the emergence of the World-

Wide Web (W3). Enterprises are learning to adapt to the challenges of the new global

business and national security environment by exploiting the same capabilities that are

driving the dynamic environment, telecommunications and IT. In essence, information and

the knowledge derived therefrom have emerged as key assets of the enterprise in responding

and adapting to the demands of the global environment.

The experiences over the past decade for a wide variety of enterprises, including both

governmental and commercial entities, are reflected by more failures than successes in

embracing successful strategies and solutions for creating, engineering, and evolving the

knowledge system that serves the enterprise most effectively. Certainly, problems have

arisen through failures of leadership and management, who have been unable to break

the static behaviors and narrow organizational views that served them well in the past.

On the other hand, engineers, given responsibility for exploiting information technologies

to meet the information needs of leadership and management for knowledgeable decision

making, have found the challenges of dealing with the complex event-driven environments

and the complex array of enterprise stakeholders and systems vastly more difficult than the

systems engineering problems of the past.

From both successful and failed efforts, there is an ever-growing body of knowledge

about some of the keys to successfully reengineering the global enterprise as a flexible

and adaptive entity. The concepts that are seeing increasing attention include enterprise

architecting, service-oriented architectures, business process modeling, enterprise and e-

business patterns, enterprise systems engineering, and agile development methods. All of

these approaches and methods contribute to one or more of the fundamental advantages that

are driving the developments. These advantages span a number of enterprise dimensions

and can be summarized in the following way:
� Strategic focus: provides a basis for understanding the contributions of complex, large,

distributed information systems in achieving enterprise goals and missions.
� Broadened communications: enhances communication across the enterprise community

from leaders/managers/users to engineers/developers/testers.

xv



xvi Foreword

� Performance and QoS: improves performance and quality of service (QoS) for decision

support and knowledge-based decision making.
� Timely and flexible response: enables flexibility for timely and effective response to new

and unexpected situations.
� Integration and interoperable operations: enables mechanisms for assuring integrated

and interoperable applications, both among legacy and new systems.
� Commercial technology evolution: facilitates the introduction and effective use of rapidly

changing commercial information systems and technology.
� Cost-effective migration: establishes a foundation for value-based thinking, analysis of

alternatives, and investment planning to establish cost-effective system evolution.
� Organizational efficiencies: allows organizational efficiencies due to reduced staffing

requirements, easier system evolution process, etc.

But from reviewing and assessing a myriad of enterprise developments, it is apparent that a

much deeper understanding is needed to increase the probability of success for enterprises

working to meet the challenges of the global environment. In this book, complemented

by their earlier book, Agile Systems with Reusable Patterns of Business Knowledge, the

authors provide a very comprehensive and integrated perspective on the range of topics

mentioned above. Starting from basic principles, the book presents an approach to enterprise

reengineering that merits careful attention and thoughtful application. As they say in the

Preface, the book provides a description of a “hidden and elegant theoretical framework:

a framework that is a direct bridge between business process engineering and systems

engineering.” The approach that is presented is ambitious and provocative, and commands

thoughtful consideration from developers and researchers in this field of ever-increasing

importance.

Harold W. Sorenson

Professor of Engineering Systems

Faculty Director

Graduate Program in Architecture-based

Engineering of Enterprise Systems

Jacobs School of Engineering

Rady School of Management

University of California, San Diego

La Jolla, CA 92037

[Former Chief Scientist, US Air Force;

Former Senior Vice President and General

Manager for Air Force Systems at MITRE;

Former Chief Engineer for AF Electronic

Systems Center]



Preface

Why this book? – Because it is a book begging to be written. The real world is chaotic and

never stands still. Businesses constantly strive to re-invent themselves under continual, and

often intense, pressures of competitive, regulatory, and technological change. The pivotal

issue in business computing lies in incorporating new learning in automated information

systems; adding to what is already known and adapting automatically as perspectives and

priorities continually change. This is the challenge for which we have sought the answers

presented in this book.

Where did it all start? It was 1992. One of the authors was the Chief Methodologist for the

American International Group, an unusual global corporation that believed in turning on a

dime. The firm needed a systems development discipline to facilitate nimble and innovative

business practices. Thus a truly exciting and wonderful journey began – a journey we

want to share with you. In this book, you will find readily usable patterns and models you

can leverage to establish business requirements, object models, and knowledge bases to

support the agile and exacting business needs of the twenty-first century. You will also find

the exciting and simple beauty of a framework that is the direct bridge between business

process engineering and systems engineering. Yes, it is a proven framework that works for

every industry and business application we have tested it on – from telecommunications to

insurance, from financial services to manufacturing.

In the chapters that follow, we will share with you not only how this framework works in

practice, but also how it actually anticipates key requirements even before users articulate

them, such as those that flowed from strategic shifts in the regulatory bedrock of the US

telecommunications industry. The theoretical foundation of the approach is not only deep,

but also elegant in its simplicity.

Where will it eventually lead? In the short term, it can make your business more agile. It

can provide reusable models, processes, and business knowledge components to compress

your time to market new or improved products, services, and processes. It can also show

you how you can compress systems development and integration times. However, it is the

vision at the end of this journey that is the most fascinating of all. The concepts in this book

can provide the foundation of disciplines that can make business systems truly maintenance

free – systems based on software that can automatically adapt to change and chaos. These

systems can be supported by automated intelligent agents1 that will, some day, maintain

1 The “Intelligent agents” section of the Bibliography at the end of this book lists papers that describe agent

technology and the-state-of-the-art.
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xviii Preface

software and respond to environmental change at the speed of thought, a vision we will

share with you at the end of this book.

As practitioners, managers, and teachers in the field of information systems, we often

talk of change control. Change plays havoc with our plans and products. However, the

wealth in the knowledge economy will flow from global excellence, thriving on change and

innovation. The only justification for technology will, and must be, change facilitation, not

change control. Are we ready?

“Wouldst thou,” – so the helmsman answered

“Learn the secret of the sea?

Only those who brave its dangers

Comprehend its Mystery!”

(Henry Wadsworth Longfellow,

The Galley of Count Arnaldos)
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Introduction

1 What is this book about and who should read it?

This book is about facilitating change with component technology, but is different from

most approaches to the topic. The components in the book are not traditional I/T compo-

nents. Rather they are shared components of knowledge from which patterns of business

knowledge are assembled. A fundamental premise of this paradigm is that meanings are

patterns of information, abstract structures that may be derived from other components,

which are also meanings. If we can identify and describe these components and their struc-

tures with precision, we can automate the process. Business processes and information

systems configured from these components will be extremely flexible, configurable, and

coordinated.

This book lays the foundation of a new computing paradigm – a paradigm in which

computers manipulate meanings, not program code or blind symbols. Computers of the

future, built on the principles described in the book, will operate on the plane of meanings –

a little like we do.

Business meanings, patterns, and rules jointly constitute the substance of a business pro-

cess. Without the business layer, technological standards have little meaning. The return on

investment from reusing business knowledge can complement, and be orders of magnitude

larger than by adherence to technical standards alone. This book establishes a framework

for the transfer and reuse of business knowledge in different contexts. This is why we urge

architects interested in service oriented architecture and business process management to

read this book. This book is for information and process architects. It is also a book for archi-

tects of languages for specifying business processes (languages like BPMN and information

sharing standards such as SBVR and BPDM from object Management Group (OMG).).1

This book is about automating the configuration of business processes from components

of business knowledge. We urge software architects and technologists to read this book

1 The Business Process Management Initiative (BPMI) consortium is a consortium of diverse firms. Its purpose is

to standardize business process definitions “that span multiple applications, corporate departments and business

partners, behind the firewall, and over the Internet.” BPMI has published the BPML language in support

of business process automation. See http://www.bpmi.org. XML is from W3C, another consortium for data

standards.

1



2 Creating Agile Business Systems

because it is about the technical principles that drive information architecture and infor-

mation sharing in the form of meanings and concepts. The principles and patterns in this

book complement the work that has been already been done in developing technology and

interfacing standards for information systems. The purpose of this book is not to propose yet

another technical standard. It is to describe the business intelligence, in component form,

that these standards must support and be joined to. It is the next step.

2 What will the information be used for?

The patterns in this book can address the following business issues:

1 Agility and adaptability of businesses processes and systems: facilitate designing of agile

business processes and flexible systems based on the reusable patterns of information in

this book. They will help automate the alignment between business processes and infor-

mation systems, speed development of systems to support new products and distribution

channels, and accelerate process and systems integration when businesses integrate or

reinvent themselves in their product markets.

2 Integration and coordination of information: coordinate integration of information and

processes across supply chains, enterprises, and databases.

3 Reduction of time-to-market of new concepts: accelerate formulation of functional

requirements and process models based on the prefabricated reusable patterns in this book.

4 Creation of automated tools for aligning of information systems with business: facilitate

the development of an integrated Computer Aided Process Engineering (CAPE) and

Computer Aided Systems Engineering (CASE) tool; provide a framework for testing

the completeness and validity of a language or methodology for business rule/process

definition and modeling, and for evaluating CAPE and upper CASE tools.

5 Compression of the time to develop prototypes: the patterns delineated in this book can

serve as the basis for early prototypes when iterative prototyping methodologies are used

for developing or integrating information systems and business processes.

Ultimately this book is about change. It describes a technology for automating and facili-

tating change – a technology that will facilitate the innovation and adaptation so necessary

for corporations to remain competitive in a fast-changing, diverse, and tumultuous business

universe that will not forgive the tardy.

3 Technology’s broken promise

Why is change so difficult? That is a question with an easy answer. We have all experienced

how a seemingly simple change to a business process or information system has many

impacts – often unanticipated, at multiple places, in multiple ways – on other different

business processes and at many different layers of the information systems legacy that

support these processes. Each impact has several other impacts in turn, which ricochet

through our processes and systems until we are caught in an explosive cascade of change.

Business sponsors requesting the change are then faced with a painful choice – either make
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Figure 1 Information is a key resource, but investment in information systems is fraught with risk

the changes at a cost, both in time and money, and take a risk that might be excessive, or

abandon the competitive benefits of innovation because the risk is too high and the change

is not timely. Studies have indicated that information system projects are fraught with risk,

and businesses do not realize the value they should from their investments in information

systems (figure 1).

A recent example was the Y2K problem that seemed trivial to the layman, but the state-

of-the-art of computer technology was such that it may have cost industry as much as

$600 billion2 and a significant part of the world’s resource pool of professionals to merely

express the year in four, instead of two, digits.3 Many strategic benefits have been difficult

to implement for similar reasons. Denial of strategic benefits to consumer and provider

alike are so frequent that examples litter the industrial landscape in almost every direction.

Examples of missing capabilities include:
� Straight through processing and “T+0” settlement in the financial securities industry (the

ability to settle a trade immediately with almost no manual processing).
� Real time billing for telephone subscribers and personal telephone numbers in the

telecommunications industry (where a unique contact phone number automatically fol-

lows an individual regardless of location or geography).
� Timely and reliable order fulfillment and innovative customer service for manufacturers

and retailers.
� Risk assessment when providing insurance coverage to complex global clients in the

insurance industry.

This is only a small slice of such wish lists – strategic innovations and improvements in

almost every industry are often deemed too risky or impossible because supporting processes

and information systems are deemed too complex and risky, if not impossible, to change.

Despite inventing new technology at a prodigious rate to make change easy (includ-

ing technologies such as CASE tools, code generators, structured programming, relational

databases, expert systems, object technology, and reusable components), systems still cannot

2 Sources: Gartner Group & Congressional Research Service estimates quoted by Steve C. Yuen, Ph.D., University

of Southern Mississippi and Jo Ann Mitchell, Jones Junior College on our website.
3 For example, 1/1/2001 instead of 1/1/01. Computer calculations involving dates beyond 1999 had a very high

risk of error if the year was not expressed in four digits.
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change fast enough. Why are information systems a bottleneck? Can process re-engineering,

business innovation, and time to market be accelerated? Why have these technologies not

fulfilled their full potential?

The principal reason why the problem of change continues to persist is that we have

not found a way of representing business rules and knowledge in a single place in such a

way that we can change a rule once, and reflect the change wherever it impacts business

processes and supporting automation. Instead, rules of business are repeated in different

forms and formats in multiple, tangled ways in several systems at several places, which

makes change complex, risky, and difficult. This has been a core problem.

It was not solved in the 1950s when we replaced the tangled code of machine language

with assembler languages, or in the 1960s when we replaced the spaghetti code of assembly

languages with that of third-generation languages like COBOL and FORTRAN; nor was it

solved in the 1970s and 1980s with the coming of relational databases, expert systems, and

CASE tools, or even in the 1990s when tangled object inheritance became so much of a

problem that many advocated making multiple inheritance illegal in tools of the day. More

automation merely automated tangling of more business rules faster.

For this reason, the authors asked a different question: what information do we need

to model the stimulus response behavior of business processes and the organizations they

support in the real world, and what is the natural real-world structure of information that

can represent business knowledge in fully normalized,4 and hence reusable form across the

universe of diverse global business environments?

Why would the proposed approach work when so many others have failed? It works

because it untangles business rules. It untangles business rules even if they were tangled

in legacy models and systems. Thus it allows us to represent business knowledge once in

a repository of knowledge, from where it can naturally manifest itself in different business

contexts. Changes made in the right place will automatically impact business systems where

they must. It is no surprise that many businessmen and professionals have intuitively felt

that business knowledge acquired in one context might often be reused in another. We

discovered in 1992 that this intuition is a fundamental truth that flows from the natural

structure of business knowledge in the real world. However, we must explicitly recognize

this structure and express it with mathematical precision to use it effectively. We will share

this vision with you in the chapters that follow.

4 Component reuse – the genesis

The concept of using reusable components to compress application development time is

almost as old as the software industry. Components have evolved from concepts such as

copy libraries, common subroutines, and general purpose applications packages, in the early

days of batch computing, to reusable GUI, network, and data services objects, based on

standards such as CORBA, COM, and web services such as XML and WSOL which support

distributed, interactive Web, and client–server computing.

4 “Normalized” means represented uniquely in a single place once.
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For historical reasons, software component engineering first focused on the back end of

the process engineering value chain. Its first concern was program code and interfaces for

communicating data in terms of streams of bits and bytes. The economic impact, however,

is usually far larger at the front end of the re-engineering value chain – on reusing business

knowledge to configure and innovate business processes, services, and products. It is not

surprising that business had only very limited interest and no involvement in the kind of

components that software engineers were interested in. Consequently, the business com-

munity’s support for the software community’s component technology was lukewarm at

best. The focus has shifted in step with evolving technology. Now the time is ripe to look

at the reuse of knowledge. This territory, long neglected by the software community is,

and has always been, where the major benefits to business are found. Let us analyze these

imperatives.

Box 1 Example of the process engineering value chain

Key business values delivered by business process engineering

Executive management
BUSINESS STAKEHOLDER

Functional management
Department management

System architect’s view
IT strategist’s view

ENTERPRISE

LEVEL

Key issue: 

coordination of 

system level 

decisions to 

allow graceful 

transitions

Chief developer’s view

GLOBAL

LEVEL

Key issue: 

impact of 

business

processes that 

crosses

enterprise

boundaries

APPLICATION

LEVEL

Key issue: 

mitigating

performance

overheads

SYSTEM LEVEL 

Key issue: 

managing

integration

complexity of 

business processes, 

applications, data, 

and infrastructure

FRAMEWORK

LEVEL

Key issue: 

development of 

reconfiguration

strategies, leveraging 

one or more micro-

architectures

MICRO LEVEL

Key issue: 

isolation of 

lower-level solution 
components to 

handle future

changes

BUILD
Key issue: 
definition and 
management of 
lower-level 
solution
components
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The supply chain for IT solutions represents the process of technology initiatives, application

development, implementation and business use. For example, the supply chain for an ERP system

may comprise of technology platform selection, systems specifications, systems development,

packaging and documentation, implementation, and use in the end user business. The concept of

the demand chain, which transfers demand from end users to technology suppliers, is less familiar.

To give one example, the demand chain for an ERP may start with business users spotting new

opportunities for using the system to support their business. The next link in the chain is the IT
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department of the user organization looking for potential solutions already in place in the business.

In the demand chain of the ERP system, it is ‘missing’ process solutions that drives the next stage –

a process innovation stage – where new processes and solutions are outlined. The last step in the

demand chain, is demand for resources and skills needed for using, operating, and developing

the ERP system in the user organization over time . . . What is needed is capabilities to capture

an increasing number of business opportunities already in the use . . . the supply chain for IT

solutions needs to be managed so that both the current and future applications architectures are

scalable, flexible and modular. (Jan Holmström and Tiina Tissari, IT Value Capture: Creating an

Effective Demand–Supply Chain for IT Solutions)

As businesses have become increasingly reliant on automation, the line between technology

and the corporation’s key business operations has started to blur. Industry has begun to

recognize that the greatest benefit to business will flow from reusing business intelligence

embedded in software. Consequently the software industry has been striving to craft software

components to reuse this embedded business intelligence across the supply chain. The intent

is to speed up business processes, to make corporations more agile, and, above all, to position

the business at a competitive advantage.

However, this kind of reuse has remained elusive in spite of over 15 years of industry

effort. The reason why the promise has not been fulfilled is that industry was not ready

to leverage the technology – processes had not matured, technology was still groping for

the right answers, software developers were loth to frontload effort on software projects,

and, most of all, business sponsorship was weak because software architecture was not as

critical to successful business as it is today.

E- (as well as M-) commerce has forced cross-enterprise transparency into business pro-

cesses and driven the need for standards. The market is now ripe for a product offering

software components that will encapsulate and reuse business knowledge to build soft-

ware architected to facilitate business innovation, speed, and agility: software that must

be developed in compressed timeframes. Competitors are few and it is a prime opportu-

nity for entrepreneurial corporations willing to take the plunge to build and sell software

components that reuse business intelligence.

THE NEW OPPORTUNITY

Components will reduce the need for large scale integration – the bread and butter of the Big Six

and others. But even as they mourn the loss, a new practice will emerge: helping users pick from

the rapidly growing set of component based options. (The Forrester Report, “Package Application

Strategies,” June 1, 1996)

5 Scope of this book

In the following chapters, we will examine how project managers, requirements analysts,

process engineers, and information modelers can leverage the frameworks and patterns

proposed in this book to do their jobs faster, better, and with fewer resources.

Balancing risk with reward is at the heart of every business. Therefore it might be ironic,

but hardly surprising, that business operations are largely deterministic. They are designed

to minimize uncertainty. The scope of this book is therefore limited to deterministic patterns
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and processes. This assumption will simplify our model of knowledge. However, we cannot

do justice to business knowledge if we ignore uncertainty and risk altogether.5 Therefore

the model of knowledge in this book does provide some structures and components that

partially, but adequately,6 compensate for the purely deterministic nature of the model.

Unlike engineering systems, the vast majority of business processes deal with discrete,

not continuous, change. For example, a business agreement might be negotiated in discrete

steps that start with a first draft, progress through a series of reviews and revisions, and

finally end with a binding contract. The scope of this book is limited to models of discrete,

not continuous, change. This is adequate for almost all business processes. An engineering

process, however, might contend with feeds and parameters that change or flow continuously.

For example, when hydrocarbon-based resins are made in a chemical reactor, the density

of the resin produced varies continuously with changing temperatures and pressures in the

reactor. Instead of focusing on continuous technical processes, our focus, is on the discrete

business process.

The book focuses on normalizing,7 encapsulating, and reusing business knowledge

across the value chain described in box 1. Business knowledge is technology independent.

This knowledge may be embedded in processes that are supported by diverse technolo-

gies, both automated and manual. Often, in large organizations, the same business rules

are expressed in different systems and procedures, on different technology platforms, in

different countries or organizational units. The choice of the technology often depends on

the organization’s legacy, its local environment, and its infrastructure. Although business

knowledge is independent of the technology that implements it, if an organization wants to

reuse business knowledge explicitly, it must store this knowledge in an electronic repository.

Thus business knowledge in such a repository is an item of information that is expressed

in some physical format and medium and is an electronic artifact. For this reason, we have

named these components of knowledge business knowledge artifacts.

Business knowledge artifacts complement, but are different from traditional software

components. The following chapters will show you how to link business knowledge artifacts

to software components.

Because this book focuses on the rules of business, business knowledge artifact has often

been abbreviated to knowledge artifact in the material that follows. Knowledge artifacts

encapsulate bits of formal business intelligence – meanings – that can be stored as reusable

components in a repository of business knowledge. Standardized knowledge artifacts will be

central to the evolving knowledge economy, especially to the global supply chains emerging

in the new economy.

6 Foundation of knowledge reuse: three pillars

Business knowledge is not about files, data flows, formats, screens, or computers. Rather

it is about processes, practices, norms, products, policies, regulations, infrastructure, and

people, constrained by the physical, regulatory, and ethical contexts in which they function.

5 Publications in the bibliography discuss stochastic processes (processes based on chance and uncertainty).
6 Adequate for the vast majority of business processes. 7 See the endnote on normalization.
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Figure 2 Reusing business knowledge: the three pillars

To recast this knowledge in the form of normalized8 and reusable capsules of information

that can be assembled into configurations of knowledge and innovative ideas, we must first

know how knowledge can be normalized. We must also know which parts are reusable

and how to organize people and business practices to leverage these reusable knowledge

components. The three pillars in figure 2 are the pillars on which business knowledge

components must stand.

6.1 The first pillar: metamodel of business knowledge

Knowledge can only be reused if it is extracted and stored as a single piece of information in

the knowledge repository. This information can then be used in as many different contexts

as necessary, whenever and wherever it is needed. Additionally, in order to track its impact,

we must know the relationship this piece of information has with other similar bits of

knowledge in our repository of business knowledge.

8 Normalization is a structured method of representing information in a non-redundant way. The endnote on

normalization describes it in more detail.
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For example, if the exchange rate between the US dollar and British pound changes, it

could impact several valuations such as amounts on invoices, credit limits, checks, payment

amounts, cash on hand, and fixed assets overseas. In other words, we must know the structure

of information in the real world – that there are interrelated entities such as processes,

resources, work products, and units of measure.

This information about information is collectively called a metamodel. The metamodel

will provide the scheme for storing business knowledge in a non-overlapping, non-redundant

way. The abstract objects in the metamodel, such as process, resource, unit-of-measure, and

their interrelationships, are containers of non-redundant (normalized) business knowledge.

Individual business knowledge artifacts would be classified and stored in these containers

provided in the knowledge repository.

Specific knowledge artifacts can then be extracted from these containers and assembled

into complex business processes and bodies of knowledge around which information sys-

tems can be built, the metamodel is the schema of the knowledge repository. It is the first

pillar on which knowledge reuse stands. Without it, there can be no knowledge components.

This book develops the metamodel of business knowledge. A companion book Knowledge

Reuse and Agile Processes, Catalysts for Innovation extends the metamodel.

6.2 The second pillar: business patterns

How many business rules does an enterprise need in order to do business? We know that

only a small fraction of business knowledge is explicitly recorded and recognized by most

operating businesses. Most business knowledge is implicit. Some are common sense rules

that seem foolish to explicitly publish, such as “accept payment for goods sold,” while others

might be embedded in the experience or common understanding of the firm’s employees,

such as “breaking my budget will be a career limiting move.” However, automation has

no innate commonsense unless it is explicitly built in. Extracting and storing all rules of

business, implicit and explicit, for even a small and simple business like a mom and pop

corner store is not just a daunting task, it is an impossible task (figure 3): there are too

many rules. There can be only one outcome if an analyst attempts to discover every rule of

business for even the simplest enterprise: analysis paralysis.

Fortunately there is a solution. The knowledge repository is an electronic warehouse that

holds the inventory of knowledge components and facts about how the business operates.

Manufacturers and retailers who deal with large and diverse component and product inven-

tories stored in brick and mortar warehouses are familiar with two fundamental laws of

inventory management:

1 Only a few kinds of items account for the most frequent movement of inventory. Busi-

nesses need the vast majority of other items less frequently.9

2 Only a few items (not necessarily those with volatile inventories) are most critical to the

business.10

9 The analysis of which items in inventory are needed frequently and which infrequently is called ABC analysis.

Category A item inventories are the most volatile and category C the least volatile.
10 An analysis of the degree of criticality of items in inventory to business operations is called 123 analysis.

Category 1 items are the most critical to business and category 3 items are the least important.
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Figure 3 Analysis paralysis: only a few critical rules, reused often, connect the business of the

enterprise but they are lost in a tangled web of minutiae

Knowledge inventories too follow these laws. Every rule of business need not be extracted

and stored before the business can benefit from the concept of knowledge artifacts. Also

there are only a few critical items of business knowledge that are reused most often. These

items can be discovered in common business patterns that not only orchestrate the internal

operations of the enterprise and its many diverse functions, but also connect the enterprise

to stakeholders across supply and demand chains. This is also the knowledge that is of

utmost value to the business and impacts it maximally! (See box 1.)

One of the authors served as the director of systems architecture for NYNEX at the time

when it was one of US’s largest telecommunications firms. NYNEX was then wrestling

with the implications of the impending deregulation of the US telecom industry. Earlier,

when he had worked for AIG, a large insurance firm, he had identified several fundamental

patterns of business that were common to all businesses, regardless of what they produced,

or where they were located. He was delighted to find that these common patterns (from

his AIG experience) could be applied to the core processes, products, and services of the

telecommunications industry as well. Indeed, they even anticipated key changes driven by

deregulation before users articulated their requirements. We believe that the opportunity to

leverage knowledge patterns and artifacts exists for many other industries and applications,

and show how this may be done in the chapters that follow in this book and in the modules

available on our website.
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These patterns are not always obvious to the practitioner’s eye; the practitioner’s often has

to focus too narrowly on a small part of the business. However, as e- and m-commerce begin

to shape the business paradigm, it is becoming clear that not just individual corporations,

but entire supply chains must compete as coordinated units in order to succeed in the

marketplace. Recognizing the critical pieces of frequently used business knowledge that

orchestrate not only the tasks of the enterprise but also operations across several enterprises

will become increasingly critical.

This book identifies these common patterns. Today, systems analysts focus on translating

the most critical components of business knowledge into requirements for the design of

business processes and information systems. Tomorrow, businesses may be able to concen-

trate only on adding those few components that can truly distinguish their business from its

competitors. This is how analysis paralysis can be circumvented, and, as we will see within

these pages, much of the effort can even be automated.

(Common patterns are available in a supplementary module on our website. A companion

book, Agile Systems with Reusable Patterns of Business Knowledge – A Component Based

Approach [337], by the same authors, elaborates, and adds to the patterns at the website.)

6.3 The third pillar: people and best practices – managing change effectively

Technology can take quantum leaps, but to effectively utilize new technology, new methods

or new processes, organizations, people, skills, and culture must also be realigned.

Change cannot be accomplished in quantum leaps where people and organizations are

involved. Evolution is key, and the migration path determines risk. The optimal trajectory

depends on environmental factors: business drivers, culture, available skills, risk tolerance,

and others. This is where organizations usually stumble.

Random or improvised trajectories of change carry a high risk of failure. Change can

become chaotic, credibility of the new technology can erode, and, unless the transition is

managed carefully, the organization can even regress to become less capable than before.

Organizations often underestimate the risk of failure. The most common mistake is to try

to mitigate risk through staff training or hiring and acquisition of tools alone.

For this reason, a significant part of a companion book by the same authors, Agile Systems

with Reusable Patterns of Business Knowledge – A Component Based Approach [337], is

devoted to managing change. It elaborates on change management themes and best-of-breed

practices needed to facilitate effective use of the technology described in this book.

7 How this book is organized

To encapsulate business knowledge in common reusable themes, and then forge compo-

nents of normalized business information from these themes, we must first understand the

concept of knowledge itself – the themes, structures, and abstract information that define

knowledge. Only then can we use these structures to describe common components of

business knowledge to automate the design of agile business processes and information

systems. Any kind of business knowledge has, at its root, the concept and understanding
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of knowledge. Therefore, it is the components in the metamodel of knowledge that will be

used and reused as we forge business knowledge. For this reason, the primary focus of this

book is on the metamodel of knowledge.

Supplementary modules on the Web summarize some of the key components of business

knowledge that form the next tier of frequently used themes. The companion book, Agile

Systems with Reusable Patterns of Business Knowledge – A Component Based Approach

[337] elaborates on these themes of business that flow from the metamodel of knowledge.

This book and its supplementary materials are organized as follows:

The Introduction gives an outline of the book: its scope, principles, audience, structure,

and utility.

Chapter 1 is an introduction to the definition and structure of knowledge and its reuse

in diverse scopes. The purpose of the chapter is to help the reader develop an intuitive

understanding of key concepts and semantics without getting lost in definitions and

detail. It can serve as an introductory chapter for managers and non-technical readers

who want a broad understanding of the topic.

Chapter 2 introduces the object paradigm and the state machine (without recourse to

complex mathematics). It describes how the object paradigm can encapsulate knowl-

edge and automate its propagation through mechanisms such as inheritance, and how

this is the basis for sharing and reusing knowledge in component form. This chapter

also describes the fluidity of knowledge and how systems could adapt to new learning

and new behavior by reconfiguring components of old knowledge and/or adding new

learning. The chapter goes on to discuss the problem of multiple perspectives and

adaptation to shifting scopes. It introduces a solution, based on shared patterns of

knowledge.

Chapter 3 elaborates on properties of objects and constraints. It introduces configura-

tions and patterns that define constraints on business and object behaviors. It elaborates

on the concept of “state” introduced in the previous chapter. Concepts are illustrated

with real-world/business examples.

Chapter 4 formally describes the concepts of pattern, measurability, and, more impor-

tantly, the meaning of immeasurability. The chapter addresses the spectrum of mean-

ings that range from those that precisely quantify and measure numerically versus

those that are purely qualitative. It describes components, configurations, and pat-

terns of information that derive these meanings from each other and eventually lead

to the very concepts of existence, qualities, properties, patterns, states, languages, and

meaning itself. The concepts are illustrated with real and hypothetical examples.

The contents of the book are supplemented by:

Web pages on our website at http://publishing.cambridge.org/resources/0521851637.

The purpose of these web pages is to provide the reader with additional value in

the form of more material than a single book can hold. The user name to access

these pages is “Mitra” and the password is “Gupta.” The supplementary material is

organized into the following modules:

Modules I through IV on the Web supplement Chapters 1 through 4.

Modules V through VIII extend the metamodel of knowledge.
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Module V focuses on interaction, configuration, innovation, causality, and process. It

includes mathematical transforms that turn business meanings into rules of automa-

tion. It describes how processes automatically blossom from generic (non-process)

knowledge.

Module VI describes how the concept called constraint turns inchoate information into

choate meanings that become components of knowledge.

Module VII provides a broad overview of the model of knowledge and its components. It

integrates the metamodels and patterns developed in previous chapters and modules

into a single overarching pattern of coherent information that describes the generic

concept of knowledge built with shared, reusable components.

Module VIII extends the metamodel into shared themes of business. It describes shared

patterns of business knowledge derived by adding information to the patterns in the

metamodel. With these patterns, business knowledge will neither have to be rediscov-

ered, nor components redesigned, each time a business needs to rebuild or integrate

its processes and systems.

Other supplementary material

In addition to the main text, the book provides supplementary materials in the form of:

Boxes which may be embedded in the text of the book and also found on our website.

These boxes elaborate on concepts described in the book.

Endnotes which contain technical and mathematical details and comments. Sometimes

they include suggestions for further reading. They are referenced in the text and are

located on the website. The companion book from Artech House contains a hardcopy

of the Endnotes [337].

Bibliography expresses business knowledge in component form and reuses these com-

ponents to draw on a wide variety of areas of active research as well as business

experience. The bibliography at the end of the book covers this. We have provided

URLs wherever possible to make it easy for readers to access carefully chosen papers

and publications on the Web. These URLs were valid at the time this book was being

written. However, the Web is forever changing, and we cannot guarantee that these

links will always exist.



1 On the nature of reality and the
nature of business

Introduction to the MetaWorld

This chapter lays the basic foundation on which the metamodel of knowledge will be built. It

introduces fundamental concepts that are at the bedrock of the metamodel. The purpose of the

chapter is to help the reader develop an intuitive understanding of key concepts without getting

lost in definitions and detail. The chapter:
� describes the emerging need for coordinated business knowledge in software;
� introduces the concept of normalized knowledge and its configuration from atomic rules or

irreducible facts;
� introduces the concept of behavior, the concept of modeling it, and describes how knowledge

gets replicated in analysis artifacts;
� introduces fundamental components of the metamodel and their roles in normalizing knowledge:

objects, relationships, processes, and events as repositories for behavior

domains and their role in measuring, normalizing, storing, and expressing information

Does an arcane discussion on the nature of reality really have a place in a book on information

systems? True, the full tapestry of reality in all its richness is better left to philosophers, but

we must understand how the real world structures meaning, for meaning is the foundation

of information, and knowledge bereft of information is just an empty word. Meaning is the

foundation of the metamodel of knowledge.

And moving thro’ the mirror clear

That hangs before her all the year,

shadows of the world appear . . .

There sees the highway near

winding down to Camelot

(Lord Tennyson)

Even so, why do we, engineers and practitioners of information systems, need this arcane

discussion when we have built systems, and built them well for over half a century? Why

14
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Figure 4 More and more, past experience is under pressure from the demands of scale, scope, and

agility that businesses are placing on systems

do we need to step into uncharted waters when we have ready experience with tried and

tested techniques that have served us well?

We must do this, dear reader, because we must. The world we have known is changing,

and, with the coming of the information age, it will surely change at the speed of thought.

Yesterday’s paradigms are fading ever more rapidly. Our reach has become global and our

businesses have become bigger and more complex by quantum leaps; technology is making

yesterday’s impossibility into today’s imperative. Missed opportunities and lurking threats

will annihilate businesses that do not move in step with the times.

As we have grown, our customers have become less forgiving and more fickle. Loy-

alty can only be bought with performance, and, even then, it may be lost as quickly as

it was bought. Customers’ expectations are high, and standards stringent, yet the scale,

scope, and complexity of our systems have grown ever larger. Our employees and partners

cannot deliver without automation. E- and m-commerce are here, and, even as customers’

expectations rise, they interface more with automation than with people. The methods

we have used in the past worked in a smaller, simpler age. Increasingly, the tried and

true are giving way under the demands of scale, scope, and agility that are becoming the

keynotes of business. In the Introduction, we described why it has become imperative for

business to thrive on change, while systems have become the principal obstacle to the

very change that is the life-blood of business. Businesses pay a price for this. The price

is often much more than just the cost of maintaining and revamping systems. Real costs

are measured by cost of opportunities lost or delayed, the revenues lost, market shares

and competitive standing eroded, goodwill not realized, customers not satisfied, and much

more.
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Systems are an obstacle to agile and adaptive business practices, principally because

change has a domino effect on systems. Changes explosively and chaotically ricochet

through the system, each impact of which must be managed and resolved before the change

can take effect. In many large and complex systems prevalent today, this is not just a difficult

task, it is an impossible task. Defects are often discovered and resolved long after applica-

tions have gone live and the damage done. We have known of situations when, without the

supplier’s consent or knowledge, savvy customers changed product prices on e-commerce

applications. Once a toxic chemical was mislabeled and shipped to the wrong destination

because of a defect in a computerized application. This happens because business rules are

not normalized and business knowledge is repeated in multiple ways in several places, all

of which should be, but are not always, coordinated.

What is knowledge and how can we coordinate it? How can we adapt to moving targets

as businesses constantly flex and maneuver for competitive advantage? The answer, para-

doxically, lies in the real world we live in, not computer systems. The natural, or real world,

frames all business opportunities, threats, goals, strategies, and operations. All businesses

are bound by, not only the laws of nations, but also the immutable laws of nature. Therefore

we must look at the structure of knowledge in the real world, where knowledge is naturally

normalized. Knowledge gets fragmented and replicated only when we store information

about the real world in our systems, designs, and artifacts.1 The solution is to incorporate

knowledge and business rules into systems as they are in the real world. To do so, we must

first understand the nature of reality and the nature of knowledge.

1 The nature of knowledge

Knowledge is meaning. It is the meanings of goals, policies, and practices, and how they

fit together into a cogent whole. How this was said has changed, but what was said has not.

The meaning has endured the passage of thirteen hundred years across a sea change of time

and a panorama of ages.

Knowledge conveys information about the business environment. Knowledge conveys

information about how business goals and guidelines are coordinated with business oppor-

tunities and operations. Knowledge conveys information about how the business’ products

and processes are aligned with business mandates and markets. Knowledge conveys infor-

mation about breach and recovery: which rules to follow and which to dilute; what can be

safely ignored and what must be ignored. Knowledge conveys information about how prac-

tices and people coordinate resources and requirements. Knowledge is information about

customers and competition, and about business constraints and configurations.

Thus knowledge is coordinated information about how rules of business, imposed by

man or nature – expressed explicitly or understood implicitly, called policy, common sense,

culture, or collective wisdom – can mutually orchestrate the business. Knowledge is how this

symphony of information moves business towards its goals, helps the business achieve its

minor successes and crowning glories, and, also, occasionally create minor embarrassment,

1 See box 2.



17 On the nature of reality and the nature of business

POLICIES,

LEGISLATION,

REGULATION

PROCESS AND
WORKFLOW

INFORMATION
TECHNOLOGY

“Consider that an 

enterprise is a 

thinking

entity … many of 

these thoughts exist 

as business rules .”

(Barbara von Halle in 

the 20th century)

“Verily, knowledge is 

of these three: the 

firm sign, the just 

duty, and the 

established practice.”

(Prophet Mohammed 

in the 7th century)

BUSINESS

STRATEGY
PRODUCT / 
SERVICE

OFFERING

PHYSICAL
INFRASTRUCTURE

ORGANIZATION/PEOPLE
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fit into an integrated whole

or even catastrophic failure. Yes, knowledge is not only about what to do, how to do it, and

when to do it; but it is also about what not to do, how not to do it, and when not to do it.

Thus, knowledge is an orchestra of rules in harmony, guided by meaning and rationale.

Rules are assertions. Knowledge is the configuration of rules and reasons. Rules may be

simple or complex; they may stand alone, or might include several other rules and caveats.

Rules carry information about the business. Together they orchestrate knowledge. Business

rules convey the components of information that we can assemble into configurations of

knowledge and best practices.

Engineers build complex machinery. Architects build complex facilities. Both build large

and complex things from simple parts. They are familiar with techniques that divide and

conquer complexity. They know that complex things must be made from simple ones. Small

and simple components must be first tested and assembled into subassemblies, which in

turn should be retested and assembled into even more complex components. These then

might fit into yet larger components, and so on, until the end product is finally assembled.

Business knowledge too is complex and requires the same approach, but there is an

added complication. Knowledge is intangible. Unlike buildings, bridges, and machine parts,

components of knowledge cannot be obviously seen or felt.

The first step towards forging components of knowledge is understanding which asser-

tions we can divide without losing information, and which we cannot divide without loss of

meaning, or knowledge. If, by breaking an assertion into smaller parts, we lose information

that we cannot recover by reassembling the pieces into a “subassembly of knowledge,”

then we have gone too far. We will call these lowest level indivisible rules atomic rules or

irreducible facts.2

2 These are called atomic rules (Ronald Ross [294]) or irreducible facts (G. M. Nijjsen in [297]) because they

cannot be divided without losing information. [252] has an advanced discussion on coordination of rules.
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Take for example, the assertion:

Jenny is a woman who has a son named Michael.

The truth of this statement can be expressed in two smaller and simpler statements without

any loss of meaning:

1 Jenny is a woman.

2 Jenny has a son named Michael.

Taken together they can only, and uniquely, mean that “Jenny is a woman who has a son

named Michael” and nothing else. Therefore “Jenny is a woman who has a son named

Michael” is not an atomic (or irreducible) fact. Its meaning can be fully derived from the

meanings of two other simpler assertions about Jenny.

Now let us go one step further and try to break the assertion about Jenny into three

smaller, and even simpler, assertions.

1 Jenny is a woman.

2 Jenny has a son.

3 A son is named Michael.

At first glance it might seem that these three assertions together can only mean, “Jenny

is a woman who has a son named Michael,” but they do not – not really. The three bald

assertions tell us only three things: (1) Jenny is a woman, (2) that she has a son, and (3) that

somebody’s son, not necessarily Jenny’s, is named Michael. We have lost information: that

Jenny’s son’s name is Michael. We lost Jenny’s son’s name when we tried to break “Jenny

has a son named Michael” into smaller, simpler components because that assertion was an

irreducible fact or atomic rule.

What do irreducible facts have to do with managing change? Irreducible facts have every-

thing to do with managing change because they are at the root of coordinated requirements.

Normalized knowledge will help coordinate requirements in today’s complex corporations

and cross company supply chains. Change has a domino effect that radiates chaotically

through the system because the same irreducible facts are scattered chaotically, with little

control or even awareness, through the software.

Knowledge (meaning) is not replicated in the natural world, i.e. it is normalized, whereas

in today’s information systems it may be fragmented and replicated. In present-day sys-

tems, irreducible facts, the basic building blocks of knowledge, may be replicated and

unsynchronized in different applications, in requirements recorded in different forms, in

design artifacts, in databases, in “help” files and deliverables to such an extent that it is

sometimes unrecognizable as the same root knowledge. Therein lies the problem, as we

shall see in the two examples that follow.

A customer orders voice mail services from a telephone company. The company adds

the service to the customer’s record and starts charging the customer. The firm must also

reprogram telephone switches to activate the service. The software that instructs the switch

does not recognize voice mail services. Now there is not just an unhappy customer who has

been billed for services not provided, but also an unhappy phone company that is spending

time and incurring the high cost of skilled human resources needed to service an irate

customer.
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Voice mail is a feature of telephone service is an irreducible fact. You cannot break it

into simpler assertions without losing information. Voice mail is a service offering was

recognized by the billing system, but not by the service provisioning system. Knowledge

was not normalized, hence requirements were not coordinated in the phone company’s

systems. That was the root of the problem. (The companion book, Agile Systems with

Reusable Patterns of Business Knowledge – A Component Based Approach [337], examines

irreducible facts that describe products and services in more detail.)

Let us take a more complex example where consequences were less serious because

customers were not directly impacted, but significant opportunity costs were incurred. John

was a deliveryman. He worked for “Zippy” Courier Company. Zippy’s scheduling system

downloaded his delivery route to John’s palm computer at the beginning of each work day.

Sometimes delivery priorities changed, or Zippy’s command central, which coordinated

deliveries, got information about traffic congestion on parts of John’s route. Depending on

which delivery persons are where, they re-organized delivery routes and schedules, down-

loaded changes, and alerted their delivery persons by wireless link, alerted their customers

to revised timing by telephone, and informed warehouse operations of these changes.

Zippy also had a sophisticated facility in the warehouse for sorting and loading packages

on to delivery trucks. Which package was allocated to what truck depended on the final

destination of the package and the route of the truck. Sometimes containers or trucks got

full before all packages for that route were loaded. These were then loaded on other trucks

that might cover similar routes. Warehouse operations informed command central when

that happened.

Zippy used two very different systems for two very different applications. Yet both

scheduled deliveries, one over roads to geographic addresses, and the other over conveyor

belts, picking, packing, and staging systems, to trucks. Both could use multiple routes to

deliver their shipments, and, in both, routes could sometimes be filled to capacity.

Many scheduling and routing requirements were common between the two systems, but

when Zippy improved command central’s scheduling algorithms, warehouse operations nei-

ther knew nor cared, let alone took advantage of the improvements. This was an opportunity

cost that was completely hidden from Zippy’s management.

Then Zippy’s delivery scheduling system was enhanced to allow customers to spec-

ify special instructions that would facilitate coordinated delivery of two different pack-

ages from different pick-up points to a common destination. Customers could ask that

there be no more than a day’s gap in the arrival of multiple packages. Zippy’s loading

system could have added a new business rule that deferred items must not wait more

than a day to be loaded on to a truck that would cover the required delivery address.

It was the same atomic rule masquerading as a different requirement for a different sys-

tem. This was not done and the new service commitments were harder to satisfy. Consis-

tency and reliability of service suffered, while command central’s operations became more

complicated.

The state-of-the-art made it very difficult for Zippy to use the software and design artifacts

of one system to change the other. This is true of most firms today. Changes come harder

and improvements take longer, and both cost more than necessary.
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The root of both Zippy’s and the phone company’s problem was not malfunctioning tech-

nology. The hardware, software, and networks performed according to design. The problem

was uncoordinated requirements. The systems development process did not normalize, or

leverage normalized knowledge, to coordinate requirements. Nor did the process seek to

save time and development cost through knowledge reuse. Systems professionals could

say, with some justification, that the requirements they were given were incomplete, but the

bottom line was that the systems failed the customer and the company.

They failed because the firms were too large and their operations so automated that

coordination of knowledge across the firm was complex. Systems failed because knowledge

was not reflected in systems as it was in the real world where meaning is unique and its

expression naturally coordinated at the root. Knowledge, like matter and energy, frames

reality and is framed by it. The real world of immutable meaning automatically normalizes

knowledge. Thus the real world becomes the yardstick for success and failure of automation.

To reflect knowledge in our artifacts, as it exists in the real world, we must first understand

reality, and how reality structures meaning and information. After all, reality frames the

artifacts we create.

2 Modeling the real world

“Understand that as the mighty wind blowing everywhere, rests always in the sky, all created

beings rest in Me.” (Translated from the Bhagvat Gita, the holy book of Hinduism by Swami

Prabhupad)

The nature of reality: we open the discussion with an extreme and radical assertion. We

assert that in the real world there is no such thing as data, and no such thing as process.

There is only behavior. Data and process are mere artifices we have created in order to

represent information about the manifest behavior of real-world objects.

What is behavior? You knew about behavior long before you even learned to read – long

before you knew of process, data, or normalization. Hit a sheet of glass, it will shatter. Hit

a sheet of metal, it will ring. Hit hard and it may bend.

Behavior is how an object in the real world responds to a stimulus (or an event). Behavior

involves events, constraints, rules, location, and shape, but, most of all, it involves change,

and change involves time. Step back to that time in your childhood when you knew only

about objects you could see, events that influenced them, and the flow of time, and we will

be ready to model reality.

It is important to remember that models are not reality. They only represent reality in a

limited scope. The real world is too complex a tapestry to represent fully in all its richness and

intricacy. A model represents limited information about reality in a repeatable, consistent,

and accurate manner. The scope of the model is circumscribed by the real-world behaviors it

targets. The reliability and accuracy of the model are circumscribed by the range of error or

inconsistency we will tolerate – tolerances in terms of deviations from repeatedly consistent

accurate predictions of target behaviors.
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Box 2 Example of a model for baking a cookie

Make cookie

dough

Arrange dough

glob on cookie

sheet

Bake dough Remove

cookie

BAKE COOKIE

This model demonstrates:

1 How limited a model is compared to reality.

2 How easily knowledge becomes denormalized in artifacts which must then be co-

ordinated.

The scope of this model is restricted to presenting information about a sequence of a

select set of events involved in making cookies. The arrows show a succession of events.

The event at the end of an arrowhead cannot occur until the event at the beginning of that

arrow has happened. Thus we cannot bake dough unless we have put a glob of dough

on the cookie sheet.

Events like starting the oven, acquiring the cookie dough, and eating the cookie are

beyond the scope of this model. The behavior of the dough, such as shaping into globs,

hardening under heat, its color and fragrance are also out of scope.

The information in the model could also have been expressed in a different syntax. For

example, instead of a set of labeled boxes connected by arrows, the sequence and con-

straints could have been written in English sentences. That would not change the model

or its meaning. It would only change the syntax, or technique of expressing information.

The information and its meaning would be exactly the same in both expressions.

Although the meaning and information are identical in the two syntaxes, there are now

two artifacts or deliverables with the same information, or meaning. To be consistent, the

two must be coordinated. This is an example of how easily the information and meaning

of a single real-world phenomenon can be replicated in our records. If one changes,

the other too must change. By repeating information in two different artifacts, we have

just denormalized real-world knowledge about baking cookies and made change more

complex. We did not even try. It just happened.

3 Metaworld of information

He is distant in His nearness and near in His distance, He fashions ‘how’ so it is not said of Him,

“How?” He determines the where so it is not said of Him ‘Where?’ He sunders “how” and “where”

so He is “One- the Everlasting Refuge”. (Qur’an, 112:1–2)

To normalize and reflect real-world knowledge in our systems as it is normalized in the real

world, we must understand and model its structure.
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Objects, relationships, processes, and events

Let us start by examining the nature of the model in box 2. We can almost hear you say

that we just contradicted ourselves. We asserted there was no such thing as process in the

real world, and almost in the same breath drew processes in box 2. You might contend that

each box, connected by arrows in the model in box 2, actually represents a process. You are

absolutely right! – but we are not being inconsistent and this is why:

We have already seen that objects and their observed behavior manifest reality. In the real world,

objects can, and do, influence each other. The hammer can hit glass and break it. The dough, the oven,

and the cook together bake the dough glob into a cookie. Buildings are located in geographies. One

or more objects acting in concert with each other make the real world and orchestrate its behavior.

In other words, objects relate to each other. Some of these relationships, such as baking the cookie,

involve the passage of time, while others, such as the location of the building, are assertions that do

not involve time.

These relationships are natural repositories for certain kinds of behaviors of real-world

objects acting in concert. As such, they too are objects in their own right (see Module V

on our website). For example, we could interrupt and stop “bake cookie” before the cookie

is fully baked. This is a behavior of bake cookie, the object. Similarly, the same person

may become an employee through an employment relationship with an organization, and a

spouse via a marital relationship with another person. In addition to behaviors common to

persons in general, such as breathing and growing older, employees and spouses can have

special behaviors. For example, spouses may get divorced and employees may be promoted.

Processes are artifacts for expressing information about the behavior of those relation-

ships that involve the passage of time, i.e. involve before and after effects. For example,

the “bake cookie” object in figure 6 captures the information carried by the “bake cookie”

relationship.

Not only does bake cookie relate six objects in the model: “dough,” “oven,” new and used

cookie sheets, the cook, and the cookie, but it also sequences them. The object “bake cookie”

tells us that the objects to the left in figure 6, namely the dough, the oven, a new cookie

sheet, and the cook must precede the existence of objects to the right, namely, the cookie

and the used cookie sheet. Bake cookie is a process only because it carries information

about a temporal sequence. Processes are thus special kinds of relationships that contain

sequencing information besides being objects in their own right.

What triggers behavior? What starts a process? We all know that events do.3 Objects

respond to events[166], and their response is behavior. The hammer hit the glass to break

it. The hammer strike was an event. Something triggered the bake cookie process. It might

have been that the chef asked the cook to start. Thus the chef’s request may have been

the trigger. In box 2, the end of the preceding process, make cookie dough, triggered the

process, arrange dough glob on cookie sheet. These triggers are events.

3 Objects may sometimes exhibit spontaneous behavior. Spontaneous behavior is not triggered by any obvious

external event. For example, stock prices may move at random from minute to minute. Spontaneous changes

are also events.
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Figure 6 Processes are a special kind of relationship. They carry information on “before and after”

effects between objects

An event is an occurrence that, unlike a process, may transform nothing. Processes, like

events, occur in time, but all processes have a distinct beginning, a finite duration, and a

distinct end. Events, on the other hand, may never end. Processes always make change or

seek information. Events may not. Business process engineers often call the time interval

from the beginning to the end of a process its cycle time. A process can even be instantaneous,

but end it must. An event may go on forever. For instance, a deep space probe like the Pioneer

will climb forever into interstellar space. A process may be considered to be a special kind

of event – one that makes change in a finite time interval. Processes, of course, may also

be instantaneous, like a blip in time with zero duration. The concept of event subsumes the

concept of process, even an instantaneous process. We all know that anything that happens

in the real world must take some time, even if the time taken is infinitesimally small. For

example, the chef would take a few seconds to vocalize his or her instruction to start baking

cookies. However, for modeling purposes, we can consider that the cook’s request is a zero

duration occurrence, or, in other words, an event and also a process.

Events are important because they trigger actions, processes, and behavior. For example,

the cook might hit the stop button on the oven and interrupt the bake cookie process in

box 2. Hitting the stop button would then be the event that suspended the bake cookie

process. Remember that processes are special kinds of objects. As such, hitting the stop

button was an event that triggered specific behavior of the bake cookie object. Two key

events implicit in the model in box 2 are the start and end of a process. It is important to

bear in mind that these two events, the start and the end of a process are implicit, intrinsic,

and inalienably associated with the existence of every process. The importance of this

concept will become evident in Module V on our website, where we discuss the behavior of

processes.
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“I am the ragrance of the
Earth, and I am the heat
of ire. I am the ife of all
that lives and I am
penance of all...”   

Translated from the hagvat ita , the holy
boo of induism by Sami Prabhupada 

“As a man is, so he sees.
As the eye is formed,
such are its poers.” 

illiam lae

Figure 7 How is information naturally manifest in the real world?

Perception and information naturally speaking: domains, units of measure, and formats

What is the nature of information manifest in the behavior of reality? What is the relationship

between the information intrinsic in reality and its perception through our senses? – an

exotic, abstruse, and arcane discussion? Perhaps, but critically important to normalizing

business rules as we shall see. The example in box 2 shows us that meaning must be

separated from its expression if we must normalize knowledge.

We need a home for meaning to ensure that business rules that involve meaning are

normalized. For this we must look beyond physical objects and relationships. We must

look at how reality structures the information it contains. To do this, we must augment our

metamodel to represent additional entities beyond physical objects and relationships. In this

section, we will add three new entities to our metamodel: domain, unit of measure (UOM

for short), and format.

Information exists in the real world, as do matter and energy, but the rules are different.

Matter might be more tangible, but no one today would argue that energy is in any way

less real or natural than matter is. This was not always true. It took humanity a thousand

years to reach that conclusion,4 and even longer to realize that matter and energy may be

expressed in different forms, but cannot be created or destroyed. Information is even more

abstract and its laws more complex, but information is no less real than matter or energy.

Only, it is manifested in the behavior of real objects and physical energy.

Unlike matter or energy, meaning is not located at a particular place in space and time.

Only its expression is.5 Accordingly, in the example of box 2, the same meaning was found

in two different artifacts that had no spatial or temporal relationship with each other. Their

only relationship was in their shared meaning, or information content.6 Although meaning

4 See the endnote on how the twin concepts of matter and energy were developed.
5 Shannon’s information theory described in the endnotes measures the quantum of information. Meanings struc-

ture information. The two concepts complement each other.
6 Physical phenomena linked purely by information that just is, as opposed to information transmitted spatially

and temporally by messages, is illustrated by the aspect experiments described in the endnote on messages

between objects.



25 On the nature of reality and the nature of business

in its true sense (and hence the information it conveys) does not occupy space and is

immutable in time, it is ironic that we can only know meaning from information expressed

and observed in the physical world framed by space, time, and real-world objects. A single

meaning may have many expressions.7 The same information may be stored on printed

paper in a filing cabinet as well as on the hard disk of a computer; the Spanish and English

versions of the owner’s manual of your car (should) contain the same information; the

Japanese Primeminister’s speech at the UN should have the same meaning or information

as its English translation.8

This then is a fundamental difference between information on the one hand, and matter

and energy on the other. The same information can exist at many different places and times,

whereas a specific material object or packet of energy can exist at only a single location at

any given moment in time.9

Matter or energy mediates our observation of information. We can only observe the

behavior of reality manifested in the behavior of objects located in space and time. This is

a very important concept and we will repeat it again: the information carried by meaning

is non-local, i.e. is independent of space and time, whereas specific physical objects such

as documents, bits of energy, screw drivers, and people like you and I are local, i.e. they

exist in a particular place at any given moment in time. To normalize business rules, it is

critical that we understand the natural structures that connect information to its physical

expression(s).

What mediates information and its expression in the physical world? There are two

metaobjects that do. One is intangible. It deals with the quantum of information10 that is

intrinsic to the meaning being conveyed, and is closely tied to nature. We shall call it the

domain of information, or domain for short. The other is more tangible – it is the format

or the physical form of expression. It is easy to recognize the format, and many tools and

techniques have done so explicitly. It is much harder to be aware of domain,11,12 but nature

does not care about what we know. Domain just is. If we did not know or care, and clubbed

domain with format,13 it would come back to haunt us in the form of replicated business

rules and inflexible software. Let us see how.

The curtains seem to part;

A sound is on the stair,

As if at the last. . I start;

Only the wind is there.

(Bliss Carmaon, A Northern Vigil)

7 This concept can be confusing: Is the information or its expression the right meaning? In our metamodel, we

will treat meaning, expression, and the quantum of information as separate objects.
8 See the endnote on how information relates to physical objects.
9 See the endnote on the locale of matter and energy.

10 The endnote on Shannon’s information theory discusses the measure of information.
11 See the endnote on the mathematical theory of categories.
12 Mathematical discussions on generic domains can be found in several mathematical and engineering texts,

including [308], [232], [233], [234] and [235] also describe sets, domains, and functions.
13 Many CASE tools and professional publications club domain and format together and call the composition

domain. In this book, we will distinguish between the two. Readers will not be confused if they remember this.
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A parable of Jim, Jane, Jugs of milk, and Robert in the United States of Information

The information content of reality manifests itself to us through the behavior, or properties,

of objects we observe. For example, people have birthdays, they age, like some colors more

than others on their cars, have a gender that determines certain physical attributes and the

ability to bear children. Let us take a completely different object. Say a jug of milk. It stores

milk. You can measure the amount of milk in the jug. You can quantify both your age and

the volume of milk stored in the jug with numbers that describe their individual magnitudes.

Your intuition tells you that, in some sense, the values of both these very dissimilar

qualities of very dissimilar objects (person’s age and the volume of milk stored in a jug)

are defined on a domain of information that contains some common behavior – not of the

objects themselves, but of the information conveyed in (not by) the act of measurement –

that each quality can be quantitatively measured. Another example of such a quality shared

by disparate objects is temperature. We can measure the temperature of all three: the jug,

the milk, and the person. Your intuition is right. Let us understand the kind of information,

or behavior, that domains naturally normalize by comparing the amount of information

intrinsically conveyed by each of these qualities of people and jugs of milk.

Nominal domains

Let us start with gender. We know that it conveys that men are different from women and

nothing else. It has no information on how men and women can be arranged in any natural

order, nor does gender carry any quantitative information on differences between men and

women.

When we store this information on a physical medium, we could choose to arbitrarily

represent “male” with a numeric code 1, and “female” with 2. If our friend, Robert, a

professional and dedicated mad scientist devoted to divining the true nature of things, then

claimed that men precede women because the number 1 precedes 2,14 we would know that

Robert’s claim is meaningless because the domain on which gender is naturally defined has

no information about sequence.

This will always be true regardless of how we physically express or code the information:

it is also meaningless to subtract 1 from 2 to find the amount by which men and women

differ, or to divide 1 by 2 to find the proportion of difference. The domain just does not have

that information. It has nothing to do with how the information is physically expressed.

What does not intrinsically exist cannot be expressed; you cannot squeeze blood from stone.

Domains of this type that contain just enough information to classify objects based on

their properties (or relationships) are called nominally scaled domains or nominal domains15

in short.

Ordinal domains

Next consider a person’s color preference for cars. Say, if the cars are identical in every

other way, Jane likes blue cars more than green and red, and cares even less for black cars.

Between green and red cars, she really has no preference if all else is equal.

14 This is called coercive polymorphism. See the endnotes on polymorphism and the mathematical theory of

categories.
15 See discrete distance in the endnote on metric space for more information.
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Box 3 Objects, domains, and formats

Domains carry meaning. Formats are how information is physically presented to a

person, system, or instrument.16

For example, gender may be formatted, with a numeric code such as “1” for “male”

and “2” for “female”, or “M” for “male” and “F” for “female”; it may be spelt out in

written or spoken (where technology supports multimedia) English words – “male” and

“female”– or in another language. It may even be graphic icons or pictures, static or

moving, of a man or woman, or any other physical expression. All these are examples

of FORMAT, the physical expression(s) of meaning, not meaning itself.

Objects and domains together convey meaning. Objects frame the context of the

meaning conveyed by domains (to be described with more precision later). For example,

the meaning of the fact that objects may be female (carry progeny), male (fertilize

females to enable them to have offspring), or neuter (neither) is conveyed by the domain

alone. A common domain normalizes the common meaning and behavior of gender

across objects like people, plants, dogs, deer, and other living things. An object such

as a person or an animal puts this generic behavior into context, giving it a specific

meaning17 for that kind or instance of animal.

Thus, there may be male and female people, parts of flowers, dogs, spiders, and cats.

This conveys the fact that a property, “gender,” of a class of objects called “persons” (or

parts of flowers, dogs, spiders, cats etc.) maps to the gender domain, with the restriction

that only a male or female gender is allowed for an instance of this object. It records

an irreducible fact, that people must be either male or female. Similarly, other classes

of objects such as dogs, spiders, and parts of flowers would map to the gender domain

with the same restriction – an irreducible fact about these objects.

Each earthworm, on the other hand, must be both male and female because each

earthworm may carry and fertilize earthworm eggs.18 This too is an atomic rule or

irreducible fact. Each object thereby provides the context of maleness and/or femaleness

(or neither), whereas the domain is the bucket for recording the common meaning of

maleness, femaleness, or neutrality.

Sometimes more than one property of an object may map to the same domain. Each

will represent a distinct irreducible fact needed to represent the real world. For example,

the length, breadth, and height of a room all map to the length domain. The domain

normalizes the facts that these three properties of room can have the same units of

measure, which have the same conversion factors. Thus they need not be repeated for

each property. The same logic holds when different properties of very different kinds

of objects map to the same domain. For example people’s heights and the lengths of

rooms both map to the length domain, which provides the common home for their units

of measure and conversion rules between units of length.

16 Called actor in the language of object technology, or observer in the parlance of physics. Readers interested in

more information about actors may refer to books on UML, or the resources in the bibliography at the end of

this book. UML, the acronym for universal modeling language, is becoming the de facto standard. The Object

Management Group and Rational Corporation are strong advocates of UML. Also see Rational Corporation’s

Web resources in the Bibliography.
17 See polymorphism in the endnote on the mathematical theory of categories for more information.
18 See the endnote on the question of gender.
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She agrees to participate in a consumer survey of preferred colors of cars. First, Jim, the

researcher, asks her to rank the four car colors she likes most in order of preference, starting

with the color she likes most. That is easy: blue first, followed by red and green at par, and

finally black at the end. So far she has no trouble.

Next, Jim asks her to quantify how much she likes each color by assigning a number to

each. Now Jane has a problem. She does not know how to respond. She knows that she

should give blue the highest score, followed by an equal score for green and red, and a

lower score for black, but what should these scores be? She has no idea. All she knows is

that she likes blue more than green and red, green and red equally, and black the least, but

cannot quantify her liking. The information is just not there.

The domain on which Jane defines her preference for color of cars intrinsically and nat-

urally contains sequencing, or ranking information, but no information about magnitudes.

Should Jim insist, she might quote some numbers, but these numbers will convey no infor-

mation beyond Jane’s ranking of color preferences for cars.19 It does not matter how Jim

codes her color preference – with numbers, letters, colors, or graphic icons.

Domains of this type that have no quantitative information, but do convey enough infor-

mation to arrange objects in some sequence, or order, are called ordinal domains.20

Note that, because she can rank cars in order of color preference, Jane can automatically

group cars into separate groups (in this case, green and red cars would be grouped together –

the criterion is her color preference, not the actual color of the car). However, if she just

groups, not ranks cars in order of color preference, she is withholding information from

Jim. This shows that ordinal domains intrinsically carry more information than nominal

domains.21 They carry sequencing information as well as, by implication, classification

information.

Now suppose Jim, frustrated by Jane’s inability to quantify her preferences, assigns some

kind of number to her preferences – say, for arguments sake, the rank Jane assigned to each

color – 1 to blue, 2 to red and green, and 3 to black.

We know that it would be entirely incorrect for Jim to conclude on this basis that Jane

likes blue cars three times more than she likes black cars. Nor can Jim conclude that the

gap, or difference, in Jane’s preference between blue and red cars is equal to her preference

gap between red and black cars. The domain simply does not have this information. You

cannot squeeze blood from stone.

Difference scaled domains

Let us consider Jim’s and Jane’s temperature next.

Jane liked Jim and asked him to stay for lunch. After lunch, they went to Domain’s

Metaphysical Diner for a cup of good Columbian coffee. Robert, the mad scientist, hap-

pened to be drinking coffee at the next table. Robert was researching the true meaning

of temperature and had a superb collection of thermometers of every kind in his brief

case.

19 See coercive polymorphism in the endnotes.
20 [211] has mathematical detail on ordinal measurement.
21 Shannon’s information theory in the endnotes describes the mathematical measure of information.



29 On the nature of reality and the nature of business

Mr. Domain took great pride in his special coffees and always served coffee with a separate

warm jug of milk for each customer. Jane found that the new waitress had accidentally served

her chilled milk in the jug. Robert overheard Jane, and sprang up with missionary zeal to

ask if he might address any issues with Jane’s and Jim’s milk. Mistaking him for the new

waiter, Jane graciously accepted.

Robert immediately flung open his brief case and extracted two high-tech digital ther-

mometers, a scientific calculator, and an elegant notebook. Without further delay, he plunged

a thermometer into each jug, did a quick calculation, and declared that Jim’s milk is twice

as warm as Jane’s.

Jenny, the waitress, was piqued and asked Robert how he knew. “Simple,” Robert

explained, “look at the display of each thermometer. Jane’s shows 40 degrees Fahren-

heit, and Jim’s shows 80 degrees Fahrenheit. Since 80 is twice as large as 40, Jim’s milk is

twice as hot as Jane’s.”

“Also,” said Robert to show off his high-tech thermometers and impress Jenny with his

erudition, “these thermometers can show you the temperature in either Fahrenheit or Celsius

at the touch of a button! Always be sure that you use the same units of measure for both

jugs, otherwise you will not be comparing like readings.” He hit two identical buttons on the

thermometers, and the temperature of Jane’s jug of milk read “4.44 degrees cels ius”

and Jim’s read “26.67 degrees cels ius .”

“Look what you have done now!” Jenny complained. You made Jim’s milk more than

six times hotter than Jane’s, because 26.7 divided by 4.44 is more than 6!”

“I did not,” Robert retorted, “I just changed my unit of measurement.”

“Sir!” exclaimed Jim, “my temperature is rising as well! We want to drink our coffee in

peace. All we need is a fresh jug of warm milk for Jane, or she may use some of mine.”

“Impossible!” cried Robert. “Your temperature can only rise if you are sick, or the

mechanism for regulating your temperature cannot cope with the extreme heat of summer!

See, my remote sensing thermometer can even sense your temperature from a distance, and

it shows that you are holding at a steady 98.4 degrees Fahrenheit.”

Fortunately Mr. Domain arrived just then, before things got out of hand. “What’s the fuss

about?” he asked Jenny. Jenny, almost in tears by now, cried, “Robert just made Jim’s milk

six times warmer than Jane’s by measuring its temperature in Celsius rather than Fahrenheit!

It was only twice as hot before!”

“Now ladies and gentlemen, let us be civilized about this,” said Mr. Domain, fixing Robert

with a specially penetrating glare. “I happen to know all your birthdays. You, Jenny, were

born on 1/1/1977. It is now 2001. That makes you 24 years old. Your daughter was born on

1/1/1995. That makes her six years old. I can also calculate that there was an 18-year gap

between the date of your birth and that of your daughter’s.

“Now, what would I learn by dividing the date on which you were born by the date on

which your daughter was born?” They thought hard about it. No one had an answer.

“Well, there you are,” said Mr. Domain triumphantly, “you would learn nothing. It is

meaningless to divide one date by another.”

“But why?” asked Robert, quite intrigued by Mr. Domain’s question.

“Simple, Robert,” answered Mr. Domain. “You, of all my guests here should know. The

date domain has no information on ratios because it has no natural zero. The zero hour for
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the Gregorian calendar (the ‘normal’ calendar most used in the Western Hemisphere) was

arbitrarily set. You can certainly measure the difference between any two dates as I just did –

the unit of measurement is your choice, it could be days, years, minutes, hours, seconds, or

any other measure of time – but ratios are meaningless. The domain just does not have the

information if it has no natural zero.”

“Ah!” exclaimed Robert, a new light dawning in his eager eyes, “so it is meaningless to

take the ratio of temperatures as well! After all, zero degrees Celsius was arbitrarily set at

the temperature at which water freezes, as was 32 degrees Fahrenheit.”

“That is correct,” Mr. Domain replied, addressing both Jenny and Robert, “so it was

meaningless to say that Jim’s milk is hotter than Jane’s by any multiple, be it two, six,

or anything else.22 However, you can say that the difference in temperature is 40 degrees

Fahrenheit, or 22.27 degrees Celsius.” To make it less embarrassing for Robert, he added,

“You were right about the unit of measure. When you talk of magnitudes of differences,

you must express them in some unit of measure, otherwise they are meaningless. There can

be a wide choice of units, but you must choose one.

“Domains of this type that convey information on classification, order (or sequence), and

the magnitudes of gaps (or differences) between points in sequence, but no information on

ratios or proportions, are called difference scaled domains.23

“All differences in a difference scaled domain must be expressed in at least one, but

perhaps many, unit(s) of measure. Nominal and ordinal domains, on the other hand, need

no unit of measure. All they need to express information in the world framed by space and

time is format. Difference scaled domains are different. To express information (that already

exists in the domain, regardless of whether it was actually expressed in space and time), all

difference scaled domains must be associated with at least one, and perhaps many, unit(s)

of measure. Formats must then be linked to each unit of measure. I will tell you more about

that in a bit.”

“I see the truth of that,” replied a much more contemplative Robert. “For example, the

distance between the door and my table is 10 feet, or 120 inches. The unit of measure I use

does not change the actual distance between the door and me, but it certainly changes the

number I write down.”

“You are right,” Mr. Domain replied, “but your observation about length takes this dis-

cussion to an entirely different level altogether. It should be obvious by now that difference

scaled domains are rich in information. They convey enough information to not only clas-

sify and sequence objects but also to measure the magnitude of gaps between objects in a

sequence. However there is another kind of domain that carries even more information. We

need to talk about ratio scaled domains.”

To Jim and Jane, he added, “I did not mean to intrude, and I thank you for being so even

tempered. Robert was right though. His remote sensing thermometers show that both your

22 Chapter 4, section 3 addresses the information content of ratios. Also see the endnote on the natural zero of

temperature and time.
23 [211] describes the mathematical relationship between ordinal and difference scaled measurement.
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temperatures are normal at 98.4 degrees Fahrenheit, and, if I may take the liberty of saying

so, you are a well matched pair and very close to each other in the temperature domain. The

gap between you is very close to zero.”

Ratio scaled domains

“What about me!” exclaimed Jenny quite pleased with the thought of difference scaled

domains, “Does that mean no one can say I am four times as old as my daughter?”

“Sorry to disappoint you Jenny,” said Mr. Domain, “Date and age are defined on very

different kinds of domains. Age is the gap between the date on which you were born,

and today’s date. It is not a date. Indeed, it is valid to talk about ratios and proportions

of gaps between objects measured in difference scaled domains, but the ratios themselves

must map to ratio scaled domains. For example, you can say that you are six times as

old as your daughter and Jim will be perfectly right if he says that the difference in tem-

perature between his jug of milk and Jane’s was five times the difference in temperature

between ice and Jane’s jug of milk. That ratio will hold regardless of the units of mea-

sure you use to measure the gap, as long as you use the units consistently. Try it for

yourself.”

Box 4 Mr. Domain’s calculations

Robert quickly verified Mr. Domain’s calculations

In Fahrenheit:

Temperature of Jane’s milk = 40 degrees Fahrenheit

Temperature of ice = 32 degrees Fahrenheit

Difference between temperature of ice and Jane’s milk = 8 degrees Fahrenheit

Temperature of Jim’s milk = 80 degrees Fahrenheit

Temperature of Jane’s milk = 40 degrees Fahrenheit

Difference between temperature of ice and Jane’s milk = 40 degrees Fahrenheit

Ratio of differences = 40/8 = 5

In Celsius:

Temperature of Jane’s milk = 4.44 degrees Celsius

Temperature of ice = 0 degrees Celsius

Difference between temperature of Jim’s and Jane’s milk = 4.44 degrees Celsius

Temperature of Jim’s milk = 26.67 degrees Celsius

Temperature of Jane’s milk = 4.44 degrees Celsius

Difference between temperature of ice and Jane’s milk = 22.26 degrees Celsius

Ratio of differences = 22.26/4.44 = 5

(The result of the actual calculation is 5.01, not exactly 5, because of rounding

errors. The temperature in Celsius has been computed to only two decimal places.

Had the temperatures not been rounded, the two ratios would match exactly.)
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(Mr. Domain sighed quietly. “What a pity,” he thought, “Jim and Jane are so close in the

temperature domain, and I wish Jane’s jug of milk was closer to Jim’s as well.24 Then none

of this commotion would have happened.” However, he continued.)

“Gaps between objects in a difference scaled domain will always map to a ratio scaled

domain, but so do many other things. Almost everything physicists measure such as mass,

length, area, volume, time (in the same sense as age, not date), probability, and many other

things of interest to business, such as money or process defect densities, map to ratio scaled

domains.

“Of nominal, ordinal, difference, and ratio scaled domains, ratio scaled domains are the

richest in information.

“Ratio scaled domains convey enough information to classify, sequence, and measure

differences, as well as ratios between objects that map to them.

“Like difference scaled domains, ratio scaled domains must also have at least one (and

perhaps many) unit(s) of measure. Units of measure are needed to express information that

these domains already have in the world framed by space and time.”

“Like my distance from the door!” exclaimed Robert, “It maps to the length domain and

I can certainly say that I am twice as far as Jim from the door because I am standing 10 feet

away from the door, while Jim is sitting only 5 feet from the door. Even if I changed my

unit of measure to inches, meters, or anything else, the individual numbers might change

(although the distance would not), but their ratio must stay the same as long as I use the

same unit to measure both our distances. Now it has all started making sense.”

Mr. Domain’s secret

Mr. Domain was beaming happily at Robert. “Now I am almost ready to share my secret

with you. It is my secret map of knowledge. It is very old – as old as the universe we live in.

“But first we must pause to take stock of what we know. There are four kinds of domains:
� “Nominal domains contain only classification information. They have no information on

sequencing, distances, or ratios of properties of objects. In order to physically express

this information, it must be physically formatted and recorded on some medium. A single

piece of information must be recorded in at least one format, and possibly many formats.

For example, a person’s gender may be coded as a number (say, 1 for ‘female’ and 2 for

‘male’) or letter (say F for ‘female’ and M for ‘male’) or a picture of a man for ‘male’

and a woman for ‘female’, or a hexadecimal code on magnetic disk that only computers

can read, or almost any coding scheme you can think of.
� “Ordinal domains contain both classification and sequencing information. They have

no information on the magnitudes of gaps or ratios of properties of objects. To phys-

ically express this information, we only need to choose a physical format and record

it on some medium. A single piece of information must be recorded in at least one

format, and possibly many formats. Moreover, regardless of format, we can compare

which objects are greater or less than others in terms of properties that map to ordinal

domains.

24 Box 16 describes how domains extend conventional concepts of distance.
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� “Difference scaled domains let us classify and arrange objects in a natural sequence and

also let us measure the magnitude of point-to-point differences in the sequence, but carry

no information on ratios. They have no natural zero.

“To physically express this information, we not only need at least one physical format,

but also a unit of measure (UOM). A single piece of information must be recorded in

at least one format, and perhaps several units of measure. For example, the ambient

temperature may be recorded in Fahrenheit or Celsius, and the date may be expressed in

the Gregorian or Islamic calendars.

“The UOM is not enough by itself to express the information. Each UOM must be

expressed in at least one, but possibly several formats. For example, Fahrenheit may be

spelt out as Fahrenheit, or printed as ‘◦F’ in different documents; it can be in different

fonts or colors. It may even be spoken out aloud, displayed in a graph or icon, or recorded

as a binary code on disk for computers to interpret.
� “Ratio scaled domains let us classify and arrange objects in a natural sequence, measure

the magnitude of differences in properties of objects, and take their ratios. They always

have a natural zero.

“Like difference scaled domains, both UOMs and formats must be specified in order

to physically express the information. A single piece of information must be recorded in

at least one, and perhaps several units of measure. For example, lengths of rooms may

be recorded in feet, inches, meters, or centimeters.

“As in the case of difference scaled domains, the UOM is not enough by itself to

express the information. Each UOM must be expressed in at least one format, but possibly

several formats. For example, the US dollar may be printed as ‘USD’ or ‘$’ in different

documents.”

Then, Mr. Domain opened a weathered and ancient book. With a twinkle in his eyes, he

said, “Here is my secret map. It is not complete, and I regret I cannot let you into all my

secrets just yet, but I promise I will. This map is only an introduction to the territory of

domains. It summarizes only what I have just told you, but, let me show you how to read

it.” (In Chapter 4, domains will be examined in more detail.)

“Domains are objects in the metamodel of knowledge, as are units of measure and formats.

For this reason we can call them metaobjects. Not all metaobjects are shown on this map –

not even some you have been introduced to, like relationship and process. The hierarchy

at the top of the map classifies different kinds of domains and arranges them in order of

intrinsic information content. (In Chapter 4, you will see how these hierarchies will help

you normalize business rules.)

“The lower half of the map (figure 8) shows the relationships between various meta-

objects. The metaobjects are shown as rectangles, and the meta-relationships, as arrows. To

understand the rules you must read along the arrows.

“For example, starting with ‘quantitative domain’, the full sentence along the arrow

reads ‘Quantitative Domain is expressed by one, or many, units of measure.’ Note that the

lower limit (1) on the occurrence of unit of measure shows that each quantitative domain

must have at least one unit of measure, else it cannot be expressed at all. Similarly, the next

sentence, starting with unit of measure reads, ‘Unit of measure is expressed by one, or many,

formats.’
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Figure 8 (Partial) metamodel of domain

“The arrow that starts from, and loops back to unit of measure, reads ‘Unit of measure

converts to none, or at most one, unit of measure.’ This is the metaobject (remember rela-

tionships are objects too) where conversion rules, such as those for currency conversion or

conversion from feet to meters, reside. This metaobject facilitates storage of the conversion

rule in a single place.”

“I understand why you have a lower limit of zero – if you had only one UOM, there is

nothing else to convert to,” interjected Robert, “but why did you restrict the conversion rule

to only one other UOM? Cannot yards, for example, be converted to feet by multiplying

by 3, or to inches by multiplying by 36? So right there, you have yard, a UOM for length

related to two, not one, other UOM.”

“A very perceptive question, Robert,” said Mr. Domain. “Of course, you are right,

each UOM of a quantitative domain can be converted to every other UOM, but remem-

ber the purpose of the metamodel is to avoid redundancy, and you need only one con-

version rule per UOM. You could then navigate to any other UOM in the domain via a

chain of conversion relationships.25 One relationship per UOM is all you need. Another

25 The chain must be acyclic, but more on that later.
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Box 5 Conversion between UOMs

Measurements in any given difference or ratio scaled domain can be converted from

one UOM to another by multiplying by a conversion ratio. If one or more UOMs (and

conversion ratios) are already in use in a domain and a new UOM is introduced, we

need to introduce only one new conversion ratio to enable us to convert measurements

expressed in the new UOM to any, and every, other UOM already in use. We do not need

individual ratios for conversion from the new UOM to each of the UOMs already in use.

Indeed, we would denormalize knowledge if we were to specify each ratio individually;

each of these ratios can be derived from just one conversion ratio.

The following example illustrates these real-world facts. In order to keep the example

simple, we have based it on the length domain, but the same arguments will apply to

UOMs in any ratio or difference scaled domain.

Let us assume that doctors in different countries decided that they would conduct

a survey to find the average height of people. Soon after they started the project they

realized their scales had different units of measure: inches in Inland, feet in Footland,

and meters in Metland. They realized they would all have to agree on a single unit of

measure to succeed. The conversion rules between inches, feet, and meters are in the

following table:

TO

FROM Inches Feet Meters

Inches

Feet ×12

Meters ×3.2808

For example, to find the rule for converting from feet to inches in the table above,

find “Feet” under the “From” column on the extreme left, and then look along the

“Feet” row to find the cell under the “Inches” column. That cell contains the rule

“×12”, which means multiply by 12, i.e. to convert feet to inches multiply by 12.

(Thus 5 feet = 5 × 12 = 60 inches.) Similarly, the rule for converting meters to

feet is “multiply by 3.2808.” We also know that division is the inverse of multipli-

cation. (We will revisit rules like these in more detail in Chapter 4.) Thus the table

contains three atomic rules.

We need only these three rules to be able to convert between any units of measure in

the table. For example, although the table contains no explicit rule for converting inches

to feet, we can derive it by using the rule that division is the inverse of multiplication

(to convert inches to feet, we divide by 12.) Similarly, although there is no explicit rule

for converting meters to inches we can derive it from the information in the table. We

can convert meters to feet by multiplying by 3.2808, and then multiply the result by

12 to convert to inches. Had we included the conversion ratio for explicitly converting

meters to inches in the table, it would have been redundant, and knowledge would be

denormalized. (We will revisit this issue in Chapter 4 in more detail.)
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Had everyone used the same UOM, there would have been be no need to convert at all,

and there would have been no need for conversion rules. (Note that the diagonal cells of

the table are all blank.) This is what Robert meant when he said that he understood why

the lower limit of the conversion relationship was zero. (We will revisit this relationship

in more detail in Chapter 4.)

The countries were uncomfortable with UOMs that they were unfamiliar with and

could not agree on which of the three UOMs (inches, feet, or meters) they would use for

their project. They finally decided that to be fair to all, they would settle on centimeters,

a UOM that none of them used. If we added centimeters to our list of UOMs for length,

the conversion rule table would become:

TO

FROM Inches Feet Meters Centimeters

Inches

Feet ×12

Meters ×3.2808

Centimeters ×0.01

There is only one conversion rule we would add to the table: “multiply by 0.01

to convert from centimeters to meters.” With this single new rule we could convert

centimeters to any of the other units of measure in the table. (For example, although

there is no explicit rule in the table for converting centimeters to inches, we could

multiply by 0.01 to convert centimeters to meters, multiply the result by 3.2808 to

convert to feet, and then multiply that result by 12 to convert to inches. We leave it to

the reader to try to convert centimeters to other UOMs in the table.) This is an example

of what Robert meant when he said that he did not need to add a separate conversion

rule for every UOM in the domain each time he added a new UOM to the table – that

adding a single new conversion rule would be enough.

would add no information. It would be redundant. I once had a very interesting visitor – I

remember his name was Claude Shannon26 – who helped me understand this.”

“It also implies that if you ever create a new UOM for the domain, you have to add just

one conversion rule,” said Robert excitedly, “you do not need a separate rule for ever other

UOM in the domain. Boy, isn’t that a nice saving! This object (conversion relationship) has

both the conversion ratio and the rule that tells you to multiply the value as measured by

the source UOM to convert to the target UOM.”

“Also note, whenever you have two or more UOMs for any given domain, there is

automatically and intrinsically a pair of conversion rules that will let you convert one UOM

to the other. This is true whether business is currently interested in converting between

UOMs or not. It just is, and these rules will apply to any objects, as widely disparate as they

26 See the endnote on measure of information.
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may seem to us that map properties to the domain. For example, the rule for converting feet

to inches will apply to heights of people, dimensions of rooms, lengths of wire, and any

other property that maps to the length domain.

“So you see,” continued Mr. Domain, “even though we have just started, and our meta-

model is still rudimentary, some kinds of reusable components are already becoming self

evident.” And looking at Jane who was shaking her head incredulously, he added, “Of

course, you might argue that this is all common sense, and it could well be, but, bear with

me, as the metamodel fills out, many other reusable components will emerge naturally.

After all, we are modeling the nature of nature,” he added with a smile.

“And I can see from the map that much of what we have discussed for UOMs has parallels

with formatting issues as well!” exclaimed Robert. “Now I am beginning to see, even if it

is still just a glimmer in my eye, how the metamodel of knowledge can help me normalize

rules!”

“And now that you can read the map, understanding the verbs in parentheses are easy,”

said Mr. Domain. “They merely show the relationship in the reverse direction (i.e. read in

the direction opposite to the arrow). It is called the inverse relationship,27 but more on that

later.

“And one more thing, if I may, before we move on,” continued Mr. Domain. “Note that

none of these meta-relationships involves time. They are not processes. The rules just are.

There is no data flow, or conversion process in the real world. It is just knowledge. Later we

will see how these can naturally map to computer implementation and still stay normalized.

We will have to link each implementation to a single piece of immutable knowledge that

just is.”

The structure of domains – perception, five senses, and aliens in the

lost worlds of metanesia

Jane was getting a little confused and felt it was high time she made her presence felt.

“Whoa! Hold your horses there for a moment! I really don’t understand. What is this fuss

about information intrinsic to meaning that exists beyond any spatial or temporal frame?

After all, we can only know about the existence of information through our five senses. We

know about the behavior of objects that are framed by space and time only because we can

see, hear, smell, touch, or feel them. How can we claim something exists when we cannot

see, hear, smell, touch, or feel it?”

“Good point, Jane,” said Mr. Domain with a delighted smile. “Indeed, you have raised

questions that philosophers have long debated.28 I will need to take you on a tour of my

secret zoo in the lost world of Metanesia to explain.

“A word of warning though,” he added a little anxiously, “it is a fantastic journey, but

not everyone returns from Metanesia. Moreover, even if they do, they can get somewhat

eccentric like my friend Robert here. Are you sure you want to go?”

27 See the endnote on the mathematical theory of categories or publications in the bibliography [252 ], [253 ], and

[308].
28 See the endnote on positivism.
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“I am not going to be scared off so easily,” thought Jane to herself, “Mr. Domain, or

whatever he likes to be called, is probably out of touch with reality. I am not going to let

him off the hook so easily!” To Mr. Domain, she simply said, “Yes, I am sure I want to

go.”

“Come then, and remember that it was your choice!” Jane was suddenly plunged into a

strange stygian darkness. She could not even see the tip of her nose in the dark. A complete

silence, unlike anything she had ever experienced before, enveloped her totally. She felt

strangely disembodied. She realized with some trepidation that she was completely cut off

from her senses. She could neither see, nor hear, nor feel, nor smell. Even the taste of the

air she used to breathe was gone. Only the core of her being was left. Gradually Jane sensed

strange presences gathering around her, and as if from very far away, she heard Mr. Domain:

“You are in the presence of a very powerful alien being. It is not like anything you have ever known, or

can ever imagine. Its senses are completely different from yours. It does not see, feel, smell, hear, or

taste. Yet it knows. Even I do not know how; and it has a mind. Even I do not understand its thoughts

or perceptions. Be extremely cautious.”

Jane was beginning to wish that she had not accepted the challenge. Oh, wouldn’t it have been

so much nicer to go back to a warm conversation with Jim, even if her jug of milk was a tad cold!

Anyway, here she was. Slowly she felt a thought forming at the fringes of her consciousness. It seemed

like a question:

“What are you?”

“I am Jane.”

“Do not comprehend response.”

“I am human, 5 feet 6 inches tall.”

“Do not comprehend response. Explain human. Explain tall.”

“Tall is the same as high.”

“Do not comprehend response.”

She heard Robert’s presence replying, “Humans are sets of properties mapped to space.”

“Now I don’t understand,” thought Jane, “but that’s okay if we can get out of here.”

“Explain space.”

“Boy, whatever this thing is, it must be dumb,” thought Jane.

“Careful Jane!” – that seemed to be Mr. Domain.

“Let me try” (Jane was almost sure that it was Robert responding). “Space has three independent

attributes (that we call three dimensions). Each is mapped to the same ratio scaled domain we call

length. The three attributes of space are labeled length, breadth, and width. These attributes are

uncorrelated.”29

“Comprehended!”

“Yes Robert, as long as you can exchange pure information, any mind, however alien will have

common ground to understand your message. This being senses the world in ways we cannot even

begin to fathom, and our senses are equally alien to it. If you talk in terms of things you see, hear,

touch, smell, or taste, it will be confused,” Jane was sure that this was from Mr. Domain.

Then she sensed Robert’s response, “Understood. However, whatever incomprehensible and

unimaginable senses it has, it has to be aware of its environment. That can happen only if it gets

29 [255] in the bibliography defines space mathematically, and has succinct descriptions of common spaces of

various kinds.
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information from reality. The same thing is true for us as well. The common structure of information

is the only way we can understand it, and it can understand us.”

“Oh get real!” thought Jane.

No sooner was the thought out, she found herself standing on a sidewalk with Jim, back

in the good old United States of Information. Had it all been a dream? Jane was sure that

Domain’s Metaphysical Diner was somewhere in the neighborhood. She just couldn’t see

it. She has looked for Mr. Domain’s diner ever since. She has never found it. After all, as

she understood in a flash just before she found herself on the sidewalk, he is everywhere

and every when. You can’t really get away from him. Not now. Not ever.

O World invisible, we view thee,

O world intangible, we touch thee,

O world unknowable, we know thee,

Inapprehensible, we clutch thee.

(Francis Thompson, No Strange Land)

4 Basic metaobject inventory

Let us pause here and make a list of the metaobjects we have discussed in this chapter. These

metaobjects will help us normalize real-world behavior (or Nijssen’s irreducible facts [297]

or Ross’ atomic rules [294]).

The concepts we have covered are:
� object
� property
� relationship
� process
� event
� domain
� unit of measure (UOM)
� format

The kinds of rules each metaobject normalizes are shown in figure 15. Moreover, we have

seen that behavior and irreducible facts (or atomic rules) are merely different perspectives

of the information content, or properties of objects. They are simple in and of themselves,

but are the building blocks of knowledge of varying complexity.

5 Metaobjects and the natural repository of knowledge

Wisdom, we saw in section 1, is the symphony of collective knowledge that helps to move the

firm towards its goals. Knowledge is configurations of rules. The most fundamental building

block of knowledge, as well as the ultimate repository of information, is the atomic rule – a

rule we cannot break into smaller, simpler parts without loss of meaning. The metaobjects
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Figure 9 Basic metaobject inventory: kinds of rules each metaobject normalizes

of figure 9 are the natural wellspring of atomic rules and the repository of knowledge: they

are the home, and the basis of real-world meaning.

In this section, we will understand how atomic rules are configured into knowledge, and

how reusable components of knowledge naturally emerge from the metaobjects of figure 9.

The intent is to develop a basic understanding. In the following chapters, we will revisit

these issues again in depth and with greater precision.

A configuration of rules is not merely a loose collection of atomic rules. It possesses

structure and patterns. It incorporates atomic rules that are assembled from other atomic

rules. Some atomic rules are reused repeatedly as we assemble new rules to seek competitive

advantage by specializing and implementing our business operations in new and innovative

ways. These reusable rules constitute our reusable components of knowledge. Sometimes

entire structures and configurations themselves may be reused to build other, more spe-

cialized domains of knowledge. This is analogous to manufacturers assembling reusable

subassemblies from standard (reusable) parts. These reusable subassemblies may in turn

be incorporated into a multitude of versions and variations of the end product. Reusability

springs from the syntax of objects. Therefore let us first understand how the objects in figure 9

serve as repositories of atomic rules.

Let us start by revisiting the simple example in box 2. Each process in box 2 is an object.

These processes are strung in a chain that shows which process must precede which other.

These links are relationships, and therefore objects in their own right. These relationships

carry irreducible facts about mutual dependencies between processes they connect. The
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Figure 10 A rule: organization ships product assembled from objects

chain of processes is a structure assembled from atomic rules. It is a very simple configu-

ration of atomic rules.

To understand how atomic rules may be assembled from other atomic rules, and to

understand how subassemblies of rules may be reused, let us take another example – a

simple atomic rule common to many businesses: organization ships product.

The shipment is a relationship between organization and product. It is also an object in

its own right (just as all relationships are). The rule organization ships product is shown

in figure 10. (This is an illustrative diagram, not one characterized by a rigorous syntax.

Subsequent chapters will describe more precise ways of modeling atomic rules.) Read it as

you would the diagram of figure 8; only remember that the arrows, i.e. relationships, are

objects in their own right.

Figure 10 illustrates two atomic rules:

1 an organization may make many shipments and

2 each shipment may contain many products.

This is a simple configuration of knowledge. It is just a set of two atomic rules that are not

mutually linked in a structure.

Now let us examine a scenario that forces change. In the following scenario, as rules of

business change, we will add or alter rules, changing the simple configuration above step

by step. As we do this, we will understand how knowledge, configured in the metaobjects

of figure 9, is naturally normalized in the real world. We will step through the process of

assembling knowledge from components, one step at a time.

Assume that the firm had negotiated a flat rate per shipment, but the contract is about

to expire and shipping cost will depend on the gross weight of the shipment in the new

contract. The scope of the shipping model must be expanded to include the gross weight.

Assume also that the firm has access to components of knowledge as a part of an inventory

of knowledge artifacts that it has already built and stored in a repository. First we must look

for the relevant knowledge in the repository.

We locate the weight domain. It is a ratio scaled domain. We understand (from figure 8

and box 5) that it must be associated with units of measure and conversion rules in the

structure shown in figure 8. We also understand that weight can never be a negative number.

It is a constraint, an atomic rule, associated with the domain (constraints are objects we will

examine in depth later). As such, there is a natural structure of irreducible facts associated
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Figure 11 Adding components to assemble configurations of rules

with the weight domain. Assume the artifact in the repository reflects this. This natural

structure may then be considered to be a subassembly of knowledge stored in the repository.

Figure 11 shows this structure (second structure from the left).

When we assemble shipment with weight, it implicitly and naturally inherits the entire

structure associated with the domain. The units in which shipment weight might be mea-

sured, the conversion rules between these units, and the fact that the shipment weight cannot

be negative are all irreducible facts that flow from the subassembly. We might choose a pre-

ferred, default unit of measure to express the shipment weight when we design the business

process. Our default unit of measure might depend on the context (default and initial states

are described in detail in Chapter 2). For example, we might prefer kilograms when we

deploy the process in the European Union, and tons when we deploy it in the US. In neither

context will the structure change. Indeed, it will be common to both. This is an example of

how knowledge is reused.

If the unit weight of the product were also needed, we would reuse the weight domain

again. We would assemble the product object with the weight domain and inherit the

same structures and rules. We would not need to redefine these constraints, the units of

measure, and the conversion rules separately for shipment weight and product weight,. If

a conversion rule was changed, or a new unit of measure was added to the weight domain,

it would automatically be available to both shipment weight and product weight, because

knowledge was normalized.

Now we will understand how irreducible facts may be reused to build other irreducible

facts. Assume that the new contract with the shipping company specifies that all products

must be shipped by truck. The atomic rule will read: organization ships product by truck.

First let us test this rule to validate that it is an atomic rule. Let us check if we lose

information when we break the rule into smaller, simpler pieces:

1 Organization ships product.

2 Organization ships by truck.
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Even if the two rules are taken together, they do not mean that the product will be shipped

by truck. For example, both statements will be true even if the organization ships other

items such as supplies and documents by truck, and ships products by air. Therefore we

have lost information by dividing organization ships product by truck. It is an atomic rule.

We obtained that atomic rule by turning shipment from a two-way relationship between

organization and product into a three-way relationship between organization, product, and

truck. We have created a new atomic rule from another. It is a special case of the more

general atomic rule it was derived from.30 This new structure, as well as its assembly from

knowledge artifacts in the repository, is illustrated in figure 11.

Now we have another requirement: we find that trucks cannot carry more than 8 tons,

i.e. the gross weight of each shipment by truck must be no more than 8 tons. It is another

irreducible fact. This is not a generic constraint attached to the weight domain like the

fact that weights must equal or exceed zero was; rather it is specific to shipment by truck.

Therefore the constraint is attached to shipment weight, a property of shipment (an object

in its own right as shown in figure 9), not to the weight domain. This constraint will not be

automatically inherited by weights that are properties of other objects (for example product

weight) because it is attached specifically to shipment weight, and not to the generic weight

domain.

The effect of attaching this constraint of 8 tons to shipment weight implies that this

property of shipment now has two constraints:

1 inherited automatically from the weight domain that no weight may be negative;

2 specific to shipment weight, that no shipment may exceed 8 tons.

The combined effect of both constraints is to restrict shipment weight to a 0–8 ton range.

The structure on the extreme right of figure 11 shows how these rules have been configured

to reflect knowledge about product shipment.

If we re-engineered the process to ship by air as well as truck, we would use the structure

organization ships product in figure 11 again. Only, airplane would substitute truck in the

structure on the extreme right-hand side of figure 11. (The weight limitation might also

have to change.) This is another example of how knowledge can be naturally normalized

and reused.

Since the weight limitations imply use of the weight domain, all conversion rules will

also be automatically inherited from the domain and will apply to all constraints on

weight. In our example, this might facilitate interoperability between European and US

operations.

6 The architecture of knowledge and the scope of the metamodel in this book

The following chapters will show how meanings are components configured from other,

more elementary meanings. The metamodel of knowledge starts with the broadest, most

widely shared concepts first, and then, layer by layer, adds meaning to these to build

30 The universal perspective and the metamodel of knowledge have the most frequently used generalized rules, a

starting point for reusable components.
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irreducible facts much like we did in the previous section. In other words, shared behavior

is rooted in shared components of knowledge reused frequently.

Traditional analysis follows a different dogma. It uses simplistic stimulus–response mod-

els to describe behavior. In order to portray behavior accurately, traditional approaches, such

as the black box and node branch methods, require detailed rules be completely known

up front. This is why historically it has been hard to identify reusable components of

knowledge with these methods. This has negatively impacted the resilience and agility of

automation.

Box 6 The architecture of knowledge

(See the detailed supplementary discussion under “The architecture of knowledge” at

our website. This section summarizes the information in Module I on our website.

The black box approach

Figures 12 and 13 describe the black box philosophy, and figure 14 shows the node branch

approach.

In the black box approach, the focus is on the behavior of the “black box” that changes

observed properties and values of inputs into outputs. It is analyzed by “process decompo-

sition,” which attempts to represent the behavior of the black box by analyzing interactions

between smaller black boxes inside it (figure 13). The actual mechanisms inside the “black

boxes” are ignored (details on our website).
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The node–branch approach

The node–branch approach uses a network of cause-and-effect rules to estimate changes in

variables of interest and thus to model the behavior of a system over time (figure 14).

This technique is useful when large numbers of variables are involved. However, it has

the same drawback as the black box method: all the rules and variables are needed up

front. In neither approach, the focus is on incremental development and discovery, based

on common rules that can be progressively specialized in step with new learning (details

on our website).

The architecture of knowledge

The node branch and black box methods or their variants were adequate when business

systems were smaller, simpler, and addressed small scopes. The problem with using these

techniques today is that scopes are larger, ideation more rapid, and interactions more com-

plex than they were in the past.
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Figure 15 The architecture of knowledge

Change is so rapid today that it is impossible to fully determine all rules and variables

of interest in the short time frames available. Scopes and objectives may evolve even as the

model is being built. Facts must be added incrementally as they are discovered. Complex

black box and node branch models tend to be “chaotic”: small differences can lead to dramat-

ically different outcomes when variables become too many and interactions too complex.

This is why it is hard to address change and innovation with those approaches. A different

approach is needed. In the new approach, we must start with broad, universally shared rules,

and add information in steps as issues evolve and needs become clearer. The new approach

will be better suited to tracking moving targets. This approach will refine and evolve our

models in incremental steps to absorb change and adapt to new learning. It can only be

successful if we recognize the architecture of knowledge (figure 15).

The premises of the architecture of knowledge are:
� Knowledge encompasses a configuration of atomic rules.
� New atomic rules may be configured from older atomic rules by adding information (as

new information is discovered).
� Atomic rules of business are different from atomic rules of technology.
� Rules of business are related to rules of information technology through business process

automation.
� Each atomic rule may be implemented in information systems by one or more information

flows. Each information flow must be supported by one or more, interfaces. Each interface

must be supported by one, or more, information technology platform(s)31 (see box 7).

31 This multiplicity of choice in how each business rule can be implemented is the basis for building scalable and

flexible information systems with reusable components. We will see this later in this book.
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� An information system is a configuration of atomic rules of business, information flows,

interfaces, and technology platforms.
� Rules of business, technology, and process automation are meanings. Meanings are pat-

terns of information, which are naturally normalized in the real world, and should be

reflected in systems as they are in the real world.32

The architecture of knowledge requires that we:
� Recognize atomic rules to configure reusable components of knowledge.
� Distinguish between atomic rules in each of the layers of figure 15 to enable us to

configure and reconfigure behavior at each level to support change and new learning

across all levels.

(The architecture of knowledge is described in detail on our website, with real life

examples.)

Box 7 The architecture of knowledge reuse can help make information

systems flexible and scalable (on our website)

Box 7 describes how, in the natural world, a single rule of business may be implemented in

different ways with different kinds of automation, and how this gives business enormous

opportunity for innovation, and also the opportunity to reuse knowledge resident in every

layer of figure 15. Box 7 illustrates these principles with business examples.
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All concepts and objects, tangible or intangible, convey information. Business rules may

be implemented by automation. This adds information about how information is processed

and leads to business process automation. Abstract business rules may also be implemented

by other mechanisms. This too adds information to create new irreducible facts from old

(see the example in figure 11). The metamodel of knowledge calls them implementation-

level business rules. It does not consider them to be rules of business process automation

(figure 16).

The focus of this book is on the business rule layer of the metamodel of knowledge,

and how it relates to business process automation layers. Supplementary materials under

“The architecture of knowledge” on our website discuss business functionality, as well as

32 Rules may be reflected in systems as they are in the real world if they are normalized and stored in an

electronic repository. To optimize computer performance, these rules may be physically replicated. However

unless replication is closely controlled, the risk of explosive and chaotic change cannot be managed (see

Chapter 1).



48 Creating Agile Business Systems

INTERFACE RULES

(HUMAN & AUTOMATION)

INFORMATION

LOGISTICS

WORK PRODUCT 

UNLOADING MECHANISMS

RESOURCES &

WORK PRODUCTS

IMPLEMENTATION MECHANISMS

“PURE” ABSTRACT BUSINESS RULES

BUSINESS PROCESS AUTOMATION MECHANISMS THAT DO NOT

DIRECTLY INVOLVE

INFORMATION  PROCESSING

Business

rules
Business

process

automation

rules

Process
definition

Business

(re)definition

Figure 16 Business process automation is only one of several mechanisms that implement abstract

business rules in the physical world

functional and non-functional features in detail. They describe how features of business

process automation can shift from business process automation to technology layers in step

with technological change.

Box 8 How rules shift between business process automation and

technology layers (on our website)

Box 8 describes the evolution of information technology from punch cards to CRT

terminals and database management systems to show how features fell from business

process automation to technology layers in step with advancing automation.

Combining components of knowledge within a layer in figure 15 leads to increas-

ingly complex and detailed rules in step with new learning in that domain. Combin-

ing components across layers leads to increasingly complete automation of components

(figure 17).

The biggest opportunity, by far, lies in identifying the key components of shared business

knowledge, reused most often, in the topmost layer of figure 17; this layer will drive the

design of components in the layers beneath it. Using this approach, one can optimize

investment and reuse by anchoring universal meanings in broad, stable, and frequently

used patterns of information. This will control chaotic behavior at lower levels. Business

processes and information systems may then adapt to change by reconfiguring and reusing

stable components, which lead us to the objectives and scope of the metamodel articulated

in figure 18.
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The metamodel of business behavior does not care about how business behavior is imple-

mented in information systems. The metamodel is adaptable and behavior can be manifested

in many different innovative ways. The rest of this book describes the metaobjects that nor-

malize atomic business rules found in the uppermost (business rules) layer of the architecture

of knowledge. We will not only learn the behavior of metaobjects that flow naturally from

the layer of pure business rules, but also understand transforms that turn these rules of

business into rules of information exchange and transportation.



2 The object at the root of it all

“The world came out of a single spark; the creator is in the creation and the creation in the creator.”

(Kabir Das, a fifteenth century poet-philosopher from India)

This chapter introduces the basic components of knowledge – the object and the state machine.

Without recourse to complex mathematics, it demonstrates how meanings are the building blocks

of knowledge. It describes how the object paradigm can encapsulate knowledge and automate its

propagation through mechanisms such as inheritance. It describes the fluidity of knowledge and

how systems adapt to new learning and behavior by reconfiguring components of old knowledge

based on new learning. This chapter also introduces the problem of multiple perspectives and

adaptation to shifting scopes, and how this may be addressed by reconfiguring the meanings at

the heart of knowledge. The chapter uses business and real-world examples liberally to illustrate

these complex issues and abstract concepts.

The object is, like the spark, from which all things flow. Objects assume many different

roles and, even as they preserve the essential uniqueness and unity of reality, they present

it in many superficially different forms. The concept of an object is the core around which

meaning is normalized, even as it morphs into different forms and wraps itself around

different kinds of meanings to normalize knowledge. The object lurks hidden within all of

these forms and formats. It is this core we must understand, the concept of metaobject. The

metaobject articulates the meaning of object. From it, everything else flows.

Box 9 Business definition of an object

An object is a person, place, event, thing, or concept, any behavior of which is within

the scope of the model in which it is represented.

This traditional definition is good enough for building object models. However it

lacks the mathematical rigor needed to develop the algebra of reusable knowledge

components. Box 15 extends this definition with mathematics.

In Chapter 1, we understood that the principal difficulty in identifying reusable components

of business knowledge lay in the classification of the behavior into reusable common cate-

gories. This was difficult because we had to do this even when information was incomplete

51
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and little detail was available on the complex, large-scale, and close-knit interdependent

behavior of real-world objects relevant to a particular process or application.

Behavior is the key, and real-world objects manifest many behaviors. Real-world objects

naturally group real-world behavior; they are the key to reusable common categories of

behavior. Our models must therefore mirror information about the behavior of real-world

objects. Understanding objects is the first step in understanding behavior. This is where we

will start. Behavior – hit a glass pane with a hammer. It shatters. That behavior is common

to all glass panes. How do we model this information? A very simple model will suffice.

The fact is that glass panes can exist in one of two conditions, or states: whole or shattered.

The event1 – being struck by a hammer – has an effect2 on the glass pane. It changes whole

glass panes into shattered glass panes. In other words, this event changes the state of the

glass pane. The scope of our model could be limited to just these two states of glass panes.

In our model, hitting a shattered glass pane with a hammer has no effect. (Of course it might

have an effect in real life! Remember that the model is not reality, it is only an abstraction

of those limited aspects of reality we want to focus on.)

These then are the atomic rules in our model:

1 There are objects called glass panes.

2 Glass panes are made of glass.

3 There are events called “hammer strikes.”

4 Glass panes exist in two states: “whole” or “shattered.”

5 The two states are mutually exclusive.

6 The event, “hammer strike,” changes the state of a glass pane from “whole” to “shattered.”

(This is the effect of “hammer strike” on the object “glass pane.”)

7 The event, “hammer strike,” does not change the state of “shattered” glass. It has no

effect.

These rules together represent our knowledge about the behavior of glass panes. However,

the astute reader will note that there is a subtle piece of information still missing. How do

we know which individual panes are shattered and which are whole? How do we know

which particular instance of “hammer strike” actually hit (or did not hit) which individual

glass pane?

1 Object class versus object instance

The seven rules we have assembled into our body of knowledge about glass panes describe

rules about a class, or category, of objects called glass pane and a class of events (remember

events are also objects) called hammer strike; but to round out our knowledge about glass

panes, even at this very limited scope, we must also have information about individual

glass panes and individual hammer strikes, or, in other words, instances of these classes of

objects.

This assertion is common sense. It is also a fundamental cornerstone of the entire edifice

of knowledge in this book. We will repeat it again: objects can be grouped into categories, or

1 See [166] for a mathematically rigorous description of event.
2 The endnote on state machines has a mathematically rigorous description of effect.
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Figure 19 Object classes are collections of object instances with common properties

classes, based on common behavior. An individual member of a class is called an instance

of the object class.

It is also important to consider that all things in the real world must exist for some time

interval. They can even exist forever, or for an arbitrarily small instant of time, but they

cannot exist for no time at all. This is true not only for glass panes, but also for an instance

of any object in the real world. This is an irreducible fact that our metamodel of knowledge

must recognize. We will consider the full impact of this later. For now it will suffice to keep

it in mind as we analyze the behavior of objects.

Some properties of glass panes, such as whether a pane is broken or not, might vary

from pane to pane, and also change over time. Other properties, such as the color and

thickness of the pane might only vary from pane to pane, i.e. be different for each instance,

but not change over time for a particular glass pane. Together these properties describe the

condition of each pane. Although individual glass panes may have different values of these

properties, they are grouped into the same object class because they have the same kinds of

properties. We might be interested in including these properties in our model as well. The

concept holds for any object class. Instances are grouped into classes based on common

properties. For glass panes, these could be color, transparency, weight, thickness, strength,

hit previously by a hammer, or any other property of interest to the actor or observer3 (see

figure 19).

3 Actor and observer are synonyms: a person, system, or instrument that accesses or processes (i.e. acts on)

information is called an actor in object technology. In physics, the same individual or instrument is called an

observer because it observes behavior.
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Object classes also have properties.4 They too are objects. The properties of object

classes are related to the collection of object instances in them. For example, an intrinsic

property of all object classes is the population (count) of object instances it holds at any

given point in time. Other properties of object classes are related to individual properties

of object instances. In our example, the glass pane object class would contain properties

such as the average thickness, strength, and transparency of glass panes, total thickness of

all glass panes added together, standard deviation of thickness, strength, and transparency.

These properties of the object class are derived from the properties of individual object

instances in them. They are called emergent properties because they emerge naturally from

the properties of instances (emergent properties are discussed in Module V, section 2 on our

website). For the moment, it will suffice to understand that object classes and collections

of objects are also instances of objects, with their own properties, features, and attributes,

which are distinct from those of the object instances they contain.

Classes and collections of objects are object instances too. To understand why, let us

consider an example – an insurance offering. Assume an insurance firm offers a policy that

insures buildings against fire damage. The insurance product being offered is a kind or class

of policies, and it is for a category or class of object instances called buildings. An individual

policy, on the other hand, will cover a specific building; this policy may have properties

such as the specific building(s) insured, amount of coverage, premium amounts, and the

identity of the beneficiary to whom any claims must be paid. The insurance product, or class

of policies, on the other hand, may have other properties such as the kinds of buildings that

it will cover, the date the product offering was approved by regulatory agencies, general

exclusions (e.g., fire damage from an act of war may be excluded), and rules relating

premium to various risk factors such as rules about existence of fire alarms in the building

and its distance from the nearest fire hydrant. If we stored this common information in each

policy, we would be replicating information in each instance of policy, not normalizing it.

Therefore, each class of policy may be considered an instance of an object that is different

and distinct from each instance of policy. This instance of a policy class is the repository

of information common to all instances that belong to the class, and there may be several

classes of policies, which might store different terms and conditions common to all instances

of that class. In general, each class of policy will have its own unique identity. The class is an

instance of a kind of policy. In this way, each collection of objects is an instance of a set of

objects.

Confused? Think of the collection as though it were a bag full of instances of objects.

The bag too is an object instance, quite different from the objects in it, and we might stick a

label on each bag to differentiate them from other similar bags. An object class is just one

kind of collection of objects. The system described in box 12 is another kind of collection

of objects. It too is an object, with its own distinct and unique identity. These objects that

are containers of other objects are called aggregate objects. Aggregate objects are discussed

in Module V, section 2 on our website.

4 Properties of classes and other collections of object instances are discussed in detail later in this book. Also

see [89].
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2 The state of an object

The condition of an object at a point in time is called its state. The state of an object is

given by the values of all of its individual properties at that time, such as, for glass panes,

its thickness, color, weight, and strength.

When we were interested in just two mutually exclusive states of glass panes – shattered

and whole – it was easy to define the state of each pane. Now that we have several properties

that may vary independently from pane to pane, how can we tell what overall state an

individual glass pane is in? To make it simple let us just consider two properties, color and

wholeness (i.e. whether the pane is shattered or whole). To make it even simpler, let us

assume that glass panes come in only two colors: red and blue. Then there are four possible

conditions (states) in which we could find a pane of glass:5

1 All whole red panes would be in one state

2 All shattered red panes would be in another state

3 All whole blue panes would be in a third state

4 All shattered blue panes would be in a fourth state

We only extended the scope of our model slightly – just one other property of glass panes, and

only two colors at that. Even so, the number of possible states doubled. Had we considered

the several other properties and colors, the number of possible states would have exploded.

Also, thickness is not restricted to discrete categories. It could vary over a continuum of

positive numbers. How can we represent the state of the glass pane when such properties

are involved, and circumvent the chaos and complexity that can result from the explosive

growth of the number of possible states of behavior?

State charts

David Harel solved the problem in 1988 with the concept of state charts,6 [80], [81], [82]

and higraphs [82]. Figure 20 is an example of a state chart. The big (boundary) rectangle

represents the object class. In this example it is “pane.” The object class is partitioned with

broken lines. Each partition represents a property of the object,7 and is identified by its label.

Mutually exclusive states within each partition are represented by the smaller rectangles

inside the partition. The fact that an individual sheet may be in one of two states, whole or

shattered, is represented by the two rectangles in the wholeness partition. States separated

by broken lines show that they are independent and may exist simultaneously. An unbroken

(whole) pane of glass may be red or blue, as might a shattered pane, whereas the shattered and

whole states are mutually exclusive. The states within a partition may themselves represent

5 The set of all possible states of an object is called its state space.
6 State charts were invented in 1984 by David Harel. Harel added the theory of higraphs to enrich the state chart

syntax in 1987. [82] has more information [80] compares various techniques for modeling states of objects,

their strengths and weaknesses with mathematical rigor.
7 In mathematical parlance, these partitions are orthogonal, i.e. they present independent perspectives of the

object. Orthogonality, or non-overlapping properties imply mathematical independence. Harel’s papers in the

bibliography describe higraphs, state charts, and their properties with mathematical rigor.
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combinations of (sub)states in independent partitions. Broken lines could partition the

little rectangles inside a partition and those little partitions within partitions could contain

mutually independent and mutually exclusive states too. For example the shattered state

might be partitioned by the number of broken pieces, say many or few, and independently

by the size of the largest piece, say large or small. These partitions might be partitioned in

turn, and the process may be repeated to as many levels as needed to progressively represent

all the detail we possess. (We will return to partitions later in this chapter.) In short, partitions

help us organize and classify the bewildering numbers of possible states to bring some order

into chaos.

The arrow between the “whole” and “shattered” states in figure 20 represents the effect8

of the event, hammer strike. The arrow tells us that a hammer strike changes the state of

glass from “whole” to “shattered.”9

(Arrows in most state charts are drawn with solid lines. In this book, we have shown

effects with broken lines to show that they represent a “before” and “after” rule involving a

sequence in time. In Chapter 6, we will discusses relationships that do not involve time, and

are independent of sequence. These will be represented with solid arrows. Our metamodel

must distinguish between these two kinds of rules in order to reflect reality.)

The “whole” in parenthesis in the label of the arrow specifies that glass panes must be

whole for the state transition to occur. This is called a guard condition for the effect.

The guard condition is redundant in this example because the arrow implies that this

transition is only from the “whole” to the “shattered” state. As such, the guard condition

can be safely omitted in this case without any loss of information. However, the concept is

useful when more complex behavior is involved. For example, if we added a complex rule

that blue glass is shatter proof, and only red glass may be shattered by a hammer strike, the

8 The endnote on state machines defines effect formally.
9 Effect is a relationship between states, just as process is a special kind of relationship between object classes

(Chapter 1). See Module V on our website.
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Figure 21 Disallowed effects, default, and “maybe” states

guard condition would read “red,” and would not be implied by only connecting the whole

and broken states with an arrow.

Harel’s state charts provide another way of saying this as well. Consider the state chart

in figure 21. We have modified the model of figure 20. In figure 21, the glass pane may be

merely cracked, not necessarily shattered. That too is considered broken glass. That is why

the cracked state is shown inside the broken state. It is called a substate because it is only

one of several kinds of broken states. (For example, shattered is another kind of broken

state. Broken is called a superstate of both cracked and shattered states.) The cracked state is

represented by a broken-lined rectangle. (The broken lined rectangle tells us that we are not

sure if there are any cracked panes at all.) More important is the crossed-out state transition,

or “effect,” between the “blue” (color) state and the broken state. This arrow merges into

the arrow that represents hammer strike. The X on the link between the blue and broken

states of the pane tells us that the effect is not allowed if the glass is blue, i.e. blue glass is

not allowed to break (and therefore not allowed to crack either because the cracked state is

a kind of broken state).10

We also have an arrow with a small round tail pointing at “whole.” This arrow tells us

that the pane starts as an unbroken pane. In other words, it is the default state.11 This might

be an irreducible fact in our body of knowledge, or it could be used as an artifice to manage

uncertainty: the scope of our metamodel is limited to deterministic systems. This puts us

in a bind if we are uncertain about what state we might find glass panes in. If we guess

that we are more likely to find unbroken glass sheets before we break them with hammer

10 Had the rule said that blue glass could crack, but not shatter, the arrow with the X mark would have pointed to a

shattered substate (not shown in figure 21) inside the broken state. This would mean that a hammer strike could

shatter or crack red glass (because the effect points to the outer rectangle representing the broken state, which

contains both possibilities – shattered as well as cracked substates), but blue glass can only crack (because it

cannot shatter, but can break, and the only other substate of broken glass in the model is cracked glass).
11 The endnote on the state machine defines initial state (i.e. default state) formally.
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strikes, we could assign a “default,” or most likely starting state, to the information that we

have stored for every instance of glass pane. Then the user of our system would change this

default state for only those panes that were found broken before the hammer hit them.

Events, effects, and actions

The effect of events must be implemented via a set of procedures that are a collection of

actions in information systems or business processes (see “Crossing the chasm” in Module V,

section 3 on our website).

Data and attributes: states of behavior

Properties such as color and thickness that represent the state of the object at any given

moment in time are called “attributes” of the object, or “variables” of interest to the system.

This is what we call data. Effects, on the other hand, are properties of the object that are

rules for changing the state of the object.12

Must every object have attributes?

Consider the concept of length. It is a ratio scaled domain described in section 3.2 of

Chapter 1. What are its attributes? – it has none. Length may be an attribute of objects such

as glass panes, rooms, snakes, and roads; these attributes all map to the length domain, but

the domain itself is bereft of attributes. Domains are objects too, but the length domain has no

attributes! However it does contain information: we know that lengths can be meaningfully

added, subtracted, divided, compared, and that they cannot be less than zero. The length

domain normalizes this information about length. It normalizes behavior. (We will discuss

the properties of domains in greater detail in Chapter 4.)

Behavior of an object is comprised of rules about its properties and valid (lawful) trans-

formations. The effects of events collectively represent one kind of property. Whenever

an effect is involved, there must be at least two states (before and after), perhaps more

(when guard conditions apply, as in figure 21.) “Before” and “after” states will be mutu-

ally exclusive and hence will translate into two different values of a single state indicator

(i.e. attribute). As such, the object will have at least one attribute if not more when effects

of events, i.e. state transitions, are in scope (see box 11).

Can an object have attributes when no state transitions are in scope?13 Consider a person’s

gender. There are no effects that change gender in the scope of most models. However,

EEOC rules might require firms to report the incidence of female versus male employees.

The counts are properties of the class of employees, not an instance of employee (remember

classes are objects too). These counts relate to individuals’ genders, i.e. employees who are

members of the class. Hiring and firing events might cause a net loss or gain of the number

of male and female employees (object instances) that belong to the class of employees. This

12 The endnote on the state machine describes the states of abstract automata mathematically.
13 All objects must have an instance identifier that captures. The instance identifier is the irreducible fact that the

object exists.
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may change the proportion of male versus female employees. The proportion of employees

of a gender is not an attribute of an instance of employee. It is an attribute of the employee

class. Thus, although no gender changing effects are in scope for instances of employee,

events can, and do, impact the gender information for the class of employees. The state of the

class can change. Had we not included gender as an attribute of (an instance of) employee,

we would not have the information to model state changes of the class of employees. Thus,

objects can have attributes, even when effects that change values of those attributes are

out of scope, because they might be involved in relationships with other properties that do

change. This is why attributes can be in scope even when state transitions for that object

and that attribute are not in scope.

Take another example: a building’s address is required for supplies to be delivered. Effects

that change the location or the address of the building might be out of scope, but the address

object with attributes like street, town, and zip code is required for making deliveries to

the building. The delivery system might be out of scope, but it must have this information.

Although the address itself will never change state (within the scope of this process), it is

a valid object class14 because other objects such as shipping documents and packing lists

may change state by establishing relationships with address in order to reference it. Overall,

an object could have attributes even when no state transitions are in scope because other

objects (or an actor15) need to reference it.

Consider the example above from a different perspective, one that includes the shipper’s

systems.16 The firm might ask a shipper to change the delivery address to a company

warehouse instead of the office building for a particular shipment. In other words, instances

of objects such as shipping documents and shipments could change their relationship to

individual addresses. This means that the conditions (states) of those object instances would

have changed because they would now point to a different address. The metamodel of

knowledge makes a sharp distinction between metaobjects that normalize rules involving

the flow of time, versus those that do not. The concept of state captures the condition of

an object at an instant of time, whereas effects involve change of state, and hence originate

from the flow of time. (Effects are discussed in more detail under “Crossing the chasm” in

Module V on our website.) It follows that the fact of an object’s participation in a relationship

is another kind of state indicator. In short, objects without attributes could exist because

they participate in relationships with other objects (or themselves – see box 10).

It is worth noting that a relationship, or more accurately the fact that an object participates

in a relationship, is like an attribute because it describes the condition (i.e. state) of the object

at a moment in time, but effects are not, because effects describe how states change from

one moment to another. However, the existence, i.e. the presence or absence of an effect,

14 Address could change state in a larger scope. For example, when a building is being built in a new development,

it might not have a postal address at first. Its address is drafted, and then formally allocated by the post office.

Thus, the state of address changes state in the real world, even if it is frozen in the model.
15 A person, system, or instrument that accesses or processes information is called an actor.
16 Driven by e-commerce and the World Wide Web, entire supply chains comprising of multiple corporations have

started competing for business. As supply chains strive for excellence, efficiency, and competitive advantage,

the integration of business operations and supporting systems across corporations is becoming as important as

integrating systems within an enterprise. See [96], [105], [111], [115], [119], [120], [123] in the bibliography.
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conveys information about the condition of an object at a point in time and must be counted

as a state indicator. For instance, the terms of an agreement may be changed while it is being

negotiated, but may not after it is sealed. Accordingly, the “revise terms and conditions”

effect will exist for an agreement in the “draft” state, but not in the “sealed” state. The

presence or absence of an effect may be shown with a “state indicator”; it will also be an

attribute of the object, but an attribute that is tied to the information conveyed by an effect.

As such, this state indicator is a computing artifice used programmatically to determine

whether to allow or disallow the computer to execute the code for an effect. It conveys

no information independent of the effect. The mere presence of the effect signals that the

change may be triggered by the right business event. The absence of an effect implies that

the change is meaningless. The state indicator actually denormalizes information making

it redundant. However, it is a useful artifice because it allows us to classify objects and

reduce their numbers in our model. For example, with a state indicator, both sealed and

draft agreements could be modeled as an agreement object, which may be distinguished by

the value of its state indicator.

This is why all three characteristics – effects, attributes, and an object’s participation in a

relationship – are sometimes called “features” of an object [54], [328]. Attributes, the fact

that a given effect exists, and relationships the object has with other objects or itself are

state indicators (an object may relate to itself – for example, a person may train himself –

therefore the train relationship points back to the same object instance, the same person).

In this book, an object’s participation in a relationship will be considered to be on par with

the existence of an attribute because both are state indicators. The term attribute will cover

both meanings unless an explicit distinction is made.

Box 10 Properties of objects (on our website)

Box 10 discusses the information content and impact of effects and relationships on the

state of an object in more detail. It also describes the context of this discussion in terms

of the XML standard published by W3C, an industry standards organization.

We will see later, as scopes shift and business processes evolve, not only might relationships

sprout new attributes, but existing attributes too may grow into relationships and even object

classes. Recognizing this natural property of objects is key to recognizing the flexibility of

knowledge and its reusable components. We will return to this concept later in this book.

Box 11 States, attributes, state variables, and type indicators: much

ado about nothing (on our website)

Box 11 discusses the impact of scope change on states and state indicators. It discusses

how some commonly used data and object modeling precepts are not only redundant,

but may also complicate models, making them inflexible in the face of unexpected

developments – change in scope, new learning, and new perspectives.
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Three values every attribute and relationship may have

There are three real-world values that every attribute17 can have, regardless of what kind of

domain the attribute maps to. These three values may not be obvious if we focus only on

software systems and tables of data. However, when we broaden our perspective to consider

the real world, they are difficult to miss:

1 Don’t know the value: we are sure the attribute has a value, we just don’t know what it is

(also called the “unknown value” in this book).

2 Null value: we know for sure that the value does not exist, i.e. the attribute has no meaning

in a specific context (or a relationship does not exist for a specific instance of an object)

3 Initial (or default) value: we know the initial state of the object instance as it is created

and this may be any valid value.18 Every object must exist in some state at every moment

of its life (even if that state involves null or don’t know values for some or all attributes).

The set of default values of an object’s attributes (and relationships), even if some or all

of these values are null or unknown, is the initial state of the object at the moment of its

birth.

The following paragraphs discuss the “don’t know,” “null,” and “initial” values in more

detail.

Don’t know the value

The real world is uncertain. We may know that an attribute has a value, but we may not

know what it is. For example, we may know that an individual nicknamed “Sam” exists,

and we know for sure that Sam, being a human being is either male or female, but we do not

know which. Sam could be either a male named Samuel or a female named Samantha. If

we restrict our information system to record only male and female genders, and also insist

we record each person’s gender because every person must have a gender, we will have a

problem trying to record Sam’s gender. This happened because we did not reflect a fact

about the real world in our systems as it is in the real world: that, in the real world, we may

have only partial information and every attribute may assume a special value: “unknown.”

Why is it important to know this? Consider the following example. Some database man-

agement systems (especially older versions) do not recognize an “unknown” value. They

focus on formats of fields (read attributes) and restrict them to numeric and alphanumeric

data formats. Arithmetic operations are permitted on numeric fields, but not alphanumeric

fields. These database management systems try to get around the problem of unknown

values by assigning a default value of zero to numeric fields and blanks to alphanumeric

fields. This is at the root of several kinds of systems problems and is the source of unneeded

complexity in application programs, as the following example demonstrates. Assume Sam

is using a database of this kind to compute the average seasonal temperature of a town over

the last fifty years. Temperature records are missing for several days. The database manage-

ment system blithely assigns a default zero value to all missing temperatures. Obviously,

Sam will get wrong results because the database management system did not reflect facts

17 “Attribute” includes state indicators and participation in relationships.
18 A valid value is any value in permitted state space. The state space of an object is discussed later in this chapter.
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about the real world in its software as it was in the real world. It did not record when the

temperature was unknown.

Rule: For difference and ratio scaled attributes, the result of any arithmetic operation on

unknown values is also unknown.

Rule: Similarly, for ordinal, difference, and ratio scaled attributes, the result of any

comparisons of unknown values with any other value (for example, an attempt to

rank them in order of magnitude) is unknown.19

Rule: The comparison rule is identical for nominally scaled attributes, only any ranking

is meaningless – we can only compare to check to see if the value is the same or

different. The answer will always be unknown when unknown values are compared.

Null values

Null values too carry information about meanings inherent in the real world. They are

expressions of atomic rules that tell us which properties cannot exist.

There is, O monks, a state where exist neither earth nor water, nor heat nor air, neither infinity nor

nothingness. It is the Uncreated. (Adapted from the Gospel of the Buddha by Paul Carus)

To understand this assertion, remember that each attribute, relationship and effect is the

repository of an irreducible fact: that a specific rule or property of the object class exists.

Omitting an attribute from the object class implies it does not exist for any instance of the

object. Keeping the attribute (or relationship) in the object class, but assigning a special

“null” value to it for individual instances of the object implies that the attribute (or relation-

ship) does not exist for those specific object instances. This is very different from asserting

that the value of the attribute (or relationship) is unknown. Null values imply that we are

sure that the relationship, attribute and value does not exist.

To understand why this is important, let us consider an agreement between two parties.

The agreement is an instance of an object. The agreement will have attributes such as the

date negotiations started, who is bound by the agreement, when it will end, if it is sealed

agreement or not, and the effect of the event that will seal the agreement.

When the agreement is sealed, it will have additional attributes such as the date and time

it was sealed, who witnessed it, and where it was sealed. Until the agreement is sealed,

these attributes will not exist. It is not that we do not know or are uncertain of the values

of these attributes for agreements being negotiated; instead, we are absolutely certain that

these values do not exist.

Many newer versions of database management systems support null values, but not

“unknown” values. Consequently software developers use this null value facility to support

both true null values as well as real-world “unknown” values. What penalty do we pay when

we do not recognize the difference between “unknown” and “does not exist”? The penalty

is replication of information and loss of normalized knowledge. We will illustrate how this

happens with two examples.

19 When we consider the inverse of this situation, it is not necessarily true that the result of an arithmetic operation

on known values is always known. Sometimes, even if we know all values involved in an arithmetic operation,

the result can be indeterminate, for example dividing 0 by 0 has an indeterminate result.
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Sam, the statistician, is writing a fact book about the profile of those who live in Handy-

town. As a part of her work she needs to count the number of right-handed, left-handed,

and ambidextrous people of Handytown. Sam is delighted when she discovers that the town

has compiled a database of its residents that shows the handedness of each individual. The

mayor of Handytown will be happy to let Sam use their database and she is looking forward

to finishing her project early. The record for each individual in the database has a handedness

indicator that reads “right,” “left,” and “ambidextrous.”

To her dismay, when Sam browses the survey report, she finds that all residents did

not agree to divulge their handedness. The handedness indicator was set to null for such

people. However as she thinks it over, she realizes all she has to do is to count the number

of left-handed, right-handed, and ambidextrous persons, and include a separate count of

persons who would not say. However, the day after Sam publishes her findings in The

Eminent Journal of the Society of Handedness, the mayor comes rushing into her office.

He is looking very upset and threatens to drag Sam to court for misrepresenting facts about

the town. Sam is flabbergasted. She denies any fault and reminds the mayor that the data

came from his own database. She goes on to explain how she counted the handedness of

individuals from the town’s database.

The mayor calms down somewhat, but fixes Sam with a quizzical look. “Didn’t you know,”

he says, “we have many veterans in Handytown, and some of them lost their arms in battle.

They can be neither left nor right handed, and obviously they can never be ambidextrous!

Such individuals were not asked the question and that is why their answers were never

entered into the database. This is why their ‘handedness’ indicator in the database is null.

It is not that they would not say – it’s just that they had no arms. Sam, your answers were

wrong because you did not distinguish between ‘do not know handedness’ from ‘does not

apply – has no hands!’.”

Here is another example of what can go wrong when “do not know” is not treated distinctly

from “does not exist.” Let us assume that a global customer of a bank has several accounts.

These accounts may be spread over branches and subsidiaries in several countries, and may

be denominated in different currencies. The customer checks individual balances of each

account, as well as the total on deposit with the bank several times a day in an ad hoc manner.

All balances must be arranged in account number sequence in the report and expressed in

US dollars. Normally this is not a problem. Exchange rates between local currencies and US

dollars are available for every market tick. However, there are exceptions. Sometimes the

information is delayed, or the information flow is disrupted. When this happens, balances

in US dollars for accounts in that country are not known. Therefore the total balance too

is unknown. If this occurs, those balances that are known are reported, and those that are

unknown are shown as such.

The customer also has accounts that are closed or for a variety of reasons. These accounts

too must be shown in sequence in the report, but balances cannot exist for closed accounts,

and obviously they will not count in the total balance.20 Indeed, a null balance (different

20 The total balance in this example is defined as the total balance of all open accounts. The total balance of all

accounts does not exist – see the rules at the end of this section on null values. Open accounts are a subtype of

all accounts (Chapter 2, section 3), an object class.
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from a zero balance – some open accounts may have a zero balance or even negative balance

if overdrawn) implies a closed account.

If account balances are recorded as distinct null values when they do not exist, and

“unknown” values when unknown, computing the total balance is simple (if any balance is

unknown, the total too is unknown). However, if “unknown” is not distinct from “does not

exist” (for example, if both “unknown” and “does not exist” are represented by null values

as is usual in many database management systems), the process of computing the total

becomes more complex. It cannot be calculated from account balances alone. We must set

a state indicator for closed accounts to infer which accounts we must exclude from the total

balance because they are closed. Had we distinguished “Unknown balance” from “balance

does not exist,” we could have used the account balance to infer the state of the account. We

would not need a separate state indicator. We needed an extra attribute, a state indicator for

closed accounts, because we lost information by failing to reflect the real-world situation

in our model.

Rule: For difference and ratio scaled attributes, the result of any arithmetic operation on

null values is null (i.e. “does not exist”).21

Rule: Similarly, for ordinal, difference, and ratio scaled attributes, the result of any

comparisons of null values with any other value (for example an attempt to rank them

in order of magnitude) is null (i.e. “does not exist”).22

Rule: The comparison rule is identical for nominally scaled attributes, only any ranking

is meaningless – we can only compare to check to see if the value is the same or

different. If any value being compared cannot exist, obviously the answer does not

exist because it is a meaningless comparison.

Default values

Now let us consider default values again. We had discussed default values briefly in our

discussion on the initial state in figure 21. Assigning a default value to an attribute is an

atomic rule. It is one of the elements from which our body of knowledge about an application

is configured, but we have not yet talked about where it resides in the architecture of

knowledge shown earlier in figure 15.

Default values are atomic rules about the initial state of an object instance. Every object

(instance) must exist in some valid state at every moment from the time it was created.

This is a fundamental rule in our metamodel of knowledge. The initial state of an object

(instance) is its state at the moment of creation.

Objects of different kinds are found in each layer shown in figure 15. Therefore default

values too are distributed between layers. Each object must have one, even if it is null or

“Unknown.” We may even use them, as discussed in the description of figure 21, to partially

compensate for the fact that our metamodel assumes purely deterministic behavior in an

uncertain world.

21 See the endnote on gluing objects together.
22 It is meaningless to operate on or compare value(s) that do not exist. Under certain conditions, the result of

operations on known values might not exist. See the examples in chapter 1 of [308].
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Default values are only one of several artifices23 we use to account for the inherent

uncertainty of the real world that we have ignored in our metamodel.24

Default values apply to attributes (and relationships) of all instances of a class of objects.25

(For example, the default state of all glass panes was “Whole” in figure 21.) When default val-

ues address uncertainty, they represent our “best guesses” for uncertain values of attributes

(and relationships).

Default states reside in the same layer (figure 15) as the object it is a default for. Screens

and other interface objects, data flow and information logistics objects, processes, relation-

ships, and all other objects in every layer of figure 15 must have default states – implicit

or explicit. The state of the art of our database management software is such that implicit

default values of data are often null. This is a constraint imposed by technology, not the real

world.

Why are layers important? Layers are important because they make room for the reuse of

common knowledge in a vast diversity of environments. The ability to support default states

for different objects in each layer helps us compensate for the different kinds and degrees

of risk in different environments. The same object may be attached to different default

states in different environments. For example, section 5 of chapter 1 described how similar

business processes might be implemented with different default units of measure and yet

benefit from shared knowledge. Default values, like any other component of normalized

knowledge, can facilitate business agility and innovation. (Box 7 has an example of how

shared components can benefit a business.)

The overall state of a system26

The concept of the overall state of an object also applies to systems of multiple objects

because the system as a whole is also an (aggregate) object. The state of the system at any

moment in time is the set of states of individual objects in it, and the state of each object, in

turn, is the set of values of each attribute. To show this concept, the state chart of the system

has been partitioned with broken lines in box 12, one for each constituent object. Each such

object, in turn, could be a partitioned state chart – one partition for each component and so

on. Ultimately, we would be left with the variables and the same definition of state as at the

beginning of section 2. Objects are thus the fundamental building blocks of knowledge.

23 Recognizing that rules may be violated is another way of providing for uncertainty in an inherently risky world

(see exception processes in Crossing the chasm, Module V, section 3 on our website).
24 Processes that depend on chance are called stochastic processes. Deterministic processes have completely

predictable outcomes. This is our scope. Stochastic processes are described in several publications listed in

the bibliography: [310] has a basic introduction to probability theory; [312] introduces modeling of stochastic

processes; [253] has mathematical techniques for modeling uncertainty; [323] shows how complexity and

uncertainty compound each other; and [286] describes techniques for modeling the uncertainty caused by

observing or querying complex stochastic systems.
25 Under subtyping, we will understand how business rules could also assign different default values to different

sets of object instances in an object class.
26 See the endnote on the Bunge–Wand–Weber (BWW) model, or publications under “Knowledge reuse algebras”

in the bibliography.
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Box 12 The state of a system is the collective state of

the objects it involves

This example describes the state of a hypothetical inventory management system. The

example has been deliberately simplified to illustrate the principles involved as simply

as possible. The following figure illustrates how objects help organize the bewildering

numbers of possible states that a system may assume.

Lead time

STATE OF INVENTORY SYSTEM

STATE OF

INVENTORY ITEM

Reorder quantity

Quantity on hand

Price

Quantity on order

Under scrutiny

STATE OF VENDOR

On recommended

vendor list

Not recommended

Failed

QA

Poor

performance

STATE OF VENDOR ITEM STATE OF VENDOR APPROVAL

Passed

QA

The entire system may be considered to be an object in its own right. The outermost

rectangle represents the state of the entire system. It frames the states of the two basic

objects the system is assembled from: inventory items and vendors. Inventory items will

exist in some state at any given moment and so will vendors.

The states of inventory items27 exist simultaneously with states of the vendors. The

combination of the two defines the state of the inventory system at any given point in

time. Partitioning the inventory system with a broken line and placing the rectangle

representing the state of inventory in one partition and the rectangle representing the

state of the vendor in the other implies that each state of the vendor can co-exist with

each state of inventory.

Assume, for inventory items, we are only interested in reorder quantity and quantity

on hand. Then the state of an inventory item consists of the values of its two attributes.

It is the combination of values of reorder quantity and quantity on hand that defines the

state of inventory item in our model. Both attributes exist simultaneously; if the value

of either attribute is changed, the inventory item will change state. One can partition the

state of the inventory item with a broken line and place the state of reorder quantity in

one partition and the quantity on hand in the other to show the concept.

27 The state of inventory is the collection of states of each inventory item. The state chart technique would show

this with a box for each item of inventory inside the large inventory box in the figure. Each box inside would

be separated from the others by broken lines. If only a few items were involved, this would be easy to draw,

but, if many are involved, it becomes difficult. This argument holds for all objects: the utility of state charts is

limited in business systems, which usually have large numbers of objects. State charts are useful for real-time

engineering systems with fewer variables. The purpose of this book is not to teach state charts; it only uses

them to elaborate on state and its ramifications.
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The state of a vendor is determined by the state of items supplied, and whether the

firm has listed the vendor in its recommended vendors list. Hence the vendor’s state is

partitioned with a broken line; one partition has the state of the vendor item, while the

other has the vendor’s state of approval.

The state of a vendor’s items is determined by the combination of price, the quantity

already on order with that vendor, and the time from order placement to order fulfillment

(lead time). Partitioning the vendor item with broken lines and placing each of these

constituent states in its proper partition show this state.

In terms of qualifying for the recommended vendors list, the vendor may be in one

of three possible states:

1 under scrutiny: the vendor is being examined to see if the requisite qualifications are

satisfied;

2 listed in the recommended vendor list after having passed the scrutiny state; or

3 rejected, i.e. is not a recommended vendor

These are mutually exclusive states of vendor approval; hence broken lines do not

separate them. The events that may cause these states to change are shown next to the

arrows showing the transition from one state to another.

What is an object – really?

Before we forge ahead with our metamodel of knowledge, we need to augment the business

definition of “object” in order to establish its properties. To really understand how compo-

nents of knowledge flow from objects, we must first understand the mathematical concept

of a set [166], [167], [168], [308].

Box 13 Set membership

A set is merely a collection of items or members. It is a simple but fundamental concept

in mathematics. For example, we can define a set such that all points in the shaded area

below are members of one set (set A), whereas points outside the shaded area may be

considered members of a different set.

SET A
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Similarly all persons may be considered to be members of a set, as might the set of

glass panes. Object instances are sets of attributes and effects. Object classes28 are sets

of object instances (hence they are sets of sets). Several mathematical operations can

be performed on sets to normalize knowledge (see box 19, box 48, [166], [167], [168],

[232], [233], [235], and [309]).

Figure 19 shows that an object instance is a set of attributes and effects. An object class is

a set of instances with the same set of attributes and effects. Is this definition complete? Do

these assertions carry all the information inherent in the meanings of object instance and

object class? The answer is “no.” There is one crucial item of information still missing –

that to exist at all, an object (instance) in the real world must exist for a finite period of time

(see box 14).29

Box 14 Object instances must exist for a finite period of time once they

are created (often forever after they reach some terminal state)

OBJECT

V1

V2

V3

E1

Instance Instance Instance

OBJECT CLASS

Time TimeTime

V1

V2

V3

E1

V1

V2

V3

E1

In the figure, items V1, V2, and V3 represent the attributes (and relationships) of the

object class, also called variables of the model. Only three are shown. There could be

many. Similarly, E1 represents an effect. Only one is shown, but there could be several

in the scope of the model. The arrow labeled “time,” perpendicular to the plane of the

paper, represents the passage of time.

28 Objects are classes. A mathematical class is a collection of sets that can be unambiguously defined by a property

its members share. Classes subsume sets; a set is a class, but all classes are not sets. A category is a class that

contains objects, their relationships, and their behavior. See the endnote on the theory of categories or [171],

[172], [173], [135], and [185].
29 The exception. A value in a domain might have existed, and will continue to exist forever (Chapter 4,

section 2).



69 The object at the root of it all

Note that every object instance has a history. This is implied and fundamental to

the definition of object. Software designers usually decide how much history should be

preserved, for how long, and in what format, files, and tables. There is no separate object

called “history,” or a “history table,” in the metamodel.30 These tables are technical

implementations derived from real-world objects.

We had asserted early on in this book that only discrete change is within the scope of our

metamodel. Continuous change was excluded. This implies that we will consider only state

changes of the object instance (values of its attributes) in response to discrete events at

discrete points in time. This is shown in figure 22. Each slice of an instance represents a

different state that holds for a finite time period before another event changes it.

From figure 22, it is clear that we must have some way of identifying each instance of an

object so that we can track its history.31 This is the missing piece of information that Jane

will need to satisfy the alien at the Metanesian Zoo at the end of section 3 in Chapter 1.

The rule is that every instance must have a unique identifier that will not change between

state transitions – never ever – over its full life history from its birth to death. This identifier

cannot have the same value for any other object instance. It is the identity of the object

(instance) it describes. Its sole purpose is to distinguish the object (instance) from every

other object (instance) as it moves through state space.32 It records the irreducible fact that

a specific instance of an object exists in the real world.33

This brings additional requirements into focus – how do we acknowledge the existence

of a time slice of an instance of an object? We need a time slice identifier. The design of the

time slice identifier is primarily a physical design issue, and we will not dwell on it beyond

the basic considerations in the footnote on audit attributes. Some rules of business process

automation also flow from the natural structure of a real-world object in box 23. Every state

change in figure 22 will naturally be associated with:

1 the time of change;

2 who made the change (the operator as well as process owner); and

30 Relational databases and logical data models often have distinct “history” entities. A slice perpendicular to the

page would be this history table or entity. See the endnote on normalization, or [297] and [304].
31 All temporal objects must have a history because they must exist in time. However, state changes for some

objects may be beyond the scope of a model. This is a design issue; in the metamodel of knowledge these objects

naturally have histories because the object instance exists in time. However domains are naturally stateless

objects – for example, the length domain would never change state. (Even domains like length, time, and mass

have changed state, and hence have histories in cosmological models. See the books listed in the endnote on

the natural zeros for temperature and time.)
32 Data modelers often look for an attribute that will serve this purpose and call it the “prime key” of a table in

a relational database. Prime keys could change as the scope of a model changes. For example, social security

numbers could be a prime key if we consider only US citizens and some kinds of foreign workers. However,

if the scope of the database expanded to include temporary workers waiting for social security numbers, the

prime key must change. These kinds of issues are one reason for the legacy of inflexibility in many information

systems. In the object paradigm, the instance identifier identifies the irreducible fact of existence of the object

instance.
33 A null value of the instance identifier implies a non-existent object instance; an “unknown” value implies that

the object instance may or may not exist. When an information system has no record of an object instance, it

could have either meaning; most current methodologies do not resolve this ambiguity.
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Figure 22 The state of an object changes in response to discrete events

3 the facility (automated or manual system) that was used to make the change (immediate

reason, not root cause – the causal chain can always be traced to root causes and sources

of change if all these audit attributes are maintained).

We will call these items the “audit attributes” of each object.34

Instances of objects may be sets of object instances themselves. (Think of the set as a bag

of objects. The bag itself is an instance of the class of bags – see “Object class versus object

instance” earlier in this chapter.) For example, consider the set of outstanding claims in an

insurance firm. The firm might be interested in the total value of unsettled claims against it.

Each unsettled insurance claim is an instance of an object (unsettled is a state of an insurance

claim). The unsettled claim object class is a set of individual instances of unsettled insurance

claims. These instances are not the repository of the total value of outstanding claims, rather

they are the object class unsettled claim, the set, which is the repository of this information.

This total value is an attribute, or state of the collection of unsettled claims. This collection

of unsettled claims is an instance of a package, or aggregation, of individual unsettled claims

that must have its own instance identifier. Its state will change as new claims are raised, and

some unsettled claims are settled. This kind of object instance occurs frequently in business,

and may have complex rules related to the overall financial exposure of the aggregate. Each

instance of an aggregate object must have its unique identifier and history too. Module V on

our website discusses aggregate objects. This definition still does not solve a key problem

in forging reusable classes: in the real world, many object instances may share some, but

not all, behaviors. Worse, any given object instance might share different kinds of behavior

with instances of different kinds of objects.

For example, both people and organizations may be plaintiffs or defendants in a court

of law and both may be earning credentials and awards of various kinds. On the other

34 One way of physically identifying time slices of an instance identifier is by appending the time of state change

to the instance identifier. In systems that operate across time zones, one needs to standardize which time

stamp to append; if the information system is run on physically distributed processors and the system time is

used, the relevant processor must also be identified. Then this processor’s id would become a part of the time

slice identifier. If collaborative business processes are involved in a physically distributed system, different

collaborating actors could trigger state changes simultaneously across the network. These technical issues must

be considered to ensure consistent, accurate, and timely performance of information systems.
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Box 15 Mathematical definition of a business object

� A (business) object class is a collection of object instances with common properties

(attributes, relationships, and effects – i.e. behavior) that define a category of persons,

places, processes, events, things, or concepts that are of interest to the business.
� A (business) object instance is the set of object states that possess the same identifier.
� A (business) object instance at any given moment in time is a set of attribute values

(and relationships), which collectively define the state of the set, of which one attribute

is an identifier that stays constant through the history of all state changes of the set.
� The identifier may only assume a null (does not exist) value if a constraint bars its

existence (physically assigning a null value to the identifier or not permitting such

object in storage is a technical design issue).
� The identifier will always map to a nominal domain because it only expresses the

irreducible fact that an object exists. (The first of the seven rules in our body of

knowledge about glass panes at the beginning of this chapter was an example of a

rule like this. It only said that a class of objects called glass panes existed.)

hand, both people and money may be resources for a project. From yet another perspec-

tive organizations, people, elevators, and buildings may all hold certificates, and so on

ad-infinitum and ad-nauseum. There may be a bewildering number of ways we could group

any given object instance with other instances of objects. How do we group these objects

into object classes to maximize reusability? Are we back to square one? Can we really

defeat the dark forces of chaos? We can, after we grasp the concept of state, and the abstract

fields of meaning that objects traverse in state space. We will consider multi-perspectives,35

[15], [21], [23] in section 4, and the concept of inheritance36 in section 3 to address this

problem.

Truth was in the beginning

Truth was before the Aeons

Truth is here now

And Truth will be hereafter

(Guru Nanak, the first Guru of Sikhism)

State space

The set of all possible states of an object is called its state space.37

35 The Bunge–Wand–Weber model in the endnotes establishes a mathematically sound framework for describing

abstractions and testing the completeness of a set of modeling constructs, a methodology, or language. The

endnote on multiperspective modeling addresses multiple classifications for the same object depending on the

perspective of the problem.
36 See the endnotes on polymorphism and inheritance or refer to [239], [90], [91], [328], and [329].
37 State space is a mathematical topos. Topoii may or may not be sets. It is a fine mathematical distinction. Readers

interested in a more precise mathematical definition of state space, and why set may be an imprecise way of

describing state space, are invited to refer to section 6.1 of [178].
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Box 16 Domains and measures of distance

Domains extend the traditional concept of distance between objects. The length, breadth,

thickness, or distance between physical objects is determined by the distance in space,

measured in the length domain. An object’s age or the time interval between instanta-

neous events is another kind of distance; it is measured in the time domain. Similarly,

other kinds of domains extend the concept of distance in other ways. In general, close-

ness between objects refers to how near they are in terms of its attributes mapped to

various domains such as temperature, speed, or energy. Even nominal domains measure

a kind of distance38 – whether the gap between two or more objects is zero (they are in

the same category in that domain) or not.

When a single attribute is involved, this concept of distance is quite straightforward,

but when several attributes are involved, we must consider the object’s state space.39

To understand what state space really means, and why it is important for normalizing

irreducible facts, let us take a simple example. Consider only two attributes of the glass

sheet: its weight and its thickness. If there were no restrictions on thickness or weight of

glass sheets, the state space would be the entire plane bounded by the two axes in figure 23.

An object’s location in state space at any given moment is its actual state at that instant.40

In this example, the location of a 1/8 inch thick glass sheet that weighs 1 1/2 pounds is

shown as a point in the state space of figure 23.

We could impose a rule that we will only consider glass sheets between 1/8 and 1/2

inches thick, which weigh between 1 and 2 pounds. The state space would then be limited

to only a region of the plane in figure 23. The shaded area in figure 23 would represent this

truncated state space. It is sometimes called the object’s “lawful” state space.41

State spaces are important in helping us to classify objects in an imperfect world and to

understand irreducible facts that are constraints of various kinds. These constraints restrict

the permitted states of objects. Also, objects trace a trajectory through state space as they

change state; state spaces help us to understand how irreducible facts that involve histories

can be incorporated into the metamodel of knowledge.

Any constraints on the values of the thickness and the weight of the glass pane would con-

strain the state space of the glass pane to a region of the two-dimensional plane in figure 23.

They do not have to be the kind of closed area bounded by a well-defined perimeter, shown

in the figure 23.

For example, in figure 23, the glass sheet’s lawful state space would have been an

open-ended horizontal plane if only the thickness, and not the weight of the sheet, was

38 This distance is called a metric. See the endnote on metric spaces.
39 See the endnote on the topic. We will address the generalization of distance in state space in Chapter 4.
40 The endnotes on metric spaces and items in the section on metric spaces in the bibliography have more rigorous

mathematical explanations of state space.
41 See the endnote on the Bunge–Wand–Weber model: The conceivable state space of the object describes its

unconstrained state space. The lawful state space of an object is a region of state space that the object has

permission to occupy. It is carved out of conceivable state space by all constraints on the object acting in

concert.
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Figure 23 Example of two-dimensional state space

constrained. It might have even been a straight or curved line(s) if there were rule(s) that

let us compute the weight of the sheet from its thickness (or vice versa). Figure 25 has an

example of this kind of state space.

Indeed, complex rules might be such that the lawful state space could consist of several

joint or disjoint shapes and edges taken in any combination. For example, if we constrained

the thickness of the glass sheet so that we only considered sheets between 1/8 to 1/2 inch

thick, or 1 to 2 inches thick, our lawful state space for glass sheets would consist of two

disjoint regions in the plane of figure 23. (Box 17 has examples of disjoint state spaces.

Interested readers may like to try this exercise: if we were interested in the number of pieces

of each shattered glass pane and the average weight of each piece, what would the shape of

the state space be?)

Instead of two attributes, if three attributes were in scope, the state space would have

been a three-dimensional volume. For example, if a person’s age, height, and weight were

in scope, the state space of person (the object instance) would be the three-dimensional

volume shown in figure 24.

Just as constraints in the two-dimensional case (figure 23) restricted the state space of the

glass pane, constraints on values of the attributes in figure 24 would confine the lawful state

space for person to bounded or unbounded regions within the volume shown in figure 24.

These regions could be disjoint (or not) volumes, surfaces (not necessarily plane surfaces),

lines (not necessarily straight lines), or points, or any combination of these shapes.

A subspace is a state space that consists of a subset of attributes of a state space. The space

from which attributes were selected is called the super space. Naturally, a subspace will

have fewer dimensions than its super space. Indeed, any cross section of state space will be

its subspace. Subspaces of subspaces are also considered as subspaces of the original super

space. A plane is a two-dimensional slice, and a subspace of a three-dimensional volume,
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Figure 24 Example of a three dimensional state space

whereas a line is a one-dimensional slice of a plane, and a subspace of both the plane and

the volume.

When more than three attributes are involved, it is not possible to draw the state space

in our three-dimensional world, or even imagine its shape easily. These would be higher-

dimensional spaces (mathematicians routinely deal with such spaces) that we can only

understand or try to visualize as analogs of two- and three-dimensional state spaces.42

Chapter 4, section 1 has an example under arrays, of how higher-dimensional state spaces

may be visualized and sliced into lower-dimensional subspaces.

Knowledge in state space

Knowledge is manifested in state space. State space is also a component that can be reused

to create new configurations of knowledge.

Each object is a collection – a bag so to speak – of attributes, relationships, and effects

naturally packaged together. Thus, each object can be a reusable component. The states and

behavior of these natural objects may potentially be used in several business processes.

These attributes and behaviors are attached to the instance identifier. (Think of the instance

identifier as the label of the “bag.”) Thus, each instance is a structure (called a “tuple” by

mathematicians) in which each attribute, relationship, and effect of event is attached to its

instance identifier. This structure will help us partly, but not fully, to normalize knowledge.

It helps us to normalize knowledge when several business processes reuse the natural

behavior of natural objects. Then they can share the information about an object stored in a

repository and do not each have to replicate the same data and effects. On the other hand,

several similar objects may share some kinds of common behavior (see “What is an object –

really” Chapter 00, section 1). Sharing the same object will not normalize this kind of shared

behavior. Corresponding attributes and behaviors will then have to be packaged into reusable

42 [255], [260], and [268] describe higher-dimensional spaces. [273] and [275] describe dimensionality of patterns

in space.
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Box 17 State spaces with qualitative attributes

In our examples we have shown only state spaces for attributes that map to quantitative

domains (ratio or difference scaled domains). What would happen to the state space if

some (or all) of the attributes involved were ordinally or nominally scaled? The following

figure shows how this can happen.
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STATE SPACE

(Sequence matters, but not the distance between the broken lines on this axis.)

Examples of state spaces that map to qualitative domains

If the attribute were ordinally scaled, we could still show its value on an axis in state

space, but the state space would be restricted to a set of discrete points on the axis.

The points would be arranged in increasing order (for example, ranking of Jane’s color

preference for cars in section 3 of Chapter 1), but the degree of physical separation

between points would not carry any meaning.

If the attribute were nominally scaled, the state space would be restricted to discrete

points on the corresponding axis, one for each category. However, neither the sequence

in which points are arranged on the axis, nor the degree of physical separation between

points would carry any meaning. The only material consideration would be whether two

or more instances of the object (instance) are in the same category or not.

sets of their own. In terms of state space, it implies one or more axes may be chosen to create

reusable state spaces, which are called facets or subspaces of the original state space.43 Let

us therefore understand how knowledge is manifested in state space and its many facets.

Each axis, i.e., dimension of an object’s state space, is an irreducible fact – that the

attribute (or relationship) exists. The state space describes a configuration of irreducible

facts: the collection of irreducible facts that each attribute (and relationship) exists. There

are two ways we can build on this collection of facts:

1 add new attributes (or relationships) to the collection;

2 constrain permitted values of attributes (or relationships).

43 See the endnote on multiperspective modeling, [21], and [23].
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Adding new attributes: take figure 24. Let us assume that only an individual’s height and

weight were in the scope of the model to begin with. The state space of a person would

then be the plane of the paper, bounded by the height and weight axes. The movement of

individuals on this plane in response to events will represent their behavior. Now if we wish

to create a new model – one that includes the individual’s age, height, and weight – we

would attach the age axis to the plane as shown in figure 24 to create the new state space

for an individual. (This is similar to the loose collection of facts described for figure 10 in

the example of section 5, Chapter 1.) Their movement in this volume will then represent

the behavior of individuals in the new model.

Now, if we need a second model that involves gender, in place of age, we could reuse the

height–weight plane (subspace) of the three-dimensional state space of figure 24, and attach

a gender axis to it (instead of age) to create our new state space. Therefore, state spaces

(and their subspaces) can be reusable components that represent reusable configurations,

or subassemblies, of knowledge.44

Constraining permitted values: irreducible facts about permitted values will constrain

an object’s lawful state space, as described in figures 22 and box 17, to one or more

regions as discussed earlier. Constraints can be complex and involve interactions between

several attributes (and relationships). For example, we may have two different models,

which involve only individuals’ heights and weights. The models differ, in that they attach

different constraints to permitted heights and weights. We could use the plane in figure 24,

bounded by height and weight in both models, but we would need to carve it up into different

regions and to attach different constraints to each. Thus, in this situation too, state space can

serve as a reusable component that represents a configuration, or reusable subassembly, of

knowledge. (This is similar to the structure in figure 11 of the example in Chapter 1, section 5,

where the weight domain was constrained.)

Mixing both kinds of constraints: indeed, we could reuse these structures to assemble

even more complex mixed structures. For example, we might say that we will attach the

age axis (and special age dependent behavior) of figure 24 only for children, i.e. individuals

less than 18 years old. Now we have the third dimension attached only to a region of the

height–weight plane. The height–weight state space (or facet) may be reused in several

ways. The example, under states of behavior, of how some attributes of agreement may

be null under certain conditions is another example of how state spaces may add or lose

dimensions for some, but not all, instances of a class of objects. (Null values imply that

the attribute does not exist and hence corresponding axes of state space do not exist for

those instances of the object.) We will revisit the overall implication under the discussion

on inheritance and subtyping.

44 One way of physically representing this common facet might be to define an object that has all attributes (height,

weight, age, and gender in our example), but to force those attributes that are not common to all scopes (age

and gender in our example) to have null values. After all, a null value implies “does not exist”; hence, it is one

way, albeit a rather clumsy way, of saying that the attribute does not exist in the common state space. A better

approach might be to let the object have all attributes that any scope needs, so that those who need it may use it,

whereas those who do not are not really affected. The attribute’s value will be “unknown” for them. This would

provide for scopes shifts and new behaviors. Providing for unknown attributes and effects will facilitate even

more flexibility. Although these designs might be flexible, they may adversely impact computer performance.
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The current discussion serves to emphasize that modeling real world behavior can be

exceedingly complex. Indeed, it is this complexity that leads to tangled inheritance and

chaotically replicated knowledge scattered through our processes. This has been the main

stumbling block to nimble information systems and a major limitation of conventional

object technology. To transcend this barrier, we will have to solve the problem of multiple

perspectives and the problem of automatic recognition and inheritance of common behavior.

In order to do so, we must first understand not only how knowledge is represented in state

space, but also how knowledge is represented in the movement of objects through state

space.

Moving through state space

Each adjacent slice of an individual object instance in figure 22 occupies a different point in

the object’s state space. If we joined these discrete points, it would give us the trajectory of

the object (instance) through its state space. (If we had not restricted our scope to discrete

change, the path would be a line instead of a set of discrete points.)

The set of all possible paths through state space will be the collection of effects of events

in the scope of the model. That too is a configuration of knowledge. The specific path an

object instance actually takes represents its history. Why is this important? It is important

because behavior often depends on history in the real world. Box 18 describes how this can

happen (the trajectory described in figure 25 is an example of this). Module V, section 3

(on our website) revisits the significance of history.

To illustrate these concepts, let us take a simplified example of the behavior of an imag-

inary firm, Shenanigan’s Services Inc. Assume that we are interested in only Shenanigan’s

income and the total amount of money the firm has borrowed. (Shenanigan’s Services is an

instance of an object, whereas income and borrowing are its attributes.) We discover that

income rises in step with borrowed money at first because the Shenanigan’s Services uses

its borrowings to scale up its operations.

However, beyond a point, interest payments start eating into its income, which falls

steeply. When the firm reduces its borrowing, income starts rising again. The company then

increases its borrowing to finance growth. (The left most loop in figure 25(a) represents this

behavior.) This time, its income keeps rising in step with borrowing.

However, after a small but significant spurt in income, interest starts eating into income

again. The firm repeats the strategy it had employed earlier successfully, and starts growing

again (shown by the upper loop in figure 25(a)).

Figure 25 is a graph of the firm’s income versus its borrowing. It is an example of the

firm’s trajectory through state space. The firm moves along this curved and looping line

with the flow of time.

If we had discovered a formula (an irreducible fact) that related the firm’s income to its

borrowing, then, at every point in time, the firm’s income would have been determined by

its level of borrowing alone (and vice versa). The state space of the firm would then become

a line that traces this relationship between income and borrowing. The firm’s trajectory

through state space would trace this line as its income and borrowing changed over time.

The concept of movement and speed along its trajectory in state space can be replaced

with only the concept of position if we included time as the third axis. For example, in
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An object will move along a trajectory in state (a)

space as its state changes with the passage of time

Income

Borrowing

The firm (instance of an object)
moves along this trajectory at a
certain speed

Income

Borrowing

Time

Location of the firm in
state space at a
particular time

The object’s trajectory can be reinterpreted as a (b)

region in state space (a line in this case) when the 

time axis is added to its state space

(When only discrete changes are considered, the 

region consists of a sequence of discrete points (   )

on the trajectory.)

Figure 25 Example of trajectory through state space

figure 25(b), as we move forward along the time axis, each point represents the firm’s state

at that moment in time (the amount of borrowing and the firm’s income at that point in

time). Effects at each point in time have changed the state of the firm to the next point in

the figure. Business rules will dictate whether subsequent effects and guard conditions will

depend on the shape of this trajectory (see box 18).

Box 18 Chaotic behavior

Points where the state space crosses itself in figure 25(a), when the line loops back on

itself, are unstable (chaotic) points. The path can branch, and both mutually exclusive

branches are legal (allowed) paths. The object (instance) may follow any one of available

paths as it moves through state space. The object’s actual trajectory as it crosses these

points of intersection (which branch it actually takes at the intersection, since the state

space permits either) would depend on pure chance and tiny differences in the object’s

history and velocity as it travels through state space.45 This is called chaotic behavior.

The theory of chaos analyses this kind of behavior and readers may refer to [292] and

[323] in the bibliography.

Spontaneous state change

At the beginning of this chapter we discussed how events [166] have effects that change

states objects. Events are also objects (Chapter 1). We have seen how objects themselves

can be collections of other objects. It follows that some objects in the collection might

be events. The overall state of the aggregate is determined by the states of its components.

These internal events may change the state of the aggregate object (or objects inside it, which

amounts to the same thing). These internal events might not be in the scope of the model,

45 Chaotic behavior occurs because even infinitesimally small differences in state and history may change the

trajectory of an object in state space. [220], [222], and [231] show that these differences may be infinitesimally

small – small enough to be considered zero – and still display chaotic behavior.
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or even be visible to an observer, who will therefore see the aggregate object changing

state spontaneously. For example, in figure 14, v4 and v6 might be attributes of an object,

which would continually and spontaneously keep changing state (Chapter 1, section 6).

There are many examples of spontaneous state changes in the physical world. For example,

the filament of a light bulb might spontaneously burn out and render the bulb inoperative.

Several species of fish change gender spontaneously (see the endnote on gender change.)

Thus, when we think of moving through state space, we must remember that this movement

may not always be in response to external effects. It could be spontaneous movement.

Lost in space: the curse of change

The state of a system at any point in time is the set of values of every attribute (and

relationship) of every object in it (see box 12). Large and complex business systems can

have large numbers of objects with many attributes and relationships that traverse complex

paths through complicated state spaces – sometimes in response to events, and sometimes

spontaneously. The number of possible states and trajectories can be mind boggling, and,

unless we have robust criteria for grouping behavior, we can easily lose our way.

When the scope of a large and complex system changes, we must involve new behavior,

objects, and rules. State spaces, initial conditions, and trajectories can all change simulta-

neously. Seasoned analysts and systems developers understand the challenge through bitter

experience. In Chapter 1, we saw how easy it is to get lost in state space without objects to

guide us. Without objects to classify behavior, the system will have too many states, and

developers will have to keep track of more rules, interactions, and unintended side effects

than is humanly possible.

If rules are not normalized, changing a rule in one place will not guarantee that the new

behavior will be reflected everywhere; if we do not know every impact, the system will

deviate from its intended trajectory and often take a totally different and strange trajectory

that will be hard to diagnose. Thus, the impact of a single change, forgotten because we

could not keep track of all places where a rule might be replicated, might cascade through

the system as its path in state space deviates chaotically from the intended trajectory. The

larger the system and the more complex its rules, the greater will be the risk. We must

normalize knowledge to manage this risk.

Section 5 of Chapter 1 had an example of how knowledge was automatically normalized

through inheritance. This property of objects, behavior inherited from other objects, is the

key to order in the chaotic world of complex systems. Inheritance is the magic bullet that

organizes knowledge into reusable components based on common behavior. Therefore let

us understand how inheritance happens.46

3 Inheriting behavior – subtypes, supertypes, and partitioning of objects

We have seen how objects help to normalize real-world behavior and can be reused in

many business processes. For example, employees may be resources for a project, and also

individuals who earn paychecks and benefits. “Employee,” the object class, may therefore

46 The endnote on inheritance describes several kinds of inheritance. See [239] and [328].
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be (re)used for both purposes, and serves to normalize information about the states and

behavior common to both processes such as cost, productivity, length of employment,

and job function. Similarly, customers are individuals who buy products, and also return

defective products. Thus, “customer,” the object class, may be (re)used for both purposes and

serves to normalize information about the states and behavior common to both processes.

We also understood that object classes by themselves are necessary, but not adequate to

normalize common behaviors of similar objects. For example, both customers and employ-

ees are individuals who age, have a gender, have credit ratings, are known by names and

social security numbers etc. The “employee” and “customer” object classes will not nor-

malize this behavior. Instead it will be replicated in both. As such, if an individual’s name or

credit behavior needed correction, we would need to remember to change it for each object

class separately.

In order to normalize behavior common to similar objects, we must create more gen-

eralized object classes that could serve as the repository of their common meaning. For

example, aging, gender, credit rating, names, and social security numbers are common to

all persons in the US. Persons may be both employees and customers. “Person,” the object

class, serves to normalize behavior common to people, such as aging and gender regardless

of whether the person is an employee, customer, or both. If we acknowledge that the set

of customers and the set of employees are subsets of the set of persons, we know that all

behavior common to persons will also be the behavior of employees and customers (see

definition of subsets in box 19. Box 20 deals with inheritance in a more rigorous manner.)

For this reason, employee and customer object classes are said to inherit the behavior of

person. Person is the repository of their common behavior.47 This is why we need inher-

itance to normalize the common behavior of similar objects. (Employees and customers

may have other behaviors as well, that are specific to each. For example, employees may

be promoted, which does not apply to customers, and customers may be offered product

warranties, which does not apply to employees.)

Objects may inherit their behavior from more than one object class. This happens when

they are subsets of several sets simultaneously. For example, in box 19, sets A and B overlap.

This overlapping set is their intersection. Assume set A is the set of products in inventory.

Inventory items will be characterized by attributes such as quantity on hand, quantity on

order, and quantity issued from stocks. Assume set B is the set of toxins. It will have

attributes such as toxicity, precautions, instructions for emergencies, and OSHA reporting

obligations. The intersection of the two sets will be the set of toxic inventory and will inherit

the behavior of both inventory items (set A) and toxins (set B). Toxic inventory items may

have specific behaviors in addition to inherited behavior. For example, the firm might insist

that toxic substances must be isolated in a special warehouse. When an object class inherits

behavior from two or more object classes, it is called multiple inheritance (see box 20 for

a more rigorous discussion of multiple inheritance.)

47 The object class person is a superset of both the set of employees and the set of customers: The set of

employees are those persons who have an employment relationship with another object class: employer. The

set of customers are those persons who have a purchasing relationship with the product object class. Thus both

employee and customer object classes are subsets of person.
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Box 19 Set operations (on our website)

Box 19 describes set intersection, set difference, set union, subsets, proper subsets, set

negation, set equality the Cartesian product of sets, the concept of a tuple, a list, the

empty (or null) set, and the power set.

Supertypes and subtypes

Inheritance does not involve any logical flow or physical transmission of data. Inheritance

just is. It is the nature of the object, and springs from the logic of set operations and the

meaning of real-world objects.48 The class (or classes) that an object inherits behavior from

is called its parent class(es) or supertypes. The object classes that inherit behavior are called

child classes or subtypes.

The supertypes in our examples so far have all been physical objects such as people,

inventory items, and toxic materials. However, common behavior not only springs from

the laws of nature, but also from the laws of man – laws and common practices in busi-

ness, such as ownership, trade, and legal processes. State spaces created by these practices

may be reusable components (see “Knowledge in state space”), but are sometimes diffi-

cult to identify as such, because they are more abstract and less tangible than physical

objects.49

For example, people and organizations are two very different kinds of concepts that share

common behavior because the law considers some kinds of organizations to be surrogate

persons. Both persons and firms may buy and sell products and services, both may be

parties in legal processes, make agreements of various kinds, have bank accounts, own

assets, employ or be employed by other people or organizations.

An abstract object, person/organization, captures this common behavior. Persons and

organizations both inherit their shared behavior and relationships from person/organization.

Each adds its own specific behavior to behavior inherited from person/organization. For

example, persons get married and divorced, whereas organizations may be bought, sold, and

be restructured. The state space of person/organization is a common component from which

state spaces of both people and organizations can be developed by adding behavior special

48 Section 2.25 of [328] describes inheritance in detail. Section 2.25.5 of [328] has different kinds of

inheritance. Inheritance and polymorphism (which we will discuss later) emerge from the mathemat-

ics of partial order and λ-calculus (lambda calculus). [217], [239], and [217] describe partial order suc-

cinctly, and [239] describes both untyped and typed λ-calculus and how they lead to inheritance and

polymorphism.
49 Identifying abstract supersets has been a major problem in building robust enterprise or cross-enterprise object

models. These generalizations are usually subjective and unstable. They tend to change as scopes, perspectives,

and priorities shift, or as new business rules are considered. The universal perspective addresses this problem.

Also see the endnote on multiperspective modeling and bibliography items on facet and multiperspective

modeling.
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Box 20 Inheritance, state space, and polymorphism

Remember that state space is just another name for the set of attributes and relationships

of an object, and facets, or its subspaces, are subsets of this set.50

In terms of the set operations in box 19, the state space is a set derived from the

Cartesian product of all attributes (and relationships) of the object class it belongs to. As

such, if there are “n” attributes (including relationships), each point in state space is an

n-tuple. Each element of the n-tuple is a possible value of an attribute (or relationship).

The path of an individual object instance through state space is its history of state

changes, and the set of all possible paths is another name for the set of all possible

histories, which is the same as the set of all possible effects.

Strictly speaking, inheritance involves shared facets or subspaces of state space

(shared attributes, relationships, and constraints) and shared sets of permitted paths

(shared effects) in these facets and subspaces, not subsets of object classes. Multiple

inheritance emerges from a facet or subspace of the state space of the child object,

created by the union of attributes and effects of each parent object.

When an object class is a true subset of the parent object class, such as the set of small

firms is a subset of all firms, the subset will naturally reside in a region of the state space

of the parent class (as discussed under state space) and must share facets (i.e. attributes)

of its state space, as well as of some or all permitted trajectories through this shared facet.

Thus, it will always inherit these attributes and effects from its parent class. This kind of

inheritance, in which the state space of the subtype is constrained to a region inside the

lawful state space of the supertype, is called restriction inheritance (see the endnotes

on kinds of inheritance). It is a special kind of extension inheritance (described below)

in which the subtype has no additional attributes, and its state space is not augmented

with additional dimensions. The subtype’s state space is merely constrained to a region

inside that of the supertype. For example, the annual revenue of a firm is an attribute of

an object class called firm, and that of a small firm may, by definition, have a ceiling.

Even when the state space of a subset is extended into additional dimensions by

including behavior specific to the subtype (described earlier for the set of employees, a

subset of the set of all persons), the state space of the parent object must be a subspace

of the extended state space of the child object (i.e. the set of attributes of the parent

object will be a subset of the set of attributes of the child object), and the child object

may share some or all possible paths through this subspace with its parent. Thus, it will

inherit these shared behaviors from its parent. This is called extension inheritance.51

50 The number of possible sets of common attributes and effects may be unmanageably large, hence the number of

possible ways an object can be generalized may be many. For example, both people and publications age; both

apples and cars have colors. Does this mean we need common parents for these very different object classes?

No! Similarly there may be many combinations of common attributes and hence an unmanageable number

of ways in which subtypes can be defined from supertypes. The solution to this problem will be discussed in

section 4. Mathematically, this involves the cardinality of the power set of the set of common attributes. The

power set of any given set is the set of all possible subsets of the set. The cardinality of a set is a measure of its

size, and may be infinite. See [170], [202], [203], and [206].
51 See the endnote on kinds of inheritance or [328]. Extension inheritance flows from supertypes that are the

intersection common properties of their subtypes.
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Subtypes are object classes, as are supertypes. The subtype object class is the reposi-

tory of unshared, or special, irreducible facts about similar object instances. Supertypes,

on the other hand, normalize shared irreducible facts. Instances of a subtype are said to

inherit shared facts from their supertype and add special facts germane to the subtype

via the set union operation. Their properties are the union of the set of shared properties

of the supertype and the set of special properties of the subtype. An instance of a subtype

must naturally be an instance of the subtype (but not necessarily vice versa.) Subtypes

are object classes that are related to their supertypes (also object classes) with a special

subtyping relationship.52 What irreducible fact does this relationship normalize – after

all shared facts are normalized by supertypes and special facts by subtypes, so what is

left? The subtyping relationship asserts that a subtype exists, and must therefore inherit

from the supertype it connects with.

Relationships are objects too, and the algebra of objects will apply to the subtyping

relationship equally. This is important to the metamodel of knowledge – see Module V

on our website.

to each.53 This is called extension inheritance because the subtype inherits all behavior

from the supertype and then extends the repertoire of behavior by augmenting it with the

subtype’s special behavior (as described under “knowledge in state space” and box 20).

This is how person/organization normalizes knowledge – with extension inheritance.

Person/organization is an abstraction that emerges from shared facets of state space. Indeed,

it is not a traditional concrete object, rather it is a container of meaning shared in state space.

Object partitions and role modeling

In real life, objects may play many different roles simultaneously. For example, you, the

reader of this book, might simultaneously be a spouse, a process engineer, a parent, and a

business person. Recognizing multiple simultaneous roles of an object is key to understand-

ing and representing real-world behavior in real world business processes. Object partitions

are a powerful tool towards this end.

In the example above, the set of customers are those persons who have a purchasing

relationship with another object class: product (the set of products). Therefore, customer

is a subtype, or role, of person. All subsets must necessarily be based on some criteria for

partitioning the parent set (in this example the criterion is the existence of a purchasing

relationship with product). These criteria reside in the partition. A set may be partitioned

in as many ways as needed to define business rules. Figure 26 describes how objects can be

partitioned to show several simultaneous roles.

52 See box 22.
53 The person/organization object class is not the union of the sets corresponding to person and organization

object classes (members of which are mathematical tuples). Rather, person/organization’s state space contains

the common properties of person and organization, and hence is the intersection of corresponding sets of

properties, not tuples. Thus extension inheritance flows from supertypes that are the intersection common

properties of their subtypes.
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Figure 26 Example of object partitions

A specific object instance may concurrently exist in several subtypes located in different

partitions. For example, in figure 26, an object class, organization, has been partitioned in

two ways: the partition on the left is based on the ownership of the organization, whereas

the partition on the right is based on the expected life span of the organization.

A specific instance of an organization may be a permanent organization, as well as a firm

we do not own. It belongs to the class of organizations we do not own, a subtype in the

partition on the left side of figure 26; and it simultaneously belongs to the class of permanent

organizations, a subtype of organization in the partition on the right. Thus it plays both roles

at the same time.

Organizations in both partitions will share common behavior like structure, reporting hier-

archies, reorganization, and charters. However, organizations that are not owned may have

special behavior like being candidates for acquisition. Similarly, temporary organizations

may have dates or events when they will be dissolved, whereas permanent organizations

may not. An instance of an organization that plays several simultaneous roles inherits the

behavior of each role it plays.54

54 If we used relational database technology to implement partitions, each object might be a table and each

partition could be an independent state indicator. The subtypes within a partition would correspond to valid

values of corresponding state indicators. Partitioning rules, state space constraints, and specific attributes of

subtypes would all translate to complex validation criteria based on values of state indicators. Effects could be

implemented as program code or as database stored procedures.
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Properties of partitions

Subtypes within the same partition are always mutually exclusive subsets of the object class

being partitioned. Partitioning criteria divide the subtypes into mutually exclusive object

classes. For example, an organization we own fully obviously cannot be an organization we

do not own. On the other hand, we have just seen how subsets in different partitions permit

an object instance to play multiple roles simultaneously.

All subtypes within a partition may or may not cover all possible instances of the parent

object class being partitioned. This property of partitions is called exhaustivity and it happens

because some kinds of behavior may not be in the scope of the model. For example, in

figure 26, organizations in which we have minority shares have been omitted in the partition

on the left. Thus, object classes in this partition do not include all possible object instances

in the object class being partitioned. It does not include organizations we do not own.55

Such partitions are called non-exhaustive partitions.

Subtypes in other partitions may include all possible object instances in the set being

partitioned.56 Such partitions are called exhaustive partitions. The partition on the right of

figure 26 is an example of an exhaustive partition.

There is one other subtle, and somewhat arcane, property inherent in partitions – the

property of exclusivity (versus inclusivity – the absence of exclusivity). The partitions we

have discussed so far assert that subtypes exist. They are inclusive partitions. We could, by

the same token, specify what cannot exist, and put mutually exclusive subtypes that cannot

exist in an exclusion partition.

Yes, an exclusion partition is an arcane concept, but consider its utility in normalizing

knowledge. Sometimes we define an object class by a process of elimination; we define it by

what it is not. For example, the Department of Motor Vehicles in New Jersey defines class

A, B, and C vehicles based on various properties, and then rules that class D vehicles are

those motor vehicles that are not A, B, or C. Thus class D vehicle would be a subtype in an

exclusion partition of an object that covers class A, B, and C motor vehicles. The subtyping

criteria for such a partition would say what cannot be: that subtypes in this partition do not

have the properties that make a vehicle class A, B, or C.

Exclusion is the foundation of variation inheritance and “unaffecting,” i.e. excluding

specific properties of an object from its subtypes (see box 21 and the endnote on kinds of

inheritance). Thus, exclusion partitions are the foundation of variation inheritance.

Exclusive partitions can also be used to assert what parts of an object’s state space are not

permitted. For example, take the case of non-negotiable agreements. They are a subclass

of agreements that cannot be negotiated, and hence can never be in a state called “under

negotiation.” Non-negotiable agreements may thus be a subtype in an exclusion partition –

one that excludes an effect called “negotiate.”

The discussion on derived attributes and constraints in Chapter 3, section 1 elaborates on

exclusion partitions and their relationship with “unknown” values. In the remainder of this

book, unless it is specifically mentioned, partition will mean inclusive partition.

55 In non-exhaustive partitions, the union of all subtypes defined in the partition does not exhaustively cover all

possible object instances in the object class being partitioned.
56 In exhaustive partitions, the union of all subtypes defined in the partition exhaustively covers all possible object

instances in the object class being partitioned.
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Box 21 Exclusion partitions, variation inheritance, and polymorphism

(on our website)

Box 21 discusses how partitions affect inheritance. It discusses different variations

of the subtyping relationship and how each may be used with examples. It describes

how variation inheritance flows from subtypes based on excluding information in the

parent object, versus extension inheritance, which flows from supertypes anchored in the

intersection of common properties of all its subtypes. Box 21 discusses why variation and

extension inheritance should not be used together, and how such usage could potentially

lead to inflexible systems under the pressure of scope creep. Box 21 uses the following

figure to discuss different kinds of subtyping mechanisms:

PERSON

NON-

PARENT
PARENT

PARENTHOOD PARTITION

Subtypes of person

may be parent of 0 or more

parent of 1 or more

(inherited from person)

Features

•Parenthood

•Name

•Age

•Gender

•Height

•Weight

Features

•Parenthood

•Name

•Age

•Gender

•Height

•Weight

Features

•Parenthood

•Name

•Age

•Gender

•Height

•Weight

Inherited

from

person

Inherited

from

person

EXCLUDE
FEATURE
FROM SUBTYPE

(a) Partitioning criterion: exclusion of parenthood relationship (“parent of ” is inherited by one

subtype but not the other)
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PARENTHOOD PARTITION

Subtypes of person

parent of 1 or more

(added to subtype) Inherited
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person
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•Gender

•Height

•Weight

Features

•Name

•Age

•Gender

•Height

•Weight

Inherited

from

person

Parenthood
 (add feature to

subtype)+

(b) Partitioning criterion: addition of parenthood relationship (all features are inherited by all

subtypes)

Box 21 also describes why subtyping by adding information is normally the preferred

option. It discusses inclusion polymorphism and the relationships between different
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kinds of inheritance. Inclusion polymorphism is illustrated by the following example:

engineering firms manufacture engineering products. A relationship called manufacture

relates engineering firm to engineering product. An auto parts manufacturer is a sub-

type of engineering firm. Automobile part is a subtype of engineering part. The two

subtypes inherit a restricted form of the manufacture relationship between the corre-

sponding parent objects, in which only automobile parts are made. Since the general

manufacture relationship includes manufacturing automobile parts, this kind of subtyp-

ing is called an inclusion polymorphism – the relationship may be inferred from the

subtypes it connects. These subtypes may then be considered to be parameters of the

parent relationship. Changing these parameters would change the kind of manufactured

item, i.e. the manifested polymorphism of the parent relationship. It is a frequently used

form of inference supported by the metamodel.

Partition is a metaobject, which, by its very nature, has three properties:

1 partitioning criteria (the discriminator in box 22);

2 exhaustivity; and

3 exclusivity.

Partitioning criteria are important for subtyping and inheritance, whereas exhaustivity tells

us that scope changes might bring hitherto unrecognized subtypes into a partition. Exhaus-

tivity also tells us about validity of completeness checks, i.e., whether it makes sense to

match object instances in the parent class against those in subtypes within a partition. Of

course, in the real world, the object instances in an exhaustive partition must always be the

same as those in the parent object class, but no system is flawless and information could

get lost in software systems or manual procedures. Exhaustivity and exclusivity provide the

basis for testing the integrity of business systems through checks and balances.

Atomic rules that span more than one partition

At any given moment in time, a single instance of an object may play several roles (belong

to several subclasses) simultaneously, as long as these roles (subclasses) are in different

partitions. However, additional business rules might constrain this behavior. These are

best represented by relationships between subtypes. (Module V discusses relationships in

detail.) Whereas an object instance may belong to only a single subclass within the same

partition, two kinds of rules can constrain the existence of specific object instances that

could simultaneously belong to two or more subclasses in different partitions as elaborated

below:

1 All objects that belong to a given subclass must simultaneously belong to one or more

(specific) subclasses in other partitions (not necessarily true the other way round – see

figure 27).

This rule implies that the first subclass is a subset of the second subclass, even if they

are in different partitions. If a similar rule is simultaneously true in the reverse direction,

then the subsets will be equal to each other, even if they are in different partitions.

A business rule that asserts that all military recruits (a subclass of person based on

employment status) must be 18 years old (a subclass of persons based on age) is a
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Every instance in one subtype
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Figure 27 Constraints across partitions

rule of this kind. It is an irreducible fact and a separate component of knowledge in

its own right. If we imposed the same constraint in the reverse direction, that all 18

year old individuals must be recruited in the military, it is a separate irreducible fact

(and independent component of knowledge) that would ensure that there is no difference

between the set of new recruits and the set of 18 year old individuals. One implies the

other.

Software developers do not always recognize that this kind of set equality flows from

two or more irreducible facts acting in concert. They assume that any one of the two sets

implies the other, hence it does not matter which they choose to recognize for processing

purposes. For example, there may be a requirement to test reflexes of military recruits. It

would not be correct to attach this rule to the (sub)class of 18 year old persons. If we did

this, our system might select the right people to test reflexes today, but knowledge would

not be normalized and it would lead to inflexible systems: if the drafting age changed,

the system for checking reflexes would have to be changed.

The correct approach would be to attach the rule to the subclass of military recruits – i.e.,

to represent knowledge in systems as it is in the real world. If we did this and requirements

changed so that one of the two rules were removed, and the two sets were not bound to

equal each other any more, it would not impact the reflex checking procedure. The reflex

checking procedure would not be impacted because knowledge was normalized.

Rules could get more complex if we added more irreducible facts. For example, new

recruits might have to be male, less than 21 years old, etc. Then more partitions (e.g.,

gender based in this case) and different subsets in the same partition (18–21 years old,

not 18 year old persons) will be involved.

2 All objects that belong to a given subclass must not simultaneously belong to one or more

(specific) subclasses in other partitions (the pairs of subsets are mutually exclusive even

if they belong to different partitions – see figure 27).

For example, a business rule might assert that no one over 55 years old may serve in

the military. This rule states that two subtypes in different partitions (the set of persons

older than 55 in the age based partition of the person object class, and the set of persons in

military service, a subtype of the person object class, based on occupation) are mutually

exclusive. The configuration of components on the extreme right-hand side of figure 27

represents rules like this.
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The meaning and syntax of behavior-based partitions

The kind of partition we are now discussing is more general than the partitions in figure 20,

and the partitioning of state spaces we discussed earlier. In figure 20, object instances were

partitioned in terms of single attributes. Then we discussed partitioning state space in terms

of constraints on values of attributes and relationships. Now we are discussing partitions

that might involve several properties57 – one or more attributes and relationships (partitions

Box 22 UML syntax for partitions and subtypes

The unified modeling language (UML) has been adopted as a standard by the object

management group (OMG), a cross-industry forum for standardizing object technology

and syntax. UML has a robust and rich set of constructs and a broadly accepted syntax

for expressing concepts related to modeling objects, subtypes, and partitions. In the

following figure, objects are labeled as rectangles that contain attributes and effects

(operations in UML parlance), the arrows are subtyping symbols (the direction shows

the direction of generalization – from subclass to parent class), each partition is a separate

comb that hangs from an arrow.

OBJECT PARTITIONING IN UML

CLASS NAME

Attribute: data type = optional initial value
Attribute: data type = optional initial value
Attribute: data type = optional initial value

.

.

.

Operation (i.e. effect)
Operation (i.e. effect)
Operation (i.e. effect)
Operation (i.e. effect)

.

.

.

SUBTYPE 1 SUBTYPE 2 SUBTYPE 3 SUBTYPE A SUBTYPE B SUBTYPE C
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FOR OBJECT

CLASS
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FOR PARTITION

Partitioning criteria written here

SUPER CLASSES

.

.

.

.

.

.

.

.

.

.

.

.

SUBCLASS

.

.

.

.

.

.

MULTIPLE INHERITANCE IN UML

UML SYMBOL

FOR SUBTYPING
(class generalization)

Partitions are called discriminators in UML because they contain the subtyping cri-

terion. Readers interested in UML may refer to several papers under that heading in

the bibliography, or to [329]. The symbols and syntaxes of other methodologies might

be different, but may express the same concepts. For example, in NIAM [297], object

classes are oval shapes and subtypes are nested within the supertypes. An asterisk in a

supertype that contains subtypes is the symbol for non-exhaustive partitions. When there

is no asterisk, it is considered an exhaustive partition by default. The reader should be

aware that many methodologies are not complete, i.e., they do not have all the constructs

needed to normalize knowledge.58

57 The partitions discussed earlier were special cases of this generalized partition.
58 The Bunge–Wand–Weber model tests methodologies for completeness and redundancy of symbols and concepts

[14] includes a report on the health of UML subject to BWW testing. [18] has a summary one-paragraph report

on the completeness of UML. See also the endnote and items under “Knowledge reuse algebras and test beds

for techniques” in the bibliography.
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of state spaces), as well as one or more effects and trajectories through state space (i.e.

the object’s history and the set of possible state changes). These partitions can be the basis

for creating subtypes that will support complex, very specialized behavior and business

rules. The subtyped object instance gets its special behavior from the subtype, and adds

the more general behavior shared with other less special objects by inheriting them from

its parent class. This is how partitions and subtypes support knowledge normalization,

even as they facilitate modeling of special behavior and business rules tailored to specific

conditions.

Default states, subtypes, and variation inheritance

Should subtypes inherit the default (i.e. initial) state of their supertypes? To understand the

importance of this question, remember that our metamodel assumes that the real world is

deterministic. We used default values for two reasons:

1 to express an atomic fact about an object’s initial state; and

2 as an artifice to compensate for ignoring the inherent uncertainty of the real world. We

did this by making assumptions about initial states to minimize risk (see the discussion

on default values in section 2).

Let us consider how initial states can impact subtyping with examples.We know that fish

must live in water – or more accurately, there is an overwhelming probability that they must.

Still, there are six species of fish that can survive without water. These fish that survive on

land are called lungfish because they have lungs to breathe air.59 If we assert that a class of

animals called fish must live in water by default, all instances of fish, regardless of subtype

or species, would inherit this atomic rule when they are first recorded in the information

system. We would be almost, but not always, right: we would be wrong when the fish is

lungfish.

We could correct it in three ways:

1 Exclude that default state (that fish must live in water) from the class of all fish, since it

is not always true (even though there are overwhelming odds in its favor). This might be

theoretically correct in terms of encapsulating common behavior in components to make

them reusable, but practically it will impose a heavy burden on users. They will have

to enter the fact that the fish needs/does not need to live in water to stay alive for every

instance of fish.

2 Since the odds overwhelmingly favor purely aquatic fish, include this as a default state

for all fish, but override the default (manually or automatically) for a subtype of fish that

can live outside water, when and if they occur. This is a workable solution, even though it

is not theoretically correct from a purist’s perspective. This technique is variation inher-

itance.60 In variation inheritance, new subtypes are defined in terms of differences from

supertypes. Variation inheritance can make it harder to configure knowledge by assem-

bling atomic rules (i.e. assembling rules with set union operations) – we would have to

59 The endnote on lungfish has more information on these strange amphibious fish.
60 Variation inheritance is described in more detail in the endnote on kinds of inheritance.
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consider set differences, i.e. conditionally removing some structures, from subassemblies

of knowledge. This can become complex.

3 Exclude the default state from the class of all fish and create two subclasses of fish:

those that must live in water and those that can survive on land. This is the theoretically

correct approach that will not burden users. However, this possibility may not have been

foreseen when the model was first built and systems built with traditional technology are

hard to change after code is written: risk is high, there may be several unforeseen side

effects that ricochet through the system, hence changes must be thoroughly tested and

proven for every contingency before it is deployed. Foreseeing every contingency is not

humanly possible in our imperfect world.

Let us understand how we would make the change in a system built with knowledge artifacts

that normalize knowledge. The third approach is not only theoretically correct and user

friendly, but will also be the simpler approach when we configure systems from components

of knowledge.
� We would create two partitions:

1 A partition based on species. In this partition, we would create a subclass called fish

that would contain behavior common to all fish, such as: all fish swim with fins and

all of them use gills to breathe in water. Each species of fish would be a subtype

of the subclass of fish, and we would attach behavior of the species to the species

subtype.

2 A new partition based on whether animals need water to survive or not. This would be

created by partitioning the set of animals (instead of only fish), thereby allowing reuse

of the subtypes for other kinds of animals as well. In this partition we would create

new subtypes:

(i) Animals that do not need water to survive.

(ii) Animals that do need water to survive. We would detach the assertion that the

animal must live in water from the class of all fish and attach it to the class of

purely aquatic animals as a property of the subclass instead of a default state. In

the case of purely aquatic animals, it will not be a default state, rather it will be the

defining criterion for the subtype, i.e. the role of the atomic rule will shift from

default value to defining criterion.
� Then we would attach each species of lungfish to the class of animals that do not need

water to survive. Each species of lungfish would then automatically inherit the behavior

common to the subtype of animals that do not need water to survive. For example, the

ability to extract oxygen from air, and if bugs are out of scope, the fact that they will use

lungs to breathe air.

Each species of lungfish would also automatically inherit all behavior common to all

fish from the subclass of fish in the other partition. Each species of lungfish would thus

inherit both kinds of behavior from each subtype it is linked to in different partitions:

using lungs to breathe air etc. from the class of animals that do not need to breathe

water to survive;

using fins to swim and gills to breathe water etc. from the class of fish.

We had earlier attached the special behavior of each species to species of fish. Inherited

behavior will be added to this species behavior.
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Each instance of lungfish would reflect the general behavior of fish, the general behavior

of animals that do not need water to survive, and the specific behavior of the particular

species of lungfish.
� Similarly each instance of aquatic fish would automatically inherit the common properties

of all fish from the class of fish, the assertion that they cannot survive without water from

the subclass of aquatic animals, and species-specific behavior from the species of fish.

In this third approach to changing the scope after building the system, reconfiguring old

components, not rewriting program code, created new knowledge. Knowledge components

were re-organized into new configurations to keep knowledge normalized as new knowledge

was added. Knowledge was not only normalized but also stayed normalized. Done right, it

can also be faster, cheaper, and more responsive to changing needs of business – today and

tomorrow. This technique is called refactoring.61

In the example above, the default state was detached (removed) from the superclass, and

a partition was attached (added) instead. In some situations, partitions may be based on

the likelihood of different initial states occurring in different subtypes. For example, the

likelihood that cars exiting a gas station have full tanks is high, whereas cars entering the

station are likely to be low on fuel. Thus, exiting cars may have a default status “gas tank

full,” whereas entering cars could default to “low on gas.” However, it is possible that a car

that was low on gas exited the gas station without taking gas for some reason, and a car with

a full tank stopped at the station to take air, oil, or for some other purpose. The default may

have to be overridden for some instances of each kind of car. In this case, two subtypes of

the class car, namely exiting car and entering car will have different default values. The

default in this case must be attached to each subtype, and not the parent class in order to

normalize knowledge.

These are examples of how default states may be different for instances of objects in the

same object class (cars or fish) and how subtyping can facilitate normalizing knowledge

when this happens. Object classes may be partitioned by default state (i.e. likely initial

state) in order to normalize real-world knowledge because the chance of finding objects in

different initial (i.e. default) states in the real world is high.

Subtyping criteria – dividing to conquer

Subtypes specialize the behavior of their parent objects by adding to them, or constraining

them in special ways.62 They add components and constraints to the state space of the

parent object, changing its shape and dimensions. The parent is the repository of common

behavior, and the subtype of special behavior. Effects of events change individual object

instances, moving them in or out of these sets and classes. Box 23 shows different kinds of

information that subtypes may contain to distinguish special behavior of a subset of objects

from behavior common to the entire (parent) class.

Subtypes may be based on the existence (or not) of relationships as well as attributes.

This is no different from any other state indicator, and both are mutually equivalent and

mathematically indistinguishable in the metamodel of real-world knowledge.

61 See the endnote on refactoring.
62 Items in the bibliography, under theory of categories, discuss mathematics of subtyping.
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Box 23 Subtyping criteria

SUBTYPING

CRITERIA

Attributes EffectsRelationships Constraints

Constraints

on attribute

values

Constraints

on

relationships

Guard

conditions

Constraints

on initial  

conditions

Initial

conditions

(default state)

Constraints

on history

Effects of events on subtypes

Object instances may respond to events by changing their state. A change of state might

make the instance a member of a subclass, or remove it from a subclass. For example,

an entering car could become an exiting car in the example above, or an unemployed

person who is hired becomes an employee. Employee is a subset of person (see the

discussion under inheriting behavior). Similarly, an employee who is fired skips out of

the employee subset. Thus, individual objects skip in and out of subclasses in response

to events, i.e. their roles change (see the discussion on subtypes and roles in box 11).

In addition to changing roles, effects of events on subtypes may also be subtypes of

corresponding effects on the parent object. Just as relationships and features of subtypes

may be inclusion polymorphisms of corresponding features of the parent objects (see

box 21), so too might effects on subtypes be polymorphisms of corresponding effects

on the parent. For instance, a generic move effect, for a vehicle, may become a more

specific movement like fly, if the vehicle is an aircraft, or sail if the vehicle is a ship

because aircraft and ship are both subtypes of vehicle.

Subtypes may also be based on values of attributes or specific relationships with specific

object instances – the two are equivalent and indistinguishable in the metamodel of knowl-

edge. For example, an investor may not want stocks of a specific company in his or her

investment portfolio for personal reasons. The investment portfolio is an object instance.

So is the stock. The rule implies that no relationship can exist between the two objects, i.e.

the relationship must be null. Partitioning an object class on criteria of this kind, based on

relationships between specific object instances, is no different from partitioning the object

class based on specific values of specific attributes. It all boils down to limiting its lawful

state space.63

Subtypes inherit the common behavior of their parent objects and add special behavior of

their own, namely specific states, effects, constraints, and other properties not shared with

their supertype(s) (see box 23; also described in box 10). Only some of these properties

(features in XML terms) are attributes or relationships. Others are effects and constraints.

Subtypes can thus result from partitions based on pure behavior.

63 Lawful state space: see the endnote on the Bunge–Wand–Weber model.
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For example, in figure 21, we might have partitioned glass panes into two mutually

exclusive subtypes based on behavior – breakable and not. Had we done this, the guard

condition would not be needed.64 The effect of the hammer strike would not be generic to

glass pane (the supertype); instead it would be a property of only breakable glass. Thus

the effect of the hammer strike would not be inherited by, and would not exist at all, for

unbreakable glass. If we had to assert, like in figure 21, that all blue glass is unbreakable, we

would do so by a relationship like that on the left side of figure 27. The relationship would be

between blue glass in a color-based partition and unbreakable glass a breakability partition.

This is why guard condition is not among the metaobjects in figure 32. Guard conditions

are covered by the other metaobjects in the figure. It is redundant, and including a guard

condition in the metamodel of knowledge would replicate, not normalize, behavior.65

Contrast subtyping with process decomposition and the node branch methods of

Chapter 1. Process decomposition started by creating hierarchies of poorly defined concepts

that actually encouraged replication of atomic rules, which it blithely ignored. Subtyping

starts by seeking concrete common behavior and separating differences in behavior based

on well-defined irreducible facts. Thus, subtyping is the key to reusable components of

knowledge.

The node–branch method lost its way in the complexity and scale of industrial strength

business systems. It needed too much detail before it could represent behavior of business

systems accurately. It had no means of extracting and normalizing common knowledge

before plunging into detail. It could not recognize and normalize common irreducible

facts. Subtyping makes no assumptions about obtaining all detail up front. The focus of

subtyping is on modeling shared behavior first. Detail and differences may be added in

steps, and components of knowledge reconfigured to keep business knowledge normalized

(as described in the example on lung fish in the discussion on default states and variation

inheritance). This prevents the chaotic and uncontrolled impact of change on business

processes and systems. Otherwise consequences of change will ricochet and ripple through

unintentionally replicated and unmanaged knowledge hidden in business processes and the

systems that support them. Thus not only can systems assembled from objects and subtypes

be more responsive to business needs, but the process of testing and quality assurance can

be simpler too!

4 The problem of perspective

Truth fails not; but her outward forms that bear

The longest date melt like frosty rime

(William Wordsworth in Mutability)

Can real-world objects really anchor reusable components of business knowledge even as

scopes and rules shift? Are subtyping and inheritance the crack team that will truly defeat

64 The guard condition is a kind of variation inheritance – that the effect exists for all glass panes except the

unbreakable kind.
65 See construct overload and redundancy in the endnote on the Bunge–Wand–Weber model.



95 The object at the root of it all

Wave

Hills

Curve

Border

?

Figure 28 Perspective is a point of view

the dark forces of chaos? Our world is complex, driven by learning, change and opportunity,

threats and competition. To defeat chaos we must normalize knowledge in the right objects

and subtypes. Otherwise objects will not inherit the behavior they must, and might inherit

behavior they should not. We will call this inheritance by mistake; see the example in box 25.

How can we identify the right objects in a shifting world? This is the problem of perspective.

As many practitioners know from bitter experience, objects alone cannot normalize and

encapsulate reusable knowledge, nor can subtyping and inheritance by themselves defeat the

forces of complexity and chaos because both come up against the problem of perspective.

The world is a chimera, and so is our perception of it.66

What is perspective?

We understand the world around us by experiencing its behavior. We seek its meaning

by forming concepts of what behavior is shared by what objects, and what is special to

each. These concepts are based on our individual experiences and perceptions. Not only

are our experiences and perceptions different, but also two people will never think exactly

alike. Therefore our concepts, i.e. generalizations of what is shared and what is special, are

naturally different. For example, a physicist might say that a ball thrown by a child and a shell

fired from a field gun are similar because both follow trajectories with similar shapes, under

the influence of the same forces – gravitation and air resistance. On the other hand, a general

might say that the shell and field gun are similar, but not the ball, because both the gun and

shell are complementary weapons of war that must be issued from the inventory, whereas

the ball is a child’s toy. Figure 28 is another example of the problem of perspective, in which

the same object, a wavy line in this case, may have multiple interpretations depending on

similarities in shape, use, and association.

66 See the endnote on multiperspective and facet modeling.
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What do differences in perspective mean to objects that try to anchor knowledge? Per-

spective is a point of view. Our concepts of shared behavior are generalizations. They

are object classes, sometimes abstract, like person–organization in section 3. These object

classes and subtypes anchor the shared behavior of objects we perceive. Since each one of

us generalizes and specializes our perceptions differently, many of our concepts may not

match those of others (figure 28). Objects and relationships are sets of properties based on

classification of common behavior of things we experience (box 15); hence we may not

agree on object classes and relationships themselves – a fundamental problem on which

many software projects have foundered.67

Box 24 Perspective is an object

Do you see two people in a private conversation or a chalice in the figure above?

What you see depends on how you classify the white and black spaces in it – which

color is empty and which is solid? Perspective is a point of view. It is also a model.

It is the entire structure of interconnected objects that anchor knowledge – classes,

aggregations, relationships, constraints, state spaces, domains, effects, and all the other

metaobjects we have described, glued to each other in a structure we call knowledge, or,

more modestly, our perspective of knowledge. It is also an object in its own right – an

aggregate object with a structure. Each individual’s perspective is an instance of a model.

If the model changes in response to new information or an insight, it has changed its

state.

67 Some analysts have proposed that we do not try to classify objects intuitively. Instead, they suggest that we

mathematically analyze similarities between objects in terms of their properties to group them into object

classes and subtypes [283]. While this approach may be useful, it will not guarantee stable object classes. If the

scope of the process changes so that some properties under consideration change, so might the classification

scheme. Inclusion or exclusion of behavior may change affinities between object instances, which in turn can

change the taxonomy of objects and relationships. This is because we did not address the root problem –

we only mechanized it. Facet modeling, described in the endnote on multiperspective modeling, is another

approach in which aspects of an object might be reused. For more information, see [15], [53], [13], [21],

and [23].
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Often the changes are minor – a new attribute, a new relationship, an additional

effect or a new subtype in an old or new partition. However, sometimes the change can

be fundamental. The classification scheme – the objects and relationships themselves,

change.

Consider why the same underlying reality can appear very different from different

perspectives. Object instances are things or concepts that have properties. Some prop-

erties are shared with one set of things, and other properties with other sets of things. It

follows that the same thing might belong to different object classes when perceived from

different perspectives. Changing perspectives can change entire classification schemes,

which can have a very profound effect on the model.

Consider what happens when classification schemes change. Object classes are clas-

sification schemes based on similar properties of object instances – all properties of

instances in a class do not always match. Matching properties are shared, and the

others are not. We manage shared properties with the concept of superclass and unshared

properties with the concept of subclass. A subclass is meaningless without a superclass;

if a superclass disappears, so must all its subclasses. If entire objects vanish, they take

with them all their relationships, constraints, and subclasses; and their relationships and

constraints as well.

When classification schemes (i.e. taxonomies) change, they can have a domino effect

on the entire model, sweeping away entire subclasses and myriads of relationships,

constraints, partitions, and all other structures that relate objects and subclasses into a

consistent and cogent configuration of knowledge; new structures might have to take their

place. New and old structures are objects too. The appearance of the new and dissolution

of the old may impact other structures, which in turn have other impacts. Change can

ripple through the entire structure of knowledge till it settles into a new configuration

(and the possessor of the change perspective thinks “Aha – now I understand!”) – it

is called a paradigm shift – a different model of the world, or a perspective that has

changed its state quite radically.

This is why we need the universal perspective with its universal object classes and

relationships to pin down widely shared ideas about business and reality. The secret of

these universal objects68 that anchor knowledge firmly from every possible perspective

is not hidden in some arcane and abstract detail; rather it is explicit in the sweeping

generalizations that can withstand the incessant pounding of continual change and the

immense diversity of creative thought and innovation. The universal perspective consists

of objects and structures that masquerade as apparently different objects in different per-

spectives, but are actually different states, roles, and compositions of universal objects.

By gaining an understanding of universal objects and the universal perspective, one can

acquire a better feel for the essence of universal reality and the unity of all perspectives.

All perspectives are states of the universal perspective. Paradoxically, the universal per-

spective is changeless because it underpins change. It is this universal perspective we

seek in order to solve the problem of perspective.

68 Remember, relationships are objects too.
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Indeed, as scopes shift, and new behavior is recognized and old constraints are retired,

the same individual may change the way he or she classifies common behavior. Did that

just happen to you in box 24? Object classes themselves become chimerical, and the object

model a chimera; this is yet another cause for chaos instead of a firm anchor of reusable

knowledge. Almost all data and object modelers have experienced this problem.

We have replaced the domino effect of change ricocheting and rippling through uninten-

tionally replicated and unmanaged knowledge in the system with two other problems (see

the example in box 25):

1 Inheritance by mistake – wrong behavior was inherited because our object taxonomy was

incorrect, or became incorrect when scopes and perspectives changed.

2 Inheritance deficiency – behavior that should have been inherited by an object was not,

because the object taxonomy was defective, or became deficient in a new scope and a

different perspective.

The example in box 25 is too simple to be real. It involves only two analysts, you and Jim;

three objects, bill, payment, and document; and one subtype, bill, with two parents, pay-

ment and document – but even in this simple example there is ample room for both kinds of

mistakes: inheritance deficiency and inheritance by mistake. In the real world, many object

instances may share some common behavior, but not all behavior. Worse, any given object

instance might share different kinds of behavior with instances of different kinds of objects.

Teams of analysts may be large and each analyst will have his or her own unique perspec-

tive. How much greater would be the risk in the real world: larger teams, more perspec-

tives, more objects, and more multiple inheritances from larger numbers of supertypes!

These problems stem from the problem of categorizing behavior coherently, the legacy

we discussed in Chapter 1, section 6. It is a problem left unresolved for 40 years from the

time of the first formal business models. We are still stuck with it.

Does a universal perspective exist?

What is the solution? To group behavior cogently, we must have cogent objects; to get cogent

objects, we must solve the problem of perspective; to solve the problem of perspective, we

must seek common ground, and we can seek common ground because we know individuals

perceive the world partly from their own unique point of view and partly from widely shared

ideas generic to the world of business, or imposed by the physical world. Without these

shared ideas, each one of us would be forever condemned to our own private universe. We

would not understand each other, nor would we be able to work as a team. We know our

perspectives can converge quite rapidly when we model simple situations because of these

shared ideas. It is much harder when our models are broad in scope and complex in detail.

To handle the industrial strength models of today that span complex corporations and even

cross-corporate boundaries, we need a more robust anchor. We need a standard universal

perspective – one that subsumes all individual perspectives.

Without stability or change, Eternal, it has no origin and no end. (Adapted from The Gospel of the

Buddha by Paul Carus)

Does the universal perspective exist? Is it possible to define universal classes or must we

be forever chained to the chimera of perspective? Widely shared ideas about business and

reality underpin our perceptions, and, because of these widely shared ideas, it is possible

to define universal classes of objects that encapsulate shared knowledge.
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Box 25 An example of the problem of perspective

Consider a bill in an accounts receivable system. You might be justified in considering

it to be a request for payment, and hence a state of an object called payment. You have

just generalized two key business concepts: bill and payment. The bill is now a subtype

of payment and inherits various properties of payment, such as currency of payment,

the payee and payer, due date, goods and services being paid for. You are quite satisfied

that you have normalized and reused the behavior of payment and are certain that other

applications will be able to reuse this intelligence. You store it as an artifact in an

electronic repository of business components.

In the meantime, your employer has expanded the global operations and has key cus-

tomers in non-English speaking countries. Speedy international cash flows are critical

to growth. Raising electronic bills in the language of the customer is the key to strength-

ening the relationship with international customers and getting paid on time. The plan

is to send bills to customers, in the language of their choice, by email. An electronic

copy of emailed bills will be retained in your employer’s database.

The billing system must be enhanced so that each customer’s bills can be formatted

in the language of choice. Your repository of knowledge artifacts has an object called

document with special translation behavior attached to it. Jim, a billing analyst, finds

your knowledge artifact, called bill in the repository classified as a kind of payment. He

is puzzled. “A bill,” he thinks to himself, “is not a payment – it is a document we send

to customers! I know documents already have an automatic translation facility attached

to them; if I make bill a subtype of document instead of a kind of payment, my transla-

tion problem will be solved.” He proceeds to do just that. To his dismay, bills can now

be translated into the customers’ languages, but have lost all payment information –

amounts, currency, due dates – because bill is not a subtype of payment any

more.

Jim brings the problem to you. You realize at once that it is an inheritance deficiency

caused by a deficient taxonomy of objects. You look Jim in the eye and sagaciously

suggest, “Why not make bill a subtype of both document and payment? That way we

will inherit all the behavior we need.” Jim is impressed, thanks you, and does just that.

He is quite happy until Joan, the billing manager, approaches him. Joan tells Jim that

her staff have a problem trying to understand foreign language bills. She wants two

copies in the firm’s database – one in English and the other in the customer’s language.

The document object is a supertype of bill and has copying behavior attached to it. Jim

thinks Joan’s request is as good as done. The bill would have automatically inherited

this copying behavior from document.

All hell breaks lose when copies of a bill are made in English. From the perspective of

bill being a request for payment, duplicate requests for payments are being logged against

customers in the firm’s accounts receivable system. Customers are understandably upset,

and the firm’s global position has become vulnerable to competition. This is an example

of inheritance by mistake, and just one instance of how the problem of incompatible

perspectives can cause chaos.69

69 See patterns of buying and selling in the universal perspective for the answer.
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These universal object classes anchor knowledge firmly and coherently from every pos-

sible business perspective. They constitute a pattern – a standard perspective that other per-

spectives can add to, but one they will not have to change to satisfy their requirements. This

pattern, summarized in the universal perspective on our website, is a component on its own. It

is described in detail in a companion book by the same authors, Agile Systems with Reusable

Patterns of Business Knowledge – a component-based approach [337]. Like the chassis of

a car, it is a component that can connect standard and custom parts to make the whole work.

In this new architecture, the standard parts are the universal object classes in it. These

objects normalize shared ideas. Custom components will inherit this shared wisdom, and will

add the special behavior and creative ideas that innovative businesses formulate to prosper

and excel, even as the universal pattern of shared ideas in our “chassis” automatically and

naturally integrates special behavior with other processes within, and even beyond, the firm.

This “chassis” of shared perspective can provide a firm anchor for virtually every possible

perspective. The standard perspective springs from the metamodel. The metamodel will pro-

vide definitions of objects, properties, states, inheritance, subtypes, partitions, and the other

paraphernalia of inheritance along with properties of other metaobjects we will describe

later in this book. We will need them to group common behavior and to keep knowledge

normalized. Thus, to solve the problem of perspective, we will need to understand both the

universal perspective and the metamodel of knowledge that is its fountainhead.

The metamodel and the universal perspective together can potentially defeat the forces of

chaos, but there is another practical, and equally important problem that we must overcome

to make them one team. It is the tyranny of words.

The tyranny of words

As shadows wait upon the sun

Vain the ambition of kings . . .

To leave a living name behind

And weave but nets to catch the wind

(John Webster in Vanitas Vanitatum)

What is in a name? Everything! Names are labels for our concepts, and our means of

communicating them to others. Every data administrator knows the tyranny of words, and

those that work for large corporations know how intractable it is. Different groups and

organizations often need very similar concepts, but call them by different names, or, worse,

different groups have the same name for very different concepts. It is a recipe for confusion

when organizations merge, or integrate business processes and systems. It is also a culture –

attempts to standardize names for concepts across organizational borders usually generate

more heat than light – a seemingly trivial problem of syntax can take up disproportionate

amounts of organizational time and resources.70

70 Recently there has been an interest in standardizing vocabularies across value chains (for information on value

chains, see “supply and demand chains” in Module V, section 3). VCML, an acronym for the value chain

markup language from Vitria Technology, Inc, is one such initiative. VCML defines a value chain as “a net-

work of all of the business partners and transactions in a supply and demand chain from raw materials and

subassemblies to the consumer. A value chain spans vertical and horizontal relationships within and across
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Box 26 Synonyms and homonyms

Different names for the same concept are called synonyms, and a single name for

different concepts is a homonym.71

NAME
(synonym

&
homonym)

NAME
(synonym)

NAME
(synonym)

NAME
(synonym)

NAME
(synonym)

NAME
(synonym)

NAME
(synonym)

OBJECT 4
(meaning)

NAME
(homonym)

NAME
(homonym)

OBJECT 1
(meaning)

OBJECT 2
(meaning)

OBJECT 3
(meaning)

Backbone is a network of broadband connections between switches for the telecom

industry, and the spinal bone in our backs for the rest of us. It is a homonym. Similarly,

SDLC is an abbreviation for systems development life cycle for the information systems

professional, and synchronous data link control, a kind of data transmission protocol,

for a network professional. Thus SDLC too is a homonym.

A word can be a synonym and a homonym at the same time. For instance, most

of us know that an account for a sales person is a synonym for customer, but to an

accountant it means a category of expense or revenue. Thus account is both a synonym

and a homonym.

Synonyms are common even within the same industry, and even in the same firm. For

example, in a major telecommunications company, the operations departments identified

industries. It addresses relationships with all parties participating in designing, manufacturing, financing, mar-

keting, delivering, and supporting a product or service.” VCML standardizes vocabularies to facilitate B2B

collaboration. VCML models have been published for aerospace, automotive, banking and finance, educa-

tion, energy, government, healthcare, insurance, petrochemical, retail, telecommunications, and transportation

industries. See [65].
71 Synonyms and homonyms are states of names. When a single name has a naming relationship with more than

one concept, it is a homonym. When a single concept has a naming relationship with more than one name, each

name is a homonym. See figure 29.
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central offices72 for telephone switching facilities with a CLLI code (pronounced “silly”

code), whereas commercial departments called the identifier Sensor Id. Senior managers

and professionals, including many who had been with the firm for several decades, had

no idea that the other half of the firm used a different word for the same concept – a

concept that was central to their business.

The tyranny of words emerges from the metamodel of knowledge – that the concept is

different from its label and the same object may have many names, i.e. name itself is a class

of objects that consists of individual instances of name. Different (instances of) names may

be preferred in different contexts. The context is the perspective.73 These concepts provide

the anchor for the rules in figure 29; read it as you did figure 8.

In many situations it might be best not to standardize names. The problem can be quite

intractable when deeply entrenched, long-standing interest groups clash over choices of

names – and there are so many concepts to name in any real business! Consider too that

battling over names may not only be an exercise in futility – it can bring the entire exercise

into question – but also that unfamiliar names might actually sow confusion and become a

barrier to creativity. Remember our intent is to make change easier – not harder!

Instead of standardizing names, the group that administers the universal perspective might

have its own label or name for each concept (object) that can be the hub around which all

its synonyms revolve. See figure 30; it shows three perspectives of two objects with several

names each. The primary names (and objects) at the core are shared, but hidden from all

three perspectives. Perspective 1 has one name for object 2, a name that means the same

thing to perspective 2 as well, and six synonyms for object one, one of which is a name

for object 2 in perspective 2. Thus it is a homonym. Perspective 2 has six synonyms for

object 2, one of which is a name perspective 1 uses for object 1. Perspective 3 has a name

for object 1 that it shares with perspective 1, and another for object 2 that it shares with

perspective 2.

The primary name, or concept id, can pin down the concept and anchor all its other names

and synonyms. In this way, not only can default names be different in different perspectives

and still map to the same concept, but also users can, at any moment, see and understand how

other groups have named their concepts in the repository of knowledge. These synonyms

and other names of an object will be aliases for the object. For clarity, the concept id should

be crisp, and never a homonym. The concept is the key to meaning and it is meaning we

must focus on.

If this structure of knowledge is stored in an electronic repository, each stake holder need

only be aware of names in his or her own perspective; there may be synonyms in a single

perspective too! The homonym between the two objects has a different meaning in each

context (perspective), but those who hold one perspective can be aware that it is a homonym,

and will be free (to use the repository) to look up its meaning to others.

72 A central office (CO) in the telecommunications industry is a switching center in which telephone trunks and

loops are terminated and switched. Some synonyms for central office in the telecommunications industry are

telephone exchange, switching center, switching exchange, and even switch.
73 In facet modeling, all properties of an object, not just its name, are said to belong to an aspect of the object.

Instead of linking a property of an object directly to the object, the aspect is linked to the object. For more

information, see the endnote on facet modeling or [13], [15], [21], [23], and [53].
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Figure 29 Name is an object class linked to perspective
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Figure 30 Primary names, perspectives and aliases

5 Repositories of meaning

Each object we have discussed so far has been the repository of a meaning. Metaobjects

are objects too (indeed, they are our model of object and its properties). Each metaobject

inherits the universally shared properties of objects. For example, the metaobject called

“state” (figure 32) has subtypes called “substates.” We saw how this happened in figure 21.

Remember the common properties each metaobject inherits when we discuss it in this book.

All properties and operations we have discussed for objects will apply to each. We will not

repeat shared properties each time we describe an object in the metamodel of knowledge



104 Creating Agile Business Systems

(like the multitudes in figure 32). Thus knowledge will be normalized. Different entities

will wrap themselves around meanings of different kinds as they normalize knowledge,

adding nuances to shared meanings.

The metamodel of object

Real-world objects are known by their behavior. Behavior carries within it the seeds of

information. It is this information we perceive, integrate, and classify when we crystallize

our intuitive understanding of the world around us, and the objects in it. This information

may be our experience of tangible objects, or our understanding of intangible concepts; it

does not matter which – both are objects. Objects are patterns of information. Each pattern

is an instance of an object. These patterns are classified based on common behavior. Thus,

object classes normalize behavior instantiated by object instances. Objects are patterns, and

the metamodel of pattern is the metamodel of object.

Objects are at the root of knowledge; they are its basic building blocks. The real world is

complex, and so are the patterns that help us perceive and understand it. Therefore objects

can be complex. The infinitely diverse behavior of objects reflects the richness, diversity,

and complexity of the real world, as well as those of patterns – the internal structures hidden

within objects – patterns of meaning that make them what they are.

These patterns are irreducible facts that engage each other, like the gears of a machine, to

produce new and related irreducible facts; facts that can be causes and effects, and facts that

form patterns of knowledge. These patterns constitute the internal structures of objects mani-

fested as meanings and behaviors of different kinds, conveyed by a huge diversity of chimeri-

cal objects – meanings that melt, merge, twist, and change in uncountable ways in uncounted

dimensions. The metamodel of pattern is complex and so is the metamodel of object.

Chapter 4 has the metamodel of pattern. However, there are allied concepts we must cover

before we can understand it. Figure 32 shows the hierarchy of object types we have dis-

cussed so far. In this chapter we will add many more. Each will be a stepping stone towards

reusable components of knowledge – the knowledge that will help us build reusable knowl-

edge artifacts. However, the journey must start with object – the basic concept. Figure 31

is the basic metamodel of object, and the hierarchy of figure 32 inventories its basic subtypes

that inherit these properties.

Figure 31 articulates some of the most fundamental rules about objects. We have discussed

these in Chapter 1 and earlier in this chapter. Read figure 31 as you did figure 8. Relationships

read backwards include rules too. They are the inverse of rules read forward along the arrows,

and are enclosed in square brackets [like this], near names of relationships. The inverse of

a relationship is a relationship (a rule) that maps the object at the arrowhead back to the

object at the tail of the arrow.

The backbone of figure 31 is the relationship between object class and object instance.

Object classes are object instances too (section 1). Figure 31 articulates this.

Figure 31 divides patterns of objects into two classes. One is a set, and the other a

list.74 Sets are aggregate objects that do not count multiples of the same object among their

74 Pattern is a broader concept that subsumes set and list. See the endnote on the theory of categories, [171],

[172], [173], [183], [184], [185], and [186].
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Figure 31 Fundamental metamodel of object

members. Lists, on the other hand, do. As such, a list with two of the same object instances

among its members will be considered different from a list that is identical in every other way,

but counts only one instance of the object among its members. A list adds information on

distinguishing numbers of identical members of a set. It is therefore a subtype. Box 30 and the

subsection on patterns in Chapter 4 will expand on differences between sets and lists. Box 65

on our website tells us why relationships are special kinds of lists that normalize interactions

between listed objects. An example of how lists of domains are naturally manifested in the

metamodel of knowledge may be found under “attaching value constraints to format”, in

box 38.

Furthermore, patterns may be partitioned on whether they are sequenced or not. In unse-

quenced patterns, only membership counts, whereas, in sequenced patterns, it is not just

the fact of membership that distinguishes one pattern from another, but also the sequence

of members (see Chapter 4, section 1 on patterns, and Module V, sections 1 and 2 on our

website).

Object classes are obviously aggregate objects that are unsequenced sets75 of object ins-

tances. However, they are special sets. They are sets based on common attributes. The objects

that are members of the set have been granted membership based on shared attributes and

effects. As we have seen, this makes the object class a very special kind of aggregate object.

We have discussed how events trigger state changes through their effects on objects. An

event may have different effects on different objects, and, indeed, different events will affect

75 Objects are mathematical classes. The mathematical concept of class is broader than set; sets are a kind of

class. The distinction is subtle. We have not made this distinction in order to simplify the discussion.
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objects differently. The relationships between events, effects, and states of objects describe

these rules.

The state of an object instance is an unsequenced set of attribute values. We have discussed

this in section 2. The attribute carries the meaning of the value in the context of the object

class (we will discuss this in depth in Chapter 3). The value, by itself has a meaning based

on its domain. We have touched on this in Chapter 1, and will expand on it in Chapters 4

and 5. Thus, attribute value is an aggregate object. It is the conjunction of attribute and

value. The state of an object instance is a set of attribute values. Figure 31 articulates these

concepts as well.

An object is a pattern of information – information in a pattern of objects. A collection is a

kind of pattern. An aggregate object is a collection of objects. This pattern of object instances,

the aggregate object, may repeat the same object instance more than once, but an object

class may not. However, this pattern has an identity of its own that identifies it as a unique

collection of object instances. No other instance of aggregate object may contain exactly the

same object instances, and convey exactly the same information on their sequence (if indeed

sequence matters) and still retain its distinct identity. If two patterns are identical in every

way, they are considered to be the same pattern – the same object instance. The aggregation

is also an object instance. The very assertion that an aggregation (and an aggregate object)

may consist of duplicates of an instance of the same object is based on this fact. On the other

hand, since the aggregate object is a collection, it could also be the empty set we discussed

in box 19. This is why figure 31 tells us that the aggregate object may be a pattern with no

object instances in it, and it may also be a pattern with multiple instances of the same object.

A pattern is an instance of an object. An object instance is a pattern and so is an aggregate

object. The subtyping relationship between the pattern and the object instance implies and

includes the subtyping relationship between the object instance and the aggregate object in

figure 31. They are not independent irreducible facts, and treating them as such will only

denormalize the information. The subtyping relationship has only been duplicated in the

interests of clarity, and this is why one is drawn as a broken line. It is actually implied by

the other, and is redundant.

A relationship is a special kind of aggregate object. It conveys the meaning of an asso-

ciation between objects – perhaps even the meaning of an interaction an object instance

has with itself. For example, a person may represent himself (or herself) in a court of law

and thus interact with himself (or herself). Thus, a relationship may list an object multiple

times. This is why it is a kind of list, not set. At a minimum, a relationship must relate at

least one object, and it could relate more. This is why a relationship cannot be the empty

set, and figure 31 tells us that it is not.

The subtyping relationship is a special kind of relationship – a relationship in which two

object classes share the instance identifier (section 3).

The basis of all systems, indeed of all symbolic thought and human language is the

represent relationship between objects. It is also a special relationship, where one object is

a token for another. This relationship will be discussed in box 36, and its many manifestations

will be discussed in Chapter 4.

An object class is set apart from other aggregate objects by the fact that it is a collection

of those attributes, the values of which define the state of object instances it classifies.
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Figure 31 shows these rules. Naturally, instances of relationships and aggregate objects will

also belong to a class.

Object class is a token that tells us that instances have been classified, based on their

common properties. The state space of the object fills out the detail. It tells us what these

properties are, and how they are scaled. The existence of a state space is implied by the

existence of the object class. State space is the collection of attributes that defines the

class. Figure 31 shows this. We could have shown this relationship equally effectively with

a relationship between object class and state space. However, the relationship would be

redundant, given the relationship between object class and attribute.

Indeed, all objects, be they classes or instances, exist only in a perspective. The perspective

is a model. It determines how items are grouped and related. For instance, each item in figure

31 is an object. The entire pattern in figure 31 is also an object and a perspective (see section

4).

The remainder of this book examines the internal structure of each subtype of the universal

metaobject in figure 32. It is these patterns that forge the differences. Figure 31 articulates

rules common to all objects. The objects in figure 32 and the others in this book are all

merely different states of the metaobject.

The hierarchy in figure 32 does not necessarily show mutually exclusive states. Some

like static and dynamic relationships are mutually exclusive, whereas others like synonym

and homonym can coexist at the same time.76 How much our basic inventory in figure 9 has

expanded! The metamodel of knowledge is configured from these metaobjects, a structure

that emerges from their natural relationships, states, and properties (see Module VII).

Windows into objects

How can we look inside this structure, at contents, instances, individual states, and

relationships? For this, we need a view – a window into the object. This window is an

interface. It does not belong to the business rule layer of the architecture of knowledge

(figure 15). It is a mechanism for accessing and presenting information to an actor, and

hence the mechanism belongs to the business process automation layers. The window into

an object is an aggregate object with a structure that consists of components across two

layers – a connection in the information logistics layer to the object being viewed, and

presentation mechanisms in the interface rules layer.

The presentation mechanism will consist of a rule about the access sequence and another

about its presentation format. The presentation layer will also have screens or other mech-

anisms for the physical display of the contents of the object (for example, instead of being

displayed on a screen or printed report, the information may be presented in spoken words).

We will call this the display method. Display methods may be screens or other methods

that can present data to actors. In figure 33, it is labeled “Display.” Every view must have

at least one display method. Without it information cannot be sensed, and hence the view

cannot exist.

76 Guard conditions are subtyping criteria that signal the absence of an effect. Subtype and guard condition are

therefore redundant in the metamodel. This is why guard condition is not shown separately.
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Sequencing rules are not necessarily rules about time sequences.77 They could be rules

about sort sequences that depend on values of the instance identifier and values of attributes

of object(s) involved.78 Sort sequences are mapping rules that map the item to a position,

or rank in one dimension. In general, the mapping rules could map the contents of objects

to two- or three-dimensional displays or multidimensional arrays. Display formats may be

simple, like reports and lists, or sophisticated like diagrams, maps, and charts. However,

the focus of this book is on the uppermost business, not process automation layer of figure

15, and we will not dwell on this discussion of format any more.

Inclusion and exclusion rules may also be optionally attached to these views, either

in the form of selection criteria or as access permissions. Selection criteria and access

permissions may be either for entire object classes or sets of attributes. Sets may contain only

one attribute, in which case it becomes an attribute level permission/access criterion. These

77 UML recognizes sequences in views. It applies “{ordered}” to the label of a relationship to show sequenced

access to an object (UML: see box 22).
78 Sort sequences could be a form of coercive polymorphism. See coercive polymorphism in the endnote on the

theory of categories.



110 Creating Agile Business Systems

components are identical to the inclusion and exclusion sets that will be discussed in Chapter

3, section 2.79 The only difference is its role and usage. Here it is an intermediary between

the data mapping mechanism in the interface rules layer and the data flow mechanism in

the information logistics layer, rather than a constraint on permitted values of attributes

(as in Chapter 3). Thus, as for many other structures, constraints are polymorphic, i.e.

they can masquerade as different objects when they are combined, or attached to different

structures. We will expand on polymorphism in Chapter 3, section 2 and Chapter 4. For

now, it will suffice to understand that the same object can play different roles as components

in different structures, and the role could disguise its substance; we must look beyond a role

within a structure or perspective, and understand the substance of the object – the pattern

of information that makes it what it is – to forge reusable components.

Selection criteria in views may be complex. Objects may have several attributes and rela-

tionships. Therefore selection criteria for views and permissions may involve intersections

and unions of inclusion/exclusion sets attached to individual attributes. Selection criteria

may be components of the view that are derived from other selection criteria in it.

Selection criteria and views may be dynamic. Processes may not only keep changing

parameters, like bounds and values inside inclusion and exclusion sets (see Chapter 3,

section 2), but also value sets within the view, and the views themselves. Indeed, actors

might set these parameters, or change display formats and sort sequences within a view

dynamically (i.e. change the state of a view) depending on a host of factors such as the

actors involved, formatting rules (see box 38), and the state of the object being viewed.

The view is an aggregate object that depends on key components for its very existence.

If the view loses its display method, formatting rules, or the sequencing rules, it ceases

to exist – all three are needed to make the object and its contents visible to an actor. It

is worth noting that the sequencing rule may be a random access rule (although this is

unusual, the metamodel permits it) and that a view may be used with distinct information

flow rules if the object is fragmented or replicated in multiple files. The link to an object

must be physically implemented by rules of information flow (see the information logistics

layer).

Although the view is an aggregate object that depends on key components for its existence,

the components, in contrast, do not owe their existence to any view. They are independent

subassemblies of knowledge and do not need a view to give them meaning or existence.

They are reusable components and may be reused in several views as well as in other

subassemblies of knowledge we will discuss later in this book.

Note also that:

79 Inclusion and exclusion sets in views may be more general than the “value constraint” of Chapter 3, section 2:
� Value sets need not be proper subsets of the domain (proper subset: see box 19)
� Value sets might be generalized to include formatting and unit of measure rules. Unit of measure rules will

only apply to quantitative attributes, i.e. in addition to values, the set (and hence selection criteria) may

contain attribute expressions (attribute expression: see box 35. See also the endnote on lambda calculus and

functional programming)
� The rule expression in figure 48 would also involve formatting and unit of measure rules
� An optional permission component might mediate between the generalized value set above and the constrain

relationship of box 28.

The attributes of the permission metaobject would be: Permit/disallow visibility; Permit/disallow update.
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1 An object may not have any views attached to it. However, if this is the case, the object

is invisible to process automation and is only an abstract concept.

2 There may be several inclusion and exclusion sets attached to the view. The group of

inclusion and exclusion sets involved is an aggregate object that is a component of the

view. Members of this group cannot be mutually contradictory. They must be consistent

with the rules for combining inclusion and exclusion sets described in Chapter 3, section 2

to co-exist in harmony (in some cases may even merge and blend into each other)

3 Sequencing criteria inside views can be complex when we consider views that drill into

aggregate objects (see Module V, section 2 on our website).

4 In addition to the display methods, sequencing, formatting, and inclusion/exclusion rules

shown in figure 33, a view may have information update permission attached to it. That

is a state of the view, the aggregate object.

We will not dwell further on this aspect of business process automation. It will suffice to

understand that several views may be glued to objects, and that these views are aggregate

objects themselves. Components inside views may be reused in other views, and, indeed,

this provides us a basis for subtyping and partitioning views of objects, which are objects

in their own right, albeit in the business process automation layers of figure 15. Our focus

is on normalizing meaning, not process automation. Indeed, as we understood in Chapter 1,

unless we normalize meaning, rules of process automation cannot be normalized (also see

box 7).

The universal metaobject

Remember, in the metamodel of knowledge, the universal metaobject of figure 32 rules every

other metaobject (and object). Indeed, it is every object – it underpins the essential unity

and meaning of objects. Objects look different only because the metaobject masquerades

as different objects in different perspectives and states. It is these states of the metaobject

that normalize different perspectives of knowledge.

Remember also that the state of an object at any moment is the set, or collection, of the

values of its attributes and relationships at that moment. The key to an object’s behavior is its

state, and attributes are the basis for recording state. Attributes provide the most common

basis for partitioning object classes to differentiate the behavior of objects in business

processes. State indicators distinguish the behavior of subtypes, even when objects are

partitioned purely on their behavior or history. State indicators are attributes too.

Therefore, we must understand the nature of attributes to understand the nature of reality.

Attributes are the key to the door that leads to domains, relationships, processes, effects,

constraints, and all the other entities of figure 32. Understanding the nature of attributes

will be our next step on the road to the metamodel of knowledge.
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“Look to the rose that blows about us – ‘Lo, laughing,’ she says, ‘into the world I blow: At once the

silken tassel of my purse Tear, and its treasure on the garden throw.’”

(From the Rubaiyat of Omar Khayyam)

This chapter elaborates on properties of objects and constraints. It describes the metamodel of State,

its components, configurations, patterns and constraints.

An attribute is a special kind of object. It is the repository of an irreducible fact that a

specific rule or property of an object class exists.1

Every object must have at least one attribute – the instance identifier that asserts that

the object itself exists.2 This instance identifier must always be a nominally scaled attribute

because it asserts a nominal irreducible fact – the existence of an object instance – whereas

other properties of object may map to nominal, ordinal, difference, or ratio scaled domains.

1 The structure of attributes and states

Every attribute has three items of information associated with it – the object it describes,

the kind of property it represents, and its value.3 The value is the actual property the object

instance possesses. For example, length is a kind of property and the length of a room is an

attribute of an object class called room. The fact that a room is 20 feet long asserts the (value

of) length of a specific room, i.e. an instance of room. Formally, this model of attribute is

1 See Chapter 4, section 3 and the endnote on how attributes emerge from relationships between temporal objects

and domains.
2 See Chapter 2: “What is an object – really”.
3 Our metamodel is a purely deterministic model. We associate three items of information with each attribute –

its existence, domain, and value. We do not recognize the inherently uncertain nature of the real world, although

we try to compensate with default initial states and unknown values of attributes. Metamodels that support

uncertainty would have to associate additional items of information with each attribute. For ordinal and nominally

scaled attributes we would assign the probability of the attribute taking that value. For difference or ratio scaled

attributes, we would substitute value with tolerance. Tolerance is a range of values that the attribute may take.

For each such range, we would assign a probability or degree of certitude that the value will fall somewhere in

this range. For more information, see Chapter 1, section 5, Chapter 7 of [309] or “Representing uncertain facts”

in Chapter 4 of [298] under “Representing knowledge”.

112
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Figure 34 An attribute is the overlap between an object and a domain

called the object–attribute–value model, or OAV model for short. The object, its attribute,

and value are together called the OAV triplet.4

Every attribute must map to a domain. The domain determines the kind of property the

attribute describes. The domain also tells us how the attribute must be measured and what

properties of the attribute are shared with others of its kind.

For example, car and paper are objects. The color of a car is a property of a car that maps

to the domain of colors, as does the color of a sheet of paper. Thus, two properties of two

very dissimilar objects can map to the same domain.

Indeed, an attribute might be thought of as an overlap (intersection) between the domain

with shared properties and an object with specific properties. The attribute inherits all

properties of the domain and adds properties specific to the object class it describes. An

attribute is a piece – a subtype – of the domain embedded in the object class.

For example, person and room are two distinct object classes. A person’s height is an

attribute of person that maps to the length domain, as does the width of a room. The length

domain is a ratio scaled domain with units of measure and conversion rules that will apply to

both the height of a man and the width of a room. On the other hand, some constraints may

apply to a person’s height, but not to the width of a room. For example, a person’s height

may be constrained to be less than 10 feet but the width of the room might be unconstrained.

The constraint on height is a specific rule added by the object class person to the subtype of

4 For more information, see object–attribute–value triplets in Chapter 4, of [298] under “Representing

knowledge”.
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the length domain embedded in it. This is similar to the two different intersections domain 1

has with objects 2 and 3 in figure 34. One intersection is an attribute of object 2 and the

other of object 3, but they both map to domain 1. Each object could add its own rules to

those it inherits from the domain 1.

Sometimes several attributes of a single object might map to the same domain. For

example, a room has height, width, and length. All three map to the same (length) domain.

Special rules could apply to each attribute, independent from those that might apply to the

other two. This is similar to the two distinct intersections object 1 has with domain 1 in

figure 34. Each is an attribute of object 1 and both map to domain 1. Each intersection could

independently add its own rules to those it inherits from the domain.

Box 27 The OAV model and the structure of attributes

Figure (a) below describes the concepts in figure 34 with greater precision. It is a

fragment of the metamodel that shows how attributes emerge from relationships between

metaobjects. Read it as you did figure 8. It is clear from the figure that the attribute is a
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role of domain that emerges from its relationship with object class.5 It is also clear that an

object class is a collection of attributes. Figure (b) shows this graphically. In figure (b), a

special attribute, the instance identifier, signals the existence of each object instance and

all the other attributes represent its properties. Each attribute also has a value. Values

and attributes collectively describe the state of the object. The instance identifier is the

hub of this pattern. Without the hub, the entire structure falls apart and ceases to exist.

This is what happens when perspectives change. Old objects dissolve and new objects

crystallize out of the same attributes.6 Thus, attributes are reused between perspectives

and continue to map to the same domains, as they must, because they are fragments of

domains.

5 Chapter 2, sections 2 and 3 describe subtyping and aggregation briefly; Module V, sections 1 and 2 on our

website have more detail. Chapter 4, section 3 discusses relationships between objects and domains in detail.
6 See Chapter 2, section 4.
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Figure (b) shows that the state space of an object class is the Cartesian product of its

attributes (see box 20) and that an object instance is located at a point in this state space.

Figure 35 expands on this. Figure (b) also expands on the aggregation relationship bet-

ween object class and attribute in figure (a). It shows what the relationship means to an

object instance. Many an astute reader might ask, if figure (b) expands on the relationship

between object and attribute, what does the relationship between attribute and domain

in figure (a) mean to an instance of the object? An example will best answer the question.

Let us consider the color of a car. Car is an object class. The actual color (“value” of

color) of an individual car is drawn from the color domain. The domain is an object class

too – it is a set – the set of all possible colors. Members of this set are instances of color.

A specific (instance of) car has a relationship with a specific (instance of) color. It is this

(instance of) the relationship between the attribute and the domain that is manifested as

the “value” of an attribute called car color.

Thus, values emerge from the relationship that maps attributes to domains. Domains

normalize values and things we can do to values (as we saw in Chapter 1, section 3).

We will cover this in more detail in Chapter 4.

The OAV model is too simple to normalize all atomic rules about attributes. We have

omitted the finer structures that relate to formats as well as those that distinguish quantitative

attributes from qualitative attributes from the figures in box 27. Figure 35 includes this

information. Figure 35 is a synthesis of figure 8 and figure A of box 27. It integrates the

metamodel of domain in figure 8 with the metamodel of attribute in box 27 to give us the

metamodel of state.

(An inverse relationship shows how a relationship should be read in the opposite direction from

that of the arrow. In figure 35, inverse relationships are shown in square brackets like this: [inverse

relationship]. Module V discusses inverse relationships. Also see inverse of a function in the endnote

on the theory of categories.)

Figure 35 differentiates the special structure of qualitative from quantitative attributes.

Box 27 described properties shared by both, whereas figure 35 describes how qualitative

and quantitative attributes are different. The subtyping relationship between attribute and

domain is identical to the relationship between attribute and domain in figure 27. Figure 35

adds key subtypes of this relationship.

In figure 35, it is clear that the state of an object is a collection of attribute values. A

relationship identifier is an attribute too (see participation in relationships); hence rela-

tionships too are determinants of state. It is also clear that qualitative attributes emerge

from the subtype that maps to qualitative domain. This relationship too has subtypes, one

of which maps to ordinal domain, from which ordinal attributes emerge, while the other

maps to nominal domain, from which nominal attributes emerge. Quantitative attributes,

and its two subtypes, difference and ratio scaled attributes, similarly emerge from subtypes

of corresponding relationships between attributes and domains.

Quantitative attributes are a subtype of quantitative domains, which are expressed in

units of measure and formats. Quantitative attributes inherit these relationships and must

therefore be expressed in units of measure and formats to become tangible in the real world.
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Figure 35 The structure of attributes and metamodel of state

On the other hand, qualitative attributes are subtypes of qualitative domains, which are

expressed only with formats. Therefore qualitative attributes only need formats to become

tangible in the real world and units of measure have no meaning for them.

Instance identifier

Ordinal and nominal attributes are subtypes of qualitative attributes. A special kind of

nominal attribute, the instance identifier, has a special relationship with object: Each object

instance must have only one of each, no more, no less, because it is the identity of the object

instance. The instance identifier labels the “bag” of attributes and their values. It is the hub

of the pattern in Figure (b) of box 27. For this reason, not only must every object have one,

but also no other object instance may share it, i.e. it cannot have the same value for any

other object instance.7 (Note that an object instance may simultaneously be a member of a

7 See Chapter 2, section. 2, “What is an object – really”.
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subtype in one or more partitions. Subtypes are object classes too. Hence identical values

of the instance identifier could be found in more than one object class, but never in more

than one object instance.)

This relationship between the instance identifier and the object is subsumed in the more

general relationship between the attribute and object. The latter relationship asserts that

each object must be an aggregation of one or more attributes. The instance identifier is that

one attribute that must be present. Once it exists, the option of including other qualitative

and quantitative attributes in the object class also exists.

Participation in relationships

The relationship between an instance identifier and an object asserts that an object instance

can have only one instance identifier. The attribute cannot share its instance identifier role

by becoming the instance identifier of another object. However, it can be an attribute of

another object. This kind of attribute asserts an irreducible fact – that the object instance

participates in a relationship with the other object. This is why the instance identifier in

figure 35 has a subtype, the relationship identifier. Figure 36 shows what this means to

an object instance. Instance identifier 6 of figure 36 is a relationship identifier. It is the

instance identifier of the relationship between the three objects it connects – a relationship

is also an object. Remember, as with the other attributes, each instance identifier has a value,

although it is not shown to avoid cluttering the figure. It is this value that uniquely identifies

the instance of the object class under consideration.

Some relationships can be complex. They can involve multiple instances and objects. At

this stage, it will suffice to understand that attributes can represent an object’s participation

in relationships, and hence its state (see box 10).

Attribute value

Now we are ready to address the question of value. Value is at the heart of the attribute, and

indeed the reason it exists. Value is also an object class in the metamodel of knowledge. We

know that attributes normalize irreducible facts about the state of an object and values of an

object’s attributes determine its state. We also know that attributes are subtypes of domains

and domains are sets of values.8 As we saw in box 27, value is buried in the relationship

between attribute and domain and a value must always be associated with an attribute.

Figure 35 makes this explicit. The relationship between attribute and value shows that an

attribute must always have only one value.9

Asserting this is important because it is not implied by the relationship between attribute

and domain. Domains are sets of values and also object classes. Subtypes, and hence

attributes too, are object classes. Object classes are sets (collections) of object instances.

8 Domains consist of values and valid operations on those values. To focus on attribute value, we have ignored

these operations. See Chapter 4, section 3.
9 The inverse relationship asserts that (1) there may be values that no attribute has assumed at the time and (2)

several attributes may assume the same value. For example, the length and breadth of a room are two different

attributes of an object called room. They have the same value when the room is square.
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Figure 36 Attributes can represent an object’s participation in relationships

Therefore, merely asserting that attributes are subtypes of domains does not exclude the

possibility of an attribute being a collection of several values. This is patently false; an

attribute has only one value. The relationship between attribute and value makes this clear.10

The subtypes of the relationship between attribute and domain also imply the existence

of qualitative value and quantitative value (not shown in figure to avoid clutter), which will

be subtypes of value.

Quantitative and qualitative values have subtypes too. Just as quantitative and qualitative

value emerge from value, nominal, and ordinal value (not shown in figure 35) emerge from

subtypes of qualitative value, whereas difference and ratio scaled value (also not shown)

emerge from subtypes of quantitative value.

10 In a non-deterministic metamodel, the relationship between attribute and value could have other attributes like

the probability of an attribute assuming that value.
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Figure 37 Attributes and values inherit properties of domains

(a) Qualitative attributes need only formats

(b) Set equality implies qualitative values need only formats

(c) Quantitative attributes need UOMs and formats

(d) Set equality implies quantitative values need UOMs and formats

Whenever an attribute maps to a domain, which it always must, this association between

attribute and value will exist. From a slightly different viewpoint, we could assert this

mandatory co-existence in the reverse order: whenever an object has a value, which it

always must, the attribute must be a subtype of domain from which the value is selected.

Each relationship implies the other and the two are inseparable. The double-headed arrow

connecting these two relationships implies that neither relationship can exist independently

of the other. In other words, since the two relationships are objects, and therefore sets, we

can say that the two sets are equal (see box 19). Figure 35 asserts this.

The implication of this set equality is that quantitative values must be expressed in

units of measure and formats, just as quantitative attributes are; whereas qualitative val-

ues, like qualitative attributes, need formats only. This is how structures in the meta-

model of knowledge manifest themselves in the behavior of the real-world objects we
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Figure 37 (cont.)

discussed in the parable of Metanesia (section 3 of Chapter 1). Figure 37 highlights this

issue.

The metamodel of attribute and the metamodel of state

The metamodel of attribute is closely related to the metamodel of state because the state of

an object is a collection – a set – of its attribute values. Both are represented by figure 35.

The shaded area of figure 35 represents the metamodel of state, which is a part of the

metamodel of attribute. The instance identifier too is an attribute of object, a special attribute

that is its very identity. The state (value) of the instance identifier distinguishes an object

instance from every other object instance.

However, the metamodel of attribute cannot be complete without considering constraints

on states of objects. States are constrained by collections of one or more attribute value

constraint. It is from this collection, a set of rules, that information about an object’s lawful

state space flows to it. Figure 38 shows how value constraints flow to objects through

their attributes. Figure 38 is an attachment to the metamodel of attribute and an important

subassembly in the metamodel of knowledge. To understand limitations on an object’s

state space, we must understand the structure of value constraint, and more specifically

attribute value constraints. This will be our next step towards the integrated metamodel of

knowledge – the pattern from which all meaning flows.
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Figure 37 (cont.)

2 Attribute constraints

Here the bones of birth have cried –

‘Though gods they were, as men they died.’

Here are sands, ignoble things,

Dropt from ruin’d sides of kings;

Here’s a world of pomp and state,

Buried in dust, once dead by fate.

(Francis Beaumont, 16th century English poet,

“On the Tombs of Westminster Abbey”)

Constraints certainly limit object states. They stop objects from being all they can be

and doing all they can do. They stunt capability, destroy opportunity, and deny potential.
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Figure 37 (cont.)

However, they do not lead to the kind of ruin Beaumont’s verse suggests. Instead, constraints

lead to business rules. Constraints frame reality, like death frames life, and pave the road

to business procedures and information systems. Value constraints are special because they

hem in an object’s lawful state space, and state space, as we saw in box 12, is the door to

information systems. Figure 37 tells us how attributes are expressed, and how each must

have a value, but says nothing about how they constrain state spaces of objects. Physical

reality and business rules sometimes dictate that some values of attributes are not permitted.

This too must emerge from the metamodel of knowledge.

For example, physical reality dictates that the length of physical objects cannot be neg-

ative. Indeed, it cannot even be zero, but it can be too small to measure, hence we could

call it zero, but it can never ever be negative. We must make room for laws like these in our

metamodel. Constraints like these are attached to the domain. They constrain values of all

attributes that map to a domain, and are inherited by each attribute from the domain, just as

units of measure and formats were.

Other constraints may be specific to attributes of objects. For example, a standard shipping

container might come in only two sizes, 40 feet or 20 feet. This constraint would apply

only to shipping container length, an attribute of the object class shipping container.

Constraints that apply only to specific attributes are not attached to the domain. Instead

they are attached to attributes they constrain. Figure 38 (a) shows the fragment of the

metamodel that attaches generic and specific constraints to attribute values (attaching the
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Figure 38 Attributes values may be constrained

constraint to value, instead of attribute means the same because of the set equality shown in

figure 38(a)). Figure 38 (b) is a less formal, simplified diagram that highlights the meaning

of figure 38 (a).

Constraints may depend on other attributes too – even attributes of other objects. For

example, the height of a room in a building is constrained by the height of the building.

However, we must understand simple constraints before we go on to those that are complex.

Our intent in this section is to discover those structures that will normalize knowledge about

constraints on attribute values. Let us start with the simplest of constraints – those that do not

involve any other attributes or objects – and the simplest of attributes – nominal attributes.

Constraints on nominal attributes

Nominal attributes have only discrete values – values that carry no information on magni-

tude, absolute or relative. Therefore, constraints on nominal attributes too must be discrete

values. For example, the gender of an earthworm can only be “hermaphrodite.”11 The con-

straining relationship may be of only two kinds (two mutually exclusive subtypes of the

“constrain” relationship in figures 37 – also object B in box 28): values that are permitted

(only values in the set are permitted) or values that are excluded (only those in the set

are not permitted). We will call this set of permitted values an inclusion set, and the set

of impermissible values an exclusion set (see box 28). For example, the inclusion set for

the gender of a person has only two values – “male” and “female” (provided we ignore

“hermaphrodite”). If inclusion sets sound like partitions, it is because they are partitions.

Inclusion and exclusion sets are a type of partition based on the value of an attribute, i.e.

certain states of the object. Inclusion sets are inclusive partitions and exclusion sets are

exclusive partitions12 (see “Properties of partitions” in Chapter 2, section 3).

11 See the endnote on gender.
12 Partitions play a different role in the metamodel when they constrain an object’s lawful state space than when

they discriminate between mutually exclusive subtypes. When a partition is an inclusion or exclusion set, the

partitioning criterion (discriminator in UML terms) discriminates between distinctly different values of a single

attribute of an object.
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Inclusion sets

In Chapter 2, section 2, we saw how constraints shape and reshape the lawful state space of

an object. Each value in an inclusion set is an atomic rule that asserts that the attribute could

assume that value. For example, the assertion that an earthworm must be a hermaphrodite is

an atomic rule. The rule cannot be divided into parts without losing information. Similarly,

the fact that a person may be a male person is an atomic rule, as is the irreducible fact that a

person could be a female person. However, perceptive readers might have noticed that there

is a vital item of information missing from these assertions about gender. We have asserted

that a person may be male or female, but where have we asserted that people can be only

male or female and nothing else, or that the earthworm can only be a hermaphrodite? This

assertion belongs to the inclusion set object (object C in box 28). The inclusion set is an

aggregate object. It is also a set. The members of the set are permitted values of the attribute

in question (the attribute the set is attached to). The set (aggregate object) itself asserts an

atomic rule, that the attribute may take one of the values listed in it, and no other, i.e. it is

an exhaustive partition.

What if we have incomplete information – we know that other values are permitted, but

do not know what they are? There are two possibilities:

1 we know how many other values exist, but not what those values are; or

2 we know that the set (i.e. partition) is not exhaustive, but have no information on the

number of unknown values (the number is don’t know – see Chapter 2, section 2).

Both cases are theoretically possible. They do represent a kind of business knowledge, so

we will discuss them, but they are of limited practical value – we cannot use inclusion sets

like these to validate attribute values in an information system, or to define lawful state

spaces of the object in question – so this discussion will be brief (see box 28 for more

detail).
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Take the first possibility. Each value, including those unknown, is a distinct value object

in the value set (object A of box 28). Each value object that we are unsure of assumes the

“unknown” value13 inside this value set. As such, the inclusion set is an exhaustive partition,

but one or more values in it are “unknown.” This could be the state of an inclusion set under

construction, but it has little value in a system or process beyond letting its users know that

some states of the attribute (and hence object) exist, but their values are not yet known.

Now consider the second possibility. It is no different from a non-exhaustive partition.14

However, the partition is not being used to classify special behavior, as it was when it was

used to develop subtypes. Its only utility in its role as an inclusion set is to assert that it is

an inclusion set in an incomplete state – perhaps one under construction.

In both cases, the attribute may assume an “unknown” value. Such attributes are some-

times called optional attributes. However, the optional attribute by itself cannot distinguish

between possibilities 1 and 2, which are two distinct pieces of knowledge about a business

system, and therefore optionality of an attribute cannot, by itself, normalize knowledge.15

There is another subtle difference between the optional attributes described here and those

found in many information systems prevalent today: the latter do not distinguish “unknown”

values from “does not exist.”16 The optional attributes in this section must exist, but their

values may or may not be known. On the other hand, if an attribute has a null value, it does

not exist and actors17 need not even be aware of the attribute.

The structure in box 28makes the meaning of optional attribute more precise than most

systems do today. If, for an inclusion set, the null value were among values in the value set

(object A of box 28), it would imply that the existence of the attribute is optional.18 This

precision of meaning was not required when systems and processes were not assembled

from components of knowledge, but hand crafted individually for each system. However,

when an object and its state space represent a component of business knowledge stored in an

electronic repository, and either automated agents (see box 36) or human analysts assemble

systems from such objects, the designer of the object should be in a position to assert what

aspects of the object’s state space are optional, and what are mandatory. The ability to specify

that the existence of an attribute is optional, independently from the ability to assert that

the value of an attribute may be unknown, provides the requisite precision and capability.

Exclusion sets

Exclusion sets are exclusive partitions that are similar to inclusion sets. The same consid-

erations apply, but there are two key differences in behavior we must recognize. Exclusion

sets can validate attribute values even when the sets are (i) not exhaustive and (ii) we know

13 See “Data and attributes” in Chapter 2, section 2.
14 See “Object partitions and role modeling” in Chapter 2, section 3.
15 See the endnote on the Bunge–Wand–Weber model: if we merely recognize the optionality of attributes, but

not the structure in box 28, the methodology has a construct deficit. Attribute optionality cannot, by itself, tell

us whether we do or do not know how many distinct attribute values exist – values that are unknown.
16 See “Three values every attribute and relationship may have” in Chapter 2, section 2.
17 Actor: a person, system, or instrument that accesses or processes information.
18 If in an inclusion set, the null value is the only value inside the value set (object A) of box 28, it will imply

non-existence of the attribute. Business models will never have this attribute. On the other hand, if the null

value were among the values inside Object A of box 28 in an exclusion set, it would imply mandatory existence

of the attribute in the model.
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certain values are excluded, and we know how many, but we do not know what they are. In

both cases, we know for sure that the attribute cannot assume a known value in the exclusion

set. We can trap some violations on this basis, if they occur, but, even if the attribute value

passes muster, we cannot be certain that the attribute (and therefore the object) has not

violated its lawful state space because we do not know all its impermissible values. The

known values in an exclusion set of this kind can only reduce, not eliminate, risk.

There is another subtle point we must not overlook – the case of a constraint that asserts

that an attribute cannot assume the “unknown” value.19 Asserting that an attribute’s value

must always be known is different from saying we do not know all values that are illegal for

the attribute. To understand how structures in our metamodel distinguish between these two

very different assertions, we must recognize that inclusion and exclusion sets are aggregate

objects, and each member of the set consists of two components – a subset of a domain

attached to a relationship class.

Consider the value set (object A) in box 28. If attribute 3 assumes the “Unknown” value,

we will not know all values that might constrain the value of the attribute, even if the

“unknown” value is not inside object A. On the other hand, if attribute 3 of object A is

known (i.e., it has not taken the “unknown” value), we know for sure that the exclusion set

is exhaustive. Then, if a constraining value inside object A is “unknown,” it implies that the

attribute is barred from ever assuming the “unknown” value, i.e. the attribute value must

always be known (these are sometimes called mandatory attributes).

Mandatory attribute is a misnomer in a mathematically precise sense. What we really

mean is that it is mandatory that the attribute have a value – not that the existence of the

attribute is mandatory. As discussed under inclusion sets, this distinction is useful when

systems and processes are electronically assembled from knowledge artifacts.

Constraints on ordinal attributes

Ordinal attributes, like nominal attributes, have only discrete values, but, unlike nominal

attributes, they do contain information on relative magnitudes. Jane’s car color preference

in Chapter 1, section 3, was an example of an ordinal attribute. Therefore, like nominal

attributes, it is meaningful to speak of restricting values of ordinal attributes to a set of

discrete values, but, unlike nominal attributes, it is also meaningful to speak of restricting

values of ordinal attributes to a range of values.

Take Jane’s car color preference. She could meaningfully say that she adores blue cars,

likes red cars a lot, green cars a little, is neutral about white cars, and detests black cars.

While it is possible to rank Jane’s color preference in order of magnitude, it is impossible

to say how much she prefers one car color above another.

If Jim, the sales manager of a car showroom knows Jane’s car color preferences, he could

ask Charles, the car sales man, to show Jane cars of colors she is at least neutral about.

Thus neutrality in preference for car colors is the lower bound of the range of car colors

he will show Jane. In other words, the attribute is person’s car color preference. The range

is neutral or greater car color preference, and the lower bound of the range is neutral car

color preference.

19 See the subsection on unknown values in Chapter 2, section 2.
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Box 28 Components of inclusion and exclusion sets

Exclusion and inclusion sets consist of two components that normalize different

irreducible facts:

1 Set of values (object A in the figure). It is an aggregate object that contains each

permissible or impermissible value. We will call it a value set.20

2 Set of constraining relationships between these values and the constrained attribute

(object B in the figure). It is an aggregate object that contains the set of relationships

that assert whether the value in question is permitted or not.
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An attribute value constraint is an aggregate object

Every aggregate object must have at least one attribute, viz. the number of objects in it. We

also understood that the set of constraining values (permitted or debarred values) might

contain items that we know exist, but do not know what values they have.21 Object A in

the figure will therefore have at least three attributes (object A is an aggregate object):

1 The number of distinct constraining values that we know for sure exist, but we do

not know what the actual values are.

2 The number of distinct constraining values that we know exist, and we know what

these distinct values are

3 The total number of distinct constraining values in object A

(The sum of 1 and 2 above yields 3.)

20 Inclusion and exclusion sets correspond to Ron Ross’ “any” constraint. See [294], Chapter 7.
21 See the subsection on “inclusion sets”.
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When the attribute 3 of object A takes the “unknown” value, the partition (and con-

straining exclusion or inclusion set) is non-exhaustive. Otherwise it is exhaustive.

The set of constraining relationships in the figure (object B) comes in two different

flavors. Each is a subtype and they are mutually exclusive. One subtype (B1 in the figure)

contains relationships that exclude the constraining value it is attached to, whereas the

other subtype (B2) contains only relationships that permit the corresponding constrain-

ing value. B1 makes the constraint an exclusion set, whereas B2 makes it an inclusion

set.

Note that the values in set A are called constraining values only because of the

(instances of) constraining relationships in set B, i.e. these values are playing this

role via those relationships. They could just as easily play the role of being the value

of a different attribute at the same time, or even that of an instance identifier. Then

the constraint would be more complex. The value of the attribute in the figure would

be constrained by the value of another attribute (not shown in the figure). Thus, to

normalize knowledge, it is appropriate to drop the qualifier “constraining” for the

values in set A. They are just values. The qualifier is implied by the relationships in set

B (We have retained “constraining” in the names of values in object A only because,

in this section, we are focusing on the role they play in limiting the state spaces of

objects.)

Domains too are sets of values; therefore object A, the value object, is nothing but a

subset (subtype) of a domain. Thus, in the metamodel of knowledge, an attribute value

constraint is a structure in which an object class – constraining relationship – is glued

to a subtype of the domain that the constrained attribute maps to.

The inclusion or exclusion set is an aggregate object that consists of the set of values

and the set of constraining relationships. The inclusion (exclusion) set is the metaobject

that normalizes the atomic rule that asserts that all valid (invalid) values are within the

inclusion (exclusion) set. This is object C in the figure. Object C is thus a supertype

of exclusion and inclusion sets and is called the constraining set. It is also called the

“constrain” relationship.

The values in a value set can be values of other attributes too, and may change in

step with the state of the system (state of a system: see box 12). When this happens,

consider that the value set – the aggregate object – has changed its state. It is not a new

and different instance of the value set. Instead it is the same (instance of the) value set

with different values in it. Remember how history is implicit in every object (figure 22).

Thus complex rules that might constrain how value sets can change may be based on

relationships between time slices of the value set (see Module V, section 3 on our

website).

Under inclusion and exclusion sets, we understood that constraining sets can nor-

malize some kinds of knowledge about incomplete information – value sets could be

exhaustive or not, and they could count “unknown” values among their members. Not

knowing whether the constraint is an inclusion or exclusion set, but knowing a con-

straint exists, is also knowledge about another kind of uncertainty that a constraining

set (Object C) normalizes.
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Figure 40 Subtypes of ordinal domains may contain both discrete values and ranges

Charles, unfortunately, loathes Jane secretly because she had once turned him down for

a date. Charles is a petty man who does not want to show Jane cars with colors she will

like. On the other hand, he is afraid of disobeying Jim. He strikes a secret compromise with

himself. He decides he will show Jane cars with colors which, at worst, she will dislike only

a little and, at best, she will like only a little. Charles sets the upper bound of the car color

preference range at likes a little for cars he intends to show Jane. Thus a range may have

an upper bound, a lower bound, or both.

This range constraint was an inclusion set. The cars Charles intended to show Jane had

to take a value from in this range of car color preference. Similarly, Ranges can also be

exclusion sets. For example, Jim could have asked Charles not to show Jane cars of colors

she neither likes nor dislikes, or worse (neutral car color preference or car colors she dislikes

even a little). This would then be an exclusion set for car color preference – Jim would have

excluded this range of Jane’s car color preference from cars he would show her, i.e. values

in the range would not be permitted.

When we consider ordinal attributes, we need only add ranges to the repertoire of objects

that could reside in the value set (aggregate object A in box 28). As such, the value set

in box 28 may contain one or more values and one or more ranges. Figure 40 illustrates

this.22

Figure 40 also contains a fragment of the metamodel for Range. Consider the two arrows

from value to range in this diagram. The arrow on top asserts that a value may be the upper

bound of a range. Actually, it is the inverse relationship that asserts this in a stilted, but

mathematically precise, way. It asserts that there may be no (zero) upper bound, but, if the

range does have an upper bound, there can be only one value that is its upper bound (or one

22 Inverse relationships in the figure are shown in square brackets like this: [inverse relationship]. An inverse

relationship shows how a relationship should read in the opposite direction from that of the arrow. See “Inverse

of a function” in the endnote on the theory of categories.
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upper bound). Similarly, in the direction of the arrow, it asserts that a specific value may not

be an upper bound of any range, but, if it is, there is no injunction against the value being

the upper bound of several (many) ranges.

In the same way, the lower arrow asserts that the lower bound of a range is optional,

but, if the range does have a lower bound, it can have only one. A given value on the other

hand may not be a lower bound, but, if it is, nothing stops it from being the lower bound of

several ranges.

Some ranges may not have lower bounds and others may not have upper bounds. But,

if a range has neither, then it stops being a range.23 Where is the rule that asserts that both

upper and lower bounds cannot be absent in a range? Remember, relationships are objects

too, and, like any object, they may be related. The oval between the arrows in the figure

is this kind of relationship. Its purpose is to normalize the assertion that both upper and

lower bounds of a range cannot be simultaneously absent, although each may or may not

be missing individually. It asserts that at least one of the two relationships between value

and range must exist (and of course nothing stops both from existing).

These structures together normalize atomic rules about range, and assert that each range

may have optional lower and upper bounds (values), and at least one bound, if not both,

must exist for every range.

Constraints on quantitative attributes

Constraints on quantitative attributes are just like constraints on ordinal attributes, except

for one subtle difference in the kinds of upper and lower bounds that might be imposed on

ranges. Consider the following examples in which we impose an upper bound constraint on

the length of a string.24 There are two ways we can do this. We can say that:

1 The string must be two feet long or less; or

2 The string must be less than two feet long

The two constraints are almost, but not quite the same – in (1), the string can be two feet

long, whereas in (2), it cannot be 2 feet long. In the second example, the string could be

close to being two feet long – as close as we like – but can never actually be two feet long.

It must always remain just short of two feet.

(1) is an example of a closed upper bound, whereas (2) is an example of an open upper

bound. Similarly there may be open and closed lower bounds, or, in general, open and closed

bounds of a range of values. The value of a closed bound lies inside the range, whereas the

value of an open bound lies just outside the range.

Open above means either the upper bound is open, or there is no upper bound, and open

below means the lower bound is either open or non-existent. Similarly, closed above means

that the upper bound is closed, and closed below means the lower bound is closed.

23 If both bounds are missing, the range becomes a domain (in the absence of bounds, all values of the domain

will also belong to the range). An unconstrained range in an inclusion set is purposeless, and in an exclusion

set it implies a nonexistent attribute.
24 String length is a quantitative attribute of string, the object.
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Ranges with both upper and lower bounds are called intervals. When both bounds are

closed, it is called a closed interval. Otherwise it is called an open interval. Like ranges,

intervals too may be open or closed from above or below, but, unlike ranges, they cannot

be unbounded above or below.

One may ask whether the property of being an open or closed bound applies equally to

ordinal values as well. After all, just as we restricted the string length in example (2) to

being less than two feet, in the example on Jane’s car color preference, we could have said

that Charles decided to show Jane car colors she would like less than a lot instead of equal

to or less than a little. However, had we done this, the range would not have changed. It

would have only been a different way of specifying its upper bound. This demonstrates

that ordinal ranges, like quantitative ranges, can have open and closed bounds, but, unlike

quantitative ranges, the type of bound does not necessarily affect the actual ordinal range.

Open and closed ordinal bounds are merely different ways of specifying the same ordinal

range.

Ordinal domains always contain discrete values.25 By restating the value of an open bound

(either by reducing an open upper bound to the adjacent lower value, or by increasing an

open lower bound to the next higher value), we can always define an ordinal range in terms

of closed bounds and leave the range unchanged. The property of being open or closed

exists, but has little value for ordinal ranges and bounds. On the other hand, a quantitative

range may contain a continuum of values, and we cannot always close an open range, or

open a closed range, by merely restating its bound(s). Therefore, the distinction between

open and closed bounds is more useful for quantitative ranges.

Combining inclusion and exclusion sets

As businesses continually flex and reconfigure under the combined pressures of markets,

technology, and regulation, constraints too shift and flex in step with business. This kind of

change often involves changing, merging, adding, or eliminating constraints like exclusion

and inclusion sets. Let us therefore understand how inclusion and exclusion sets can merge,

clash, and flex as they shift in step with business.

Value sets are the core around which inclusion and exclusion constraints are built. Value

sets are sets of values and value sets can be merged with other value sets. Mathematically

speaking, when this happens, the resultant value set will be the union of all merging value

sets (set union: see box 19). Ranges are sets of values too. Therefore, they too are a kind

25 Quantitative domains are polymorphisms obtained by adding information to ordinal domains because it is

mathematically possible to envision domains with an infinite number of ordinal values in any arbitrarily

small interval between values. Unlike quantitative domains, mathematical operations like addition, subtraction,

multiplication, and division may not exist in these domains (see items in the bibliography under set theory and

metric spaces). The only requirement is that these domains be metric spaces (see the endnote on generalized

distances). When arithmetic operations are added to these domains, they become quantitative domains (see

Chapter 5, section 3). Thus, being subtypes of ordinal values, quantitative values inherit all roles of ordinal

values, including the potential to be the bound(s) of a range. The metamodel of knowledge would infer this

behavior, normalized by ordinal domains, from the subtyping relationships between domains discussed in

Chapter 4.
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Box 29 The structure of bounds and ranges (on our website)

Box 29 describes the metamodels of bound and range shown in figures (a) and (b). It

discusses how the metamodel of knowledge formulates upper, lower, open, and closed

bounds.
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of value set. Like other value sets, ranges too may merge with other ranges and value sets.

When ranges merge with ranges, the merged value set is a range. When value sets and

ranges merge, the resulting value set will contain both discrete values and ranges. Thus,

value sets may contain discrete values, ranges, or both (figure 41).

When inclusion sets are combined with other inclusion sets, their value sets merge, i.e.

the result of the combination is also an inclusion set, and the value set in the combined

inclusion set is the union of component value sets. The process of merging exclusion sets is
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very similar; only the merged constraint is then an exclusion set. Bear this in mind as you

examine the metamodels of value set (figure 41)26 and value constraint (figure 42).

Box 30 Set versus list

Remember that a set is not a list of items – it is a collection of items. The difference

is subtle but crucial. The members of a set define the set. The concept of “duplicate

members” of a set is meaningless – an item is either a member, or it is not. A list on the

other hand is exactly that – a list of items, and items may be repeated in a list. Lists may

be differentiated based on not only the items they list, but also how many times each

might have been repeated. The result of a set union is a set, not a list. Even if an item is

a member of several sets in the union, it will appear only once in the unified set. Based

on the principle of subtyping by adding information in box 43, a list is a subtype of a

set; a list adds information on distinct occurrences and numbers of identical members

in a set.

What if sets overlap or a single value set in a merger is a subset of another? Subsets and set

intersections are all subsumed in the merged set. They lose their individual identities in the

union. When overlapping ranges merge, only the highest upper bound and the lowest lower

bound remain in the merged range.

If the ranges had not overlapped, they would have retained their identities in the merged

value set. An inclusion set that contains a merged value set with disjoint ranges would

permit disjoint ranges of values and bar those in the gaps between ranges. (If discrete values

exist separately in those gaps, then only those values would be specifically permitted.) For

exclusion sets, the opposite would happen: values in ranges would be barred and values in

gaps permitted; specific values in gaps would also be barred.

If we had left the bounds of overlapping ranges in place (via set aggregation instead of

union – see box 32), they would have been inactive in any case, superseded by the highest

and lowest limiting values in the merged value set. The inactive bounds would lie dormant,

and perhaps forgotten, until another change reduced the active upper limiting value to a

value below a dormant upper bound. Then we could get a nasty surprise as long forgotten,

dormant, and unneeded limiting values suddenly spring to life. (This would apply equally

to lower bounds as well.) Set union will not permit this.

Does this kind of merger (via set union) imply that we have lost information on bounds

and limiting values in the old value set? No, we have not. The metamodel of knowledge has

a special place for it. In Chapter 2, section 4 we established that a perspective is an object –

a model of reality. The unmerged value sets exist in a different perspective (or a previous

state of the current perspective).27

26 To reduce clutter, several structures in the metamodel of range (box 29 and figure 44) have been omitted from

figure 41. Remember that these links exist – they are merely hidden in the diagram.
27 Access to older perspectives is key to best practices in configuration management.
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Box 31 Dormant ranges and containers for value sets

Range

Dormant

range

Dormant

range
Dormant

range
Dormant

range

Overlapping dormant ranges

What if, for some reason, we did want to keep layers of dormant limiting values in

our merged constraint? Set aggregation would help us do this. Remember, an aggregate

object is like a bag (Chapter 2, section 1). Putting bags into bags (set aggregation) is

different from emptying the contents of individual bags into a new bag, i.e. set union. In

the former case, the bags retain their identity and contents. In the latter case, the contents

of each bag remain, but the individual bags themselves are lost (except, of course, the

new bag – the set that results from the union).

Thus, we can have an aggregate object that is not the union of the two value sets,

but a set (object) in its own right. The members of the set (instances of this object) will

be individual value sets (aggregate objects themselves). Dormant value sets could be

extracted and made active when they are required in different contexts in systems and

processes of a large and complex organization.

For example, an insurance company might insure 16–70 year old drivers in one

country, and 21–79 year old drivers in another. There might also be a corporate policy

that the firm will only insure 15–80 years old drivers. Different subsidiaries might

be responsible for operations in different geographical footprints. Subsidiaries could

carve out their ranges for ages of insurable drivers from the corporate range. If each

range is linked to countries that subscribe to it, different ranges can become active in

different countries; each country’s range would be extracted from the aggregate range.

The aggregate range could serve as a corporate asset that is reused as needed.

This kind of aggregate set is only a convenient physical storage mechanism for ranges

and value sets. It is not a part of the metamodel of knowledge and has no role in nor-

malizing knowledge for the reasons described in the subsection on clashing constraints.

When non-exhaustive inclusion (or exclusion) sets merge, the merged set may be either

exhaustive or non-exhaustive – we cannot know which on the basis of the exhaustivity of

the merging sets alone. On the other hand, if either set is exhaustive, it suggests that we know

all values that are included (or excluded). Therefore, from a purely logical perspective, it

might seem that such a merger will result either in a union that is identical to the exhaustive

constraint, or in a conflict between contradicting constraints.

The key to understanding mergers between exhaustive constraints is to understand

whether or not the constraint is exhaustive in universal perspective or not (perspective:

see Chapter 2, section 4). If either merging set is exhaustive in the universal perspective,

then the merger will be either redundant (and hence pointless) or in conflict (and hence
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impossible – at least one value set is erroneous – see clashing constraints.) On the other

hand, the merging constraints, although exhaustive in a narrower perspective, might not

be exhaustive in the broader, merged perspective, in which case we can treat them as

such.

Merging open ranges

Subject to the exhaustivity issues we just discussed, there is one other issue that we must

be aware of when we merge ranges of quantitative values. In box 30, we understood why

ranges with open bounds cannot be merged – if the limiting value is excluded from the

range, it will always divide a range immediately above it from that below it, because the

value itself cannot be included in the range. Therefore, ranges cannot be merged across open

bounds via set union. (They could, of course, be included in a container of convenience like

that in box 32, which will maintain the separate identity of each range.)

Open overlapping ranges cannot merge because inclusion and exclusion sets cannot

merge (see the subsection on clashing constraints), and in an open inclusion set, at least

one limiting value is excluded, while in an open exclusion set, at least one limiting value

is included (box 30). The metamodel of value constraint in figure 42(a) has this injunction

against merger of inclusion and exclusion sets, which also implies that open overlapping

ranges cannot merge.

However, set union can merge open and closed non-exhaustive ranges with the same

limiting value. The merger is not across bounds in this case; it stops at the bound.28 If a

limiting value of an open range is the same as that of a closed range with which it is being

merged, the closed bound will supersede the open bound in the resulting range. The open

bound will flow from outside to inside the range via the set union that combines value sets

of merging ranges as follows:

If open and closed upper bounds coincide, the union will result in a closed upper bound. Similarly, if

open and closed lower bounds coincide, the union will have a closed lower bound. On the other hand,

if an open upper bound of one merging range coincides with the closed lower bound of the other, the

bounds will vanish, and the limiting value will become a member of the merged value set. Similarly,

if a closed upper bound of one merging range coincides with the open lower bound of another, both

bounds will vanish and the overlapping limiting value will become a member of the merged value set

in the resulting constraint.

Clashing constraints

When we merge inclusion sets with inclusion sets, or exclusion sets with exclusion sets,

we merge not only corresponding value sets, but also the entire constraining set (object C

of box 28). The union of value sets is only one aspect of this merger of constraints. Merger

of constraining relationships (B1 or B2 in box 28) is the other. When inclusion sets merge

with inclusion sets, corresponding inclusion relationships (object B2 in box 28) also merge

28 From a set-theoretic perspective, the intersection of non-exhaustive open and closed ranges with overlapping

limiting value(s) is empty, i.e. the sets are disjoint because a value at one end of the range is excluded in one of

the sets being merged. Therefore, their merger is similar to merging disjoint ranges, only, in this case, the ends

of the ranges get pinned together after the merger.
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through set union. When exclusion sets merge, it is the exclusion relationship (object B1 in

box 28) that merges.

These constraining relationships (inclusion or exclusion) of the merging sets can merge

via set union, and still remain instances of the merged object class, because the relationships

are all of the same kind – all inclusion constraints, or all exclusion constraints. If the merging

sets are inclusion sets, the merged set will also be an inclusion set, and, if the merging sets

are exclusion sets, the merged set will be an exclusion set.

However, if we tried merging exclusion sets with inclusion sets, they would not mix.

Mixing completely certain constraints

Consider merging inclusion and exclusion sets that are exhaustive partitions with no

“unknown values” first: The inclusion and exclusion sets in such a merger will retain their

individual identities in an aggregate object like that in box 32 – and the object would not

normalize knowledge – indeed it could replicate it as explained in the following paragraphs.

An exhaustive inclusion set asserts that values not in it are excluded – the attribute can

only assume a value inside the inclusion (value) set. Therefore, if an exhaustive inclusion

set and an exclusion set were to simultaneously constrain the value of an attribute, the

exclusion set would merely repeat the exclusion rule for a few attribute values or ranges;

this would be the rule already established by the inclusion set.

Similarly, an exclusion set asserts that values not constrained by it are permitted. There-

fore, if an exhaustive exclusion set and an inclusion set simultaneously constrained an

attribute, the inclusion set would only repeat rules already established by the exclusion set.

Thus, this kind of aggregate set of merged constraints has no place in the metamodel of

knowledge. It would replicate, not normalize, knowledge.

An organization might consider storing both inclusion sets and exclusion sets in a con-

tainer object of the kind described in box 32, and associate different constraints with different

contexts. However, bear in mind that if the inclusion/exclusion sets are exhaustive, and have

no “Unknown” values, multiple inclusion/exclusion sets can never be attached to the same

attribute in the same context because an exhaustive constraint says it all – every value in it is

included and all else is excluded (exhaustive inclusion sets), or every value in the constraint

is excluded and all else is included (exhaustive exclusion set). Container objects that contain

exhaustive inclusion or exclusion sets are merely expedient containers of components.

Mixing incomplete or uncertain constraints

Now consider merging inclusion and exclusion sets that are either non-exhaustive partitions

or have “unknown values” in their value sets.29

Constraints, in expedient containers like the one above, may be linked to attributes in

different perspectives. Unlike the case above, when constraints were exhaustive and certain

29 If the constraining relationship does not specify the kind of constraint (inclusion/exclusion), then:

1 If the value set is exhaustive, but has “unknown” values in it, it implies we know how many distinct con-

straining values exist, but not what all of them are.

2 On the other hand, if the value set is non-exhaustive, it means we do not even know how many distinct

constraining values exist.
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(with no “Unknown” values), we could consider attaching several constraints to a single

attribute in the same perspective, provided the constraints are not contradictory – i.e., they

do not share values in their value sets. In this way, although we know we have incomplete

information, we can represent what we do know, and also what we do not know, or know

incompletely.

Consider what would happen if value sets of different constraints being combined did

have values in common. If inclusion sets had values in common, the two would merely

be merged via a set union, and there would be no problem in representing the combined

knowledge in a normalized form. The merger of exclusion sets would be similar. On the

other hand, if we imposed both inclusion and exclusion sets simultaneously on an attribute,

and the sets had one or more values in common (in their value sets), then we would have

a conflict. The attribute cannot be both permitted and barred from assuming the shared

value. This contradiction would happen, not because of any inherent contradiction in our

metamodel of knowledge, but because of the way we have stored our components in our

container. The container with mixed constraining sets has no place in our metamodel of

normalized knowledge. It can only be a storage mechanism – a physical “bucket” for storing

and locating various unrelated items of information.

Even though we cannot meaningfully aggregate conflicting inclusion and exclusion sets

and attach the aggregate to an attribute value in our metamodel,30 we can generalize the two

kinds of constraining relationships to assert that they both constrain attribute values, but not

what this constraint is (see box 28). Unlike the aggregate object of box 31, this generalization

would have a role in the metamodel of knowledge. The generalized relationship (object B in

box 28) asserts that we know that attribute values are constrained by values in the merged

set value set, but we do not know how – i.e. which are included, and which excluded. When

we break out the “constrain” relationship in box 28 (or figure 42(b)) into its exclusion and

inclusion subtypes, we will have this information.

Unlike conflicting inclusion and exclusion sets, we can use set union to merge generalized

constraining sets. Corresponding value sets of the merging constraints would be merged

via set unions to yield the value set of the merged constraint. Similarly, the “constrain”

relationships (object B in box 28) of the merging constraints would be merged via set

unions to yield the merged constraint.

If the merged constraint is exhaustive, we know that the corresponding inclusion and

exclusion sets are collectively exhaustive (the merged constraint is the natural home of

information of this information.) On the other hand, the inclusion set might be exhaustive,

but not the exclusion set, and vice-versa. However, if they are both exhaustive, then the

generalized constraint must also be exhaustive. Note that this does not necessarily apply in

the opposite direction. We could have an exhaustive generalized constraint, but might not

30 Inclusion and exclusion sets are mutually exclusive, disjoint sets. Their intersection (overlap) is the empty set ∅

of box 19, i.e., if constraints are in conflict, the perspective will not exist (another way of saying this is to say that

conflicting constraints cannot exist in any perspective) – a mathematically perfect assertion, but flawed in the

real world, where it is more likely that a mistake was made. If automated agents (see box 36) assemble systems

and business processes from components of knowledge, inclusion (exclusion) sets should not be merged solely

by the automated agent that attaches them to a perspective. Further, inclusion and exclusion sets must also be

validated against each other to ensure consistency.
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Figure 42 Metamodel of value constraint

always know which individual relationships of the constraint (the fibers inside the “tube” of

set B in box 28) are inclusion constraints and which are exclusion constraints. Corresponding

inclusion and exclusion sets would be non-exhaustive even though the generalized constraint

is exhaustive.

The irreducible fact, that the value set of a merged constraint is the union of value sets

of merging constraints, is represented by the recursive “union” relationship on value set in

figure 42(b). This relationship will be inherited by the two subtypes of value constraint –

exclusion and inclusion sets. Value sets in each subtype will be merged separately, resulting

in merged inclusion constraints that are distinct and separate from merged exclusion con-

straints as illustrated in figure 42(a). The injunction against merging inclusion and exclusion

sets ensures that this kind of merger will not happen in this partition or any other partition

of the value constraint. Every instance of value constraint will inherit this rule.

The merger of meaning and the metamodel of value constraint

Figure 42 is the model of value constraint. It is a model of what a value constraint means

and how this meaning is assembled from components of knowledge. Of course, the value

may be the value of an attribute as the fragment of the metamodel of attribute in figure 42(b)

illustrates. Figure 42(a) represents the basic concept, and figure 42(b) elaborates on it.

Figure 42(a) expands on the basic model in figure 38(b). It gives us a window into the

object (box) labeled “attribute value constraint” of figure 38. That object is identical to the

partition in figure 39 with the same name. “Attribute value constraint” has been abbreviated

to “Value constraint” in figure 42(a). Both refer to the same metaobject. As we will see later

in this book, value constraint may constrain not just attribute values, but values of domains

and other objects as well.

Figure 42(a) recognizes that value constraints may have parameters. Parameters are values

that have a role in describing the constraint. This is represented by a relationship between
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value and value constraint. There are two basic parameters of value constraints: members

of value sets and the limiting values of ranges. Thus, the “parameter of ” relationship is

an aggregate object that contains two relationships: “contained in value set” and “limit of

bound”.

Figure 42(a) also recognizes that constraints may merge. The recursive relationship in

figure 42(a) is identical to that in figure 42(b). Earlier, we understood that the merger of

attribute (value) constraints imply merger of corresponding value sets. Figure 42(a) also has

an injunction against merging inclusion sets with exclusion sets. It is a relationship between

inclusion set and exclusion set that reads “inclusion set may merge with zero exclusion set” –

a strange but mathematically precise way of saying that the two kinds of sets cannot merge.

It could have been said in several ways. For example, it would have sufficed to simply say

that inclusion and exclusion sets cannot merge. We used the syntax we did to emphasize that

relationships between objects are actually a kind of constraint – an occurrence constraint.

Relationships not only state how two or more object instances are related, but also how

many instances of one class may relate to how many of another.31 Relationships between

object classes will have lower (and optional upper) bounds on the number of instances of

the relationship that may exist at a moment in time. (This property, the range, is called the

cardinality32 of a relationship.) If the upper bound is zero, then the relationship is banned.

(The lowest possible lower bound is also zero. If the upper bound is not zero, but the lower

bound is, it implies that the relationship is optional, i.e. object instances in the class at the

source of the relationship may or may not be related to an instance of the relationship’s

target class.)

It is usually not necessary to show a relationship that cannot exist. However, in this case,

its subtypes (the inclusion and exclusion set in figure 42(a)) will inherit the recursive merger

relationship on value constraint, the supertype. We know this is okay – inclusion sets can

merge, and so can exclusion sets. We must not replicate this inherited relationship on the

subtypes. Replicating inherited information denormalizes knowledge – the rule has already

been stated once by the supertype and is automatically valid for subtypes. However, the

inherited relationship also leaves open the possibility that inclusion sets may merge with

exclusion sets, unless we specifically ban this. We know that inclusion sets cannot merge

with exclusion sets; hence we must have this relationship to bar the possibility of such

mergers. Therefore, this injunction adds, not duplicates, key information. The relationship

that carries the injunction will normalize, not replicate, knowledge.

Figure 42(b) is a window to the detail inside the value constraint object in figure 42(a).

Inclusion and exclusion subtypes of “constrain,” the relationship between value set and

value, have been omitted to avoid cluttering the diagram. Remember that they exist, but

are only hidden in the diagram. The structure inside the shaded area, consisting of bounds,

value sets and ranges, is the value constraint. It is an object with an internal structure.

Figure 42(b) is a metamodel that formally represents the rules we have discussed in this

section. Constrained values connect to the constraint via the constrain relationship. This

31 Relationships may also relate object instances in the same class. These relationships are called recursive (or

homomorphic) relationships. See Module V, section 1 on our website, isomorphism and homomorphism in

[240], [237], and the endnote on the theory of categories.
32 [202] and [206] discuss of cardinality, countability, and the theory of cardinal numbers.
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relationship has two subtypes: exclude and include (not shown in figure 42 to avoid clutter).

At first glance, it might seem strange that a value set might constrain no values. To understand

this, consider that value sets may be required for other reasons as well. Participating in a

constraint is only one role of value set. It is just a set of values and might be used in several

ways. It does not necessarily have to be bound to a constraint for its existence.

A range is a kind of value set. A range may have two bounds at most, and must have

at least one to be considered a range. Bound is an aggregate object with a structure too,

and this relationship between range and bound is identical to that in figure (b) of box 29.

Bounds may be partitioned into upper and lower bounds, and also open and closed bounds.

The relationship is inherited by each subtype of bound. These inherited relationships are

subtypes of the parent relationship as shown in figure 42(b). Only the inherited relationships

to upper and lower bounds have been shown. Similar inherited relationships to open and

closed bounds have been omitted to minimize clutter. Although they are hidden, remember

they exist. However, the cardinalities (i.e. the range(s) of instance level occurrences of the

object at the end of the arrowhead) of the supertype and subtype relationships are different.

This is okay. The subtype relationship need not inherit the cardinality of its supertype, but

cannot violate it.33 The cardinality of the subtype relationship must lie inside the range of

the supertype, or, at best, may equal it. The subtype relationships in figure 42 do not violate

the cardinality of their supertype.

Box 32 Cardinality, cardinality ratio, and object counts

When two objects are related, an object instance at one end of the relationship may be

tied to a single object instance at the other end, or to several of them. The number of

target object instances that a single object instance at the root of the relationship (the

beginning of the arrow in our diagrams) is tied to, is called the cardinality ratio of the

relationship. It is often abbreviated to cardinality. The population of object instances

is also called cardinality. The two are obviously different but related concepts that

measure the size of a class of objects. For example, at a given moment, there may be

ten instances of a relationship class with a cardinality ratio of 2. The cardinality of the

relationship object will be 10 at that moment in time, and the cardinality ratio of that

class of relationships will be fixed at 2 at all times. To avoid confusion between the two

meanings of cardinality, we will distinguish cardinality ratio from cardinality. We will

call the population of an object class its population or cardinality, and the cardinality

ratio by its full name, cardinality ratio, or abbreviate it to CR.

The “limit” relationship between bound and range is identical to those in figures (a) and (b) of

box 29. The limiting value of box 29 is a role of the object called ordinal or quantitative value

of figure 42(b). You could think of the limiting value of box 29 as being buried inside the

33 Subtypes inherit constraints from their supertypes. Therefore, constraints on subtypes may be more restrictive,

but cannot violate constraints inherited from supertypes. This is why any constraints on occurrence imposed

by the subtype’s cardinality ratio must lie within constraints imposed by the supertype’s cardinality ratio. If the

subtype’s cardinality ratio(s) is not the same as the supertype’s, the ratio must fall inside the range established

by the supertype’s cardinality ratio(s).



142 Creating Agile Business Systems

relationship from the ordinal or quantitative value object and bound in figure 42(b). Note

that the inverse relationship asserts that every bound must have at least one limiting value.

In figure (b) of box 30, the relationship between limiting value and value in range and

the containment relationship between value in range and range are related by an equality

constraint, i.e. neither relationship can exist without the other. This is also true in figure 42(b);

only, the containment relationship is inherited from that between value set and value. This

happens because range is a subtype of value set and ordinal or quantitative value is a subtype

of value. (Note that we could have replaced the object named “ordinal or quantitative value”

in figure 41 with “ordinal value” without impacting the behavior or meaning of “value

constraint.” We may do this because, as demonstrated in Chapter 4, quantitative values are

subtypes of ordinal values, and inherit their properties.)

The metamodel in figure 42 is a key fragment of the overall metamodel of knowledge.

Attributes, domains, and value sets tap into the knowledge in constraints through the con-

strain relationship (via the value object), and the value constraint taps into the knowledge

in other components of knowledge via the other relationships that link values to the objects

inside the shaded area of figure 42(b). The structure in the shaded area manifests itself as

constraints on real world values.

The “constrain” relationship is the key to value constraint. So far, we have only understood

its role in permitting or barring specific values. We have not discussed how it is the object

from which derived values and mathematical formulae also flow. To do so we must look

deeper into constrain, the relationship. Only then will we see that constrain possesses an

internal structure that normalizes meaning. This is what we will do next.

Derived attributes and relationships between attributes

The constructs we have discussed so far can normalize rules about many kinds of

constraints – some simple and others more complicated. However, the metamodel of attribute

(value) constraints is still not complete – there are important gaps left unfilled – gaps in

which many commonly found business constraints reside. Our metamodel has no place yet

for joint constraints, nor does it have room for constraints that involve ranking, arithmetic,

and other mathematical operations. In this section, we will fill these gaps and complete our

metamodel of attribute (value) constraint.

Joint constraints

A joint constraint is a rule that constrains attribute values based on the interaction or

conjunction of two or more attributes. For example, take a check – a check issued by a

business. It might require two signatures – both the CFO and the CEO might need to sign

the check before it becomes payable. The state of the check – whether it is payable or not –

depends jointly on two nominal attributes of the check – the CFO’s signature and the CEO’s

signature.

This too is a constraint, but it is a joint constraint between three items of information,

i.e. attributes of the check (an object) – the CEO’s signature, the CFO’s signature, and the
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Figure 44 A quantitative relationship relates check amount, monthly rental and energy charges

payability (i.e. validity) of the check. It is a three-way relationship between three attributes.34

We could also call it an interaction between three attributes. Unlike the value sets we have

discussed earlier, the value sets involved in joint constraints may contain values from several

domains [169]. Inclusion and exclusion sets will not, by themselves, normalize these kinds

of atomic rules (see figure (c) in box 33).

Magnitude constraints

A magnitude constraint is a limitation on the magnitude of an ordinal or quantitative attribute.

It is a special kind of joint constraint. A magnitude constraint conveys more information than

a nominal constraint of the kind in figure 43 does; it conveys information on the interaction

of magnitudes as well as the interaction of occurrences. Based on the principle of subtyping

by adding information (box 43), a magnitude constraint is a subtype of a joint constraint;

it implies the joint constraint and more. Note that a magnitude constraint does not have to

involve three or more attributes. It could also relate two attributes (as the value constraints

in our early discussion in Chapter 3, section 2 did). Overall, a magnitude constraint may

even be an information-rich subtype of a binary relationship between attributes.

34 Module V discusses normalizing knowledge with multiway relationships.
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Figure 44 shows an example of a magnitude constraint between three attributes. Assume

that the check is payment for two separate items, a flat fee for monthly rental of office space

and variable charges for energy consumption. We know that the check amount must equal the

sum of the month’s rental and energy charges. It is not just a three-way relationship between

check amount, monthly rental, and energy charge, but also a constraint on the magnitude of

check amount. The relationship dictates that check amount must equal monthly rental plus

energy charge. Inclusion and exclusion sets alone cannot express magnitude constraints like

this that involve mathematical operations – not even if they are constraints between merely

two attributes.

Naturally, the constraints on magnitudes of ordinal attributes will only be in terms of ranks

of values, whereas constraints on magnitudes of quantitative attributes may be in terms of

both rank and arithmetic. Further, other mathematical operations (all four kinds of attributes,

nominal, ordinal, difference, and ratio scaled), may be constrained in terms of existence of

specific values or ranges of values. We have discussed these kinds of constraints earlier. We

will call the rule that expresses what values may be excluded or included as a rule expression.

The inclusion set permits the constrained value to equal the result of a (evaluated) rule

expression. The exclusion relationship bars it. For example, in the example above, the

rule expression was “Monthly Rental + Energy Charge.” This expression was glued to an

inclusion relationship to create the joint constraining relationship from monthly rental and

energy charge to check amount.

Indeed, equations like check amount = monthly rental + energy charge serve as a kind

of attribute value constraint (see box 33). This is how the metamodel of knowledge provides

room for equations and inequalities too. Inequalities are rules about what may not equal

what. Like equations, an inequality would involve a rule expression, but, unlike equations,

the rule expression in an inequality would be attached to an exclusion relationship instead

of an inclusion relationship.

Rule expressions

Unlike the constrain relationship in box 28, the constrain relationships in figure 43 and

figure 44 consist of a rule expression and an inclusion/exclusion set. Such rule expressions

relate values to each other with formulae that may include arithmetic and higher mathe-

matical operators, ranking rules as well as the Boolean operators “or” and “and.” We will

call these kinds of constrain relationships rule constrain relationships. For example, the

rule expression in figure 43 involves the and operator, whereas that in figure 44 involves

addition, an arithmetic operation. Both constraints are rule constraints.

The logical operator “not” is provided by inclusion/exclusion sets. We could include it in

the rule expressions attached to inclusion or exclusion sets to make it convenient to express

a rule. Further, we can express every possible rule even if we restrict the expressions like

those in figures 43 and 44 to only or, and, ranking, and arithmetic operators, and judiciously

combine them with inclusion and exclusion sets. Indeed, when the rule expression contains

only or operators, the constrain relationship is identical to the kind in box 28. The simple

constraints are just special cases, or subtypes, of the more general constraint of the kind in

figure 45.

The rule expression lets us plug one (as in box 28) or several (as in figure 44) constraining

values to the constrained value to describe complex interactions. Both jointly constrain and
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Figure 45 A rule constraint is an aggregate object

constrain magnitude must involve rule expressions, and hence are subtypes of rule constrain.

Note also that these subtypes are not mutually exclusive; they belong to different partitions

of rule constrain: one is based on the number of attributes (and values) involved in the

rule, and the other is based on the operators in the rule. A constraining relationship that

involves a rule expression could be both a joint constraint and a magnitude constraint, like

the relationship in figure 44.

Statics versus dynamics of derived attributes

The state of the check in figure 43 was derived from the fact that the check had (or did

not have) both requisite signatures. Like the state of the check, adding the monthly rent

and the energy charge derived the amount of the check in figure 44. The state and amount

of the check were derived attributes of object class check. It is perhaps less obvious that

there is not one, but two separate aspects of derived attributes that we must consider in

order to normalize information about them – rules about the sequence of events that leads

to assigning a value to the derived attribute, and rules about constraints between attributes

that do not involve any time sequence:

1 Process rules

Processes normalize rules about sequences in time; “before-and-after” rules, for example,

rules like derived attribute(s) must precede the attributes they are derived from. Rules

like these that involve the flow of time are processes.

Many analysts would show these rules in black boxes (see Chapter 1, section 6). The

output of the black box would be the derived attribute, and its inputs would be the attributes

it is derived from. For example, in the case of the check that requires two signatures to

become payable, the inputs would be the CEO’s and the CFO’s signature and the output

would be the state of the check.

The rule is a process if it asserts that two individuals must sign the check before it

is paid. This sequence of steps in time is easier to visualize than a timeless rule, that

the presence, not the precedence, of the two signatures is sufficient to make the check

payable. Stated thus, the rule is a time independent relationship between three attributes.

In this section, we will focus on these non-temporal relationships between attributes.

Module V on our website discusses processes.
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2 Relationship rules

The mere presence of two signatures makes the check payable. Conversely, if we know

that the check is payable, we also know that it bears both signatures. This rule has little

to do with the flow of time. It is a rule about existence. Sometimes, analysts erroneously

call this kind of rule a process. This rule is not a process. Processes must involve the flow

of time.35 Relationships between attributes are repositories of atomic rules about how

attributes mutually constrain each other (see box 33).

Static rules represented by joint constraints and relationships between attributes are quite

common in business. For example:
� Percentages must add up to 100 is one such rule, a multi-way relationship between

individual percentages that many of us have frequently encountered.
� The duration of a process cannot be less than the duration of the longest subprocess in it

is another joint constraint between the duration of a process and that of its subprocesses.

In this case, the joint constraint sets the lower bound of the permitted range of the duration

of the process.
� The area of a rectangle is the product of the length of its sides is a three-way constraint

between the length of each side and the area of a rectangle. (In box 33 we will understand

how equations are a kind of constraint.)
� The height of a room cannot exceed the height of the building that contains it is a

relationship between the height of buildings and heights of rooms in it. More precisely,

it is a two-way relationship between the height of the building and an upper bound, i.e.,

the upper limiting value of the range of values for heights of rooms in it.

Box 33 Relationships between attributes, meanings, and expressions

(on our website)

Box 33 elaborates on the behavior and the structure of relationships between attributes

and the possibility of time dependent, non-stationary relationships, and constraints. It

discusses multiway, conjoined interactions, recursive interactions, rules, and the differ-

ence between a meaning and its expressions. It discusses, with examples, the mathe-

matical relationship between a meaning and its possible multiplicity of expressions.

Box 33 describes the impact of models articulated by the following figures:

Value A1 Value C1

(image of value A1)

RULE

DOMAIN

OF RULE

CODOMAIN

OF RULESET A

(set of all 

permitted values 

of attribute A)

SET C

(set of all 

permitted

values of 

attribute C)

INVERSE OF RULE

(a) A relationship between attributes is a mapping rule

35 The workflow that results in the check being signed is a process because it does involve the flow of time –

a sequence of activities in time derived from a non-temporal relationship by adding components to it. See

Module V, section 3 on our website.
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Figure 46 Intermediate rules for mapping object instances to object population

Implicit and intermediate rules

Relationships between attributes may be assembled into daisy chains. These daisy chains

become relationships in their own right.36 Indeed, these daisy chains may consist of values

linked together with value constraints. These values and value constraints would be sub-

sumed (i.e. become “intermediate results”) in the resulting relationship, and be irrelevant

to an external observer interested in the “whole” rather than its parts. (Those interested in

more information may refer to the endnote on lambda calculus.) The following examples

show how relationships can sweep through, and subsume other relationships.37

Enumeration

Consider the population of an object class again. From box 33, we understood how enu-

meration is a quantitative relationship between a nominal attribute of an object instance,

the instance identifier, and a quantitative attribute of the object class, the object population.

We can actually show this as two connected relationships.

Each instance identifier maps to the number 1, which in turn is summed. The mapping and

summation are two different atomic rules that have been glued to each other to result in the

enumeration rule.38 Each intermediate relationship is an irreducible fact, a component. The

enumeration relationship is a composition, a conjunction of objects (Module V, section 2

on our website), and an atomic rule. It consists of a sequence of relationships; this is not

necessarily a time sequence, even though it might be implemented thus in a computer system.

A non-temporal sequence is inherent in this aggregate relationship, a pattern.39 Enumeration

36 The glue in this case is a connective/associative operator like the “✷” and “✥” operators in the endnote on

gluing objects together. If the overall relationship cannot exist (is “null”) when any component object in it is

missing (i.e. is null), the connective is like the “✷” operator. It is like “✥” when a missing component results

in the resultant being equal to the remaining component(s). The behavior of the overall relationship depends

only on the sequence in which its components are strung together. It does not matter how we subdivide, or

group subsequences of objects within this sequence. Therefore, the connectives must be associative operators

(associative operations: see the endnote on theory of categories).
37 Module V on our website discusses compositions of relationships in detail.
38 The endnote on gluing objects together describes the kinds of operations that join objects.
39 See Chapter 4 on patterns and the endnote on gluing objects together. Rules may be rules of interactions

between values (attributes), or interactions between rules. Then the scope of the value set in figure (c) of

box 33 will increase: the value set would become a rule set, a generalized object that can contain both values

and rule expressions (a value set is a subtype, a special case of rule set that contains only values). Rules as well
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might be implemented by a counting procedure that involves a sequence of activities. That

would be a process. The aggregate rule in figure 46 does not care what instance identifier

is counted when, or in what sequence. It is an immutable and timeless rule used frequently

in the physical world – a static rule and a reusable component of knowledge.

Implied relationships and rule normalization

The existence of the two intermediate relationships in figure 46 implied the existence of

the enumeration relationship.40 If we simultaneously show all three, we will be replicating,

not normalizing, knowledge. Indeed, the existence of any two of the three relationships in

figure 46 (mapping to number 1, summing all mapped numbers and enumeration) implies

the existence of the third. Relationships like these are called transitive relationships. When

daisy chains of relationships are involved, the overall relationship between attributes at the

beginning and the end of the daisy chain may be considered a relationship in its own right.

We might or might not be interested in drilling down into the relationship to understand

its intermediate links. However, if we do, we must understand that, although the overall

relationship stands on its own, it is implied by the sum total of individual links in the daisy

chain and is a derived relationship between attributes. Asserting both overall and component

relationships independently will replicate, not normalize, knowledge. (Indeed, this is true

for any part of the daisy chain, as well as for the whole chain.)

Just as derived attributes exist in their own right, and relationships like those under magni-

tude constraints normalize rules of derivation, derived relationships too stand on their own;

intermediate relationships, like the individual terms of rule expressions, express the overall

relationship. Module V (on our website) discusses transitivity and derived relationships in

detail.

Sometimes mathematical formulae and algorithms are assembled from intermediate

terms, which may in turn be reused in other formulae and algorithms (see the examples in

rule the expressions of box 33). The property that lets relationships consist of other relation-

ships41 is the metamodel for this kind of reuse. In general, relationships between objects

can be aggregated simultaneously in different and distinct conjunctions (see Module V and

Module VI, section 2 on our website).

Polymorphism

Polymorphism is adaptation of behavior to its context. (Module V, section 4 has a more pre-

cise definition of polymorphism, and Module VI, section 2 describes its generalized form;

both on our website.) This means that generic behavior may be subtyped, depending on states

as values could then be parameters of the rule expression in figure (c) of box 33. The rule expression would

return either a value or another rule expression. Lambda (λ)-calculus (see endnote) supports this. Both values

and rules are generalized parameters of rule expressions, which may be parameters of other rule expressions.

See the endnote on λ-calculus or items in the bibliography on λ-calculus. Functional programming, based on

λ-calculus, is emerging in support of these concepts. See the endnote on functional programming or [242],

[254], and [306].
40 See transitivity of relationships in Module V, section 1 on our website and the endnote on “morphism” and

“Infix ring” in the “Theory of categories”.
41 See “Infix ring” in the theory of categories and λ-calculus in the endnotes.
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of other objects. These states are its context42 and the subtypes are special variations of

common behavior. The supertype normalizes common behavior, and the subtypes normal-

ize context-specific behavior. Together, they normalize variants of behavior. For example,

movement is a generic concept. Moving up, down, sideways, hopping, walking, crawling,

and other kinds of movement are subtypes of movement. Thus movement is polymorphic.

It depends on context.

Figure (c) of box 33 inherently supports polymorphism. The values in the value set of

figure (c) could be values of attributes. Several attributes may be attributes of the same

object. Value set may be a set of object states. The constraint on the value on the right-hand

side of figure (c) of box 33, the constrained value, might depend on states of other objects.

The constraint may be polymorphic. It depends on states of other objects, which are the

parameters of a polymorphic constraint.

Consider how the metamodel of enumeration in figure 46 can be polymorphic. If we

replace the first rule in the sequence so that we map each instance identifier to the number 2,

instead of the number 1, the conjunction would become the rule for counting by twos, instead

of the enumeration rule. This is a variant of the enumeration rule. We could generalize the

rule to map each instance identifier to a number “n” (that is identical for each instance).

Then specific subtypes of the rule would be rules for counting by ones, twos, threes, and so

on. Each subtype is based on a subtyping criterion, or parameter – the value of the number

“n”. This is an example of parametric polymorphism.

A parametrically polymorphic relationship has several variants, i.e. subtypes and is there-

fore “manifested in several forms” (see box 21). It applies to all values of the domain, not

just those assumed by attributes of specific objects, and will therefore be inherited by

all attributes that map to the domain (see the endnote on polymorphism in the theory of

categories).

Just as the enumeration rule can have variants, so too can other relationships between

attributes. Like any other object, relationships between values or attributes can be gener-

alized. These generalized components can be links of the daisy chain that comprise the

overall relationship. Since these generalized relationships may have several subtypes, so

too may the daisy chains that contain them.43 The subtypes of these generalized components

will be parameters in the daisy chain that reflect variations in behavior between subtypes.

Common components in the daisy chain will normalize behavior common to all variants.

(Those interested in more information on, and examples of, parametric polymorphism may

refer to parametric polymorphism in the endnote on theory of categories.)

Consider the enumeration relationship again. We could have made the mapping rule even

more general than we did. For instance, the mapping rule for instance identifiers need not

necessarily have to map to the same number. There could be complex rule expressions that

determined which instance identifiers mapped to what numbers. Eventually any relationship

can be generalized to merely assert that we know “some relationship” exists, but what it is

will be specified by parameters.44 So where do we stop generalizing? Indeed, this question

42 In programming terms, these objects are “parameters” passed to the relationship.
43 These generalized, conjoined relationships are λ-expressions. See the endnote on λ-calculus.
44

λ-calculus and functional programming generalize relationships and functions. See the endnotes.
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will apply not just to the rule for enumeration, but also to every relationship between

attributes or objects. Module V and the universal perspective, summarized on our website,

answers this question. Another book by the same authors, Agile Systems with Reusable

Patterns of Business Knowledge – A Component Based Approach [337], elaborates on this

theme.

Some relationships between values will apply to every value in related domains, and will

therefore be inherited by all attributes that map to those domains (see figure 35, figure 37,

and box 27). Variants of these relationships too will be inherited by every attribute that

maps to the domain. These are the variants (subtypes) that will be manifested as paramet-

ric polymorphism, i.e. polymorphism that depends only on parameters, not object classes

(see parametric polymorphism in the endnote on the theory of categories for an example).

In contrast, other constraints and relationships will apply only to attributes and states of

a specific object class. Inclusion polymorphisms are subtyped relationships that apply to

corresponding subtyped objects. That object could also be an attribute, which we know

is a special kind of subtype of a domain (see figure 35). Box 33 shows that relation-

ships between objects are special cases of relationships between attributes; it does not

matter whether the relationship applies to the instance identifier or some other feature –

both are instances of inclusion polymorphism. From box 21, we can appreciate how this

could happen (also see “Polymorphism” in Chapter 4, section 3; Module V, section 4 and

Module VI, section 1 on our website).

Recursion

Consider the enumeration rule again. The statement of the rule could read:

enumeration of 1 item = 1 and

enumeration of N items = 1 + Enumeration of (N−1) items

We have stated the rule in terms of itself, i.e. the rule is a term in its own statement. Like

the components in figure 46, the rule is also a sequence of terms (not necessarily a time

sequence – see the end note on gluing objects together) and the domain (figure (a) box 33)

of each term has a relationship with the domain of the preceding term. Rules like this are

called recursive rules (box 33). Recursive rules are subtypes – a special case of an object

composition – a conjunction of objects (see Module V, sections 1 and 2 on our website)

like figure 46. The aggregate is a recursive rule if it consists of a sequence of the following

kind:

1 the relationship must represent the conjunction of a sequence of like terms; and

2 each term in the series may be expressed in terms of the term before it.

Incomplete rules

As we saw under mixing incomplete or uncertain constraints, we might not always have

complete information on constraints that we know exist. The constructs in box 33 let us

represent not only what we know, but also what we do not, with a great deal of precision

and fine granularity.45 For example:

45
λ-calculus can normalize granular information with precision. See [307].
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� We might know two or more attributes are related, but we do not know how they are

related. The rule expression would then be “unknown” but values in the value set would

be values of attributes that we know are related.
� Knowing or not knowing which attribute values participate in a rule is different from not

knowing a value of one of those attributes at any given time. If it turned out that we did

not know the value of an attribute while executing a process, it could drive its value in

value sets to “unknown.”
� Sometimes we might have even less information. We might know the meaning of a

relationship, i.e. what must be calculated, but not how to do it, or even all the variables

involved. In other words, even if the rule meaning is known, both attributes and the rule

expression involved may be unknown.

There are numerous examples of this in the real world. For example, we might know

that exposure to advertisements will increase sales, but not how to compute the increase,

or even all objects and attributes that might be involved in predicting consumer behavior.

We can then accurately normalize our ignorance if we include the attributes we know

matter in a non-exhaustive value set and attach the latter to an “unknown” rule expression

(see Module V, section 2 on our website; the value of the rule expression is “unknown.”)
� If the co-domain of the relationship is a quantitative attribute, distinctions between what

we know and what we do not may be granular indeed.

For example, we might know that a mathematical formula relates the domain(s) of the

rule to its co-domain and we might even know that the relationship contains a quantitative

formula, and even know some, but not all the terms and operators in it.

We can then assign the “unknown” value only to items we do not know. Chapter 2,

section 2, under “don’t know” values describes why this will always result in an overall

“unknown” for the relationship.

The structure in figure (c) of box 33 would normalize, and accurately reflect, the state of

our knowledge, or lack of it, in the real world.46 The relationships between the attributes

allow us to represent degrees of incomplete knowledge with consistency and resilience, at

the appropriate level of granularity.

Rules about rules

Value constraints may also be constrained by other constraints. Constraints that govern

other constraints may change with the flow of time, events, and processes.

The order of a constraint

There are no injunctions against various values in inclusion and exclusion sets, like limiting

values and members of value sets, from being constrained by inclusion and exclusion sets.

These are called second-order constraints because they are restrictions that constrain other

46 Real-world chaotic phenomena almost always fall into this category of laws, in which we know the meaning

of an effect and often all involved attributes, but not how to calculate the outcome. See the examples in

[323].
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constraints.47 Indeed, there is no injunction against parameters (members of value sets and

limiting values) of second-order constraints, in turn being constrained by other inclusion and

exclusion sets, resulting in third-order constraints and so on. The metamodel of knowledge

thus makes room for “nth” order constraints, where “n” is a number that describes the order

of the constraint: 1 for simple inclusion and exclusion sets, 2 for second-order constraints,

3 for third-order constraints, and so on. Higher-order constraints are rules about rules.

Although these higher-order constraints are complex and infrequently used in business

models, the metamodel of knowledge can cater to them if and when they are needed – as it

must.

Stationarity of constraints

Effects of events might change constraints. Constraints could also change or evolve spon-

taneously (see spontaneous state change in Chapter 2, section 2.) Constraints that change

or evolve in time are called non-stationary constraints. The processes that change them are

rules about rules, and are higher-order constraints that govern other constraints. When spon-

taneous change is involved, the rule expression of non-stationary constraints will involve

time dependent terms. Constraints that do not depend on time or the tide of events are called

stationary constraints (see box 33).

Constraining state space

Each constraint we have discussed is the repository of an atomic rule. As we saw in Chapter 2,

section 2, a set of constraints can limit the lawful state space of an object. This set is an

aggregate object – a container or bag of atomic rules. The bag contains and constrains

the state space of the object(s) involved via constrained attributes. Each atomic rule in the

bag shapes an edge or boundary of an object’s lawful state space. Indeed, if one or more

constraints in the bag are non-stationary, the state space of the object will evolve and shift

with the time and tide of events.

When these bags merge, so do constraints in them. Merged constraints must conform to

the rules and injunctions described in the section on merging inclusion and exclusion sets.

Subtypes of objects inherit the bag of constraints from their supertypes.48 Constraints on

subtypes may be more, but not less restrictive, than the constraints on supertypes because

a subtype may not violate the constraints on its parent. Constraints restrict the lawful state

space of an object, and if constraints on the subtype are more restrictive than the subtype,

the lawful state space of the suptype will fall inside the boundaries of the lawful state space

of its parent. Thus, subtypes must always stay inside, or at the boundary of the facets of

lawful state space they inherit from their supertype(s). Therefore, if a subtype has more

restrictive constraints than its parent, constraint(s) inherited from the parent can become

redundant for the subtype in much the same way that a range inside a range makes the

47 The endnotes on n-morphisms and n-categories under the “Theory of categories” generalize governance of

rules by rules. [174] has more information.
48 Subtypes inherit all constraints on the supertype if we exclude variation inheritance. Factoring of components

is usually easier without variation inheritance. See variation inheritance and refactoring in the endnotes.
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outer range redundant. For example, we know that the height of a cubicle cannot exceed

the height of the building it is in. Now if we divide the building into rooms, we will have

an additional constraint that the length of a cubicle cannot exceed the length of the room it

is in. We also know that the length of the room cannot exceed the length of the building.

So, the earlier limitation on length – that the length of the cubicle cannot exceed that of the

building – becomes redundant.

When constraints on subtypes involve inclusion or exclusion sets, bounds and ranges,

we can eliminate redundancy as described in the subsection on combining inclusion and

exclusion sets. When constraints are more complex, lambda calculus (see endnote) can help

to simplify rule expressions and to eliminate redundancy.

The integrated metamodel of value constraint

Consider how constraint is not only an aggregate object, with a structure (object composi-

tion), but also a recursive relationship. In figure (c) of box 33, a sequence of objects and

relationships related the value (object) on the left with the value (object) on the right. The

two value objects represented the same object class. They had been shown separately only

in the interests of diagramming clarity. The sequence loops back on value as illustrated in

figure 47. This represents a recursive relationship. This relationship expresses the irreducible

natural law that values may constrain values in the real world via rules that might involve

one or more (attribute) values. This relationship is the backbone of value constraint, shorn

of bounds and partitions, simplified to show only its core.

The recursive relationship in figure 47 shows the daisy chain of objects that it contains.49

Like the enumeration relationship in figure 46, the aggregate is the overall result of inter-

actions between components glued end-on-end. The “constrain” relationship of figure 42

(and figure (c) of box 33) is identical to the part of the recursive relationship in figure 47

that loops forward from the broken line between value set and expression of rule. The con-

tainment relationship in figure 42 (and figure (c) of box 33) is identical to the containment

relationship in figure 47.

The glue that binds components of value constraint into the loop in figure 47 is a connective

like the “✷” operator in the endnote on gluing objects together. Like the expression in the

endnote, the overall recursive constraining relationship cannot exist (is “null”) even if one of

the objects in it is missing, i.e. is null. The connectives are also associative operators, as they

must be when relationships are linked in chains to produce aggregate objects that are also

relationships. (See the endnote on gluing objects together for the meaning of connectives,

and the endnote on the theory of categories for the meaning of associative operations. The

subsection on implicit and intermediate rules describes how relationships may be aggregated

to result in new and different relationships.)

Figure 48 expands on the loop in figure 47 to show additional detail. It adds the detail

in figure (c) in box 33, and also shows how the co-domain of the relationship in figure 47

interacts with rule expressions via inherited components.

Figure 48 explicitly shows that, like the inherited “manufacture” relationships in box 21,

inherited relationships between rule expressions and values are (inclusion) polymorphic.

49 This is the same loop as that from value to value set to value via the containment and constraining relationships

of figure 42(b).
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Figure 47 Constrain is a recursive relationship

Although rule expressions, in general, link to constrained values via include/exclude rela-

tionships, the figure makes it explicit that quantitative values may be constrained by Boolean,

ordinal, and the full range of arithmetic rules, whereas ordinal values may only be con-

strained by ordinal or nominal rules. Restrictions on nominal values are even more severe.

They may only be constrained by nominal rule expressions.

Note the use of exclusion partitions in subtyping rule expressions in figure 48. The

general rule expression is the set of all possible rule expressions – those with the full

range of terms, arithmetic, logical, and ranking operators, or any combination of these.50

The subtype (subset) immediately under it excludes all arithmetic and higher mathematical

operators as connectives between terms (note that these operators may exist inside individual

terms of the rule expression).51 That implies that these rule expressions will have only

ranking (sequencing) operators and Boolean operators (“and,” “or,” and “not”). Only rule

expressions with ranking or Boolean operators (or both) may connect to ordinal values. It is

50 Variation inheritance and inclusion polymorphism occur because the rule expression object class was defined as

the union of all rule expressions, not as the generalized intersection of common properties of rule expressions.

In variation inheritance, subtyping is based on exceptions, i.e. set differences (see box 21 and the endnote on

“Kinds of inheritance”).
51 For example, (A + B = 5) or (A − B = 5) is a Boolean rule. It must have Boolean connectives, but its

individual terms, A + B = 5 and A − B = 5, have arithmetic operators inside them. Note that each term is

also an equation – a kind of value constraint (see box 33).
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Figure 48 Metamodel of “rule constrain”

a subset of the more general set of rule expressions obtained by taking away the set of rule

expressions with arithmetic (and other higher mathematical) operators from the (general)

set of all rule expressions.52

Similarly nominal rule expressions are a subset of rule expressions that contain only

terms with Boolean operators (and, or, not).53

This is the internal structure of “constrain,” the relationship between value set and value

in figure 42. It is also the relationship going forward from the broken line in figure 47.

Figure 49 juxtaposes and integrates this information.

Just as constrain is an aggregate object with an internal structure, bound in figure 42 has

an internal structure. It is the structure in box 29. Together, figure 42, figure 48 and the

metamodel of bound in box 29, constitute the integrated metamodel of value constraint.

Figure 49 integrates and juxtaposes all three metamodels. It represents the integrated meta-

model of value constraint. This metamodel is a key fragment of the integrated metamodel

of Module VII on our website.

52 Since the subtype was obtained by taking away some rule expressions, from the superset of (all) rule expressions,

the rule expression subtype does not inherit all terms from its supertype (see set difference operations in box

19). It excludes the terms that were taken away (see box 21).
53 Subtypes like these were discussed in box 21.
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Figure 49 Integrated metamodel of value constraint
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The integrated metamodel of value constraint applies not only to attribute values, but

also to domains. Domains are those shadowy containers of meaning that govern values,

attributes, and measurement as they anchor the existence of objects. In the next section of

Chapter 3, we focus on the interaction between domains, attributes, and objects from which

the meanings of attributes flow. Names express meanings. The next section will cover how

attribute names, meanings, and expressions all converge in the metamodel of knowledge, a

fountainhead of meaning.

For in and out, above, about, below,

‘tis nothing but a magic shadow show,

Play’d in a box whose candle is the sun,

Round which we phantom figures come and go.

(From the Rubaiyat of Omar Khayyam)

3 Naming and expressing attributes

Naming conventions for attributes have often been a topic of heated debate among practi-

tioners. It might therefore be worth noting that attribute names emerge naturally from the

metamodel of knowledge. This happens because natural names reflect the meaning of the

attribute and the metamodel of knowledge is the repository meaning. It follows that natural

names will flow from its structure.

Let us start with the OAV model. True, it is an oversimplification that omits vital detail,

but it is only our first step. It will make it easier to comprehend how names flow from the

detail in figure 35 if we add detail a step at a time.

Naming a meaning

The meaning of an attribute is manifested in the metamodel by the structure in figure 34. It

reflects the fact that every attribute is an overlap between an object and a domain.

Let us start with a very simple case – when a domain intersects an object only once.

The intersecting object class and domain can then uniquely identify the attribute. Therefore

the attribute name will consist of the object class and the domain name pair. In fact it is

the object class and domain name sequence.54 The following examples show how this

happens.

Take the length of a string:
� the object class is string
� the domain is the length domain

Consequently the natural name of the attribute is string length.

Take a person’s weight:
� the object class is person
� the domain is the weight domain

54 The object name may also be in possessive form; the attribute names in the three examples could read string’s

length, person’s weight, and car’s color respectively. This is also consistent with the structure of attribute.
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Consequently the natural name of the attribute is person weight (if we had used the footnote

variant of the naming rule, the attribute would have been called person’s weight).

All nominal domains are subtypes of a domain that may be called the type, class, or

category domain. Type, class, and category are synonyms. Sometimes subtypes of the type

domain have specific names, like the color, gender, or language domains. However, they

are often unnamed. If the nominal domain has no specific name, we may name it type, class,

or category. It does not matter which. Logical names will flow from all three.

For example, a manufacturer of cars might categorize the products into sedans, hatch-

backs, and SUVs. Then:
� the object class is car
� the domain is the type domain

Consequently the natural name of the attribute is car type.

Not all ordinal domains are named. When an ordinal domain has no specific name, we can

call it the rank domain, because, like all nominal domains are subtypes of the type domain, all

ordinal domains are subtypes of this rank domain (in contrast the color preference domain

in Chapter 1, section 3 was a named domain). For example, take titles in a hierarchical

medieval plutocracy. We know that some titles were more exalted than others: King was

greater than Earl, but level with Caliph. What do we call this hierarchical attribute of title?

The naming rule would assert:
� the object class is title
� the domain is the rank domain

Consequently the natural name of the attribute is title rank.

Now let us consider an intangible object – a concept – insurance coverage. Insurance poli-

cies provide coverage against various perils and contingencies. Thus insurance coverage

is an object. It protects us (financially) from various perils. Individual insurance policies

consist of insurance coverages we have elected to include, and others that the insurance

company might be obliged to offer. Many kinds of coverage that insurance firms offer their

customers have been standardized by ISO, an insurance organization,55 for rating (pricing)

purposes. These standard classes of coverage are called ISO classes by the insurance indus-

try. Thus, one attribute of coverage is its ISO class code. What domain does this attribute

map to?

ISO Class is a classification scheme for coverage. No magnitudes or ranking are

involved.56 Therefore the attribute must map to a nominal domain. The naming rule for nom-

inal domains would suggest that calling this attribute insurance coverage class, insurance

coverage category, or insurance coverage type. Some readers might find these names logical

but intuitively ambiguous. You are right, dear reader – even if logically precise, these names

are ambiguous (and verbose for another reason we will discuss soon) because the behavior

of all but the simplest business systems is complex. Most objects may be categorized and

subtyped in several different ways to represent complex behavior. Indeed, there are other

55 Insurance Services Office, Inc. (ISO) is the leading supplier of statistical, actuarial, and underwriting information

for the property/casualty insurance industry in the US.
56 ISO classes will help rate the coverage. Rate maps to a ratio scaled domain, not the ISO class. The ISO class

only categorizes the coverage.
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Box 34 Identifying domains

Identifying the domain an attribute maps to usually follows from common sense. How-

ever, the following flow chart establishes a formal process that will identify the kind of

domain the attribute emerged from. Remember domains of derived attributes may be dif-

ferent from domains of attributes they were derived from. Therefore, derived attributes

too must go through this process independently, as must those they were derived from.

Yes
E.g.: policy premiums

Is the attribute a basis, or 
potential basis, for 
creating mutually 
exclusive entity subtypes? 

No

may be ordinal, difference, or ratio scaled

Can the values
of the attribute be arranged
in a natural order from least to most?

#2

and may be difference or ratio scaled

Can attribute values be 
meaningfully subtracted?

#3

The attribute is at least difference scaled,
and may be ratio scaled

A nominally scaled attribute

An ordinally scaled attributeNo
E.g.: color preference

No
E.g.: policy 
effective date

No
E.g.: color of car 

Are attribute ratios meaningful?#4

#1

A difference scaled attribute

#2

The attribute is at least ordinally scaled,Yes

Yes   

A ratio scaled attribute

#3

#4

The attribute is at least nominal scaled, andYes

#1

STOP

May be 
“fuzzy” 
concept
rethink

This flow chart analyzes attribute domains, not expressions of attributes (see box 35).

When we consider expressions of attributes, differences in units of measure and formats

might suffice as the basis for subtyping in step 1. This can pose a problem because formats

and units of measure are not domains. In legacy systems, attributes are typically not

separated from their expressions. Therefore, before we can use the flow chart, attributes

must be stripped of units of measure and formats (and coding schemes) to extract the

essence of their meaning. Expressions of attributes are objects in the business process

automation layers of figure 15, or in the implementation layer of figure 16. Stripping

them of formats and units of measure is one way we “generalize” attributes as we

normalize knowledge or refactor software (see the endnote on refactoring).

classification schemes for coverage. ISO class is only one of several ways we can classify

insurance coverage. insurance coverage class and its synonyms are therefore ambiguous.

They do not say which classification scheme we mean.

This example demonstrated how, in all but the simplest systems, it is very likely that

the type domain will intersect the object not once, but several times – one intersection for

each category or partition. When this happens, the object name – domain name pair – alone
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cannot identify the intersection of the domain and object we have picked. We must qualify

which intersection we mean when we pick an attribute. In this case the qualifier is ISO.

The attribute is therefore insurance coverage ISO class. Clumsy and verbose? – Yes, but

logically precise.

Why ISO class? Why not ISO type or ISO category? The answer is simple – ISO class is

correct because that is the convention. When we restrict our context to insurance products,

insurance coverage is redundant because it is implied. We can drop the clause insurance

coverage. This too is convention. Convention usually does not clash with logic – it only

limits the “correct” choice of name from several possible logically correct synonyms and

constructs. However, this is not consistently true – sometimes this alignment between con-

vention and logic may only be partial, and, occasionally, convention and logic may even

clash. Let us see how this happens:

Take the color of a car. Logic and convention go hand-in-hand when we consider only

the body of the car:
� The object class is car
� The domain is the color domain

Consequently the natural name of the attribute is car color.

Let us now consider the case when a domain intersects an object not once, but several times.

When this happens, recognizing only the intersecting pair – the object class and domain –

cannot uniquely identify the attribute. We must now qualify which intersection we mean. We

need a qualifier. The qualifier is the aspect of the object we are interested in. For example,

we might be interested in the color of the dashboard of the car as well as its body. Then

one attribute of car will be the color of its dashboard and the other would be the color of its

body. Take the color of the dashboard first:
� The object class is car
� The qualifier is dashboard
� The domain is the color domain

Consequently the natural name of the attribute is car dashboard color.

Now take the color of its body:
� The object class is car
� The qualifier is body
� The domain is the color domain

Consequently the natural name of the attribute is car body color.

Of course, in English, we can leave the word “body” out – it is implied. Car color would

do just as well. Every language has its own rules, conventions, and peculiarities that are not

always logical. Many things can be implied or understood by convention, and conventions

differ between languages, but car body color is the logically correct and mathematically

precise name of the attribute. It expresses exactly what the attribute means and does not

depend on any quirks of English or any other language.

Although in this case car color would do, and car body color might sound a trifle verbose,

it is not bizarre. However, sometimes convention clashes with logic with more drastic results.

Blindly using the object name, qualifier, domain name sequence to name an attribute (or,

if only one intersection is involved, the object name, domain name sequence) can result in

logically correct, but bizarre, and even amusing names.
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For example, take a person’s height. The object class is person, and the domain, length.

Consequently the logical name of the attribute is person length. English demands that we

call it “height” instead of “length,” even if the individual lies down, but there are other

languages that demand we call it “length,”57 even if the individual stands up! If you did

not speak English, you might have felt person length was better syntactically than person

height. To you, the English name would have sounded bizarre.

Quirks and inconsistencies of language can be even stranger. Take the length, breadth,

and height of a room. They are all attributes of an object class called Room. Room width

length, room length length, and room height length are three examples of logically sound

but syntactically strange attribute names. Convention in English dictates that we know that

attributes with the words “width,” “height,” and “length” must always map to the length

domain, and we must not be explicit about the fact. Adding the domain name, length, is not

only redundant, but also incorrect in the English language.

In the examples discussed so far, both logical and conventional English names have been

clear. The conventional English name has been either identical to the logical name, or a

syntactic improvement on that name (an arguably subjective view point of proponents of

English). However, there can be occasions when ambiguities of languages can be even

stranger and only logic can lead to clarity.

Take the length and width of a square. Which side is its length and which its width? There is

no convention to guide us. Two different individuals might talk about doing different things

to the different sides of a square shaped playing field, each may call his or her side the

“length,” and not know that the other person is interpreting it as the side(s) he calls “width.”

Processes and automation sometimes demand tremendous precision and speed. For this,

they need complete clarity. There may be little scope for human intervention or corrections

after the fact. Ambiguity can be intolerable in such situations and a logically precise name

will definitely help.

In the high noon of the knowledge economy, in a world of global commerce and seamless

integration of automation of unprecedented complexity and scale, the need for multilingual

support, translation, and cross-cultural collaboration can only increase. We stand at the dawn

of this era. The demand for diversity of names will grow, not shrink. The structures in figures

29 and 30 can link homonyms and synonyms of departments, divisions, and corporations

to a hub in order to facilitate collaboration between them; they can also link syntactically

sound names of attributes in different languages to their logically sound universal name to

facilitate large-scale, global, and cross-cultural collaborations.

Meaning versus expression

September 17, 2001 – MSNBC news item – “Standards Body pushes accessibility –

proposed guidelines would help disabled use the web:

Advancing its initiative to make the Web more accessible to people with disabilities, a major stan-

dards body [The World Wide Web Consortium (W3C)] has issued guidelines for designing browsers,

57 Hindi, the predominant language in Northern India, is one such language.
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multimedia players and other Web-based user interfaces . . . making the Web accessible becomes an

increasingly urgent task. Federal Web sites must conform to Section 508 . . . requires technology pro-

cured by the federal government to be accessible to people with disabilities . . . improve accessibility

for color-blind people . . . devices such as screen readers.

Industrial strength global systems, which flex with the global economy in support of a vast

and diverse global society driven by rapid advances in technology, must manage meaning

in harmony with meaning’s diverse expressions. Indeed, the need to recognize multiple

names of an attribute can become imperative when we step beyond the OAV model. This

imperative flows not from the peculiarities of any language; rather it flows from reasons of

pure logic – that several distinct and different expressions can manifest the same meaning

in the real world. Therefore, to normalize meaning, we must divorce it from its expression.

We have done this in box 35. There we have stepped beyond the bounds of the simple OAV

model and recognized that attributes not only have values, but may have several formats

and units of measure as well. These considerations must impact expression of attributes

because they too are parts of its structure.

Quantitative attributes

Quantitative attributes not only have formats, but also have units of measure. To understand

the impact of units of measure, let us return to the example of a person’s weight. A person’s

weight is an attribute of person that maps to the weight domain. The weight domain is a ratio

scaled domain. Therefore a person’s weight may be expressed in several units of measure.

Person weight was the name derived from the simple OAV structure in figure (a) of box 27.

Box 35 elaborates on it to show how person weight can involve several units of measure

and formats. We know a person’s weight could be simultaneously expressed in kilograms

and pounds. Expressed in kilograms, we would call (the expression of) the attribute person

weight in kilograms; and, expressed in pounds, the expression would read person weight in

pounds.

The object name, qualifier (if more than one attribute maps to the domain), domain name,

unit of measure sequence results in the logical name of the expression of a quantitative

attribute, provided we insert the word “in” between the domain name and unit of measure.

The object name and domain name must always be singular, and the unit of measure must

be plural.

The following examples demonstrate this rule.

A person’s weight in kilograms:
� The object class is person
� The domain is the weight domain
� The unit of measure is kilograms

Consequently the natural expression of (the attribute) person weight is person weight in

kilograms.

A person’s weight in pounds:
� The object class is person
� The domain is the weight domain
� The unit of measure is pounds
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Consequently the natural expression of (the attribute) person weight is person weight in

pounds.

Similarly, the length of a string would be expressed as follows:

Length of a string in feet:
� The object class is string
� The domain is the length domain
� The unit of measure is feet

Consequently the natural expression of (the attribute) string length is string length in

feet.

Length of a string in meters:
� The object class is string
� The domain is the length domain
� The unit of measure is meters

Consequently the natural expression of (the attribute) string length is string length in

meters.

The rule applies even when convention clashes with logical precision. For example, as

long as we defer to the English convention of calling the length of a person his or her

height, the rule yields syntactically correct English expressions for names for a person’s

height in any unit of measure. The expression of the attribute would be person height in

meters, person height in feet and person height in inches when the units of measure are,

respectively, meters, feet, and inches. (Exercise: How do mixed units in expressions like “5

feet 6 inches high,” fit this framework? Hint: See the discussion under Patterns of symbols,

patterns of objects in Chapter 4.)

Box 35 The many faces of meaning

Is person weight a single attribute or several? Does each expression of person weight,

like person weight in kilograms and person weight in pounds qualify as a separate

attribute? These questions arise when we recognize the inherent multiplicity of domains

and formats in which the innately unique meaning of an attribute can be expressed. Is

the unique meaning the attribute (i.e., the object–attribute pair), or is each expression

of the object–attribute pair an attribute? Most state-of-the-art software (programming

languages, database management systems, CASE tools, and process design tools) does

not address this question, because it does not recognize that a single meaning can

have multiple expressions. Indeed, this is one of several reasons why unmanaged and

chaotically replicated denormalized knowledge exists in our processes and systems.

In this book, the meaning will be called attribute and its expression will be called

expression of the attribute. Person weight is an attribute and person weight in pounds

is its expression. However, readers should keep in mind that most software platforms,

such as modeling tools and database management systems, will call each expression of

meaning an attribute and may replicate the “true attribute” in each distinct expression.

As new systems design techniques evolve, technologies will also evolve in step. We hope

that emerging implementation technology will contain the “hooks” to better incorporate

the ideas that we have proposed in this book.
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Although the current state-of-the art may not support it, the metamodel described in

this book is the blue print we have envisioned for the near future. This blue print will

help leverage information and knowledge assets effectively as systems are upgraded

over time. We can normalize knowledge if we follow the metamodel, and we can build

knowledge artifacts that will normalize components of business knowledge using that

metamodel. After all, our intent in the new paradigm is to store normalized knowledge

in an electronic repository and to configure business processes and software from them.

The multiplicity of ways in which a quantitative attribute may be expressed is compounded

further when we consider that each attribute’s expression in a unit of measure can, in turn, be

expressed in several formats. For example, the expression person weight in pounds must be

elaborated further before it can be tangible in the real world. In the real world, person weight

in pounds may be expressed in digits, printed words, spoken words of several languages

and scripts, images of various kinds such as bar graphs and dials. These are all formats.58

Formats too are objects and can have subtypes, and each subtype would add a qualifier

to the name of the format. For instance, if person weight is expressed in written words

(as opposed to numerals or spoken words), it might be in English or Japanese. Similarly,

if it is expressed in numerals, it could be in Arabic, Roman, or other numerals. Thus, if

person weight in pounds is expressed in written words, the expression of the attribute would

become person weight expressed in written words. Written words is the format in which

the attribute is expressed. If we further subtype the format to specify that it is Japanese

words we are using, the name of the expression would become person weight expressed in

written Japanese words; the qualifier “Japanese” must be added to the name of the parent

format. In the same way, if person weight were expressed in Roman numerals, the full

expression of person weight in pounds would read person weight in pounds, expressed in

Roman numerals. The clause “expressed in” is inserted between the unit of measure and the

format to describe the complete expression. Through its complete expression, the attribute

is manifest and tangible in the real world. For this reason, we call this complete expression

of the attribute, its tangible expression.

The rule is that the object name, qualifier (if more than one attribute maps to the

domain), domain name, unit of measure, format sequence, results in the logical name

of the tangible expression of the attribute, provided we insert the word “in” between

the domain name and unit of measure and the clause “expressed in” between the unit of

measure and format name. The object name and domain name must always be singular,

and the unit of measure must be plural.

The following examples demonstrate this rule:

Take the length of a string in feet. A business process might demand that this length be

stated verbally in English:

58 Domains and units of measure structure quantitative values in the real world. Formats map reality to information

systems. Formats therefore belong to the interface rules layer of figure 15. See the discussion on differences

between domain and format in Chapter 4.
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� The object class is string
� The domain is the length domain

Consequently the attribute name is string length
� The unit of measure is feet

Consequently the expression of string length in feet is string length in feet.
� The format is English speech

Consequently the (natural name of the) tangible expression of string length is string length

in feet, expressed in English speech.

Instead of spoken words, if we had required the string length expressed in numbers, its

tangible expression would have been different, but not the meaning of the expression:
� The object class is string
� The domain is the length domain

Consequently the attribute name is string length
� The unit of measure is feet

Consequently the expression of string length in feet is string length in feet.
� The format is numeric digits

Assume that the default state of the domain of numeric digits is western script. However,

it is worth bearing in mind that there could be several other subtypes of numeric formats,

based on non-western scripts (such as the Devnagri script of India, which uses a different

script, but the decimal system to express numbers) or even non-decimal number systems

like the still widely used system of Roman numerals.

Consequently the (natural name of the) tangible expression of string length is string

length in feet, expressed in numeric digits.

As described earlier, English convention can sometimes clash with logic in the naming

of attributes. If this happens, these syntactic clashes will be carried forward to the names

of expressions of these attributes as well. For example, take the total distance traveled by

a car. Assume that an automated system must state this distance in miles and express it in

English speech. Then:
� The object class is car-travel59

� The qualifier is total
� The domain is the length domain
� Consequently the attribute name is car-travel total length (instead of total car-travel

distance)

Although most of us are so used to English that we do not need to consider English grammar

and convention consciously when we express ourselves, it is not difficult to realize that this

syntactically awkward attribute name is logically sound.
� The unit of measure is miles

Consequently the expression of the attribute name is car-travel total length in miles (instead

of total car-travel distance in miles)
� The format is English speech

59 Some readers might ask why car-travel, not car alone, or travel by itself is the object in question. Module V,

section 1 has the answer.
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Consequently, the (natural name of the) tangible expression of car-travel total length is car-

travel total length in miles, expressed in English speech (instead of total car-travel distance

in miles, expressed in English speech).

Usually the choice of format is specified or constrained by business process automation

(see “The architecture of knowledge” on our website), whereas the unit of measure depends

solely on business convention and process design. Note also that the format is not necessarily

restricted to formats of real-world expression. Formats can mean formats of data internal

to technology platforms, such as jpeg or bitmap formats for graphics, ASCII or binary

formats for characters and numbers. However, this book focuses on business processes and

requirements. Formats in the technology layer of figure 15 are beyond the scope of this

book.

There may be many variants and a huge diversity of users of large-scale business systems

in a global environment. Components may be reused in widely diverse contexts for diverse

processes. Expressions and attribute names will be used not only by groups that administer

the repository of knowledge artifacts and those that configure systems or business processes

with them, but also by users of systems in diverse contexts, cultures, and languages, each with

its own conventions. They may need help files, explanation, training, and other descriptive

information. This information must therefore be rendered in equally diverse ways to be

clear, succinct, and precise. Clear, succinct, and precise rendition is important because it

is the key to rapid, effective, and reliable utilization of new systems and processes. Rapid

ramp up is vital in an environment of continual change under intense competitive pressure.

These diverse renditions can be hard to manage unless we underpin them with a logical

hub of the kind in figures 29 and 30. It will not matter if this hub, hidden from users, is

verbose or clumsy in some language or context, as long as it is unique, precise, logical,

and complete. If it is unique, precise, and complete, it will facilitate accurate, timely, and

syntactically elegant renditions of information in diverse environments. Thus, all rendi-

tions can be tied to a unique, precise, and complete expression, which in turn can, with

the metamodel in figure 35, be tied to unique, precise, and complete meanings of these

expressions.

Qualitative attributes

Qualitative attributes have no units of measure, but they do have formats. Consequently,

naming tangible expressions of qualitative attributes is similar to, but simpler than, naming

tangible expressions of quantitative attributes. To express qualitative attributes, all we must

do is drop the clause for unit of measure, because units of measure are meaningless to

qualitative attributes. The rule for naming tangible expressions of qualitative attributes is:

The rule is that object name, qualifier (if more than one attribute maps to the domain),

domain name, format sequence, result in the logical name of the tangible expression

of the qualitative attribute, provided we insert the clause “expressed in” between the

domain name and format name.
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The following examples demonstrate this rule. Take the color of a car again. Like the

example on the length of a string, the color may be expressed by automation in spoken or

written words, or just a colored shape, say a bar. Take spoken words first:
� The object class is car
� The domain is the color domain

Consequently the natural name of the attribute is car color
� The format is English speech

Consequently the natural name of this expression of car color is car color expressed in

English speech.

Take written words next:
� The object class is car
� The domain is the color domain

Consequently the natural name of the attribute is car color
� The format is English writing

Consequently the natural name of this expression of car color is car color expressed in

English writing.

Take the colored bar next:
� The object class is car
� The domain is the color domain

Consequently the natural name of the attribute is car color.
� The format is colored bar

Consequently the natural name of this expression of car color is car color expressed in

colored bar.

Take the gender of a person. It may be coded in numbers, say 1 for male and 2 for female,

in letters, say M for male and F for female, or expressed in words, “Male” and “Female.”

These codes are not gender, but merely represent gender in information systems (manual or

automated – it does not matter which). Therefore, they are not only codes, but also formats

of gender.

Let us call the first format digits (we could just as well have named it the 1 / 2 code, or

anything else that captures its meaning), the second format letters (we could just as well

have named it the M/F code) and the last format written English word (to distinguish it from

English speech format). Then the expressions of gender would be derived as follows:
� The object class is person
� The domain is the gender domain

Consequently the natural name of the attribute is person gender (or person’s gender if we

use the variant in the footnote on the naming rule for attributes).
� When the format is:

digits, the expression would be called person gender in digits;

letters, the expression would be called person gender in letters;

written English word, the expression would be called person gender in written English

word.

Formats are objects too, and may be partitioned, subtyped, and aggregated. This can give

us a rich repertoire for expressing meaning in multiple media, in different languages and
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character styles such as fonts, colors, codes. However, we will defer that discussion to

Chapter 4.

Attributes emerge from domains and are expressed by formats. Domains anchor mean-

ing, measurement, existence, and value. Therefore, our next step towards the integrated

metamodel of knowledge is to understand the nature of domain and its expression in the

real world through meaning and measurement of properties of objects.



4 Domains and their expression

Silent and void,

It stands alone and alters not,

It moves but does not tire.

. . . I know not its name

. . . I call it the way

(Chinese philosopher Lao Tzu, 6th century BC)

This chapter discusses the concepts of pattern and measurability. More importantly, these concepts are

delineated in intuitive manner, without requiring mathematical sophistication. The chapter addresses

the spectrum of meanings, from those that precisely quantify and measure numerically, to those that

are purely qualitative. It describes components, configurations, and patterns of information that derive

these meanings and eventually lead to the very concept of existence and meaning itself. The concepts

are illustrated with examples from diverse areas.

Attributes have meanings. So have their values. Domains are the wellspring of meaning.

Domains are sets of values. These values are measures of a meaning.

What does being a measure of meaning mean? Consider a room. Assume it is 30 feet

long, 20 feet wide, and 10 feet high. These numbers describe the dimensions of the room.

However, by themselves the numbers are only numbers. They mean nothing. Numbers only

measure magnitudes, not meaning. Moreover, different numbers might describe the same

dimensions. For example, measured in inches, the same room would be 360 units long,

240 units broad, and 120 units high. The larger numbers do not mean that the room has

some how expanded; they only mean that the values of length, breadth, and height, i.e., the

meaning of these values, have been expressed by mapping them to different sets of numbers.

We distinguish between the two different maps between meanings of values and the set of

numbers by calling them different measures (feet and inches). Units of measure are merely

names of maps (like figure (a) in box 33) from the set of meanings to the set of numbers

that express relative magnitudes of the (meaning of) values.

Different meanings carry different amounts of information. This was obvious and intuitive

in the parable of Metanesia in section 3 of Chapter 1. To recapitulate and summarize:

170
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� Nominal domains carry only information on existence and distinctness of (meanings of)

values.1 They carry no information on relative or absolute ranking of magnitudes of these

meanings (values).
� Ordinal domains carry not only information on the existence and distinctness of meanings

(values) but also information on relative ranking of magnitudes of value meanings.2

However, they carry no information on meanings of differences or ratios between these

meanings (of values).
� Difference scaled domains carry information on existence and distinctness of meanings

(of values), as nominal values do; information on relative ranks (of magnitudes of value

meanings), as ordinal values do; as well as information on the meaning of the magnitude

of differences between meanings.3 However, they carry no information on meanings of

ratios between these values (of meanings).
� Ratio scaled domains carry information on existence and distinctness of meanings (of

values), information on relative ranks (of magnitudes of meaningful values) as well as

information on meanings of differences and ratios of meaningful values.4

We will call domains that lend pure, abstract meanings to real-world properties like the

length and volume of a room, “domains of meaning.” Abstract meanings must be expressed

in symbols to give them tangible form. We will call sets of symbols that represent abstract

meaning formatting domains in this book. Values in difference and ratio scaled domains

convey not only the meaning of the domain, but also information on quantifiable magnitudes

that may be expressed with numbers. We must distinguish between the meaning of a number

and its expression with a symbol. For example, “X” in Roman numerals and “10” in Arabic

numerals are different symbols that express the same number. We will call sets of numbers

that are divorced from symbols that might express them as the domains of numbers.5 Thus,

there are three kinds of domains that lend meaning and expression to information in the

tangible world of business. They are:

1 formatting domains;

2 domains of numbers; and

3 domains of meanings.

When we do not explicitly qualify a domain into one of the three kinds of domains above

in this book, it will mean that the domain is a domain of meaning. In this chapter, we will

describe the role each plays in the metamodel of knowledge. Of the three, formats are the

most tangible and arguably the easiest to grasp. Therefore we will start with the meaning

1 Since nominal domains carry only information on existence and distinctness of (meanings of) values, only

Boolean operators are valid in these domains (see Chapter 3, section 2 or the theory of mathematical groups and

rings in the endnotes).
2 Since ordinal domains carry information on existence, distinctness, and ranking of (meanings of) values, Boolean

and sequencing operations are valid in ordinal domains. See the theory of mathematical groups and rings in the

endnotes and ordinal value theory in [171].
3 Boolean, ranking, and arithmetic subtraction are valid operations between values in difference scaled domains.
4 All Boolean, arithmetic, and ranking operations are valid in ratio scaled domains.
5 Our everyday concept of “number” will suffice to understand this section. The domain of numbers is a pattern

that is more than just the symbols and digits used to express a number (see the section on set and number theory

in the bibliography). The number domains of relevance to this book are those that constitute a one-dimensional

continuum in an ordered field [216]. See [206], [204], [219], [220], [221], [222], [224], [225], [230], and [231].
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of formats and formatting domains before we proceed to abstract domains of meaning, but

bear in mind that domains of meaning are the key to the metamodel of knowledge.

Meaning flows from domains of meaning into the metamodel of knowledge, shaping

objects and seeping through numbers, symbols, and relationships into the world of tangible

things. Meaning orchestrates the tangible world of business from the shadow world of

concepts. Formats and numbers are merely spans of that bridge, between abstract knowledge

and its realization in concrete processes – automated or manual.

1 The meaning and architecture of format

Pure meanings, by themselves, are abstractions. To give substance and communicability

to a meaning, we must express it in some form. This means each meaning must map to a

symbol that can be sensed by one of our five senses. These maps are similar to those in figure

(a) in box 33. The rules for mapping meanings to symbols are formatting rules, and the

symbol is the format. Thus, format is the image (see box 33) of the meaning in the domain

of expressed and perceived symbols.6 In this book, we will call these formatting domains.

(They are actually the co-domain of the formatting rule.) This is how formats emerge from

the metamodel of knowledge.

Formatting rules, like the map in figure (a) of box 33, are maps between a set of meanings

and a set of symbols that are subject to the following constraints:

1 Each meaning in a domain must map to only one symbol in the co-domain. If it maps to

several, each will be a synonym (see Chapter 2, section 4, “The tyranny of words”).

2 Each symbol in the co-domain must map back to only one meaning. If it maps to several,

each will be a homonym (see box 36 and Chapter 2, section 4, “The tyranny of words”)

If both conditions are violated, the representation is ambiguous. In practice, these condi-

tions are satisfied only in a limited context, and can be the cause for confusion between

different perspectives. However, sometimes symbols like audible alarms may be deliber-

ately ambiguous because they may be needed only to draw the user’s attention to another

representation (e.g., a visual display). Boxes 36 and 38 discuss this aspect in more detail.

Indeed, there are an infinite number of possible formats (symbols) for each meaning, but

only five kinds of symbols are fundamentally aligned with our perception of meaning.

Five fundamental formats

Formatting rules are relationships between domains of meaning and formatting domains

of symbols; they take us from abstract business knowledge to its expressions in business

systems. For example, when a meaning is expressed through speech, the spoken word is the

symbol, or format, that the meaning maps to, and speech is the map, or formatting rule for

expressing the meaning. Formatting domains bridge abstract meanings in the business rules

layer of figure 15 with concrete representation(s) in the interface layer – see the examples

of tangible expressions in Chapter 3, section 2.

6 The science of mapping meanings to symbols is called semiotics. [325] discusses semiotics lucidly, with humor,

without mathematics.
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Box 36 When one object represents another

Subtype of

Subtype of

Subtype of

Format translation is also a  

polymorphism of the generic 

representation relationship

between objects

Format is a polymorphism of

the generic representation

relationship between objects

Generic representation 

relationship between objects

SymbolObject

Other objects may represent an object. Strictly speaking, all objects represent at least

themselves. That is why the generic represent relationship has a lower bound of 1.

It connects, at a minimum, an object instance to itself. However, self-representation

conveys no information, and should therefore be discounted. (Relationships like this are

called reflexive relationships – see Module V on our website.)

Symbols are objects that are perceived with our senses and exist in space and time.

They may represent other objects, like value, that convey only meanings. When they do

this, they are formats of the abstract objects they represent. This represent relationship

was inherited from the generic object, and is a (inclusion) subtype of the more generic

recursive represent relationship on object. Thus format is a polymorphism. Of course,

a symbol might not represent another object, and hence represent becomes optional

in this role (see the discussion on inheritance of cardinality ratios between supertype

and subtype relationships under “The merger of meaning and the metamodel of value

constraint” in Chapter 3, section 2). Similarly, when one format maps to another, it

is a format conversion, i.e. translation relationship. We will elaborate on the internal

structure of this relationship in box 38 and on its generic representation in Chapter 4,

section 3. In this section, our focus is on its formatting polymorphism.

Homonyms and synonyms also flow from this Represent relationship. When two or

more objects represent an object, each is a synonym. When an object represents two

or more objects, the object is a homonym. When an object is both a homonym and a

synonym, its meaning is ambiguous.
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A representative is sometimes called an agent. An agent may represent another object

in a limited context. For example, one person or organization may give the power

of attorney to another for a limited purpose. All software programs are agents. They

represent the user of the program and carry out the actions, which by proxy are the

user’s actions. Indeed, the represent relationship is also the basis of agent technology, a

computing discipline emerging rapidly from the shadows of academia into the glare of

business applications.

Agent technology strives to automate the process of representation. An agent adopts

the goals of the object it represents and sets its own goals and strategies to achieve them.

Autonomous agents also strive to make their goals and processes context sensitive.

Multiple dimensions such as multiple variables, complex interactions, and properties

of objects represented (like user preferences, demographics, interests, past behavior,

and other factors) provide the context in question. Autonomous intelligent agents

strive to represent intelligently, i.e. they try to adapt and reason. In this chapter, we

describe some of the laws that weave components of knowledge into components of

reason.

Agents may be autonomous in that, if they are given a goal, they will find the necessary

resources and forge ahead with minimal intervention from the objects they represent,

especially when those objects are people or organizations. Agents obviously commu-

nicate with the objects they represent, but it must be borne in mind that agents may

also communicate and collaborate with other agents, some of which might represent

other objects. Agents could also be gatekeepers for the objects they represent, and their

objectives might clash with those of other agents. Agents may negotiate on behalf of the

objects they represent, matching intentions, objectives, and resources with other objects

and agents. Agents might even create new generations of agents, spawning variations

or “cloning” themselves in a massively parallel or distributed effort to meet their goals.

Agents may not only forge blindly ahead on set goals following the dictum of process

maps cast in stone, but may also adapt their goals and processes to their environment and

its constraints by encapsulating and incorporating governance processes within them-

selves. (Process maps and governance are described in Module V, section 3.) Lastly,

an agent is only a representative because the object it represents has delegated a part

or all of its behavior to the agent that is now a mediator for it. An agent has variables,

procedures, a state machine (see the endnote on “state machines” on our website) and

may contain other agents. [1], [2], and [3].

Formats are symbols we must perceive with one of our five senses. Therefore, our five

senses naturally divide formats into the following broad classes:7

7 The partitioning of formats based on our five senses is natural for humans. Entities with other kinds of senses

would find other kinds of partitions more “natural.” Since exobiology and science fiction are not in the scope

for this book, we will stick to the basic 5 to normalize knowledge about perception and expression of meanings

(distinct from the meanings themselves).
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� visible (visual) formats

script

graphics
� audible (audio) formats
� tactile formats
� olfactory formats
� taste formats

The domain of visible formats naturally normalizes behavior common to visual perception,

such as three-dimensional, movement, and rotation in space, viewpoints from different

locations, color, size, contrast, and brightness. Written symbols such as alphabets, numerals,

and words belong to the class of visual formats, as do “graphics,” such as diagrams and

pictures. Each is a subclass of the class of visual formats.

Just as visible formats normalize rules of visual perception, the domain of audible formats

normalizes behavior common to audible perception, such as loudness (volume) and pitch.

In the same way, tactile formats will normalize behavior about touch, such as the feeling

of pressure, roughness, or smoothness, heat or cold, hardness and softness, sharpness or

bluntness, and friction.8 The other formatting domains similarly normalize behaviors natural

to senses of smell and taste.

Of the five basic formatting domains, current technology is most adept at managing

visible and audible formats. Expressing meanings in tactile and olfactory formats is an area

of current research. Expression in the taste domain is still far in the future.9

Individually, or in combination, the above set of formatting domains can support powerful

and sophisticated multimedia, biometric, and virtual reality capabilities of today, as well as

the more sophisticated business systems of the future.

Patterns of symbols – the architecture of pattern

A star at dawn,

A bubble in a stream, a flash of lightning . . .

A summer cloud, a flickering lamp,

A phantom, a dream

(Diamond Sutra 32 of Buddhism)

The fundamental metaobject is a pattern of information. Objects may be abstract concepts or

tangible things we can see, touch, smell, hear, and taste. Meanings are concepts, which are

abstract patterns of information, whereas symbols used to format information are patterns

we can see, feel, hear, smell, and touch. Both meanings and symbols are polymorphisms

of the fundamental metaobject. In this section, we will understand this metaobject. It is an

abstraction and an inchoate pattern of information. The architecture of pattern captures the

common meanings from which both abstract concepts and tangible symbols flow. Pattern

8 The science of haptics addresses tactile sensations. The application of haptics to automation is still in its infancy,

but is of growing importance in robotics.
9 The “display” object in figure 33 (metamodel of object view) is not necessarily a visual display. It could be in

any of the five types of displays (formats) corresponding to our five senses.
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captures the common essence of all meaning, and the metamodel of pattern is the common

root of every concept in this book, including that of knowledge itself. The metamodel of

pattern is also the metamodel of object.

Symbols are easier to visualize than abstract information, and the physical space we

live in is easier to understand than the abstract information space in which meanings are

manifested. For this reason, we will start the discussion with patterns of symbols in the

physical world.

Information is formatted with patterns of symbols. Symbols are physical objects, which

are also patterns, perceived in space and time. The five fundamental formatting domains

each have characteristics that normalize behavior of perception, symbols, and patterns.

These characteristics are attributes and effects that describe the behavior of patterns and

symbols in that domain. As for object, each fundamental domain may also be subtyped on

the basis of special characteristics. For example, visual domains may be partitioned into

one-, two- and three-dimensional spaces.

Symbols (and patterns) in visual formatting domains will have attributes such as color;

brightness; relative location in one, two, and three dimensional space; mutual distance (that

maps to the length domain); shape; orientation in space; length; area (in two or more dimen-

sional spaces); volume (in three-dimensional space), and relative angular separation (in two

or higher dimensional spaces). These domains also normalize effects such as movement in

space (changing locations), rotation (for spaces of at least two dimensions or more), and

changing intensity (blinking patterns are a special case of this kind of effect). When we

add the time dimension to space, we can add characteristics such as movement, speed, and

acceleration. From these examples, it is obvious that some attributes of formatting domains

will be nominally scaled, such as shape, while others may be ordinally or difference scaled

(like location), or even ratio scaled, like area, volume, brightness, or speed.10

Similarly, the other formatting domains will each normalize different kinds of perceptual

information – both attributes and effects – and these attributes could be nominal, ordinal,

difference, or ratio scaled. For example, the audio domain will have attributes such as tone,

cadence, and loudness (volume).

In order to normalize information about patterns, it is important to distinguish the meaning

of these attributes of formatting domains from their expression. For example, a musical note

is a concept. It is also a tone. The tone may be expressed as a sound. It may also be written

down as a musical symbol. It can even be expressed as a set of numbers and stored digitally.

These are all expressions or formats of the tone. The meaning of the note stays the same in

each format, only the symbols that express its meaning change (remember the monster of

Metanesia in Chapter 1!).

What is a pattern?

Symbols may consist of arrangements of other symbols. For example, each alphabet is a

symbol. So is a string of alphabets. The string is a symbol that is also a sequence of symbols

10 Formatting domains have at least one ratio scaled attribute, intensity, in common. Intensity is a polymorphic

attribute. In the visual domain, it will be brightness. In the audio domain, it will be loudness. We will discuss

this in Chapter 4, section 3.
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Symbol

May be pattern of 0 or more

[be contained in 0 or more]

Figure 50 Patterns are symbols that consist of symbols

arranged in one dimension. Similarly, written sentences are sequences of written words,

which in turn are sequences of alphabets. Symbols may be aggregates and conjunctions of

other symbols, which may consist of yet other symbols that are themselves aggregates and

conjunctions of symbols, and so on. These symbols within symbols may be patterns that

can be reused across more than one set of symbols. The recursive relationship on symbol

in figure 50 represents this fact.

Symbols that consist of other symbols may or may not be patterns. Collections of symbols

are patterns only if symbols in the pattern conform to a law (the law must not increase the

total information conveyed by the collection of symbols). The law determines the identity

and meaning of the pattern. For example, the spelling of a word determines its identity. The

spelling is the law. Patterns need not always be one-dimensional strings of characters like

words and sentences. They could be multidimensional visual, auditory, and other patterns

in any of the five fundamental formatting domains, or their combinations. Symbols within

a pattern need not all belong to the same kind of formatting domain. Patterns may consist

of symbols and symbol sequences (which too are symbols) synchronized across one or

more of the five kinds of formatting domains. Audio-visual presentations are examples of

symbols that consist of mixed patterns of visual and auditory symbols.

Patterns in physical space and time

Meanings are manifested in state space. Formatting symbols project abstract meanings

into the physical world framed by space, time, and perception. Therefore, all formatting

symbols and patterns must be located in space and time. These symbols may be located

in a three-dimensional space, at points in time (or a span of time), in a one-, two-, or

three-dimensional document, in cyberspace – or in a place11 made of combinations of these

locations. For example, a musical note is an audible symbol that must sound at a particular

point or a volume in space, at a given moment (or span) of time.

Because formatting symbols (including patterns) are located in, and occupy regions of

space and time, they may have boundaries. These boundaries delimit symbols and are

symbols themselves. Indeed, a delimiter is only another role for a formatting symbol.

Circles (circumferences) delimit disks (the shape, not the storage device!) and blank

spaces delimit words. Thus, circles and blank spaces are symbols that also play the role of

being delimiters in some contexts.

11 Place and document have been described in the universal perspective.
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Delimiters may be varied, and rules of use complex – governed by convention, context,

and the patterns of symbols. For example, sentences are delimited by periods, as are words at

the end, but not middle, of a sentence. This is an example of a complex pattern of delimiters

rooted in convention.

The pattern delimiter object in figure 53 represents this feature. It shows whether the

symbol is a delimiter or not, and, if it is, what kind of delimiter – a delimiter that indicates

the beginning, end, or mere existence of the boundary of a pattern.

In some patterns, the order of their constituent symbols may count, whereas, in others,

only their existence might suffice. It all depends on how we define the pattern. Similarly,

there may be patterns in which distances between symbols count,12 not their relative order

in space or time. There are several fundamentally different ways of partitioning the rule for

locating symbols in a pattern.13 The rule for locating symbols is called the law of location

and its partitions are all indicators of state. The fundamental states of the law of location

are described in the following paragraphs.

(A) Patterns of sequenced versus unsequenced association

A fundamental aspect of pattern is the pattern of association between its constituents –

which symbols (or objects in general) are associated with which. Even an abstraction like

space is subject to this kind of law. Adjacent points in space (points that are infinitesimally

separated) are mutually connected, whereas others are not – we can only get from one point

in space to another by traversing points in between. The metamodel we are developing

in this book is another – it is a pattern of associations between objects of various kinds.

There are several other patterns that are patterns of association. In this subsection, we will

understand association to be a key feature and state of pattern.

Consider a simple pattern that consists of a particular tone that always sounds with a

given graphic icon, or a more complex pattern that consists of a set of tones, in which each

tone is sounded with a corresponding graphic icon. It does not matter what comes first, the

tone or the icon. They might even occur together. All that matters is that, if the tone sounds,

the graphic will appear and vice versa. The tone is an audio symbol. The graphic is a visual

symbol. The tone and graphic together are also a symbol. This audio-visual symbol is a

pattern, in which an audio icon (tone) and a visual icon (shape) go hand in hand. The pattern

has no information on how its constituents must be sequenced. It is a pattern of existence,

not order. It is also a pattern in which gaps between symbols do not count. Only association

counts. It is a pattern of association – unsequenced association.

On the other hand, if the law for locating symbols decreed that the tone and the visual

icon had to appear within 30 seconds of each other, but did not decree which must occur

12 The law of location must locate symbols in a pattern so that the distance between symbols is a metric, governed

by the rules in the endnote on generalized distances.
13 To locate symbols in physical space and time, we must consider two items of information – sequence in space

or time, and the magnitude of separation between symbols. By recognizing “negative” separation, we could

combine both items into one mathematical concept but we would still be implicitly recognizing two items of

information – magnitude (of separation) and sign (direction), instead of sequence and magnitude. The content,

not expression, of information is the key to normalizing meanings and concepts. We use order (sequence) and

magnitude (separation) to describe rules of location.
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first, the pattern would remain an unsequenced pattern, but one in which separation between

symbols mattered. We will discuss these kinds of patterns of cohesion in the next subsection.

Unlike the unsequenced patterns above, written words and sentences are sequenced pat-

terns. The sequence of letters in a word, and the sequence of words in a sentence are integral

to their identity. Words (and sentences) are patterns of order, not mere existence of sym-

bols. Words are delimited by blank spaces. Therefore words are sequenced patterns where

distances (gaps) between symbols do count.

Consider another example of sequenced pattern – a different kind of sequenced pattern –

a pattern in which gaps between symbols do not count. Imagine a set of tones that always

sounds in the same sequence. The tones are located in time by a law that tells us which tone

will follow which, but not how long after. In this pattern, the sequence of symbols (tone),

not their degree of separation in time, is the key. It, too, is a pattern of sequence, but not

one of separation.

Indeed, the relationships between objects we discussed in this book were also patterns of

sequence. The direction of the relationships mattered. However, the aggregation of attributes

in figure B of box 27 (where the object was merely the label of the “bag” of unordered

attributes) was an example of an unsequenced pattern. There was no “direction” of associ-

ation involved. Module V on our website revisits these issues.

This aspect of pattern is the container of information of “connectedness” between its

components – which components are associated with which, and whether direction of

association matters to the pattern.14 It is also an indicator of the state of a pattern – partition

A in figure 53.

Incomplete order: Since multiple dimensions frame the physical world (three spatial

dimensions that map to the length domain, and one time dimension), the law for locating

symbols in a pattern might force order in only some, but not all dimensions.15 Consider

a pattern that does not distinguish between mirror images. In such patterns, the relative

distances and angular separation of points count, and even their order of placement counts

in all dimensions but one – the spatial dimension that distinguishes left from right. In this

dimension, separation still counts, but not the left to right (or right to left) order of symbols.

It is an example of a law of location that demands only incomplete order in the pattern; it

is also a law of location in which relative separation between symbols matters.

(B) Patterns of separation: distance and distinction

Take the example of audio patterns above a step further. An audio pattern might consist of a

set of tones that follow each other at fixed intervals. In this pattern, not only does the order

of succession of tones matter, but also their separation in time. It is a pattern of sequence

and separation.

14 Two or more shapes are said to be topologically equivalent when we care only about connections between

points (not angles), separation or dimensionality. Topologically equivalent shapes can be deformed into each

other without “tearing” or “breaking” them. This property of connectedness in the metamodel of knowledge

is its connection to topology, a major branch of mathematics. ([262], [264] and chapter 11 of [314] introduce

topology).
15 [211], [212], [213], [214], [215], [216], and [217] describe the mathematics of order.
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Contrast this pattern with the pattern in the example where the visual symbol and tone had

to occur within 30 seconds of each other (in subsection A above). That too was a pattern

in which relative separation of symbols counted, but the sequence of symbols did not

matter.

Relative separation, or cohesion, of components in a pattern is therefore another indicator

of the state of a pattern. It is independent of the sequences in which these components may

be arranged.

So far, we have discussed three kinds of patterns of separation in physical space and time.

We will expand our repertoire to cover state space later in this section. The three kinds of

patterns are as follows:

1 Patterns of quantified separation

These are patterns in which magnitudes of separation count. The audio patterns we just

discussed were examples of patterns like this. They were patterns of quantified separation

in time. The distance between two points is an example of quantified separation in space.

2 Patterns of ordinal separation

The magnitude of separation between symbols is irrelevant to patterns of ordinal separa-

tion – the separation of components is merely ranked.

Consider an audio pattern in which the interval between notes with a higher pitch is

always less than notes with a lower pitch. We do not know (or care, in the context of this

pattern) how much time elapses between the end of one note and the start of another. We

only know that the higher the pitch of the note, the more time will elapse before the next

note sounds. Only the ranking of time intervals between notes matters to this pattern. It is

a pattern of separation that merely ranks the separation between its constituent symbols

(notes), and does not care about the actual quantum of separation. It is a pattern of ordinal

separation.

3 Patterns of distinction

These are patterns that only consider the collocation (or not) of symbols.

Imagine an eternal train of waves in an infinite ocean. We know that every crest must be

adjacent to a trough. It is a pattern of troughs and crests. We do not care how far the crest

of the wave is from troughs on either side, nor do we care about which distances between

troughs and crests are larger or smaller. It is a pattern that only cares that the trough of

the wave is different from its crest. It distinguishes between the two. It is a pattern of

distinction.

Interaction between partitions: Consider the audio pattern in which the visual symbol and

tone had to occur within 30 seconds of each other again. Had the law of location in this

example decreed that the visual icon and tone must be simultaneous, it would still be a

pattern in which the extent of separation mattered (it must be zero), but is it a sequenced or

unsequenced pattern? The answer is ambiguous because the sequence of symbols becomes

meaningless when their separation is zero (asserted by a subtype in partition B). Therefore,

sequenced patterns exist only when symbols are not collocated.16 Figure 53 illustrates this.

16 Situation 2 of figure 27 shows how the existence of a subtype in one partition might bar the existence of a

subtype in another partition. That sequenced patterns can only exist when locations are distinct and separate.
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When shape, not size, matters: In the same way as there are patterns of incomplete order,

there are patterns of incomplete size. Consider a visual pattern in which the shape, but

not the size of the icon matters. In such patterns, the law of location decrees that angular

separation between symbols matters (angular separation is illustrated in figure (c) of box 37),

not their mutual distances in the pattern – i.e. angles must be preserved, regardless of

distances between symbols in the pattern.17 This is a special case of laws of location that

preserves some, but not all information about size. In this case, it considers separation (size)

in terms of angles between constituents (see figure (c) in box 37), but not separation in terms

of linear distances between constituents of the pattern.

(C) Patterns of inclusion versus patterns of exclusion

Many patterns are patterns of co-existence. They are rules about what objects or symbols

must go together, or coexist in a pattern. The examples above were all patterns such as this.

Such patterns are patterns of inclusion because they mandate items that must be included

with other items to create a pattern.

In contrast, consider a rule that asserts that Roman and Arabic numerals cannot be mixed

in a written number. It is an example of a pattern of existence that says what symbols cannot

co-exist in a formatting pattern. It is a pattern of exclusion.

These examples demonstrate how the property of inclusion and exclusion is a fundamental

feature, as well as a basic partition, of pattern.

(D) Patterns of shapes: dimensions of freedom

Shapes occupy, enclose, and delimit regions of space. Dimensions are integral to space,18

and hence to shapes in space. The number of dimensions of space determines which shapes

can exist in that space. To understand the metamodel of patterns of shapes, we must con-

sider the meaning of dimension – its abstract information content. Every point in physical

three-dimensional space may be located by three independent values (see box 37) called

its coordinates. Similarly points in two-dimensional spaces need only two coordinates,

whereas one-dimensional space needs only one coordinate. In one-dimensional space, the

only coordinate of a point in space will be its distance from a point of reference (called the

origin – see box 37). In general, the number of dimensions needed to describe a shape is an

attribute of pattern.

Consider written English words. They are symbols. They consist of strings of alphabets

located only by the position of the alphabet in the word. This position is a single number,

a sequence number relative to the first alphabet of the word. Therefore, a word is a pattern

in one dimension. On the other hand, geographical maps and engineering blue prints are

patterns in two dimensions. They too are symbols. They are symbols that represent meanings

in a format that we can perceive with our sense of sight. Therefore they are also visual

17 Angles will apply only to two- or higher-dimensional patterns. Only distance, not angles, count in a single

dimension. In two dimensions, symbols may be located by their mutual distance and angular separation; in

three dimensions, symbols must be located by distance and two angles (see box 37). In higher-dimensional

spaces, the number of angles required to locate an object will increase commensurately.
18 [273] and [275] define the dimensionality of space.
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formats. Similarly three-dimensional geographical models and mathematical graphs are

three-dimensional visual formats.

We could just as easily represent these maps, models, graphs, and shapes as strings

of numbers or as patterns of coded colors. These patterns would merely be alternative

(harder to visualize) formats for the same information about the same objects. The same

abstract meanings can be represented with different patterns of symbols located in space

and time. These patterns need not all have the same dimensionality, but can convey the same

information. The dimensions of patterns are attributes of formats – they are not intrinsic to

the meanings conveyed by those formats.

Symbols and patterns of symbols by themselves mean nothing. They may be only shapes,

sounds, and odors. However, symbols (and patterns of symbols) can connect the world of

meaning to the physical world of perception. Imagine that they are pipes that convey mean-

ings from the abstract meta-universe to the concrete physical world around us. Like all pipes,

their capacity to convey information is finite. A symbol cannot express a meaning that con-

tains more information than it can pipe, as we will understand from the following discussion.

Information carrying capacity of formats: In past systems, customers seldom used or inter-

faced directly with a corporation’s information systems. Standard operating environments

could be mandated or controlled. The information carrying capacity of a format was not as

important, because formats were relatively simple. They were merely printed or displayed

numbers, characters, or simple graphics. Neither was normalizing and assembling mean-

ings into behavior important. Adequate systems could be built, maintained, and debugged

without worrying about normalizing meanings. The integration of business process and

information systems was less important. Business was smaller and simpler, competition

less intense, the leeway for error larger, and the cost of error much less.

Future systems will not have these luxuries. The customer will interface directly with the

corporation’s information systems and will be king or queen. Business processes and sys-

tems will have to follow. Few businesses will have the power to dictate customers’ standard

operating environments. Customers will be diverse, and users varied. Operating environ-

ments will often be as diverse and uncontrolled as the customer base is large. Complex

systems will be the very fabric of business process, and will need to flex at the speed of

thought to support innovation within corporations and across large, complex and globally

integrated supply chains. Information will be expressed in a complex mix of multimedia

formats in multilingual, multidimensional, and technologically diverse environments. These

future systems will need to explicitly deal with the information carrying capacity of formats

to support the complex formats of tomorrow that will flow from integrated industrial strength

global systems. For this reason, we must understand the information carrying capacity of

formats. To understand the capacity of a format to convey information, we must understand

the concept of variability of a pattern – how much leeway does a pattern have to change its

state and still retain its identity. The law that defines the pattern determines this leeway. To

understand this aspect of play within a pattern, we must understand how the definition and

the dimensionality of a pattern are interrelated.

Consider the curved surface of a three-dimensional graph. The surface is a pattern. It is

two dimensional, but may curve and twist in three dimensions. Is it a pattern of two or three
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dimensions? For example, the surface of the sphere in figure (c) of box 37 is a symbol, a

delimiter for the sphere, and a pattern in its own right – a pattern that is different from the

solid three-dimensional sphere it encloses. The solid sphere and its surface are different

patterns because the pattern of points that make the curved surface of the sphere is not

the same pattern as the pattern of points that make the three-dimensional volume of the

sphere.

Similarly a twisted line, such as that in figure 25 (b), looping through three-dimensional

space is a pattern, but is it a one-dimensional pattern or a three-dimensional pattern? To

answer this question, we must consider how many irreducible facts constrain space to create

a pattern. Each constraint reduces the freedom of location of symbols in the pattern. We

must therefore consider not only dimensions of space, but also degrees of freedom when we

consider the formatting of patterns (see box 37). Meanings hold information. Each variation

of a pattern can represent a different meaning. Degrees of freedom measure the variability

of patterns. Therefore the degrees of freedom of a symbol (pattern) represent its capacity

to convey meanings to the physical world.

A line in three-dimensional space space, curved or straight, will have a different degree

of freedom from a similar line in two-dimensional space space. For instance, a circle is a

one-dimensional pattern. A circle in three-dimensional space space will have more degrees

of freedom than a circle in two-dimensional space because it may be tilted and moved.

Each orientation and position of the circle may represent a different meaning. Therefore, a

circle in three-dimensional space space has a greater capacity for conveying meaning than

one in two-dimensional space. In the same way, any shape, a line, a surface, or volume in

three-dimensional space will have more degrees of freedom than a similarly shaped surface

in two-dimensional space and will therefore have more potential (capacity) for conveying

meaning.

Only flat surfaces may exist in two-dimensional space, but both flat and twisting surfaces

can exist in three-dimensional space. Surfaces in three-dimensional space have more degrees

of freedom and, in the role of symbols, can convey more information than surfaces in two-

dimensional space space. Similarly, there can be patterns and shapes in higher-dimensional

spaces, such as state spaces, that cannot exist in three dimensions. In general, the greater

the dimensionality of the pattern, and the higher the dimensionality of the space that holds

it, the greater its degrees of freedom will be, and the greater potential it will possess for

conveying information hidden in meanings.

A three-dimensional surface could be used to convey the full shape of a mountain. A

two-dimensional shape could convey only the profile of a cross-section of the mountain.

If we wanted to convey more in two dimensions (like a photograph does), we would need

additional parameters, such as color or shading. Thus, even if a photograph retains the

two-dimensional character of the surface in physical space, it must add the dimensions to

the pattern in state space to communicate the shape of the three-dimensional mountain,

and commensurately increase the degrees of freedom of the pattern. (Even then this pattern

would have fewer degrees of freedom and less information carrying capacity than the three-

dimensional model did. The three-dimensional model can communicate the shape of the

surface all around the mountain. The photograph merely conveys the shape of the mountain

from a single, fixed viewpoint.)
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Overall, shapes of patterns in space and time are described by at least three attributes:
� dimensionality of the shape
� dimensionality of the space that holds the shape
� degrees of freedom

The number of degrees of freedom can be computed for different shapes, and the capacity

of a pattern to convey information will follow from its degrees of freedom (see the endnote

on the “Measure of information” and box 37). The diverse patterns and symbols can pipe

meanings from the metaworld of concept into the physical world of business, and each

symbol can have a different information carrying capacity. The dimensionality of the space

that contains the symbol and dimensionality of the symbol itself determine this capacity.

Degrees of freedom are woven into the shape, its dimensionality, and that of the space that

holds it. The dimensionality of a shape, the dimensionality of the space that holds the shape,

and its degrees of freedom, are fundamental features of patterns and shapes that determine

the state of a symbol (or pattern of symbols). These features determine the pattern’s capa-

city to convey meaning. Dimensionality and degrees of freedom are distinct and different

from features like association, delimitation, and separation (e.g. angular separation, linear

separation, or other less common measures of separation19 – see box 37).

(E) Boundaries of patterns

Consider the pattern in figure 51(a). It is a two-dimensional pattern in two-dimensional

space (the plane of the paper). It has a boundary – the frame of figure 51(a) delimits the

pattern. However, we can imagine that it goes on forever, spreading across the plane of this

page in this book, with no beginning and no end in any direction. Had it gone on forever,

it would have been an infinite pattern without any boundaries – it would have been an

undelimited pattern. Therefore, patterns may be:

1 delimited (subject to a boundary – also termed a bounded pattern), or

2 unbounded (without boundaries)

Further, patterns may be:

1 finite or

2 infinite (extend infinitely through space or time).

We have discussed several examples of delimiters for finite patterns. It might appear that

all finite patterns must be delimited, but that is a misconception – a finite pattern may or

may not have boundaries. Consider the “hub and spoke” pattern in figure 51(a). Instead of

being laid out on a flat sheet of paper, it might have been wrapped around the surface of a

sphere as in figure 51(b). The extent of the pattern would still be finite – it is confined to

the finite surface of a finite sphere – however, you could move in any direction around the

curved two-dimensional surface of the sphere and not find a delimiter. The pattern in figure

51(b) has no boundary. This pattern is an example of a finite but undelimited pattern, and

it demonstrates that finite patterns may or may not have boundaries.

A pattern is undelimited if you can traverse the pattern along connected points, in one

direction, without ever finding a delimiter – even if you arrive back where you started.

19 Measures of separation are metrics. The endnote on generalizing distance describes the basic rules that govern

metrics.
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(a)

(b)

Pattern delimited

by ends of cylinder

(c)

Figure 51 Examples of finite delimited and undelimited patterns

(a) Finite, delimited two-dimensional pattern

(b) Finite but undelimited two-dimensional pattern wrapped around the surface of a sphere

(c) Pattern of lines is delimited in one direction but not the other
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If all associations in the pattern are sequenced associations, then you must always either

traverse the pattern in the direction of the sequence, or always in the direction opposed to

the sequence.

Like the other properties of shapes (for example, incomplete order), the pattern may

possess the property of being delimited in one direction, but not in another: consider a

pattern of vertical lines wrapped around the curved surface of the cylinder in figure 51(c).

There are no delimiters if you traversed the pattern around the curved surface; but, if you

move along the height of the cylinder, you would find that the ends of the cylinder delimit

the pattern. Thus, this pattern is unbounded around the curved surface of the cylinder, but

bounded along its height.

The notion of bounded versus unbounded patterns is a fundamental partitioning scheme

for patterns that manifest the feature of “boundedness,” or delimitation of a pattern. This

partition tells us whether the pattern is delimited or not, and in what directions. The delimi-

tation partition is different and distinct from the “finite versus infinite” partitioning scheme

for patterns. Finiteness or infiniteness represents the extent of the pattern in space or time,

whereas bounds represent the existence of delimiters in the pattern.

Of course, infinite patterns have no boundaries; but even infinite patterns may extend

endlessly in one direction, but be finite in another. For example, imagine that the pattern in

figure 51(a) extends endlessly along its length (to your right and left), but remains bounded

and finite along its height (the top and bottom of figure 51(a)). The pattern would form an

endless ribbon stretching away forever to your left and right, but the width of the ribbon

would be the same as that of figure 51(a). This is an example of a pattern that is infinite

along its length, but finite and delimited along its breadth.

Consider also a pattern that is infinite in one direction, bounded in another, and finite but

unbounded in a third direction: had the cylinder in figure 51(c) stretched to infinity upwards,

the pattern of lines would become infinite and undelimited upward, but would stay finite and

delimited downward. The pattern would also stay finite and unbounded around the curved

surface of the cylinder.

Like these variations of the pattern in figure 51(c), there are other patterns too that may

be infinite in one (or more) directions, but finite, with or without bounds, in others. These

examples serve to demonstrate that the two key properties of patterns, delimitation and

extent, can be different in different directions.

It is also clear that only sequenced patterns may have start and end delimiters. Unse-

quenced patterns recognize no sequence; hence they do not distinguish a beginning from

an end. Consider a disk delimited by a circle. We know that the circle is a boundary of the

disk, but it is meaningless to say that one point in the circle (or one side of the circle) is the

beginning and another is at the end of the disk. They could just as well be interchanged, if

we did not care about the order of points in a path that traverses the disk.

Like the ranges that could be open or closed (see “Constraints on quantitative attributes”,

Chapter 3, section 2), delimited patterns in space may be open bounded or close bounded.

Consider a pattern of points that coalesce into a two-dimensional disk. The law of location

might permit the disk to touch the circumference, or it might allow the disk to approach

infinitesimally close to the circle that delimits it, but never to actually touch it. If the disk
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touches its circumference, then the circumference is a closed bound for the disk; whereas,

if it can only approach the circumference, the circumference is an open bound for the

disk. A delimiter that describes a closed bound will be called a close bounded delimiter, or

closed delimiter, whereas delimiters that define open bounds will be called an open bounded

delimiter, or open delimiter.

The open-ended property of a pattern is actually a conjunction of two normalized mean-

ings – a pattern of exclusion combined with a pattern of delimitation. An open-ended pattern

is a delimited pattern (delimitation is a state of pattern that counts as one normalized irre-

ducible fact) that excludes collocation of one or more points with its delimiter (a pattern of

exclusion that counts as another normalized irreducible fact). This is why, in figure 53, open

bounded pattern is a subtype with two parents – pattern of exclusion and delimited pattern.

This subtype in the metamodel of knowledge is a bucket for normalizing facts common to

open bounded patterns.

Two-dimensional patterns could be more complex than the open and closed ranges of

Chapter 3, section 2. In the disk we just discussed, the law of location might bar the pattern

from touching the circle only at specific points (which might also be a pattern). When

we consider three dimensions, the pattern may not only be open at specific points on its

delimiter(s), but also along specific lines and regions of delimiting surfaces. The complexity

of delimiters and possible variants escalate very rapidly as the dimensionality of a pattern

increases. We will review this in more detail when we extend the concept of pattern, from

patterns in physical space to patterns in state space.

Box 37 Location in space
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(a) Location in 2-space is described by two coordinates

Coordinates of locations and dimensionality of space: The figures above illustrate

how a point (or symbol) in space can be located by its distance from a point of reference

called the origin, and its angular separation from reference line(s) (axes) that pass through

the origin. This method of locating a point is called the polar coordinate system.



188 Creating Agile Business Systems

HEIGHT

WIDTH

LENGTH
Angle 1

Angle 2
Origin Distance from origin

Location

(b) Location in 3-space is described by three coordinates

The point could also be located as it was in figures 23 and 24. That method of locating

a point is called the Cartesian coordinate system. Figures (a) and (b) illustrate both

polar and Cartesian coordinate systems in two- and three-dimensional spaces. They also

illustrate how only two coordinates suffice to locate a point in 2-space, whereas three

coordinates are required to locate points in 3-space. It does not matter whether they are

polar, Cartesian, or some other system of coordinates. The number of coordinates needed

to locate a point in space depends only on its dimensionality. The meaning of location

does not change, only the rule expression for describing it (the coordinate system) may

vary. Location is the meaning, and the coordinate system its expression.20

Orientation and shape: When orientation does not matter to the identity of a pat-

tern, it does not matter if the angles or distances from the origin in figures (a) and (b)

change, as long as the angles between constituent symbols do not change (if these angles

change, the pattern will be distorted). For example, the pattern may be rotated or moved

without losing its identity. When orientation and position matter, either together or in

combination, we will need to constrain parameters in Cartesian or polar coordinates

appropriately.

Degrees of freedom: When three coordinates locate a point in 3-space, the point has

three degrees of freedom. Consider a pair of points in 3-space. For each coordinate of

one member of the pair, the other has three degrees of freedom. For each degree of

freedom of one member, the other member has three degrees of freedom. As such, the

pair has 3 × 3 = 9 degrees of freedom. The separation between points boils down

to measuring differences between pairs of coordinates. Three coordinates locate each

point. Therefore three differences are involved. Each difference is an irreducible fact.

The difference between two locations in 3-space has 9 − 3 = 6 degrees of freedom.21

A line that connects two points in three-dimensional space involves a law that relates the

three differences between coordinates. The law will determine the shape of the line –

20 The polar and Cartesian coordinate systems are yet another example of two different rule expressions that have

the same meaning – in this case, the location of a point in space.
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whether it is straight, looping, or curved, and indeed how and where it bends if it does.

This law is an irreducible fact. That takes away another degree of freedom. A line

in 3-space has at least 6 − 1 = 5 degrees of freedom – “at least,” because the law

could be qualified. The law might hold in a range, and then switch to another shape at

another point. Each qualification will (a) increase degrees of freedom since it involves

an additional point, which could move (where the new law kicks in), and (b) reduce a

degree of freedom because the new law is an atomic rule.

Similar principles would apply to surfaces in three space, lines in two space or, in

general, to shapes in spaces of any dimensionality. A shape is a pattern that has at least

two attributes – dimensionality and degrees of freedom.22 A pattern’s degree of freedom

is a measure of how much it can vary before it loses its identity. Each variation may

express a different meaning. A pattern’s degree of freedom is also a measure of its

capacity to convey information.
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(c) Location in space: polar versus Cartesian coordinate systems

Which constraints on coordinates will preserve the orientation of a pattern of symbols,

and which will affect a pattern’s position? Would the shape of a pattern be preserved if

we preserved the distance from the origin for each and differences in polar coordinate

angles for each symbol? What would happen to the coordinates of each symbol if we

rotated it in space while preserving its shape? Hint, use figure (a) of box 49.

21 Any unspecified line, straight or curved, between two points in three-dimensional space, has 6 degrees of

freedom. Three degrees of freedom are contributed by its ability to move along each of the three axes of space

and three more degrees of freedom may be attributed to its ability to spin around the three axes without losing

its identity as a one-dimensional shape that connects two points in 3-space.
22 The information content of a message (or meaning) is a measure of the element of surprise in it (see the endnote

on the measure of information). Each degree of freedom adds an element of surprise to a pattern. Thus the

degrees of freedom in a pattern are a measure of its capacity to convey information. It is also a measure of its

ability to represent meanings of different kinds.
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Patterns in the examples above were simple, and the rules, obvious. This is not always

so. Rules can be obtuse and patterns obscure. It might need considerable reflection before

obtuse rules are understood and obscure patterns coalesce from the haze of possibilities.

Children who have played with jigsaw puzzles and adults who have attempted to solve

puzzles with missing numbers, words, and shapes in a series can understand how difficult

and arcane these rules can be. However difficult these rules are, they must always align with

the partitions and attributes we have discussed. They are:
� Dimensionality. Patterns in physical space can have up to three dimensions, and when

we consider time, they can have at most four dimensions. (However, when we consider

state space, there is no limit to the dimensionality of patterns.)
� Dimensionality of the space that holds the pattern.
� Degrees of freedom which determines its capacity to convey information. Degrees of

freedom are related to dimensionality of the pattern, the space that holds it, delimitation,

shape, and other constraints.

Partitions and subtypes

(A) Association partition. Unsequenced versus sequenced patterns of association sub-

types:

(A1) rules that contain information on mere association, not sequences, of symbols in a

pattern; versus

(A2) rules that contain information on sequences of symbols that make a pattern.

(B) Separation partition. Distinction versus distance (separation) in space and time sub-

types:

(B1) rules that only distinguish one location in a pattern from another (in space or time or

space and time);23 versus

(B2) rules that contain information on ranking of physical separation between symbols (in

space, time, or space and time) that make a pattern; versus

(B4) rules that contain information on physical distances between symbols (in space, time,

or space and time) that make a pattern. (Subtype (B3) will be discussed further on in

this section when we discuss patterns in state space.)

(C) Inclusivity partition. Inclusion versus exclusion partition subtypes:

(C1) rules that include items in a pattern; versus

(C2) rules that exclude items from a pattern.

(D) Extent partition. Partition based on extent of a pattern subtypes:

(D1) the pattern is infinite; versus

(D2) the pattern is finite.

(E) Delimitation partition. Partition based on boundary of a pattern subtypes:

(E1) undelimited pattern (that is, the pattern has no boundary); versus

(E2) delimited pattern (that is, the pattern has a boundary).

23 The discrete metric in the endnote on generalized distances distinguishes between locations, but says nothing

about separation.
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Sometimes a single law of location may be subtyped differently when considering dif-

ferent dimensions of the physical world.24 For instance, the law that did not distinguish

between mirror images was one such example. It was an unsequenced pattern in one spatial

dimension, but sequenced in others. The law that preserved shape, not size was another.

It was a separation subtype when considering angular separation, but only a distinction

subtype when considering linear distances between symbols.25 The property of extent was

yet another property of the same type. A pattern could be finite in one direction, but infinite

in another. The property of delimitation was also similar. A pattern could be delimited in

one direction, but not in another. In physical three-dimensional space, these directional

variations are relatively easy to visualize. When we extend the concept into patterns in state

spaces of higher dimensions, it becomes much harder. This is one of the principal challenges

of pattern recognition, a topic of intense interest in expert systems and artificial intelligence.

However, before we can understand pattern recognition, we will have to extend the concept

of pattern from physical space and time into state space. To do so, we must understand what

makes a pattern a pattern – the concept at the heart of all patterns.

Measures of similarity

The concept at the heart of a pattern is the resemblance between its constituents. Patterns

are formed by including or excluding items based on some measure of similarity between

them. This measure of similarity is the defining identity at the heart of the pattern.

Collections of symbols are patterns only if symbols in the pattern conform to a law.

However, this definition is not adequate. The law, or rule, must be based on some criterion

of similarity or dissimilarity between symbols before we can say that it defines a pattern.

This criterion is the measure of similarity (or dissimilarity) of objects in the pattern. These

objects are symbols when patterns are formats.

Distance in physical space and elapsed time are examples of measures of similarity of

location in space or time. However, there may be other measures of similarity that map

closeness in space and time, and yet other measures may map the proximity of states of

objects and symbols in state space. A measure of similarity is a rule meaning.26 However,

it is a rule meaning subject to a constraint. Like distances in physical space, all measures

of similarity are governed by the following rule, and must conform to it. We will call it the

golden rule of proximity metrics:
� The measure of similarity between any pair of points in state space cannot exceed the

sum of measures of similarity via intermediate pairs of points between them.27

(When distance is the preferred measure of similarity, this rule asserts that the direct

distance between a pair of points in state space must be less than, or equal to, the distance

via intermediate points on an arbitrary path between the pair.)

24 Topology deals with location and shape. See the introduction of [262], [264], and Chapter 11 of [314].
25 Conformal mapping in mathematics preserves angles, but not separation between symbols. This is called

conformality. When the pattern does not distinguish between orientations in space or size, but only cares about

shape, the shapes are termed conformally equivalent.
26 Like other rule meanings, measures of similarity may have multiple expressions (see box 33).
27 Proximity between states is a metric. Measures of proximity must conform to the rules in the endnote on

generalized distances.
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So far we have discussed measuring similarities in position and shape in physical space or

time. Position and shape in physical space and time represent only one aspect of the state of a

symbol. Other parameters of state may have to be considered in determining the resemblance

between two or more symbols. For example, musical notes widely dispersed in space and

time may be considered similar when they have the same pitch or cadence. Similarly, in

figure (c) of box 37, the dice and the cylinder may be considered close because their colors

are close. In general, measures of resemblance will involve similarity (or dissimilarity)

between states of an object (symbols too are objects). It is these measures that will determine

inclusion, exclusion, and location of symbols (or objects) in patterns. Each pattern will have

a measure of similarity. This measure is the identity of the (class of) pattern.

(An example of a pattern based on dissimilarity, or exclusion, is a collection of objects in

which every object must colored differently. The measure of dissimilarity in this case is the

identity of color. The pattern would not change if we asserted that the measure of similarity

is the identity of color, and the rule that defines the pattern is a rule of exclusion, as opposed

to a rule of inclusion. In both cases, the meaning of the rule is identical; only its expression

is different – see box 33.)

Proximity metric

Measures of similarity are rule meanings28 that determine closeness or resemblance of two

or more symbols in state space.29 The closer two or more points in state space are, the

more the corresponding object instances will resemble each other. Therefore, a measure of

similarity in state space can be called a proximity metric.

Like other measures, proximity metrics may be:
� Ratio scaled (the of ratios of differences between states are considered in creating a

pattern): A cluster of points in space is a pattern. It is a pattern determined by mutual

distances of points in it. Distance is a ratio scaled measure (ratios between distances are

meaningful – for example, you can tell that one distance is half of another). This pattern

has a ratio scaled measure of similarity.
� Difference scaled (the magnitudes of differences between states – not ratios of these mag-

nitudes – are considered in describing the pattern). Consider an organizational hierarchy.

It is a pattern of differences between levels in an organization. We can meaningfully tell

how many levels one individual is removed from another in this hierarchy, but not what

the ratio of this difference means. It demonstrates that the measure of similarity for this

pattern is difference scaled in state space.
� Ordinally scaled (similarities between symbols are ranked when forming patterns).

Consider the division of individuals into males and females. Individuals fall into a

pattern of being male or female. We know that the gender difference between individuals

of the same sex is less than that between individuals of different sexes, but not by how much

(there is a difference, or there is not, and no difference is less than some difference). The

28 Rule meanings may be expressed with one or more rule expressions (see box 33).
29 Topology, in mathematics, studies rules that map one shape to another. It captures the notions of continuity,

connectedness, and convergence. Chapter 11 of [314] introduces topology. Also see [262], [264], [255], [266],

[267], and [278].
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measure of similarity for this pattern is ordinally scaled. This is an example of a pattern

with an ordinally scaled measure of similarity.
� Nominally scaled (when we know items exist in a pattern, but have no information on

how similar they are – not even if they are collocated in state space).

This boils down to knowing that a pattern exists, but not its basis. Measures of similarity

of “patterns by decree” fall into this class. For example, in figure (c) of box 37, three

points were decreed to be a pattern by an arbitrary rule. The rule merely told us that a

pattern existed. If we did not care about the separation or location of those points, or

whether we considered them distinct or the same symbol in the context of the pattern,

this pattern would have had a nominal measure of similarity.

A nominal measure of similarity may also become a facility for modeling the uncertainty

and incompleteness inherent in real-world information – a mechanism that lets us assert

that a pattern certainly exists, only we do not know its basis – its parameters, meaning, or

definition. It is an unknown pattern.

Note on terminology: A measure of similarity is different from the kind of measures

discussed in section 2 of this chapter. A measure of similarity measures resemblance of

patterns, whereas the measures in section 2 map meanings of magnitudes to numbers.

When the term “measure” is not qualified in this book, it will always mean the measure

that maps a magnitude to a number. Measures of similarity will always be qualified as

such. They will also be called similarity metrics or proximity metrics. (See the endnote

on metrics, metric spaces, and generalizing the concept of distance.)

Location in state space versus physical location

Position in physical space describes only the physical location of a symbol. Physical prox-

imity is only one kind of measure, and physical location is only one aspect of state. The

position in state space describes a symbol completely – its shape, intensity, color and all

other properties relevant to its context and formatting domain. The closer two or more

symbols are in state space, the more they resemble each other. If they are collocated, they

are identical. Proximity in state space subsumes physical proximity, and extends to other

measures of resemblance as well. For example, all sounds with a certain pitch could be

considered close to each other, even if they are widely dispersed in space and time. Mea-

sures of similarity in state space are distances between points in state space. The measure

of similarity is the supertype, and distance (separation) in physical space is only one of its

subtypes – one that applies only to physical proximity of symbols.

Often, useful measures of similarity in state space will be intuitive, and will conform to

our perception of reality via our five senses. However, it is not mandatory that every measure

does so. Sometimes, measures of similarity may be obtuse, complex, and difficult to define.

Consider a pattern that consists of a set of three repeating notes that always have fixed

differences in pitch between them. The note is an audible symbol. Its pitch determines the

state of the note. Notes may or may not sound at fixed intervals, and may or may not always

sound the same tone. Only the differences in pitch between notes will always be the same.

Although they are different notes that sound at different intervals, the three still exhibit
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a pattern of behavior. This measure of similarity for the pattern may not be immediately

evident to an observer listening to the tones.

The example above demonstrates that the proximity metric is the core of the pattern. It

also demonstrates that the proximity metric is an attribute of pattern. The proximity metric

is the attribute that measures the resemblance of symbols in a pattern with respect to the law

that makes the pattern a pattern. The more a pattern’s constituent symbols resemble each

other, the closer they will be in state space. Therefore patterns are clusters in state space, in

which mutual separation is determined by the pattern’s proximity metric.

The location in physical space is merely a subtype of location in state space; clusters in

physical space are only subtypes of clusters in state space. State space is richer than physical

space. Therefore, to complete our understanding of pattern, we must understand clusters in

state space.

Patterns in state space

State space can be much richer and more varied than physical space. Physical space is

merely difference scaled,30 whereas state space may be (box 17 in Chapter 2, section 2):
� ratio scaled (all axes are ratio scaled)
� difference scaled (all axes are difference scaled)
� ordinally scaled (all axes are ordinally scaled)
� nominally scaled (all axes are nominally scaled)
� mixed (different axes are scaled differently)

Furthermore, ordinally scaled state spaces may have:
� no natural origin31 (as is the case with difference scaled space – see box 37), or
� a natural origin32 (as is the case with ratio scaled space – see Mr. Domain’s secret in

Chapter 1, section 3 or the discussion of figure 67 in Chapter 4).

For example, the natural origin of a serial number is the first item in a list. No item

can have a serial number less than this. (The serial number usually starts with 1, but that

is not mandated by its meaning. It could be any symbol from a set of ordered symbols –

say the letter “A,” or even a number 2. The only constraint on serial numbers in a list is

that no serial number may rank below this minimum.)

The quantum of information intrinsic to the state of an object depends on the nature of its

state space. The state of a pattern is rooted in the states of symbols that make the pattern.

Each kind of proximity metric conveys a different quantum of information about what

makes the pattern a pattern. The proximity metric is the heart of the pattern. It follows that

all proximity metrics will not be meaningful in all kinds of spaces and the nature of state

space will constrain the kinds of proximity metrics that can exist in it.

30 Physical space is difference scaled because the origin of the frame of reference, from which coordinates of

locations in space are measured, is chosen arbitrarily (see box 37). Ratio scaled measures require a natural zero –

see the sixth golden rule of measurement in section 2. Like location in physical space, dates and moments in

space–time are also difference scaled.
31 A ranking scheme with no natural origin is called a totally ordered set in mathematics. Totally ordered sets

have no lower bound. See the endnote on ordered sets and sequences.
32 A ranking scheme with a natural origin is called a well-ordered set in mathematics. Well-ordered sets have a

lower bound – the origin. See the endnote on ordered sets and sequences.
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When the location of a symbol in state space is difference scaled, patterns based on

proximity or distance in state space will follow the same rules and may be partitioned and

subtyped in the same way as those in physical space. However, when location in state space

is not difference scaled, rules must be amended as follows:

Nominally scaled state space:
� Patterns of separation that involve difference or ratio scaled measures cannot exist
� Open delimited patterns cannot occur in nominally scaled state space
� A new subtype, F1, based on values of coordinates and not merely on their mutual

separation, may exist.

Ordinally scaled state space:
� Closed delimiters can always replace open delimiters without changing the pattern in any

way. Therefore, open delimiters are redundant in ordinally scaled state space.
� Ordinally scaled state spaces may or may not have a natural origin (Chapter 4, section 3).

If it does, a new subtype F1 will normalize rules about absolute ranks, not mere differences

in rank.

Ratio scaled state space: A new subtype, F1, for patterns based on magnitudes of coordinates

and not merely on their mutual separation, may exist.

The reasons for these differences flow from the information content of coordinates and

measures of proximity that infuse meaning into each space as explained in the following

paragraphs.

Nominally scaled state space
� Meaningful measures of proximity between two or more points may be ordinally scaled,

but coordinates of locations are nominally scaled.33

Coordinates in nominally scaled spaces have just enough information to distinguish one

location (state) from another. They convey no information on rank or magnitude – only that

two different locations identify two different states.

Therefore differences between two or more points either exist, or they do not. That is all

the information this kind of space conveys. Based on this information, we cannot tell the

magnitude of differences between states (points), but we can tell which differences are more

or less than other differences. This makes differences between states in nominally scaled

state space an ordinally scaled measure.

In the parable of Jim and Jane in Chapter 1, section 3, Jim and Robert were male,

whereas Jane was female. We could tell that the difference in gender between Jim and Jane

was greater than the difference in gender between Jim and Robert, but not by how much.

Thus we can tell which distances are greater than which in gender space. It demonstrates

that distances between locations in nominally scaled spaces are ordinally scaled.

Since differences in nominally scaled state space have only two states, the state space

for these differences may be ordinally scaled, but it is a special kind of ordinally scaled

space: the state space of these differences (for instance, the state space of differences in

33 Nominally scaled measures must be a discrete metric. See the endnote on generalized distances.
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gender, not the gender itself) is limited to only two points, one of which is “nil,” a value

that indicates the absence of magnitude. Therefore we can say one difference is greater than

another, although we cannot say the same about the individual points such as gender in a

nominally scaled state space. We can extend this idea to cover the equivalence of two or

more states, wherein we say that two or more states are distinct, but equivalent, in the sense

that their distance (as measured by some proximity metric) in state space is nil. (See the

discussion of pseudometric spaces in the endnote on generalized distances.)
� Partition B: Fundamental subtypes B3 and B4 of figure 53 will be meaningless and cannot

exist in nominally scaled space because points in nominally scaled state space can be

distinct, but have no magnitudes in relation to each other, and distances are either nil or

not. Only subtype B1 and B2 will exist.
� Open delimited patterns: Open delimited patterns cannot exist in nominally scaled space.

The subtype is meaningless because distances in nominally scaled state space have no

information on sequence or magnitude, and hence ranges of values are meaningless.
� Partition F: Subtype F1 of figure 53 may occur in nominally scaled spaces. Subtype F1

normalizes laws of absolute location, not merely differences or distinctions of location

in state space.

The values of nominally scaled attributes of objects determine their location in nominally

scaled state space. Joint constraints, like those in figure 43, may be patterns that normalize

rules about relationships between values of nominal states, not merely the proximity, of

these states.

In the joint constraint illustrated by figure 43, the check was payable (a nominally scaled

attribute of the check) if the CEO had signed it (another nominally scaled attribute of the

check) and the CFO had signed it (a third nominally scaled attribute of the check). This is an

example of a pattern, a joint constraint, of subtype F1 in the location partition of figure 53.

Ordinally scaled state space
� Meaningful measures of proximity may be nominally, ordinally, or difference scaled in

ordinally scaled space, but coordinates of locations are ordinally scaled.

Measures of proximity may be nominally or ordinally scaled because the state of the

object conveys information on classification and order. It may also be difference scaled

because differences, not mere distinctions, between locations can be measured in terms of

the number of ranks that separate one position from another.34

Consider ranks in the military. Military ranks are ordered values; we can tell which ranks

are greater, lesser, or equivalent to which.35 We can even tell how many ranks one rank

is removed from another. Differences between ranks (not the ranks themselves) can be

quantified and these are at least difference scaled.36

34 See the theory of value difference functions in [211].
35 Military ranks in a given branch (military service) are strictly hierarchical, but ranks across services like the

army, the air force, and the navy may be different. However, each rank in a branch of the military has its

equivalent in the other military services. Thus, military ranks convey information on which are greater, lesser

or equal even across branches of military service. (Military ranks also serve as an example of points in a

pseudometric state space – see the endnote on generalized distances.)
36 See ordinal value theory in [211].
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However, these differences between ranks are not ratio scaled because the ratio of differ-

ences between ranks is a meaningless quantity. This makes these differences in positions in

an ordinally scaled space difference scaled, but not ratio scaled. (Contrast these differences

with physical distances between points in physical space, where ratios of distances between

pairs of points are also meaningful.)

Confused? Consider the following example: a private, a sergeant, and a major are three

soldiers in the army. Assume that the sergeant is two ranks above the private, and the major is

five ranks above the private. We can therefore infer that the difference between the sergeant

and the major is 5 − 2 = 3 ranks. However, it would be meaningless to say that a private

who is promoted to sergeant has traveled 2/5ths of the way to becoming a major because we

have no information on the magnitude of gaps between ranks. We can tell that the private

has three ranks to go before (s)he becomes a major, whereas the sergeant has to move only

two ranks up to become a major. The difference in military rank has meaning, but ratios

of differences do not. It demonstrates that differences in rank are difference scaled, but not

ratio scaled.

Patterns in ordinally scaled state space may flow from ordered hierarchies, or from mag-

nitudes of differences between states. They can also flow from ordinally scaled proximity

metrics.

The following example of an ordinal proximity metric demonstrates how patterns in

ordinally scaled state space can flow from difference scaled proximity metrics, as well as

from ordinally scaled proximity metrics. Consider the arrangement of an arbitrary set of

military ranks in a hierarchy. It is an example of a pattern based on sequence in ordinally

scaled state space. Let us assume that all ranks may not be represented in the repertoire of

ranks thus arranged. We have no information on which ranks, or even how many ranks have

been omitted from the pattern. There could be gaps between ranks and we have no way of

telling where the gaps are, or how many levels (of military hierarchy) such gaps may span.

It is a pattern based on an ordinally scaled proximity metric – we know which ranks are

greater and lesser than which rank, but not by how many levels.

Now consider how a difference scaled proximity metric can give rise to a difference

scaled pattern in ordinal state space. Consider an organizational structure that has a slot

for every rank. The organizational structure that shows the hierarchy of military ranks is

an example of one such pattern. It is a pattern based on differences in ordinally scaled state

space: in this structure we not only know which ranks are adjacent to which, and also which

are greater and lesser than which adjacent rank, but also by how much (in terms of numbers

of ranks), because each level in the structure is separated from the level above or below it by

one rank. Thus, the structure is a sequenced pattern based on a difference scaled proximity

metric.

Similarly a more complicated rule that asserts that given a starting rank, every third rank

from the starting rank must be a member of a group is a pattern based on magnitudes of

differences between ranks. The groups fall into a pattern because they share a law. The

law is based on magnitudes of difference because magnitudes of separation between ranks

are a consideration. The pattern may or may not care about the hierarchy of ranks in the

context of the pattern (i.e., the group may not be arranged in any sequence or hierarchy).

If sequences or hierarchies are irrelevant in the context of the group, it will be a pattern of
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unsequenced association based on a difference scaled proximity metric. If hierarchies are

relevant to arranging ranks inside the group, it will be a pattern of sequenced association

based on a difference scaled proximity metric.
� Partition B: Subtype B4 cannot occur in ordinal state space. Fundamental subtypes B1,

B2, and B3 in figure 53 will exist.

Since differences between locations can be measured quantitatively even in ordinal state

space, subtypes B1, B2, and B3 convey meaningful information. On the other hand, subtype

B4 is meaningless because coordinates in ordinal state spaces convey no information on

ratios of differences between states.
� Patterns with open bounds: Delimited patterns that are open at the delimiter can always

be reduced to a pattern with closed bounds.

The reasons are similar to those that described why open bounds on ranges of ordinal

values can always be replaced by a closed bound without changing its meaning (see Chapter 3

under “Constraints on quantitative attributes”).
� Partition F: Subtype F1 of figure 53 may occur in ordinally scaled spaces with a natural

origin because the subtype involves absolute ranks (a kind of magnitude) of coordinates,

not merely their distinction or difference. (This subtype is described in more detail under

ratio scaled state space.)

A rule that states that the person who finishes a race first will be awarded a prize is a

law based on absolute ranks. It is not concerned with differences between ranks, but only

the absolute value of a rank in terms of its relationship with a natural origin. Similarly, a

rule that asserts that the person who comes second will be awarded a consolation prize is

another example of an atomic rule that is a law based on absolute ranks. These rules are

normalized by patterns of subtype F1 in figure 53.

Difference scaled state space
� Meaningful measures of proximity may be nominally, ordinally, difference, or ratio scaled.

Consider physical space. It is difference scaled. The coordinates of a point in space (see

figures in box 37) convey no information on any magnitude of the location by itself. They

only convey information on magnitudes of distances between locations.

We can tell whether two or more distances are the same or different. We can also tell

which distances are more or less than others, and by how much. We can even tell what the

ratio of one distance, between one pair of points, is compared to another distance, between

another pair of points. Therefore, nominal, ordinal, difference, and ratio scaled measures

of proximity will all be valid in difference scaled space.
� Partition F: Subtype F1 of figure 53 cannot occur in difference scaled space.

Subtype F1 cannot occur because the subtype involves absolute magnitudes of coordi-

nates, not merely their differences.

Both the polar and Cartesian coordinate systems in box 37 were examples of differ-

ence scaled coordinates. Fixing an arbitrary frame of reference, with an arbitrary origin,

determined the coordinates. Naturally, these coordinates were also arbitrary. Their absolute

magnitudes conveyed little by themselves. However, differences between coordinates were

meaningful, and were ratio scaled.
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� Partition B: Patterns of separation permitted in difference and ratio scaled state spaces are

identical. All subtypes in partition B of figure 53 may occur because distances between

points may be ratio, difference, ordinally or nominally scaled in both kinds of space.

(Remember that physical space is also difference scaled. If we use physical space as an

analog of state space, it makes it much easier to visualize differences in difference and ratio

scaled state spaces.) Patterns with open bounds: Delimited patterns that are open at the

delimiter can occur.

The sole difference between physical space and difference scaled state space is that the

state space may involve more than three spatial dimensions. Like open-ended delimited

patterns in physical space, open-ended delimited patterns may occur in state space. The

reasons have been discussed on page 184.

However, open delimiters in state space can be more complex than those in physical

space because state space can have more dimensions than physical space. Consider a range.

Only two points, its upper and lower bounds may be open. (See “Constraints on quantitative

attributes” in Chapter 3, section 2.) The range was a pattern in one dimension. Consider

a disk in two-dimensional space. A circle at its circumference delimits the disk. The disk

may be allowed to get infinitesimally close to the circle, but might not be allowed to touch

it. Thus the entire circle can be an open-ended delimiter for the disk.

On the other hand, the disk might be allowed to touch the circle at select points, or,

conversely, might be allowed to touch the circle everywhere except at select points. These

are two additional variants of open-ended delimiters.

In three dimensions, a surface could delimit a volume. There will be even more varieties

of open-ended delimiters in greater in 3-space. Select points, lines, line segments, surfaces,

and regions on delimited surfaces may be open ended.

In higher dimensions, patterns of openness can become even more complex. In general,

any subspace or region of the delimiter may be open or closed.

Ratio scaled state space
� Meaningful measures of proximity must be nominally, ordinally, difference or ratio scaled

because the state of the object conveys information on classification, order, magnitudes

of separation, and absolute magnitudes of locations.
� We will need to add a new partition, Partition F, in this space to account for the fact that

magnitudes of not just distances, but also locations (coordinates) are meaningful in ratio

scaled space. Partition F distinguishes:

Subtype F1: Patterns of absolute of location

from

Subtype F2: Patterns of separation

Subtype F2 includes the different kinds of patterns of separation we have discussed in

partition B. It will normalize rules common to all patterns of separation. To understand

subtype F1, consider figure (a) of box 37. Assume the vertical axis represents the pitch of

an audible tone and the horizontal axis represents its volume (instead of width and length).

Both volume and pitch are ratio scaled attributes of tone. The origin would anchor the

natural zeros of volume and pitch. A state space like this is ratio scaled. The magnitudes

of its coordinates and the magnitudes of distances between coordinates are meaningful in

ratio scaled space.
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Table 1 Proximity metrics in spaces of different kinds

MEASURE OF PROXIMITY

KIND OF SPACE Nominal Ordinal Difference scaled Ratio scaled

Nominally scaled � �

(only two values – nil and

more than nil)

Ordinally scaled � � �

Difference scaled � � � �

Ratio scaled � � � �

The preferred frame of reference for ratio scaled state spaces naturally maps absolute

magnitudes of coordinates to distance from the origin. For example, the state space of tone

will map magnitudes of pitch and volume to distance from the origin.

Unlike this kind of space, the physical space in figure (a) of box 37 was difference scaled

and the frame of reference was arbitrary. Both the distance of a point in space from the

origin, and the angle it subtended at the origin, were quite arbitrary. For this reason, it

would be meaningless to consider patterns based purely on magnitudes of any coordinates

in physical space, polar, Cartesian, or other. Patterns in difference scaled state spaces must

be based on magnitudes of differences between coordinates of two or more locations.37

Patterns in ratio scaled state spaces could flow from laws about absolute magnitudes of

coordinates or their differences. For instance, a law could weave pitch and volume of tones

into a pattern: it could relate the volume of a tone inversely to its pitch. Tones based on this

law will form a pattern and be audible symbols. This is an example of subtype F1. Any law

that related the pitch of a tone to its volume, independent of the occurrence of any other

tone(s), would be an example of subtype F1 – a pattern of magnitudes of locations in state

space, not merely magnitudes of differences between locations.

Laws could also relate differences between coordinates to absolute values of coordi-

nates. Such laws will be subtypes of both F1 and F2 – terms that involve differences will

inherit properties of differences between locations in state space, and properties that involve

magnitudes of locations will inherit properties of locations in state space.
� Patterns with open bounds: Open-ended delimiters can occur. Just as open-ended delim-

iters could occur in difference scaled space, they can occur in ratio scaled spaces.

Table 1 summarizes the kinds of measures of proximity that may occur in each space. A

check mark indicates that the measure of proximity is valid in the corresponding space.

Table 1 demonstrates that for:

Nominal measures of proximity: Ratio, difference ordinally, and nominally scaled

attributes – i.e. state spaces – may all participate in nominal measures of proximity

because they all convey information that distinguishes one state (location in state

space) from another.

37 Patterns in ratio scaled state spaces may be based on absolute values of coordinates or differences between

coordinates.
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Figure 52 Metamodel of measure of similarity

Ordinal measures of proximity: Ratio, difference ordinally, and nominally scaled

attributes – i.e. state spaces – may all participate in ordinal measures of proximity

because they all convey information about ranking differences (“distances”) between

states (locations in state space).

Difference scaled measures of proximity: Ratio, difference, and ordinally scaled

attributes may participate in difference scaled measures of proximity because they

convey information on the magnitude of separation between pairs of states (locations

in state space).

Ratio scaled measures of proximity: Only ratio and difference scaled attributes may

participate in ratio scaled measures of proximity because they convey information on

ratios between magnitudes of separation (“distance”) between states.

Figure 52 represents these rules. It is the metamodel of proximity metric.

Figure 52 shows that the value constraint on the proximity metric is inherited by each

kind of proximity metric in the figure (and is therefore normalized by the structure in

the metamodel). However, the reason for arranging states in the hierarchy above is more

elusive, but is key to the concept of similarity. It is evident that ordinal attribute values

convey more information than nominal values. They add information on relative ranking

of states to the information on distinction between states (conveyed by nominal values).

Ordinal attribute values convey all the information nominal values do, plus information

on ranks. Similarly, difference scaled attribute values add information on magnitudes of

difference to information contained in ordinal values, and ratio scaled attribute values add

information on ratios to information contained in difference scaled values.

In box 21, we understood, under functional variation inheritance, that it is simpler to build

configurations by adding information. Subtypes should carry more, not less, information

than their supertypes. The perspective in figure 52 satisfies this criterion. The nominal state
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in figure 52 inherits the nominal proximity metric from the set of all states, and adds

the possibility of an ordinal proximity metric. Similarly, the ordinal state inherits the

nominal proximity metric from the nominal state, and adds the possibility of a differ-

ence scaled proximity metric. Likewise, the quantitatively scaled states (difference and

ratio scaled states) inherit the possibility of nominal, ordinal, and difference scaled prox-

imity metrics from the ordinal state, and add the possibility of a ratio scaled proximity

metric.

The subtyping hierarchy flows through to state space from the subtyping hierarchy of

domains.The OAV model of box 27 shows that state is a collection of attribute value

pairs. The discussion in this section highlights that these pairs are patterns of unsequenced

association, as is the collection of these pairs that makes state. Figure 35 has the metamodel

of state. This metamodel shows how attributes, and therefore states, map to domains of

different kinds. It is through this metamodel, buried inside the states in figure 52, that the

subtyping hierarchy of domains flows through to state space.

Based on the principle of defining subtypes by adding information, we could consider

ordinal domains to be a subtype of nominal domains in which ranking information has been

added, difference scaled domains to be a subtype of ordinal domains to which information

on magnitudes of differences between values has been added, and ratio scaled domains to be

a subtype of difference scaled domains to which information on ratios between values has

been added. This hierarchy will then flow through to state spaces that map their meanings

to these domains.

Mixed space

We know that state spaces often mix ratio, difference, ordinal, and nominal attributes. When

this happens, what impact does it have on patterns? Partition B normalized information on

separation in state space. Therefore, it is subtypes in this partition that were impacted by the

nature of state space, and will be impacted when axes in state space are not all of the same

kind – all nominally scaled, all ordinally scaled, all difference scaled, or all ratio scaled. In

this book, spaces like these, with axes that convey different amounts of information, will

be called mixed spaces.

Measures (metrics) of similarity in mixed space may involve combinations of ratio scaled,

difference scaled, ordinally scaled, and nominally scaled values and terms. The scaling of

the overall metric of similarity will be limited by the scaling of its arguments and terms.

The argument or term that conveys the least information will limit the scaling of the overall

metric as follows:
� If one or more nominally scaled values are involved, similarity metrics may be nominally

or ordinally scaled and the rules for nominally scaled state spaces will apply.

In terms of the metamodel in figure 52, this kind of state space will be a subtype of

nominally scaled state space.
� If one or more ordinally scaled values are involved, but no nominally scaled values,

similarity metrics may be nominally or ordinally scaled and the rules for ordinally scaled

state spaces will apply.

In terms of the metamodel in figure 52, this kind of state space will be a subtype of

ordinally scaled state space.
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Table 2 Valid measures of proximity in mixed spaces

KIND OF MIXED
MEASURE OF PROXIMITY

SPACE Nominal Ordinal Difference scaled Ratio scaled

One or more nominally

scaled axes

� �

(only two values – nil and

more than nil)

No nominally scaled

axes, one or more

ordinally scaled axes

� � �

No nominally or

ordinally scaled axes,

one or more difference

scaled axes

� � � �

Only ratio scaled axes

(not a mixed space)

� � � �

� If one or more difference scaled values are involved, but no ordinal or nominal values,

similarity metrics may be difference scaled, ordinally scaled, nominally scaled, or ratio

scaled. The rules for difference scaled state spaces will apply.

In terms of the metamodel in figure 52, this kind of state space will be a subtype of

difference scaled state space.

Table 2 summarizes these rules.

The order of a pattern

Just as we can base patterns on closeness of positions in state space, there can be patterns of

similarities between measures of similarity, which themselves show patterns of similarity

and so on. We will call this property the order of similarity. Proximity of the first order

would be the kind of proximity between components in a pattern that defines it as a pattern.

Second order proximity will be the kind of proximity between measures of proximity that

show that the measures of proximity themselves fall into a pattern and so on. We can have

patterns of patterns of patterns and so on. This will be called the order of a pattern. Patterns

can govern patterns, and table 1 can equally represent measures of similarity of any order:

second-order measures of similarity for second-order patterns, or third-order measures of

similarity for third-order patterns, and so on.38

38 Table 1 also demonstrates that differences between states in nominally scaled state space will map to ordinal

state space; differences between states in ordinally scaled state space will map to difference scaled state space;

and differences between states in difference and ratio scaled state spaces will map to ratio scaled state space.

We could then take differences between differences and apply the same logic and keep repeating the process.

This rule is useful in pattern recognition, in the analysis of patterns of patterns, and in determining the kinds of

proximity metrics that will be valid for higher-order patterns.
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The metamodel of pattern

We all recognize several patterns and consider many of them to be simple. However, we

find it hard to pin down the concept of a pattern – how would you define it? How would you

normalize the rules that make a pattern a pattern? The concept is hard to pin down because

it is abstract, but it is the concept at the heart of all knowledge. Every model in this book

is a pattern. Every meaning is a pattern of information. Objects grow from patterns. The

concepts in this chapter, the models in the universal perspective, and even the metamodel

of knowledge, are all patterns. The metamodel of knowledge emerges from the metamodel

of pattern and also contains it.39

I am the Alpha and the Omega,

The Beginning and the End,

The first and the Last

(John the Baptist in

Revelations, The Bible)

The essence of a pattern

Patterns of symbols do not always express meanings, but they may. The interpretation of

meaning boils down to targeting only meaningful patterns. This is the essence of a pattern.

All patterns possess only a finite capacity for conveying information. A pattern’s capacity

for conveying information is determined by its degrees of freedom. Patterns do not always

fully utilize their capacity for representing meanings. Consider letters of the alphabet. Letters

of the alphabet are shapes in two-dimensional space. They can be rotated in space and still

retain their identity, but their orientation conveys no meaning. We are only interested in

the one-dimensional delimited sequence of letters that spells words. These words convey

meaning. Thus essential pattern is a one-dimensional sequence of letters.

Indeed each letter’s orientation is usually constrained to be identical to those of its

neighbors (each constraint involves the loss of degrees of freedom – one degree for each

atomic rule). So how do we define the pattern that makes the word? If letters are not

oriented identically, will it still be the same word? If words have different orientations,

will we recognize the sentence? How much differences will we tolerate before the word or

sentence loses its meaning? The answers to these questions will determine how we define

words as patterns of letters and sentences as patterns of words. It all boils down to the law of

location in state space, the heart of the pattern. Not all patterns convey meaning; the essence

of a pattern is the law of location that involves shapes, states, and dimensions that do.

Just as letters and symbols do not utilize their full capacity to convey information, other

symbols too may only utilize a few states, dimensions, and partitions to convey meanings.

Consider a real life format – one made by nature, not the hand of man. The genome is

the book of life. It consists of a set of coded instructions that are expressed as living

organisms. A proteome is the collection of proteins, their structure and sequence, which

make a complete living organism. The genome is nature’s format for storing the information

39 Patterns subsume sets much more. The axiom of regularity (see the endnote on the theory of categories) bars a

set from containing itself, but patterns are not bound by this rule because they might not be sets. The algebra of

objects subsumes and goes beyond the algebra of sets. See [171], [172], [173], [183], [184], [186], and [187].
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content of a proteome. The instructions for creating a proteome are stored in a biological

molecule called Deoxyribonucleic Acid, or DNA for short. The DNA is a pattern in three

dimensions. It is like a twisted ladder consisting of two helixes joined by rungs; these rungs

carry the information for making proteins that make a living organism.

Each rung of the twisted strand of DNA consists of a sequence of molecules called

nucleotides. Each rung is made of two nucleotides. It is only this sequence of nucleotides

and rungs, not the intricate three-dimensional shape of DNA, which carries the information

that is eventually expressed as a living being.

The DNA molecule and its components form a pattern in 3-space. This pattern has

information carrying capacity. However, its capacity is not fully utilized. The book of life

only utilizes the sequencing aspect of this pattern to convey information. This is the essence

of that pattern – the DNA format of life.

The essential pattern recognizes only a pattern of sequence (subtype A2 in figure 53).

While interpreting and understanding the information in DNA, one need not care about the

other partitions and subtypes in figure 53. One must recognize only the essential pattern

subsumed in the complex three-dimensional, physical pattern of DNA.

Biochemical processes express this code as proteins. In proteins, the three-dimensional

shape and the sequence of 20 amino acids carries significant information, whereas in a gene

only the sequence, not the three-dimensional shape, of four nucleotide bases is significant.

Thus, with reference to figure 53, the essential patterns of symbols in proteins involve inter-

actions between three-dimensional patterns in physical space and subtype A2. Therefore

the essence of the patterns in proteins involve both subtype A2, in figure 53, as well as

the subtype (in the same figure) that represents three-dimensional patterns of locations in

physical space.

The problem at the heart of pattern interpretation is to discover this essential pattern – the

pattern’s meaningful states and dimensions in a format. Formats represent meaning. They

are symbols in space and time that we can perceive with our senses. The essential pattern

is the pattern within the format that actually conveys the meaning.

A single meaning may map to many formats. Formats are not always printed numbers

and letters. They could be graphs, pictures, and even patterns of molecules or patterns of

magnetization on the disk of your computer. Like the essential patterns in DNA molecules,

or in words and sentences, essential patterns in a format may be only a part of the physical

arrangement of symbols that make the format. Usually the essential pattern is simpler

because only a subset of states conveys meaning. (At most, all states of a pattern may be

meaningful, but usually only some are.) This meaningful pattern is what we will call the

essential pattern of symbols in a format.

Recognizing essential patterns is at the heart of disciplines like data mining, fingerprint

recognition, genetics, bioinformatics, econometrics, and analytics. If pattern recognition is

to recognize not just patterns, but meanings as well, it must recognize essential patterns –

the patterns hidden within patterns of symbols.

To recognize essential patterns and normalize the rules that make them patterns, we must

understand how different kinds of patterns normalize different kinds of rules. The following

section is dedicated to understanding the universal atomic rules that distinguish patterns of

different kinds.
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Kinds of patterns

To recognize patterns, we must recognize the atomic rules every pattern normalizes. To

identify these rules, we must start by recognizing the different kinds of patterns that flow

from them. We have already discussed several properties of patterns in depth. They are

(attributes that depend on direction in state space have been marked with a star (�) in the

following list):

� Association and sequence

� Location

� Position

� Position relative to a natural origin (absolute position or state)

� Position relative to an arbitrary origin

� Cohesion and separation
� Exclusion and inclusion
� Order (order of governance of other patterns – the term has not been used as a synonym

for sequence in this context)40

� Dimensionality of the shape of the pattern in state space
� Dimensionality of the pattern’s state space
� Degrees of freedom

� Extent

� Delimitation

Regardless of complexity or variety, all patterns will be governed by this list of fundamental

characteristics that emerge from the metamodel of knowledge. Figure 53 illustrates how

every pattern may be partitioned, regardless of its complexity or scale. In the partitions of

figure 53, each subtype in partitions labeled with a star (�) will have attributes that describe

the subtype’s direction(s) in state space.

Partitions A, B, C, D, E, and F in figure 53 exist in the metamodel of knowledge only

because each normalizes a different kind of information intrinsic to the meaning of pattern:
� Partition A normalizes information about position in a pattern – whether sequences are

integral to the identity of the pattern or not.
� Partition B normalizes information about similarity of constituents in a pattern – the

shapes and characteristics that form the criteria integral to the identity of the pattern.

Patterns depend on measures of proximity like distances, angular separation, and other

metrics of similarity. Proximity is calculated from the coordinates of constituent objects in

state space. Subtypes in partition B normalize this aspect of similarity, a kind of clustering

or cohesion between the pattern’s constituents in state space. Partition A tells us which

symbols are connected to which, and the directions of these connections (if any). It does

not tell us how far these points are from each other. Partition B conveys this information.

It tells us how dense or tightly clustered the pattern is.
� Partition C normalizes information about patterns of exclusion and inclusion – the (irre-

ducible) fact that patterns may not only consist of symbols that occur together in a group,

but also symbols that cannot (or do not) occur together.

40 Patterns that govern patterns will be at the heart of intelligent agents (see box 36) that will continually adapt

software to innovation in an intensely competitive, creative, and tumultuous environment driven by new ideas.
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� Partition D normalizes information about the extent of undelimited patterns. It discrim-

inates between finite and infinite undelimited patterns (delimited patterns are always

finite).
� Partition E normalizes information about delimitation.
� Partition F normalizes information about the location of a pattern’s constituents in state

space. Positions of a pattern’s constituents in state space and their interrelationship are

integral to the identity of the pattern. The rules that define a pattern determine how much

leeway its constituents have in terms of changing their positions in state space before the

pattern loses its identity and becomes something else.

Both the coordinates of locations and separations between points are involved.

Partition B, the partition for normalizing rules about separation and similarity between a

pattern’s constituents, is subsumed in partition F.
� Partitions of the delimiting relationship on symbols normalize information about pattern’s

(i.e. symbol’s) role as a delimiter.

We have already discussed subtypes in each partition extensively. These characteristics

can be summarized as follows for state spaces. They are similar to those we discussed for

physical space, which is only one aspect of state space; the following subtypes extend the

corresponding discussion of patterns in physical space to state space, which is a general-

ization that subsumes physical space – its meaning and information content:

(A) Association partition (unsequenced versus sequenced patterns of association)

Subtypes:

(A1) Rules that contain information on association, not sequences, of symbols in a pattern

(mere association of a symbol with a pattern).

(A2) Rules that contain information on sequences of symbols that make a pattern.41

(B) Separation (proximity measurement) partition (distinction versus separation versus

magnitude of locations in state space)

Subtypes:

(B1) Rules that only distinguish one location from another in state space.42

(B2) Rules that only rank separation in state space but not distance in terms of magnitudes

of difference.

(B3) Rules about patterns of separation between symbols (in state space), in terms of their

differences, not ratios of difference. (Separation may be in terms of angles and/or

distances as well as other proximity metrics.)

(B4) Rules that contain information on magnitudes of separation between symbols, which

makes a pattern in state space, in terms of differences and ratios of separation.

(The normal concept of physical distance is an example of this kind of measure of

separation.)

41 The metamodel provides for the fact that a single meaning may be expressed very differently, and that formats

may be translated to other formats subject to complex rules and constraints. These issues too are key concerns

in disciplines such as bioinformatics, encryption and automated translation of natural languages. For instance,

discovering and storing genetic information is an area of intense scientific and business interest. Data mining

and pattern matching are others.
42 The discrete metric described in the endnote on generalized distances applies when the law of location distin-

guishes between locations, but says nothing about separation.
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(C) (Inclusion versus exclusion partition (of positions in state space)

Subtypes:

(C1) Rules that include items in a pattern.

(C2) Rules that exclude items from a pattern.

(D) Finiteness partition (based on extent of a pattern)

Subtypes:

(D1) Infinite pattern.

(D2) Finite pattern.

(E) Delimited versus undelimited pattern (partition based on boundary of patterns)

Subtypes:

(E1) Undelimited pattern – the pattern is unbounded and not delimited.

(E2) Delimited pattern – the pattern has a boundary and is delimited.

(F) Pattern of absolute versus relative location (partition based on patterns of absolute

location versus mutual separation of locations)

Subtypes:

(F1) Rules that contain information on absolute locations (in state space) of symbols that

make a pattern.

(F2) Pattern of separation between symbols in state space (i.e. pattern of similarity or

dissimilarity.)

Figure 53 also shows interactions between subtypes across partitions, as follows:
� Only finite patterns may be delimited.
� Like the bounds in Chapter 3, section 2, a delimiter may define an open limit only for

patterns with ratio scaled proximity metrics. (“Constraints on quantitative attributes” in

Chapter 3, section 2 describes why unclosable open finite patterns can only occur in

difference and ratio scaled spaces.)
� An open pattern is a pattern of exclusion – it excludes the entire delimiter, or a part of it

(the part is region(s) or subspace(s) of the delimiter).
� The open delimited pattern in figure 53, being a subtype with three parents, represents

all three interactions above. The supertypes of open delimited pattern are:

Delimited pattern (naturally!)

Pattern of exclusion

Pattern of ratio scaled separation

Naturally, beginning and end delimiters will apply only to sequenced patterns (see

“Constraints on ordinal attributes” in Chapter 3, section 2). Note that beginning and end are

states of delimiters in sequenced patterns.

Furthermore, we understood that subtype A2 cannot exist when symbols in a pattern are

collocated in state space. Pattern of collocation is thus a subtype of unsequenced pattern.

Naturally, it is also a pattern of separation (separation must be zero, i.e. its constituents

are must not be separated in state space). Therefore, pattern of collocation in figure 53 is a

subtype with two parents. Its supertypes are pattern of separation and unsequenced pattern.

Patterns of constraint

You may have noticed the similarity between constraints and patterns. Yes, patterns are

constraints. The law of location is a form of constraint; it tells us what locations are permitted
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in state space. Association is a constraint; it tells us what is associated with what, and not with

what. The similarity metric is a constraint; it constrains the similarity of symbols in a pattern.

The order of a pattern is a constraint on a constraint. Boundaries, extents, and dimensionality

are all constraints on shapes, locations, states, and boundaries of symbols. Therefore, it

is hardly surprising that the metamodel of pattern closely resembles the metamodel of

constraint. Indeed, the law that defines a pattern is an aggregation of several kinds of

constraints – one for each partition. Figure 54 demonstrates where each partition of figure

53 resides in the metamodel of pattern.

Figure 54 is the metamodel of pattern. Each subtype in figure 53 is marked in figure 54

by an arrow.

To understand figure 54, we must start by interpreting the different universal partitions

of patterns in the context of value constraint (in Chapter 3, Section 2). Figure 53 has six

different universal partitions of pattern and two different partitions of pattern delimiter.

Figure 49 has the metamodel of value constraint. We will interpret figure 53 in the context

of figure 49 to arrive at figure 54.

States are collections of attribute values. It follows that patterns of constraints will be

collections of constraints like those in figure 49. Figure 49 was the metamodel of a single

constraint. Figure 53 is the metamodel of the aggregation of constraints. Figure 53 also has

a broader scope: the focus of figure 49 was on abstract meaning, not symbols (patterns) that

could physically express those meanings. Figure 53 applies both to symbols and meanings.

Symbols may be partitioned in ways values cannot be. After all, patterns of symbols nor-

malize rules that values do not, and vice versa. We will examine these differences between

figure 53 and figure 49 in this section.

Let us start with partitions that are common to both figure 53 and figure 49. Partition C,

the inclusion/exclusion partition in figure 53 is identical to the inclusion/exclusion partition

of figure 49. The upper and lower bounds in figure 49 are delimiters of range. Range in

figure 49 was a one-dimensional region of sequenced state space. Delimited pattern in

figure 53 generalizes the concept of range in figure 49. Therefore the “begin/end” partition

of sequenced pattern delimiter in figure 53 generalizes and subsumes the upper/lower bound

partition of figure 49.

Partition A, the partition that distinguishes sequenced from unsequenced patterns of

association in figure 53, is missing from figure 49. It is missing because the value sets

of Chapter 3 were sets, not lists (see box 30). Patterns on the other hand may be sets or

lists; symbols in a pattern may be sequenced and repeated, and each repetition may count

as a separate item that constitutes the pattern. As such, pattern subsumes sets, sequences,

and lists – ordered or not. This is the fundamental difference between the value set in

the metamodel of value constraint and pattern in the metamodel of knowledge. It is this

difference that lies at the root of the other differences between the metamodel of pattern

and the metamodel of value constraint.

The delimitation partition, partition E of figure 53, is missing in figure 49. This happens

because a range is an ordered set of magnitudes of values. The set is not necessarily a set of

discrete values. It may also be a continuum of values. There can be no finite but unbounded

patterns of one-dimensional ranges (in the value constraint of figure 49). All undelimited

ranges are infinitely large, and hence meaningless as ranges. Therefore, there was no need to
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Figure 54 The metamodel of pattern is the source of universal properties, subtypes and partitions of pattern
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distinguish delimited from undelimited ranges in figure 49 – it would have been meaningless

and redundant. Partition E was irrelevant to the metamodel of value constraint in figure 49.

In contrast, patterns of symbols may be finite and undelimited. Therefore, partition E is

very relevant to the metamodel of pattern in figure 53 and figure 54.

The extent partition of figure 53 (partition D) is missing from figure 49. The extent

partition of figure 53 partitions undelimited patterns based on their extent. It has been

omitted from figure 49 because all undelimited ranges are infinite and meaningless in

the context of value constraint. Therefore, like partition E, partition D would have been

redundant and meaningless in figure 49.

The location partition of figure 53, partition F, is also missing from figure 49; hence its

subpartition, the separation partition (partition B) is missing too. Both are subsumed in the

rule expression of figure 49. That rule expression of figure 49 may be an expression that

binds absolute locations into a law, like subtype F1 of figure 53, or be a law that merely

constrains separations between locations, like subtype F2 of figure 53. The location and

separation partitions of figure 53 (partitions F and B respectively) merely categorize and

resolve rule expressions with greater granularity than figure 49 does.

In order to integrate the metamodel of value constraint in figure 49 with the patterns of

figure 53, we must recognize that:
� Pattern generalizes the concept of set and list, sequenced or not. Set and list are subtypes

of pattern.
� Object is a pattern described by its state. A symbol is a kind of object. The “law of

location” in state space decrees how much play there can be in the state of a pattern

before it is considered a different pattern. For example, a green ball may be considered

the same pattern as a red ball because they are both colored spheres, or it might be

considered a different pattern because the spheres have different colors. A pattern may

also weave an abstract concept like the passage of time, or it could be a concrete symbol

like the letter “w” with which “word” begins. The pattern is a shape, or a set of shapes

in state space, and this shape (or a set of shapes) is also the very identity of the object or

symbol that constitutes the pattern.
� State is a set (aggregation) of attribute values. Patterns constrain these values. Hence, pat-

tern is an aggregation of value constraints. Aggregations have (and normalize) emergent

properties that their constituents do not (see “Object class” in Chapter 2, section 1); the

metamodel of pattern normalizes properties that the metamodel of value constraint does

not (see Module 6 on our website).

Thus, the first step towards figure 54 is to replace the value set of figure 49 with set of object

states in figure 54.

Next, we must recognize that this set of states may contain not only (some or all) states of

a single object, but also states of several objects (which might belong to the same or different

classes), all of which may influence a pattern simultaneously and jointly. The relationship

between set of object states and object instance shows this. There is no injunction in

figure 54 against set of object states containing states of different object instances in the

same or different object classes, at the same or different times, or even the same object

instance at different times. It is the state space of the aggregation of objects that make,

constrain, or influence the pattern. State spaces of individual objects that make or influence

the pattern will be subspaces of this state space in figure 54.
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Region versus range

Like any state space, this space will have regions. Regions are more complex than ranges

because they are multidimensional. Figure 51 demonstrates how finite patterns in space

may be undelimited, whereas we know that finite ranges must be delimited. Also, several

delimiters may delimit regions in different directions because regions may be aggregations

of ranges. Like ranges, if sequences matter in some directions, regions may have begin and

end delimiters (or both) in those directions. If the space is quantitatively scaled in certain

directions, delimiters may be open or closed in those directions.

The delimitation relationship is a universal relationship, inherited by every kind of delim-

iter. This is similar to the partitioning of bound in figure 49. Bound in that figure was simpler,

only because it did not have to recognize the multidimensional nature of state space, or the

multiple ways constituents of patterns may be associated (or not) in sequences that make

the pattern.

Location versus constraint

We only had to worry about permitted and forbidden values when we discussed value

constraint in Chapter 3. The location of a value was automatically determined relative to

other values in ordinally and quantitatively scaled space. However, the multidimensional

nature of state space complicates the concept of location. We must consider inclusion and

inclusion, i.e. what must go hand-in-hand, what may go hand-in-hand, and what cannot

go together in multidimensional space, as well as where it must be in a pattern. We must

consider forbidden, permitted, and mandatory regions of state space, not merely inclusion

and exclusion constraints. This is the heart of the pattern of relationship in figure 50.

Figure 54 illustrates how pattern of is a conjunction of constrain and locate.

Shaping and influencing patterns

Location in a pattern may be absolute or relative (discussed early in section 1). It is partitions

of this locate relationship that normalize the meanings of different kinds of locations of a

pattern’s constituents. This partition distinguishes patterns of separation from patterns of

absolute location and makes the pattern a pattern of normalized information.

In complex patterns, it may happen that objects that do not participate in the pattern

nevertheless influence the location(s) of a pattern’s constituents, or even their inclusion or

exclusion from the pattern. Indeed, nothing bars a pattern’s constituents from doing that too.

Thus participation in a pattern and influencing its shape are two different and independent

roles of objects. This is also the theoretical foundation of context, in which interpretations

of the same meanings can change, depending on an external framework.

The rules that shape a pattern based on states of objects reside in the laws of interactions

that are attached to the locate and constrain relationships of figure 54. They could be joint

constraints of the kind we discussed in figure 48, except that they apply to states of objects,

not single values. They could also be simple constraints about permitted and barred states.

States of object instances are a collection of attribute values; therefore the laws of interaction

in figure 54 are collections of value constraints like those in figure 48.

The state space of figure 54 may therefore be the aggregate state space of all objects that

influence the location and existence of a pattern’s constituents in the pattern. It may also

be the aggregate state space of a pattern’s constituent objects, or even the state space of
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the pattern itself. All these state spaces are subsumed in the concept of state space. The

relationship between state space and state in figure 54 merely asserts that state spaces are

sets of states (obviously!), and because states are states of object instances, it implies that

it is states of these object instances that reside in state space (also obviously!), and so do

these object instances (not so obvious – but remember it is the value, i.e., state, of the

instance identifier that identifies an object instance). The instance identifier is the attribute

that gives the object its identity. State spaces represent collections of attribute values. Hence

the object instance may also be considered resident in state space.43 This allows us to be as

specific as we need to be to describe complex patterns. We can specify inclusion, exclusion,

and location based on states of individual object instances as well as object classes44 and

relationships. Because patterns are objects, patterns have states, reside in state space, and

can influence other patterns – even themselves.45

For example, it is common sense that isolating all tall men in one pattern excludes tall

men from being present in other patterns. Thus it is also common sense that one pattern

can influence another. To understand how objects outside a pattern may affect the state of a

pattern, consider the requirement that all magnitudes larger than one million be expressed

in exponential format, and all magnitudes less than zero be shown in red. The format is a

symbol, a pattern. The magnitude is a number, a meaning. Both are also objects. It is clear

that the magnitude of the number, a state of number, affects the color and format, a state

of the symbol. Similarly, we could scale the two-dimensional image of a three-dimensional

toy up or down to fit the size of the paper on advertising literature or, for on-line and

television advertisements, the frame displayed on a screen. The image is the format, a two-

dimensional pattern, influenced by another two-dimensional pattern in three-dimensional

space, the surface of the toy.

It is also common sense that a pattern exists in the state space that holds it only because its

constituents are located in that state space. Indeed, a pattern starts forming in this state space

when two or more items create a pattern in it. Therefore, in figure 54, the relationship held

in, between pattern and its state space is contingent on the relationship located in between

object instance and pattern. In fact, held in is not just contingent on located in, it is the

aggregation of located in. Directionality, orientation, and dimensionality of the pattern all

emerge from relative locations of its components. Thus, directionality and dimensionality

are emergent properties of the aggregate held in relationship.

Remember that directionality must not be confused with sequence. Directionality is

direction in state space. Sequence is a property of the pattern – i.e. will the pattern be

considered the same pattern or not if we do (or do not) care about the sequence in which its

constituents are associated in certain directions in state space.

The directional properties of patterns flow from its state space. A pattern will always

occupy a region of its state space, which may or may not be delimited in different directions,

43 See discussions on figure 22 and figure 36.
44 A collection of object instances is also an object instance (see Chapter 2, section 1).
45 Explicitly asserting implied relationships in a model replicates knowledge instead of normalizing it. Implied

relationships in figure 54 have been shown for clarity, but have been annotated for this reason (see Module V,

section 1).



215 Domains and their expression

may extend more or less in different directions, with different separations between locations

of constituent objects in different directions.

Directions and dimensions of state space flow from state space to patterns through the

located in relationship of figure 54. We will leave it as an exercise for the interested reader to

derive the relationship between the number of components and the potential dimensionality

of a pattern. A pattern’s dimensionality cannot exceed that of the state space that holds it, and

is constrained by the number of components in it. These value constraints are components

of knowledge that are naturally attached to all patterns. In this way, the metamodel in figure

54 is an expression of normalized common sense about patterns.

Object counts and statistical patterns

Because patterns may be multidimensional lists of objects, pattern, the aggregate object,

normalizes information about how many object instances it contains. Indeed, because an

object instance may be repeated in a pattern, pattern will also normalize the incidence of

individual object instances in a pattern. Object counts, like the other properties of patterns,

such as dimensionality, order, and degrees of freedom, and indeed any object that is a value,

may be restricted by value constraints of the kind we discussed in Chapter 3. New patterns

emerge when these restrictions are added to the universal framework in figure 54. Each such

restriction is a component of knowledge, a value constraint.

Just as object counts are normalized by pattern, the aggregate object, so too is other sta-

tistical information about the pattern. This normalized information flows from the locations

of a pattern’s constituents in state space. Examples of statistical information that emerge

from aggregation of locations of a pattern’s constituents are: the average distance between a

pattern’s constituents in state space, the average coordinates of its constituents, the standard

deviation of separations between constituents of the pattern, and other emergent statistical

properties.46 These attributes are derived by aggregating the located in relationship between

pattern and its constituents in figure 54. The held in relationship between pattern and its

state space in figure 54 is this aggregation of the locate relationship. These emergent prop-

erties of patterns emerge from subtypes (polymorphisms) of held in. The object count in

a pattern is merely the number of locate relationships aggregated by held in. Therefore, it

too is a polymorphism of held in. That is why, in figure 54, enumerates is a subtype of held

in. The common thread that runs through the various subtypes of held in is the number of

constituents of the pattern. This is the information held in normalizes. All statistical proper-

ties that emerge from subtypes of held in are emergent properties of pattern, the aggregate

object.47

Arrays

Look at table 1 again. It is a pattern of permissions in state space. The pattern tells us what

kind of proximity metrics may exist in which kind of state space. The row and column

46 Averages and standard deviations assume a ratio scaled proximity metric. Ratio scaled proximity metrics are

only possible in difference and ratio scaled state spaces (see table 1). There would be other kinds of statistics

that would emerge from the aggregation of the locate relationship of figure 54 in nominally and ordinally scaled

state spaces.
47 Emergent properties may be derived from attributes of constituent objects (see Chapter 3, section 2).



216 Creating Agile Business Systems

headings of table 1 are axes that describe the state space of the pattern. The state space

is not continuous like physical space, or the state space of figure 24. It is discrete like the

space in figure (B) of box 17.

Tables are two-dimensional discrete patterns. Each cell of a table is a discrete point in a

two-dimensional space. The cell may be empty, or may contain an object. The object may

be a nominal value like that in table 1, an ordinal value like that in box 17, difference, or

ratio scaled values, like the unit of measure conversion tables of box 548 Each cell may

also contain a rule, a pattern, a picture, a sound, or symbol, all of which would count as

nominally scaled values. These discrete state spaces are called arrays.

Tables are two-dimensional arrays. Discrete three-dimensional spaces would be three-

dimensional arrays. Like state space, arrays could also have more dimensions. Just as

three-dimensional arrays cannot be printed on the two dimensional plane of this paper,

but its two-dimensional slices (cross sections) can, arrays of higher dimensions cannot

be displayed in three-dimensional physical space, but their three-dimensional slices can.

Indeed, their two-dimensional slices can even be displayed on this printed page.

Consider figure 22. It could be shown as a three-dimensional array – one dimension

for object instance (a nominally scaled dimension, since object instances have no intrinsic

magnitude or order), one for attributes (also nominally scaled), and one for time slice.

(Time slices are ordinally scaled, because non-overlapping time intervals are intrinsically

ordered from past to present to future, even if they are not equal, and each time slice is

discrete because it is the slice – the identity of a region – not the continuum in time, we are

considering.) Figure 55 has an array like this.

A slice of the array parallel to the plane of the paper would be a two-dimensional table of

attributes values, a table commonly found in relational databases, and routinely displayed

or printed in reports in response to queries from users. The person on the upper left-hand

side of figure 55 has this perspective. It is this cross section that person A sees in figure 55.

Slices perpendicular to the plane of the paper would produce tables of object histories.

For example, person B of figure 55 will see a cross section that is a slice perpendicular

to the plane of the paper, but parallel to the side of this page (it slices through a single

attribute, into the depth of the paper in figure 55). This is a historical table of values of a

given attribute across all object instances. This is the cross section that the person in the

right-hand side of figure is looking at.

Similarly, if we sliced a single object instance perpendicular to the plane of the paper

(person C’s viewpoint – a slice that is perpendicular to the plane of the page and parallel

to its lower edge), we would get a two-dimensional historical table of attribute values for

the object instance showing the path it has traced through time to evolve to its present state.

The person at the bottom of figure 55 is looking at a cross section of this kind.

Just as cross sections of three-dimensional tables (and other solid objects) are two dimen-

sional, shapes, arrays in higher dimensions can be sliced into lower-dimensional cross

48 The contents of the conversion tables of box 5 were multiplication rules. However, we can normalize the

information in the table by factoring the common act of multiplication out of the each cell of the table and

making it common to the table (a pattern) so that the common rule is not repeated in each cell. Then each cell

would be left with only a ratio scaled value.
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Figure 55 Perspectives of object – two-dimensional cross sections of a three dimensional array

sections. Most of us find it hard to visualize higher-dimensional shapes and arrays, let alone

slicing and dicing them. An example might make it clearer:

Candu Compoot’s Story – the tale of higher-dimensional arrays

(on our website)

Candu Compoot’s Story describes four- and higher-dimensional arrays in a parable

with a business example. It shows how arrays need not always be patterns of concrete

symbols, but could also be patterns of meanings. It demonstrates how lower-dimensional

slices of higher-dimensional arrays may also be formatted as arrays with the following

examples.

The array in figure 54 can be a symbol, an array of symbols or an array of meaning.

Arrays that are formats are visual symbols like Candu’s two-dimensional slice in table 3, or

Candu’s three-dimensional projections in figure 56. These symbols are subtypes with two

parents – pattern in physical space and array – both of which are present in figure 54. Thus,

as Candu Compoot’s story demonstrates, figure 54 supports abstract arrays of meaning as

well as formatting arrays, which are symbols we can see.

Patterns in physical space and time

Patterns in physical space and time have been shown as a subtype of patterns in state space

in figure 54. We have discussed the reasons for this earlier in this section. Physical space and

physical location are merely subtypes of state space and location in state space. Therefore,
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Table 3 A two-dimensional slice of Candu’s nine-dimensional array

CONCERN FOR WORK LIFE

BALANCE

GROWTH PROSPECT Poor Average Good

Poor 0% 1% 5%

Average 1% 2% 10%

Good 2% 3% 15%

CONCERN FOR WORK–LIFE BALANCE

G
R

O
W

T
H

 P
R

O
S

P
E

C
T

R
EPU

TA
TIO

N
FO

R

TE
H

IC
A

L
B

EH
A

V
IO

RPoor

Average

Good

Poor Average Good
Poor

Average

Good

Figure 56 Candu Compoot’s three-dimensional array

patterns in space and time are patterns that are located in physical space and time. In

the language of figure 54, this flows from the fact that the located in relationship is linked

to object instance, and patterns are a kind of object, which implies that located in may

also be attached to pattern on one end, and, because physical space and time is a kind of

state space, located in may be attached to physical space and time on the other end. In

the language of figure 54, patterns may be located in physical space and time (remember

inclusion polymorphism in box 21). Patterns in physical space and time that may be directly
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perceived by one or more of our five senses are symbols, which, associated with meaning,

become formats.

(Discrete state space and arrays too have a similar relationship through inclusion poly-

morphism.)

Null space – patterns of everything, patterns of nothing

Those who have paid attention to the detail in figure 54 might find it strange that it asserts

that the set of object states might be a set of no (0) object states. How can that be? How can

the set be a set of object states if it contains neither objects nor states! It can be, because it is

the empty set of box 19. Joined to an exclusion constraint, the empty set will assert that all

objects are permitted to participate in the pattern, and attached to an inclusion constraint, it

will assert that the pattern cannot exist – it is null. This is why state space without states is

called null space. Null space tells us what cannot be. That too is an atomic rule (Module V,

section 4 on our website discusses null space in more detail).

Patterns of symbols and patterns of objects

Patterns can be patterns of symbols in space, time, or state spaces, with attributes such as

color, brightness, and pitch. They can also be patterns of pure information that constitute

meanings. For example, consider the pattern of months in a year. A month is a concept,

an abstract meaning we understand. It is not a physical symbol perceived with our senses.

The eternal cycle of months is a finite but unbounded temporal pattern of meaning. We find

no natural boundaries as we cycle through months. If we have not added the concept of

a year, or the delimiters that tell us that a year begins in January and ends in December,

there is no mark to tell us where the cycle begins and where it ends. We can choose any

month equally as our starting point and the cycle will be eternal, although its extent will be

12 months.

On the other hand, consider the 12-month calendar year. It is delimited by two concepts:

the month of January at the beginning, and the month of December at the end. We obtained

the concept of “year” by adding these delimiters to the undelimited pattern that constituted

the general meaning of eternity, the eternal passage of time. Not only is the resultant pattern

a pure meaning, but its delimiters too are pure meanings, not symbols.

Consider the pattern we obtain by combining the linear concept of the passage of time

from the past to the future with the cyclic concept of months. It is like the pattern in

figure 51 (c) – the months, finite in number but repeated in a cycle without bounds, and

eternity extending boundlessly and infinitely into the past and future. In the combined

pattern, time has no bounds. The two concepts, the eternal passage of time and the eternal

cycling of months are its components. These patterns of meaning are not formats, but may

be expressed by formats. (As an exercise for the reader, what kind of pattern would we get

if we combined all three, the concept of eternity, the delimited and finite concept of year,

and the undelimited, but finite cycle of months?)

Consider the metamodels in this book. They are patterns of interlinked concepts. They

are structures of meanings that engage each other through relationships (which are also

meanings) to produce real-world behavior. They are patterns of meaning, not symbols.

They are examples of patterns that are neither temporal nor spatial. The diagrams in this
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book represent these meanings. The diagrams are symbols that show how concepts engage

each other to create new meanings. The diagrams are not the concepts they format; they

merely represent them, and are only one of several possible expressions of these mean-

ings. Thus, patterns need not always be patterns of symbols. Meanings are abstract patterns

of information (see Module V, section 4 and Module VI on our website.) Figure 54 sup-

ports patterns of meaning, patterns of symbols, and also mixed patterns of meanings and

symbols.

Patterns of symbols, by themselves, may be meaningless, like the patterns in figure 51,

or they can express meanings. To express meaning, patterns of symbols must be associated

with patterns of meaning. Meaningless patterns are not formats. Formats are meaningful

patterns of symbols. Formats flow from the meeting of meaning and symbol – from the

place where the metamodel of knowledge flows into the physical world of space, time, and

perception. Figure 54 shows this meeting ground. The recursive represent relationship in

figure 54 illustrates how patterns of meaning may meet patterns of symbols at infinitely many

places, in an infinitude of ways. Therefore, it shows us that there are infinitely many ways

of expressing abstract meanings with symbols, which thus become formats of meanings.

(It also shows that meanings may represent other meanings, which implies that there are

infinitely many ways of encoding not only symbols, but also meanings. We will discuss this

in more detail in section 3 of this chapter.)

This fact, that a single meaning can be mapped to many different patterns of symbols,

gives us the leeway to create, improve, and innovate information systems, as well as business

processes. To seamlessly integrate business processes with the information systems that

support them, we must seamlessly integrate the metamodel of patterns of meaning with the

metamodel of patterns of symbols (as figure 54 does). It is a vital bridge and a key step in

the metamodel of knowledge for aligning information systems with business processes and

business processes with business requirements, which will keep agility and innovation in

the forefront.

To understand how this can happen, we must understand the role, place, and context of

the integrated metamodel of pattern framed by the metamodel of knowledge. This is what

we will describe next.

The integrated metamodel of pattern

Box 36 and figures 50, 52, 53, and 54 collectively normalize the universal rules that we

discussed about patterns of symbols. Figure 57 integrates this information. The structures

on the top left-hand side of figure 57 are identical to those in figure 54, enhanced with the

information in box 36. They not only provide a window into the pattern of relationship of

figure 50, but also integrate the represent relationship in box 36 into the pattern. It is inherited

by pattern from object (not shown to avoid clutter) and also by symbol (polymorphisms

related to format and format conversion have been shown). In figure 54, we saw how the

various partitions that normalize universal properties of patterns emerged from points in

this structure. These partitions are on the top right-hand side. They are identical to those in

figure 53. We have also seen, in figure 52, how properties of different kinds of proximity

metrics lead to the different kinds of patterns in partition B. The lower right-hand side of
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figure 57 shows internal structure of each subtype in partition B in terms of its proximity

metric. It is identical to figure 52.

We have discussed how patterns need not be confined to patterns of symbols only. They

may be patterns of meaning, patterns of symbols, or may combine both – meanings asso-

ciated with symbols. The last kind of pattern is format. Object in figure 57 generalizes the

concept of pattern and supports the concept of format.

The window into pattern of also introduces an object that we did not have in figure 54.

It is called directional pattern in state space. This object normalizes the rule that several

partitions and subtypes in figure 53 are directional in state space. The subtypes in partitions

labeled thus in figure 57 must all include their direction. It is a common feature of these

subtypes that has been normalized by directional pattern in state space. This is why each

is a subtype of directional pattern in state space.

The metamodel of knowledge in figure 57 not only provides for the fact that a single

meaning may be expressed very differently, and that formats may be translated to other

formats subject to complex rules and constraints, but also that knowledge may be expressed

in any format, be it simple or complex – a printed report, a string of numbers, graphical

multimedia, and multidimensional formats, or even molecular formats like those in DNA

or the proteins that make living beings. All these formats supported by today’s technology

or waiting for their turn in tomorrow’s, are enshrined in the metamodel of pattern. The

integrated metamodel of pattern normalizes this knowledge.

I saw Eternity the other night

Like a great ring of pure and endless light,

All calm, as it was bright, . . .

Driven by Spheres

Like a vast shadow moved, in which the world

And all her train were hurl’d

(Henry Vaughan, 17th century English

poet in The World)

Pattern recognition and the metamodel of knowledge

Collections of symbols, values, and other objects are patterns only if they conform to a law.

Pattern recognition is the discipline that discovers the law by analyzing a pattern.

Pattern recognition is of intense scientific and business interest with several applications

in key areas such as information security and encryption, analytics, genetics and bioin-

formatics, credit risk assessment, robotics, weather forecasting, remote sensing, military

reconnaissance, fingerprint recognition, face recognition, and biometrics.

Pattern recognition can be extremely complex and is an area of active and continuing

research. The numbers of patterns was enormous when we considered even a few simple

symbols in physical space. Many patterns can be exceedingly complex. When we consider

patterns in state space, the possibilities explode.

Consider figure (c) of box 37. In physical space, we would consider only the shapes,

sizes, orientation, and position of symbols to create patterns. The cylinder, cone, and ball

might constitute a pattern based on their mutual proximity and size. Similarly, the die might
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be considered a part of a pattern based on the shape and proximity. The cluster of disks

could be considered a pattern that flows from the same criteria. The three points are part of

an arbitrary and ad hoc pattern by decree.

If we had to consider the state of the objects in figure (c) of box 37, we would have to

add dimensions like color, weight, and reflectivity to the three spatial dimensions. The cone

and the three points might become members of a pattern based on color, the die might go

with the cylinder based on weight, the disks might go with the sphere and cone based on

reflectivity, and so on. Possibilities and complexities compound themselves each time we

add a dimension.

Just as some complex laws of location in physical space could be subtyped differently in

different directions and dimensions of physical space (like the law that did not distinguish

between mirror images), so too can some complex laws of location in state space morph

into different subtypes in different directions and dimensions of state space. Finding these

directions (if they exist) can be complex. When mixed state spaces are involved, laws in

different subspaces may be constrained differently, governed by the different rules we have

just discussed. This can compound the difficulty of an already complex problem. (Table 2

does give some guidance in terms of kinds of similarity metrics to look for.)

Compounding this difficulty even more is the fact that patterns are collections of symbols

(or values and other objects). Therefore, the state space of a pattern is the collection of state

spaces of constituent symbols (or objects – Module V, section 2 on our website discusses

the states of aggregate objects in detail). The complexity of state space can rapidly become

unmanageably large when we consider patterns.

Discovering patterns in this morass of possibilities in state space is the problem at the

heart of pattern recognition. Patterns are knowledge, and the metamodel of knowledge is

its fountainhead. Regardless of the complexity of the pattern, effective pattern recognition

must leverage the fundamental attributes of patterns that emerge from the metamodel of

knowledge. They are (the items marked with a “�” may depend on the direction of the

pattern in state space):

� Association and sequence

� Location

� Position

� Cohesion and separation
� Exclusion and inclusion
� Order of the pattern (order of governance of other patterns)
� Dimensionality of the shape of the pattern in state space
� Dimensionality of its state space
� Degrees of freedom

� Extent

� Delimitation

The metamodel in figure 57 captures the universal rules that govern a pattern, regardless

of how it is expressed – in what formats and what fundamental formatting domains – even

mixed formatting domains. The metamodel is the container of common rules across for-

matting domains, whereas each fundamental formatting domain is the container of specific

properties that the other domains do not have.
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Every pattern recognition method must factor in these properties of patterns in order

to recognize them, and to find which patterns resemble (or do not resemble) which. The

footnote provides an overview of broad techniques that address each of them.49

Standards, language and patterns of patterns

As we have seen in this section, only some patterns are formats. Formats are meaningful

patterns of symbols. Indeed, formats themselves can be arranged into systems, or patterns

of formats. These are higher-order patterns or formats that govern formats. Language is one

such higher order format of immense interest to business in the rapidly globalizing of man

and machine.

Indeed, in the real world and the world of business, we often find systems of patterns –

they are collections of patterns that govern other patterns like policies, strategies, language,

and convention – they are higher-order patterns – patterns of patterns of vital interest to

business. The metamodel in figure 57 addresses and unifies the whole. Of these higher-order

patterns, language and standards for information exchange are vital to communication in

the information-driven, relentlessly competitive, and paradoxically, the relentlessly collab-

orative global economy taking shape in the dawn of the new millennium. It might therefore

be worthwhile to understand how language is framed by the metamodel of pattern.

Format, language, and semiotics

Language is a set of formats in visual domains (written script) and audible domains (speech).

This set is a pattern in its own right – a pattern of unsequenced association. It is also an ad

hoc association – ad hoc because the system is dictated by convention.

In each of the five fundamental formatting domains, there are potentially infinite numbers

of symbols, and hence there are infinite numbers of formats. Standardization initiatives

usually focus on selecting finite sets of formats and subtypes to facilitate communication.

Language is one kind of standard (but not the only one).

Formatting rules and formatting domains are objects. Therefore, formatting rules as well

as formatting domains can be generalized and subtyped. Thus, in the example of Chapter 3,

section 3, where string length was expressed in English speech, we could have generalized

49 Several statistical methods are used to find patterns in state space. They depend of the kind of proximity metric

involved. It is impossible to exhaustively enumerate or describe all methods and their assumptions. However,

some broad and basic methods are:
� Ratio scaled proximity metrics: principal component analysis, cluster analysis, rotational analysis, and regres-

sion analysis. Principal components analysis attempts to find the dimensionality of ratio scaled state space

from observed states of symbols; cluster analysis tries to discover clusters of symbols in state space that are

closer to other members of the cluster than members in other clusters; rotational analysis of different kinds

tries to find directions in state space that measure variations in extent of the pattern; regression analysis tries

to find relationships between states based on observed states of symbols.
� Difference scaled proximity metrics: multidimensional scaling and Kolmogorov–Smirnov statistics. Multidi-

mensional scaling attempts to find the dimensionality of ordinally scaled state spaces from observed states

of symbols; Kolmogorov–Smirnov statistics involve distances in ordinally scaled space.
� Ordinally scaled proximity metrics: discriminant analysis. Discriminant analysis attempts to allocate symbols

to groups, based on a law that only says one group is different from another, from observed states of symbols.
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Figure 58 Structure of language

the format to read speech, instead of English speech. English speech would be a subtype

of the more general speech domain, just as speech in other languages would be. Thus,

the formatting rule, speak, would become a polymorphic relationship.50 Depending on the

language, the spoken word would be different for the same meaning.

Just as speech is a formatting domain, so are written symbols. Language is an aggregate

object – a set of specific formatting domains – written words, scripts,51 and spoken words.

Figure 58 is a fragment of the metamodel of knowledge that represents these rules of

aggregation.

Figure 58 recognizes that there may be primitive languages that have no written script,

and there may be coded languages that are only written and have no spoken words. Figure 58

also recognizes that scripts and conventions may be reusable components across different

languages. There are real world examples of this; in the state of Meghalaya in India, the

spoken Khasi language is written in Roman script, the script of the English language.

Similarly, in the English language, it is conventional to express numbers in both Arabic and

Roman notations.

Figure 58 also recognizes that languages may be ambiguous, that there may be homonyms

and synonyms. The relationship between meaning with format allows shows this: when a

50 The polymorphic behavior of subtyped and composite relationships was also addressed in box 21 and

Chapter 3, section 2, under “Implicit and intermediate rules”.
51 A script is the set of alphabet and numerals used in the written expression of a language. There are several

different scripts in use today such as: the Roman script for most European languages, Cyrillic for Russian,

Greek, Kanji for Japanese, and Arabic.
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meaning is asserted in multiple formats within the same formatting domain, each format is a

synonym. When a format expresses two or more meanings, it is a homonym. The metamodel

also asserts that there may be meanings without formats, which implies the existence of

meanings that are inexpressible in a language. Some reflection will show that this indeed is

true for some languages. For example, the concept of infinite extent of a pattern cannot be

expressed in most programming languages.

This link between meaning and format is the crux of automated language translation. The

science of associating symbols with meanings is called Semiotics.52 Semiotics is an issue

of increasing importance in a world of rapidly globalizing business supported by culturally

diverse peoples in equally diverse supply chains and product markets.

Format and format conversion – scope, size, and precision

A symbol is a pattern. It may also be a format. A format is a meaningful pattern we can

sense directly with one or more of our five senses. We have discussed several examples of

formats earlier in this book.

As we discussed under “Shaping and influencing patterns” (p. 213), interactions between

objects can influence a pattern. Thus, the format of a value might be contingent not only on

the state of the object it expresses, but also on states of other objects. Formats like this are

context sensitive formats. Box 38 portrays several examples of context sensitive formats

and format conversions.

A single meaning may be represented by many formats. Formats may even represent other

formats. Just as formatting rules map meanings to formats, format translation rules map one

format to another. Written words may be translated to spoken words and vice versa in any

language. Just as speak is a polymorphic relationship, translate too is polymorphic for the

same reasons. In a future world of global communication, a business person in New York

may speak to a counterpart in Tokyo in English, but be heard in Japanese and vice versa,

or a chemist might dictate an MSDS (Material Safety Data Sheet – a standard set of safety

instructions for hazardous materials) in English in London, and it might be simultaneously

printed in Arabic at one location and in French at another.

Formats need not always be characters like numerals and alphabets on our keyboards.

In our discussion on patterns and formatting domains, we have seen how symbols can also

be patterns that are pictures, graphics, even three-dimensional moving pictures or arrays,

sounds, olfactory, taste, or tactile symbols.

These patterns might be patterns synchronized across formatting domains. The pitch of an

audible note may tell the operator of an oven in a factory how hot the oven is, even as a screen

displays the oven’s temperature visually. In this context, both the sound and the numerals

are formats of temperature – one audible and the other visual – because both are meaningful

symbols. Together, they form a pattern, an audio-visual pattern. The audio-visual pattern

too is a symbol and a format. It is a composite format – an aggregate object that normalizes

rules about synchronizing its constituents (see “Pattern in physical space and time” (p. 217)

for more information about patterns of this kind). Formats may be expressed in any medium

52 [325] contains a lucid and non-mathematical introduction to semiotics.
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we can perceive. The medium constrains the attributes of the format. As we have seen, some

formats can even be arrangements of molecules in space. The only requirement of a symbol

that is a format is that the number of states it will support must be commensurate with

the quantum of information it represents. Otherwise it cannot represent the information

fully (see box 38 and information carrying capacity under “Patterns of shapes: dimensions

of freedom”, p. 181). “A picture is worth a thousand words” may be a cliché, but it is a

cliché based on the information carrying capacity of image formats, as opposed to character

formats. No amount of written description can substitute the experience of actually watching

the Mets play the Dodgers in Giants Stadium in New Jersey on a Sunday afternoon – even

if you watch the game on television. The moving television picture, a format, cannot be

converted into written words, another format, without losing some of its meaning.

Formats are symbols, and symbols are patterns. Therefore, formats inherit the emergent

properties of patterns. Three emergent properties of patterns affect the behavior of format

subtly but fundamentally. They are:

1 the information carrying capacity of the format;

2 the extent of the format; and

3 dimensionality of a format.

Information carrying capacity is fundamental because it has a profound impact on the

precision with which a format expresses a meaning. Written words failed to convey the

complete picture in the example above because their inherent capacity to convey information

was far less than the capacity of a moving image. Extent is fundamental because it deals

with the scope and size of the expression. Dimensionality is fundamental because it deals

with the shape and properties of the formatting symbol. Of course, they are all interrelated.

Precision

The picture on the television screen lacked quality. It was grainier than in real life. It lacked

the resolution and fine detail we would have seen with our own eyes had we been present

at the scene. If we magnified the picture on the screen to real-life dimensions or beyond

(perhaps with a projector or a screen larger than a house), this haziness or granularity would

become even more apparent as our eyes sought the detail that would normally be visible

at this level of magnification. The picture lacked this level of detail because its capacity

to convey information was limited by the density of pixels on the TV screen and other

technical factors. The picture did not have all the information our eyes would have seen,

because it was short on information carrying capacity. It did not have the precision of our

eyes. Similarly when we format written words or numbers, they may appear hazy or crisp.

Precision is crisp and sharp.

Spoken words or numbers are audible formats. Like pictures, they may not be clear if the

format lacks information carrying capacity. Have you compared the bell-like clarity of sound

from a good compact disk with the tinny voice of a bullhorn? Most of us have experienced

the crispness, clarity and richness of high-quality sound as well as the poverty and distortion

endemic in low-quality sound. The fidelity of a format depends on its information carrying

capacity. The information carrying capacity of a format normalizes precision.

When words, numbers, and pictures are truncated, they also lose information. However

this loss (if it happens) flows from the extent of the formatting rule. Rules of truncation
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may or may not impact a format’s information carrying capacity. When they do, they do

so indirectly via their impact on the extent of the pattern. Truncation is not normalized by

directly constraining the information carrying capacity of a pattern. Instead, it is normalized

by directly constraining the pattern’s extent. How and why this is so is our next topic.

Scope, size, and truncation

The image on the television screen was more limited than the real-life scene at the stadium

or playing field. It cut off everything but the most important parts of the real-life image that

the audience at the stadium would see. This reduced the extent of the object (the scene in

physical space) that it was formatting and adversely affected our experience of the game. It

limited the scope of the format. Limiting the scope also limited the amount of information

that had to be formatted.

The picture (a format) was far smaller than the stadium and the playing field. Its extent

was smaller than the extent of its scope – the scene it represented. The screen delimited

the size of the format, but not its information content. (Most of us would have preferred

a bigger screen. The closer the extent of the format is to the extent of its scope, the more

“real” it would look to us – like an I-max movie looks real.) However, extent in physical

space is only a part of the extent of format. Extent means much more than physical size and

truncation of a symbol, because physical space is only a part of the state space of a format.

Consider a written word. It is a one-dimensional string of letters. Besides an extent in

physical space (the plane of the paper), a written word has additional dimensions in state

space. Points in an ordinal “serial number” or positional dimension determine the position

of letters in a word. For example, in “WORD,” the letter “W” occupies the first position

on an axis that extends into the positional dimension. “O” occupies the second slot on this

axis, “R,” the third position, and “D” the fourth. Curbing this dimension will slice and dice

the string of letters that make the word. An upper bound on this dimension (a direction in

the state space of written words) will truncate a word. A lower bound would cut off letters

at the beginning. Ranges with upper and lower bounds would slice up the string of letters

into different segments depending on the upper and lower limits of the range.

The upper bound might limit the extent of the pattern in this direction of state space,

but, if a word is shorter than its upper bound, it will not be truncated and will retain its

accuracy as a format. It will lose accuracy (and information carrying capacity) only if the

upper bound truncates it. Thus, bounds may limit the extent of a written word’s state space,

but may or may not impact its information carrying capacity. Similar arguments will hold

for other formats and formatting domains (see box 38).

These were examples of how the extent normalizes rules of truncation of a format, but

impacts its information content only if it:

1 Limits the scope of the format (limits the extent of the formatted object, not the formatting

symbol); and

2 Reduces the state space of format to a level below that of its scope.53

53 In a continuum, like in ratio or difference scaled state spaces (e.g. physical space and time), the number of

possible locations (states) is infinitely large. Then, the partial order (see box 45) on the set of difference and

ratio scaled attribute values is dense [208]. Cardinalities, or the relative sizes of these infinite sets, must then be
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The information carrying capacity of the format determines its accuracy (precision) and

extent determines scope, truncation, and size.

Dimensionality

Not counting the time dimension, the format of the moving picture was two dimensional.

This too impacted our experience negatively by limiting the fidelity with which the two-

dimensional moving picture could represent the three-dimensional information it repre-

sented (formatted). It distorted its shape. It also lost information because an object with

more dimensions (the scene) was mapped to one with less (the flat picture).

Reducing the number of dimensions will not always reduce the information content of the

format (box 38 elaborates on this). For example, an MRI (Magnetic Resonance Imaging)

scan of a human body produces multiple two-dimensional images of cross sections of a

human body, which taken together represents the three-dimensional image of the body and its

internal organs. Computers can reconstitute the three-dimensional image of the body (with

its internal organs) from the set of two-dimensional MRI scans. They can convert the two-

dimensional format of an MRI scan into a three-dimensional format, because information

was not lost in the scanning. Reducing the number of dimensions may change the shape,

but not the fidelity of a format.

This was an example that demonstrated that the information carrying capacity of a format

determines its accuracy (precision), and dimensionality, its shape. Indeed, dimensionality

interacts with extent to determine shape. Dimensionality determines directions in space,

and extent determines how directions are curbed to produce shape, an emergent property

of the pattern. Together they shape a format as well as its scope.

Shapes extend not only in physical space, but also into state space. In Chapter 2, we

discussed how different axes of state space represent different dimensions. Thus, the dimen-

sions of a format also describe various properties inherited from its formatting domain.

Convention, standards, and technology may act in tandem to limit the lawful state space of

the format differently in different directions, and thereby define the shape of a format in

state space (see the examples in box 38).

The polymorphic nature of format

Formats map values to symbols. Formats flow from the generic relationship in box 36,

wherein one object may represent another. Thus, format is a subtype, a polymorphism of

represent. The object being represented is a value, and that representing it is a symbol (see

figure 60). A format may also be converted to another. That is another simple polymorphism

of represent – the object represented and the object representing it are both symbols.

considered. The theory of transfinite numbers addresses this. Ordinal [212], cardinal number [206], continuum

hypothesis [204], countable [202], and countably infinite [203] address cardinalities of infinitely large sets.

In this book, it will suffice to assert that reducing the size of a physical image will not necessarily reduce

its information carrying capacity. Contrast this with the truncation of words, which is a reduction of extent

in a discretely scaled direction of state space. Reducing the extent of a discrete axis of state space reduces

information carrying capacity.
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Figure 59 Format conversion is a recursive aggregate relationship

A symbol is a pattern. Interactions between objects can influence a pattern. As such,

the format of a value might be contingent on other objects. For example, the size of a

drawing may be automatically scaled up or down, depending on the size of the frame it

will be displayed in; the color of text may be black, if the background is light, or white, if

the background is dark. In these examples, the frame and the background are objects that

influence the drawing and text that are displayed. Therefore, the frame and the background

will be members of object set, and the drawing and text are the format, symbols that are

influenced by these objects in object set.

The object sets in the figures of this section represent this kind of polymorphism. The

object set in figure 60 contains the objects that influence the format. Thus, the map is

polymorphic. Its parameters are members of object set.

Similarly, figure 61 is the metamodel of format conversion, and the object set has the

context of the conversion – the objects and interactions that determine the state of the format

after it is converted. For example, an audible tone may also be mapped to a waveform on

an oscilloscope – a conversion from the audible to the visible formatting domain (see

formatting domains under “Five fundamental formats”, p. 172). Format conversion may

also be constrained by physical devices used to support requisite formats. One kind of

printer might support only black and white images, whereas another kind may support
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Figure 61 The metamodel of format conversion maps symbols to symbols

color. This is an integral part of business process automation. Object set also supports this

kind of automatic context sensitive formatting and format conversion. The objects in this

case would be the physical devices and their interactions. Constraints are parameters, and

formats the results of these polymorphisms of represent.

Constraints may also go to the heart of the formatting domain, and bar or mandate

expressions in specific fundamental formatting domains. An oscilloscope may not support
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the audible formatting domain and a speaker may not support the visual formatting domain.

These are sweeping restrictions, from which automation could automatically determine

what specific formats will suit which devices. For instance, it may be automatically inferred

that a speaker cannot output either written script or printed pictures (both are subtypes of

visual formatting domains) – common sense, but someone has to tell that to the computer!

Constraints on format could also mean higher-order constraints like language. For exam-

ple, language can be a parameter that determines specific verbal (audio) and script (visual)

domains in a format. A constraint might assert an “English only” rule. They may also bar,

mandate, or merely permit specific subtypes of specific formatting domains. A publisher

of a book might assert a “black and white only” rule for pictures. Constraints might even

go to the heart of formatting symbols. They may bar, mandate, or merely permit, specific

symbols within a domain. A chat room on the website may deem specific terms to describe

ethnic, religious, or national groups unacceptable, and a business may mandate a logo on

all written official communication.

Constraints could also be set on specific states of symbols, barring, mandating, or merely

permitting specific regions of state space of a formatting symbol. For example, there might

be size restrictions on the dimensions of a graphic. Constraints might even be attached to

emergent states of the patterns that make the symbol, shaping it, mandating, barring or

permitting its scope, size, texture, and information carrying capacity. These constraints too

are parameters of format and its conversion – an aspect of the polymorphic map represented

by figure 61 (see the examples in box 38). Thus, formats are one kind of bridge between

business meaning and business process automation.

Formats (and format conversions) that are “aware” of states, constraints, and rule expres-

sions attached to them will have the “intelligence” to change their character, depending on

what they are mapping and by what rules.

Figure 62 describes a polymorphism of the represent relationship of box 36 that subsumes

formatting and format conversion:

Objects may express or represent other objects. As highlighted in Module V on our

website, higher-level processes can be implemented in different ways by alternative lower-

level processes and tasks.

The broken lined arrow is a value constraint between the information carrying capacities

of the object being represented and the object representing it. If we remove the value

constraint (or weaken it – say, by limiting the difference between information carrying

capacities), representation may still be possible, but with less precision once the information

carrying capacity of the object that is representing the other object falls below that of the

object it is representing. If we go on reducing the information carrying capacity of the object

that is representing the other object, it will eventually become a mere token for the existence

of the object it represents, like the diagramming symbols in this book are only tokens for

the meanings you have been studying in it.54 This notion is described in more detail in

box 38.

54 Eventually when the object doing the representation has no degrees of freedom left, it cannot be a format

because it cannot represent a meaning. Constants are objects like this. They do not even have the freedom not

to exist. They must exist, and can have only one value.
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Figure 62 Metamodel of representation

In figure 62, when the object on the right is a symbol, the figure will become the meta-

model of format – the additional detail behind figure 60. When both objects, that are being

represented and that are representing it, are symbols, figure 62 will become the meta-

model of format conversion – the additional detail behind figure 61. When only the object

on the left is a symbol, figure 62 will become the metamodel for imputing values to a

symbol. Thus figure 62 captures the polymorphic nature of represent, the relationship in

box 36.

Different components of knowledge may be “snapped” into place and the behavior of the

represent relationship will change commensurately to serve different ends. In the following

description of figure 62, we emphasize format conversion, but remember the contents of

figure 62 can play several roles, including the metamodel for encrypting symbols and/or

meanings.

It is worth noting that maps between attributes and states that instantiate the metamodel in

figure 62 may be between like domains as well as unlike domains. For example, a tone may

be mapped to an identical, but louder tone. This kind of format translation is the component

that supports the common act of adjusting the volume of an audio signal – something we

do so often that we rarely even think about it. It is a translation between like formatting

domains – audio domain to audio domain.
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When it maps meanings to symbols, turning them into formats, or converts one format to

another, figure 62 becomes a context sensitive bridge – a polymorphic transform – that takes

us from the world of business meaning to the universe of supporting information systems;

a bridge from the business to the interface rules layer of the architecture of knowledge in

figure 15.

Box 38 Metamodels of format, format conversion, encryption, and

formatting constraint (on our website)

Box 38 supplements the discussion in this section with deeper analysis and more sophis-

ticated examples. It covers issues such as encryption, accuracy, fidelity of representa-

tion, and their relationship to the information carrying capacity of formats. Box 38 also

describes how attributes of pattern, such as extent, directionality, dimensionality, delim-

iters, location, and proximity are inherited and relate to the behavior of formats and

the represent relationship of box 36 and addresses the encryption of abstract meanings.

Box 38 provides a more complete description of figure 62.

2 The meaning of units of measure

Values are meanings; symbols represent these meanings. Symbols are formats; formatting

rules map meanings (values) to symbols. Values are abstract meanings; symbols are discrete,

perceptible objects that occupy space and time. Many values are discrete, but some are

continuous. A continuous region of state space contains an infinite number of distinct

states. We cannot map infinite numbers of states to finite numbers of discrete symbols

without losing information.55 We need a continuum of symbols that matches the continuum

of values we wish to represent. Otherwise, we will lose scope and precision when we map

ratio and difference scaled state spaces to symbols.

Values in difference scaled space also carry information on magnitudes of differences

between states. In ratio scaled space, they contain information on absolute magnitudes as

well. Therefore, we need symbols that will not only match the continuum of values we must

represent, but also match magnitudes and differences of the meanings we must represent.

Numbers are symbols that satisfy all these criteria. Numbers, as well as their differences,56

exist in a naturally ordered continuum. Numbers are also objects. They are objects that

are meaningless by themselves, but acquire meaning only when they are associated with

magnitudes of quantitative values in domains of meaning like length, money, weight, and

others we have discussed in Chapter 1 and section 3 of this chapter. Unlike the formatting

55 It is common sense that an object with a larger number of states cannot be completely represented by another

object with a smaller number of states. Accuracy of formats and encrypted information in box 38 describes

why formats lose precision in such maps.
56 Differences between numbers are numbers too, and hence they inherit all properties of numbers.
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symbols discussed so far, numbers are also abstractions. In this section, we will understand

the difference between a number and its value.

Number versus value

Numbers are meaningless. If we say a room is 10 feet high, it has a meaning, but the number

10 is meaningless by itself. The meaning of the statement came from the meanings of a

domain (length), an attribute (height), and an object (the room itself). It was borrowed from

these abstract components of knowledge that engaged each other, like gears in a knowledge

machine.

The domain (the length domain) told us that we were measuring a distance in physical

space, the attribute (height) told us that the distance we were measuring was height, and

finally the object (room) told us that it was the height of a room we were measuring. The

value, a member of domain, carried information on the magnitude of the distance. However,

we needed a symbol, a number, to express this value physically. We needed the number for

communication. We can experience and understand the value without a number, but must

have the number to communicate our experience.

The domain had meaning. It was also a class of meaningful values. This value was a

member of this class. It was a specific value with meaning and magnitude (see figure 35).

The number told us nothing by itself. It only borrowed meaning from the value it represented.

We could have mapped the same meaning, or value, to a different number. It would not have

changed the height of the room by one iota. Its value would not change, but the number that

represented it would.

All the number did was that it facilitated communication of meaning, the value, provided

we were consistent in how we mapped values to numbers (more on consistency to follow

soon). The meaning of the number was borrowed from the engagement of an object and a

domain through its attribute. The number, by itself, was meaningless.

The nature of numbers

Numbers are symbols, but they are also abstract concepts. Unless they are represented

by perceptible symbols in physical space and time (like numerals), numbers cannot be

perceived, and will remain abstract concepts like the values they represent.

To make ratio and difference scaled values tangible, they must be mapped to numbers,

which, in turn, must be formatted by perceptible symbols. Only then can the meanings of

ratio and difference scaled values become tangible information we can perceive. Two maps

operate in tandem to manifest abstract ratio and difference scaled values, the concepts, into

the concrete physical world of information.57 Figure 63 shows this and figure 64 elaborates

on it.

Just as a single value may be mapped to different numbers, the same numbers may

map to different formats. These formats are different numerals and symbols in differ-

ent scripts, languages, and systems. For example, the same number may be formatted by

57 The two maps in tandem in figure 63 are mathematical morphisms that form a composition – see [186].
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Figure 63 Two maps working in tandem map quantitative values to physical symbols

Arabic or Roman numerals. Even when Arabic numerals are used, they may be format-

ted as binary, octal, or decimal numbers.58 Different formats do not change the number

they represent any more than different numbers change the single meaning they may all

express.

Just as the same number might be formatted differently by different symbols, the same

sets of quantitative values may be mapped to different sets of numbers. Each such map is a

measure of the value.59

Numbers normalize different formatting rules than do either values or symbols. Consider

how the following formatting rules are normalized. They are also examples of polymorphic,

context sensitive formatting rules:

1 Rule: “Extremely large or extremely low values of temperature must be displayed in red

and also voiced audibly to alert an operator of a furnace, regardless of the unit used to

measure the temperature, such as Fahrenheit, Celsius, Kelvin, or any other number that

displays the temperature.”

The behavior of format depends on the value of the temperature, not on the number

displayed, nor on its unit of measure. This formatting rule is normalized by a relationship

between value and format.

2 Rule: “Extremely large or extremely small numbers must be in exponential format and

those in between, in decimal format.”

The behavior of format depends on the number, not value or unit of measure. The

format depends on number alone. It is a relationship between number and format that

normalizes this rule.

3 Rule: “All roman numerals are red.”

58 The endnote on number systems and radices describes how the same number, in the same script, may be written

differently.
59 The metamodel of measure is another polymorphism of the represent relationship in box 36. Figure 62 has

the detail that box 36 omitted. If we replaced object attribute value on the right-hand side of figure 62, with

number, represent, the relationship would become a measure of value, or measure in short. Figure 64 elaborates

on figure 62 to show how units of measure emerge from the expression of a quantitative value, which is a

polymorphism of represent.
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Roman numerals are a visual format, a perceptible symbol that expresses a number.

Format alone, not number, value, or unit of measure, normalizes this rule.

4 Rule: “All temperatures in degrees celsius must be red.”

The format depends on unit of measure alone, not formatting symbols, number, or

value. A relationship between unit of measure and format normalizes this rule.

The pattern in number

The concept of number is not only an abstract symbol; it is also an abstract continuum,

and a pattern in its own right.60 The continuum is a pattern, a sequenced, one-dimensional,

unbounded pattern of infinite extent. The origin of the continuum is the number zero. The

proximity metric in this pattern of numbers is ratio scaled. It has all the emergent attributes

of patterns, including information carrying capacity. Constraints on its information carrying

capacity limit the precision with which it can express meanings, and are at the root of round

numbers. Round numbers limit the precision with which numbers can express the values

they represent. Figure 63 articulates this.

Round numbers versus truncated numbers

Rounding implies disallowing ranges of numbers. Only a set of discrete numbers is permitted

in the resulting pattern. This set is based on the proximity of a number to its neighbor on

either side. The continuum stops being a continuum. It becomes a set of discrete points

instead.61 When the expression of values is rounded up or down, a region, a continuum of

quantitative values is mapped to a discrete, discontinuous pattern of numbers. Several values

map to a single number. When values in a region, a continuum, all map to a single number,

they must lose information.62 The map loses fidelity in proportion to gaps between numbers.

(It also violates the fourth rule of simple representation in box 38.) We have seen in section

1 and box 38, how truncation emerged from curbs on extent in the state space of symbols.

We now can see that rounding emerges from curbs or the proximity metric of another

pattern – a number in a continuum of numbers. Thus truncation emerges from formatting

symbol, whereas rounding emerges from formatting number. Further, truncation emerges

from constraints on extent, whereas rounding emerges from constraints on proximity. One

kind of component of knowledge, a metaobject in our metamodel normalizes rules for

rounding values and another normalizes rules of truncation. As such, rules for rounding

values up or down have their origin at one place in the metamodel of knowledge, whereas

rules of truncation have their origin at another (see figure 63).

60 See [207], [202], [203], [206], [212], [213], [214], [215], [216], [217], [219], [220], [221], [222], [223], [224],

[225], [226], [227], [228], [229], [230], and [231].
61 Round numbers convey quantitative information on ratios and differences. Therefore they carry more informa-

tion than ordinal numbers, which convey only sequence and distinction (see the first lattice of [218]). However

round numbers convey less information than the real (“normal”) number continuum–[222] because round

numbers have no information on the gaps between them. Similarly the surreal number continuum has more

information than the real number continuum – see [231].
62 When two or more values map to a single number, the map between the domain of values and the domain of

numbers is not injective, and hence loses information. See morphisms in the endnote on the theory of categories

or items on the theory of categories, functors, and classes in the Bibliography.
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Rounded numbers may also be truncated, and truncated numbers may be rounded. The

two operations are independent, not mutually exclusive, but they do depend on sequence.

(If they must be assembled into a subassembly of knowledge, the connective between them

is like the “�” connective in the endnote on gluing objects together.)

Measures of meaning

Measures represent magnitudes. Formats were about symbols that represented meanings.

Units of measure are about representing magnitudes. Values convey meaning. They also

convey magnitude. However, not all meanings convey the same quantum of information

about magnitude, nor are all arithmetic operations valid in all domains.

Consider nominal domains. The only information conveyed by values in nominal domains

is that each is different and distinct, but they do not convey by how much these values differ,

or which value has a greater or lesser magnitude. It follows that the entire information

content of a nominal value can be expressed by a mere symbol alone. Hence formats will

suffice in expressing all the information they convey and no arithmetic operations will be

valid in their domains. Only operations that compare values to test that one value is distinct

from another will exist in nominal domains.

Ordinal values convey more information on magnitude. They can tell us which values

are greater, lesser, or of equal magnitudes compared to other values,63 but cannot tell

us by how much these magnitudes differ from each other. Therefore, their information

content can be fully expressed by any set of symbols that convey information on sequences

or ranks. There are many such symbol sets – numbers, the letters of the alphabet, and

others. Alternatively, symbols will suffice, provided we impute a rank or sequence to the

set of symbols. Formats will suffice to express all information about the measure of these

values. Both tests for distinctness and sequencing (sorting) operations will exist in ordinal

domains.

When we express naturally discrete magnitudes, like those in nominal or ordinal domains,

formats suffice because each magnitude can be mapped to a discrete symbol. For example,

it is desirable but not mandatory that the relative ordering of magnitudes in an ordinal

domain must be consistent across formats (i.e., formats should be such that any natural

sequencing of symbols should be consistent with magnitudes of ordinal values that map

to them). For example, ranks could be mapped to whole numbers starting with 1, but we

could use other symbols that have no natural order provided we associate a rank with

each.64

63 See properties of, ordinal numbers and ordered sets in [211], [212], [213], [214], [215], [216], and [217].
64 Well-ordered sets that only differ in the “notation for their elements,” i.e., their formats, are mathematically

indistinguishable. Elements of the first set pair one-on-one with the elements of the second, so that if one

element is smaller than another in the first set, then the partner of the first element is smaller than the partner of

the second element in the second set, and vice versa. This kind of one-on-one correspondence is called an order

isomorphism. Two well-ordered sets are always order isomorphic. Maps between ordinal values and numbers

are order isomorphic and can be made order isomorphic to one and only one ordinal number. See isomorphism

and order isomorphism in [212] and the endnote on the theory of categories. Also see [211], [213], [214], [215],

[217], and [218].
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However, with difference or ratio scaled domains, we will be dealing with a continuum of

magnitudes65 and we need a different kind of map to express magnitudes. Discrete symbols

will not be sufficient.

Difference scaled domains convey more on magnitudes than ordinal or nominal domains

do. Difference scaled values not only tell us which is greater or lesser, but also by how

much. Unlike nominal and ordinal domains, magnitudes of values and differences in such

domains can be a continuum, rather than a set of discrete points.

Difference scaled domains carry information on the magnitude of gaps between values

in it.66 Not only do comparison and sequencing operations have meaning in such domains,

but so does subtraction. (However, difference scaled domains carry no information on ratios

between values, and division has no meaning in these domains. For example, differences

between dates are meaningful, but dividing one date by another is meaningless – see the

parable of Metanesia in Chapter 1.)

Numbers are measures of magnitude. Moreover, numbers may be compared, have a

natural sequence from small to large, and may be meaningfully subtracted to obtain the

magnitudes of difference between them. Therefore, it is natural to map values in difference

scaled domains to numbers to express their magnitudes.

Just as formats only represented nominal and ordinal meanings, numbers only represent

magnitudes intrinsic to meaning. Just as several different maps can map a single meaning

to symbols, a single magnitude can be mapped to different numbers. Each map will merely

be a different measure of the intrinsic magnitude of meaningful values in a domain of

meaning. The different numbers, which different measures map a single meaning to, are

merely different representations of the magnitude latent in that meaning. Each measure is

called a unit of measure (strictly speaking, the magnitude that is represented by the number

1 in each measure is its unit of measure, but in this book, we will call both the measure and

its unit a unit of measure).

In short, the precision with which a quantitative value is translated to a number is a

property of the unit of measure, a metaobject in the metamodel of knowledge. Based on

the principle of subtyping by adding information, units of measure of greater precision are

derived from subtypes of units of measure of lesser precision.

Moreover, in keeping with the nature of the intrinsic meaning of values being mapped,

each measure must be internally consistent in expressing the relative ordering of magnitudes,

distinctions between values and magnitudes of differences between values. We will call these

the golden rules of measurement. In other words, the golden rules are:

65 A continuum of values like those in ratio and difference scales domains is said to be mathematically dense –

see [208]. The smallest unbounded totally ordered dense set is the set of rational numbers [220]. Therefore

unconstrained quantitative domains are infinite sets of values that may be isomorphically mapped to at least the

set of rational numbers (see isomorphic mapping in the endnote on the theory of categories). The continuum

can be larger: it may involve all real [222], or even surreal numbers [231], or any totally ordered set of numbers

of intermediate size. See [213]. Also see countability of members of a set ([202] and [203]), cardinality as a

measure of the size of a set ([206] and [212]), and the continuum of magnitudes ([204] and [216]).
66 The smallest totally ordered set that forms a continuum [204] (i.e. is dense [208]), is the set of rational numbers

[220]. Other, larger sets ([212] and [206]) of totally ordered patterns [213], like the set of real numbers [222],

p-adic numbers [230], hyperreal [225], and surreal numbers [231] may also represent difference and ratio scaled

values.
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1 If values have different magnitudes, an internally consistent measure will not assign the

same number to them.67

However, the same number in different measures may represent different values. This

is why the Mars Climate Orbiter crashed after a journey of over 416 million miles through

interplanetary space.

Friday, October 1, 1999

“LOS ANGELES – A mix-up over metric and English measurements . . . caused the destruc-

tion of the $125 million Mars Climate Orbiter . . . last week . . . The spacecraft flew too

close to Mars and is believed to have broken apart or burned up in the atmosphere. NASA said

the English-vs.-metric mix-up . . . caused the navigation error.” (THE ASSOCIATED PRESS

(http://www.fas.org/mars/991001-mars01.html))

Someone forgot to convert units of measure! It led to the loss of $125 million, years of

research, and one of the most advanced spacecraft that humans could build.68 It happened

because each measure is a different and independent map from intrinsic meanings of

magnitudes in abstract domains of meanings to the domain of numbers. This component

of knowledge was forgotten at NASA’s peril.

Consider how different values may map to the same number in different measures. The

temperature at which water turns to ice is 0◦ Celsius. 0◦ Fahrenheit on the other hand is

much colder than freezing water. Celsius and Fahrenheit represent different measures of

temperature, i.e. different maps between an intrinsic and naturally meaningful magnitude

and the domain of numbers. Both temperatures map to the number zero, but do so in

different (units of) measures.

2 Conversely, given a measure of a domain, values with the same intrinsic magnitude will

map to the same number.69

Thus 0◦ Celsius will always mean the same temperature. Only the freezing point

of water, and no other temperature, will map to the number zero, given that we are

measuring temperature in ◦Celsius (obviously!). Of course, if we switch measures, the

same temperature could map to different numbers. For example, the boiling point of

water is 100◦ Celsius or 212◦ Fahrenheit. The Celsius measure maps the (magnitude of)

temperature of boiling water to the number 100, whereas the Fahrenheit measure maps

the same temperature to the number 212.

67 The domain of values should map to the domain of numbers injectively. The second law is even more restrictive.

It requires bijective mapping. See the endnote on the theory of categories.
68 The climate orbiter was on a mission to study Mars weather and look for signs of water to determine if life

could exist on Mars currently or in the past. Lockheed Martin Astronautics in Colorado submitted acceler-

ation data in English units of pounds of force instead of the metric unit called newtons. NASA entered the

numbers into a computer that assumed metric measurements. The numbers were used to find the force of

thruster firings to adjust the orbiter’s trajectory. “This is going to be the cautionary tale that is going to be

embedded into introductions to the metric system in elementary school and high school and college physics

till the end of time,” said John Pike, director of space policy (source: Associated Press report, September

1999).
69 The morphism between the domain of values and the domain of numbers must be bijective. See morphism and

bijection in the endnote on the theory of categories.
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3 The relative ordering of magnitudes must be consistent across measures,70 i.e., sequencing

of values in order of magnitude must be the same in all measures. For example, we know

that the freezing point of water is a lower temperature than that of boiling water. If we

map these (magnitudes of) temperature to numbers, the number for the freezing point of

water must always be lower than that of boiling water in every measure. Thus, in Celsius

0 is less than 100, and in Fahrenheit, 32 is less than 212.

4 Each measure must have a unit of magnitude for gaps between magnitudes that maps to

the number “1.”

In (both ratio and) difference scaled domains, magnitudes of gaps between measures

are also meaningful, and we must be in a position to compare these gaps consistently

(within a given measure). Therefore, each measure must have a unit of magnitude for

gaps between magnitudes that maps to the number “1.” Thus 1◦ Celsius is a different

magnitude from 1◦ Fahrenheit, but both are units of measure of differences of temperature.

5 When two values are equal, their difference must map to the number zero (naturally!).

Just as we needed a unit of measurement to measure differences between magnitudes,

we need the number zero when there is no difference between two values, i.e. when

values coincide.71 Thus, whenever two values are equal, their difference must map to the

number zero.

6 No value can be said to be of an infinitesimally small magnitude.

Values that naturally map to zero signal the absence of a property. For difference

scaled values, there is no value that naturally maps to the number zero. Magnitudes of

gaps between values may map to zero naturally to show that two or more values are

coincident, but difference scaled values have no natural zero. Thus, this sixth condition

might read: “It is not mandatory that a single value must map to the number zero across

all measures, nor is it mandatory that measures of difference scaled domains must have

a zero, and, if they do, the number zero has been arbitrarily imputed to a value in the

domain (of meaning).”

For example, the length domain has a natural zero but not the domain of dates. We can

conceive of two physical objects that touch each other, and hence the distance between

them is zero, i.e. there is no distance between them. However, as we understood in the

parable of Metanesia in section 3 of Chapter 1, some domains have no natural zero and

the temperature domain was one such domain. The domain of dates is another. We can

measure differences between dates (and times) in days, hours, minutes, or seconds, and

can certainly say which dates come after (are greater than) which, but it is meaningless

to talk about ratios between dates. We can certainly say that the gap between a pair

of dates is twice that between another pair, but cannot meaningfully say that one date

70 The theory of ordinal value functions has been lucidly described in [211]. Measures of a value (and also

conversion rules between measures) must be order isomorphic. See order isomorphism in the endnote on the

theory of categories. Also see [211], [216], and [217].
71 Ordinal values too can be of equal magnitude (rank), but, if they are not, we have no information on how big the

gap between them is. Thus, two ordinal values can map to the same rank, and it is implicit that the difference

between them (their magnitudes) is zero. Ordinal values of the same rank are permitted in psuedometric state

spaces (see the endnote on generalized distances). However, we do not need “1,” the unit of measure, because

measuring magnitudes of finite gaps between ranks is meaningless.
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is twice another date. Midnight of January 1, 0 AD has been arbitrarily set to zero by

convention. Other conventions in other parts of the world support other calendars with

different imputed zeros for dates. For example, the Hindu, Muslim, and Jewish calendars,

each imputes a different zero date to measure the timeline, and fix a number for a given

year.

Ratio scaled values carry information on relative magnitudes in as well as the kind of infor-

mation conveyed by difference scaled values. Ratios between ratio scaled values mean-

ingfully compare how many times one value is more (or less) than another, a quality that

difference scaled domains lack. Therefore, when we map magnitudes of ratio scaled values

to numbers, the first five conditions for consistent measures would remain the same, but the

sixth condition would read:

6 A single value must map to the number zero across all measures because it represents

the absence of a property, not the absence of meaning of the property! It only says that

the absolute value of the magnitude of the property is infinitesimally small.

The number zero means the same thing in all meaningful measures of ratio scaled domains.

This is its natural zero. In the example above, when two objects touch each other, their

separation will be zero in every possible units of measure – feet, inches, meters etc. –

and even units of measure that are not invented yet.

Formats of units of measure

Formats of units of measure map magnitudes of values from domains of meaning to the

domain of numbers. They are a bridge between the business rules layer and the imple-

mentation layer in figure 16. Business process design mandates that units of measure to be

specified. Units of measure express and measure the meanings of quantities in numbers.

However, we cannot represent these numbers in any recording system, manual, or auto-

mated, unless we assign symbols to them in one or more of the five formatting domains.

Therefore, although each unit of measure expresses the meaning of a quantity (a single

quantity may be expressed in many different units of measure), each unit of measure in

turn must be expressed in a format (and possibly in many different formats) to make it

perceptible to the real world of process automation, actors, and observers.

Formats are the symbols that express a value, and hence are physically sensed when we

actually perceive a tangible expression. We hear “you have mail” when new mail exists, see

a number colored red, or see it expressed in roman numerals.

In Chapter 3, section 3, we understood that the format of a nominal value would convey

its entire information content, and be its full tangible expression (“Tangible expression”:

see Chapter 3, section 3).

Ordinal values have a rank. Their formats will also be their tangible expressions, and con-

vey their full information content, provided discrete numbers (or another totally ordered72

set of symbols) represent these ordinal values.

Unlike ordinal and nominal values, the format and value alone cannot convey all the

information latent in difference and ratio scaled values. Both format and unit of measure

72 See total order in [213], [214], [215] and the endnote on ordered sets and sequences.
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are required to tangibly express a quantitative value. The unit of measure is not evident

from a symbol that merely represents the value. To communicate full information about

quantitative values, the (unit of) measure must also be identified and expressed tangibly.

Both the measure and the number need perceptible symbols (formats) that will physically

represent them. The height of a building might be written down in a red decimal number

(its format), but must be followed by a symbol like “feet” or “ft” to show that the number is

measured in feet. Just like any other meaning, each unit of measure has potentially infinite

numbers of formats that can give it perceptible form.

Of course, only a few of these formats for units of measure will be widely accepted

conventional standards. For example, the US dollar is a unit of measure for the money

domain. Conventional formats for it are USD and $. An inch is a unit of measure for length.

Conventional formats for the unit of measure are inch, in and ′′.

Box 39 Full formats of values

The full format of a value is the set of formats that can express the complete meaning of the

value. An ordered pair of symbols consisting of the format of value and the format of the

unit of measure is the full format of a quantitative value. The pair is an aggregate object. It

is also a pattern and a symbol on its own. The pairing sequence is usually determined by

convention. For example, the written symbol for one dollar is “$1,” whereas it is spoken

as “One Dollar.” When it is written down, the symbol for the unit of measure comes

first, but when it is spoken aloud, the symbol (spoken word) for the value is said first.

Thus, quantitative values need two symbols to fully express their meaning, whereas quali-

tative values need only one symbol.73

The metamodel of units of measure

The metamodel of unit of measure resembles the metamodel of format (figure 60). The

rule expression, however, is restricted to those expressions that conform to the six golden

rules of measurement and numbers must be expressed in formats described earlier to obtain

tangible expressions of quantitative values. The metamodel illustrates how (unit of) measure

too must be represented by a symbol in the tangible expression of a value to convey the full

meaning of a quantitative value.

The full format, as we understood under formats of units of measure, is a sequence. The

sequence in which we arrange the constituents of a full format is dictated by convention, not

logic. Under “Incomplete rules”, in Chapter 3, section 2, we understood how structures like

figure 64 let us express not only our knowledge, but also our ignorance with great precision

by assigning “don’t know” values to the right components. If the sequence of its constituent

formats is unknown in a full format, we can still express all the information in the value

that the format is expressing. The only item of information we lose will be convention –

73 Figure 8 describes this basic difference between quantitative and qualitative values.
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knowledge of how these symbols are conventionally sequenced, normalized by full format,

the aggregate object in figure 64.

Of course, like any other format, the formats of measure and number are also patterns,

and are bound by the architecture of patterns as well as the rules and constraints in box 38.

Consider how numbers are different and distinct from symbols in a format. Take an

example of a complex rule. Assume that requirements dictate that all numbers in a certain

range must be displayed in red, blinking digits. Outside this range they must be black digits.

Moreover, the rule applies only to a number, not a value. Values may map to different

numbers depending on the unit of measure, but the display changes only when a number

falls within the range, regardless of what unit of measure has expressed it. Furthermore, the

requirement states that it does not matter what kind of written script expresses the number.

It could be in Roman numerals, Arabic, or Kanji (Chinese). Only the number matters to the

format. The constraining relationship then would involve a set of numbers, not symbols or

values, and the object set of figure 62 would become a number set instead. A number is a

kind of object. The generalized object set can support rules like these – and even rules that

are more complex, as we shall see in the following example.

Consider a new requirement. The requirement is that whenever distances are expressed in

kilometers or meters instead of miles or feet, the symbol for the unit of measure (kilometers

or meters) in the full format must be bold. The object set in figure 62 would then contain

a set of measures for length, and the formatting rule would map specific measures to bold

symbols. In this example, the measures are kilometers and meters. If their formats were

the symbols “km” and “m” respectively, both “km” and “m” would be in bold print like

this. In general, the expression of a rule could depend on any object or even interactions

between objects of different kinds in different states. This is why object set influences rule

expression in figure 62.

Measures like those in figure 64, formatting rules like those in figure 60, and Rule

constraints like those in figure (c) of box 33 are all subtypes of the general represent rela-

tionship in box 36. The general relationship manifests itself as one of the three components

of knowledge depending on the object that represents a meaning (the object on the upper

right-hand side of figure 62 – a measure when the target is a number, a format when the

target is a symbol and an encrypted meaning when the target is a value. Similarly, when

both source and target objects are symbols, the generalized represent relationship is a for-

mat conversion rule. When the source is a symbol, but the target is not, it might be the key

to encrypted information. The generalized represent relationship is polymorphic, and its

parameters are:

1 The target object;

2 The contents of the object set involved with the rule expression – values, formats, numbers,

and other objects; and

3 The object being represented.

Conversion between units of measure

Just as formats can be converted to other formats, units of measure of a domain can be

converted to other units of measure for the same domain. Maps that convert between units
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of measure are similar to maps that convert one format to another. However, formats merely

map meanings to symbols. Symbols can always be substituted for other symbols and there

are few restrictions on mapping rules that convert formats to other formats. However, units

of measure must satisfy the six golden rules we just discussed. Results of all units of measure

conversions must preserve these rules, otherwise the result of the mapping is not a unit of

measure. Therefore rules for converting between units of measure are restricted. They are

special rules:74

1 Units of measure can only be converted to other units of measure for the same domain.

Units of measure map meanings to numbers. Domains are containers of meaning. There-

fore each unit of measure applies to values in a single domain. When units of measure of

a domain map to other units of measure, the resultant units of measure also must be units

of measure for the same domain. For example, feet will always be a unit of measure of

the length domain and no other; feet can never be converted to kilograms or dollars, but

can be converted to centimeters.

2 Units of measure for ratio scaled domains can be converted to another unit of measure

for the same domain by multiplying every number in the unit of measure by a fixed,

non-zero conversion factor.

This kind of map between units of measure will preserve the six golden rules for ratio

scaled domains across all units of measure. The conversion factor must be the same for

every value. Otherwise it would distort the relative sizes of gaps between values. The

rule also ensures that the same value maps to the number 0 in all units of measure. For

example, to express length in inches, multiply length in feet by the fixed conversion

factor 12.

Difference scaled values have no natural zero. As such, different units of measure need not

all map to the same zero. Therefore, the second rule of conversion for units of measure of

difference scaled values is less restrictive:

3 Units of measure for difference scaled domains can be converted to another unit of

measure for the same domain by multiplying every number in the unit of measure by a

fixed, non-zero conversion factor. Even if we add (or subtract) a fixed number from the

result, it will stay a unit of measure.

This kind of map between units of measure will preserve the six golden rules for difference

scaled domains across all units of measure. The multiplier must be the same for every

value. Otherwise it would distort the relative sizes of gaps between values. Adding a fixed

number to the result will only shift the zero of the new unit of measure. For example, to

express temperature in Fahrenheit, multiply temperature in Celsius by the fixed conversion

factor 1.8 and add 32 to the result.

Indeed, even if we merely shifted the zero and did not multiply values, we would still get a

different unit of measure; one that is identical to the old unit, but with a different zero value

(this is equivalent to the conversion factor being “1”).

74 Morphisms for converting between measures of the same value are called an isometry or isometric isomorphisms.

See isometry and isometric isomorphism in [261]. See morphism, isomorphism, surjection, and injection in the

endnote on the theory of categories.



247 Domains and their expression

Sam
e object

Same object

Number

Map to 1 

[mapped from 0 or 1]

Mapped by 0 or more

[map 1]

× +

(term)

NumberNumber

(term)

Rule

expression

RULE

MEANING

Expressed by 1 or more
[express 1]

Sam
e obje

ct

Same object

Number

Value Value

Number

must equal

[must equal]

Expressed by 0 or more

[express by 0 or more]

Expressed by 0 or more

[express by 0 or more]

Convert to 0 or more

Figure 65 Structure of unit of measure conversion rules

The metamodel of measure conversion rules

Figure 65 is the metamodel of unit of measure conversion rules. It is a recursive relationship

that resembles the format conversion rule of figure 59.

However the rule expression in figure 65 is more restrictive than the rule expression of

figure 59; it must conform to rule 2 above and has two terms:

(A) The term on the left, inside the rule expression of figure 65, multiplies the number

being converted by another number (the conversion factor)

(B) The term on the right merely adds a number (to account for zeros being different in

different measures).
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The lower half of figure 65 represents rule 1 for conversion between units of measure; the

values are identical, but the numbers need not be. The equality relationship between the

two value icons in figure 65 represents the irreducible fact that the number being converted

and the result of the conversion express the same value. A value is a member of a domain;

hence, conversion measures not only map to the same domain, but an instance of a conversion

measure converts a number that expresses a given value to another number that expresses

the same value. (Most examples of relationships so far in this book have been between

object classes. The equality relationship between the value icons in figure 65 is an example

of a relationship between object instances.)

Figure 65 also shows term (A), a joint constraint and quantitative relationship simi-

lar to figure 44. The relationship from number to rule expression in the upper half of

figure 65 is actually the relationship between the number being converted (in the lower half of

figure 65) and term (A) (inside the recursive loop). The relationship illustrated by the bro-

ken line from the number being converted to term (A) inside the rule expression makes this

point.

The rule for converting temperature from Celsius to Fahrenheit is an instance of the unit

of measure conversion rule in figure 65. The number in term (A) will be 1.8, and that in

term (B) will be 32 in this case.

Box 40 Measure conversion (on our website)

Box 40 discusses how conversion rules between measures may be represented in a

square matrix of the kind in box 5. It describes the general mathematical form of mea-

sure conversion rules and discusses how the metamodel of knowledge can derive new

conversion rules from older rules. The box also discusses, with real life examples,

how some conversion rules can be complex, and may even change over time, provided

they are “order isomorphic”, i.e. they conform to the first rule of measure conversion,

and the golden rules of measurement (see the endnote on the mathematical theory of

categories).

Another feature of a unit of measure conversion rule is that its inverse is automatically

implied and fully determined by the conversion rule (inverse: see box 33). The inverse

is not new information. For example, the rule for converting temperature from Fahren-

heit to Celsius is determined by the rule for converting Celsius to Fahrenheit or vice

versa.75

Of course, when ratio scaled values are involved, zeros in all measures will map to the

same value and the rule expression will not have the second term. Alternatively, one could

75 The rule for converting Celsius to Fahrenheit is F = 1.8 × C + 32, where F is the temperature in Fahrenheit and

C, the temperature in Celsius. The rule for converting Fahrenheit to Celsius can be derived from this. It is C =

(1/1.8) × F – 32/1.8, i.e. C = (5/9) × (F – 32). Thus the conversion rule from Fahrenheit to Celsius carries no

new information. The two different rule expressions for converting from Fahrenheit to Celsius provide another

example of the same meaning being expressed with different rule expressions.
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Figure 66 Conflicting subtypes?

say that the number in term (B) will be constrained to always equal zero for ratio scaled

values.

Subtyping measure conversion rules

Consider the conversion rule from centimeters to meters, in box 5 again. Length is a ratio

scaled domain. Centimeters and meters are two different measures of length. In the rule for

converting centimeters to meters, the number in term (A) of figure 65 is 0.01 and term (B)

is missing. On the other hand, we would be equally correct if we had said that the number

in term (B) was 0.

Thus there are two ways we can subtype the rule expression in figure 65, by adding a

term or adding a constraint. Both lead to the same meaning and map to the same number.
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In figure 66(a), the rule expression for converting difference scaled units of measure

is a subtype of the rule expression for converting ratio scaled units of measure. This is

because we have added an extra component, a term (which is an item of information), to the

formula for converting ratio scaled units of measure to arrive at the formula for converting

difference scaled units of measure. In figure 66(b), the reverse is true. We have added an

extra component, a constraint (also an item of information), to the formula for converting

difference scaled units of measure to arrive at the formula for converting ratio scaled units

of measure. However, they both cannot be true because the two subtypes are in conflict; in

figure 66(a) the rule for conversion of difference scaled values is a subtype of the rule for

converting ratio scaled values, whereas it is the reverse in figure 66(b).

This exemplifies how the object paradigm is sometimes an inadequate tool for modeling

real-world meanings and behaviors. It is also an example of how blind subtyping in limited

contexts can sometimes lead to results that conflict with interpretations in other contexts.

To arrive at the right answer, we must interpret the information content and its underlying

meaning of the rule – the pattern of information it represents.

To understand this answer, consider that the meaning of the conversion rule is the same.

Only the rule expressions, not their meanings are different between figures 65(a) and (b):

The rule expressions for converting ratio scaled measures in figures 65(a) and (b) satisfy

both rules 1 and 2 for converting between measures of ratio scaled values (articulated in

the section on conversion between units of measure). Thus, they convey the same meaning.

Likewise, the rule expressions for converting difference scaled measures in figures 65(a)

and (b) satisfy both conditions 1 and 2 for converting between measures of difference scaled

values. They too convey the same meaning. The meaning of each object has not changed

between the two perspectives in figures 65. Each is consistent and correct within its own

perspective.

The reason for the ambiguity is that we lost information when we represented difference

scaled values with numbers. This happened because we violated the first rule of simple

representation (in box 38), which reads, “Each attribute of the object being represented will

map to exactly one attribute of the object that represents it.” Figure 66(b) is the correct

interpretation, and the following gives the reasons why.

The confusion between subtypes in the conversion formula happened because two differ-

ent meanings were attributed to the number zero. Section 3 will show that the nil value in

difference scaled domains is “unknown.” Conversely, the domain of numbers has a known

nil value, the number zero, but no “unknown” value. To express values in difference scaled

domains in numbers, we assigned the number zero to an arbitrarily chosen value in the dif-

ference scaled domain. This arbitrary value may be different for different units of measure.

The additive term in figure 66(a) corrects for this difference between units of measure when

converting between them. It is a mere computational procedure that does not add to the

meaning of the value.

On the other hand, when we map the nil value in a ratio scaled domain (like length) to

the number zero, we have added the information that the zero is meaningful, and represents

the same value in all units of measure. It is a true constraint that adds information to the

pattern.
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Box 21 and Chapter 2, section 3 showed that it is simpler to build configurations of

knowledge by adding information. Subtypes should carry more, not less, information than

their supertypes. We understood that ratio scaled values convey more information than

difference scaled values. The perspective in figure 66(b) satisfies this criterion. This is why

it is the correct subtyping interpretation.

This interpretation is difficult to arrive at unambiguously, based on the object paradigm

alone. This is why we must sunder meaning from its expression in the metamodel of

knowledge. If we do not, we cannot normalize the information conveyed by the meaning

(also see box 41, box 43 and the following section on conflicting subtypes). We do this in

order to make our systems and processes more agile and adaptable. In Chapter 4, section 3

we will show how normalized meanings will help automated systems become more agile

and more adaptable to new learning even as it occurs.

Conflicting subtypes – when objects are not enough

See our website for a more detailed technical discussion on conflicting subtypes and trans-

mutation of meaning through polymorphisms in state space. This discussion is included in

Box 41.

Box 41 Conflicting subtypes, state spaces, perspectives, and

polymorphisms of metaobjects (on our website)

Box 41 elaborates on the right way of subtyping information in measure conversion rules

based on their information content. It discusses the state space of rules and elaborates

on the following figure to describe the right method of defining subtyping hierarchies

for rules. It also shows how some of this intelligence and inference automatically flow

from the metamodel of knowledge
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3 Domains of meaning and the metamodel of object

Thus incorporeal spirits to smallest forms

Reduce their shapes immense, and were at large,

Through without number still, amidst the hall

Of that Infernal Court

(John Milton, Paradise Lost)

Meaning governs reality. Meaning conveys information. Meaning is also abstract and intan-

gible. In this book, we have repeatedly wrestled with meanings and their multifaceted tangled

representations in the real world. We have engaged, assembled, configured, and transfig-

ured them into new meanings. Domains are the fountainheads of meaning. So what is a

domain of meaning? This section will show us that meanings flow from the measurability

of information, and domains are patterns of measurable information.

Domains are classes76 of values. The class, an aggregate object, is a pattern77 that lends

meaning to its members. The members are values that convey information only about

magnitude. The class says what it is a magnitude of. The class is the lowest common

denominator of business meaning, and the value the lowest common denominator of the

meaning of magnitudes, or intensities of the meaning conveyed by the class. Thus, a domain

is a class of immutable values based on a common meaning.

The concept of “lowest common denominator of meaning” is best illustrated with an

example. Take the concept of price. It has a meaning. The actual price at a point in time is

the magnitude, or value, of price. Until we link it to an object (via an attribute) we do not

know what it is a price of, nor what kind of price it is (list price, actual sale price, or quoted

price). Price is a domain that contains potentially infinite numbers of values. It is a class of

values – values with a meaning, but a meaning that is only completed by its context – the

object and the attribute it is linked to (see Chapter 3, section 1). The basis for the class, its

emergent property, is the common meaning.78

A class may count an infinite number of values among its members.79 Some classes, like

the class of difference or ratio scaled values such as price, may even count a continuum of

values among its members, so that there is an infinite number of values between any two

members of the class, however close they may be.80

We have seen how values may map to numbers and formats. The value of price can be

mapped to a number. Each such map is a unit of measure. For example, the unit of measure

76 Classes subsume sets. All sets are classes but not vice versa. See [171], [172] and [173] for differences between

classes and sets.
77 A domain is a pattern of values that is changeless and immutable. A domain does not change state. It only lends

its meaning to attributes of objects (Chapter 3, section 1).
78 “. . . a class is a collection of sets that can be unambiguously defined by a property that all its members share” –

[172].
79 See the size of a class in [172], [173], [202], [203], [206], and [212]. Non-mathematicians beware!
80 The ordered set of values is said to be mathematically dense when there are infinite numbers of values between

two distinct values in a set, regardless of how close the two values are to each other. The density of partial order

in [208] describes the density of values in a domain.
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of price, the domain, must describe the currency (US dollars, British pounds, Euros, etc.)

as well as the number of units it is the price of (price per piece, per dozen, per gallon, or

per square foot). Thus information content, the meaning, of this domain is actually derived

from two other domains – the money domain and the quantity domain. This derivation

involved a relationship, a division of every value in the money domain by every value in the

quantity domain. This division relationship is a joint constraint between the price, money,

and quantity domains (like the joint constraints in figure 43 and figure 44). As such, domains

can even emerge from relationships between domains.

Box 33 describes these relationships. In box 33, we emphasized the value of an attribute.

Now our emphasis is more generic. When the relationship is not specific to an attribute

of a given object, but is between values in domains (like the relationship between price,

money and quantity that we just discussed), it is the source of a new domain, a meaning

that emerges by engaging the meanings of domains that it relates. A new meaning, a new

irreducible fact, is therefore born of old meanings – also irreducible facts. All attributes

that map to the new domain will inherit the relationship that engaged these facts (including

constraints, joint or otherwise). It is this relationship that gave birth to the new domain. This

is why domains are the wellspring of polymorphic behavior.

The polymorphic behavior of domains

Domains are the repository of common meaning – values, relationships, and behavior inher-

ited by objects that instantiate them in different contexts. Relationships between domains

will be polymorphic rules, because, based on their individual contexts, the attributes and

objects that inherit them will “know” their behavior. For example, the price of yarn might

be expressed in dollars per unit length, and the metamodel will “know” that the amount

charged must equal price of the yarn multiplied by length of yarn sold, because the meta-

model “knows” that the price domain emerged from a division relationship between the

money domain and an amount domain (and multiplication is the inverse of division). It

can even tell us that, when the length is measured in feet, we must multiply the price per

foot by length sold in feet to arrive at the amount of money we must charge. Similarly, if

land is priced in dollars per acre, the price domain “knows” that the amount charged must

equal price multiplied by the area of land sold in acres. The price domain normalizes these

rules derived from the relationship between the domains it emerged from.81 If the Mars

Climate Orbiter had “known” rules like these, the ship might not have crashed on the alien

red deserts of Mars!

Domains may even be subtypes of other domains. For example, price, money, and quantity

domains are all subtypes of the generic ratio scaled domain in figure 67. Subtypes inherit

behavior and relationships (Chapter 2, section 3). This makes relationships between parent

domains polymorphic. Indeed, just as inclusion polymorphism emerged from relationships

between parent object classes (see box 21), so too might inclusion polymorphism emerge

81 This normalization and inheritance of rules, or morphisms, that emerge from relationships between domains, is

another reason why domains are classes, not mere sets. See [172], [173], [186], and the endnote on the theory

of categories.
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from relationships between parent domains. This polymorphic behavior will be inherited

by all attributes that map to the domains involved.

In Chapter 3, section 2, we discussed relationships between attributes. We have just

discussed how these relationships may be inherited from domains, and hence be polymor-

phisms based on relationships between domains. Domains may also normalize effects.82

Effects change relationships between domains and object instances that map to them.

These effects belong to the domain if they are common to attributes of all objects that

draw on that domain. They then become another manifestation of polymorphic behavior:

Take the color of a car. Car is an object class. The actual color (“value” of color) of an

individual car is drawn from the Color domain. Domain is an object class too – it is a

collection – the collection of all possible colors. Members of this class are instances of

color. A specific (instance of) car has a relationship with a specific (instance of) color in

the domain of colors. It is this (instance of) the relationship between the attribute and the

domain that is manifested as the “value” of an attribute called car color (see figure 35 and

figure 37).

We have also seen how other attributes of the same, or other objects, may map to the same

domain. For example, chameleons have color too. Both cars and chameleons can change

color. Cars change color when they are painted, and chameleons change color when the

color of their ambiance changes. Change color is an effect that switches this relationship

between (an instance of) an object and the color domain, from one color to another. The

change color effect will be shared by all objects with attributes that map to the domain

of colors. The change color effect belongs to the color domain, is normalized by it, and

is inherited by all objects via attributes that map to the domain (specific objects may add

special constraints, for example cars can be metallic gold, but not chameleons). This is the

heart of polymorphism. Domains normalize polymorphic behavior.

The events that trigger the color change might differ for different objects. For cars, it

might be a painting event and for chameleons, a change in ambiance. We could generalize

all color changing events into a supertype called “trigger color change.” The domain of color

will normalize “trigger color change.” Trigger color change will be different for different

object classes. Indeed, some may have several different trigger color change events. Each is

included in, i.e. is a subtype of trigger color change. The domain normalizes the generic effect

and an object class normalizes each subtype. This is how domains and objects normalize

polymorphism (see box 21).

Domains normalize generic effects. The effects normalized by a domain are inherited

by all attributes that map to that domain. We have seen this in the example of the color

change effect and the color domain, but what if an object’s color is frozen – what if it cannot

change color? If it cannot change color, it means there is no color change event associated

with the object in the scope of the model. Although the colored object has no color change

event, its potential to change color resides unrealized, but normalized in the color domain.

Should a change in scope or an innovatively reengineered process add recoloring events to

the object, the effect will be borrowed from the domain, and its potential instantiated by

82 Effect – see Chapter 2, section 2.
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the object (effect: Chapter 2, section 2). The object will thus naturally realize its recoloring

potential.

All the model has to do to recognize new recoloring behavior is to link the new recoloring

event to the object and make it a subtype of the generic recoloring event resident in the

color domain. Inclusion polymorphism will take care of the rest. The new event will inherit

the link between the generic color change event and the generic, “prefabricated” recoloring

effect inherited from the color domain. It will change the color of the object when it occurs.

Given this new learning, processes and systems assembled from these knowledge artifacts

will mirror reality seamlessly and automatically.

Systems and business processes assembled from knowledge artifacts that recognize

domains need no radical surgery to adapt to new effects. “Truths” in the real world are

seldom absolute and often volatile. Recognizing domains can facilitate both resource and

schedule compression for projects driven by the triple business imperatives of change,

innovation, and survival.

Consider the volatility of real-world “truths.” The state of knowledge, its configuration, is

continually transfigured as we learn and innovate. For instance, take knowledge of gender.

Gender is a nominally scaled domain. The gender of an individual, many believe, is frozen –

a simple truth, but a universal truth it is not. So many species change gender that scientists

have had to coin a new word for species like us that do not change – we are “gonochronistic”

species (see the endnote on the question of gender).

Change is the only truth in this millennium of accelerated learning, unceasing new knowl-

edge and increasingly volatile “truths.” The question of gender is an example of how the

metamodel of knowledge facilitates change by recognizing domains. In terms of the structure

of information, species, the class of objects, acquires an attribute, gender, via a relationship

between the object class and the gender domain (see Chapter 3, section 1, figure 34, box

27, and figure 35). A relationship between any object instance and a domain value can

always switch. It is a rule about effects, intrinsic in the metamodel of knowledge, which we

discussed in Chapter 2, and will discuss again here.

Until there was a need to recognize it, the potential for gender change, the gender change

effect, lay hidden, but normalized in the gender domain. As the scope of our knowledge

increased to cover greater and greater numbers of species, some species (classes of objects)

instantiated the gender change effect and realized its potential. Then along came another

change!

Many of us might have believed another “obvious” truth that turned out to be a lie – that

an individual must have only one gender. We now know individuals in some species may

have multiple genders and genders are not mutually exclusive in the same individuals of

such hermaphroditic species (see the endnote on the question of gender).

The metamodel of knowledge lets knowledge artifacts flex easily to absorb these new

“truths.” We know two or more object classes may share several mutual relationships

simultaneously. It is a part of the metamodel of knowledge.83 We also know that attributes

emerge from relationships between “normal” objects and domains, and that there could be

83 [173] and [186] extend the concept and describe its implications.
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more than one relationship between an object and a domain (Chapter 3, section 1). Thus,

multiple attributes of an object class may map to the same domain. The new knowledge

merely created a new configuration of knowledge – an additional relationship between the

gender domain and some species, with a constraint that the two relationships cannot map

to the same gender for the same individual (it would be strange indeed if two genders of an

individual were both male or both female! – but, even if that happened, domains would easily

flex to accommodate it). Our systems easily absorbed the new knowledge by reconfiguring

components of knowledge.

Consider what domains imply for the metamodels of state and attribute in figure 35.

Domains carries within them, not only values, but also their meaning and the potential for

relationships with other objects. With the potential for lending its values and meaning to

object instances through these relationships (see figure 35), the domain also carries the

potential to switch relationships with its values, as well as the potential to recognize new

attributes through new relationships with the domain. Objects can also gain new proper-

ties by recognizing new relationships with values in the domain.84 Objects inherit these

components from domains (via the subtyping relationship between attribute and domain

in figure 35). The gender domain contains, within it, the potential for transformation of a

hermaphrodite into a single sexed individual, or even of expanding the repertoire of genders

beyond two should the need arise (and sure enough, it does!),85 or of restricting a species to

a single gender (via the value constraints of Chapter 3, section 2), as indeed it does (see the

endnote on the whip tail lizard under the question of gender). It needs no extra labor to build

in this potential for requirements unstated. The mere existence of the domain is enough. It

carries within it the potential for requirements still unknown and presently unrecognized.

We need only supply the parameters and conditions that will realize the hidden potential of

domain.

Domains are containers of abstract common meanings, and it is through objects that

meaning flows from abstract domains into the metamodel of knowledge, shaping it, seeping

through relationships, creating patterns, and into the world of tangible things. It is thus that

meaning orchestrates the tangible world of business.

Domains of information

So how do these meanings come to be? What is their root? Their root, like all the mean-

ings we have discussed thus far, is information. Meanings carry information, and it is their

information content that gives rise to subtypes, and it is the mutual engagement of their infor-

mation content that creates new meanings – new repositories for atomic rules – repositories

that grow in size, structure, and complexity, in step with the information they convey. To

know the root of domains is to know the root of information. Let us start with domains that

convey very little information. The principle of subtyping based on addition of information

(see the discussion on figure 52) will add meaning to domains, a step at a time.

84 Domains are mathematical categories. See [173].
85 The need to expand the repertoire of genders does arise. There are species that have five or more genders! See

the endnote on the question of gender.
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The information in “value”

Arguably, the least information is carried by the mere fact that a domain exists. We may

have no more information. Its meanings and values are all unknown. All it tells us is that it

has three effects:

1 An effect that establishes a relationship between a domain and an object class. The

relationship is also an object class. This (subtyping) relationship creates an attribute of

the object (see figure 35).

2 An effect that establishes a relationship with an object instance and a single value in the

domain. This effect assigns a value from the domain to an attribute of an object. It is an

instance of the relationship class above.

3 An effect that switches the relationship in (2) to a different value. This effect is really a

supertype of effect 2. Effect 2 is a special case in which the value switched was “null.”

All three effects may have guard conditions (there are actually two effects because effect

2 is subsumed in effect 3). Module V, section 3 on our website elaborates on effects and

guard conditions.

It is this unknown domain that lies at the root of all domains – a strange domain that

knows only the potential to be, and has no knowledge of what is, or what may be.

Add a bare minimum of information about values in it – that different values are different

and distinct. We still have no information on quantum of difference, nor do we know which

values are greater or lesser than which. We only know that they are distinct. We have a

nominal domain. We have added only just enough information to distinguish a nominal

domain from the unknown generic domain. It is the bare minimum we could add, but it is

enough to assert that nominal domains are subtypes of the unknown domain.

Add a little more information, just enough to say which values are more, less, or equal to

which others. We still do not know by how much, but it is enough to distinguish an ordinal

domain from a nominal domain. It is also enough to assert that ordinal domains are subtypes

of nominal domains.

Now add the information on not only distinction and order of magnitudes of values, but

also on the quantum of difference between them. It will not only distinguish difference

scaled domains from ordinal domains, but will also assert that difference scaled domains

are subtypes of ordinal domains based on the principle of adding information. Difference

scaled domains convey all the information ordinal domains do, plus some.86

Consider the nominal domain again. In a sense, the mere existence of a value is a kind of

magnitude, different, and distinct from non-existence. However, the absence of magnitude is

not the same as the absence of the meaning of magnitude. It is the difference between nil and

null values we discussed in Chapter 2, section 2. Add the nil value to the nominal domain.

It is a new item of information, different from the sequencing information that had turned it

into an ordinal domain. The domain now has a value that conveys the absence of magnitude.

It is information. For example, the absence of illumination conveys darkness. The property

of darkness may be conveyed by a magnitude, “nil,” that shows that illumination is absent.

This does not mean that the meaning of illumination is absent; only that illumination is

86 [211] elaborates on the mathematics of ordinal domains and how they can grow into difference scaled domains

with examples. See “Ordinal value theory” and “Value difference functions” in [211].
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absent. The meaning is conveyed by the domain, and magnitude, by value. Even if meaning

exists, the magnitude may be nil.

The fact that a domain can contain nil magnitudes is information, albeit different and

independent of the kind of information we added to nominal domains to create ordinal or

difference scaled domains. Thus, it is a subtype of nominal domains, but a subtype in a

different partition.

For nominal domains, nil values do not really matter. Nominal domains merely distinguish

between values, and this item of information only says that the nil value is known to be

different and distinct from other values – no sweat – the nil value is just another value (see

the footnote).87 However, it has a more profound impact on other kinds of domains, as we

will see next.

Jane’s car color preference in Chapter 3, section 2 (under “Constraints on ordinal

attributes”) was an example of an ordinal domain with a nil value. Jane liked red and

green cars, disliked black cars, but was neutral about white cars. Accordingly, car color

preference was an ordinal domain with a natural origin (origin of a coordinate system – see

box 37). The origin is anchored by the nil value, the absence of preference, or neutrality.

This kind of information on nil values, or a natural origin of ordinal domains is different

from imposing a lower bound (by attaching a value constraint to the domain). A lower

bound too is an item of information, but a different item of information from the nil value.

For example, serial numbers have a natural lower bound, the first item. The serial number

of the first item is different from the nil value,88 which signals absence of magnitude. The

nil value may not even impose a lower bound. Jane’s car color preference, for example, had

a nil value but was not constrained by it. She could like or dislike car colors (disliking a car

color was akin to a negative liking, i.e. a “liking” that was less than nil), or be neutral about

a car color, neither disliking nor liking it. This neutrality was the information the nil value

added.

A nil magnitude may not be a lower bound for values in a domain, but it does signal the

absence of magnitude. Conversely, a lower bound, when it exists, may not be the nil value.

The nil value and lower bound are independent items of information that can be associated

with domains, making them richer and more varied in the truth they contain and the values

they express.

This also makes the question of “natural origin” of ordinal domains more complicated in

a coordinate system such as that in box 37. If the domain carries both kinds of information, a

natural lower bound as well as a nil value, we will have two different bases for choosing the

natural origin of ordinal attributes that map to the domain. To unravel this knot, remember

87 The nominal domain with the least information is the binary domain. It has only two values – existence and

non-existence of magnitude, or merely the fact that two values are different (like the male and female genders).

Only distinctions count in nominal domains, not degrees of magnitude. Ordinal binary domains are different.

For example, the proximity of two values in a nominal domain is either nil or greater than nil (see table 2 and

the discussion on patterns). A binary ordinal domain carries more information than a binary nominal domain.

It carries two values plus information on their order. Binary domains lie at the heart of present day computing

hardware and software. The paucity of information in binary domains is one reason for the many limitations at

the heart of today’s automated information systems.
88 Ordinal domains with a lower bound are “well ordered,” whereas ordinal values are “totally ordered.” See the

endnote on ordered sets and sequences, [212], [213], and [215].
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Figure 67 Information hierarchy of domains

that each kind of information has a different meaning, and hence each kind of origin will

have a different meaning. It is difficult to represent two origins geometrically, but the two

meanings exist in the real world, and care little about how we map them to geometry.

On quantitative domains, the impact of the nil value is even more profound. It changes

a difference scaled domain to a ratio scaled domain.89 A nil value in a difference scaled

domain makes ratios between values meaningful. Thus, it changes the fundamental nature

of the domain itself.

Figure 67 articulates this discussion on the hierarchy of domains.

Operations on values

The information content of a domain limits the quantum of meaning its values convey. It also

limits meaningful operations on its values. The meaning of the domain constrains meaning-

ful interactions between its values, but each domain is also a part of an information hierarchy

that adds meaning a step at a time. Thus, each domain in the hierarchy of figure 67 inherits

operations from its supertype(s), and adds its own, in step with the information it conveys

(and also in step with the hierarchy of rule expressions in figure 48. That hierarchy was

89 [199] describes the abstract algebra behind ratio scaled domains.
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based on excluding information in steps, whereas in figure 67 we have included information

in steps. That is why the hierarchy of figure 48 has been inverted in figure 67).
� Nominal domains: Only comparison of identity in terms of equality (or not) is valid in

nominal domains. Effects normalized by the domain may assign or switch relationships

between values and object instances. Other effects may establish relationships between the

domain and the object class to create new properties, i.e. attributes and effects. Comparison

of magnitudes and any arithmetic operations like addition, subtraction, multiplication,

and division are meaningless.
� Ordinal domains: Comparison of values (ranks), both in terms of sequence and equality,

are meaningful in ordinal domains.90 Ordinal domains also inherit all operations and

effects from the generic nominal domain.

The concept of equality was inherited from the nominal domain, but comparison of

sequence was information added. Arithmetic differences are meaningful in terms of gaps

between ranks – the number of intermediate positions (ranks) between a pair of positions

(ranks), but division and multiplication are meaningless (see ordinally scaled state space

in section 1 under “Patterns”).

Arithmetic addition of a value in the domain itself is meaningless, but addition

of gaps between values (ranks) is meaningful. The domain of gaps between ranks is a

related, but different, domain derived from an ordinal domain (see table 1 and “Creating

new domains from old” later in this section).91

� Difference scaled domains: Comparison of values in terms of equality, sequence, and

closeness in a continuum92 are all meaningful (inherited from ordinal domains). The

generic difference scaled domain inherits all effects normalized by the generic ordinal

domain, and adds information of its own. Arithmetic subtraction is meaningful (the

meaning of subtraction was added to create difference scaled domains from ordinal

domains), but not division or multiplication.93 The gap between values is a related (ratio

scaled) domain derived from a difference scaled domain (see table 1 and the discussion

on difference scaled state space in section 1 under “Patterns”). Arithmetic addition of

gaps is meaningful, just as it was for ordinal domains (inherited).
� Ratio scaled domains: All comparison and arithmetic operations are meaningful. Com-

parison and arithmetic subtraction were inherited from difference scaled domains. The

operations on relationships are also inherited. The other arithmetic operations are added

information, specific to ratio scaled domains.94

All arithmetic operations are defined in terms of algorithms on numbers. Therefore, implicit

in the discussion on validity of operations on values in a domain, might seem to be the

assumption that these values have been mapped to numbers before the operation is actually

executed. However, it is the concept, the meaning of the operation that we are focusing on

here, not the algorithm or expression that implements the meaning. For example, there are

several algorithms that implement subtraction, division, and other arithmetic operations, but

90 [211] contains a mathematical but lucid description of ordinal domains and their properties.
91 These intuitive truths are backed by mathematical theory in [212], [213], and [215].
92 Difference scaled domains are mathematically dense [208] and totally ordered [213].
93 See value difference functions in [211].
94 Quantitative domains may even contain surreal values [231] The smallest dense [208] totally ordered class is

the class of rational numbers [220] and the largest is the class of surreal numbers. See [213] and [231].
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all of them yield the same result and express the same meaning – subtraction is a measure of

difference in terms of separation, addition is the inverse of subtraction; division is a relative

measure of size in terms of ratios, and multiplication is the inverse of division. It was these

meanings we added, one at a time – each meaning an item of information – to the domains

in figure 67. We have not mapped these meanings to numbers or symbols yet. Numbers and

symbols are different “snap-on” components (see sections 1 and 2).

The focus in this section has been value. We have described rules about values that

domains normalize. We have also described how values express the intensity of the meaning

conveyed by the domain. However we have not described what these values are intensities

of. To understand this, our focus will now shift the meaning and the information domain

normalizes as a class.

The prophet replied, “Surely the Creator cannot be described except by that which He has described

Himself. And how should one describe that Creator whom the senses cannot perceive, imaginations

cannot attain, thoughts cannot delimit and sight cannot encompass?” (Qur’an 112:1–2)

The information in domain

Thus far, the domains in this section have been bare. We have added information about

how values behave, but little meaning to the domain itself. Domains normalize not only the

bald mathematical behavior of values, but also imbue those values with meaning. These

meanings flow from the physical world as well as the world of business. In the remainder of

this section, we will add information a step at a time to the bald domains of figure 67, and

meanings will flow from the rich tapestry of the business world, rather than the dry logic

of mathematics.

At the most fundamental level, it is the physical world that lends meaning to six funda-

mental or primary domains (see box 42); these domains are the building blocks of other

physical domains:

1 enumeration (ratio scaled)

2 mass (ratio scaled)

3 physical separation (ratio scaled)

4 date (difference scaled – includes date and time of occurrence)

5 electric charge (ratio scaled)

6 overall information content (ratio scaled)

Consider the meaning that enumeration lends to the bare ratio scaled domain. The avail-

ability of an item of inventory, say a car, might be counted in pieces. The Car is the

object class and the number available, its attribute. The attribute maps to the enumeration

domain, and its units of measure might be a single piece, dozens (of pieces), hundreds (of

pieces) etc. Take the total number of cars sold. That is another attribute of car that maps

to the same domain, and may be expressed with the same units of measure, and the same

rules of conversion between units of measure. Take a different object class, say person. In

Chapter 2, section 1 we saw how the class of all persons, an aggregate object, is also an

instance of an object. The number of persons is an attribute of that aggregate object and it

too maps to the enumeration domain. Hence, it may be expressed in the same units as the

number of cars sold. The enumeration domain “knows” that it is a count. It “knows” this in

addition to the bare rules and operations valid for ratio scaled domains and also in addition
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to the mathematical fact that it has a lower bound, nil.95 The domain normalizes and lends

additional meaning to the bald ratio scaled domain of figure 67. It adds information, and

is therefore a subtype of that ratio scaled domain. In the same way, other domains too add

meanings to the domains in figure 67, and hence are subtypes of domains to which they

lend meaning.

Like the enumeration domain, the mass domain normalizes the common meaning of

measures of mass. Likewise, the physical separation, or length domain, normalizes the

common meaning of the measure of length in physical space.

Consider the only difference scaled attribute among the six basic physical domains –

the date domain. We must distinguish it from the “time-gap” domain, also called “time

domain,” in brief. The date domain maps the time of occurrence of an event, whereas the

temporal separation between two instantaneous events maps to the time domain. The time

domain is derived from the date domain by arithmetic subtraction of pairs of values in the

date domain. The date domain has no natural nil value.96

For example, it would be meaningless for a 40 year old father to claim his birthday is four

times later than that of his ten year old daughter, but it would be meaningful to say that he

is four times as old as his daughter (see the tale of the monster of Metanesia in Chapter 1,

section 3) The time domain is a distinct ratio scaled domain, different from the difference

scaled date domain (albeit related to it – we will examine how new domains emerge from

other domains later in this section).

The overall information content domain, called information domain in brief, normalizes

the meaning of the quantum of information (see the endnote on Shannon’s information

theory). It does not distinguish between individual items of information, but focuses instead

on measuring the overall quantum of information in a pattern, the sum total contributed by

all the structures and meanings that make the pattern. The information domain does not

care about the individual meaning of an item, but it normalizes the common meaning of

the measure of information. It also does not normalize the meaning of information quality.

However, other subtypes of the information domain do so. We discuss them now.

Enumeration is a very special subtype of information. Enumeration is information

about the population of constituents in an aggregate object. Enumeration applies only to

the aggregate pattern, not to its constituent members (see “Object occurrence value” in

figure 54 and figure 57). Object class, an aggregate, is at the core of the metamodel of

knowledge. Enumeration is such a universal and frequently used form of information that

we have listed it separately.

The information quality has four more fundamental subtypes. Each adds a unique mean-

ing. Each is information about information. Each is frequently used, even if not as often

95 We have deliberately not restricted the enumeration domain to positive integers. We would add this constraint to

domains that enumerate indivisible objects like cars and people, but, if we were counting divisible objects like

apples or oranges, we could count fractions of pieces. These fractions are all rational numbers [220]. Thus, the

enumeration domain is constrained to the set of rational numbers. Other domains may be “larger,” however, the

enumeration domain is still a dense set [208], albeit the smallest set of values that can be dense [213] (roughly

speaking, being dense is akin to forming a continuum of values).
96 In cosmological terms, the date domain does have a natural origin, and hence may be ratio scaled. However,

the origin of time is relevant only in the grand sweep of cosmic history (see the endnote on the natural zero of

time and the references therein). Business can safely ignore this.
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as enumeration. Each normalizes information quality, be it information about instances of

objects, domains of meaning, or individual values in a domain:
� The completeness or exhaustivity domain:

The completeness domain measures the degree of completion of information – for exam-

ple, the extent to which a checklist might be complete. It might even tell us if a value has

all the information it can about its meaning, sequencing, enumeration, validity, accuracy,

and reliability.
� The validity domain:

The validity domain measures meaningfulness in a context. Is the information really what

you think it means – is the checklist for maintaining a Toyota Corolla valid for the Infiniti

as well? Is 150% effort a meaningful value? Can the proportion of effort exceed 100%?
� The accuracy (or precision) domain:

The accuracy domain describes the precision of information. What is the leeway for error

when we estimate that a corporation’s stock will earn 11 cents per share? If it returns 10.9

or 11.1 cents a share, was our estimate accurate? Was 10 cents inaccurate?
� The reliability (or risk) domain:

The reliability domain measures consistency of information. How consistently do our

forecasts have to be accurate to be considered reliable? If weather forecasts are correct

only half the time, is the forecast reliable? What if forecasts are correct 90% of the time?

Sometimes, the four information domains listed above might appear chimerical. Consider

again the checklist we discussed earlier. The enumeration domain counts the number of items

in the list, and the completion domain measures if all items that must be included are, in fact,

included. Let us examine four different states of knowledge about the list (not an exhaustive

list – they are only illustrative of the chimerical nature of the completeness domain):

1 We may or may not know how many items the list has, but we may know that the list is

either complete or incomplete.

2 We may or may not know how many items the list has, but we may know that the list is

more complete than it was before, but not by how much.

3 We may or may not know how many items the list has, but we may know that the list is

only 50% done.

4 We may or may not know the number of items in the list, and neither may we know if

the list is complete or not.

In the first case, the value of completeness was “complete” or “incomplete,” an ordinal

measure with only two values (it is an ordinal, not nominal measure because we know that

the degree of completeness is greater in a complete list than in an incomplete list. Therefore

“complete” will rank above “incomplete” in terms of magnitude of completeness.) In the

second instance, it was ordinal, with the potential for more than merely two ranks; if we

had three lists, we could rank each in terms of how complete we think it is compared to the

other two; if we had four lists, we could rank all four, and so on. In the third instance, it

became one half, a ratio scaled measure. In the last instance, the value of completeness was

“unknown.”

We know that all domains count the “unknown” value among their members (Chapter 2,

section 2), but it seems that the completeness domain is a chimera, sometimes binary, some-

times ordinal, and sometimes quantitatively scaled. This can happen to validity, accuracy,

and reliability as well. It all depends on information content.
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Information rich domains are subtypes of information poor parents. The converse is

also true. Starved of information, the plush, ratio scaled information quality domains may

become domains of sparse information that are not ratio scaled. We will elaborate on

domains of information – enumeration, completeness, validity, accuracy, and reliability –

later in this section.

In theory, every other physical domain may be derived from arithmetic operations, rela-

tionships, and subtypes of the primary physical domains we have just discussed (see box 42

for more information). Engineers and physical scientists have long used this principle to val-

idate formulae and predict the behavior of physical systems based on incomplete empirical

information.97 In this book, we will not assemble every domain from fundamental domains.

That approach is sometimes useful for engineering physical systems, but for business sys-

tems, it could easily lead to analysis paralysis (section 6.2 of Introduction). Instead, we

will treat each domain as a domain that exists on its own right, and will only focus on its

relationship with other domains when necessary.

Box 42 Domain analysis and primary physical domains (on our website)

Box 42 derives fundamental domains of business meanings from the domains in

figure 67, and distinguishes these from secondary domains obtained by adding infor-

mation to fundamental domains (also called primary or base domains).

It shows why length, time lapse, mass, and information are fundamental physical

domains from which all physical meanings are derived. It adds enumeration, complete-

ness, accuracy, validity, and reliability as subtypes of information. The box goes on

to discuss the information content and derivation of secondary domains, coherent sys-

tems of measurement, shifting perspectives of primary domains, and how these issues are

addressed by Buckingham’s Pi theorem, Shannon’s information theory, and dimensional

analysis.

Fundamental domains also emerge from the subjective world of business. They too may

combine with other domains – business, physical, or mixed, to create new domains. Two

fundamental business domains reused frequently are:

7 Preference (ordinally scaled).

8 Economic value, also called utility or money (ratio scaled). This is the value a person or

organization assigns to a resource or asset. It manifests itself in attributes when revenues,

costs and funds of different kinds map to it.

Although preferences are usually discrete ranks and economic value is a ratio scaled

continuum, economic value and preference are related. Economic value, being a ratio scaled

domain, has more information than preference, an ordinal domain, and may legitimately

97 Engineers call the fundamental physical domains fundamental dimensions; the study of domains that emerge

from relationships between them is called dimensional analysis. Engineers use dimensional analysis to validate

algebraic expressions of physical laws and to deal with situations in which the precise law is not known, but

the variables the law ties together are. Readers interested in dimensional analysis may refer to box 42 and the

references therein.
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be considered a subtype of the preference domain (based on the principle of subtyping by

adding information). The subtyping hierarchy between ordinal and ratio scaled domains in

figure 67 covers this, and is inherited by this pair of domains. However it is more specific

than the general hierarchy of figure 67. Information (intermediate preferences) was added to

the preference domain, not to just any ratio scaled domain, until it became dense98 enough

to be considered a continuum. Information on a nil value (indifference) was also added

to the preference domain. Only then did the preference domain turn into the ratio scaled

economic value domain.99 This was an example of inclusion polymorphism (see box 21)

between domains and this polymorphism will be inherited by all attributes that map to these

domains.

Economic value is also an example of how all ratio scaled domains may not be equally

flush with information. The information content of the economic value domain lies some-

where between the sparse information of the ordinal preference domain, and the rich cer-

tainty of “hard” information inherent in physical ratio scaled domains. It is harder to be

objectively certain about the economic value, or degree of satisfaction in a barter or trade,

than it is to be certain about the length of a room or the mass of a spacecraft. This uncertainty

is inherent in the economic value domain. It degrades the reliability potential of values in

the domain. “Potential” is the key word here. We could have used an elastic tape measure to

measure the length of the room, and our measurement would have been unreliable, but that

unreliability would have come from the process of measurement – not lack of information in

the length domain itself. That process would not have realized the full information potential

of the length domain. On the other hand, the unreliability of the economic value domain

stems from the domain itself. It just does not have the reliability potential of the “harder”

physical domains because it has less information than these “hard” physical domains. Thus,

all ratio scaled domains are not equally rich in information. These differences stem from

differences in business meaning.100

Subtypes have more information than their parents.101 Every primary domain is a subtype

of the “bald” domains of figure 67. Primary domains add business meaning to bare the

mathematical logic of their parents. In the list of primary domains above, each primary

domain has its parent next to it in parenthesis. The preference domain is a subtype of an

ordinal domain.

Each primary domain may, in turn, be subtyped. Each subtype adds new meanings to

meanings already present in its parent. Sometimes these meanings are mathematical, but

more often they are meanings from the world of business – meanings normalized by the

domain. For instance, the preference domain may be used with or without the nil value

attached. That is a mathematical meaning added to support real-world behavior.

On the other hand, a domain can masquerade as different domains in different roles

only because of the way businesses use it. For example, the ordinal domain may reflect an

98 [208] describes the mathematical concept of dense sets.
99 [211] elaborates on the mathematical relationship between, and the properties of, preference and economic

value.
100 See “softness” of information in box 46, softness of the economic value in box 45.
101 By the principle of subtyping by adding information a subtype domain inherits the information in its super-

type(s) and adds special information to this inherited component to create a new meaning.
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organizational hierarchy or a hierarchy of serial numbers. These domains are only subtypes

of the same bald ordinal domain of figure 67, with a lower bound added, being used in two

different ways. Business meaning was included when we specified the kind of hierarchy

we mean – serial number, reporting hierarchy, hierarchy of titles etc. Thus, based on the

principle of subtyping by adding information, it became a subtype of the bald ordinal domain

of figure 67. Its use added business meaning.

Besides preference and economic value, there are several subjective domains that we

cannot, strictly speaking, “measure” objectively because they are subjective sensations or

concepts. An exhaustive list of primary subjective domains that can be building blocks for

making other domains has not yet been developed. It is an area of continued research.102

Similarly, no exhaustive list of primary domains in the non-physical sciences exists today.

The physical, or “hard” sciences deal mainly with information rich quantitative domains.103

The others need nominal and ordinal domains more often. The primary domains we know

do not have this focus.

As we drain primary domains of information, they lose business meaning until they

reach the root of knowledge – the great divide between the known and the unknown. At

this boundary between the known and unknown, we find the bald domains of figure 67 –

pale ghosts of business meaning, leached of all knowledge save the meanings of magnitude,

distinction, and difference.

For us, it will suffice to know that primary domains exist, although many are still unknown.

But it is even more important to understand what a domain is, to recognize it in a business

model, and to use it to normalize information when necessary – even if the domain is bald

and its meaning is still barren.

Creating new domains from old

So far, we have understood the information content of primary domains. We now know

what meanings they normalize. In this subsection, we will understand how meanings flow

from primary to secondary domains to create new meanings. We will discuss how domains

engage each other, like the gears of a knowledge machine, to create new configurations

of knowledge – new atomic rules, as well as new domains, those abstract containers of

meaning that will anchor and normalize these new rules built upon the old.

We have already seen one way new domains come to be. They can inherit information

from the old – sometimes from more than one parent – and add meanings of their own. We

get the first rule of secondary domains:

102 Subjective domains are a largely undeveloped area of research. The list of primary subjective domains is

unknown. Unlike the list of primary physical domains published in 1954, no broadly agreed upon list of primary

non-physical domains exists. There are no standards. See [measurement] In psychology under “Measurement

theory”, Macropedia, volume 23, page 795 of [336].
103 The emphasis of the physical sciences is on ratio scaled domains flush with information, but ordinal domains

also emerge from purely physical concepts. For example, hardness, a physical property of materials, is measured

on the basis of what materials will, or will not scratch which others – a purely ordinal scale, based on a pecking

order – the ability to scratch another. This example demonstrates that ordinal and nominal domains can also

be useful in the physical sciences.
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Rule 1: Adding meaning to a domain creates a new domain. Meanings added may be new

or inherited. If the new domain includes meaning(s) inherited from other domains,

it is a subtype of the domain(s) it was created from (examples under figure 67).

Domains engage each other via special kinds of relationships and it is these relationships

that add the meanings that give birth to new domains. It is relationships between domains

that normalize meanings intrinsic to the new domains they create. These meanings are the

joint constraints we discussed in Chapter 3, section 2 and box 33. In Chapter 3, our focus

was on attributes, now it is on domains. The same constraints, attached to primary domains

instead of attributes, create new domains. Secondary domains may also engage each other

to create new domains, but in terms of rule meaning (box 33), it boils down to engagement

of primary domains (box 42).

Ratio scaled domains are the richest in information content, and nominal domains are

the poorest. All arithmetic operations are meaningful for ratio scaled domains, and none

applies to nominal domains. We will start with ratio scaled domains and work our way

down to nominal domains.

Ratio scaled domains

As we discussed earlier in this section, all arithmetic operations are valid in ratio scaled

domains, hence all magnitude constraints (Chapter 3, section 2) may meaningfully engage

ratio scaled domains. In general, magnitude constraints may engage attributes or domains.

Ratio scaled domains come packaged with addition, subtraction, multiplication, and division

operators (as well as others built on these basic building blocks). Magnitude constraints

attached to this domain and its subtypes may use these operations.

When magnitude constraints engage domains instead of attributes, new subtypes of ratio

scaled domain emerge. Their meaning is normalized by the magnitude constraint. For

instance, take area. All measures of area, be it the area of a room or the footprint of

your computer, map to the area domain. Area is a secondary ratio scaled domain that

emerges by engaging the primary length domain. The length domain is joined to itself

with the multiplication operator to obtain the area domain. The meaning of area resides in

the structure – a recursive multiplication relationship on the length domain that mutually

multiplies each pair of values in the length domain once.104 The class of values thus obtained

is a new domain, the area domain.

Next consider the volume domain. Each triplet of values in the length domain is mutually

multiplied to yield a new domain of values, the volume domain. You could also think of

it as the area domain multiplied by the length domain. This is an example of two domains

engaging via an arithmetic operator to create a third. It is also an example of how it all boils

down to engagement of primary domains.

Similarly, cost (or price) per unit area is a domain obtained by dividing the economic

value domain by the area domain. Prices of land, tinplate, fabric, and many other object

classes would map to this domain. Speed is obtained from the length and time domains the

same way. It is the distance covered per unit time.

104 Fundamental group in [193] describes looping relationships like these in mathematical terms.
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On the other hand, for ratio scaled domains, subtraction and addition of values within a

domain map back to a subtype of the same domain. Difference in speed is still speed, albeit

relative speed. Difference in length is still length, as is addition of length.

To understand why these domains are subtypes of the domains added or subtracted,

remember that domains are objects, and objects are patterns (see figure 31). Therefore,

domains are also patterns. They are patterns of values. Patterns are aggregate objects

that have several universal attributes in common (see figure 53, figure 54, figure 57, and

“Patterns” in section 1). One universal attribute of a pattern is its degrees of freedom. The

degrees of freedom of a sum is less than that of its summands – if a sum is fixed (i.e. the sum

has no freedom), there is a wide choice of patterns of values that may add up to the sum.

However, the converse is not true; we have no choice of sums if we freeze the summands.105

It follows that the pattern of values being summed has more degrees of freedom than

the pattern of sums. Therefore, the two patterns are similar, but the sum is more restrictive.

The sum has more information than the values that were summed. The extra information

is the curbs on its freedom – the summation operation. Based on the principle of subtyping

by addition of information, the domain of sums is a subtype of the domain of summands.

The domain of sums contains exactly the same values, and has exactly the same effects and

operations as the domain of summands; therefore, it is a subclass of that domain.

A similar argument holds for subtraction. The rules for creating new ratio scaled domains

from old are:

Rule 2: Any multiplication or division operation on values in ratio scaled domains creates

a new ratio scaled domain. Multiplication and division operations may be between

values in the same or different domains.

Rule 3: Addition and subtraction operations on values in the same ratio scaled domains

map back to a subtype of the same domain. Addition and subtraction are permitted

between parent and subtype domains.

For example, you cannot add apples and oranges, but you can add apples and

fruit, and the result will map back to the class of fruit, not apple. It will actually

be a subclass of fruit that has a little more information than the class of fruit had –

we now know it is a class of fruit that contains information about apples. If we

ignore or lose this information, we can say that the result mapped back to the parent

domain.

Let us look at the structure of information that let the metamodel of knowledge

apply rule 3 to infer this: the class of fruit mapped to the enumeration domain and

acquired the enumeration attribute (see figure 35). Subclasses apple and orange

inherited the attribute from fruit. Therefore, the “piece” of the enumeration domain

inherited by fruit, its enumeration attribute, is a supertype of the same attribute for

apple and orange.106 By the laws established by rule 3, the enumeration of apples

and fruit may be added, and it will map back to fruit. The enumeration of oranges

105 We have no choice of sums if we freeze the pattern of summands, only a singe sum will fit the pattern.
106 Paradox: fruits may be counted by adding counts of apples and oranges. If the domain of sums is a subtype of

the domain of summands, why is the count of fruit a supertype of the count of apples or oranges rather than

the other way around? This apparent contradiction is resolved in box 43.
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and fruit may also be added. That too will map back to fruit. However we cannot

add the numbers of apples to the numbers of oranges, because neither apple nor

orange is a subclass of the other.

The metamodel thus created the “intelligence” to not only count fruit, but also

to count fruit even as it counts apples or oranges. It also “knows” that the converse

is not true, that counting fruit does not translate into counting its subtypes, apples,

oranges, or whatever. The ratio scaled domain normalized this knowledge, and the

enumeration domain inherited it. We did not have to “program” these injunctions

and instructions multiple times for each requirement for counting fruit of different

kinds. The counts were intrinsic and available, framed by rules specified once for

the domain. This reasoning applied not only to fruit and its enumeration, but to any

additive operations on any ratio scaled attribute of any objects and subclasses. It

was knowledge normalized by a domain.

(It was also parametric polymorphism. In programming terms, the parameter,

apple, orange, or fruit was “passed” to the “count” function, and counted, but it

was also an enhanced form of parametric polymorphism. “Count,” the function,

“knew” that counting apples or oranges counted fruit, but not vice-versa.)

Thus rule 3 leads to rule 4.

Rule 4: Addition and subtraction operations across values in different ratio scaled domains

have no meaning. “Different domains” is used in the sense that neither is even a

subtype of the other.

Box 43 The principle of subtyping by adding information

The principle of subtyping by adding information asserts that a subtype object class

has more information than its supertype class(es). Subtypes share the information in

their common supertype(s) and add information of their own. Creating subtypes by

adding attributes (Chapter 2, section 3) was just one instance of this principle. Business

meanings, relationships, and constraints also add information.

You might ask why the enumeration of fruit is not a subtype of the enumeration of

apples and oranges instead of the other way round. After all the sum of numbers of apples

and oranges adds up to the numbers of fruit. Thus, if the domain of sums is a subtype

of the domain of summands, why is the count of fruit a supertype of the count of apples

or oranges rather than the other way around? The reason is that we are counting fruit.

Just as fruit added business meaning, information, to the bald enumeration domain and

thus made enumeration of fruit a subtype of the enumeration domain, apple and orange

added mutually exclusive business meanings to fruit. This added information made the

count of apples, as well as the count of oranges subtypes of their common parent, the

count of fruit. Counts of apples and oranges are not bald counts. We know what we are

counting. They have emerged from a relationship between an object apple (or orange),

and the domain of enumeration (see figure 35). Although counts of apples and oranges

add to the count of fruit, they contain more information than the count of fruit. Each is

a count of a specific kind of fruit; each is a subtype of the general count of fruit.
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Fruit has the freedom to be an apple or an orange, but an apple or an orange must be

what it is. The count of fruit has more freedom, i.e., contains less information than the

count of either apples or oranges. Therefore, the count of fruit is the common parent of

both the count of apples and the count of oranges. When mathematical operations and

business meaning conflict, about which object is a subtype and which a supertype based

on the principle of subtyping by adding information, business meaning always wins.

Follow this simple rule when in doubt and you will not go wrong.

In abstract terms, think of the object as a pattern of information. Parts of the pattern

may be shared with other patterns. This is shared information. However, the pattern

extends beyond the portion that is identical to other patterns. These extensions add

information and give the pattern its unique identity. Thus, the pattern may be conceived

as a shared part (the supertype), plus extensions (the added information). The composite

of the two are the subtype.

A pattern with fewer degrees of freedom has a greater burden of information than a

similar pattern with more freedom. For example, a straight line is a pattern of two points –

its ends – and a rule about how they are connected. The line may be of any length. The

pattern will not lose its identity. The rules that make the pattern a pattern also give it the

freedom to retain its identity.

If we restricted the length of the line, we would add information. The pattern would

lose some of its freedom. The restricted pattern will be a subtype of the unrestricted

pattern. This is the principle of subtyping by adding information. The pattern with

more information is always a subtype of the pattern with common information when

information is shared by two or more patterns.

Subtype versus subset: the difference between subsetting and subtyping operations

Subsetting (box 19) can be a different and distinct operation from subtyping. The prin-

ciple of subtyping by adding information makes this clear. Consider the metamodel of

rule expression in figure 48. The rule expression in that figure was a collection of all

possible rule expressions. We excluded all rules with arithmetic operators from the set

of rules to arrive at the collection (set) of nominal and ordinal rule expressions. It was

a subset of the set of all rule expressions at the top of the hierarchy (the hierarchy has

been reproduced in figure A). From this subset, we excluded all ordinal rule expressions

to arrive at the set of nominal rule expressions at the bottom of the hierarchy. The set of

nominal rule expressions was a subset of a subset.

On the other hand, consider the subtyping hierarchy in figure B. It is based on informa-

tion content. It is similar to the hierarchy of domains in figure 67. It inverts the subtyping

hierarchy of figure A (and figure 48) because a nominal (Boolean) rule expression only

conveys classification information, an ordinal rule expression contains information on

relative ranks – which result is larger than which, but not by how much, whereas a

quantitative rule expression with arithmetic operations conveys information on relative

and absolute magnitudes. Naturally, if you can rank a result, you can also classify it on

that basis, but not vice versa. Similarly, if you know by how much one result exceeds

another, you can rank and classify it, but not necessarily the other way around. A nominal

rule expression conveys less information than an ordinal rule expression, which in turn

conveys less information than a quantitative rule expression with arithmetic operations.



271 Domains and their expression

(Note that occurrence relationships between objects, the “normal” relationships we

have discussed thus far, are also instances of nominal rule expressions.)

The nominal rule expression normalizes classification information, to which the ordi-

nal rule expression adds ranking information (which it normalizes, even as it inherits

classification information from its nominal parent). A quantitative rule expression nor-

malizes and adds information on quantified magnitudes, not just their relative ranks.

It inherits ranking and classification information from its ordinal parent. Based on the

principle of adding information, the class of quantitative rule expressions is a subtype

of the class of ordinal rule expressions, which in turn is a subtype of the class of the

class of nominal rule expressions.
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(Only) ordinal or nominal
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rule expression
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Exclude rules
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operations
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The hierarchy of rule expressions was an example of a subsetting hierarchy that is

different from the corresponding subtyping hierarchy. A subset may be carved out of a

set based on any criterion. Subsetting and subtyping hierarchies will coincide only when

subsets are carved out of sets based on specialized versus common information content.

To understand how these rules translate into practice, consider the speed domain. Distance

covered per unit time is speed, and dividing the length domain by the time domain creates

the speed domain (rule 2). Subtracting one speed from another is still speed (rule 3). It gives

us the relative speed of one object with respect to another. If you are in a car doing 55 mph

on a highway, and the car in front of you is doing 70, it will pull away from you at a speed

of 70 − 55 = 15 mph. Change in speed continues to be speed. Adding two speeds is also

change of speed and hence no new domain is created (rule 3 again). If you threw a ball

towards the other car at 5 mph from your car traveling at 55 mph, the speed of the ball,

as seen by an observer standing still on the highway will be 60 mph (because your speed

[55 mph] + the speed of the ball relative to you [5 mph] = 60 mph).

In contrast, division creates a new domain. The acceleration you feel is your change in

speed per unit time and acceleration is a new domain (rule 2 again). This is equivalent to

dividing the length domain by the time domain twice – the first time to obtain the speed

domain and the second time to obtain the acceleration domain.107 Similarly the “jerk” you

feel is the rate at which acceleration changes with respect to time. The “jerk domain” is

obtained from the length and time domains, by dividing the length domain three times by

the time domain.

On the other hand, if you tried to add length and time domains, it would be a meaningless

arithmetic operation. If you added speed to jerk, it would be equally meaningless. Rule 4,

in everyday language, is nothing but the proverbial injunction against mixing apples and

oranges.

Metrics and the domain of quotients

Quotients are ratio scaled. The domain of quotients consists of the quotient of every possible

pair, or tuple (see box 19), of values in a ratio scaled domain. Obviously, the quotient depends

on which value is the divisor and which the dividend, just as the order of values in a tuple

can distinguish one tuple from another.

Naturally, dividends, divisors, and quotients are all ratio scaled. The domain of quotients

is a subtype of the general ratio scaled domain of figure 67.108 It is a subtype based on the

existence of a division operator that connects it to the general domain of ratio scaled values.

Moreover, the enumeration domain is a subtype of ratio scaled domains with a lower

bound of nil. The domain of quotients of the enumeration domain (the domain of enumer-

ation quotients) is therefore a subtype of the domain of quotients that has a natural lower

bound of nil. It also has a null value for the reasons in box 47 under figure (b).

107 The theory of mathematical groups is the basis for generating secondary domains from primary domains. See

group theory in the bibliography, especially the fundamental group in [193].
108 The domain of quotients is a subtype of the general ratio scaled domain just as the domain of sums was a

subtype of the general ratio scaled domain.
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The division operation, a magnitude constraint, joins the meanings of the divisor and

dividend to create a new meaning and a new domain. Often these domains are the basis

for performance metrics because they are domains of ratio scaled rates – rates that can be

interpreted as ratio scaled domains of growth and influence, as we will see next.

Domains of growth

Quotients are rates, and are frequently used in performance measurement. For example,

the ratio of last year’s sales to this year, the ratio of prices last year to those this year, and

growth rates in terms of percentages, all map to the domain of quotients.

We have seen how the domain of gaps is ratio scaled for ratio and difference scaled

domains (see table 2 and the discussion later in this section). Quotients of domains of gaps

with other ratio scaled domains measure rates of change.

For example:
� Change in temperature, divided by the time it took to change temperature is the rate at

which an object is heating up or cooling down.
� Change in position, divided by the time it took to change position is speed, the rate of

change of position with respect to time.
� Change in revenues, divided by the total number of sales people is the marginal rate at

which revenues change with respect to the size of the sales force.
� Change in annual revenues over last year, divided by last year’s revenues is the rate of

change of annual revenues with respect to itself.
� Change in annual revenues over the last five years, divided by the time gap of five years

is the annual rate of change of revenues with respect to time.
� Change in number of service calls divided by number of customers is the rate growth rate

of service calls with respect to the customer base, whereas the same change in number

of service calls divided by the length of the time period they were received in, is the

temporal growth rate of service calls.

Performance metrics frequently map to the domain of quotients, and growth rates are a

special subtype of the domain of quotients in which the domain of gaps is divided by

another domain to obtain a domain of growth. Some growth rates in the examples above are

temporal; others are not, yet they all are rates of change. The examples above show us that

growth rates need not always be temporal rates of growth. The change does not always mean

temporal change, and the meanings of growth rates are as diverse as the diverse domains

of ratio scaled properties. However, a rate of change is always a quotient – a quotient that

maps to a domain described by the arithmetic division of a ratio scaled domain of gaps by

another ratio scaled domain.109

Domains of proportions

Proportions are a special kind of quotient. The domain of proportions is a special subtype of

the domain of quotients (and therefore also a subtype of ratio scaled domains). The domain

109 Gaps in difference scaled domains are ratio scaled. A valid divisor must always be ratio scaled. Therefore,

growth rates in difference scaled domains are also ratio scaled domains.
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of proportions has upper and lower bounds, as well as special rules attached to it. These

bounds and rules are inherited by all attributes that represent proportions.

For example, the proportion of female employees in an organization cannot exceed 100%,

moreover the sum of proportions of male and female employees must equal 100%; the

proportion of sales to each industry group can never exceed 100% of total sales, moreover

the sum of proportions over all industries must equal 100%; the area of a room can never

exceed 100% of the area of the building that contains it and so on. These examples were

specific instances of the general rules that surround proportions. Let us examine the general

rule – the structure of information in the metamodel of knowledge – from which these rules

spring forth.

Consider first the relationship between an object class and the object instances that

constitute it. Each object instance has attributes, relationships, and effects. The object class is

an aggregate object. It too normalizes attributes, relationships, and effects. The information

the class normalizes is different from the information its instances normalize, but they are

related. To begin with, every object class has an enumeration attribute. It is the population

of instances at any given moment. Every object class also has a sum for every ratio scaled

attribute of an object instance that belongs to it.

Glass pane may be an object class, and every instance of glass pane will have mass,

volume, and area. Derived from these ratio scaled attributes will be the total mass, the total

volume, and the total area of the population of glass panes. These totals are ratio scaled

attributes of the aggregate object, the class of glass panes. The sum of every attribute is a

class level attribute, derived from its instances. There will be one sum for each ratio scaled

attribute of the object instance, and each sum will map to the domain of sums.

Moreover, if the object is partitioned, each subtype in the partition, the aggregate object,

will inherit exactly the same attributes as its parent, but values of these sums may be different,

because the instances of the parent object class have been divided up and allocated separately

to each subtype, and their populations are different. However, if we summed the population

attribute of each subtype (the aggregate object), the result would equal the population of

the parent. This rule would apply equally to all attributes of the subtype that are sums of

attributes of its instances. Indeed, the rule will not only apply to each of the attributes the

subtype inherits from its parent, but also to attributes it adds to its parent.

There are four fundamental reasons why the domain of proportions is different from

other domains of quotients. Two reasons stem from relationships between instances and

the classes they belong to, and two others from relationships between aggregate objects –

the object classes that were partitioned, and their subtypes in those partitions. Their root

cause is the relationship between the information normalized by an object instance and that

normalized by the object class:

(a) Population: Every aggregate object (the object class in this case) has a population

attribute. The population enumerates its members (common sense!).

(b) Sum: Given a ratio scaled attribute of an object instance, corresponding object class(es)

will have an attribute that sums up the instance level attribute over all instances of

the class. This sum is an attribute of the aggregate object, the class (also common

sense!).

(c) Relationship between the parent object class and its subtypes:
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(i) If populations of individual subtypes in a partition are summed, the sum will equal

the population of the parent object.

(ii) This will be equally true for each derived attribute in (b) also, if the instance level

attributes are all nil or greater (or nil or less).

There are several primary domains like length, enumeration, area, information

content, and mass that have a lower bound of nil. The rule can apply to attributes

that map to these domains and several kinds of secondary domains built from them.

The rule can be useful in validating information for domains like these.

If these values can be either negative or positive, some object instances may have

negative valued attributes, and others may have positive valued attributes, so that

the net effect after summing them up might be that the class level attribute of the

parent is actually less than that of its subtypes. In fact, if the negative values balance

positive values exactly, their class level sum might even be nil.

However, if we take the sum of absolute values, i.e. if we ignore the sign of

negative values and treat them as if they were greater than nil, then, summed across

subtypes in an exhaustive partition, the result must equal the value of the same

attribute of the parent (common sense once again – remember that these subtypes

are mutually exclusive). This rule can then be used to check for valid information.

Indeed, since the partition represents the collection of subtypes in it, this relationship

between the parent and its subtypes is a relationship between the partition and the object

class partitioned. The partition normalizes this rule, common to each subtype in it. Each

subtype in the partition inherits the relationship from its partition.

The following examples illustrate rule (c):
� The sum of the population of male persons and the population of female persons is

identical to the population of person, the object class that was partitioned into male

and female persons – an example of rule (c) as it applies to population.
� The sum of weights of all males is an attribute of the object class male person, and the

sum of weights of all females is an attribute of the class of female person. The weight

of all male persons (a class level attribute of the object class male person) plus the

weight of all female persons (a class level attribute of the object class female person)

equals the weight of all persons (the same class level attribute of their parent object

class, person) – another example of rule (c).

In both examples, the gender partition partitioned person, the object class, into its

subtypes male person and female person. Class level attributes of these subtypes were

summed over the gender partition.

(d) Proportion: A proportion is the quotient obtained by dividing a class level attribute of a

subtype, such as population, total weight, or total volume (obtained from the summation

of absolute values of corresponding instance level attributes), by the corresponding

attribute of the parent object.

Like the relationship in (c), this rule applies equally to all subtypes in a partition. It is

a shared rule normalized by the partition, and inherited by each subtype in the partition.

Examples are:
� The proportion of the males in the population equals the population of male per-

sons (an attribute of subtype male person) divided by the population of person, the
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object class that was partitioned by the gender partition into male person and female

person.
� The sum of weights of all steel balls (an attribute of object class steel ball) divided by

the sum of weights of object class ball, the parent object class, equals the proportion

contributed by steel balls to the weight of balls.

The partition normalizes both rules (c) and (d). Each is a relationship between an object

class and its partition(s), from which each subtype in each partition inherits each rule.

If we talk of the population of males, we automatically imply a population of females;

if we talk of the total volume of green glass panes, we automatically imply the total

volume of red and purple glass panes, and so on. As we will soon see, the implications

are profound for automation.

A proportion can, at most, be 100% of the sum. Values in the domain of proportions

lie between nil and total, both inclusive. This constraint is shared by every proportion

of every attribute of every subtype in every partition of every object. It is inherited

from the domain of proportions. Moreover, given an attribute, the sum of proportions

across all subtypes in an exhaustive partition must equal 100%. If the partition is not

exhaustive, it may be less. These rules too spring from relationships between the object

class and partition, and are inherited by subtypes in a partition.

The number, 100%, is only a unit of measure. We have mapped total, the highest value

in the domain of proportions to 100, and nil, the lowest value to the number zero. We

could have also mapped total to the number one, in which case numbers between zero

and one would express all proportions. Mapping the range of values between nil and

total to the range of numbers between zero and one, or zero and 100 are both accepted

convention. Each is a different unit of measure. Indeed, even if it is unconventional, we

could validly map the range of values between nil and total to any range of numbers.

Each such range will represent a different unit of measure for the same domain of

proportions (however, the nil should always map to zero – see the footnote).110

(The format of proportions may be pie charts, tables of numbers, graphs, or any other

symbol. It does not matter which as long as it is a symbol that represents a proportion

in a unit of measure.)

These considerations lead to additional rules:

(e) Range of values: Values in the domain of proportions lie between nil and total.

(f) Sum of proportions: The sum of proportions in an exhaustive partition must equal total.

In a non-exhaustive partition, it may be less than total, but cannot exceed it.

(g) Injunction against arithmetic addition of proportions: A proportion is a ratio of a class

level attribute of a subtype, to the same attribute of its parent. The subtypes all belong

110 Mapping the nil value to zero simplifies arithmetic because zero mirrors the natural properties of nil in ratio

scaled domains. Adding nil to another value results in the same value, just as adding zero to any number results

in the same number; similarly, multiplying any ratio scaled value by nil results in nil, just as multiplying any

number by zero results in zero; dividing nil by another ratio scaled value results in nil, just as dividing zero by

another number results in zero. Dividing nil by nil yields null. It maps to no value, ratio scaled or otherwise

in any domain (unless we include the null value in the unknown domain of figure 67, which every domain

inherits – see Chapter 2, section 2). This is why it is good practice to map nil to zero in every unit of measure

(see Chapter 4, section 2).
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to the same partition, and are mutually exclusive. It follows that proportions for a given

attribute of a subtype in a partition may be meaningfully added. Across partitions,

addition of proportions has no meaning.

We can meaningfully add the proportion of high income people to the proportion of

middle high income people in a town; we can also add the proportion of children and

the proportion of senior citizens in the town, but adding the proportion of high income

people to the proportion of senior citizens is meaningless.

The object class person was partitioned by income in one partition, and by age in

another. High income person and middle income person were subtypes of person in the

income partition. The population of high income persons was an attribute of the subtype

high income person and the population of middle income persons was an attribute of the

subtype middle income person, both of the income partition. Their proportions could

be added.

Child and senior citizen were subtypes of person in the age partition. The population

of children was an attribute of subtype child and the population of senior citizens was

an attribute of the subtype senior citizen, both of the income partition. Their proportions

could also be added.

However, the proportion of high income persons and the proportion of senior citi-

zens were proportions in different partitions – the income partition and age partition

respectively. The sum of these proportions is meaningless.

The meaning of a proportion emerges by mutually engaging the meanings of an

attribute, a partition, and an object class. As we have seen, proportions spring from this

division relationship between a partition and its object class. We also know that we can

add like with like (rule 3). Proportions of a given attribute across a single partition all

map to the same (subtype of) domain of proportions. However, proportions of different

attributes, or proportions in different partitions do not have the same meaning. They

cannot be added.

Just as apples and oranges could not be added together, even though both were

subtypes of a common class, Fruit (see the discussion of rule 3), proportions of different

attributes, or proportions in different partitions cannot be added together because each

has a different business meaning not shared with the other.

Rule 5 consolidates these rules normalized by the domain of proportions. They are inherited

from the domain of proportions by every attribute that is a proportion. These rules and

relationships are timeless and immutable. The rules belong to domains and exist in domains,

immutable and silent. They need no other reason to be, neither time nor event – they just

are. Attributes only use them:

Rule 5: Proportions are ratio scaled attributes of aggregate objects that are subtypes of a

parent object class. All proportions conform to the following rules:

(a) Population: Every aggregate object has a population attribute. The population

enumerates its members.

(b) A sum of a ratio scaled attribute over all instances in a class: Given a ratio

scaled attribute of an object instance, corresponding object class(es) will have

an attribute that sums up absolute values of the instance level attribute over all

instances of the class. This sum is a class level, not instance level, attribute.
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(c) Sum of class level attributes in a partition:

(i) The sum of populations of individual subtypes in an exhaustive partition

will equal the population of the parent object. In an inexhaustive partition,

the sum may be less, but cannot exceed the population of the parent object.

(ii) The sum of class level attributes – attributes that are sums of absolute values

of corresponding instance level attributes – summed across all subtypes

in an exhaustive partition, will equal the value of the class level attribute

of the parent object. In an inexhaustive partition, the sum may be less,

but may not exceed the class level attribute of the corresponding parent

object.

Since the partition represents the collection of subtypes in it, the parti-

tion normalizes these relationships. They are between the parent and the

partition. Each subtype in the partition inherits them.

(d) Proportion: A proportion is a quotient obtained by dividing the population

or another class level attribute of a subtype (obtained from the summation of

absolute values of corresponding instance level attributes) by the corresponding

attribute of the parent object.

Like the relationship in (c), this rule applies equally to all subtypes in a

partition. It is a shared rule normalized by the partition, and inherited by each

subtype in the partition.

(e) Range: Values in any domain of proportions lie between nil and total.

(f) Sum of proportions: The sum of proportions in an exhaustive partition must

equal total. In non-exhaustive partitions, the sum of proportions cannot exceed

total.

(g) An injunction against arithmetic addition of proportions: Proportions for a

given attribute of subtypes in a partition may be meaningfully added. Across

partitions, or across different attributes, addition of proportions has no meaning.

The automation of these rules is obvious and the benefits evident:

1 Given the attributes of an object instance, processes and information systems

based on the metamodel of knowledge will “know” that class level summations

automatically exist. Users do not even have to explicitly call and store sums. Class

level sums of these ratio scaled attributes implicitly exist, and any reference to

the total for the class automatically uses the operation inherited from the domain

of sums.111

2 The metamodel of knowledge “knows” that a partition automatically and implic-

itly bears proportions. Declaring partitioning criteria and subtypes automatically

implies allocating proportions of each ratio scaled attribute to subtypes.112 The

domain “knows” the meaning of proportion, and every ratio scaled attribute of

subtypes in a partition inherits this meaning, along with constraints and validity

111 Sums exist implicitly; the operation is inherited from the domain of sums by every ratio scaled attribute, but

when the computer executes the code, it is a technical design issue beyond the scope of this book.
112 When the computer physically calculates and stores specific proportions it is a technical decision beyond the

scope of this book.
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criteria that this meaning carries (rule 5(e), (f), and (g)). Some benefits that flow

from “knowing” are:
� Users need only refer to one or more proportions of one or more attributes in

one of more partitions, and proportions will automatically be available. It will

not have to be separately “programmed” each time. Each proportion will also

automatically carry rule 5 with it.
� Actors inputting or importing information need only know which items are

proportions in what partitions, and the metamodel of knowledge will auto-

matically validate that they conform to rules 5(e) and (f).
� If all proportions but one in an exhaustive partition are available, and we

know that the attribute in question is always nil or greater (or nil or less),

rule 5(f) tells the process how to fill it in. This knowledge flows automatically

to every process that involves proportions. It is inherited from the domain of

proportions, not “programmed” each time it is required.

Indeed, the partition, by its very nature, brings rule 5 with it. Until it is needed, the rela-

tionships in rule 5 lie unused and unrecognized, hidden within the domain of proportions,

waiting to spring forth when a requirement instantiates a proportion.

Difference scaled domains

Difference scaled domains are like ratio scaled domains, except they lack the nil value (see

the discussion on figure 67). Therefore:

Rule 6: Division of one difference scaled value by another is meaningless, and hence so is

multiplication of one difference scaled value by another (see operations on values

in the discussion of figure 67).

Difference scaled domains have no information on ratios, i.e. they have lost the meaning

of division (and hence also its inverse, multiplication – all because the domain has no nil

value).

Note the difference between “nil” and “null” values. The nil value conveys the absence

of magnitude, whereas the null value conveys absence of meaning. See the discussion

of figure (b) of box 47 for a detailed discussion with examples.

However, difference scaled domains do have information about equality of values and have

information on relative magnitudes of gaps between values in a continuum.113 The domain

knows when two values are equal, and therefore, knows when the gap is zero. This is why

gaps are ratio scaled, whereas the original domain was difference scaled – gaps between

values are not only quantified, but could also be nil. The domain of gaps has a natural zero.

Hence, subtracting a difference scaled value from another in the same domain creates a

ratio scaled domain.

113 Ratio scaled and difference scaled domains are mathematically dense [208]. [208] describes the continuum of

values in these domains.
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Let us examine the natural structure of information in the domain of gaps. In recognizing

the magnitude of gaps, we recognized the difference scaled quality of the original domain;

and in recognizing that gaps can be closed, we recognized the nil value. Thus, the domain

of gaps was a subtype of the original domain with a nil value. That made it a ratio scaled

subtype. The subtyping relationship in figure 67 was inherited via inclusion polymorphism

to create the ratio scaled domain of gaps of a difference scaled domain.

Therefore, for difference scaled domains, rule 3 must be made more explicit as follows:

Rule 7: Subtracting pairs of values in a difference scaled domain will create a new domain.

The new domain will be a subtype of the original domain. If the original domain

was difference scaled, the new domain will be ratio scaled. It is the domain of

intervals, or gaps between pairs of values, obtained by attaching a nil value to the

original domain. It is also a subtype of the original domain

Rule 7 does not mention addition. The missing nil value impacts the validity of rule 3 in

difference scaled domains. Rules of arithmetic addition also change. To understand these

changes, think of difference scaled domains as domains of quantitative information in which

the relative position of a hypothetical nil value is unknown (the domain has no information

on nil). This does not impact arithmetic subtraction, because this hypothetical nil value

must have mapped to some unknown number, and, as long as we subtracted numbers in

the same units of measure, the subtraction operation cancelled it out, reducing it to zero.

However, when we add values, we will be adding up and double counting the number that

maps to the unknown nil. We do not know what numbers we have mapped to the unknown

nil value, so we cannot meaningfully add values together in difference scaled domains. The

results of addition will all map to “unknown.” Rule 8 follows:

Rule 8: Addition of values in the same difference scaled domains is meaningless by itself

(because it would double count the unknown number assigned to the hypothetical

nil value). However, arithmetic expressions that do not distort the hypothetical

nil value are meaningful. For example, taking the arithmetic mean of two or more

values is meaningful, even though it involves addition of values in the domain. When

the values are summed together, the unknown number assigned to the hypothetical

nil value is multiply counted – once for each value – but that sum is also divided

by the number of values added, which corrects the distortion. All such operations

that do not distort the hypothetical nil value map back to the same domain. The

validity of an arithmetic expression in the difference scaled domain depends on the

entire arithmetic expression, not the validity of its terms in isolation. The entire

expression must be considered in toto.

Rule 8 also implies that rule 4 must be made more explicit, because gaps between values

in a difference scaled domain may be added and subtracted from values in their parent

domains:

Rule 9: Values in the domain of gaps may be meaningfully added to, or subtracted from,

values in the domain it was generated from. The results of the operation will map to

the latter domain. This does not contradict rule 3 or rule 4 because the domain of gaps

is a subtype of the original domain (albeit a ratio scaled subtype). Addition of values

between subtype domains and their parent domains will be meaningful provided

the hypothetical nil value is not distorted. Addition and subtraction operations with

values in other domains (with this exception) have no meaning.
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Box 44 Domain analysis for components of knowledge

The rules of traditional dimensional analysis (see box 42) are simpler. Traditional dimen-

sional analysis recognizes neither difference scaled domains, nor partitions. Therefore

rules 4, 5, 6, and 7 are ignored by traditional dimensional analysis. For this reason, tra-

ditional dimensional analysis need not consider modifying rule 4 for difference scaled

domains. That reduces the number of rules we must consider, and makes those we must,

much simpler. To get around the complexity created by difference scaled domains, tra-

ditional dimensional analysis recognizes only ratio scaled primary domains. It was the

time gap domain, not the date domain that was identified as a primary domain by the

Tenth General Conference on Weights and Measures mentioned in box 42. This is the

correct approach for design and analysis of physical systems, because the time lapse

between events, rather the actual time of occurrence, is important for physical laws and

the machines that depend on them. However, that is not true for business systems. Busi-

ness rules may involve both time lapse between events, as well as the actual date and

time of occurrence. Therefore we must modify the rules of domain analysis for physical

systems to support engineering of business knowledge. Engineering of business knowl-

edge must recognize difference scaled domains, and add Rules 4, 5, 6, 7, 8, and 9 to the

repertoire of domain analysis.

Ordinally scaled domains

The only arithmetic operation valid for ordinal domains is subtraction of ranks within

the same domain.114 Under patterns, we understood that subtraction of pairs of ordinal

values will create a difference scaled domain (see table 1 and ordinally scaled state space in

section 1). Therefore, rule 7 must be modified for ordinal domains and combined with rule 9

as follows:

Rule 7: Mutually subtracting pairs of values in difference or ordinally scaled domains will

create a new domain. The new domain will be a subtype of the domain it was made

from. The new domain is the domain of intervals, or gaps between pairs of values,

obtained by attaching a nil value to the original domain. Values in the domain of

gaps may be meaningfully added to, or subtracted from, values in the domain it

was generated from. The results of the operation will map to the latter domain. If

the original domain was:

(a) difference scaled, the new domain of intervals will be ratio scaled;

(b) ordinally scaled, the new domain of intervals will be difference scaled.

Consider the impact of this “prefabricated knowledge” on business processes that must

flex. Let us return to the example of military ranks in section 1, under “Patterns in state

space.” Military ranks in a given branch (military service) are strictly hierarchical, but

ranks across services like the army, air force, and navy may be different. However, each

rank in a branch of the military has its equivalent in the other military services. Thus

114 Besides subtraction, other arithmetic operations have parallels in ordinal domains with natural lower bounds.

See addition, multiplication, reachability, countability, and other operations in [212].
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military ranks convey information which are greater, lesser, or equal across branches of

military service.115 The ranks in a branch of service are all subclasses of the general class

called military rank.

Assume we introduced a new rank in the army – inserted it between two ranks. The

metamodel of knowledge would “know” the pecking order of the rank, and hence it would

intrinsically and automatically become an ordinal position in (i.e. be inserted into) the

general hierarchy of military ranks. Thus all ranks in the other services would automatically

and intrinsically “know” their relative position in relation to the new rank in the army.

Interservice protocols and rules that involve the pecking order of ranks would automatically

apply to the new rank, and all other ranks would “know” how to behave. Not a line of

additional code need be written, nor any new protocols created (the military does have

the option of redefining rank equivalence across services if needed, but that is another

matter, and would involve switching relationships between values, a “prefabricated” effect

inherited from the “unknown” domain, ready for use when required – see the discussion on

figure 67).

The class, military rank, inherited this “intelligence” about relative hierarchical positions

and the behavior of supertypes from the generalized ordinal domain, added the information

it already had about protocols between hierarchical differences in positions, and thus the

formal military protocols between other ranks and the new rank were automatically available

to each service.

Nominally scaled domains

A nominal domain has no information on magnitude, besides the fact that a value either

exists or does not. Therefore, it can have no information on magnitude constraints of the

kind in Chapter 3, section 2. However, it may participate in joint constraints with other

domains.

Joint constraints (Chapter 3, section 2), linked to attributes, limited the state space of

objects. Attached to domains, they create new domains. Indeed, any kinds of domains, in

any numbers, may be mutually related by a joint constraint. We will examine this next.

Domains by association

A joint constraint is a law that binds attributes together. It is a law that binds values by mere

association, and, on that basis, it constrains the state space of objects. When it binds values

in domains together, it creates new domains, a domain of association – a domain that is

generated by the law that created it, a domain from which the law may be inherited by all

attributes that map to it.

Consider a relationship between the temperature and preference domains. It creates the

temperature preference domain. An object class will provide the context for temperature

preference. If the object class is, say, furnace, an attribute furnace temperature preference, of

furnace, will map to the temperature preference domain. Had the object class been swimming

pool, the attribute would have read swimming pool temperature preference instead. The

new domain, temperature preference, is in the “wiring” of the relationship between the

115 Military ranks are an example of points in a pseudometric state space – see the endnote on generalized distances.
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temperature and preference domains, i.e. it is normalized by the relationship. Indeed, the

relationship is the new domain.

We not only related two different domains to create a new domain, but we also related

two different kinds of domains. The temperature domain was difference scaled (see

section 2), whereas the preference domain was ordinally scaled. The new domain was

also ordinally scaled. When all domains had sequencing information, the information con-

tent of the domain with the least information determined how values in the new domain

were scaled.116

On the other hand, consider Jane’s color preference. It was an attribute that mapped to

the color preference domain, a domain created by the junction of a nominal color domain

and the ordinal preference domain. The resultant color preference domain was ordinally

scaled. In this case, it was the richer of the two domains, the ordinally scaled preference

domain, which determined the scaling of the domain that emerged from the junction of

domains.

Based on the above, we obtain the tenth rule of secondary domains:

Rule 10: A relationship between domains creates a new domain. The scaling of a domain

created thus is:

(a) at least identical to the scaling of the participating domain with least informa-

tion, when all domains thus joined contain sequencing information (we will

not lose information if we assume it is identically scaled to the scaling of the

participating domain with the least information);

(b) ordinal, when one or more domains thus joined is ordinally scaled (a special

case of rule 10(a) above);

(c) nominal only when all domains thus joined are nominally scaled.

The key to rules 10(a) through (c) lies in information content. Why is the information content

of a domain derived by joining ordinal, difference, and ratio scaled domains of different

kinds restricted to that of the domain with least information? The answer is simple – it is

not. Its information content is actually somewhere in between.117

Think of temperature preference again. It is common sense that there will be little dif-

ference in preference between temperatures very close to each other. That is information,

and it is normalized by, and resident in, the temperature preference domain. However, the

preference domain is an ordinally scaled domain of discrete values and the temperature

domain is a continuum of difference scaled values.118 As we consider temperatures closer

and closer to each other, differences between temperature preferences too get less and less.

When preferences are marginally different, it is difficult to tell them apart. As differences

between preferences shrink, distinctions become a matter of chance.119 The metamodel of

116 Unless all domains in the combination are nominally scaled, the new domain will carry sequencing information.

It will be a partial order (see box 46). [217] elaborates on box 45. Bijection and countability are key to

relationships between values in domains. See [202] and [203].
117 The Cartesian product of any domain with sequencing information, with any other domain, will create a

partially ordered domain. Box 45 and [217] and [218] discuss partial order.
118 [202], [165], [204], [206], and [212] discuss mapping discrete ordered values to a continuum.
119 [211] and the references therein discuss mapping ordinal domains to other kinds of domains.
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knowledge in this book is deterministic. It ignores chance. That is the information we have

lost (see box 46). This is the reason behind rule 10(a).

In the same way, when any domain with information on sequencing of values is related

to a nominal domain, the composite keeps this information intact. This is the reason for

rule 10(b).

Of course, when only nominal domains join, there is no information on sequencing of

values, and the junction is also a nominally scaled domain. This leads to rule 10(c).

Box 45 Partial order, fuzzy meaning, and the scaling of derived domains

(on our website)

Take a pair of points, any pair. If you can find a path from one point to the other such that

the value increases along one of the coordinates and does not simultaneously decrease

for others as you travel along the path, then the pair is partially ordered.

For more details, please visit Box 45 on our website. The latter page also contains

details of how these three concepts relate to the business environment.

Consider how domains of association help us normalize knowledge and isolate change. Take

two “normal” temporal objects, car and person, and two domains, color and preference.

The objects can change state under the pressure of events and the tides of time. The domains

are forever still. A person’s car color preference is an irreducible fact normalized by a four-

way relationship, between person, car, color, and preference. This four-way relationship

can change state. Our intent is to isolate and encapsulate the impact of temporal changes

such as changes of state. For this, we will use derived domains of association and derived

objects.

A relationship between objects is a derived object. A relationship between domains

is a derived domain. Color preference is a relationship between two domains color and

preference. It gives us a new domain, color preference.

The four-way relationship, person’s car color preference has several equally correct

expressions. To start with, it is equivalent to a three-way relationship between the object

classes car and person, and the color preference domain (for the benefit of mathemati-

cally inclined readers, the relationship is a Cartesian product, and the two Cartesian prod-

ucts are equivalent because Cartesian products are associative mathematical operations –

see box 47 and the endnote on associative operators under the mathematical theory of

categories).

We can go one step further and reduce person’s car color preference to a two-way

relationship between an object, a relationship between person and car, and a domain, the

color preference domain. Person’s car color preference will be an attribute of the relationship

between the person and car. The attribute maps to the immutable color preference domain.

Event-driven changes of state are now isolated in the relationship between person and car.

The color preference domain is temporally stateless and forever still.
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Information quality – domains of information about information

The behavior of domains is determined by their information content. Implicit in every

domain, as well as every association between domains, is its association with the domain of

information. This association, a relationship between domains, has a profound effect. The

information domain is ratio scaled, and information rich. The others may not be as flush

with information. An association of domains is also a domain. All domains involved in an

association of domains determine the information content of their mutual relationship. A

domain is a pattern of information. Implicit in the fabric of every domain lie the following

properties of information. You could think of each as emerging from the junction of every

domain with the domain of information, or more precisely with one of its subtypes:
� enumeration
� accuracy
� reliability (risk)
� completeness
� validity

Each has a unique meaning and a unique impact. Each adds information to their common

parent – the domain of information. We will examine the distinct meaning and impact of

each.

Enumeration

Enumeration is a count. It is always ratio scaled, but there are subtleties we must be aware

of. Consider the relationship between enumeration and a nominally scaled domain like

the gender domain. The relationship is gender enumeration – a count of distinct values

of genders. It is a domain. When we consider the completeness or incompleteness of the

numbers of genders, we are, strictly speaking, considering the completeness of the gender

enumeration domain, not the gender domain. The completeness of the gender domain

determines the completeness of all the information the domain conveys.

If we know there are five genders (see the endnote on the question of gender), but not

what these genders are, our information about the gender enumeration domain is complete,

but information about the gender domain remains incomplete. Similarly, the accuracy of

gender enumeration is not the same as the gender enumeration domain. In the first instance,

we mean the accuracy of our information on the number of genders, and in the second

instance, we mean accuracy of information on the meaning of gender. Similar arguments

can be made for reliability and validity of information as well.

Indeed, the same arguments may be made for any domain and any object. Every object, be

it a domain, a relationship, or any other component of knowledge, will map to the domains

of information above. Therefore, intrinsic in any domain, or any object, is the concept of

population. Objects are patterns (see Chapter 2, section 5 and the architecture of pattern in

section 1, and the count of its constituents is a universal property of all patterns (Object

occurrence value in figure 54 and figure 57). In an object, it is the number of instances that

make the class; in a domain, it is the number of values that make the domain.

That population cannot be negative is a value constraint, a natural component of knowl-

edge, attached to the population domain. All populations inherit it. However, populations
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do not always have to be whole numbers. Consider the population of cheese cubes. You

could consider a half cube, or a quarter, or indeed any fractional size. Therefore, restraining

populations to whole numbers is a constraint attached to the attribute that maps to the popu-

lation (enumeration) domain, not the population domain itself. Populations of all aggregate

objects must not inherit it.120

The concept of population is easy to understand when the number of values in a domain

is finite, as in the gender domain. It is harder to compare or comprehend infinitely large

populations of values such as those found in ratio and difference scaled domains. Domains

are patterns of values. The extent of the pattern, the proximity and population of its values are

all interdependent. The mathematical concept of cardinality (the size of a class) subsumes

both finite and infinite counts.121 Discussion of infinite cardinalities and their comparison

is beyond the scope of this book.122 It will suffice to understand that the size of a class is a

universal property that flows from the concept of pattern, and the number of constituents –

its population – is a universal property of all domains, object classes, and patterns (“Object

occurrence value” in figure 54 and figure 57).

A relationship between domains too is an object class – a very special kind of class – a

domain. The population of a relationship between domains is the sum total of all possible

ways individual values across related domains may be associated in the tuple (see box 19

and the section on complex domains). In a system with finite states, only finite numbers

of instances might be physically instantiated at a time, but the possibilities are immense,

even infinitely large. It is this population that lends meaning to enumeration, and it applies

universally to all domains, all objects, and all relationships. We arrive at the following law

for the size or enumeration of values in a domain:
� Relationships between domains are also domains. Every domain has a size. The size of a

relationship between domains cannot be less than the size of the smallest domain in the

relationship. It may be larger. Sizes of domains that emerge from relationships between

domains of known size are known. If the size of any domain that participates in the

relationship is unknown, the size of the relationship will also be unknown.

120 An initial state (default value) is meaningless for a domain; domains do not have temporal states. However,

populations are restricted to whole numbers often enough to make it convenient to declare that the default,

for the enumeration domain, is an electronic repository of knowledge artifacts. This is a design artifice. This

default would be inherited by all enumeration domains in the repository, and then could be overridden for

exceptions.
121 Populations may be restricted to fractions (quotients of natural numbers or integers) – i.e. rational numbers), or

of real numbers, p-adic numbers etc. Rational numbers form a continuum; real numbers, a denser continuum;

other kinds of numbers extend the continuum in different ways (see [219], [220], [221], [222], [223], [224],

[225], [226], [227], [228], [229], [230] and [231]). However, present-day computers cannot handle the con-

tinuum because they cannot accommodate the concept of infinitely large or infinitesimally small values. They

approximate them with discrete sets of numbers (see [209] and [210]. It is always possible to find a rational

number arbitrarily close to an irrational number in the continuum of numbers.) Therefore, any constraints that

discriminate between infinite cardinalities or infinitesimally small differences are moot, and so are constraints

that try to distinguish fractions from other kinds of numbers. However, infinitesimally small differences can

impact how we model reality. For example, chaotic ([292], [293], [323]) or stochastic ([305], [310], [312]),

phenomena could be conceived as stemming from infinitesimally small differences in initial or intermediate

states of ratio scaled trajectories in state space. [204], [206], [207], [212], [219], [221], [222], [230], and [231]

discuss infinitesimally small differences and differences between infinitely large numbers in a continuum.
122 [202], [203], [206], [208], and [212] discusses the cardinality of classes.
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Between known and unknown populations runs the whole gamut of possibilities based on

how much information we have about sizes of domains – we may have information on ratios

of populations (even if they are infinitely large); we may have information on differences

in population between domains, but not ratios; we may have even less information, just

barely enough to arrange domains in order of increasing population; and we may not even

be able to do that if we have scarcely enough information to know that different domains

have different populations, but cannot say which are larger than others. If we do not even

have that, we eventually meet the unknown domain at the line that divides knowledge from

ignorance.

Accuracy

The precision of information maps to the accuracy domain. Precision measures proximity.

For example, a manufacturer of car parts might make a shaft to specification. Let us assume

the length of the shaft has been specified, as well as the permitted variance in its length

that will be tolerated. The manufacturer specified tolerance, or permitted imprecision, in

terms of its proximity to the desired length of the shaft – a value. Similarly, the precision of

difference scaled values is described by its closeness to a desired standard. The precision

of an ordinally scaled expression may also be expressed in terms of permitted imprecision,

except that in this case imprecision is measured in terms of differences in rank – does

the rule expression map to the rank it should, or will it be wrong? If it is wrong, how

large is the error – one rank, two ranks, three ranks, or more? Domains are patterns, and

precision is a proximity metric. The proximity metric is a universal property of patterns.

It is a property inherited by domains. Precision is only one manifestation of the proximity

metric – how close must a pair of values be before we accept them as virtually identical, or

at least acceptably close? This is the question precision answers. That is why precision is

the proximity metric of section 1.

Precision therefore conforms to the laws in table 2. These laws are simple; their reasons,

complex. Both are described under proximity metrics in section 1.123 Thus, we arrive at the

law of precision:
� The precision of a domain will conform to the rules for proximity metrics in table 2. The

domain may be a simple domain, or a complex domain, described by an association of

domains. The scalability of domains in the association may be of different kinds (nominal,

ordinal, difference, or ratio scales).

The right-most metric in each row of table 2 conveys the most information for each kind

of state space. A greater degree of precision is not possible, but our standards may be

less precise. In the example of the shaft, the requirement may have merely asked that the

manufactured shaft be shorter than a standard shaft, or even that it only be different. Both

will be valid requirements. On the other hand, a requirement that demands that the shaft

satisfy the quality inspector to the extent of 80 units of satisfaction or more is meaningless

because preferences (satisfaction levels) are ordinally scaled. Table 2 articulates all these

rules.

123 The state space of any domain that emerges from a relationship between precision and any other domain will

be a partial order (see box 45). Table 2 makes this explicit.
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In terms of the structure of information, precision of information in any domain is rooted in

a relationship between the domain in question and the precision domain. To demonstrate this,

we will return to the example of the shaft being manufactured for a car. The car manufacturer

specified the tolerance or requisite precision for shaft length. The manufactured shaft will

meet the specification subject to a degree of accuracy in terms of its length. The shaft

length maps to the length domain. The length domain, in this case, provided the context for

accuracy. Length precision is a complex domain – a secondary domain that is a relationship

between the accuracy domain and the length domain.

The length domain is ratio scaled. Therefore, the law of precision merely states that

length precision may also be ratio scaled. Thus, engineering tolerances are ratio scaled

measures. On the other hand, if accuracy had been related to the gender domain, it would

be a binary, ordinally scaled domain such as the similarity metric in nominally scaled state

spaces – we can only be right or wrong when we identify a person’s gender (it might be

common sense, but someone must tell the computer that!). The domain normalizes this

knowledge.

If we were to assess the precision of the preference domain, precision would be expressed

in terms of how many ranks of preference we may err by. That is a difference scaled measure

as we discussed under patterns in section 1. The precision of a difference scaled domain

like temperature will be ratio scaled for similar reasons – the gaps are ratio scaled, and

precision measures error in terms of gaps.

Similarly, precision could relate to other primary or secondary domains like time, mass,

volume, area, and others – even to the information content domain itself – to create new

secondary domains, all framed by the law of precision. The law of precision is information. It

is intelligence encapsulated and normalized in the information domain – or, more precisely,

in its subtype, the precision domain.

Reliability (risk)

Reliability is a measure of the consistency of information. Whether the same information

always has the same meaning and the same degree of accuracy. If it is hard for me to

decide whether I prefer red to blue, my choice of color will not always be consistent

and information on my color preference will be unreliable. Measurement of reliability

often involves measurement of chance and likelihood. Chance is a ratio scaled measure

(technically it is called probability).

If a measurement is always accurate, or if we are completely certain that it is accurate

and there is no chance of being wrong, it is completely reliable – its reliability is total. If it

is always inaccurate, it is completely unreliable – its reliability is nil. Values of reliability

may fall anywhere between these two extremes – total and nil – because the certainty of

being right (or wrong!) may be anywhere in between.

Total reliability may be expressed as 100% reliability, or in fractional terms, as a proba-

bility of one. Intermediate degrees of reliability will then be expressed in fractional proba-

bilities, and complete unreliability, the nil value will map to the number zero. If we are right

only one half the time about gender, the reliability of gender information may be expressed

as 1/2, or as 50%. The units, or numbers that express the probability is a matter of choice –

a unit of measure for the probability domain (0.5 and 1/2 are not different numbers, but the
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same number expressed in different formats. On the other hand, 50 and 1/2 are different

numbers. The unit of measure is different in the second case, whereas it is the same in the

first case – the difference between 1/2 and 0.5 is only one of format).

The domain itself is ratio scaled, bounded below by the nil value, and above by the

total value. It is a proportion. The law of reliability follows naturally from the logic of

information:
� The reliability of information in a domain is a quality of information shared by all

domains. It is potentially ratio scaled with an upper bound. A given value of reliability

of information means the same in every domain. It is a measure of confidence in the

accuracy of the value – the chance of being correct.

Reliability is measured by probability. In plain English, reliability is a measure of the

uncertainty about information. It is a property of information shared by all information –

information in domains and information in objects that inherit it through their attributes –

from domains.

Like the other domains we have discussed, measures of reliability may be scaled back if

we do not have enough information on consistency of data. It might be difference scaled,

wherein we can merely articulate differences in consistency (the chance of being accurate

within requisite limits); it might be ordinally scaled, whereby we can only articulate the

degree of risk in ordinal terms, such as “very risky,” “somewhat risky,” “quite reliable,”

but have no information on the quantum of difference between these positions, or it might

be nominally scaled, so that we are only aware that different categories of risk exist, but

not which is more or less. As information gets sparser, we start approaching the unknown

domain.

In a purely deterministic model, risk is not considered. Everything is either true of false,

with total confidence. There is no chance of being wrong, no shades of gray in a world of

black and white – truth and falsehood with nothing in between.

Our metamodel is deterministic. Therefore, technically we have no room for reliability

or the lack of it. However, recognizing the reliability (risk) domain compensates for this

deficiency. We can express risk, when it is important to do so, with ratio, difference, ordinally

scaled, or ratio scaled domains of risk – all subtypes of the unknown risk domain.

Until recognized, the potential of the risk domain lies buried, hidden within every domain,

waiting to be realized in attributes and objects when and if needed. The information domain

is its root, and the reliability domain normalizes this information.

Reliability lends its meaning to every domain and every value through the universal

relationship every domain has with the reliability domain, a relationship every domain

inherits from the relationship that the information domain enjoys with the domain at the

root of all domains – the unknown domain – a domain at the border between knowledge

and its absence.

In our deterministic model of knowledge, the domain of reliability is a hook, a portal

into the shadowy shifting world of chance, where opposites can overlap and coexist, and

absolute truths cease to be. Only their shadows mingle in a half world where the observer and

observation lose their identity to become one pattern – a pattern of probability. Reliability

is a universal property of all domains of values, and a natural bridge, a portal into a world

where chance and chaos can rule supreme.
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Completeness (exhaustivity)

Completeness tells us how exhaustive our information is. Consider the completeness of a

list: we may know just enough to understand that some items are missing from a list. We

do not know how many, or what proportion. When this happens, completeness maps to

a nominal domain, like the exhaustivity attribute of partitions we discussed in Chapter 2,

section 3.

Sometimes we may be able to distinguish degrees of completeness, but not the differences

between them. For example, we might know that a project is closer to its end than it was

before, but not how much closer. Then completeness will map to an ordinal domain. We

could even know how much work of the project has progressed, but not the total amount

finished to date. We cannot say what proportion of work is finished. Then completion maps

to the difference scaled domain. Of course, we may have the processes in place to let us

measure the total work required, and the proportion finished. Then completion maps to

the ratio scaled domain. The business meaning of completeness stays the same, but the its

scaling depends on the amount of information provided by its context – the relationship

between the completion domain and the object it is the completeness of.

We had touched on the context of completion in our discussion of enumeration. It is a

common mistake to confuse the completeness of enumeration with the completeness of

all information conveyed by the class. The count of its members is only one item of the

information conveyed by a class. It contributes to the information content of a class, but

other items do so as well. Completeness of information will depend on the total information

conveyed by a class. Domains are classes of values. Objects inherit their information from

domains. Completeness of information in a domain must be based on its total information

content – sequencing information, meanings, constraints, operations, and effects resident in

the domain. In other words, completeness measures the proportion of the total information

content that is known and available. This leads to the law of exhaustivity. It is similar to the

law of reliability because both reliability and completeness are proportions:
� The completeness of information about a domain is a measure of information known

versus that still unknown. Specifically, it is the ratio of known information to the total

information content of the domain (see the endnote on the quantum of information). A

ratio scaled domain with an upper bound thus normalizes it. A given value of completeness

means the same for every domain. It is a measure of how much domain knowledge we

have extracted or realized, compared to what the entire domain can tell us.124

Completeness is potentially ratio scaled. When we have incomplete information, the

measure of completeness may slip backwards to difference, ordinal, and nominal values,

as we have described earlier on, or even become “unknown” (as happens frequently in

business). Measuring information content is not simple, and business often ignores it. The

cost of not knowing adds risk. Analyzing domains helps reduce risk. Obtaining information

uses resources. It costs money. Judiciously addressing the risk of incomplete information

can sharpen management of risk.

124 Calculating the information content or the degrees of freedom of a pattern can be complex. The section on

patterns, the endnote on the measure of information, and the references therein discuss these concepts.
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Validity

Validity tells us whether we are interpreting information correctly. It is different from

reliability or accuracy. For example, you may have an imprecise thermometer, and your

measurement of temperature may not be accurate, but it will still be temperature you are

measuring. Therefore the measurement is valid, albeit inaccurate. On the other hand, if you

used a speedometer to infer temperature readings, the information is invalid. You are simply

not measuring temperature, even if you say so!

Validity will often be nominally scaled like it was in the example above. An assertion

will either be valid or invalid. However, like completeness, the scaling of validity may

also be ordinal, difference, or ratio scaled, depending on the information provided by its

context. We often measure properties by proxy: driving our car, we actually infer our speed

by the deflection of the needle on our speedometer. Greater speed maps to proportionately

greater deflection and vice-versa. The deflection and speed are completely correlated, so the

validity of our information is total. In the real world, different items may be correlated to

a lesser or greater degree; the stronger the correlation, the greater the validity of the proxy

measurement.

Validity depends on correlation, a measure of the confidence with which we can say that

values move in lock step. It does not matter how much one value changes when the other(s)

does, it only matters that it does. Validity is always between at least two things, an object

and its context(s), and, like reliability, its value is limited within a range.125

In terms of information structure, the validity domain always links to a domain that is

the intersection of two or more domains or object classes. Validity never stands alone. The

law of validity asserts:
� Validity is a ratio scaled measure that is the assessment of the intensity of a relationship

between objects. It may be nil, total, or in between. It assesses the chance of values in

one object class changing lock-step with values in others. In a deterministic model, a rule

is either valid or it is not. Only the nil and total values are entertained.

Relationships are also object classes. They can provide the context of validity, even if they

are relationships between different time slices of the same object instance, or relationships

across values in the same domain. The validity of an assertion that relates the current price

of corporate stock with past values makes sense only within a specific time frame. The

current stock price is an object, and so is the collection of past values, and the time frame.

It is the validity of this three-way relationship that is in question.

Similarly, the validity of the assertion that values in the length domain cannot be negative

makes sense only because it is a relationship between a value in the length domain and nil

length, and other values in the length domain. Validity is meaningless for a value without

a context, and it is also meaningless for a domain or a value unless it is the validity of

information in a relationship across domains or values (remember relationships between

domains are domains too). The only requirement is that validity always must involve two or

more objects.

Like the other ratio scaled measures of information, the validity of a specific relationship

may slip from being ratio scaled to being difference scaled, ordinally scaled, nominally

125 [311] discusses correlation of ratio, difference, ordinally, and nominally scaled information.
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scaled, and even “unknown” as information content about the existence of the relationship

becomes sparser and sparser. However, the domain of validity, the class that normalizes the

concept remains ratio scaled; only the scaling information in its relationship with an attribute

or another domain slips. It is appropriate to say that the validity of a rule is unknown, or that

the validity of one law is different from another, or even that the validity of one relationship

is greater than another, without being able to say how much different or how much greater.

It all depends on information content.

Think of validity as a domain of intensity from which instance identifiers like those in

figure (b) of box 27, figure 35, and figure 36 draw their meanings. As an abstract concept,

think of validity as a domain of information that measures the intensity of relationships

between values, or the intensity of meanings of relationships between object classes.

Our metamodel ignores chance, hence for us a rule is ether valid or invalid and an

association either exists or does not. Those two ends of the domain of validity – nil and total –

are the only possibilities in a purely deterministic model: total validity is an absolute truth,

and total invalidity an exception. Exceptions are our hook into the world of chance and chaos.

Assumptions about what is permitted and what is not lets us test for the validity of

our businesses processes and information systems. Perspectives are patterns of objects and

relationships (see Chapter 2, section 4), and provide the context that makes validity in a

perspective valid. New learning can change perspectives, information systems, and business

processes (see box 49). Our metamodel must embrace change.

Assumptions about validity are hidden in every domain and perspective. They flow from

the validity domain that normalizes the concept of validity. It is a universal property of

information. It is a ratio scaled domain like reliability, that lies hidden in the metamodel of

knowledge at the trijunction where chance meets certainty and ignorance, ready to test and

be tested should the need arise.

Validity, like reliability, is another portal through which we can connect our deterministic

metamodel to the shadowy world of chance – a world of shifting shades of existence,

mingling in strange patterns of probability – a world beyond our scope.

Completeness, validity, accuracy, and enumeration are different and independent items of

information about information. Items from which the eleventh law of domains comes forth:

Rule 11: Every domain inherits the following properties from the domain of information:

(a) Every aggregate object, including every domain, is a pattern that has an

attribute derived from the ratio scaled enumeration domain. It is a count

of the number of members in it. The count may even be infinitely large.

(b) Every domain has one or more domain(s) of proximity metrics associated

with it. The domain of the proximity metric is a subtype of the domain it is

associated with, and measures the accuracy of values in the domain. The scal-

ing of domains of proximity metrics conform to table 2 (indeed, the domain

of gaps is this domain for ratio and difference scaled domains).

(c) Implicit in every value of every domain is the potentially ratio scaled property

of reliability. The property of reliability of values in a domain springs from an

association (a Cartesian product – see box 47 or complex domains) between

the domain in question and the domain of reliability. Values of reliability

range from nil to total. The reliability domain articulates the consistency of

meanings. In a purely deterministic model, reliability may only be nil or total.
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(d) Every object maps to the ratio scaled completeness domain. This domain

measures the proportion of information in the object that has been realized.

Values of completeness range between nil and total.

(e) Every relationship maps to the ratio scaled validity domain. It is a univer-

sal attribute of relationships. Values of validity range from nil to total. The

validity domain articulates the meaningfulness of the relationship. In a purely

deterministic model, validity of the relationship is either nil or total.

(f) Specific relationships with these domains of information may be nominally,

ordinally, difference, or ratio scaled, depending on the information content of

the relationship.

Indeed, validity, reliability, completeness, accuracy, and enumeration can even relate to

each other, and, recursively, also to themselves. Thus, the completeness of enumeration, the

reliability of validity and even the reliability of reliability are mutual relationships between

these domains that are also valid domains of information, and so are higher-order domains of

information, such as the reliability of reliability of reliability, or the validity of completeness

of enumeration.

Box 46 “Softness” of information

We have often referred to “soft” information, such as those in non-physical domains,

even ratio scaled domains such as economic value. What is soft information and how does

it relate to information content? Consider the interaction between accuracy, reliability,

and enumeration, all subtypes of the domain of information. Enumeration tells us how

many values the domain contains (even domains with infinitely many values, as we saw

in our discussion on cardinality). Accuracy is a measure of proximity between a pair of

values, and reliability is our confidence in being accurate – the chance of being close

enough to a target value with requisite accuracy. Each is information, and contributes

to the overall information content of the specification. Given these facts, let us consider

Jane’s color preference domain again.

Assume Jane can only discriminate between colors she likes, colors she is indifferent

to, and colors she dislikes. The domain has three values. That is the information enumer-

ation contributes to the overall information content of the domain. Assume Jim, in the

tale of Metanesia in Chapter 1, forced her to discuss colors she only disliked a little or

liked a little, versus those she disliked a lot or liked a lot. He forced additional values into

the domain – values that do not really exist. Unless Jane becomes more discriminating

about he color preferences, the quantum of information in the domain will not change.

The accuracy with which she can discriminate between colors still stays the same. She

can only discriminate neutrality from dislike, and neutrality from liking for a color (and

of course dislike from liking. This domain is ordinal, so we also know that the difference

between liking and dislike for a color is larger than the distance between neutrality and

either position.) If she is forced to discriminate between colors she likes only a little

versus those she likes a lot, when she truly cannot, her responses will be random. In

terms of our recent discussion on reliability, her responses will not be reliable. The

domain will become soft and uncertain. The overall information content determines

overall “softness” and hence the kind of scalability the domain has. If we try to impute
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a higher degree of scalability to a domain – i.e. make a nominal domain ordinal, or an

ordinal domain difference scaled without increasing its intrinsic information content –

it “melts” and becomes “soft” – i.e. values in it become less and less reliable.

On the other hand, if we reduce the size – the number of values – in a domain that is

reliable, we will lose information. We will be able to reliably discriminate between the

values that are left, but we could be even more accurate and still be reliable. The domain

becomes “grainy.”

Thus, if Jane became a connoisseur of colors, and could make very fine distinctions

in her preferences between subtle shades of color, we could increase the number of

preference values in the color preference domain and still be able to distinguish between

preferences reliably. If Jane continues to grow ever-more discriminating, the number of

values in her color preference domain will keep increasing and the requisite proximity

between points that she can reliably discriminate between will keep decreasing, until,

for practical purposes, she can discriminate between infinitesimally close values in a

continuum. The color preference domain would have gathered enough information from

the enumeration, accuracy, and reliability domains to become a difference scaled domain.

In fact, because she can discriminate between like, dislike, and neutrality, this domain

has a natural zero – it has become a ratio scaled domain like the money domain. This is

how the interaction between subtypes of information adds to information content, and

this is how the information content of a domain changes the very nature of its scalable

behavior

In real life, there are no absolutes. Jane would never be able to make infinitesimally

fine distinctions between her preferences. As colors and preferences got closer and

closer, the chance of her consistently making the distinction would become less than

certain. The smaller the difference became, the less her chance of being consistent would

become. The domain would get softer and softer. Our metamodel is deterministic. We

recognize only certainty in a world of black and white – choices are either always

consistent or always inconsistent in such a world. To reconcile uncertain reality with the

non-existent world of absolute certainty, we will have to decide how much uncertainty

and inconsistency we will tolerate before we declare that Jane cannot meaningfully

tell the difference because the values in question are too close – the values are virtually

identical and we will declare that they are indeed identical. This is how the cardinality of

a domain emerges from its information content. This is also how enumeration, accuracy,

and reliability all contribute to information content.

The property of validity tells us that it is indeed Jane’s color preference we mean,

and not some other quality, such as the shape of colored objects presented to her, or

their texture or odor that she might be confusing with preference for their color. This

too is a matter of chance, but, in our idealized black and white world, it either happens

or does not. Together, validity enumeration, accuracy, and reliability determine the

information content of the domain, and information content determines its “softness”

and scalability. If we are willing to tolerate less reliability, we can increase the number of

values (and decrease gaps between them, i.e. increase potential accuracy requirements

for measurements in the domain). If we are willing to live with less accuracy, we can
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increase reliability, and will recognize larger gaps between values. These gaps measure

unreliability of information on differences – the meaninglessness of proximity with

commensurate levels of reliability in a world where black and white coexist in shades of

gray – a world where domains may be as hard or soft as the information they convey –

a world without absolute certainty or absolute meaning.

The information domains focus on risk – the risk of imperfect information. Incomplete,

invalid, inaccurate unreliable, and uncounted information all contribute to business risk –

the risk rooted in bad information, blinkered vision, unsubstantiated assumptions, or

assumptions belied. The information domains help us sharpen management of risk.

Complex domains and mixed meanings

Domains are value objects with timeless states.126 We have just seen how some are classes

of single values, while others are associations that cannot be neatly reduced to one value.

The latter are relationships between domains. These relationships are also domains. They

are classes of ordered lists, or tuples (see box 47 and box 19), wherein members of the class

are lists of values, and members of each such list are the values of domains that have been

associated by the relationship.

The color preference domain was one such domain. The color preference domain was

different from other secondary domains like “money per unit area” we have discussed

thus far. Single, unjoined values were members of domains like “money per unit area”

even though its values were derived from other domains. The relationship (division in this

case) reduced the values it joined to a single magnitude. The color preference domain was

different. Its members are pairs – pairs of values. One member of the pair is color, and the

other is preference. The pair is color preference.

We will call domains that are classes of single values simple domains, whereas those that

are classes of tuples, complex domains.

A simple domain may describe a complex pattern of the kind in figure (b) of box 47 when

we consider its derivation from other domains via a magnitude constraint, but by itself (if

we ignore its derivation) it is a simple one-dimensional pattern such as values of area,

volume, or temperature. Complex domains, on the other hand, are always multidimensional

patterns. They are multidimensional patterns because each value is a tuple. Members of the

tuple have not “melted” into a single value through a magnitude or joint constraint. Thus

each member of the tuple preserves its separate identity, as illustrated in figure (a) of box

47 and figure (c) of box 19. This is why the dimensionality of the pattern must equal the

size of each tuple – the number of members it has.127 Domains like color preference, and

even color and physical space (see box 49) are complex domains.

126 Domains have states, but these states do not change in response to temporal events. States of domains are their

timeless relationships, subtypes, and constraints (for example, in our discussion of proportions). Domains are

classes and classes are categories, which may be subtyped based on information conveyed by relationships

and constraints (see [173]).
127 Each tuple in this domain, a class of tuples, is the same size (see box 19). The dimensionality of the pattern

equals the cardinality of each tuple – the number of members it has.
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Thus, domains are value objects because they are classes of values that share a common

meaning. The domain is the object class, and the value the object instance. Together they

are the value object.

Domains are immutable and changeless value objects. Domains are immutable and

changeless because they are fields of pure values. They convey immutable and change-

less meanings – values that flow to objects through attributes to lend them their

meaning.

Domains are strange shadowy objects that contain only the potential to be. Other objects

realize this potential when they map to specific values in domains. When domains relate

to other objects, they are manifested as attributes. When domains relate to other domains,

they create new domains – domains that are also value objects pregnant with meaning, and

laden with possibilities – each possibility a value, and each effect a requirement. Each has

the potential to be, waiting to be mated with its context; a context provided by an object

that then realizes this potential.

Box 47 Domains, relationships, and the Cartesian product

(on our website)

Box 47 on our website provides more detail on how the Cartesian product discussed

in box 19 can serve as the basis for relationships between domains, and how these

relationships create new domains, which might be nominally, ordinally, difference, or

ratio scaled. The examples also demonstrate how different mathematical operators might

join domains to create new domains. It discusses the difference between null and nil

values, and how some domains, assembled from domains without null values, may have

“holes,” expressed by the null value as a result of the joining. The following figures have

been reproduced here, and are discussed in detail on our website.
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(b) The money per piece pattern of association

The risk and benefit of domain analysis

The primary benefit of domain analysis is that we can reduce the risk of unintentionally

replicating knowledge scattered throughout our systems and processes. Domains are the

most fundamental components of knowledge and behavior that are shared by virtually

all information. Knowledge that belongs to a domain is common knowledge, shared by

attributes, objects, and processes throughout organizations and value chains, regardless of

local practices, perceptions, and measurement units. If we ignore this and put the knowledge

that belongs to domains into attributes instead, we will replicate knowledge and risk chaos

under the twin imperative of rapid and continual change.

Normalizing the behavior of domains and managing them as components of shared

electronic knowledge can positively impact processes and the information systems they

support. It can help improve information quality. It can assist in sharing of knowledge

across complex processes and in obtaining more flexible systems and processes. It can also

facilitate integrated and robust responses to change and help embrace innovation. It can

automate design, development, and maintenance of information systems, and it can also

help rebuild and integrate old knowledge into new configurations. Let us see how.

Reusing knowledge – building upon the old

We have seen how new meanings emerge from old, and analyzed the rules for assembling

new domains from older components. Now we will take each rule, one at a time, and see

the impact it can have on improving reliability of processes and systems while reducing

time and cost of eliciting requirements and developing or modifying systems and business

processes. Often the benefits of these rules will only flow if we automate domain analysis.

The task may be too complex and too labor intensive to do manually.
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Usually these benefits will stem from sharing a unit of measure and conversion infor-

mation. Domains also share other rules such as bounds, ranges, formats etc., which will

also be normalized along with rules for converting between them This too can help facil-

itate change at a greater pace and lower cost. Also keep in mind that all domains contain

not only the effects that update values of attributes, but they also carry within them the

effect that creates new attributes. They can help us create new attributes and refactor knowl-

edge, as new learning forces us to embrace change. Domains can help reconfigure what we

know already, as we learn new things and get new ideas. They can help preserve, conserve,

and reuse our knowledge assets – the common learning shared across organizations and

people:

Rule 1: Adding meaning to a domain creates a new domain. Meanings added may be new,

or inherited. If the new domain includes meaning(s) inherited from other domains,

it is a subtype of the domain(s) it was created from and:

(a) The new domain will inherit unit-of-measure information from its parent

domain and add information of its own.

(b) If the nil value was included in the new domain, the units of measure of the

old domain will be inherited with their zeros reset to coincide with the new nil

value.

The nil and zero should coincide to reflect the mathematical properties of nil.

Otherwise simple arithmetic with numbers in that unit of measure becomes

difficult. The number zero mirrors the natural properties of nil. Adding nil to

another value results in the same value, just as adding zero to any number

results in the same number; similarly, multiplying any ratio scaled value by nil

results in nil, just as multiplying any number by zero results in zero; dividing

nil by another ratio scaled value results in nil, just as dividing zero by another

number results in zero; dividing any non-nil ratio scaled value by nil results

in an infinitely large value, just as division by zero does, and dividing nil by

nil yields null. It maps to no value, ratio scaled or otherwise in any domain

(unless we include the null value in the unknown domain of figure 67, from

which every domain inherits it. See null value in Chapter 2, section 2 and “Null

versus nil value” in box 47). This is why it is good practice to map nil to zero

in every unit of measure.

If a hitherto unknown natural nil or lower bound is discovered (for example,

by a natural law), rule 1(b) can also automatically establish new, “natural”

units of measure by realigning hitherto arbitrary zeros of older units of measure

with the newly discovered nil value or lower bound, while keeping differences

between values intact.

Based on the principle of subtyping by adding information, the new units

of measure will be a subtype of the corresponding units of measure they were

derived from. It is a form of inclusion polymorphism we discussed in box 21.

When the natural lower bound of temperature was discovered, and it hap-

pened to be the nil value (it is approximately negative 273.15◦ Celsius),128

128 See the endnote on the natural zero of temperature and references therein.
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absolute temperature continued to use the units of measure of difference scaled

temperature, with the caveat that zero of the older Celsius scale was realigned

to match the nil value of temperature, and the older units of measure were all

bounded below. The Celsius scale was reused to create a new Kelvin scale. The

Kelvin scale was identical to the Celsius scale, with the exception that 0◦ was

set at the newly discovered, natural nil value of temperature.

Given this new information, and older conversion rules from other units

of measure to Celsius, a system assembled from knowledge artifacts could

automatically derive conversion rules from all older units of measure to the

new Kelvin scale. Indeed, knowledge artifacts can even derive the Kelvin scale

from the Celsius scale by applying rule 1(b): since the new domain is a ratio

scaled subtype of the old difference scaled domain, it will inherit the old units

of measure, but will move the zero value to coincide with the newly discovered

nil value. These revised units of measure will be subtypes of the older units of

measure (see the end of box 41). Knowledge artifacts could also infer, from

rule 9, that temperature differences computed in Celsius may be added to

temperature readings in Kelvin or Celsius, but not in Fahrenheit.

This kind of sophisticated reasoning simply does not exist in most soft-

ware development tools currently available. It must be manually programmed.

The metamodel of knowledge naturally supplies these components of knowl-

edge. Anything else would be unnatural, difficult, and tangled reasoning from

this perspective. We have started unraveling the knot and normalizing the

natural rules of business. Many reside in domains within the metamodel of

knowledge.

Knowledge artifacts will save redundant requirements definition and design

and development time, as well as resources; because knowledge will be nor-

malized, neither the new scales, nor conversion rules will need to be manually

formulated. New measures and conversion rules will be inferred by knowledge

artifacts from the behavior of domains and knowledge of older units of mea-

sure and conversion ratios already held by information systems and business

processes. It will facilitate change while promoting lower cost and resource

requirements.

Rule 2: Any multiplication or division operation on values in a ratio scaled domain creates

a new ratio scaled domain. Multiplication and division operations may be between

values in the same or different domains. Units of measure of the new ratio scaled

domain will be expressed in terms of the same operations on units of measure of the

domains it was created from, as will conversion ratios between units of measure of

the new domain.

Multiplying length three times derives volume. Thus, if length is measured

in inches, volume will be measured in cubic inches, and if length is measured

in feet, volume may be measured in cubic feet. The rule for converting from

feet to inches is “multiply by 12,” therefore the corresponding rule for con-

verting from cubic feet to cubic inches is to multiply by 1728 (12 × 12 ×

12 = 1728).
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Similarly, specific density is mass divided by volume. Therefore, if mass is

measured in ounces, and volume in inches, specific density will be measured in

ounces per cubic inch, and if mass is measured in pounds and volume in cubic foot,

specific density will also be measured in pounds per cubic foot. Moreover, because

the rule for converting pounds to ounces is “multiply by 16”, the rule for converting

pounds per cubic foot to ounces per cubic inch is to multiply by “0.01252” (16/(12 ×

12 × 12) = 0.01252).

The rules for conversion of units of measure of the secondary domain were

derived automatically from its primary domains. These requirements were not

specified independently. They were not designed and developed separately for

each attribute that mapped to these domains. This is an example of how processes

and systems assembled from knowledge artifacts can automatically adapt to new

inputs based on old knowledge.

Rule 3: Addition and subtraction operations on values in the same ratio scaled domains

map back to a subtype of the same domain. Addition and subtraction are permitted

between parent and subtype domains. The subtype domain will inherit all units of

measure and conversion and formatting choices from its parent domain. We have

already discussed the benefits of this rule under “Creating new domains from old”.

With this rule, we will also know which additions and subtractions imply which

others, and also what may not be added or subtracted from what, even if they

have similar meanings. The examples under “Creating new domains from old”

demonstrated how intelligence on which additions and subtractions implied which

others was inferred from domains, along with injunctions against adding subtypes

of a common parent. This kind of inference, especially if automated, can pro-

mote quality and reduce resource requirements, while simultaneously compressing

requirements definition and software development schedules; all under the pressure

of rapidly shifting scope, as new business processes address new objects, recognize

new events, create new behavior, and enhance older object classification schemes.

Rule 4: Addition and subtraction operations between values in different ratio scaled

domains have no meaning if one is not a subtype of the other. This rule can facilitate

quality assurance of requirements by raising warning flags about mixing apples

and oranges.

Rule 5: Proportions are ratio scaled attributes of aggregate objects that are subtypes of a

parent object class. All proportions conform to the following rules:

(a) Population: Every aggregate object has a population attribute. The population

enumerates its members. Its units of measure are enumeration units.

Various metrics will automatically be implied and will exist under this rule.

If we have an object called insurance claim, and it has a state, unsettled, infor-

mation on numbers of unsettled insurance claims is automatically implied.

No additional “programming” will be needed each time a demand for simi-

lar information arises. Each enumeration will not have to be “programmed”

separately. Partitions may be defined “on-the-fly” based on attributes and

states of object classes. Counts of object instances for each subtype will be
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automatically implied by the partition. This can anticipate requirements, cut

time, cost, and resources, even as demand for new measurements, controls, and

processes picks up steam.

(b) A sum of ratio scaled attributes over all instances in a class: Given a ratio

scaled attribute of an object instance, corresponding object class(es) will have

an attribute that sums up the instance level attribute over all instances of the

class. This sum is a class level, not instance level, attribute. The units of mea-

sure of the class level attribute will be identical to that of the instance level

attribute.

The benefit is similar to that for 5(a) above. Totals will be automatically

implied and may be addressed without repeatedly programming them each

time we have a requirement for a new total or a new ratio scaled attribute.129

If the insurance claim object class has an attribute called claim amount in

the example above, the total claim amount for unsettled insurance claims will

automatically exist.

(c) Sum of class level attributes in a partition:

(i) The sum of populations of individual subtypes in an exhaustive partition

will equal the population of the parent object. In an inexhaustive partition,

the sum may be less, but cannot exceed the population of the parent object.

The units of measure of the sum will be inherited from the enumeration

domain.

(ii) The sum of class level attributes – attributes that are sums of absolute values

of corresponding instance level attributes – summed across all subtypes

in an exhaustive partition, will equal the value of the class level attribute

of the parent object. In an inexhaustive partition the sum may be less, but

may not exceed the class level attribute of the corresponding parent object.

The units of measure of the sum will be inherited from the domain of the

summed attribute.

Since the partition represents the collection of subtypes in it, the parti-

tion normalizes these relationships. They are between the parent and the

partition. Each subtype in the partition inherits them.

This rule can be used for validating information or filling in miss-

ing information. It can help enhance quality of processes and informa-

tion. Sums will not have to be repeatedly mapped to the same domains,

nor will conversion between units of measure have to be specified sep-

arately for each sum. This can help reduce resource requirements and

compress schedules under the pressures of continual and never-ending

change.

(d) Proportions: The sum of populations of individual subtypes in a partition

will equal the population of the parent object in an exhaustive partition. In

129 Existence of a total need not imply physical computation and storage of each total for every ratio scaled

attribute of every object and its subtype.
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a non-exhaustive partition, their sum cannot exceed the population of the par-

ent. For each subtype (subclass) within a partition, there will also be one

ratio/difference scaled class level attributes for each ratio/difference scaled

instance level attribute. The value of this subclass level ratio/difference scaled

attribute will be the sum of absolute values of the corresponding instance level

attribute in the subtype. In an exhaustive partition, this subclass level value,

summed across all subclasses within the partition, will equal the value of the

corresponding class level attribute of the parent object that has was originally

partitioned into subclasses. On the other hand, in a non-exhaustive partition,

this sum (of subclass level values of the attribute in question), might be less

than, or equal to the value of the corresponding attribute of the parent class, but

may never exceed it. Since the partition represents the collection of subtypes

in it, this relationship is between the parent and the partition. Each subtype in

the partition inherits it. The result of a proportions calculation is independent

of the units of measure used to express the divisor (or dividend – both divisor

and dividend may be expressed with the same unit of measure), provided the

divisor and dividend are expressed in the same units of measure. The existence

of proportions is automatically implied by the existence of an attribute and

partition of an object class. Both may be defined when required, even “on

the fly” (see the effects shared by all domains in the discussion of figure 67).

The business leverage from this rule is similar to the benefits of rules 5(b)

and (c).

(e) Range: Values in any domain of proportions lie between nil and total. The unit

of measure of a proportion should assign the nil value to the number zero,130

and the total value to another number. The default unit of measure could be%.

That will assign the number 100 (%) to total. Data validation need not be

“programmed” each time a proportion is required. It is implied and can be

automatic.

(f) Sum of proportions: The sum of proportions in an exhaustive partition must

equal total. In non-exhaustive partitions, the sum of proportions cannot exceed

total. The units of measure of the sum of proportions are the same as units of

measure of proportions. The benefits are similar to 5(e). Also, if only one value is

missing, rule 5(f) can automatically fill it in, reducing the data entry/acquisition

effort and making the process more user friendly.

(g) An injunction against arithmetic addition of proportions: Proportions for a

given attribute of a subtype in a partition may be meaningfully added. Across

partitions, or across different attributes, addition of proportions has no meaning.

The benefits are similar to the benefits derived from the injunction against

mixing apples and oranges in rule 3.

130 The nil value added to another value has no effect. The arithmetic product of the nil value with any other

value, save infinity, is also nil. The number zero mirrors these properties. If a unit of measure maps nil to

another number, addition and multiplication will become more complex. This is why the number zero should

be assigned to nil by all units of measure.
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Rule 6: Division of one difference scaled value by another is meaningless, so is multipli-

cation of one difference scaled value by another (see “Operations on values” in

the discussion of figure 67). The benefit is similar to that of rule 4.

Rule 7: Mutually subtracting pairs of values in difference or ordinally scaled domains will

create a new domain. The new domain is the domain of intervals, or gaps between

pairs of values, obtained by attaching a nil value to the original domain. It is a

subtype of the domain it was created from. The units of measure of the domain of

gaps will be inherited from the domain it was created from. If the original domain

was:

(a) Difference scaled, the new domain of intervals will be ratio scaled;

(b) Ordinally scaled, the new domain of intervals will be difference scaled.

All attributes that map to these domains, and all differences will inherit these

rules as well as rules for converting between units of measure. The rules for

ratio and difference scaled domains, respectively, will automatically apply to all

differences, tolerances, and protocols every time a difference is referred to or

calculated. These rules will not have to be specified separately for each attribute

and domain. This will facilitate both cost and schedule compression.

Rule 8: Addition of values in the same difference scaled domains is meaningless by itself.

It may have meaning in expressions that do not bias the result by changing the

arbitrary zero value of a given unit of measure (e.g., by adding, subtracting or

multiplying it multiple times), in which case it maps back to the same domain and

the same unit of measure. The entire arithmetic expression must be considered in

toto.

Adding two temperatures in degrees Fahrenheit is meaningless by itself, but

it could be a term in a meaningful rule expression like an average calculation.

It is meaningful in an average calculation because the arbitrary constant may be

summed multiple times as the sum of values being averaged is computed, but it is

also divided an equal number of times, so that the arbitrary zero is not distorted.

The average, of course will map back to the temperature domain in the same unit

of measure. The benefit of this is similar to rule 4, albeit it is a far more complex

validation of requirements.

Rule 9: Values in the domain of gaps may be meaningfully added to, or subtracted from,

values in the domain they were generated from. The results of the operation

will map to the latter domain, in the same units of measure. Addition of values

between subtype domains and their parent domains will be meaningful, provided

the hypothetical nil value is not distorted. Addition and subtraction operations

with values in other domains, with this exception, have no meaning. (Combines

benefits of rules 4 and 7).

Rule 10: A relationship (Cartesian product) between domains creates a new domain. The

Cartesian product may involve a single domain or several domains. The scaling

of a domain created thus is:

(a) At least the same as the scaling of the participating domain with least informa-

tion, when all domains thus joined contain sequencing information. We can

assume that the new domain is scaled the same as the participating domain
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with the least information without attributing non-existent information to the

domain. If the domains were all quantitatively scaled, the unit of measure of

the new domain, a complex value object, will be the arithmetic product of

units of measure of domains associated by the Cartesian product.131

The three-dimensional physical space is the Cartesian product of the length

domain three times (see box 49), and the measure of physical space is volume.

The unit of measure of volume is obtained from the arithmetic product of the

unit of measure of the length multiplied by itself three times. This is an

example of how rule 10 can facilitate automatic derivation or validation of

measures for complex value objects.

(b) Ordinal, when one or more domains joined in this manner is ordinally scaled

(a special case of rule 9(a) above).

(c) Nominal only when all domains joined in this manner are nominally scaled.

Rule 11: Every domain inherits the following properties from the domain of information:

(a) A count of its members is an attribute of every aggregate object, including

every domain and object class. It maps to the ratio scaled enumeration domain.

(b) Every domain has one or more domain(s) of proximity metrics associated

with it. The domain of the proximity metric is a subtype of the domain it

is associated with, and measures the accuracy of values in the domain. The

scaling of domains of proximity metrics conforms to table 2 (indeed, the

domain of gaps is this domain for ratio and difference scaled domains).

(c) Every object, including domains and their values, has the ratio scaled attribute

of reliability. Values of reliability range from nil to total. The reliability

domain articulates the consistency of meanings. It maps to the domain of

proportions. In a purely deterministic model, reliability may only be nil or

total.

(d) Every object maps to the ratio scaled completeness domain. This domain

measures the proportion of information in the object that has been realized.

Values of completeness range between nil and total. Completion maps to the

domain of proportions.

(e) Every relationship maps to the ratio scaled validity domain. It is a universal

attribute of relationships. Values of validity range from nil to total. The valid-

ity domain articulates the meaningfulness of a relationship (rule) between

objects. In a purely deterministic model, validity is either Nil or Total. Valid-

ity maps to the domain of proportions.

(f) Specific relationships with these domains of information may be nominally,

ordinally, difference, or ratio scaled, depending on the information content of

the relationship.

These rules, judiciously used, can sharpen management of risk and provide

ports to stochastic metamodels beyond the scope of this book. Benefits have

been discussed under “Information quality – domains of information about

information”.

131 The mathematical basis of this assertion lies in the logic of categories. See [173] and product category in [236].
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All objects do not always realize the full potential hidden in domains. However,

this potential is the key to flexibility and adaptation under the immense pressures of

rapid and continual change – change driven by ceaseless learning and unrelenting

innovation. The potential of information domains may be realized as new learning

and new processes pave new ways. The immense and unrealized potential of

information lies latent and waiting in the metamodel of knowledge – the potential

to embrace change as it happens.

The most frequently used domains

Normalizing atomic rules in domains is important, especially because innumerable attributes

inherit these rules, relationships, and effects. For example, the natural upper and lower

bounds, units of measure, units of measure conversion rules, and effects normalized by

a domain will be inherited by all attributes that map to it, and will need be defined only

once. Domains used most frequently depend on both the kind of industry and the kind of

application involved. A manufacturing process may use the temperature domain frequently,

and electrical or electronic applications might use electric charge and electric current (the

flow rate of electric charge) frequently, but the insurance or financial services industry may

not. However, common processes consistently use a number of domains frequently across

all areas of business.

Frequently used primary domains

The most frequently used domains are the primary domains. They are used both alone and in

combination. In combination with other primary domains, or even themselves (for instance

length combines with itself to make area or volume), they become secondary domains.

Secondary domains are used virtually everywhere. Enumeration, information, date, mass,

length, economic value (i.e., money), and its weaker counterpart, preference, are primary

domains used most often in business.

Enumeration domain: The enumeration domain is especially important. Every aggregate

object maps to it. Aggregate objects are also instances of objects (Chapter 2, section 1). An

object class is an aggregate object; it is the bedrock on which reuse of knowledge is founded.

The single most important attribute of every aggregate object is the number of objects in

it. That defines the concept of aggregation. Enumeration of its members is inherited from

the aggregate object by every instance of object class. Its members define the pattern that

lends an aggregate object its meaning; the count of its members maps to the enumeration

domain.

Information domains: Management of risk is at the heart of every business. The infor-

mation domains – risk, validity, accuracy, and completeness identify risk and facilitate its

management. Indeed, they are intrinsic to information and inherent in business processes.

When automation does not recognize them explicitly, decision makers recognize them

implicitly. These domains are the key to process quality.

Date: The date domain involves not just calendar dates, but also time of occurrence.

Both concepts are subsumed into values of date in the date domain. Whether we choose

to express these values as purely calendar dates, or also specify the hour, the minute, the
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second, and parts of a second, is merely a question of precision of expression, a property

of unit of measure (section 2).

Date and time are at the heart of business performance. Virtually all business transactions

are sensitive to dates and times. It is pertinent to every state change and time slice in figure 22.

Naturally, every business known and unknown uses it frequently. Date is a very frequently

used domain.

Mass and length: Almost all fundamental physical aspects of physical products or

resources of businesses stem from mass and length. Mass and length are often used directly,

or are hidden in secondary domains such as space, density, depletion rates, and others. Their

frequent use is natural, considering that the physical universe frames all business.

The money domain: The economic value domain is not only the heart of business, but it

also has an interesting twist. It conveys “softer”, more uncertain information than “harder”

engineering information such as mass or length. The domain is ratio scaled, but its infor-

mation content is less than that of its ratio scaled physical counterparts. We have discussed

this in box 46. Also, unlike its physical counterparts, its unit of measure is non-stationary

(i.e., changes over time – see box 40). If you expressed a value, such as a pay scale, in US

dollars ten years ago, it will not equate to its expression in US dollars today, and, even if

you converted ten year old dollar values to present day dollar values, the conversion would

intrinsically lack the reliability (certainty of being correct) that, say, converting from feet to

inches has (nations that have experienced hyperinflation know the severity of this problem).

It is a fact we must live with, because the domain just does not have the requisite infor-

mation. Its information content is somewhere in the nether zone between the information

content of a physical ratio scaled domain and that of an ordinal domain that has a nil value.

However, rules for converting money from one unit of measure to another conform to the

conversion rules for ratio scaled domains. Whether we convert one currency to another in

terms of their current values, or convert a measure of currency past to the measure of the

same currency today, we multiply by a conversion ratio. Converting between currencies is

called an exchange rate; converting between different times is called an index. Each is a

conversion ratio, and both change state. Conceptually, they are identical – they belong to

the same class of objects.

Of course, exchange rates between currencies are more volatile than currency indices.

Exchange rates can change with every tick of the market. However, that does not change the

basic intent of either exchange rates or indices. Both convert one unit of measure of money

to another. The exchange rate matrix may be considered an object that changes its state

in step with the market, and may be used to track equivalence of economic value across

currencies at any given time, but knowledge artifacts can do more. With the rule in box

40 (under “How many conversion rules?”), a knowledge artifact can even automatically

combine exchange rates and indices to convert between currencies across different periods

of time. The knowledge lies normalized in the money domain, ready to be automatically

configured and used when required.

Gender and other classification domains: At least one domain based on the non-physical

sciences also finds widespread use – the gender domain. We discussed gender at the begin-

ning of section 3. The gender domain is a nominally scaled biological domain. More nom-

inal domains emerge from biological, social, economic, and other classifications. Nominal
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domains are impossible to list exhaustively at present. Many are chimerical, continually

emerging, merging, vanishing, growing into ordinal or quantitative domains, or otherwise

changing their meanings (see box 47, box 49 and “Measurement of meaning – a paradox

of perspectives” later in this chapter).

Frequently used secondary domains

Secondary domains, we know, are derived from primary domains. They are configurations of

primary domains that have mutually engaged with each other. Some secondary domains are

used frequently in business. We could consider “prefabricating” these knowledge artifacts

in our electronic repository of meaning:
� The time domain, the domain of differences between pairs of values in the date domain, is

a frequently used secondary domain. It is ratio scaled. Attributes such as ages of objects

and durations of processes map to it.
� Physical space is a complex, difference scaled, partially ordered domain that is frequently

used. It follows that the following secondary domains, both measures of physical space,

will also be frequently used:

Volume

Area
� Rate domains of various kinds are used frequently. A rate domain is a secondary domain

of quotients created by the arithmetic division of one ratio scaled domain by another:

Money rates are used very often in business. Money per item (economic value per

enumerated item), per unit area, per unit volume, per unit length, per unit mass,

and per unit time are all examples of rate domains. Attributes such as unit costs,

unit prices, revenues, and burn rates of project portfolios map to domains of money

rates.

Rates of change (growth) with respect to time are also frequently used.

Proportions are frequently used in business performance measurement and quantitative

metrics of various kinds

The risk of domain analysis

Domain analysis has its benefits. It also has risks. The risks flow from two practical

limitations:

1 The risk of analysis paralysis: as knowledge becomes complex, and numbers of secondary

domains grow in step with the complexity of business rules, the onset of analysis paralysis

can be rapid. Automation may control this risk somewhat.

2 The risk of incomplete information: not all primary domains have been identified as

primary domains. Only the list of physical primary domains is complete. Secondary

domains will be impossible to identify as secondary domains if primary domains are

unknown. We will not be able to derive their properties from simpler and fewer parts.

Behavior might be unintentionally replicated.

Problem 1 is the smaller of the two problems. The larger problem is that all primary domains

are not identified as primary domains.

What do we lose if we ignore domain analysis? We risk inadvertently replicating domains

and the knowledge held by them – behavior, relationships, values, and measures. If we cannot
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coordinate and synchronize processes under the relentless impact of change, innovation,

and new learning – a task facilitated by domain analysis – we will risk loss of integrity of

information on behavior and measurement. We will risk loss of quality. Completely ignoring

domain analysis is risky.

How large is our risk? It depends. Primary domains are reused most often – especially

if we include their use in common secondary domains like space, time lapse and growth

rates – but relationships between primary and secondary domains are not always intuitively

clear. In box 49 we will see that value objects can be complex – the color domain, that

seemed a simple nominally scaled domain at first, blossoms before our eyes into a rich and

complex structure as we added information to it. Colors have many expressions, but only

one meaning. It is not always easy to see the underlying unity of meaning behind these

diverse expressions because their meaning lies buried in abstraction – abstract information

but concrete behavior.

Meanings can be complex, even if they are only meanings of classes of values. Despite

complexity, we have to normalize meanings across diverse and complex processes when

demand for quality is stringent, and our operations are global and diverse, or simply too

large to manage intuitively.

If we create meanings in secondary domains, completely ignoring their relationships

with primary domains, we risk replicating domains and their meanings inadvertently. The

same domain may be manifested in different expressions. If domains are replicated, we will,

without knowing it, also replicate knowledge – rules and meanings buried in our business

processes and systems. Coordination of change can become difficult, and the impact, under

the pressure of continual unrelenting change, can be catastrophic.

Whether the effect of unintentionally replicated rules is minor or catastrophic depends on

how frequently we reuse these domains, how frequently we change them, and how important

the objects that map to them are to the businesses they support.

A practical approach is to pick the “low hanging fruit” and move on – to use what we

know, the best we can, pass over the low impact items, and reduce the risk of replicating

domain information for difficult high impact items to the best of our ability. In this, we

have help – fortunately many primary domains are known. The solution is to apply a

heuristic approach – an approach that may not always be correct, but one that will use the

primary information we have, and will simultaneously not get bogged down in analysis

paralysis.

We would rarely reduce temperature to its primary components, but we might analyze

biometric signatures closely. We should attempt to reuse secondary domains as much as

possible, and tie them to primary domains in key areas. The intent must be to ensure that

we do not replicate key domains when we create new ones. Often, this will be intuitively

obvious. It is the best we can do given the state of the art today. The need to curb analysis

paralysis takes precedence over the need for perfection. Some shortcuts can help.

Shortcuts

We have an exhaustive list of primary physical domains, but not of non-physical domains.

Secondary domains are not always easy to identify. The following heuristic rules can help

bring order to the chaos of domain analysis. They are essentially prefabricated domains or



309 Domains and their expression

prefabricated rules about how to classify domains so that we can often skip or shorten the

procedure in box 34:
� An instance identifier always maps to a nominal domain. Skip domain analysis for these

(each is a separate “attribute” derived from a different nominal domain). Use the universal

perspective and the usual rules of data normalization to normalize the information they

carry.
� The common codes of an organization usually map to nominal or ordinal domains. Com-

mon codes might be integrated if they map to the same domain.
� Common codes are often nominal domains.
� We should check for multiple components in the code structure to see if the code maps to

a complex secondary domain (the benefits of rule 10 will follow only if you can analyze

domains of association in terms of their constituents). The universal perspective can help.

You can also use the conventional data normalization techniques.
� We should check for a natural ordering sequence (partial order), a natural nil value or

bounds to determine if a common code is ordinally scaled.
� Many attributes will map directly to known primary domains. Check that first.
� The money domain is a ratio scaled primary domain. Rates, such as revenues and prices

that involve money are secondary ratio scaled domains.
� We should avoid reducing temperature or sensory information in the five fundamental

formatting domains of section 1 to primary domains for most applications.
� Many objects will have audit attributes

The process, person, event, rule, reason, and automation that caused a state to change

(for each slice of the object in figure 22). Skip domain analysis for these attributes.

Date and time stamps.
� Dates, times, and date–time all map to the date domain.
� Pairs of dates, times, and date–time stamps may be subtracted. The results all map to the

ratio scaled time domain.
� Each rate points to a ratio scaled domain. Rate domains are always secondary domains.

The numerator and denominator point to different domains. Each may be a primary

domain, or another secondary domain that may reduce to a primary domain on further

analysis.

Domains and value sets – states of domain

The values in the value set of Chapter 3, section 2, were all drawn from the same domain.

Therefore, some might argue that value sets are domains, sometimes finite, and sometimes

not. This argument is false because a value set can change its state: values may jump in and

out of value sets in response to events, and the lawful state space of objects will change in

step.132 Even partitions can change state between exclusion and inclusion partitions in this

132 Ron Ross, in the chapter on calculators in [294], distinguishes between constraints that test for integrity (type 1

calculators) versus those that change values (type 2 calculators). At the end of box 33, we have also discussed

how equations flow from the properties of partitions and value sets – two components of knowledge.
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elaborate choreography of state space, an event that orchestrates real-world systems and

processes.

As we have seen, domains may have relationships, constraints, and rules attached to

them. They do have states, but these are not temporal states. These states just are. The flow

of time and the tide of events pass them by. Neither time, nor event are aware of these

states, nor are domains aware of time or event. Domains are timeless, eternal, and still.

They are meanings – sometimes meanings structured from other meanings. Domains are

the meanings that lend meaning to states, temporal objects, and time itself.

Value sets are subsets, carved out of domains. Without these “larger” domains, there

would be no value sets, and, conversely, these “large” domains are value sets shorn of

temporal states. Domains are still; value sets are not.

The subsets of domain, the immutable class of values, are mutable and have states, but

the larger class, the “ocean” of values they draw upon, the domain itself, is changeless and

immutable. Value sets are therefore subtypes of domains – domains, or pieces of domains,

with temporal information.

(A value set can consist of any combination of values in a single domain. Technically,

the class of value sets is the power set of a domain – see box 19.)

What about domains that grow over time, acquiring new values in step with new knowl-

edge, like the gender domain we discussed earlier in section 3, or the color domain in

box 49? How can we say that they are still and timeless?

The domains were always there. It was only the state of our knowledge about them that

changed. “Domain” is a concept that helps normalize non-temporal behavior. If we repre-

sented domains with knowledge artifacts stored in an electronic repository, the knowledge

artifact would change state, not the concept itself. Domains have no birthday. The knowl-

edge artifact does. Domains have no change day. The knowledge artifact does. Domains

might only have a recognition day, a state of knowledge about knowledge of a domain – a

relationship between a domain and those who use it.

It is the state of a relationship, a relationship between a domain and the class of

actors, not of the domain itself. This relationship is a bridge between business meaning

and its automation. When we step into the realm of knowledge artifacts, we cross this

boundary.

As our knowledge grows, we can add values, constraints, relationships, and other infor-

mation to the knowledge artifact – information that was always there, but information we

did not know. The artifact will change state, and the information will automatically flow to

all value sets and attributes that map to the domain.

In box 49, we might have started with a model of the color domain, a knowledge artifact

with three nominal values (one for each primary color). All colors in our processes would

then be restricted to only these three. On learning about ratio scaled luminosity, we could

create a new ratio scaled color luminosity domain, a domain of association between the

color domain and the luminosity domain. The repertoire of colors now available would

expand. The secondary domain of colors always existed – they were always there – we

only made the information available to processes that are assembled from the repository of

knowledge artifacts afterwards. If this physical process of assembly of systems is dynamic,

processes will flex instantly and recognize the new colors. Otherwise, we might have to
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reassemble them again. It depends on the design of the electronic repository of knowledge

artifacts. It is a technical design issue beyond the scope of this discussion. The domain was

always there, eternal, even if the repository did not have it.

Even the relationship that gives birth to value sets is a timeless mathematical concept

that only articulates that a domain may have subsets. It is the subsets that are mutable,

and have mutable states, even if they are subsets that span the entire domain (i.e., in terms

of box 19, they are not proper subsets). Domains are the seeds from which inclusion and

exclusion sets, as well as attributes and objects grow. It is through value sets, attributes,

and temporal objects with histories that domains influence the elaborate choreography of

events and states. In a world where movement, meaning, and location come together in the

fabric of space and time, domains are the timeless “ocean” of stateless meaning – the silent

still, where movement meets meaning.

The metamodel of domain

Before their eyes in sudden view appear

The secrets of the hoary deep, a dark . . .

Without dimension; where length, breadth, and highth,

And time and place are lost; where eldest Night

And Chaos, ancestors of Nature, hold

Eternal anarchy. . .

(John Milton in Paradise Lost, Book II)

Figure 68 is the metamodel of domain. It expands on the hierarchy of domains in figure 67

and includes the primary domains of business meaning. The primary domains bridge the

gulf between the abstract domains in the metamodel and their instantiation in the physical

world of business. Meanings are patterns of information – simple, complex, and small

and large patterns – patterns made from the information in primary domains. All business

meaning is, in the ultimate analysis, assembled from primary domains subject to the rules in

box 48. (To complete this model, we should also add the strong and weak forces in physics

to the list of primary domains in Figure 68, then it would support all conceivable meanings

and technologies: past, present, and future – see box 42).

Figure 68 shows how preference is an ordinal domain with a nil value – a point of

neutrality that signals an absence of preference – a value that suggests neither liking nor

disliking. It just says “no preference.”

Figure 68 also shows how the money, or economic value, domain is a subtype of the

preference domain. The subtyping relationship between economic value and preference

is inherited from the generic ratio scaled domain. The generic ratio scaled domain is a

subtype of the generic difference scaled domain, which, in turn, is a subtype of the gen-

eral ordinal domain. This makes the generic ratio scaled domain also a subtype of the

generic ordinal domain. The money and preference domains merely inherit that subtyping

relationship. The money domain being a subtype of preference also demonstrates how

inclusion polymorphism emerges as subtypes inheriting the subtyping relationship itself

from their supertypes.
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Figure 68 also articulates the behavior of the value difference domain – the domain of

gaps between values in a domain. It conforms to the proximity metric of table 2 – gaps

between ordinally scaled values form an ordinally scaled binary domain. Gaps between

ordinal values are difference scaled, and gaps between difference scaled values are ratio

scaled, as are gaps between ratio scaled values.

The time-lapse domain (labeled time domain in figure 68) emerges from differences in

date–time values. Figure 68 illustrates how this is also an instance of inclusion polymor-

phism. The arithmetic subtraction operator is inherited from the general difference scaled

domain by the difference scaled date domain. Arithmetic differences between dates map

to the time-lapse domain, which is a subtype of the general domain of gaps in difference

scaled domains.

Figure 68 also illustrates how the arithmetic subtraction operator is a subtype of the more

general “difference” operator, which, in turn, is a special kind of connective133 between

values in a domain, as is the Cartesian product of domains.

All domains in figure 68 inherit the Cartesian product and the general connective from the

“unknown domain.” The Cartesian product, like the difference operator, is a subtype of the

general connective operator between domains. Indeed, all operators that connect domains

to create new domains – whether simple domains like unit price or complex domains like

color preference – are subtypes of the general connective operator. The general connective

articulates the fact that new domains may be built from old. Only the primary domains do

not owe their existence to connectives (not counting the subtyping connective). They are

not made from other domains; rather they make secondary domains.

As information is added to domains, specific subtypes of the general connective such

as arithmetic operations, comparison of values and others emerge in step with the fullness

of information in each kind of domain. Thus it is not just values that change behavior in

step with the information content of the domain; operators too march lock step with it (see

the rules in box 48). Operations and values are information, and each adds meaning to the

domain. Figure 68 articulates this.

Notice the cardinality ratio of the relationship between value and the unknown domain

on the upper left-hand side of figure 68. It has a lower bound of zero. How can we have a

domain of no values? We can have a domain with no values because it is the null space we

discussed under patterns. A domain is null if it consists of only null values; it is the empty

set of box 19. The unknown domain embraces both the null domain as well as domains with

other values. On the other hand, unlike the domain of null values, domains with nil values

must contain at least one value – the nil value.

Towards the bottom of figure 68, we find domains of information quality. These domains

are universal parameters of information quality. They sharpen management of risk and frame

quality assurance of information systems and business processes. Each is potentially ratio

scaled, but may lose some scaling information in its relationships with other domains (or

even in recursive relationships with itself) and become difference scaled, ordinally scaled,

nominally scaled, or simply “unknown” in different contexts.

133 Connective: see the endnote on gluing objects together.
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All domains are classes of values. They are value objects. Value objects may only be

assembled from other value objects, and their assembly is subject to rules. These rules are

the nub of the metamodel in figure 68. We have discussed them at length. Many are too

complex to represent graphically.134 They are consolidated in box 48.

Taken together, domains and values represent the lowest common denominator of

immutable meaning. Meanings that can neither change nor shift nor die with the shift-

ing sands of time, space, or context – meanings that just are. They are the meanings that

create other meanings. They are immutable.

Box 48 Domain rules ready reckoner

Rule 0: Measurability of domains:

(a) Nominal domains only carry information on distinctions between values.

(b) Ordinal domains rank values in terms of their magnitudes, but contain no

information on absolute magnitudes or differences in magnitude between

values.

(c) Difference scaled domains convey information on the magnitude of dif-

ferences between values, but no information on a nil value (and hence no

information on absolute magnitudes of values).

(d) Ratio scaled domains convey information on absolute magnitudes of val-

ues. This includes information on a nil magnitude.

Rule 1: Adding meaning to a domain creates a new domain. Meanings added may

be new, or inherited. If the new domain includes meaning(s) inherited from

other domains, it is a subtype of the domain(s) it was created from and:

(a) the new domain will inherit unit-of-measure information from its parent

domain and add information of its own;

(b) if the nil value was included in the new domain, the units of measure of

the old domain will be inherited with their zeros reset to coincide with

the new nil value.

Rule 2: Any multiplication or division operation on values in a ratio scaled domain

creates a new ratio scaled domain. Multiplication and division operations may

be between values in the same or different domains. Units of measure of the

new ratio scaled domain will be expressed in terms of the same operations

on units of measure of the domains it was created from, as will conversion

ratios between units of measure of the new domain. Units of measure and

conversion ratios for the new domain may be derived from its constituent

domains (and ultimately its constituent primary domains).

Rule 3: Addition and subtraction operations on values in the same ratio scaled domains

map back to a subtype of the same domain. Addition and subtraction are

permitted between parent and subtype domains. The subtype domain will

134 The entity relationship diagramming technique we have been using in this book is not robust enough to handle

that level of complexity without becoming too cluttered to clearly articulate what it must about assembly of

domains from other domains. It is best said mathematically, or said in words. In this book, it is said in words.



315 Domains and their expression

inherit all units of measure, conversion, and formatting choices from its parent

domain.

Rule 4: Addition and subtraction operations between values in different ratio scaled

domains have no meaning, if one is not a subtype of the other.

Rule 5: Proportions are ratio scaled attributes of aggregate objects that are subtypes

of a parent object class. All proportions conform to the following rules:

(a) Population: Every aggregate object has a population attribute. The popula-

tion enumerates its members. Its units of measure are units of enumeration.

(b) A sum of a ratio scaled attribute over all instances in a class: Given a

ratio scaled attribute of an object instance, corresponding object class(es)

will have an attribute that sums up the instance level attribute over all

instances of the class. This sum is a class level, not instance level, attribute.

Class level totals will automatically be implied by the existence of each

instance level ratio scaled attribute and the units of measure of the class

level attribute will be identical to that of the instance level attribute.

(c) Sum of class level attributes in a partition:

(i) The sum of populations of individual subtypes in an exhaustive parti-

tion will equal the population of the parent object. In a non-exhaustive

partition, the sum may be less, but cannot exceed the population of

the parent object. The units of measure of the sum will be inherited

from the enumeration domain.

(ii) Adding to (subtracting from) the population of a subtype will always

automatically add to (subtract from) the population of its supertypes,

but not necessarily vice versa (the partition may not be exhaustive,

and, even if it is, we will not know which subtype(s) has increased

(or decreased) its population(s) based on increases (or decreases) in

the population of supertypes alone).

(iii) The sum of class level attributes – attributes that are sums of absolute

values of corresponding instance level attributes – summed across

all subtypes in an exhaustive partition, will equal the value of the

class level attribute of the parent object. In an inexhaustive partition,

the sum may be less but may not exceed the class level attribute of

the corresponding parent object. The units of measure of the sum

will be inherited from the domain of the summed attribute.

Since the partition represents the collection of subtypes in it, the

partition normalizes these relationships. They are between the parent

and the partition. Each subtype in the partition inherits them.

(d) Proportions: The sum of populations of individual subtypes in a partition

will equal the population of the parent object in an exhaustive partition;

in a non-exhaustive partition their sum cannot exceed the population of

the parent. The sum of class level attributes, attributes that are sums of

absolute values of corresponding instance level attributes, summed across

all subtypes in an exhaustive partition, will equal the value of the class
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level attribute of the partitioned object; in a non-exhaustive partition,

their sum cannot exceed the population of the parent. Since the partition

represents the collection of subtypes in it, this relationship is between the

parent and the partition. Each subtype in the partition inherits it.

The result of a proportions calculation is independent of the units of

measure used to express the divisor (or dividend – both divisor and div-

idend may be expressed with the same unit of measure), provided the

divisor and dividend are expressed in the same units of measure. The

existence of proportions is automatically implied by the existence of an

attribute and partition of an object class.

(e) Range: Values in any domain of proportions lie between nil and total. The

unit of measure of a proportion should assign the nil value to the number

zero, and the total value to a larger number.

(f) Sum of proportions: The sum of proportions in an exhaustive partition

must equal total. In non-exhaustive partitions, the sum of proportions

cannot exceed total. The units of measure of the sum of proportions are

the same as units of measure of proportions (rule 3 implies this).

(g) An injunction against arithmetic addition of proportions: Proportions for

a given attribute of a subtype in a partition may be meaningfully added.

Across partitions, or across different attributes, addition of proportions

has no meaning.

Rule 6: Division of one difference scaled value by another is meaningless, and hence

so is multiplication of one difference scaled value by another.

Rule 7: Mutually subtracting pairs of values in a difference or ordinally scaled domain

will create a new domain. The new domain is the domain of intervals, or

gaps between pairs of values, obtained by attaching a nil value to the original

domain. It is a subtype of the domain it was created from. The units of measure

of the domain of gaps will be inherited from the domain it was created from

(as required by rule 3). If the original domain was:

(a) difference scaled, the new domain of intervals will be ratio scaled;

(b) ordinally scaled, the new domain of intervals will be difference

scaled.

Rule 8: Addition of values in the same difference scaled domain is meaningless by

itself. It may have meaning in expressions that do not bias the result by

changing the arbitrary zero value of a given unit of measure (e.g., by adding,

subtracting or multiplying it multiple times), in which case it maps back to the

same domain and the same unit of measure. The entire arithmetic expression

must be considered in toto.

Rule 9: Values in the domain of gaps may be meaningfully added to, or subtracted

from, values in the domain it was generated from. The results of the operation

will map to the latter domain, in the same units of measure. Addition of values

between subtype domains and their parent domains will be meaningful pro-

vided the hypothetical nil value is not distorted. Addition and subtraction
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operations with values in other domains, with this exception, have no

meaning.

Rule 10: A relationship (Cartesian product) between domains creates a new domain.

The Cartesian product may involve a single domain or several domains. The

scaling of a domain created thus is:

(a) At least, the same as the scaling of the participating domain with least

information, when all domains thus joined contain sequencing informa-

tion. We can assume that the new domain is scaled the same as the partici-

pating domain with the least information without attributing non-existent

information to the domain. If the domains were all quantitatively scaled,

the unit of measure of the new domain, a complex value object, will be

the arithmetic product of units of measure of domains associated by the

Cartesian product.

(b) Ordinal, when one or more domains thus joined is ordinally scaled (a

special case of rule 10(a) above).

(c) Nominal, only when all domains thus joined are nominally scaled.

Rule 11: Every domain inherits the following properties from the domain of

information:

(a) A count of its members is an attribute of every aggregate object, including

every domain and object class. It maps to the ratio scaled enumeration

domain.

(b) Every domain has one or more domain(s) of proximity metrics associated

with it. The domain of the proximity metric is a subtype of the domain

it is associated with, and measures the accuracy of values in the domain.

The scaling of domains of proximity metrics conforms to table 2.

(c) Every object, including domains and their values, has the ratio scaled

attribute of reliability. Values of reliability range from nil to total. The

reliability domain articulates the consistency of meanings. It maps to the

domain of proportions. In a purely deterministic model, reliability may

only be nil, or total.

(d) Every object maps to the ratio scaled completeness domain. This domain

measures the proportion of information in the object that has been realized.

Values of completeness range between nil and total. Completion maps to

the domain of proportions.

(e) Every relationship maps to the ratio scaled validity domain. It is a universal

attribute of relationships. Values of validity range from nil to total. The

validity domain articulates the meaningfulness of a relationship (rule)

between objects. In a purely deterministic model validity is either nil, or

total. Validity maps to the domain of proportions.

(f) Specific relationships with these domains of information may be nomi-

nally, ordinally, difference, or ratio scaled, depending on the information

content of the relationship.
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Measurement of meaning – a paradox of perspectives

What is the substance, where of are you made,

That millions of strange shadows on you tend?

Since every one hath, every on a shade,

And you, but one, can every shadow lend.

(William Shakespeare, Sonnets LIII)

Domains are objects, even if they are only value objects. Are domains, like other objects, also

subject to the chimera of perspective?135 The answer is a resounding “yes,” and yet, para-

doxically, domains also unify meanings. Domains might be chimeras, but unify meanings

they must, because domains are immutable and timeless – they are meanings that cut across

many perspectives. Let us see how domains can be chimerical and yet bring constancy to

the mingling shadows of meanings that flitter across perspectives without count.

Domains in perspective

First, let us understand what perspective means to a domain. In Chapter 2, section 4 we saw

how meanings can change, fracture, dissolve, and merge between perspectives. Domains

are pure information, immutable, eternal, and without change – the seeds from which other

objects, attributes, and entire structures of meanings crystallize, grow, and engage each other

in ever-expanding circles to create new possibilities and new meanings – complex structures

that model a world as subtle as it is rich. Despite being pure meanings, perspective impacts

domains. Let us see how even pure meanings can be fickle shades, flittering between a riot

of perspectives. We will start with a simple domain – unit price.

Domains of viewpoints

Unit price is a simple secondary domain – a quotient. It is the amount we pay per piece of

a product we buy. It has two items of information – the amount paid and pieces bought – or

should the two items be unit price and amount paid? Perhaps it should be neither. We can

infer the pieces bought from the amount paid and unit price. Therefore, it might be correct

to assume that amount paid and unit price are the two independent meanings we seek. Any

two items, of the three – unit price, amount paid, or the number of pieces – implies the third.

Which two items are primary items of information, independent in meaning, and which

item is dependent on the other two? It all depends on a point of view. There are no right

answers and no wrong answers. It is a matter of perspective. They are all interdependent.

We resolved this question in box 42 with the artifice of primary domains. Unit price is a

secondary domain, in which primary domains have met and joined. Box 42 showed how it

was all a matter of pure information. We were free to choose the identity of these primary

domains, but not their number. Their number depended on information content – the “amount

of meaning” that was intrinsic to the real world and the rules that frame it. We arbitrarily

standardized which domains we would consider primary and which secondary. We nailed

the chimera of perspective by decree. It was a decree built on common understanding,

a unified perspective of the reality that binds us all. Primary domains help us anchor all

135 Chapter 2, section 4 discusses the problem of perspective.
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Figure 69 Shifting perspectives of color

perspectives. These domains are primary only because we have declared them so. This

perspective of domains is primary, only because we have declared it is so. It could just as

easily have been some other set of domains. That is the first nail we have driven into the

chimera of perspective.

Embracing scope creep

Let us take another step into the mist of crystallizing meaning. In the last example, the

quantum of information was constant. It helped nail down the primary domains. What if

information content itself shifted like quicksand, as it does when new learning forces us to

embrace change – when perspectives are fickle because information is? Consider color.

Assume that it has only struck us now that different colors exist. We neither know, nor

care that some colors can be more similar than others. Mere distinction of colors will suffice

in our model. Color may be important to some objects. We can map their color attribute

to the color domain – a mere nominal domain of finite extent (cardinality), with a limited

number of colors we can distinguish. This is the color domain of figure 69(a).

Scope shifts. We realize that color depends on illumination. Illumination is ratio scaled.

Colors get brighter as the intensity of light increases. They get darker as light dims, until, as

light fades, all colors darken till they turn black. One color becomes indistinguishable from

another in dim light. Our old perspective of color does not fit our newfound knowledge. We

must revise our perspective. That is easy. We add the illumination domain.

We can now create a new domain, a Cartesian product, of the nominally scaled color

domain and the new illumination domain (figure 69 (b)). It is the color intensity domain – a

mixed space – the intensity axis is ratio scaled, and the color axis is nominally scaled. The

sequence of colors along the vertical axis of figure 69 (b) is irrelevant – it only matters that

all the colors we need are there.

When the intensity of the color of an object matters, we map the attribute to the new color

intensity domain. This domain has inherited all prefabricated effects such as color switching

and changing illumination from its constituents. Given a color, similarities between shades

of the color are ratio scaled (or ordinally scaled with a natural zero at worst). Across colors,
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it follows the laws for nominally scaled state spaces. We can tell which shades are close and

which are not. If we need a new hue, say, purple, we can drop it into the “bag” in figure 69(a).

All shades of purple will automatically become available to all objects because the color

intensity domain is the Cartesian product of the color domain and the intensity domain, and

the color domain now recognizes purple. Our processes and information systems, assembled

from knowledge artifacts, can easily embrace this change, but new learning again sweeps

the concept away.

We discover there is no limit to color. A riot of colors can exist. Mixing different colors

may make new and different colors. Colors that have never before existed may be created on

the fly. Old knowledge fails. We must adapt to change once again. We can take the Cartesian

product of the colors in the color intensity domain we just created to create a new domain

that will let us mix colors to obtain new colors – but, alas, reality confounds us once more.

There are different mixtures that yield the same end result – a given color can be made in

different ways. Moreover, we can tell some hues are closer than others, just as we could tell

which shades of a given hue were similar earlier.

We recognize that the color domain has less information than we are imputing to it. Some

colors we are treating as independent items of information (independent colors) might be

mixtures themselves (see box 49). We must reduce the dimensionality of the pattern (its

extent will still be infinite because illumination has no upper bound). We find we need only

three colors (how do we know, and why only three? – see box 49). We can combine various

intensities of these three colors in different proportions to create every possible shade of

color.

Which three shall we use? We can declare red, green, and blue to be primary color domains

(this is also aligned with convention). It is easy to tell that they are distinct colors, different

from each other, but it is hard to say how different, or even if they are equally close or far.

On the other hand, pink is obviously partway between red and white – it is a pale shade of

red, and it is easy to tell that black and white are opposites, with shades of gray in between.

We could have chosen magenta, cyan, and yellow as our primary colors, instead of

red, green, and blue. That would change the axes, the basis of the color domain,136 but its

information content would be exactly the same, and it would contain exactly the same colors.

Tilting the axes would not create a new space, nor make a new meaning; only coordinates

of points, their expressions, would change. Tilting the axes in figure 69(c) might show the

color domain in a new perspective, but the meaning of color would stay the same because

no new information was added to the meaning of color – just as the meaning of unit price

would not change if we changed units of measure.

Changing units of measure is like stretching or compressing the axes we use to express or

measure meanings in state space. Moving the origin is like mapping the nil value to a non-

zero number.137 Neither changes the meaning of the domain. In the same way, tilting the axes

of state space cannot change its meaning. It is only another perspective of the same meaning.

136 [260] and [261] discuss the bases of state space.
137 Moving the origin is like mapping the nil value to a non-zero number for ratio scaled state spaces. For domains

with no known nil values, it is like mapping to a different arbitrary reference point. See Chapter 4, section 2

and the discussion of rule 1(b) under “The risk of domain analysis”.
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Stretching (or compressing) the axes of state space and shifting the origin apply to both

simple and complex domains. Tilting axes only matters to complex domains. Complex

domains normalize complex behavior such as rotation of axes and other kinds of operations

such as bending or distorting axes in other ways. Many of these distorted axes are merely

secondary domains derived from those that the original axes represented (see box 49). They

merely express the same meaning in different terms – a new rule expression, not a new rule

meaning, or a new domain – merely another perspective of the same meaning.

Some of these distortions might even impact the universal attributes we have discussed

earlier under patterns, such as dimensionality, extent, separation, sequence, and direction

in state space, but if no new information is added, no distortion will create new meanings.

It will only create a new perspective based on different secondary (derived) domains – a

mere restatement of meaning – a new expression (see box 42).

If we start by expressing complex domains in terms of primary domains and then build

in its other perspectives based on secondary domains, we have derived from the original

axes, it is easy to keep track of equivalence of meaning. However, if we just have a bunch of

complex domains, their equivalence may not always be intuitively obvious (remember the

temperature domain – it is not immediately obvious that it is derived from other domains).138

This is the problem at the heart of the problem of perspective – a topic we discussed in

Chapter 2, section 4. Domains are abstract values, and, in complex domains, the problem

of perspective can become especially acute.

Given a set of static points in space, their relative positions will not change in different

coordinate systems, but expressions of their coordinates will (see box 37 and box 49). The

expression will depend on the coordinate system – its origin as well as the orientation of the

frame of reference. Each coordinate system will be a perspective of the same underlying

meaning – the same domain.

The conversion between these coordinate systems will not lose or gain information if

they conform to the golden rules of measurement in section 2. The conversion rule may be

like the rule in figure (a) of box 33. This kind of rule generalizes the second special rule

of conversion between units of measure (in section 2). The generalized rule can apply to

complex domains. Indeed, the rule expression may even be like that of figure (b) of box 33 –

actually an entire set of rule expressions like figure (b) of box 33 – one for each degree

of freedom, or axis, of the state space in question, so that old coordinates are trans-

formed to new expressions, but the information content of the pattern of values is pre-

served. This will present a new perspective – one that expresses the same meaning

in terms of secondary domains derived from domains represented by the original axes

(see box 49).

If we do not know the equivalence of coordinate systems beforehand, we will need to

know properties of various kinds of operations that distort the axes of state space, as well as

pattern recognition algorithms that can use this information to discover the equivalence of

patterns in different coordinate systems. An exhaustive discussion of these operations and

138 [290] and the references in the endnote on Shannon’s information theory show how temperature is derived

from primary physical domains.
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their properties is beyond the scope of this book.139 It will suffice if readers understand that

the same meaning may be expressed in several ways, and even though their equivalence

may not be obvious, conversion between perspectives is similar to converting between units

of measure – provided information content does not change.

Conversions between perspectives of this kind merely generalize unit of measure con-

version rules – unit of measure conversion involves compressing or stretching individual

axes, whereas conversion between perspectives of a complex domain involves secondary

domains that bend, tilt and warp the original axes in state space.

In our discussion of patterns under “Patterns of symbols, patterns of objects” in sec-

tion 1, the pattern of months and years could represent the time domain accurately and

reliably, because it had a larger information carrying capacity than the concept of time.

Time is a one-dimensional, infinite, and unbounded pattern in information space, whereas

the pattern of months and years was more like the pattern in figure 51 (c),140 a pattern with

more freedom, more dimensions, and a larger capacity to convey information than a mere

line with neither beginning nor end. “Smearing” and “bending” the linear concept of time

into the infinitely long cylindrical surface in figure 51(c) obtained this expression of time.

We see that when information content is constant, we can switch between perspectives,

and a common meaning will be their constant anchor, but when information content changes,

domains can give birth to new domains – domains built upon the old – as they did when the

color domain unfolded in all its variety and fullness. Attributes that map to new domains

will automatically embrace new behavior – both new attributes, as well as old attributes that

are remapped, manually or automatically, will adapt to change. Processes and information

systems will change their behavior in step with the knowledge artifacts they were assembled

from.

When knowledge artifacts change state, knowledge keeps pace – business knowledge

embedded in business processes facilitated by automation. That is where return on invest-

ment in knowledge lies – change at the speed of thought.

Box 49 The information content of domains – new learning and changing

perspectives – an example in color (on our website)

Box 49 has a more sophisticated, partly mathematical discussion on domains of infor-

mation, absorption of new learning, and changing of perspective. It show how the per-

spective of the color domain can shift and change state in step with new learning and

cognition. Box 49 also discusses how information can be kept normalized as perspec-

tives shift. This box includes a discussion of physical space as a domain and shows how

this depends on the meanings we derive as we add or subtract information.

139 See the references on topology and abstract algebra in the bibliography, the endnote on lambda calculus and

the Church–Rosser theorem. Volume 19 of [336] also addresses operations that map between values and

may be used to determine the equivalence of expressions: see “Algebraic geometry” (pp. 951–958), “Abstract

geometries” (pp. 969–970), and “Topology” (pp. 977–998).
140 “Patterns of symbols”, “Patterns of objects” in section 1 describes how this pattern is assembled from patterns

of information that describe the cycle of months and the passage of years.
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Meanings that represent meanings

“The Eagle has landed!” – words pregnant with meaning; words that bridged a quarter

million mile gulf between worlds at the speed of light to make history. They told the world

that the first manned ship to the moon had arrived. The words had one literal and unexciting

meaning, but that is not what they expressed. The phrase was a metaphor for another

meaning.

Metaphors are common in every natural language. Meanings can represent meanings.

Box 36 said they could (see the metamodel in box 36). Both the object represented, and

that representing it, may be meanings. They could even be domains.

Sometimes meanings are deliberately encrypted this way. Then it is not a problem – if

you have the key. If you do not, the result can be either hilarious or disastrous depending

on your perspective. Even if you have the cues (key), the second meaning must convey at

least as much information as the meaning it represents, otherwise it might clip and distort

the meaning it represents. Metaphors will then be imprecise, and words may mislead.141

Meanings can be complex, even if they are only collections of values with common

meanings; even meanings of words. Have you, dear reader, ever had a thought that you

found hard to express in words? Have you ever heard somebody describe a complex idea,

and not understood it? A written word might be a format, a spoken word might be a format,

but the concept in the word is a meaning. It could be a complex meaning, a complex domain

of mixed meaning. Many are only roughly aligned – perspectives of domains that share

less than all their axes, or only roughly align their axes. This is terribly important when

we translate expressions from one language to another, even simple words; even common

words like “Peace.”

“Peace” shares a common meaning – absence of conflict across most languages, but

nuances are different. For example, in the languages of Northern India, the word that

translates most accurately into the English word Peace is “shanti.” “Shanti” also mixes

absence of conflict with ideas of harmony, tranquility, and the spirit of universal unity of

all creation. On the other hand, the phrase “non-violence” has embedded within it nuances

of struggle and conflict! Words are labels for meanings. Many meanings are complex

domains. Synonyms, especially across cultures, may not mean exactly the same when they

label complex domains. Similar domains may not share all their axes, and, even if they

do, perspectives may not all be perfectly aligned. Each is a perspective of meaning. The

problem becomes intractable because we have no well-understood and widely accepted

standard primary domains to fall back on where human perception and mental constructs

are involved. The distinction between homonym and synonym starts to blur as we leave the

bedrock of deterministic meaning behind.

Although most cross-cultural concepts share components of meaning, each can be asso-

ciations of meanings unique to the language or culture in question. Unbeknown, and insid-

iously, differences in nuance, configurations of meaning in complex domains, have seeped

into the collective consciousness of people around the globe – people being woven ever

141 The recent discussion on months and years representing the time domain demonstrated how meanings can

represent other meanings with precision and reliability provided they have a larger information carrying

capacity than the meanings they represent.
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more tightly into the whirling web of global commerce – people spinning a web of global

knowledge around a hub of rapid fire, even instantaneous, global communication.

Precise communication of complex ideas will be the key to competitive advantage in

the rising riptide of a global economy driven by knowledge, information, and customer

value. In this environment of surging, rapid-fire global communication of complex infor-

mation, matched by rapid, finely targeted, and complex global responses, risks will rise

when perspectives across cultures do not translate easily. Even without consciously know-

ing it, meanings – complex state spaces labeled by words – have different axes in differ-

ent languages and cultures. The more translation automata “know” these differences, the

more accurate translations will be, and the more it will mitigate the surging risk of poor

communication.

Whether culture creates meaning or language creates culture is a topic of continuing

debate among experts in the field. However, most agree that each influences the other – at

least a little.142 The true tyranny of words is that it shapes the very thoughts that frame them –

the thoughts of men and women whence meanings are created, labeled, and communicated,

as dear reader, we are communicating with you.

Fortunately, there is a universal perspective; common understanding can prevail. Com-

mon understanding dwarfs differences for all but the most complex nuances of meaning.

Ultimately it boils down to the metamodel in figure 68, the common basis of all understand-

ing, alien, human, or unknown from which all meanings are derived.

As we descend the hierarchy in figure 68, domains become flush with meaning. At the line

that separates business meaning from the bland rules of mathematics, we find the domains

of primary meaning – the seeds from which all concepts grow – physical, business, and

cultural. Below them, we find nuances of meaning, secondary domains, and perspectives

without count, but all founded on common understanding – elemental meanings – the

meanings of primary domains. If we change direction and start ascending the hierarchy, we

lose information. Domains gradually lose measurability and meaning until chance again

rules supreme, and finally, at the gray border of null space, we meet the unknown domain, a

pale ghost, in which meaning, measurement, observer, and observed, all lose their identity

and become one unknown pattern.

Behold a wonder! They but now who seemed

In bigness to surpass Earth’s giant sons,

Now less than smallest dwarfs, in a narrow room

Throng numberless.

(John Milton, Paradise Lost, Book I)

4 Storing abstract meaning

Domains are intangible classes of abstract magnitudes – magnitudes shorn of numbers or

formats, but imbued with meaning. In box 49, we saw that domains can be complex. The

142 Experiments have confirmed that cognition and thought are affected, to a limited extent, by language and

culture. See [291].
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color domain, that seemed a simple nominally scaled domain at first blossomed into a rich

and complex structure as we added information to it. Colors had many expressions, but

only one meaning. It was not always easy to see the underlying unity of meaning behind

these diverse expressions, because the meaning lay buried in abstract information. How

may we store such abstract concepts, let alone assemble, configure, and manipulate them

electronically? To use them, we must store them, and to store them, we must represent them –

represent them physically.

A simple solution would be to assign standard formats and codes to all domains, along

with standard units of measure to quantitative domains, and then to store the structure in an

electronic repository. All other representations can then map to the standard, which will be

the hub of their common meaning.

The repository may also store maps that show which meanings represent which others,

even which meanings are assembled from others, in what perspectives. Perspectives too,

can point to a standard perspective, a hub around which other perspectives revolve – a hub

that expresses meanings in terms of standard primary domains.

Perspective was a model and an object (Chapter 2, section 4). Every value object (domain)

defines a state space, a meaning. Different coordinate systems may describe this state space

and the points within it (box 37 and box 49). Each coordinate system is only one of many

possible ways of describing the space it frames: only one perspective among many of a

single meaning.

The frame of reference for locating a point in a complex domain is also an object, as

is the set of relationships it has with other frames of reference in other domains. They are

all components of perspective, the object. We can always map coordinates in one frame of

reference to those in another, and one set of axes in one perspective to another set of axes

in another perspective, if both coordinate systems frame a common meaning (see box 49).

True rule meaning is an abstraction that subsumes all its expressions, and focuses on pure

information. It is independent of the coordinate system, and is the substance of domain,

simple or complex. Complex domains may have complex nuances – meanings that are

subtle variations of a shared meaning; nuances that have added or deleted meanings. To

model these nuances, remember that meanings are dimensions in state space, and you can

use the principle of subtyping by adding information to define nuances and perspectives

that share common meanings.143 Shared axes will be the basis of meanings at the top of

subtyping hierarchies. Subtle nuances will be at the bottom of the pile (see the examples in

Module V, section 4 on our website).

Thus, the expression of time in the example under “Patterns of symbols, patterns of

objects” was a subtype in which the concept of a monthly cycle was added to the concept

of a timeline. The supplementary materials in Module V on our website describe how the

principle of parsimony (in the endnotes) determines the level of abstraction for a meaning

143 A topos is a mathematical category that is internally complete and consistent within its own laws. See [173] and

[183]. Each perspective is a topos. The topos of perspectives is also a topos, and contains rules for mapping

one perspective to another. Topoii are objects as are topoii of topoii. See [178]. Different models may be

considered points in a topos of models, and different perspectives may be points in a topos of perspectives.

Some perspectives (models) in a topos may be subtypes of others and thus inherit shared information. See

topos theory in [175], [176], [181], [183], [184], [185], and [263].
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that is right for a given purpose. A purpose is also a pattern of information and a meaning.

Module V shows, with business examples, why the right subtype is the pattern with the

least information payload required to represent the irreducible fact that matches a process

with a purpose (which is also an irreducible fact).

It ultimately depends on joining objects – meanings of aggregations forged by relation-

ships and compositions both simple and complex, compositions that orchestrate meaning

beyond the sums of their parts – the meaning of knowledge.

Relationships are the glue, and aggregate objects the fount, from which object classes,

attributes, domains, and processes all emerge in their multitudes of shapes and nuances.

They are the objects from which the metamodel of knowledge flows. It follows that the next

step towards the integrated model of knowledge must be the study of relationships, and their

manifestations in processes and aggregate objects. This is described in the supplementary

modules on our website. Those modules show us that fundamental meanings and properties

of the real world, like process, location, containment, and the power of reason all flow from

the nexus between patterns of abstract information and their associations.

The abacus was a simple calculating machine used in ancient Rome. That simple machine

was to modern computers, what our computers will be to the infinitely more complex

computing machines of the future. These machines will operate on the plane of meanings.

Thus, although this book has ended, it is a new beginning. As T. S. Eliot, the poet who

pioneered modern verse once said:

What we call the beginning is often the end.

And to make an End is to make a Beginning.

The End is where we start from

Beginings have no end. The automation of tomorrow will rise from the begining and the

end of the nexus of meaning.



Appendix: Key shared components of
knowledge described at the nexus of
meaning in this book and its
supplementary modules

Activity (and other) costs (Module V, section 3).

Aggregate object. A collection (Module V, section 2). A composition is a structured

aggregate.

Array (Chapter 4, section 1).

Assemble. A polymorphism of process and the part of relationship (Module V, section 4).

Assemble emerged from a process that made an item a part of an aggregate in step with the

flow of time. Similarly disassembly cuts the relationship between an aggregate and its parts,

so that the part does not remain a part of the aggregate after disassembly has occurred. Thus

disassemble is also a process, but it is a polymorphism of the exclude relationship (near the

top of figure 116). Polymorphisms of disassemble will tell us how an aggregate is picked

apart – explosively, all at once, or in steps – perhaps even one item at a time.

Attribute. A kind of object property that is also a subtype of domain. It is a relationship

between an object class and a subtype of a domain that consists of a single value at any

given time (Chapter 3, section 2).

Beginning and ending moments of an event (both are subtypes of moment).

Borel object. A generalization of the concept of array, useful for categorization and seg-

mentation of objects and state spaces – a power set of values, or an infinitely large power

set of ranges (see Module V, section 1).

Bounds (Chapter 3, section 2).

Capacity. A kind of cardinality constraint (see Module V, section 1).

Cardinality (the “size” of a class. See enumeration domain in Chapter 4, section 3. Cardi-

nality is a supertype of enumeration).

Composed of. A subtype of consist of (Module V, section 2). In figure 116, its inverse has

been labeled component of.

Consist of. The inverse of part of and a subtype of locate (Module V, sections 2, 4, figure

114 and figure 116).

327



328 Creating Agile Business Systems

Constraint (generic). A generic constraint is a generalized meaning, synonymous with

object property (Module VI). Rule constraint and value constraint (Chapter 3, section 2)

are special subtypes of this generic constraint.

Contain. A supertype of consist of, and a subtype of locate (Module V, sections 2, 4, figure

114, and figure 116).

Cycle time. The time interval from the start to the end of a process (Module V, section 3 –

cycle time is a subtype of event).

Delimiters (Chapter 4, section 1).

Domain (introduced in Chapter 1, section 3.2, detailed in Chapter 4, section 3). A domain is

a class of values. The class may contain finite or infinite numbers of distinct values and lends

its members a common meaning, such as “length.” The meaning of qualitative measure-

ment is encapsulated in nominal and ordinal domains: nominal domains only distinguish

between values; ordinal domains add information on sequences. The meaning of quantita-

tive measurement is encapsulated in difference and ratio scaled domains: difference scaled

domains add information on magnitudes; ratio scaled domains add information on ratios

and the concept of nil magnitude. The metamodel of knowledge infers that quantitative

values must be expressed in units of measure, of which it may have several (Chapter 4,

section 2). Domains are arranged in a subtyping hierarchy shown in figures 67 and 68

The most elementary business and physical meanings start with primary domains: Enu-

meration (ratio scaled), Mass (ratio scaled), physical separation (ratio scaled), date/time

(difference scaled – includes date and time of occurrence), electric charge (ratio scaled),

overall Information content (ratio scaled), and Preference (ordinal). Secondary domains are

derived from primary domains as polymorphisms, or from relationships between domains.

A few frequently used secondary domains are time lapse, domains of information quality

(validity, that we are measuring the right thing; reliability, that the measurement is always

consistent; completeness and accuracy, that the measurement is unbiased), Economic value

added (ratio scaled polymorphism of preference), various domains of proportions, various

domains of change/growth and gender. The cardinality of a domain is a measure of its size,

which might be infinite. A dense domain has an infinite number of values between any

ordered pair of values (for example, a difference scaled domain like temperature, or a ratio

scaled domain like mass).

Effect is a kind (subtype) of process that changes the state of a single object. It is not

always a business process, but effects always map directly to computer systems pro-

cesses (Chapter 2, section 2 under “events, effects, and actions”, and Module V, section

3 under “Transforming business processes into effects of events in crossing the chasm”.

Also see figure 109. An effect is a subtype of object property in the same partition as

attribute).

Efficiency and productivity of processes (Module V, section 3).

Essence (of a pattern) is the information that gives the pattern its identity and distin-

guishes it from other similar patterns. It is closely tied to the freedom the pattern has to
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be that pattern. The meaning of “essential” is derived from “essence,” and the meaning of

“freedom” is derived from the degrees of freedom of a pattern (Chapter 4, section 1 under

“Pattern”).

Event. A time interval (introduced in Chapter 1, section 2, described in more detail in

Module V, section 3).

Exception process (polymorphism of process). Processes triggered when constraints are

violated. Exception processes are polymorphisms of process in a different partition from

input and output processes. Thus there may be exception processes for inputs, outputs,

and transformations (Module V, section 3 under the “Risk management transform” under

“Crossing the chasm” (Module V also discusses exception management patterns in that

section).

The expression of a rule (box 33 and figure 117). A meaning may have many expres-

sions. Each expression is a perspective of that meaning. Therefore expression and per-

spective are identical. Expression is the result of express (expression of and express

are synonyms; their inverse is expressed by). Express is a polymorphism of the sub-

typing relationship (as is “instance of”) (Module V, section 4). Expression, an object,

is identical to expressed by, its defining relationship; the information conveyed (and

hence meaning) is identical (see Module VI, section 2 and the endnote on functional

programming).

Extent (Chapter 4, section 1).

Feature. Any property of an object – an attribute, relationship, effect, or constraint. See

object property (box 10; Module V, section 3 and Module VI, section 3 expand on the

description of feature/object property in box 10 and figure 32).

Format (introduced in Chapter 1, section 3, detailed in Chapter 4, section 1).

Freedom (degree of) (Chapter 4, section 1).

Governance and non-stationarity. Applies to constraints, patterns, and processes. Non-

stationarity is the property in which features and parameters change over time; governance

sets parameters and features. Governing processes are processes that set parameters of

processes (Chapter 3, section 2; Chapter 4, section 1; and Module V, section 3 on our

website). Governance processes often depend on tracking and exception processes to govern

– another commonly used theme in business.

Idempotent relationship (Module V, section 1).

Inclusion and exclusion sets. Mutually exclusive subtypes of partition (see figure 39 under

“Constraints on nominal attributes”).

Incorporation. A subtype of consist of, wherein the object loses its identity as a member

of a separate class of objects. It becomes a subtype.

Instance of. A different polymorphism of the subtyping relationship in the same partition

as express (see Module V, section 4).
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Intransitive relationship. When a composition of relationships disallows the existence of

another relationship (Module V, section 1).

Joint constraints. When a value is constrained by an interaction between multiple objects.

Joint constraint is a polymorphism of value constraint; it is a relationship of a higher order,

with more information in its rule expression and meaning (Chapter 3, section 2).

Language (Chapter 4, section 1).

List of. A subtype of consist of (Module V, section 4 and figure 116).

Load balancing of processes (Module V, section 3).

Location (locate) and origin (Module V, sections 2, 4, figure 114 and figure 116).

Location, containment, part of/consists of, subset of/superset of, subtype of/supertype

of (Module V, sections 2 and 4).

Magnitude constraints. Restricts the magnitude of a difference or ratio scaled value.

Based on the principle of adding information, a magnitude constraint is a polymorphism

of value constraint. Joint constraints and magnitude constraints are subtypes in different,

independent partitions of value constraint, so a constraint could simultaneously be both

(Chapter 3, section 2).

Meaning. Meanings are polymorphisms (Chapter 4, section 1, “Pattern”). They are patterns

of abstract information. Meanings include the meaning of a rule, as opposed to its expression

(box 33 and Module VI, figure 117). Indeed, this is the inchoate universal object. Polymor-

phisms of meaning carve object instances and object classes from the primal metaobject

(Module V, section 4, Module VI, sections 1 and 2).

Metaobject. A generic and inchoate instance of an object. All objects are subtypes of this

primal object (introduced in Chapter 2, discussed in Module VI).

Moment. An event of nil duration (Module V, section 3) and hence a subtype of event

(Module V, section 4).

Mutability. Substitutability of one object by another (Module V, section 1).

Name, and its subtypes, synonym, homonym, alias, and concept id (Chapter 2, section 4).

Number. Number is an expression of quantitative value, and therefore a subtype of both

expression and quantitative value (Chapter 4, section 2). Also, note that format is a kind of

expression of value in symbolic form (Chapter 4, section 1). This makes format a subtype

with two parents, value and symbol (the relationship expression of /express is a polymor-

phism of the subtyping relationship (Module V, section 4).

Object class. (A subtype of an aggregate object. A list is also a different subtype of an

aggregate object in this partition (Chapter 2, section 5 and Module V, sections 2 and 4).

Object instance (Chapter 2, section 1).

Object partition. A criterion for dividing an object class into mutually exclusive sub-

types. A partition may be exhaustive (the subtypes in the partition collectively cover all
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possible members of the partitioned class) or inexhaustive (the subtypes do not cover all

possible members of the partitioned class) (Chapter 2, section 3, Object partitions and role

modeling).

Object property. Attributes, relationships, effects of events, and constraints associated with

the object (box 10. Also described formally in Module VI, section 2; see figure 117).

Observation, inquiry, and reporting. Processes that are polymorphisms of a generic

“inquiry” process, which changes the state of the object queried/observed to “queried/

observed”, and may or may not change it in other ways (Module V, section 3, box 54).

Pattern (Chapter 4, section 1). This is the root of the metamodel of knowledge. All its

components are polymorphisms of pattern; an object instance is also a kind of pattern – a

meaningful pattern (Module VI and figure 31).

Perspective is a classification scheme. It is expressed in a network of objects and relation-

ships. It is also a composition (Module V, section 1, under “Compositions of relationships”).

Compositions are also subtypes of relationships. A composition is also a synonym for expres-

sion. Therefore perspective is the same as composition, which is a subtype of relationship

(Module V, sections 1, 4 and Module VI, section 2).

Pick. A polymorphism of process and the instance of relationship (Module V, section 4).

Pick, the polymorphism, may also have subordinate polymorphisms. For instance, one

polymorphism may pick a single item out of a collection or assembly of items, whereas

another might pick a class of similar items out of that collection of parts, and yet another

polymorphism could pick a batch of similar or dissimilar parts out of the collection.

Planned. Intended state. A universal state applicable to all objects. Plan is a polymorphism

of purpose (Module V, section 3).

Polymorphism. Synonym for subtype (box 21 and Chapter 3, section 2, Chapter 4, section

3; Module V, section 4 and Module VI).

Precision (Chapter 4, section 1) is a synonym for accuracy, and exhaustiveness is a syn-

onym for completeness. Note that less-precise and less-complete patterns convey less infor-

mation than their more-precise or more-complete counterparts. Therefore the more-precise

or more-complete pattern is a subtype of its less-precise or less-complete counterpart.

Process. A subtype of two parents – event and relationship (see Module V, section 3 and

“Processes, events and temporal relationships”). Processes use resources to produce prod-

ucts (Module V, section 3). Process inherits the features of relationship, and combines

them with temporal information from event, such as cycle time. Combined with temporal

information from event, these features inherited from relationship acquire new characteris-

tics such as: temporal succession, productivity, reversibility, temporal mutability – the time

dependence of mutability between objects; temporal order – how far back into history does

a process reach to articulate rules about a change of state at present; temporal degree –

repeatability and concurrency; for idempotent relationships: the number of times a process

loops back to the same product, or reuses the same resource. A reporting process changes

the state of an object from unknown to a known value. An inquiry changes the state of an
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object from unknown to observed. It may or may not change other features that constitute

the overall state of the object.

Process owner (various kinds (subtypes) in Module V, section 3 and “Process ownership”.

Product (Module V, section 3).

Proximity metric measures similarity. May also measure distance, which is a polymorphism

of similarity (Chapter 4, section 1. See also the endnote on generalizing the concept of

distance).

Purpose or goal (Module V, section 3).

Ranges (ranges are subtypes of twin parents – sequenced pattern and value set (see

Chapter 3, section 2).

Recursive relationship (Module V, section 1).

Relationship is an interaction. It is a polymorphism of a list, which in turn is a polymorphism

of aggregate object. (Module V, section 4, also figures 31 and 116).

Representation. A polymorphism of expression (Chapter 4, section 1).

Resource (Module V, section 3).

Resource life. A temporal polymorphism of capacity; when time is added to the meaning

of capacity, the capacity to engage with objects will change over time. When the capacity

decreases, we might conceive of an, “unknown” process that has engaged the capacity of

an object. The “unknown” process starts “consuming” it, or diminishing its capacity for

engagement. If the decline is precipitous at a particular point in time after the resource is

created, that interval may be considered the life of the object. Resource consumption is a

polymorphism of resource life, in which the capacity of a resource to engage is diminished

over time by a known process. If a process changes the state of a resource, it is considered

consumed, and the changed resource is a product (it could be a work product, a waste

product, or a by-product (Module V, section 3).

Reversibility and reversion (of processes) (Module V, section 3). Reversion is a process

that is the inverse of another process – it restores the original states of all involved objects,

i.e. undoes the effects of the reversed process.

Rule constraint. A rule that constrains a nominal, ordinal, or ratio scaled value; a kind of

constraint (Chapter 3, section 2).

Saga. A process with no definite end, which is also a supertype of a process with a definite

end. An endless saga is a polymorphism of saga, in which it is definitely known that the

process will not end (Module V, sections 3, 4; figure 116).

Size. A polymorphism of Capacity (see Module V, section 4).

State, state space, trajectory in state space, and set of possible trajectories in state space

are all subtypes of aggregate object. The last two are also compositions. A composition is

a subtype of aggregate object (Module V, section 2) Thus trajectory in state space and set
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of possible trajectories in state space are actually subtypes of composition, and therefore a

subtype of aggregate object, once removed.

Subtype and Supertype. Both subtypes of object class (in the same, exhaustive partition)

(Chapter 2).

Subtyping relationship (a kind of relationship). See incorporation (Module V, sections 2

and 4).

Supply chains and demand chains (polymorphisms of process) (see “Supply and demand

chains”).

Symbols (Chapter 4, section 1).

Symmetry (Module V, section 1. Note that processes cannot be symmetric; they incorporate

information on the flow of time, which is asymmetrical).

Temporal succession. Sequence in time; a supertype of process and subtype of relative

location (Module V, sections 2, 3, and 4).

Tracking process. A process obtained by infusing temporal information into the proximity

metric. It is a polymorphism of the proximity metric and event.

Transformation, input, and output processes (subtypes of process). Transformation pro-

cesses use resources to create products. Input processes convey resources to transformation

processes and output processes convey products from transformation processes. They are

all polymorphisms of process, and every business process consists of all three – input,

transformation, and output process – assembled in tandem (Module V, section 3; Chapter 4

section 3).

Transitive Relationship. When a set of relationships implies another, the implied relation-

ship is transitive with respect to the others. In a transitive triad of relationships, any two

relationships in the triad imply the third (Module V, sections 1 and 3).

Truncation slices a pattern into a part. Truncate relates an object to its truncation. A

truncated pattern conveys less information than the pattern that was truncated. It is therefore

a supertype of the original pattern, and the inverse of truncate is a polymorphism of the

subtyping relationship (Chapter 4 section 1).

Unit of measure (Introduced in Chapter 1, section 3.2, detailed in Chapter 4, section 2).

Universal perspective is a subtype of perspective.

Use. The defining relationship between a process and its resources. The input process is a

polymorphism of “Use” (Module V, sections 3, 4).

Value constraints. A kind (subtype) of rule constraint in which specific values are permitted

or excluded – box 28 (Chapter 3, section 2).

Value. Encapsulates the concept of existence and measurability. It may convey distinctness,

an ordered sequence, a magnitude, the absence of magnitude (the nil value), infinite magni-

tude, the absence of meaning (the null value), the concepts of “all,” “any,” and “unknown”
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(Chapter 2, section 3, Chapter 4, section 3; under “Added value” in Module V, section 3,

Module V, section 4; and box 51).

Value sets. A collection of values at a point in time (Chapter 3, section 2, figure 40).

View (Chapter 2, section 5).

Table A1 More meanings from the nexus of knowledge in Module VIII

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

ACYCLIC PATH

(subtype of path)

A path without loops; a

path that cannot loop

back to a node if it is

always traversed in one

direction; a path in

which any given node

may be traversed at most

once when the path is

negotiated in a single

direction (although the

path may converge on

the same node along two

or more different

associations)

� The directional

topology of a network

of rivers and

tributaries, possibly

flowing around

islands
� A radio broadcast.
� The topology of a

one-way

communications

network of repeater

stations
� The directional

topology of a supply

chain that forbids

return of goods

� Longest distance from

a starting node in

terms of the largest

possible number of

nodes that must be

traversed to reach it
� Longest distance to an

ending node in terms

of the largest possible

number of nodes that

must be traversed to

reach it

ADDRESS

(subtype of format and

location)

Formatted information

for locating a place

� Mailing label
� Telephone directory,

address
� Postal address, e-mail

address
� Grid locations on a

map

� Location (inherited

from locate)
� Line number
� Text, style
� Language
� Map coordinates

AFFIRMATION

(subtype and state of

negotiation)

An event that asserts the

concurrence of the

parties in a negotiation

to the terms under

discussion

� An exchange in which

the parties to the sale

concur on its terms

and conditions

� Start time (inherited

from event)
� End time (inherited

from task)
� Terms and conditions

concurred upon (a

subset and select state

of all terms and

conditions being
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

negotiated; terms and

conditions are

inherited from

agreement via

negotiation)

AGREEMENT

(subtype of meeting)

An arrangement that is

negotiated or accepted

by two or more parties to

a meeting

� A sale
� Insurance policy
� Warranty
� Marriage

� Terms and conditions
� Parties
� State (potential,

planned, being

negotiated, affirmed,

bound, etc.)

ASSET

(role of information,

document, physical

object [construction,

equipment etc.],

organization, event

[agreements, projects

etc.], place [land,

electromagnetic

frequencies etc.], fund)

A tangible or intangible

item of value owned by a

person or organization;

an owned resource

� Construction
� Network element
� Facility
� Right
� Product
� Accounts receivable

� Ownership
� Proportion of

ownership
� Type of ownership
� Value

BASELINE

(subtype of resource)

A reference state that is

used as a basis for

comparison

� The first agreed upon

project plan
� Standard
� Reference item

� Baseline status for a

resource
� Items it is a baseline

for

BUSINESS PRODUCT

(subtype of asset)

Assets positioned in

markets to define the

corporation’s business

(those assets that will be

sold rented or offered in

the normal course of

business to generate

income)

� Product–service

offering
� Service
� Planned product
� Withdrawn product

� List price
� Purpose
� Market positioning

(intended

product-market)

BUSINESS PRODUCT

OWNERSHIP

(an inclusion

polymorphism of

resource ownership)

The fact of ownership of

a right, resource, service

or product positioned for

sale, lease, lending or

use in the marketplace in

order to trade it for other

resources

� Joint ownership of a

property meant for

sale
� Ownership of shares

� Owner
� Owned product

(cont.)
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

CALENDAR

(a sequential

composition of events;

also a polymorphism of

event)

A sequence of time slots � Gregorian calendar
� Jewish calendar
� Meeting calendar
� Holiday schedule
� Production schedule

� Start time (inherited

from event)
� Time slots

CHANGING

PERSPECTIVE

(polymorphism of

interpretation)

Mapping meanings from

one perspective to

another

� Incoming payment to

outgoing payment
� Owner to

person/organization
� Invoice to payment,

document and

information

� Object

correspondence
� Accuracy (inherited

from information)
� Validity (inherited

from information)

COLLABORATION A set of mutually

supportive goals

� A supply chain
� Intermediate work

products used to

produce a final

product that meets a

goal
� The set of processes

that are intermediate

steps in meeting a

goal or satisfying a

need

� Membership of the

collaborative

aggregation

COLLABORATOR

(a role of a person or

organization relative to

another person or

organization)

Persons or organizations

assigned mutually

supportive objectives

� Owners of processes

in a supply chain

� Membership of a

collaboration

COMPETITOR

(a role of a person or

organization relative to

another person or

organization)

Persons or organizations

assigned mutually

exclusive, competing

objectives

� Opponent
� Rival

� Participation in

competition
� Person/organizations

who are competitors

CONFIRMATION

(subtype of affirmation;

a state)

An event that binds

parties to the terms of an

agreement

� A sale event � Parties bound
� Terms of conditions

they are bound to

within the agreement

CONFLICT A set of mutually

exclusive goals

� Competition
� War
� A case in a court of

law

� Conflicting goals or

processes
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

CONSIGNMENT

(a possible aggregation

of one or more

resources;

polymorphism of

resource)

A resource that is picked

up from one place and

dropped off at another

on a conveyance

� Mail addressed to an

individual or

organization
� Road consignment to

a particular place
� Air consignment
� E-mail to an

individual
� Payload with a single

target
� Passenger in a vehicle

� Consigned quantity
� Mode of

transportation

CONSTRUCTION

(subtype of physical

object and place)

An immobile

construction used to

support or service

business activities

� Building
� Room
� Living unit
� Bridge
� Tunnel
� Factory
� Parking lot

� Floor space
� Geographical location

(polymorphism of

physical location)

CREDENTIAL

(subtype of

qualification)

Qualification issued by a

person or organization

that is the basis of

entitlement to rights or

privileges or the basis

for confidence, belief or

credit

� Degree
� License
� Certification,
� Authentication
� Permit

� Permission,
� Expiry date/time
� Exceptions

exemptions, and

limitations
� Issuing authority
� Owner or certified

resource

CUSTOMER

(polymorphism of

person/organization)

A person or organization

that is the transferee an

actual or potential

transfer of possession

event

� Shopper
� Person or organization

that buys resources

from another in order

to manufacture its

products
� A client

� The relationship to the

potential or actual

transfer of possession

event that casts a

person or organization

in the role of a

customer
� Requirements

DOCUMENT A collection of

information formatted in

a medium

� Form
� Letter
� Recording
� Check

� Medium
� Language

(cont.)
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

ELABORATION

(polymorphism of the

subtyping relationship)

Furnishing of detail

about an object or

meaning previously

described in less detail

� Description of the

meaning of a word
� Explanation

� Elaborated item

EMPLOYEE

(polymorphism of

supplier and person)

A person bound to an

organization by an

employment agreement

to furnish personal time

to the employing

organization

� Manager of a

department
� Sales representative

� Salary
� Frequency of payment
� Work hours

EMPLOYER

(polymorphism of

customer)

A person or organization

that hires an employee

� A corporation
� Government

� The employment

relationship with one

or more employees

ENERGY

(medium of information

that normalizes the fact

of physical location; a

bridge between

information space and

physical space)

The capacity for

performing physical

work

� Heat
� Light
� Kinetic energy of an

object in motion
� Gravitational energy

of an object lifted

against the force of

gravity

� Quantum
� Form (kind of energy)
� Physical location

EQUIPMENT (subtype

of physical object)

A tangible tool � Machine
� Vehicle
� Software

� Function
� Usage

EVENT Something that takes

place in a time slot; a

significant occurrence in

a time slot or a moment

in time; a happening in a

time slot

� Phone call
� Accident
� Payment
� Customer order

� Start time
� End time (optional)

EXCHANGE

(polymorphism of task)

Swap; to transfer a

resource, and to receive

a resource in return

� A barter
� The exchange of

goods for funds in a

sale

� Resource(s)

exchanged
� Objects exchanging

resources
� Place of exchange
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

FEATURE An object property or

constraint

� Product feature
� Insurance

coverage/exclusion

offerings
� Telecommunication

USOC codes
� Equipment

capabilities

� Color
� Capacity
� Speed
� Boundary

FEATURE GROUP A set of features � Set of services that go

with a purchased

product

� Features in the group
� Relationship with

requirements
� Relationship with

goals
� Relationship with

product-market

FORMAT

(polymorphism of proxy;

a symbol that is a proxy

for information)

A symbol that may be

sensed

� Printed letters
� Sound
� An image
� Odor
� Tactile symbols like

Braille codes

� Form or shape of the

symbol
� Physical or relative

location of the symbol
� Composition of the

symbol

GENERALIZATION

(polymorphism of

interpretation)

The common aspect

shared across several

specific aspects

� Generalization of a

solution to address

several classes of

problems
� Generic concept
� A class of products

� Classes subsumed
� Exhaustivity
� Exceptions

GOAL or PURPOSE

(polymorphism of

information)

An intention, an aim or

objective

� The objective of a

business plan
� The intended

destination of a

journey

� The objects (such as a

person, organization

or process) that have

the goal

GUIDELINE

(polymorphism of issue)

A course or method of

action based on specified

conditions to guide or

determine decisions

� Regulation
� Supplier guidelines
� Underwriting

guidelines
� Policy
� Instructions

� Authority
� Purpose or goal
� State indicators:

Proposed

Planned

Filed

(cont.)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

Approved

Rejected

Endorsed

Unendorsed

Violated

(normalized by

the relationship

between an

event and the

guideline)

INFORMATION Knowledge or

intelligence about a

concept or meaning

� Market need
� Message
� Risk factor

� Validity
� Accuracy
� Reliability
� Amount

INTERMEDIARY

(an inclusion

polymorphism of

mediator)

A person or organization

in the role of a mediator

between other people or

organizations

� Value added reseller � Persons or

organizations

mediated

INTERPRETATION

(polymorphism of

location of information)

An ascription of a

particular meaning

� Interpretation of a law
� Interpretation of a

meaning in a context

(for example, “time

flies” might mean that

time moves swiftly, or

that flies must be

timed in some activity

performed by them)

� Context of

interpretation

ISSUE

(polymorphism of

information)

A subject of concern;

information related to

the achievement of one

or more goals

� Non-availability of

requirements for a

project
� Shortage or excessive

resources
� Lack of coordination
� Delays in schedule
� Deviation from plan

� Goals involved
� Priority
� States

Open

Closed resolved

Unresolved

Irresolvable

Reopened

LEGAL AGREEMENT

(subtype of agreement)

An arrangement that is

recognized by law

� Credit card agreement � Covering law
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

MARKET

(Borel object defined on

the transfer of

possession relationship)

A class of market places

which may, or may not

consider business

products as a

classification parameter

� The generation-X

market
� Baby boomers market
� Healthcare market
� Stock market
� Futures market
� Auction
� Residential real estate

market on the West

Coast
� The mainland China

market

� Characteristics of

objects involved in the

transfer of possession

event

MARKET NEED

(subtype of information)

Intelligence about

requirements of a market

segment

� Preferences
� Product use

� Relationship between

issues, problems, and

requirements
� Preferred features
� States of market need

Satisfied

Unsatisfied

MARKET PLACE

(polymorphism of

meeting ground)

An actual or potential

meeting ground where

transfer of possession

agreements may occur

� A seven-eleven store
� Auction website
� Telemarketing call
� A mall
� The stock exchange

� Classes of buyers,

sellers, and business

products traded

MARKET SEGMENT

(Borel object defined on

product transfer/usage

agreement)

A category of actual or

potential product

transfer/usage

agreements

� Line of business
� Class of potential

customers
� Class of products
� A geographical

footprint
� Class of customers,

for a class of products

in a geographical

footprint

� Potential value
� Profitability
� Boundaries or limits

on values or ranges of

parameters of the

market that define the

market segment

MEDIATOR

(polymorphism of node)

A resource that connects

resources in a structure

� Reseller
� Router in a network
� Power distributor

� Connected nodes
� Terms of mediation

(cont.)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

MEDIUM A class of places that

imposes constraints on

formativeness or format

� The electromagnetic

spectrum
� Paper
� Air

� Formatting rules
� Permitted formats
� Impermissible

formats

MEETING

(a kind of event)

A gathering of two or

more people or

organizations for a time

period

� A Christmas party
� A conference
� A joint product design

event
� An interview

� Start time (inherited

from event)
� Person/organizations

meeting (must be at

least two, may be

more)

MEETING GROUND

(polymorphism of place)

A place of exchange � Market place
� A telephone network
� Internet chat room
� Fair
� Shop
� Mall

� Object classes

involved in an actual

or potential exchange
� Contents of a meeting

ground (inherited

from place)

MESSAGE

(polymorphism of

information and

shipment)

Information or signal in

transit between nodes

� Radio broadcast
� Memo or letter
� E-mail message
� Telephone

conversation

� Source (inherited

from shipment)
� Destination (inherited

from shipment)
� Content (inherited

from shipment; in this

case the content may

only be some subtype

of information)

NEGOTIATION

(polymorphism of

agreement and

information exchange, a

kind of resource

exchange in which the

item exchanged is pure

information)

A meeting in which

attempts are made to

reach an agreement

through discussion

and/or compromise

� Negotiating a sale
� Negotiating the

settlement of a

conflict
� Negotiating a

collaboration

� Start time (inherited

from event)
� End time (inherited

from task)
� Negotiating parties

(inherited from

meeting)
� Purpose of

negotiation
� (Proposed) terms and

conditions (inherited

from agreement)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

NETWORK

(subtype of two parents:

structure and node)

An association of

resources

� A

telecommunications

network
� A trellis
� A set of linked

documents or web

pages
� A network of people

who exchange

information
� A network of roads

linking geographical

places and facilities

� Capacity
� Footprint

NODE

(polymorphism of

resource)

A resource associated

with itself, or another

resource in a structure

� LAN node
� Telephone switch
� Place on travel

itinerary
� Start or end of task in

project
� Position in

organizational chart
� Account in chart of

accounts

� Associated node
� Capacity

ORGANIZATION

(subtype of

person/organization)

An association of people

(it could be an empty

association)

� Joint venture
� Controlled

organization
� Bank
� Clearing house
� Industry evaluation

organization
� Task force
� Project team
� Department
� Community

� Organizational charter
� Mission (an

organization might be

controlled and

operated by one or

more persons who are

its members and have

a common mission,

purpose and

responsibility)

ORGANIZATIONAL

STRUCTURE

(an inclusion

polymorphism of path

tree)

A path tree in which the

nodes are people or

organizations

� Management

hierarchy
� Hierarchy of

supervisory roles

� Level in

organizational

hierarchy

(cont.)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

PATH

(subtype of structure)

The continuous series of

positions that are

assumed in any motion

or progression

� Directional topology

of a flight plan

� Predecessor node
� Successor node
� Direction
� Directional capacity

PATH TREE

(subtype of path and tree

structure)

A directional tree

structure

� Organizational

hierarchy
� Reporting structure in

which an individual

must report to only

one other

� Level number
� Subordinate roles
� Supervisor

PAYMENT

(subtype of event)

Actual or potential

transfer of money from

one fund to another

� Incoming
� Outgoing payment

� Amount
� Currency
� Payer
� Payee

PAYMENT

INSTRUMENT

(subtype of asset)

An asset that is actually

or potentially transferred

to make payment

� Funds
� Property

� Value

PERSON

(subtype of

person/organization and

physical object)

A human being � Employee
� Spouse
� Male person
� Female person
� Child

� Gender

PERSON/

ORGANIZATION

Any individual or

organization that has an

invested interest, stake,

or business dealing with

the enterprise

� Collaborator
� Competitor
� Applicant
� Beneficiary
� Broker/distributor
� Payer
� Payee
� Customer
� Vendor
� Participant
� Legal entity

� Date of birth/creation

or appointment in role

PHYSICAL OBJECT

(polymorphism of

energy)

A tangible object

detectable by our

physical senses or

instruments

� Vehicle
� Equipment

� Weight
� Volume
� Physical shape
� Physical footprint

(polymorphism of

physical location)
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Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

PHYSICAL PLACE

(subtype of place)

Contiguous (or

disconnected)

location(s) within

boundaries or points in

physical space, where

physical objects or

energy may be located

� Continent
� Location of a bridge
� Ports of call
� The surface of a ball
� The floor space inside

a room
� Interplanetary or

interstellar space

� Physical area
� Perimeter
� Physical length
� Volume
� Zoning
� Time zone
� Zip code
� Surface area
� Latitude (for

geographical place

only)
� Longitude (for

geographical place

only)
� CPFR’s global

location number

(GLN) (The CPFR

model is described

under supply and

demand chains at our

website.
� CPFR’s Duns plus 4

code

PLAN

(subtype of goal)

An intended state with

or without intended

processes and state

transitions to achieve the

goal

� Delivery schedule
� Strategic plan
� Sales targets
� Estimated production
� Maintenance schedule

� A planned state
� State transitions from

current to planned

state
� Processes with or

without the process

map to achieve the

goal

PLACE An object that contains,

locates or conveys

information, energy,

events, material objects,

organizations or people.

Contiguous or

disconnected location(s)

where information,

energy, events or

physical objects,

organizations or people

may be found.

� Internet bulletin board
� Part of

electromagnetic

spectrum
� Country, city, zone.
� Contour
� Ports of call
� State space
� Pattern

� Coordinates
� Web URL (universal

resource locator, or

web page address)
� Address
� Contents

(cont.)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

PRODUCT-MARKET

(polymorphism of

market)

A market that includes

characteristics of

products and services

traded in it

� Market for soap

among teenagers
� Market for

pharmaceutical

products
� Market for

two-wheeled vehicles

in China

� Characteristics of

products exchanged in

the market

PROJECT, TASK

(subtype of two parents:

event and path)

A clearly defined piece

of work that consumes

or references resources

to create or alter

resources or their

relationships; usually the

responsibility of a

person or organization

� Project
� Litigation
� Negotiation
� Service call

� Responsibility
� Resources
� Cost

PROXY

(polymorphism of

mediator)

A resource that

represents another

resource in a structure

� Agent
� Distributor
� Format
� Encrypted message
� A map
� Floor plan
� A photograph
� A scale model

� Item represented

(inherited from

mediator)
� Terms of

representation

(constraints, scale

etc.; polymorphism of

terms of mediation)
� Resource represented

to (inherited from

mediator)

QUALIFICATION

(subtype of information)

Information that

provides the basis for

confidence or belief

� Skill
� Experience
� Permission

� Relationship with

qualified resource

REGULATION

(subtype of guideline)

A mandatory rule � Stock trading

regulation
� Mandatory

instructions

� State indicators:

Enforced

Unenforced

RENEGOTIATION

(polymorphism of

negotiation)

A negotiation that

references a prior

negotiation and its terms

and conditions

� Renegotiating the

terms of collaboration

� Prior negotiation
� Terms and conditions

under renegotiation
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

REPRESENTATIVE

(an inclusion

polymorphism of proxy)

A person or organization

in the role of a proxy

� Person/organization

with the power of

attorney for another
� Spokesperson
� Congressman

� Resource represented

(inherited from proxy)
� Context of

representation

(polymorphism of

terms of

representation)

REQUIREMENT

(polymorphism of issue)

An articulated need � Market need � Level of satisfaction
� Validity (inherited

from information)
� Accuracy (inherited

from information)
� Reliability (inherited

from information)
� Priority (inherited

from issue)

RESOURCE

(role of information,

document, physical

object, place, person,

organization, event, fund

[or their

interrelationships and

aggregations])

Real-world objects or

concepts that may be

altered, consumed,

referenced or created by

tasks or processes

� Work product
� By product
� Node
� Consumable
� Catalyst
� Facilitator

� Description
� Relationship with task

or place in a structure

RESOURCE

CALENDAR

(subtype of calendar)

A set of relationships

between event(s) and

resource(s)

� Maintenance schedule
� Financial calendar
� Meeting calendar,

holiday schedule
� Production schedule

� Capacity booked
� Capacity left
� Capacity used

RESOURCE

OWNERSHIP

(relationship between an

asset and the

person/organization who

owns it)

The fact of owning a

resource as a property

� Property ownership
� Ownership of a

baseball team
� Ownership of a

television show
� Ownership of a right

such as a copyright or

patent

� Owning person/

organization (asset

owner)
� Owned asset
� Proportion owned

(cont.)
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

RESOURCE RETURN

TASK

(polymorphism of

reversal, in which no

substitutions are

permitted)

To take back a resource

to where it came from

� Return of a person

from a business trip to

the exact point the

journey started from
� Return of a borrowed

book to the library it

was borrowed from
� Reversion of an

individual to the same

rank or level he or she

had held previously in

a hierarchy

� Place or position

returned from

(inherited from

return); substitutions

barred.
� Place or position

returned to (inherited

from return);

substitutions barred
� Resources being

returned (e.g. book,

person); substitutions

barred

RESOURCE

TRANSFER

(polymorphism of task)

The transfer of resources

between resources

� Delivery of mail
� The process for

feeding resources to a

mechanism that will

transform them
� Output process from a

machine after it has

worked on the

resource fed to it
� Transportation of

passengers from one

airport to another

� Source
� Destination
� Resource (object)

being moved

RETRACTION

(polymorphism of

negotiation and

reversion – reversion;

see box 30)

The reversion of an

affirmation or proposal

� Retraction of intent to

buy a home

� Proposed terms and

conditions retracted

RETURN

(polymorphism of

idempotent relationship,

a kind of structure;

included in the

metamodel of

knowledge as shown in

figure 2.5)

To go back to the same

place; the last leg of an

idempotent composition

� Return from a trip
� Return of a borrowed

item
� Reversion to a rank or

level in a hierarchy

� Place or position

returned from
� Place or position

returned to
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THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

RETURN EVENT

(polymorphism of

resource transfer, a kind

of task, and return,

which is a kind of

structure; the event has

no information on what

it is returning, or the

equivalence of places

being returned to or

resources being

returned)

An event that takes back

to a place

� A return trip, the leg

of a journey that

returns an individual

to his or her starting

point
� The event or process

that restores of a

borrowed item to its

owner
� The process that

reverts an individual

to a rank or level he or

she held previously in

an organizational

hierarchy

� Place or position

returned from

(inherited from

return)
� Place or position

returned to (inherited

from return)
� Start time (inherited

from event via task)
� End time (inherited

from task)

REVERSAL

(polymorphism of return

event)

A return to a condition

deemed equivalent to its

former condition

� The event or process

that restores of a

borrowed item or an

item of equal value to

its owner
� The process that

reverts an individual

to a rank or level

equivalent to one he

or she held previously

in an organizational

hierarchy

� Substituted item(s)

(could be an

aggregation)
� Substitute item(s)

(could be an

aggregation)
� Place or position

returned from

(inherited from return

event)

The place that is its

equivalent (the

equivalent could

also be the same

place).
� Place or position

returned to (inherited

from return event)

The place that is its

equivalent (the

equivalent could

also be the same

place).
� Start time (inherited

from event via task)
� End time (inherited

from task)

(cont.)
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TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

REVOCATION

(polymorphism of

retraction)

An event that reverts a

confirmed agreement to

an unconfirmed state

� Revocation of a treaty

between nations

� The confirmed

agreement being

revoked

RISK

(polymorphism of issue)

A hazard � Risk of loss
� Risk of fire
� Risk of unforeseen

exceptions

� Goal involved
� Probability

ROUTE

(a subtype of two

parents: path and node)

A sequence of points

visited

� A network of rivers

and tributaries,

possibly flowing

around islands
� Travel itinerary

� Sequence number
� Resource id

� Routing of materials

in the standard

operating procedure

for manufacturing an

item
� Route plan
� Supply chain

SHIPMENT

(an aggregation of one

or more consignments)

A particular cargo that is

sent from one place to

another on a conveyance.

Each consignment in the

shipment may be

dropped off (and picked

up) at a different

destination (or source).

� Mail in the mail van
� Road shipment with

several drop-off points
� Air shipment
� E-mail broadcast to

several individuals
� Network transmission
� Payload with multiple

targets
� Group of passengers

being transported by a

vehicle

� Shipment quantity
� Consignments in the

shipment

SKILL

(subtype of

qualification)

Qualification of a person

that provides the basis

for confidence or belief

for executing a task

� Languages known
� Technical ability

� Relationship with

person/organization

and task type

SOFTWARE

(subtype of document

and equipment)

Program code to elicit

specific responses from

equipment

� Switching software
� Numerically

controlled machine

program

� Medium (inherited

from document)
� Language (inherited

from document)



351 Appendix: Components of knowledge

Table A1 (cont.)

THEME (OBJECT) DEFINITION

TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

� Computer

program/operating

system

� Function (inherited

from equipment)
� Usage (inherited from

equipment)
� Instruction (inherited

from regulation via

document)

SPECIALIZATION

(polymorphism of

interpretation and the

inverse of

generalization)

An adaptation of a

broader concept to a

particular niche

� Customizing a service

to fit the needs of a

specific customer

� Non-standard

components or

custom patterns not

shared with other

members of the class

STRATEGIC

AGGREGATION OF

GOALS

An aggregation of

conflicting and

collaborating goals

� A set of competitive

targets along with the

goal of collaborating

with a competitor to

promote common

interests of the

industry

� Goals in the

aggregation and the

fact of their mutual

support or mutual

exclusion

STRATEGIC PERSON/

ORGANIZATION (a

role of a person or

organization relative to

another person or

organization)

Persons or organizations

assigned mutually

exclusive and mutually

supportive objectives

� A person or

organization in a

strategic relationship

that includes both

competitive and

collaborative goals

� Other members of the

strategic relationship
� Their interests and

goals

STRUCTURE A set of associations � Topology of a

telecommunications

network
� Topology of a trestle
� Topology of a trellis
� Topology of linkages

between web pages

� Linked objects
� Capacity of link

between objects

SUPPLIER or

VENDOR

(polymorphism of

person/organization)

A person or organization

that owns a right or

resource and is a

potential or actual

conceder of ownership

in an actual or potential

transfer of possession

event

� Supplier of

components for the

manufacture of a car
� Real estate developer
� Car distributor
� Internet services

provider
� Temp agency

� Resource owned
� The vendor’s business

products

(cont.)
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TERMS AND

CONDITIONS

(subtype of guideline)

A guideline associated

with a negotiation or

agreement which

establishes and

(potentially or actually)

binds a party to a set of

constraints on resources

and their relationships

� Right
� Terms and conditions

of sale
� Terms and conditions

of use
� Terms and conditions

of employment
� Credit card terms and

conditions
� Insurance terms and

conditions
� Settlement terms and

conditions
� Order terms and

conditions

� Relationship with one

or more resources,

parties and

negotiations or

agreements

TRACKING PROCESS

(polymorphism of

process)

A process in which the

state of one object is

compared with the states

of others

� Deviation from flight

plan

� Quantum of

difference between

baseline and state(s)

of tracked object(s)

TRANSFER OF

POSESSION

(subtype of negotiation –

a task. A transfer of

possession may be under

negotiation, a successful

negotiation such as a

confirmed/affirmed

agreement, or even a

failed negotiation that

did not end in

agreement)

An agreement or

negotiation to transfer

ownership, or permit use

of a product (including

services)

� Sale
� Lease
� Rental
� Gifting

� Price
� Start time (inherited

from event)
� End time (inherited

from task. The

duration of the event

is often negligible;

start time and end

time might coincide

and be subsumed by

time of occurrence;

both start time and

end time are

polymorphisms of

time of occurrence)
� Terms and conditions

(inherited from

negotiation)
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TYPICAL

POLYMORPHISMS

(EXAMPLES) TOKEN FEATURES

TRANSPORTATION

(a sequential

composition of one or

more resource transfer

events; a subtype of

resource transfer)

Movement from one

place to another with

possibly multiple drops

� Transportation of

cargo
� Transportation of

passengers in a

vehicle
� Movement of a frame

from one web page to

another
� Conveying a message
� Movement of mail
� Transfer of an

individual from one

organization to

another

� Pick up points

(polymorphism of

source)
� Drop off points

(polymorphism of

destination)
� Resource (object)

being moved

(inherited from

resource transfer)

TREE STRUCTURE

(subtype of structure)

A branching topology

without closed loops,

which may be traversed

in at least one direction

without converging on

the same node along two

different associations,

and has at least one node

that cannot be traversed

forward (termination

node(s)), and at least one

other that cannot be

traversed backwards

(starting node(s))

� A hub with spokes
� The topology of a

hierarchical

communications

network

� Position in a hierarchy

VIRTUAL PLACE

(subtype of place)

A non-physical object

that contains information

� Web page
� Frequency spectrum

� Contents (only

information,

formatted or not)
� Location
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