

Titles in the
Auerbach Series on Applied Software Engineering
Phillip A. Laplante, Pennsylvania State University, Series Editor

Enterprise-Scale Agile Software Development
James Schiel

1-4398-0321-9

Requirements Engineering for Software and Systems
Phillip A. Laplante

1-4200-6467-3

Building Software: A Practioner’s Guide
Nikhilesh Krishnamurthy and Amitabh Saran

0-8493-7303-4

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J. Paulish,

and Juergen Kazmeier
0-8493-9384-1

Antipatterns: Identification, Refactoring, and Management
Phillip A. Laplante and Colin J. Neill

0-8493-2994-9

Software Engineering Quality Practices
Ronald Kirk Kandt

0-8493-4633-9

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-0321-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Schiel, James.
Enterprise-scale agile software development / James Schiel.

p. cm. -- (Auerbach series on applied software engineering)
Includes bibliographical references and index.
ISBN 978-1-4398-0321-9 (hardcover : alk. paper)
1. Agile software development. 2. Scrum (Computer software development) 3.

eXtreme programming. I. Title. II. Series.

QA76.76.D47S2957 2009
005.1’1--dc22 2009037003

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface.. xiii
Acknowledgments..xv
Biography...xvii

  1. Introduction..1
Web Site...2
About This Book...2
A Balancing Act..3
Audience...3
Success Factors..3
Suggested Readings..5
Endnotes...6

  2. Why Agile?..9
Myths about Agile Development..9
Reasons to Stay Away from Agile..12
How Your Organization Will Benefit from Agile..13

Improved Software Quality...13
Improved Organizational Commitment..14
Reduced Waste..14
Improved Customer Relationships...15

Summary..16

ISection  � Setting the Stage for a Transition

  3. Transitional Concepts...21
What Is Agile Development?..21
Workflow..22
Product Backlog..22

Prioritization..23
Grooming..23

Sprinting...24

vi    Contents

Beta Test...25
Defects..25
Workflow Summary...25
The Product Backlog...25

Written in a Manner That Can Be Groomed …................................27
Under Constant Reprioritization and Continually Emergent............31

Endnotes...32

  4. Transition Barriers..33
People Barriers..33
Organizational Barriers...36
Endnote..39

  5. Management in an Agile Environment...41
Getting Management Ready for the Transition... 42
An Effective Organizational Arrangement for Scrum Teams......................45
Hiring New Scrum Team Members..48
The Care and Feeding of Scrum Teams..50

Tampering...51
Ignoring...51
Improve Organization Performance...52
Improve Scrum Team Performance...52
Improve Employee Performance..53
Support Scrum Teams...54

Care and Feeding: Summary..54

ISection I � Planning the Transition

  6. Create the Transition Team...59
The Transition Team Lead..62
The Executive Sponsor..62

  7. Define the Organizational Agreements...65
Document the Agreements...68
Endnotes...74

  8. Determine Transition Goals..75
Measuring and Monitoring the Transition..76
Improved Productivity through Reduced Defects...................................... 77
Improved Performance through Increased Feature Value............................79
Setting Control Limits to Manage Corrective Actions................................81
Avoiding Organizational Dysfunction Caused by Measurements...............83
Summary... 84
Endnotes...85

Contents    vii

  9. Create the Transition Backlog...87
Bringing the Transition Team Together..87
Endnote..89

IISection I � Starting the Transition
Exciting and Really Challenging...91
Basic Approach...92

10. Beginning Transition Sprint 1..95
The Sprint Schedule..96
The Transition Backlog...97
The Structure of the Transition Backlog...98
Grooming: Reducing Backlog Items to Sprint Size.....................................99
Sprint Planning...100
What’s the Big Difference between Hours and Points?.............................104
Building the Sprint Backlog..106

When Teams Attack! (The Backlog, That Is)...................................106
When Undercommitment Is the Order of the Day..........................108

Committing to Work in the First Transition Sprint..................................109
Sprint Reviews for Transition Sprints.. 110
Sprint Retrospectives for Transition Sprints.. 111
Continuing beyond Transition Sprint 1..112
Endnotes...113

11. Create the Transition Budget..115
Training and Coaching... 116
Software and Hardware.. 117
Facilities..121
Travel..122
People...123
Summary..123
Endnote..124

12. Develop the Transition Communication Plan....................................125
Project Information Storage..127
Endnote..129

13. Create the Training Plan...131
Basic Concepts..131
Agile Project Structure..133
Roles in an Agile Project...134
Matching Skills to Roles...136
Skills Become Training Modules..137

viii    Contents

The Training Modules..139
Defining the Tracks..139
Executing the Tracks..139
The Role of Coaches in the Agile Transition...144

Team Coaching Requirements...146
Overload the Scrum Teams...147
Scrum Masters and Scrum Product Owners...148
Prove Your Skill First..148
Summary..149
Endnote..150

14. Facilities Planning...151
Team Rooms... 152

Size.. 152
Location.. 153
Noise...154

Setting Up a Team Room...154
Employee Directories..156
Employee Telephones.. 157
Private Spaces... 157
Server Rooms.. 157
The Facilities Plan... 157
Endnotes...158

15. Selecting the Pilot Projects for the Agile Transition...........................159
Define Your Goals..160
Set Organizational Expectations...162
Selecting Your Pilot Project...167
Obstacles to a Successful Pilot Project..169

Dysfunctions Come with the Territory..170
Team Co-location..170

Lack of Expertise or Necessary Skills......................................170
Improper Development Metrics..170

Setting Your Project Up for Success..171
People First..171
Everyone Needs to Know Their Job...172
Introduce XP Practices Carefully...172
Get a Good Product Owner..172
Keep It Visible...173
Never Skip the Retrospective...173

Summary.. 174
Endnotes...175

Contents    ix

16. Tools in the Agile Enterprise...177
Continuous Integration/Build..179

Requirements...179
Sample Products..180

Automated Testing..180
Requirements...180
Sample Products..181

Sprint and Backlog Management..181
Requirements...181
Sample Products..182

Team Communication..182
Summary..183
Endnote ...183

17. Managing Customer Involvement...185
Selecting the Right Customer...186

Is the Candidate Qualified?...186
Is the Candidate a Potential Threat?..187
Will the Candidate Cooperate?..188

Managing the Involved Customer...189
The Helpful Customer Strategy: Involve..190
The Not Useful Customer Strategy: Watch...................................... 191
The Not Helpful Candidate Strategy: Protect.................................. 191
The Helpful Trouble Customer Strategy: Collaborate...................... 191

Managing Customer Involvement in a Large Organization......................192
Summary..194

ISection V � Creating the Agile Organization

18. Agile Project Management—Getting Started.....................................197
Scheduling in an Agile Project..198
Scheduling Challenges..198
Determining the Project’s Estimated Costs...198
Planning and Staffing...203
Specialization and the Unbalanced Backlog... 204

A Balancing Act.. 206
Architecture Definition...209
Unprepared Backlog Items..209
Getting Your Project Started...210

Creating the Release Goals.. 211
Create/Update Defined Processes and Policies.................................213
Create/Update the DONEness Definition.......................................213

x    Contents

Determine Team Staffing..217
Prepare the Product Backlog for Grooming.....................................218
Create the Sprint Schedule...221
Sprint Schedules and Large Project Considerations........................ 222
The Unwanted Stabilization Sprint..224
When the Automated Testing Isn’t Sufficient................................. 226
Begin Backlog Grooming Work Sessions...229

Summary..230
Endnotes...231

19. Agile Project Management: Monitoring, Reporting, and
Controlling..233
Monitoring Project Progress... 234
Burning Down the Product Backlog.. 234

Summary...239
The Release Plan...240

Summary.. 246
Feature Completion... 246

Summary...253
Controlling the Project...253

Front-Load Your Risk..254
Shorten Your Sprints to Improve Visibility......................................254
Manage Interactions with Nonagile Development Teams and
Providers..255
Monitor Scope-outs...258

Summary..258
Endnotes...259

20. Agile Analysis..261
User Stories and Related Terminology..262
The Life of a User Story..262

The Next Great Idea..262
Grooming the Product Backlog..265

Avoiding the Waterfall User Story.. 268
Making Sure the Backlog Is Ready for Grooming..................270

Scheduling the Workshops..270
Setting Up the Workshop..271
Discussing a Backlog Item...273
Backlog Items That Need Special Handling....................................275
Remembering What We’ve Learned..276

Summary..279
Endnotes.. 280

Contents    xi

21. Launching Scrum Teams...281
Starting a New Scrum Team...281

Establish a Team Identity..282
Establish Team Ground Rules...283
Establish Team DONEness Definition... 284

Preparing the Product Backlog: The Team’s First Sprint...........................285
Getting Ready for Sprint Planning...287
Running a Successful Daily Scrum...289
Getting Ready for Sprint Review..292
Going to the First Sprint Retrospective...293
Removing Obstacles...294
Continuous Learning..295
Summary..296
Endnotes...297

22. Managing Scrum Teams..299
The Edge of Chaos..299
Management in a Chaotic System...301

Continuous Learning...301
Encourage Change and Chaos...302
Fluidity of Structure..303

Management in an Agile Environment.. 304
The Front-Line Manager... 304
General Management Responsibilities.. 306

Helping to Improve Team Performance..307
Endnotes... 311

23. Agile Product Management...313
Large-Scale Product Ownership... 317
The Extended Product Backlog...322

The Product Backlog..325
The Information Library..326
The Defect Management System...326

Adding Items to the Product Backlog...327
Adding Defects to the Product Backlog..328
Setting Up Your Product Backlog Items for Success.................................329

Estimation of Problem Complexity..329
Acceptance Criteria..330
Risk...330
Value...331
Performance Constraints...333
Specialized Skills...335

xii    Contents

Prioritizing Items in the Product Backlog...337
Managing System Constraints..338
Summary..339
Endnotes...341

24. Incorporating ISO 9001 into the Agile Transition............................. 343
Setup... 346
Creating Your Policy and Process Documentation....................................347

Development Processes... 348
Focusing on Customers...349
Resource Management..350
Infrastructure and Work Environment..351
Measurement, Analysis, and Improvement......................................351

Review and Revise..351
Leveraging Scrum to Improve Process...353
Using the DONEness Definition...353
Using Sprint Planning...354
Using Sprint Reviews...354
Using Sprint Retrospectives...354
Formal Reviews...355

Summary..355
Endnotes...356

Index..357

xiii

Preface

I wrote this book for three reasons, and while I explain myself more fully in the
introduction chapter, I want to clearly state those three reasons without all the
technical jargon and semi-impressive phrases.

First, it has been a lifelong goal of mine to write a book. It was always a question
regarding what. I’m a big science fiction fan, so I always thought my first (only?)
book would be a sci-fi story. I was never certain it would happen. I didn’t even know
what to do first. I certainly enjoyed writing, so I figured that was a good start. Then
I met Ken Schwaber. Then Mike Cohn. Then Esther Derby. All authors! Boy was I
impressed! And then I realized that more than impressing me, these three people
brought the concept home for me. These individuals, my friends, are just people—
like me. Whether or not I was going to write depended not on fate, but action. I
needed to start thinking about writing a book every day instead of hoping it would
just happen to me. Lucky for me, circumstances provided me both the topic and
the opportunity to write, and because I was always thinking about it, the opportu-
nity didn’t pass me by.

I recently enjoyed the opportunity to plan, guide, and coach a fourteen-hundred-
person application development department from using a variety of development
methods to using agile development and Scrum.* I quickly learned upon embark-
ing on that journey that there was little available information that would help guide
us toward a successful implementation in an organization with fourteen hundred
developers and managers working in several development sites spread around the
world. So, my second reason for this book was to make sure that others that find
themselves in my shoes have something they can use to guide them.

Truthfully, I didn’t have a third reason until I started reviewing the various
cities I’ve visited while helping others adopt agile development through coach-
ing and training. I’ve always enjoyed traveling, and thanks to Scrum, I’ve been to
places I never thought I’d visit: from Vancouver, Toronto, and Ottawa, Canada;

*	 For the record, a number of good people were involved in this effort. If I tried to list them
all, I would do someone the injustice of forgetting to mention them. Suffice it to say, they
know who they are and I greatly appreciate their help and energy as we fought our way into
new territory.

xiv    Preface

to Cambridge and London, UK; to Brussels, Amsterdam, Stockholm, Helsinki,
Munich, and Nuremburg; to Mumbai and Bangalore, India; to New York City,
Dallas, Anaheim, Los Angeles, Pensacola, and Portland, Oregon. I consider myself
fortunate for having been given the opportunities I’ve enjoyed and visited the cities
I’ve been to so far. All of this reminds me of something Ken Schwaber challenged
all of us with at a Scrum gathering in Boston a few years ago—that to the extent
that we and our organizations had benefitted from Scrum, we should pay it for-
ward, give back. So, there’s my third reason: this book is one of my attempts to give
back to Scrum and agile development what I have gained from it.

xv

Acknowledgments

Many authors say it, but now I have a firsthand understanding of what they mean
when they say how “this book could not have been possible without the help of
many, many people.” There are many people that have been involved in this effort,
both directly and indirectly, and I will likely miss many people I would want to
thank, despite racking my brain for many hours to ensure that I don’t miss anyone
in this list. So here goes:

I owe my most profound thanks to my wife, Donna, and my children: Rebecca,
Melanie, Jacob, and Rachel. While there were many people involved in the overall
effort that resulted in the information between these covers, only my wife and
children had to deal directly with my frequent frustrations trying to make unusual
concepts clear in a most limiting medium: words. Only my wife and children had to
watch “Daddy” typing away many evening and weekend hours. While I typed, they
kept the house quiet and kept things moving without my help. Truly, without their
patience, understanding, and support, I could not have finished the manuscript.

Next, of course, come the key people with whom I worked to achieve what was
arguably the largest implementation of agile development and Scrum in the world
(whether this is still true I cannot say). Collectively, we had little idea of what we
were getting ourselves into when we started and, as I’ve joked in the past, if we
had known, we might have lacked the intestinal fortitude to go through with it.
However, I’m glad we did, and were I in the same situation again, I would do it all
over again (although I think the information in this book would help me to do it
better). So, I offer my thanks to the following: Daphne Thomas, Brian Barr, and
Tom Miller for creating the environment that led to a full-scale transition to agile
development; John DuClos, Mark Engel, and Chad Haggerty for being there from
day one and never taking a step back from the edge; Lisa Margerum for understand-
ing how crucial coaching, training, and education were to the transition and mak-
ing it all happen; and Kiran Thakkar, Chirag Dadia, Mike Bria, and Nick Conti
for taking up the agile/Scrum banner and championing it in their respective groups
and departments—they made it happen in the trenches and I will never forget the
crucial roles they played in the transition. And a special thanks to Laura Anderson

xvi    Acknowledgments

and Nancy Dohmson for the steadfast examples they provided and, of course, for
helping keep me sane when the desire to run away screaming was overwhelming.

Lastly, I extend my thanks to the many trainers and coaches in the agile and
Scrum communities with whom I have worked, even if briefly, that helped me gain
the unique understanding of agile development and Scrum that I have today. Of
course, among them are Ken Schwaber, Mike Cohn, and Esther Derby for playing
a big role in showing me how and why Scrum works; and Bob Martin, Kent Beck,
James Grenning, Martine Devos, and J. B. Rainsberger for helping me understand
even more clearly during those times when I just didn’t get it.

Over the past five years, I’ve worked with so many people that I’m sure there
are others whom I haven’t mentioned that also played a part in this effort, and if I
have indeed forgotten to mention you, please know that you have both my deep-
est appreciation for your help and my sincerest apologies for my oversight. Let me
know and I’ll be sure to mention you in volume 2, OK?

xvii

Biography

Jim Schiel is a Certified Scrum Trainer (CST) with a strong background in enter-
prise-level Scrum installations. Prior to starting Artisan Software Consulting, Schiel
worked at a large, multi-national software development company for 23 years, where
he worked initially as a developer, then as a manager for 16 years, and eventually
playing an instrumental role in creating one of the largest Scrum installations in
the world. As a business process engineer, he helped identify, document, and imple-
ment best practices for enterprise Agile Development.

 Jim is now the owner and CEO of Artisan Software Development, a company
with the founding belief that software development is as much an art form as an
engineering practice and that the key to high quality and high productivity is in
the developers, not in the processes with which we surround them. Jim travels
around the world helping organizations realize the full potential of their developers
through the use of Agile Development and Scrum.

 Jim lives just outside Philadelphia, Pennsylvania with his wife, Donna, and
four children.

1

1Chapter

Introduction

I would rather have a good plan today than a perfect plan two weeks
from now.

Gen. George S. Patton (1885–1945)

On the day that I began what eventually became a full-scale transition of a fourteen-
hundred-person organization to agile development, I had absolutely no idea what I
was getting myself into. To be certain, I have no regrets. I’ve met intelligent, fasci-
nating, funny, and friendly people who welcomed me into their group—what shall I
call them? agilists?1—without prejudice or prevarication. At the same time, had I any
idea what I was in for when I gave my management that first presentation on Scrum,
I might have been a little less willing to charge headlong into the agile world.

So there I was, unwarned and unprepared: “where angels fear to tread …” and
the like. Lacking solid information about how to do a large-scale transition, we
plowed ahead, trusting in our knowledge of the organization and the unwavering
support of both management and the developers. Four years later, somewhat wiser
and a tad wary, the transition has gone well. From new project management prac-
tices to new requirements management, new ways of getting customers involved in
development, and new ways for developers to work; from human resource policy
changes to remarkable improvements in product quality—I’ve learned a lot. Along
with the team that was strategic to guiding the transition, we made some good
decisions and some bad ones. During it all, I found myself frequently wishing for a
resource I could use that would at least give me a clue whether we were headed in
the right direction. That is the genesis of this book.

2    Enterprise-Scale Agile Software Development﻿

I don’t claim that this book will tell you everything you need to know about
guiding a transition to agile development. Within its pages, however, you will find
a good place to start. Some of what you will find within these chapters will work
for you as written; much will need modification to work in your situation. Some
may not work for you at all. However, this book will give you much to think about
when creating and executing your transition plan and will be very useful in helping
you make sure that you’ve thought of and made plans for many of the possible situ-
ations, risks, and contingencies.

Web Site
Because information about successful (and unsuccessful) enterprise agile transitions
is always evolving, I’ve created a web site that accompanies this book: http://www.
bigagiledevelopment.com. At this site, you’ll be able to find additional information
regarding many of the chapters in this book, sample presentations to support the
training, and sample policies and documents to support the regulatory informa-
tion provided in this book. Your contributions to the site and feedback on how to
improve this book will be much appreciated.

About This Book
As previously mentioned, the purpose of this book is to be a reference source for
organizations attempting to convert their transitional development practices to
agile development. Contrary to being a step-by-step guide, this book is organized
into chapters that provide the material in the order that you’re likely (though not
definitely) going to need. This book is not intended to be a “body of knowledge”
type book that standardizes agile and Scrum practices. Agile development is about
people, not prescription. The intent of this book is to offer guidance and a tool kit.
Read it, take ideas from it, and pick what works for you.

This is not the software development version of the “great American novel.” It
is not organized to be read from cover to cover and, indeed, may be a reasonable
remedy for insomnia should you decide to read it cover to cover.

The content in this book is based on the use of Scrum2 as an organizational
framework and on many Extreme Programming (XP)3 practices used to define how
software is written and tested. I recognize that there are many other frameworks
and practices that can be considered, but I recommend the model represented by
the combination of Scrum and XP for nearly all organizations.

I’ve also included information in this book regarding good development prac-
tices that are based on the International Organization for Standardization’s ISO
9001 standard, which contains the requirements for the creation of a quality man-
agement system that helps to ensure consistent production quality. While many of

Introduction    3

you will not need the controls contained in such rigorous regulations, I urge you
not to discount practices that will most certainly help you create consistently high-
quality software in a cost-efficient manner.

A Balancing Act
Often, during the course of the book, we will discuss a topic that has a number of
different possible answers. Rather than tell you that one answer is “better” or “more
right” than another, I will instead try to call out those practices along with their
potential positive and negative outcomes so that you can decide which will work
best in your unique situation. Consider all alternatives thoroughly before you make
a decision.

Audience
Agile transitions are, not surprisingly, a collaborative effort of product managers,
trainers, coaches, management, executive management, human resources experts,
quality control, and transition team leads as well as Scrum masters,4 product
owners,5 developers, analysts, architects, writers, testers, etc. To keep it simple,
this book is written from the perspective of someone guiding or leading a transi-
tion and attempts to address many of that individual’s concerns by providing
possible solutions at best and, at least, a heads up as to what problems will need
to be addressed.

There also are items discussed throughout this book that will have legal or
regulatory significance. In the case of these matters, it is advised that legal counsel
as well as labor law experts and regulatory specialists be involved in the activities
of the transition team in order to ensure that no laws are broken or practices put in
place that would not pass a regulatory audit. As everyone’s situation varies depend-
ing on the industry, the project, the country of manufacture, and the country in
which the product is sold, the organization must take it upon themselves to ensure
that all matters of legal or regulatory significance are properly addressed.

Success Factors
I debated whether or not to put this section in the introduction or in the section
that follows, “Setting the Stage for a Transition.” Obviously, this section won the
argument. The deciding factor was simple: if you don’t have the key success factors
in place before you begin the transition, plan to get them as the first steps of your tran-
sition! We’ll talk about all of these items in detail later in another section. The key
success factors to a successful transition to agile development are:

4    Enterprise-Scale Agile Software Development﻿

	 1.	Executive management support and involvement: Several aspects of the agile
transition need executive management support to get off the ground. These
include, but are not limited to, purchasing computing environments to sup-
port Scrum teams and continuous integration and testing, modifying the work
environment to support team rooms instead of independent offices and cubi-
cles, understanding and accepting the new reporting and estimating mecha-
nisms used in agile development, and working with the sales and marketing
as well as customer support functions of the organization to support the level
of customer involvement prevalent in an agile development organization.

	 2.	Early successes: There will be many in the organization ready to say things like
“Oh, that won’t work here”6 and “Agile development really screwed that up!”
The reality is that not everything is going to go perfectly the first time and
you are going to experience a lot of difficulty throughout the transition. In
fact, agile development is all about trying the best solution you have at the
time and improving it as you go forward and gain more experience. In order
to keep the initial momentum of a transition going, plan for early successes
by not trying to address the most complex or riskiest problems. Consider a
pilot project to work out some of the unique kinks in your organization before
continuing on to something bigger and more critical. And remember, phrases
like “That won’t work here” are usually just cover stories for an organizational
dysfunction that, if corrected, would make life better for everyone.

	 3.	Automated testing: Agile development demands that you be able to add code
to your product in small slices of functionality and then be able to ensure
that the product, by and large, still works as intended. This is a crucial part
of the XP practice of continuous integration and testing and helps to encourage
both the frequent introduction of new code to the product and test-driven
development.7 All of these practices are crucial to ensuring that Scrum teams
are providing completed functionality at the end of their sprints.

	 4.	Management support and involvement: Managers play a key role in an agile tran-
sition. They are with the development teams helping make the day-to-day deci-
sions that either enable agile development or allow the organization to make
one compromise after another until the agile transition slowly fades away.

	 5.	Developer8 support and involvement: As much as management support is
required to get the transition off the ground, developers also have to make
it work. Agile development, and particularly Scrum, requires developers to
do what is “right” to create high-quality software for their customers. In my
experience, there isn’t a product development method more so than agile
development that needs every developer to act in the best interests of the
product. Without the commitment of the developers, no agile practices can
be successfully implemented.

	 6.	Discipline: Contrary to widely held opinions, agile development does not
suggest anarchic development (coding without planning, design, or docu-
mentation). It does, however, suggest a willingness to move forward with

Introduction    5

a development project recognizing that software development is filled with
uncertainty. In fact, a number of writings on agile development suggest that
there is a unique balance of order and chaos required in software develop-
ment that agile development recognizes and leverages. Think of it this way—
you’ve gone on vacation to the Grand Canyon9 in Arizona. As long as you’re
several feet away from the rim of the canyon, you feel comfortable walking
or running as necessary. As you walk closer to the edge, excitement grows,
but your caution increases as well. Agile development is all about getting
right to the edge of the canyon without falling in—you get the excitement
of being right on the edge of infinity, while, at the same time, you practice
significant discipline to keep from becoming a permanent feature of the can-
yon floor. Without discipline, agile development becomes either too chaotic
or too ordered10—in either case, the benefits that agile development provides
(frequent delivery, high quality, innovative thinking, customer satisfaction11)
cannot be fully realized.

	 7.	Patience: By patience, I mean that an organization has to be willing to give
the transition to agile development time to have a positive effect. While you
may begin to see morale improve fairly early, improvements in software qual-
ity could take considerably longer. The cultural changes that accompany the
agile way of building software applications could take years to become an inte-
gral part of the organization.

	 8.	Willingness to make mistakes: Are you willing to make mistakes? There exists a
mantra in agile development: “Fail fast, fail often.” We learn much more from
our mistakes than from our successes. Of course, we inspect, we adapt, and we
frequently use retrospection to make sure that if we’re going to fail, we get it
over with in a hurry. Doing so allows us to get back on our feet and try again.

Suggested Readings
There are a number of good books and Internet-based resources that I would rec-
ommend to anyone involved in an agile transition or that finds himself or herself
on an agile development team. I’ve avoided repeating the content of these books
herein. These books and resources are:

Schwaber, Ken, and Beedle, Mike. 2001. Agile Software Development Using
Scrum. Upper Saddle River, NJ: Prentice Hall.

Schwaber, Ken. 2007. The Enterprise and Scrum. Redmond, WA: Microsoft
Press.

Cohn, Mike. 2005. Agile Estimating and Planning. Upper Saddle River, NJ:
Prentice Hall.

Cohn, Mike. 2004. User Stories Applied. Upper Saddle River, NJ: Addison-
Wesley Professional.

6    Enterprise-Scale Agile Software Development﻿

Beck, Kent, and Andres, Cynthia. 2004. Extreme Programming Explained.
Upper Saddle River, NJ: Addison-Wesley Professional.

Feathers, Michael. 2004. Working Effectively with Legacy Code. Upper Saddle
River, NJ: Prentice Hall.

Derby, Esther, and Larsen, Diana. 2006. Agile Retrospectives: Making Good Teams
Great. Dallas, TX: Pragmatic Bookshelf.

Endnotes
	 1.	 I’ve also heard the term agilistas to describe those who evangelize agile development.

My problem is that I hear agilista and I envision someone with a sombrero and a gun
belt. Maybe it’s just me?

	 2.	 For more information on Scrum, go to http://www.controlchaos.com and http://www.
scrumalliance.org.

	 3.	 Extreme Programming is a discipline of software development based on values of sim-
plicity, communication, feedback, and courage. For more information on Extreme
Programming, go to http://www.xprogramming.com.

	 4.	 The Scrum master is responsible for making sure a Scrum team lives by the values
and practices of Scrum. The Scrum master protects the team by making sure they
do not overcommit themselves and he facilitates the daily Scrum (http://www.
mountaingoatsoftware.com/scrummaster).

	 5.	 The product owner (typically someone from a marketing role or a key user in inter-
nal development) prioritizes the product backlog (http://www.mountaingoatsoftware.
com/product_owner).

	 6.	 The phrase “Oh, that won’t work here” is probably the most damaging phrase you can
hear during the course of an agile transition. It is a clear indicator of an organizational
deficiency. Here’s the bottom line on that thinking: agile development has been used in
organizations that are small or large, co-located or global, regulated and nonregulated.
XP projects have been run successfully since the mid-1990s, and Scrum has been used
since the early 1990s. There are thousands of successful projects as proof. The person
speaking this phrase is really saying “Oh, I don’t want to do that” or “It’s not worth my
effort to push the organization enough to change.” And, by the way, the second most
damaging phrase is “That’s not agile,” but we’ll discuss this another time.

	 7.	 Test-driven development (TDD) is a software development technique consisting of
short iterations where new test cases covering the desired improvement or new func-
tionality are written first, then the production code necessary to pass the tests is imple-
mented, and finally the software is refactored to accommodate changes. This helps to
ensure that the tests enforce the design and not the code.

	 8.	 I want to clarify that when I say developer, I mean all of the people that are involved in
the creation of the product. That includes the coders we usually think of when we say
developers, as well as the analysts, testers, designers, database architects, system archi-
tects, writers, etc. During the course of this book, I will try to use coders when I mean
coders and developers when I mean everyone involved in building the product.

Introduction    7

	 9.	 For those of you unfamiliar with the Grand Canyon, it’s an absolutely beautiful loca-
tion in the southwestern United States. In some locations, the canyon is over fifteen
hundred meters deep and is estimated at 5 or 6 million years in age. For more informa-
tion, see http://www.nps.gov/grca/.

	 10.	 Dee Hock, founder and former CEO of the VISA credit card corporation, described
the harmonious confluence of chaos and order as chaordic. See http://en.wikipedia.org/
wiki/Chaordic for more information.

	 11.	 Find the principles behind the Agile Manifesto at http://www.agilemanifesto.com/
principles.htm.

9

2Chapter

Why Agile?

The first and most basic question to ask before you embark on a transition to agile
development is: Why?

Why do you want to do this? If you are in a business, there’s only one practical
reason to do this. You want to improve your bottom line. You want to make more
money. For those of you I just disappointed by my being so Machiavellian about my
reasoning, I apologize. However, I haven’t yet run into an organization that wants to
transition to agile development to develop better-quality products even if they happen
to lose money in the process. Except for government agencies and the Detroit-based
auto manufacturing industry, no organization does anything that doesn’t somehow
help ensure the organization’s continued existence. In fact, in several years of consult-
ing, I’ve only found one organization that was already happy with their software qual-
ity, but wanted to transition to agile development anyway just to see if things could
get better (and they found that agile development worked better for them too!).

Therefore, the question is: Can transitioning to agile development help you make
more money? With but a few exceptions, my answer to this is always a resounding
yes. But before we talk about reasons for going ahead with the transition, let’s dis-
cuss some of the reasons why many feel they should not.

Myths about Agile Development
As with many other misunderstood concepts, agile development has garnered a
number of nasty myths about it that stem from misunderstandings about agile
development or poorly considered theories of why it failed in many organizations.
Let’s deal with some of those myths now, before diving into discussions of what
agile development can do for you.

10    Enterprise-Scale Agile Software Development﻿

	 1.	Myth 1: Agile development does little planning. This myth barely has a speck of
reality in it, and that speck is that agile development does minimal up-front
planning. In fact, agile development proposes just enough up-front planning
to get the project started. From that point forward, planning is done at vari-
ous levels as frequently as every day. Agile development, as evidenced in the
Agile Manifesto, puts more value in expecting and embracing change than
in creating detailed plans to deal with or control change. Think of it as just-
in-time inventory management. This concept, which reduces cost and waste
by closely monitoring inventory levels and customer purchasing trends and
taking delivery of new inventory “just in time,” has been championed by
some of the largest retail chains in the world, including Wal-Mart Stores, Inc.
Agile development works the same way. If you plan too far ahead in too much
detail, you end up wasting time changing your plans when the prevailing
circumstances change without warning. However, if you create long-range,
high-level plans at the beginning of the project and supplement them with
short-range, highly detailed plans on a daily, weekly, and monthly basis, you
waste very little effort in planning.

	 2.	Myth 2: Agile development does little analysis. As with planning, agile develop-
ment reduces waste by doing just enough analysis on any given feature to reveal
previously unknown details, risks, and requirements to support better and
better estimation and more effective planning. As with just-in-time planning,
doing the analysis throughout the project reduces the waste caused by features
being changed or removed from the project during the course of the project.

	 3.	Myth 3: Agile developers don’t write documentation. As has already been
pointed out in the description of the previous myths, agile development looks
to reduce waste by not spending time and effort doing things that are very
likely to change. Similarly, agile developers will write documentation only
when the documentation is proven to have some kind of value to the organi-
zation. Putting it another way, I often coach my agile development teams to
see if the documentation that they have been writing has an audience, that is,
someone who wants to read it. For particularly long or detailed documents,
we review every section of the document to ensure that someone actually
plans to read and use it. If there’s a reader, and they can’t use any other docu-
mentation already produced by the development team, we write it. This is
also true for documents that are created primarily (or solely) for compliance
with a standard or regulation. Certainly, even documents that appear to have
no other purpose than to satisfy a regulation have at least one very important
reader: the auditor.

	 4.	Myth 4: Agile development “squeezes” roles out of the organization. This one
always puzzles me. In general, I hear complaints that agile development
forces everyone to work in teams and, regardless of role or job title, to work
on any tasks. This, I’m told, obscures role definitions (which, frankly, is not
always a bad thing). Agile development, however, does no such thing. Agile

Why Agile?    11

development creates development teams based on the skills needed to com-
plete the assigned work. I usually see that handled by making sure that each
team has a certain number of testers, analysts, coders, and so on. But all of
these are, in fact (if a little vaguely stated), roles. If agile development can be
accused of anything with regard to roles, it’s in the focus on the success of the
team. It most certainly has happened that team members not used to writing
documentation, writing and executing tests, or creating reports have been
asked to work outside their “role definition” in order to ensure that the team
is successful.

	 5.	Myth 5: Agile development can’t provide accurate project schedules to support
organizational planning. This concern comes up when a company transition-
ing to agile development asks for locked-in delivery dates and a locked-in
feature list at the beginning of a project. In most instances, an agile coach or
Scrum master will respond that he or she can either lock in the feature list
or the delivery date, but not both. That’s generally when the real shouting
begins. More importantly, consider most, if not all, of the waterfall-based
development projects that you’ve taken part in or watched from afar. How
many of those fixed-scope/fixed-date projects ended as projected without
changes to the included features or the staffing (usually by forced overtime)?
How many of them sported project schedules that were perfect and didn’t
require significant changes at least once every hour or so?

Every project, whether agile or otherwise, balances the three key properties of
people (or resources), time, and scope (what features/defects will be included in the
release). It has long been agreed that you can’t change any one of these properties
without having an impact on at least one other (often both). For example, want to
add new features (that’s the scope property)? You’ll have to add resources (people)
to get the same amount done in the same time, or you’ll have to add more time to
get it all done with the same resources. This concept predates agile development and
is part of basic project management (agile or otherwise). So, when Scrum masters
say they can either lock in the date (leaving resources or scope subject to change) or
lock in the scope (leaving resources and cost subject to change), they’re just practic-
ing good project management. Organizations have, for many years, attempted to
lock in both date and scope without allowing changes to resources—this usually
means the resources are going to be working lots of overtime and either or both the
project scope and project timeframes are going to change at the last minute.

Waterfall projects have attempted for years to do enough up-front planning,
analysis, and design to ensure that the project schedule is not only accurate, but
capable of handling unexpected surprises. The reality, however, has been well docu-
mented in several studies: most application development projects are either can-
celled outright or completed overbudget or overschedule and with fewer features
than originally planned. The sad truth is that, despite the attempt to predict the
problems that will occur, unexpected changes and uncertainty are a natural part

12    Enterprise-Scale Agile Software Development﻿

of software development. Still, those of us who have managed waterfall projects
know that while the project schedules and work estimates are created with apparent
precision (often to the fraction of an hour), the precision is merely a mirage and our
schedules are more than likely out-of-date as soon as we publish them to the orga-
nization. Agile projects don’t create detailed plans up front because we know they
are inaccurate and expensive to create—not enough information can be unearthed
in order to create a precise schedule.

What does all this mean? The inability to produce accurate project schedules
early in the project is a symptom of the uncertainty that is intrinsic in software
development. Agile development doesn’t attempt to reflect simulated precision in
the project schedule. Relying on project schedules to be precise and then trying to
squeeze more work out of your developers because the project schedule says they
should be able to do it will require overtime to get the work done, and the work is
done at the risk of reduced quality and lowered developer morale.

In fact, agile development does support organizational planning in a manner
more effective than most development approaches. Here’s how:

	 1.	Agile development projects don’t build features in phases. Rather, features are
started and completed based on their priority. This means that agile projects
deliver functionality sooner, and you will recover more completed functional-
ity from an agile project that you have to change, cancel, or extend. When
cancelled, waterfall projects usually provide lots of completed documenta-
tion, but little in the area of completed functionality.

	 2.	Agile development projects can be easily planned to finish by a certain date
with fixed resources. The variable, of course, is the scope, which can also be
easily managed by modifying the priority of the features to get higher-value
features earlier. You can more easily modify an agile project to get more or
less functionality by adding or removing iterations from the project. This makes
the cost of the project easily controllable by the organization’s management.

Reasons to Stay Away from Agile
With all that said, why do organizations resist the transition to agile development?

I’ve heard many reasons why organizations don’t try or try but quickly back
away from agile development. It boils down to this:

It’s too disruptive and too hard.◾◾
It won’t work for us because we’re too big/complex/regulated/distributed (fill ◾◾
in your reason here).

Let’s be honest—these are understandable concerns. Transitioning to agile
development is hard and it can be very disruptive. In fact, my major motivation in

Why Agile?    13

writing this book is to help you reduce the disruption and make it a little easier by
giving you a path and some options that should work to get your transition well
under way. If you aren’t prepared to accept some disruption and some difficulty,
to make significant changes to your organization and your organizational culture,
you should stay away from agile development for now. As was already mentioned in
Success Factors in the Introduction, management and development support are key
elements of a successful transition.

As for the second belief that agile development “won’t work for us,” I often see
this as a result of two different factors. The first factor is simple misunderstanding
of agile development. Terms like Scrum, sprint, planning game, and extreme tend to
drive even the most liberal of executive management into hiding. Who could blame
them? We in agile development create terms like these to ensure that those who use
agile methods clearly understand that these methods are very different from busi-
ness as usual. However, that tactic seems to backfire when you try to sell Extreme
Programming to the CEO of a financial institution. The second factor is simply
that to start a transition to agile development, you have to see that a significant
portion of the organization’s policies, procedures, and practices as they relate to
application development are actually attempts to make organization dysfunctions
hurt less. An organization that isn’t ready to accept the premise that a large major-
ity of their existing structure needs to change is probably not ready to begin an
agile transition.

Now, having talked about all the reasons why organizations won’t try agile
development or why they end their transitional efforts after experiencing difficul-
ties, let’s explore how an organization can benefit from agile development.

How Your Organization Will Benefit from Agile
Improved Software Quality
I have seen agile development benefit organizations in a number of different ways.
First and foremost, software quality is always improved by the concepts ingrained
in agile development. The continuous testing of an application, rather than wait-
ing for the testing phase of a project to see if it all works together, is one of the
most effective practices that agile development provides to an organization. I have
witnessed integration efforts that took months, only to be followed by projects that
included continuous integration and testing that eliminated any special time during
the project when the only thing happening was integration. This is also reflected
in the practice of test-driven development, where the code and its associated tests
are not only kept current and working, but the tests are written before the code and
are driven by the design, rather than being driven by the completed code.

“DONEness” is a major consideration in agile development and a major fac-
tor in the creation of high-quality code. Getting every feature to a predefined and

14    Enterprise-Scale Agile Software Development﻿

widely agreed upon state of completion helps to ensure that the feature does what
the customer wants it to do.

Improved Organizational Commitment
Related to the quality of the software is the commitment of the development orga-
nization and, quite possibly, the entire business organization. During my time as a
developer or as a manager, there were many projects that we worked on for months
on end just to deliver software as part of a larger project, and if we were lucky, we
saw some snippets about how much the customer liked the new version. Sometimes,
customers might even come in themselves and tell us how much they liked the soft-
ware (but they never gave Too glowing a report—I suspect that it was like giving a
hotel a perfect 10 on a survey; you always wanted to leave room for improvement).
It was hard to stay motivated on projects like these and, more importantly, it was
easy to never feel much in the way of ownership (shared or otherwise).

Whether the project went well or didn’t, any potential positive feedback was
so far in the future that it was easy to abandon one project to go work on another
that either was using the latest technology or was the beginning of the “next great
product.” On the other hand, agile development, with its short iterations and sprint
reviews, gave the developers that worked for me (and, truth be told, me as well)
something to look forward to at the end of the sprint. Of the three possible answers
we could get for any completed backlog item (“fantastic,” “great but would be bet-
ter with changes,” and “not what I wanted”), two of them were at least positive and
the third (“not what I wanted”) was fairly easy to protect against by simply improv-
ing the product owner’s contact with the team. Constructive feedback on a frequent
basis keeps the development teams charged and engaged with the project.

Reduced Waste
Agile development also carries with it a strong aversion to waste, particularly
waste caused by rework. As a portion of the Agile Manifesto suggests, “[We value]
responding to change over following a plan.” This appears in agile development in
many ways, but is most particularly demonstrated in a principle borrowed from
Lean manufacturing that suggests deferring decisions until the last reasonable
moment. These decisions include allowing ourselves to probe deep enough into our
prospective features to do appropriate planning, but not so deep that when a feature
is removed from the project or significantly changed, we’ve wasted a lot of time on
extensive analysis that now has to be thrown away or redone. The same thinking
can be found in an agile development team’s approach to writing documentation—
they write just enough documentation to satisfy their internal customers (users,
support, marketing, etc.) and their external customers.

Agile development’s approach to requirements management is also a study in
doing just enough to satisfy the current needs. Stakeholder requests (requests for new

Why Agile?    15

or changed functionality coming from the product’s users) are rewritten as backlog
items. Backlog items are historically written on index cards both to facilitate easy
planning and to ensure that teams do not collect more information about a feature
than they could easily fit on the card. As the project progresses, backlog items are
analyzed and estimated; large, complex items are split into smaller items that are,
in turn, analyzed and estimated. Each item exists in a state that has just enough
analysis done on it to support ongoing planning. By the time an item is ready for
a sprint, it may have been sliced down several times, accumulating more informa-
tion and losing complexity during each pass through the ongoing analysis effort.
In this manner, changes to backlog items can be introduced without too significant
an impact on the analysis that has already been completed. Clearly, however, an
item changed early in the project will result in much less rework than, for example,
an item changed immediately before it is to be taken into a sprint and built.

Improved Customer Relationships
One of the strengths of agile development is pointed out in another line from the
Agile Manifesto: “[We value] customer collaboration over contract negotiation.” In
other words, those of us who have embraced agile development have grown tired
of the days where we use contracts as a wedge to force the customer to accept what
we’ve built or pay more when they make changes from the initial specification.
While we all recognize that there’s a time and a place for good-faith contract negoti-
ations, agile development makes a case for getting our customers closely involved in
the development effort itself. Even small moves in this direction can be eye-opening
and, in fact, may even be perceived as a product differentiator in markets where the
competition is fierce. In one company, customers that represented various market
segments of the company’s flagship product were flown to the corporate headquar-
ters to review the significant features that were planned for upcoming versions of
the product. Over the course of three days, every major feature was reviewed and
discussed. Experts from the company came in to define and clarify the features
and the customers asked questions until they were comfortable they understood
the premise. In addition, the customers were asked to do a high-level prioritization
of the backlog; this prioritization would play a large part in the actual content of
(at least) the next release of the product. At the close of the workshop, customers
were asked to provide an evaluation of the session. In nearly every instance, the
response was that the workshop was a long-overdue exercise that should be repeated
a few times a year. The customers felt more connected to the decisions being made
and even, in some cases, played a role in de-prioritizing features that had previously
been considered to be a high priority.

Similarly, customers are considered to be the subject matter experts in how a
feature will be used in the finished product. Therefore, while customers don’t drive
what a Scrum team works on (what a team builds is defined by the prioritization of
the product backlog and how much the team is able to commit to), they can have

16    Enterprise-Scale Agile Software Development﻿

a significant impact on how the feature actually works. In addition, those same
customers can make suggestions for improvement that can be passed to the product
owner and be added and prioritized on the product backlog immediately. In this
way, a customer can actually suggest new possibilities and potentially see those pos-
sibilities become reality in a short space of time.

Customers that feel more connected to your prioritization decisions and feel more
a part of how your product is built become satisfied and committed customers.

Summary
Organizations transition to agile development for the simple reason that it helps to
improve the bottom line. However, there are a number of myths and concerns about
agile development that often cause organizations to back away from agile develop-
ment or to somehow adulterate agile development practices before even trying them
as defined. These myths state that agile does too little planning and analysis, doesn’t
produce the necessary documentation, forces homogenization of roles on the devel-
opment groups, and can’t provide enough information to support organizational
planning. The myths are easily debunked as misstatements and misinterpretations
of agile practices—agile analysis and planning is done in a “just enough” manner
that is spread across an entire project and does not occur just in the beginning
phase of the project. The myth that agile developers do not write documentation
is simply an untruth, though we do try very hard not to write documentation that
no one needs. Similarly, role homogenization is a gross misinterpretation of the
expectation in an agile development team that everyone works together to get the
job done—even outside their typical responsibilities. The final myth states that
agile development does not provide enough information in the project schedule to
support organization planning. The truth here is that while the detailed schedules
built from waterfall projects provide the illusion of precision, agile projects provide
significantly more flexibility to the organization by being able to be easily ended or
extended based on the organization’s plans and needs.

In addition, many organizations see an agile transition as too hard and too dis-
ruptive, or that agile simply won’t work because of complexities unique to a specific
organization. Without doubt, a transition from more traditional methods to agile
development will indeed be both hard and disruptive, and while some of the dif-
ficulty and disruption can be mitigated by learning from previous efforts (and using
this book, of course), the organization unwilling to accept some difficulty and dis-
ruption probably shouldn’t attempt agile development. Those concerned that agile
development can’t work in an organization that is too complex are often really just
saying that they’ve already spent a lot of time building a detailed and complex orga-
nization and they don’t want to make significant changes in order to bring in agile
development. What this means to any successful transition plan is that the current
organization must be continuously examined to determine how agile development

Why Agile?    17

practices can be introduced while preserving the best parts of the organization and
keeping the overall work disruption to a minimum.

Finally, of course, here are the reasons why an organization would want to tran-
sition to agile development:

	 1.	Improvements in software quality that come from a number of agile devel-
opment principles, not the least of which is the collaborative nature of agile
development teams.

	 2.	Increased organizational commitment to the product development effort,
which comes from the frequent feedback that results from reviewing every
sprint. This provides more continuity in development and increases the pos-
sibility of productivity improvements from innovation and overall experience
with the software.

	 3.	Reductions in waste are always desirable and agile development helps to
reduce waste by doing the right amount of work at the right time, so as to
minimize the risk that unexpected changes later in the project don’t result in
significant rework for the development teams.

	 4.	Improved customer relationships that come from the direct involvement of
the customer in prioritization decisions as well as helping the development
teams build the right feature that works the way the customer does.

In the end, whether you decide to transition to agile development or not
depends on your commitment to doing it right and your tolerance for being
exposed to, dealing with, and solving organizational dysfunctions. You’ll need
both commitment and tolerance in good supply to successfully complete a transi-
tion to agile development.

ISetting the
Stage for
a Transition

One of the most crucial aspects of the agile transition is preparation. As with soft-
ware development, the transitioning of the organization to agile development can
have a good start, but there is a considerable degree of uncertainty in the approach.
Therefore, just like software development, we’ll also handle the transition in an
agile manner. We’ll get our high-level plans laid out and then seek out more detail
as we move forward. However, as we’re starting with an organization that is not
yet agile, there’s a lot of up-front discussion on team organization, transition con-
cepts, and expectations required in order to get the transition started. Later sections
of this book will discuss topics and tasks related to managing the ongoing transi-
tion and operational management of the agile organization. In this section of the
book, however, we’ll discuss many of the topics that need to be discussed and tasks
that need to be completed in order to get the transition started. Those topics are:

Concepts◾◾ : Just like a sprint goal, the transition needs a place to go. The section
on concepts helps you set your goal for the transition. How far do you want
to go? What do you want to accomplish? At what point do you decide that
the transition is finished and the organization can learn effectively on its own
without a guiding transition team?
Barriers◾◾ : What in your organization is going to get in the way of a successful
transition, and what are you going to do about it? This section will walk you
through identifying the potential barriers so that you can make plans to deal
with them at an appropriate time.

20    Enterprise-Scale Agile Software Development﻿

Management in an agile environment◾◾ : The success of your transition is in the
hands of the managers that pay the bills. Like everyone else in an agile transi-
tion, their job is significantly changed by agile development. What are the
specific challenges that management will face? More importantly, will man-
agement commit to staying the course when your product development is
under stress?

21

3Chapter

Transitional Concepts

This chapter focuses on a variety of concepts and principles that you should be
familiar with before beginning the agile transition. While a lot of it may seem like
a lot of technical mumbo jumbo, understanding what all of it means will be critical
to putting together an effective transitional backlog and guiding your develop-
ers and managers through what will most likely be the most substantial cultural
change of their professional careers.

Read the following sections carefully. At the end of the chapter, we’ll start
building your transition backlog and get this ride started. First, however, let’s get
you somewhat acquainted with agile development.

What Is Agile Development?
Since this book is not intended to teach you all there is know about agile develop-
ment, I’ll keep the explanation short. I’ve recommended several very good books on
the topic in the introduction to this book.

At a high level, the term agile development refers to a genre of application devel-
opment techniques characterized by an adherence to what’s currently known as the
Agile Manifesto.1 In short, these characteristics are:

	 1.	Emphasis is placed on individuals and teams doing the right thing, rather
than trying to prescribe the entire development activity with high-ceremony
process and overweight quality management programs.

	 2.	Focus is on working software, not documentation that describes software.
Teams are required to be able to demonstrate working software throughout
the project.

22    Enterprise-Scale Agile Software Development﻿

	 3.	Rather than keeping them at the “end” of the software development activity
(when it is finally delivered to them), customers are highly valued participants
in the development process, providing perspective as the eventual purchasers
and users of the software product.

	 4.	Planning and estimation activities are not done only at the beginning of
the project. They are done at different levels of granularity throughout the
project. This allows the project to easily absorb change while avoiding sig-
nificant waste.

Agile projects can use quality management systems to help ensure the infusion
of quality during the development process and to comply with various government
regulations. Documentation is still created during agile projects, and enough plan-
ning is done at the beginning of the agile project to create a reasonable projection
as to when the project might be finished. But agile projects put their emphasis
on individuals and teams, working software, collaboration with customers, and
the assumption of change (which then leads to planning that is considerably more
change tolerant than most waterfall-based projects).

This book is written with an assumption that you will employ a combination of
Scrum and Extreme Programming (XP) practices to implement your agile develop-
ment environment. You can, of course, implement DSDM1 or FDD2, only Scrum
or only XP, or perhaps even some other method that will be discovered sometime
in the future. As long as that method is considered an agile method, it will abide
by the characteristics listed above and should still work well with the content and
direction of this book (with some changes in terminology, probably).

Workflow
First, let’s begin with how work flows through an agile project, as illustrated in
Figure 3.1.

Requirements for a product come from several sources: customers and the mar-
ketplace, specific business strategies, regulatory requirements, internal requests, and
technical needs. All of these items merge together into the product backlog where
they undergo an initial evaluation by the product owner followed by prioritization
of each item relative to the rest of the backlog.

Product Backlog
An item on the product backlog is, not surprisingly, called a product backlog item
(PBI). These items provide information about:

Transitional Concepts    23

	 1.	New things that the product needs to do or improvements to what it does
today (features)

	 2.	Corrections to fix mistakes in the product (defects)
	 3.	Changes to correct technical deficiencies or keep the product technically cur-

rent (technical debt)

Prioritization
The prioritization of the product backlog is largely a subjective exercise done on an
ongoing basis by the product owner. While an item’s cost (i.e., the effort estimate),
risk, and customer value have a significant impact on the prioritization, the product
owner also has to weigh the competing needs of the product vision, the business
plan, his customers, the government, and the technical debt incurred by the prod-
uct. While this seems straightforward, most product owners use the cost/risk/value
attributes as guides, but not as the final decision maker in any prioritization.

Grooming
Using a prioritized backlog, the product owner and the Scrum teams work together
to analyze the highest-priority items. As feature and technical debt PBIs are sliced

Market/Customers

Business Needs

Gov’t Regulations

Technical Needs

Product
Backlog

Product Owner
Prioritize

Scrum Team

Groom & Build

Sprinting Customers

Non-Critical Defects

Critical Defects

Beta Test

Figure 3.1 T he basic workflow of a product backlog item.

24    Enterprise-Scale Agile Software Development﻿

into smaller and smaller items, they become less complex, easier to estimate, and
usually contain less risk. Many teams, while they slice items down into smaller
ones, often record what they’ve discussed about each item in a separate docu-
ment, on a wiki, or on paper, so that when it comes time to work on the item in a
sprint, everything they’ve discussed about the item is right at hand. Grooming of
the product backlog begins when the project begins and ends as the project ends.
The product backlog is always a work in progress.

Defects on the product backlog may sometimes be left exactly as they are until
the defect is assigned to a sprint. In some cases, however, where the defect is quite
large or difficult to solve, product backlog grooming will include research on defects
in order to rewrite the item as an actionable change. For example, assume that a
product backlog item reads as follows:

The inventory search function hangs when the user searches for two
items with the same manufacturer.

Like most defects added to the product backlog, this item tells us what the
user doesn’t like, but it isn’t “actionable” in its current state. In other words, we
need to change it into something we can estimate and do during the project. After
some research, we may discover that the problem lies in a locked table caused while
accessing the database. So, we might rewrite the PBI as follows:

Change the inventory search function so that the second query on the
same manufacturer does not result in a table lock.

Notice that we aren’t trying to write the solution into the backlog item, just the
problem. Research on solutions can wait until sprint planning or even during the
sprint. We don’t need to know how to fix it during grooming; we simply want to
know what to fix.

Sprinting
Once a product backlog item has made it to the top of the product backlog and
there’s a Scrum team ready to work on it, the item moves into a Scrum and is added
to the sprint backlog for that team’s sprint. At this point, all of the remaining
analysis and design on the item is completed. Tests and code are written to satisfy
the item’s acceptance criteria and hopefully, by the end of the sprint, the completed
story is demonstrated to the product owner and approved to be a part of the prod-
uct. If the item does not pass sprint review, it is returned to the product backlog,
where it will likely (but not definitely) be picked up and finished by the same team
in the next sprint.

Transitional Concepts    25

Beta Test
At beta test, we deliver the completed product to a small number of customers. At
this point in the project, we’re looking for any configuration anomalies in the prod-
uct that were not caught during the development effort. When the software proves
that it can work effectively in a real customer environment, it is generally released
to the market. This effort can be, but need not be, sprint based.

Defects
Throughout the development process, we are taking steps to find and remove defects
as much as possible. Within the sprint, unit, acceptance, and functional level tests
are run continuously to ensure that code changes are not breaking previously exist-
ing functionality and are fulfilling the acceptance criteria of the features being
built. However, should a defect be found during the sprint, the developer usually
makes it his or her top priority to solve the defect immediately (to the exclusion of
all else). In cases when the defect either (1) is a very low priority or (2) was caused
by another Scrum team or (3) was caused in a previous sprint, the defect may be
added to the product backlog instead, to be prioritized by the product owner and
solved at a later time.

Defects may also be found at the customer site during the beta testing period.
Just like defects found during the sprint, defects discovered at the customer site are
evaluated for priority. Those defects that warrant an immediate solution are pushed
directly to the responsible Scrum team (the team, depending on the complexity of
the defect and the effort to create and test a solution, may need to work with the
product owner to reset their sprint goals) or are added to the product backlog and
prioritized with the rest of the items on the backlog.

Workflow Summary
The overall workflow, from need to finished product, is intended to give you the
beginnings of a framework upon which most of your transition can be built. The
rest of this chapter will be spent discussing some of the challenges that you will
face while transitioning to this framework. In the next two chapters, we’ll discuss
some of the organizational and people-oriented barriers to agility, and then we’ll
delve into management and the types of behavioral changes that will be needed in
order for your transition to be a success.

The Product Backlog
Unless you’re starting agile development with a completely new product, you
already have a list of requirements for your current development effort. When the

26    Enterprise-Scale Agile Software Development﻿

transition is complete, you will need to have a product backlog (see Figure 3.2) that
satisfies the following criteria:

	 1.	It is written in a manner that can be groomed by your product owner and
Scrum teams.

	 2.	It is in a constant state of reprioritization led by the product owner.
	 3.	It is in a continuous state of emergence as new items are added, large items are

sliced into smaller items, and other items are completed or simply removed.
	 4.	It is reflective of the product owner’s vision and direction for the product.
	 5.	The highest-priority items on the list are broken down into items or steps that

can be completed by two or three people in less than a week.
	 6.	It is visible to the entire organization.

The highest-priority items on the product backlog are often said to be a part
of the release backlog, which is to say that those items are part of the current
release plan. Items nearest the top of the backlog are generally the smallest on the
product backlog, having been previously analyzed by the Scrum teams and sliced
into smaller and smaller units of work that are less and less complex. These small-
est items are said to be sprint-sized, Scrum-sized, or more generally, right-sized.
That is, they are small enough to be quickly broken down into tasks and built by
a Scrum team.

As you further explore items with a lower priority, you will find that these items
are generally larger and more complex. Some, in fact, may be nonactionable items
(items which, as written, do not describe “something to do” to the product). Defects

Product Backlog

Re
le

as
e B

ac
kl

og Simple, small, ready

Next release

High
Priority

Low
Priority

Needs more grooming

Figure 3.2 T he product backlog and the grooming condition of the backlog items.

Transitional Concepts    27

are an example of nonactionable PBIs. The further down in priority you go, the big-
ger and less defined (on average) the items get.

Eventually, you will reach the portion of the backlog that describes content that
will likely be in a future release of the product. Looking further, you will discover
items that either (1) are not actually prioritized but are simply sitting in a general
“bucket” of items, (2) are waiting to be evaluated by the product owner for priori-
tization, or (3) will likely never be built.

So what does all this mean? Let’s go deeper …

Written in a Manner That Can Be Groomed …
As discussed before, grooming is something agile organizations do to product back-
logs in order to get the backlog items ready for development. Grooming teases out
important details without getting Scrum teams mired in endless, low-value discus-
sions too early in the development cycle. What this means, however, is that creating
your product backlog isn’t as easy as dumping your requirements repository into a
new list and saying “ta da!”

For example, let’s take one of the most common types of requirements:

The system shall support a customer last name of no longer than
thirty characters.

Nice, huh? The problem with these types of requirements (often known as detailed
requirements) is that they describe a very small portion of the overall application.
Worse, I can’t really estimate this requirement because I can’t tell if the customer
last name appears on one screen or one hundred screens. The same is true for data-
bases. Will I find this data element in one table or ten? Twenty? I can’t use or even
make plans from this requirement because I really don’t know what it means.

How about this one?

The vehicle shall have four wheels, two attached at opposite ends of
two axels.

What are we talking about? A car? A golf cart? How about a wagon?
Before we go any deeper into this problem, let’s lay out the parts of a typical user

story. While there is no standard structure for a user story, many of them contain
some or all of this information:

	 1.	Story headline or description: This is a short sentence that tells you what the
story is about.

	 2.	Value estimate: This can be done in many different kinds of units as long
as they remain consistent through the project or multiple projects. While

28    Enterprise-Scale Agile Software Development﻿

valuation makes the most sense in dollars, any consistent standard of measure
works fine. Often the value is broken into two different kinds of estimates:

	 a.	 Benefit: What’s the value to the organization (i.e., to our customers) for
including this item in the product? This helps to measure the relative
value of this item compared to that of other items.

	 b.	 Penalty: What’s the potential penalty for not including this item in the
product? This helps to elicit the need for regulatory requirements and
technical debt items in the product. Low-penalty items basically have to
depend on their benefit in order to have a chance to get near the top of
the product backlog. On the other hand, an item with a high penalty for
not getting done (can’t sell the product in the United States or Europe
without it, could go to jail without it in the product, etc.) will find it’s way
at the top of the backlog rather quickly.

	 3.	Complexity estimate: Usually done in points, the complexity estimate is an
estimate of the complexity of the story.

	 4.	Risk estimate: The risk estimate measures the risk inherent in building a story.
This is often very helpful in the product owner’s prioritization efforts.

	 5.	Acceptance criteria: These short sentences (or fragments) tell you what needs to
be true before the story can be considered finished.

	 6.	Priority: This is often expressed in the relative position of the story on a list
with the rest of the stories, rather than as a number (e.g., 1st, 2nd, 514th).

So, having explained a little bit about user stories, let’s go back to the first
requirement: the system shall support a customer last name of no longer than thirty
characters. Now, by itself, that detailed requirement really tells us very little, but
what if we took a step back to look at why we have this requirement. What we’re
likely to discover is that the last name requirement is just one of several detailed
requirements that are all referring to a “parent” requirement of sorts. As you can
see in Figure 3.3, there is an overarching requirement for the system to support
customer registration. That requirement has subordinate requirements (a name and
a home address), and those have further subordinate detailed requirements.

Putting all of these items on the product backlog would be very ineffective. As
mentioned before, we can’t estimate “The customer’s last name shall be up to thirty
characters in length.”

However, what we can do with these shows the real power of user stories in agile
development. So, let’s turn these requirements into user stories in two easy steps:

Step 1: Rephrase feature requirements as user stories. Using the example in
Figure 3.3, the highest-level requirement that we can rephrase would be:

The system shall support customer registration.

Transitional Concepts    29

		 First, who needs the system to support customer registration (and be care-
ful, because there might be a couple groups of users who actually need this)?
Without going into too much depth, it’s pretty clear that there might be
two groups of users who want to do this: the customers themselves and the
salespeople who use these registrations. This, of course, leads us to our next
question: What do the groups of users really want to do and why?

		 In the case of the customer users, they might want to register their
names and addresses to get more information about whatever it is our
product is helping us to sell. In the case of the salespeople users, they
probably want customer contact information so they can follow up with
the customers and see what they can sell them. From this, we can derive
two user stories (I added story IDs, as shown in Figure 3.4, just to ease the
discussion later on).

The customer’s
last name shall

be up to 30
characters in

length.

The customer’s
first name shall

be up to 25
characters in

length.

The customer shall
support a home

address definition.

The system shall support
customer registration

The customer shall
support a name.

The home
address

definition shall
support a house

number.

The home
address shall

support a street
name.

Figure 3.3  Customer requirements.

Story 2: As a sales manager, I
want my customers to

register themselves so I can
use their information to

contact them for potential
sales opportunities.

Story 1: As a customer, I
want to be able to register
my name and address so

that I can get more
information about this

company’s products.

Figure 3.4  Creating user stories.

30    Enterprise-Scale Agile Software Development﻿

Step 2: Rewrite detailed requirements as acceptance criteria. When it comes right
down to it, detailed requirements don’t tell you anything about your prod-
uct’s features. What they really do is tell you what your product’s features
need to be able handle or support. With user stories, detailed requirements
aren’t subordinate to the stories: they actually become part of the user stories. Let
me show you what I mean.

		 Let’s take story 1 (“As a customer …”). In Figure 3.3, there were two sub-
ordinate stories to the registration: the customer had to be able to register
their name (1) and home address (2). As you can see in story 1, we’ve already
rolled both of those requirements into the story, so let’s just concentrate on
the bottom-most requirements:

	 1.	 The customer’s last name shall be up to thirty characters in length.
	 2.	 The customer’s first name shall be up to twenty-five characters in length.
	 3.	 The home address definition shall support a house number.
	 4.	 The home address shall support a street name.

		 These really don’t tell us about product functionality (as I mentioned ear-
lier); they are really about the criteria that the product functionality needs
to support. So, we can really just roll these up under the user story that they
refer to, as illustrated in Figure 3.5.

		 Now, isn’t that better? All of that stuff that was on the original list of
requirements is really just background information for the really important
stuff: what we want our product to do!

		 Sometimes, however, the detailed requirements are a little tougher to
make work. It isn’t always a simple transformation to acceptance criteria. For
example, let’s try these:

The system shall support accepted standards for credit card purchase NN
transactions.
The system shall be written using the current version of Sun-based Java NN
as of January 1, 2009.
All interaction with the external customer will take place in less than five NN
seconds at least 90% of the time.

Last name: 1–30 characters
First name: 1–25 characters
House number
Street name

Story 1: As a customer, I want
to be able to register my name
and address so that I can get
more information about this

company’s products.

Figure 3.5 A dding acceptance criteria to the user story.

Transitional Concepts    31

		 These detailed requirements are actually nonfunctional requirements—
requirements that describe a product characteristic instead of a product
capability. Requirements of this nature are generally not assignable to
a small number of stories (like the length of the customer’s last name).
Instead, you may want to consider creating a separate list of nonfunctional
acceptance tests for the entire project or product against which every story
must be verified before the story can be considered complete. In other
words, having finished story 1, you would still want to look at the nonfunc-
tional acceptance criteria. For example, does story 1 satisfy the require-
ment that:

Accepted standards for credit card purchases are supported? NN Technically, this
requirement doesn’t apply to story 1 because there is no credit card pur-
chase included in the story.
The code be written in the proper version of Java?NN We can add this to the
acceptance criteria for the story, to ensure that the proper version of Java
is used when the story is actually built.
All interaction with the external customer will take place in less than five sec-NN
onds at least 90% of the time? We’ll need to add this performance require-
ment to the story’s acceptance criteria and then make sure that we write
tests that help verify this requirement.

		 Then we would continue down the rest of the nonfunctional acceptance test
criteria until we were satisfied that they were all either nonapplicable or passed.

Under Constant Reprioritization and Continually Emergent
The product backlog, by definition, is an emergent artifact. It is under constant

reprioritization managed by the product owner and driven by:

Changing business requirements (including a willingness to take on risks in ◾◾
product development)
Customer demands◾◾
Government regulation◾◾
Changes in technology◾◾
Changes in development team staffing◾◾
Project schedules◾◾

There is no typical product backlog size. Depending on the complexity and
the maturity of your product, your backlog could be five hundred items long
or fifty thousand items long. Regardless of size, however, product backlogs are
usually organized in a similar manner—the highest-priority items on top, the

32    Enterprise-Scale Agile Software Development﻿

lowest-priority items on the bottom. Additionally, as items move closer and
closer to the top of the backlog, they are sliced by Scrum teams into smaller and
smaller items.

Slicing, sometimes called sashimi, is the practice of taking a story and reducing
it in size and complexity by converting the same story into two or more smaller
ones. Let’s go back to story 1, mentioned above (see Figure 3.6).

In this story, there is a clear way to slice around the data being collected during
the registration. In other words, I could slice the story and come up with the two
listed in Figure 3.7.

These two stories are simpler than their parent, easier to estimate than their par-
ent, entail less risk than before, and when completed, accomplish the same thing
as the original story 1.

Endnotes
	 1.	 Dynamic Systems Development Model (DSDM) is an iterative development model

that provides role and process descriptions for all stages of product development. For
more information, see http://www.dsdm.org.

	 2.	 Feature-Driven Development (FDD) is an iterative development model that specifies
product development in five activities: develop the overall model, build the feature
list, plan by feature, design by feature, and build by feature. For more information, see
http://www.featuredrivendevelopment.com.

	 3.	 Beck, Kent, Beedle, Mike, van Bennekum, Arie, and Cockburn, Alistair. 2001.
Manifesto for Agile Software Development. http://www.agilemanifesto.org (accessed
January 22, 2009).

Story 1: As a customer, I want
to be able to register my name
and address so that I can get
more information about this

company’s products.

Figure 3.6 L ooking at story 1 again.

Story 1A: As a customer, I want
to be able to register my name

so that I can get more
information about this

company’s products.

Story 1B: As a customer, I want
to be able to register my address

so that I can get more
information about this

company’s products.

Figure 3.7  Slicing story 1 into two pieces.

33

4Chapter

Transition Barriers

There are a number of possible barriers that could hinder or block the progress of
an agile transition. The identification and mitigation of these barriers will need to
be a part of the transition plan and may possibly take up a significant portion of the
team’s time during the transition. Should you be able to avoid most of these barriers
during your transition, consider yourself very fortunate. Most of you, though, will
deal with a considerable number of these barriers. We won’t be discussing solutions
to these barriers, however. That’ll come later in the book. At the end of this chapter,
however, we’ll start your transition backlog by considering each of these items.

To keep it simple, I’ve grouped the barriers into two categories: people and
organizational.

People Barriers
People barriers are barriers that are caused by the people in the organization. They
usually concern the misuse of people in the organization, and they are often the
most difficult to solve.

People barriers include:

Wolving◾◾ : This is what happens when one or more people on a Scrum team are
taken away from the team during the sprint to work on something more that
is considered to be an emergency or simply more important. Usually when
this happens, it involves one or more people that the team cannot spare to
lose. Everyone else on the Scrum team is upset when the makeup of the team
is changed during the sprint. The team may lose a day or even find they are
unable to complete the sprint. No matter what the impact, it is extremely

34    Enterprise-Scale Agile Software Development﻿

difficult for the team to do as good a job with one or more missing team mem-
bers as they could have done with them. Certainly, it is possible that the team
may complete most or all of their sprint goals, but remember that they met
their commitments while short-staffed. Be prepared for issues (e.g., defects)
that may plague the team for the next couple months, if not longer. Just as
likely, be prepared for the team to go to the product owner and renegotiate
their backlog commitment. Remember, the team made a commitment to
the product owner of a certain amount of work during sprint planning. That
commitment was based on each team member’s known availability. When
that changed, so did their commitment.
Resource slicing◾◾ : Managers often seem to blur the distinction between the
positions that we have in our organization and the people that fill those posi-
tions. On paper, you can easily allocate the time that a position is supposed
to spend on one or more projects, and the numbers always add up to 100%
(e.g., 50% on project 1 and 50% on project 2 = 100%). However, when you
ask a developer to work on multiple projects at the same time, that developer
incurs delays caused by:

Saving what he or she was working on, physically and mentally−−
Clearing his or her space to allow for something else−−
Checking emails and having conversations (as long as he or she is between −−
tasks, why not?)
Frustration caused by having to switch from task to task−−
Remembering where he or she was on the other project−−
Realizing he or she forgot some details about where he or she was on the −−
other project and having to re-create the work/intelligence

		 There have been many studies that conclusively show that context switch-
ing is very expensive. In fact, in Gerald Weinberg’s book Quality Software
Management: Systems Thinking,1 he proposes a rule of thumb based on past
experiences: when you add a second project to your developer’s plate, he or she
loses 20% of his or her productivity. With the third project, add another 20%.
Teams not accountable for results◾◾ : The Scrum framework creates a clear delin-
eation between responsibilities in the building of a product. Whereas the
product owner takes responsibility for building the right product, the Scrum
teams take responsibility for building the product right. Scrum teams are
accountable for following the Scrum framework, the team’s and the organi-
zation’s accepted development practices, and abiding by the team’s and the
organization’s definition of DONEness. When a Scrum team makes a com-
mitment to their product owner at sprint planning, the team does everything
reasonable to achieve their goals or to alert the product owner immediately if
any portion of their sprint goal is in danger of not being properly completed
by the end of the sprint, or if any portion of the sprint goal suddenly becomes
considerably more expensive than was originally anticipated.

Transition Barriers    35

		 At sprint review, the product owner should feel justified in testing the
team’s completed backlog items by requesting to see test summaries, demon-
strations of working product functionality, copies of updated documentation,
models, artifacts, etc. It is the combination of building the right product and
building the product right that creates a high-quality, high-value product.
Chronic lateness to team meetings◾◾ : Some team members show their reluctance
to work in a team environment by coming late to team meetings (including
the daily Scrum meeting) or by missing them entirely. It’s important for the
team to address this problem together.
Teams lack appropriate skills/“Not my job” syndrome◾◾ : By definition, Scrum
teams are cross-functional and possess all of the skills needed to complete
their portion of the product backlog. Teams often fall short of this need for
two reasons: (1) because some of the more limited skill sets are not available
(e.g., user-interface (UI) interaction designer, testers, technical writer, data-
base architect, etc.) and (2) because some team members may have a “not my
job” attitude about the roles that they agree to do. Designers may be unwilling
to help write test scripts; coders may be unwilling to write customer docu-
mentation. While agile development will never suggest that everyone on the
team should be able to cover everyone else’s jobs, the team members have
to be willing to stretch their duties in support of team, and thus organiza-
tional, success.
Scrum master manages the team◾◾ : In instances where the Scrum master may not
have been properly trained or coached, or has a particularly difficult team to
work with, the Scrum master may resort to more direct command and con-
trol in order to accomplish the team’s goals. In these teams, the Scrum master
will often be setting the sprint planning master and might even go so far as to
hand out task assignments from the sprint backlog. You will also see evidence
in the daily Scrum meeting, where the team members are clearly reporting
to the Scrum master, rather than talking to one another. Certainly, there are
times when more direct management of a Scrum team is needed (particularly
during team “storming” periods). However, when the Scrum master manages
the team for longer than the situation requires, the team becomes dependent
on the Scrum master, self-management and self-organization seldom occur,
and the Scrum master becomes a bottleneck to progress, rather than a facili-
tator and a remover of obstacles.
Teams are larger or smaller than the five- to nine-team-member recommenda-◾◾
tion: The size of a Scrum team is recommended to be seven plus or minus two
team members. Teams that are larger than this size tend to have too complex
an infrastructure, making it difficult to make decisions and organize around
the committed work. Teams that are smaller than this size find Scrum to be
more ceremony than needed to complete the work. While you may wish to
have teams with more than nine team members, or less than four, you will
attain higher productivity within the recommended size.

36    Enterprise-Scale Agile Software Development﻿

Teams do not self-manage or self-organize◾◾ : Scrum teams work best when they
self-manage and self-organize. Put simply, teams that self-manage handle
their own issues and conflicts, provide regular reports to business and product
management, and manage their own work commitments during the sprint.
Teams that self-organize determine their own approach to how they will meet
their commitments. They determine who will work on what aspects of the
sprint backlog. Teams that do not (or cannot) self-manage or self-organize
force someone else to play that role in order to ensure that work gets done.
Unfortunately for that individual, he or she also becomes a bottleneck for
the team, as the team members have to go through him or her in order to get
their work assignments.
Teams improperly plan their sprint◾◾ : Many teams, due to inexperience or a feel-
ing that they are somehow saving time, cut short the sprint planning meeting
once the sprint backlog is completed. This allows them to hold one- or two-
hour sprint planning meetings and then begin the actual coding right away.
In this case, the team misses a prime opportunity during sprint planning to
do some group design and take other useful steps to ensure that everyone has
the information they need to work effectively during the sprint.
Teams not co-located◾◾ : For various reasons, often related to where the organiza-
tion’s domain expertise is located or due to outsourcing for lower cost, teams
are often split between two or more locations. This creates an inherently dif-
ficult situation, as the ability for the team to work closely together is dimin-
ished by their inability to quickly and easily communicate face-to-face and
without preamble. In cases where this is unavoidable, every effort should be
made to provide constant communication among the separated pieces of the
team. However, be prepared for two possible outcomes:

	 1.	 Reduced production
	 2.	 More documentation required to produce the same results as a co-

located team

Organizational Barriers
Organizational barriers are barriers that are caused by a number of factors common
in organizations, including:

Quality management systems based on waterfall development strategies◾◾
Procurement processes based on tight cost control strategies◾◾
Product development based on command and control concepts◾◾

Examples of organizational barriers include:

Transition Barriers    37

Processes that promote inefficient development◾◾ : Many organizations define
productivity in ways that promote inefficient development. For example,
some organizations measure progress in terms of thousands of lines of code
(KLOCs) produced during a specific time period. Some organizations mea-
sure the effectiveness of quality assurance (QA) by the total number or prior-
ity of defects found during QA testing. Other organizations look at schedule
compliance and earned value to determine productivity. Unfortunately,
all of these methods (and many more) tend to create unwanted behaviors
and cause inefficient development. In the case of KLOCs, developers will
often choose more complex and code-intense solutions to problems in order
to maximize the number of lines of code developed. Even more off target,
many languages support line breaks in the middle of executable statements,
and many line-counting routines miss this in their calculations. In the cases
where the number and severity of opened defects are counted, such organiza-
tions usually find themselves dealing with unexpected avalanches of defects
with exaggerated severities that detail every dimension of every aberration in
every aspect of the tested product (e.g., four separate defects opened to log the
failure of the application to work with VISA, MasterCard, Diner’s Club, and
American Express credit cards where one tracking entry would have served
the same purpose). And while this might sound like exactly what an organi-
zation would want to produce a quality product, it ignores two drawbacks:

	 1.	 The development team will spend a considerable amount of their valuable
time working their way through the defects, reevaluating severities, and
combining logically duplicated defects.

	 2.	 The organization’s focus is shifted from infusing quality during the devel-
opment process to putting additional effort into the quality inspection
process.

Processes that promote waterfall development◾◾ : Many organizational processes
define critical decision-making milestones along the lines of traditional
waterfall development phases: concept, analysis, design, code, test, etc. It is
impractical to map the end of analysis or the end of design to any point
in the typical agile project, where these activities occur simultaneously during
the entire course of the project.
Management assumes fixed time, fixed scope◾◾ : Management is used to setting
project deadlines and project scope while carefully controlling project staffing,
based on the feature estimates, to minimize the overall cost of the develop-
ment effort. Estimates are never a guarantee, though they are frequently used
as such. This creates a very difficult situation for agile development, which
recognizes that the development organization owns the work effort estimates
and will produce what it can during the timeframe provided with limited
opportunity for development acceleration. Following a fixed-time/fixed-scope
approach, many features have to be built faster and with less care in order to

38    Enterprise-Scale Agile Software Development﻿

satisfy the project schedule. This results in quality issues that are discovered
later in the development cycle and further restrict the availability of the devel-
opers who are also responsible for solving defects found in the software.
Product owner is not sufficiently available to the team◾◾ : The role of product owner
in the agile development world is often the most difficult role to hold. The
product owner is expected to create, maintain, and communicate the vision
of product; to work frequently with business owners, management, stake-
holders, and customers; to maintain the product backlog; and to support one
or more Scrum teams in the realization of that product backlog. In all size
organizations, this is a very difficult and very crucial role. As a result, many
product owners often are not as available to their Scrum teams as the teams
would like them to be. While you want to have sympathy for the product
owner, the Scrum team will either develop the wrong thing or nothing when
they lack product owner guidance.
Quality assurance is separate from product development◾◾ : In more traditional
organizations, the quality assurance department is kept independent of the
product development department in order to avoid conflict-of-interest issues.
In some cases, the separation of departments is often mandated by the orga-
nization’s quality management system or other state or national regulation.
The difficulty this presents to the agile organization, however, is that the sep-
aration of these departments optimizes for an organization that does most of
its product testing after development. In agile development, we need an orga-
nization optimized for continuous testing, beginning during sprint planning
and continuing until the product is finally considered generally available.
Individually focused performance and reward structure◾◾ : Many organizations
base their performance evaluation system (including the decision-making
processes for promotions and raises) on individual performance plans. This
method, while often effective, just as often creates agendas that are counter-
productive to agile development teams. In order to maximize the productiv-
ity of the agile team, the primary goals and responsibilities of each team
member have to be focused on supporting the team, not on spotlighting the
individual. The agile manager, indeed the agile HR department, must find
more effective means by which to incent their development team members.
Development sprints are producing minimal, if any, customer value◾◾ : In the com-
plex world of software engineering, it is very easy to lose focus on the end
result of a project (particularly long-running projects). In the agile environ-
ment, this will evidence itself when teams begin completing sprints that
produce little to no customer value. Now, this isn’t to say that the team wasn’t
busy; however, agile projects focus on maximizing the customer value deliv-
ered at every stage of the project, and stopping the project when the incre-
mental value delivered falls below management’s tolerance. In a Scrum team,
this is usually caused by an ineffective (or unavailable product owner), or

Transition Barriers    39

some other influence that has the team focusing on low or no-value items that
may or may not actually be on the product backlog.
Teams lack resources to properly implement source code control and continuous ◾◾
integration and testing: Transitions to agile development come at a cost that
often exceeds management expectation or willingness to pay. This frequently
leaves agile development teams doing Scrum (which is good), but unable
to pursue additional Extreme Programming (XP) practices like test-driven
development (TDD), automated testing, and continuous integration and
testing. These practices will vastly improve Scrum team productivity, not to
mention product quality and customer satisfaction.

Endnote
	 1.	 http://www.amazon.com/exec/obidos/ASIN/0932633226.

41

5Chapter

Management in an
Agile Environment

As challenging as it is for a developer to work in an environment where he or she
is expected to self-organize and self-manage, it is often much more difficult for the
manager. Trained to control, budget, and direct, the transition from command and
control practices to agile development forces the traditionally trained manager to
question some of the most basic precepts of his or her knowledge and expertise.

Many managers are accustomed to taking responsibility for a project, getting
“the right people for the job,” and then getting the job done by taking advantage
of the skills on their staff and using organizational savvy to get the needed support
from the rest of the organization. Budgets are carefully created and monitored.
Information is passed from the corporate echelons to the staff, and status reports
passed from the employees to the manager and beyond. Unexpected changes to
project plans are quickly absorbed into the project planning, and the resulting
changes are communicated to the staff to handle it. The challenge of the job comes
from building and maintaining a good staff, and job satisfaction comes from com-
pleting projects on time and on budget.

Then agile development comes in and the manager’s world gets some signifi-
cant makeovers. Teams own how they build their products and are responsible for
managing themselves. Product owners define what the teams will build and in what
order. Managers no longer play a primary role planning how development work is
to get done, nor do they have any authority to say who is going to do it. Unexpected
changes to project plans are incorporated into the product backlog and managed by
the Scrum team. From the perspective of the unsuspecting managers, everything
that made them effective in their jobs disappears when agile development steps

42    Enterprise-Scale Agile Software Development﻿

in—although the reality is that the manager’s job truly becomes more fulfilling,
not less.

Getting Management Ready for the Transition
While there are numerous ways to arrange your organization, let’s just focus on
two: the bureaucratic organization and the matrixed organization. The bureau-
cratic organization is very straightforward—all nonmanagement employees report
to a first line of management (often called first-line managers). These managers
report to middle-level management, who in turn report to top-level management.
Typically, because product development is so complex and difficult to manage,
bureaucratic organizations usually have a very flat arrangement with many first-line
managers, a much smaller set of middle-level managers, and just a small handful of
top-level management (see Figure 5.1).

President

VP, Human
Resources VP, Legal VP, Development

Director, Product
C

Director, Product
B

Director, Product
A

Mgr, Product C
Programming

Mgr, Product B
Programming

Mgr, Product A
Programming

Mgr, Product A
Product

Management

Mgr, Product B
Product

Management

Director, Project
Management

Project Manager,
Product A

VP, Facilities VP, Sales and
Marketing

Mgr, Product C
Product

Management

Mgr, Product A
Quality

Assurance

Mgr, Product B
Quality

Assurance

Mgr, Product C
Quality

Assurance

Mgr, Product A
Infrastructure
and Support

Mgr, Product B
Infrastructure
and Support

Mgr, Product C
Infrastructure
and Support

Project Manager,
Project B

Project Manager,
Project C

Figure 5.1 T he bureaucratic organization. Vice presidents manage the major
business functions. Reporting to the VP of product development are the direc-
tors. Each director manages the development of a specific project and has the
staff needed across all disciplines (except, often, project management) to com-
pletely develop the product.

Management in an Agile Environment    43

Some organizations find that the bureaucratic arrangement is too slow to
respond to change and attempt a more complicated matrixed organization that
superimposes a project-oriented structure on top of a function-oriented structure
(see Figure 5.2). In truth, however, even the matrixed organization, from the man-
agement perspective, is still frequently a bureaucratic arrangement. The managers
of the products and the managers of the functions still report to middle-level man-
agement or are themselves middle-level managers reporting to top-level managers.

In both organizational styles (but more so in the bureaucratic arrangement),
there is a tendency to direct training at the bottom-most and top-most layers of the
organization. This is explained by the implementation modes of agile development:
either bottom–up or top–down.

In a bottom–up implementation, a grassroots movement started by a small
number of first-line managers or by development teams starts to experiment with
agile methods. Driven by success, and often running “under the radar,” the move-
ment grows to include more and more teams until management begins to notice the
improvement in one or all of software quality, cycle time, and time morale. At that
point, if all goes well, the implementation is formalized with a team and a budget
and a broader implementation begins.

In a top–down implementation, executive management becomes aware of agile
development through colleagues, conferences, or their own reading and research.
Recognizing the power of agile development, but also the collaborative aspect of
agile, the executive then brings together a team that consists of lower-level manage-
ment and senior developers and proposes a piloting approach that starts with one or
two small teams and, depending on the success, grows to incorporate the rest of the
organization as reasonably quickly as possible. Both instances are fairly similar. The

Product A
Infrastructure

Support

Product B
Infrastructure

Support

Product A
Development

Teams

Product A
Product

Management

Product A
Project

Management

Product B
Testing

Product A
Testing

Product B
Development

Teams

Product B
Product

Management

Product B
Project

Management

Pr
od

uc
t A

Pr
od

uc
t B

Product
Management

Development
Management

Quality
Assurance

Management

Infrastructure
(DB, CM, Tools,

Servers, etc.)
Management

Project
Management

Figure 5.2 T he matrixed organization.

44    Enterprise-Scale Agile Software Development﻿

most significant difference is that the grassroots aspect of the bottom–up approach
is roughly equivalent to the piloting phase of the top–down approach.

At this point, an interesting split occurs. As training begins, it is clear that all
of the employees that will be participating on a Scrum team will need proper train-
ing in Scrum and agile techniques. Likewise, the executive-level management that
kicked off the project (either as a pilot in top–down or a full-scale implementation
in bottom–up) requires that they receive proper training immediately. After all, it
is they who will be explaining agile development to customers, executive peers in
other companies, higher-level executives in their company, or even the board of
directors of the company.

The formal implementation begins with a focus on employee education and a
separate track for the executives. Often, as part of the kickoff of the project, the entire
organization receives a general “This is agile” type presentation. Unfortunately,
however, as the project progresses, it is not only common to neglect entire levels of
management in the organization, but it is equally common to fail to address the
needs of each level of management (see Figure 5.3).

Top-level management
• What’s Agile Development?
• How does Agile Development improve my organization?
• How do I plan when using Agile Development?
• How quickly can I get my organization “completely Agile?”

Middle-level management
• What’s Agile Development?
• How do I respond to feature delays?
• How do I speed up development?
• How do I explain delays to top-level management?
• How do I keep things moving when the teams want to
 slow down to add testing?

First-line management
• What’s Agile Development?
• What’s Scrum?
• How do my responsibilities change?
• How do I support my team?
• How do I implement continuous builds, continuous testing?

Figure 5.3  Management concerns at different levels.

Management in an Agile Environment    45

More importantly, even in the most motivated organization, there is an
unspoken tension between the layers of management that must be addressed
as part of the organization’s transition to agile development. Specifically, while
top-level management plays a positive and effective role getting everyone on
board for the transition, they are still communicating to their middle-layer man-
agement that nothing can be delayed just because we started transitioning to agile
development. Similarly, first-line management is experiencing all of the day-to-
day challenges that an agile transition will surface and will frequently look to
the middle-layer manager to help resolve situations and explain delays to top-
level management.

This puts middle management in a very poor situation: while trying to do their
jobs and keep top-layer management satisfied, middle management must also find
a way to not lose the faith of the developers in the organization that are scrutinizing
every action against a personal understanding of whether the action is or isn’t agile.
More often than not, it’s the pressure from above that wins. This results in directives
that interfere with the progress of the agile transition. Some examples include:

	 1.	Scrum masters are also developers and have tasks on the sprint backlog.
	 2.	Many developers are on two, three, and sometimes even four projects

simultaneously.
	 3.	Teams are frequently affected when knowledgeable team members are taken

away from the team during the sprint to deal with other matters.

The best solution for resolving the conflicts between different levels of manage-
ment is to discuss roles and responsibilities across the management layers and to
discuss how the organization will handle particular issues that may come up during
the transition. It is a rare scenario when an organization can simply stop producing
software while the agile transition proceeds; in this chapter, we will assume that
everyone already has work to do when the transition begins.

An Effective Organizational Arrangement
for Scrum Teams
Whether the organization is bureaucratic or matrixed, the key is whether or not
the resources needed to complete the project are available under the control of a
single organizational hierarchy. If not, and the resources are distributed across the
organization, there will be perpetual difficulty—more difficult to align on product
development, more difficult to align on development practices. As illustrated in
Figure 5.4, one of the best organizational structures I’ve worked with doesn’t really
concern itself with anything above the first line of management.

46    Enterprise-Scale Agile Software Development﻿

Each of the practice managers is administratively responsible for up to fifteen indi-
viduals within a single practice, including staffing and budgeting and performance
management responsibilities. A practice is defined as a specific area of expertise or
discipline. Common practices (not all of which are shown in Figure 5.4) include:

Scrum masters◾◾
Product owners◾◾
Developers (coders)◾◾
Architects◾◾
Analysts/business analysts/product management◾◾
Testers/QAers◾◾
Technical writers◾◾
Infrastructure specialists◾◾

Each practice group, depending on its size, will have one or more managers who
may report as peers with other practice managers to a VP or as a team to a director
(where the directors of the various practices then report to a VP). Most communi-
ties should meet as a team at least once a month (the Scrum master and product
owner communities should meet weekly, as their impediment clearing and prod-
uct backlog work is more time sensitive). Each practice group or “community of
practice” is responsible for the following:

AnalystsDevsScrum
Masters

Practice
Managers

Communities
of Practice

Scrum Teams Scrum
Team 1

Scrum
Team 2

Scrum
Team 3

Scrum
Team 4

Other Management

QA Writers Infrastructure

Figure 5.4 A ligning communities of practice to make Scrum teams.

Management in an Agile Environment    47

	 1.	Improving the skills of the team: Through weekly seminars taught by other prac-
titioners, management, or someone from outside the team, the community
is constantly working to improve their skills. This could include facilitation
techniques for Scrum masters, story-writing classes for product owners, and
new design patterns for architects. Another good way to improve skills is by
selecting a small team of community members to attend a conference and
then report back on what they learned.

	 2.	Furthering the development of their community: Recognizing that there is
always room for improvement, communities should always be looking for
ways to improve the practice of their role. Product owners can look for better
ways to prioritize backlogs and determine backlog value. Coders can evaluate
code generators and create better coding standards and code review practices.
Testers can find new ways to evaluate and determine test cases. The possibili-
ties for study and improvement here are endless.

	 3.	Looking for ways to improve the organization: Scrum masters are always deal-
ing with team and organizational impediments. Likewise, each community
of practice has similar opportunities to improve the organization by looking
at what’s negatively affecting their practice and advocating change. One-day
cross-training seminars held on a quarterly basis provide an excellent oppor-
tunity for each community to discuss, in the presence of the other commu-
nities, what they’ve been working on, what they’ve accomplished, and what
challenges they face in the coming year.

Communities of practice also make up the resource pool from which Scrum
teams are created. The Scrum master community provides a Scrum master, the
development community provides two or three developers, the analyst community
provides one or two analysts, etc.

The advantage to this structure is that it is more flexible than the bureaucratic
arrangement, but much less complex than a matrixed organization. Scrum teams
are seeded from the communities of practice—team members report only to one
manager, their practice manager, for administrative purposes. Each practice man-
ager is assigned one or more Scrum teams as a management sponsor. The manage-
ment sponsor provides needed support to the Scrum team. True to the concepts of
Scrum, however, the Scrum team self-manages, working with the product owner to
determine what they will be building.

When a new Scrum team is needed or new Scrum team members are needed,
practice managers are responsible for working with the appropriate human
resources or staffing personnel to initiate the interviewing process. A strong prac-
tice manager, however, will involve members of existing Scrum teams to supple-
ment the interview process and ensure that the hired candidate has the best chance
of fitting into the organization. We’ll talk more about this, in detail, in the fol-
lowing section.

48    Enterprise-Scale Agile Software Development﻿

Hiring New Scrum Team Members
Hiring new Scrum team members can be an intense process, both for the organiza-
tion and for the candidate. Careful attention must be paid as much to the candi-
date’s technical skills (experience with various programming languages, experience
developing applications, experience with certain types of development software or
operating systems, writing skills, presentation skills, etc.) as to the candidate’s “soft”
skills (leadership ability, adaptability, teamwork orientation, customer orientation,
willingness to challenge the status quo, etc.). In fact, I would suggest that the soft
skills are considerably more important than the candidate’s technical skills.

Is hiring for a candidate’s ability to work on a team is more important than his
or her ability to code Java? Yes, definitely. Why? Well, there are two reasons: First,
developers, analysts, and testers got into the software engineering field not because
they wanted to learn how to do one thing and do it for the rest of their lives. They
entered software engineering because the field is always changing and maturing. We
tread new ground every day. All things being equal, which job would you take—
the one that allows you to do the same thing you’ve been doing for the past eight
years, or the one that will have you working with the newest technology and the
latest concepts? The latter position promises new stuff to learn almost every day.

The other reason you should give more weight to soft skills over technical skills
is that software engineers (including developers, analysts, testers, etc.) are usually
eager learners. They adapt quickly and adopt new concepts with an astounding
rapidity. Hiring for technical skills they already possess is actually aiming pretty
low. On the other hand, would you rather teach a developer a new programming
language or teach them how to work well with others? Frankly, I’d choose the
former any day of the week. Besides, I’ve never actually had to teach a developer a
new language (except when I taught a programming language course at a local col-
lege); give developers the right tools and a week or so, and they’ll make themselves
instant experts.

In short, hiring for Scrum teams is much more about hiring motivated engi-
neers (again, including analysts, developers, testers, etc.) that work well in team
environments, and then making sure you give them enough time to pick up any
technical skills that they need to learn. If they happen to have some previous expe-
rience in a similar language or development technique, that’s a plus.

To put it another way, which would you prefer on one of your Scrum teams?

The perfect developer with fifteen years of experience with the right devel-◾◾
opment environments who alienates the entire Scrum team with his conde-
scending attitude and desire to be left alone, leaving you handling complaints
from team members, other managers, and even customers?
A relative novice with some previous experience working on a development ◾◾
team who picks up new concepts rapidly and works well with the team, moti-
vating the team to work smarter (not just harder) from time to time?

Management in an Agile Environment    49

We’ve probably all seen similar examples of this problem on professional sports
teams across the world: the star athlete who, from his rookie year, is clearly headed
for the hall of fame, assuming he doesn’t first get dropped from the team by his
coach for making enemies of his teammates or for simply doing something stupid
during the off-season and getting put in jail.

While often handled by management, the staffing of Scrum teams is best han-
dled by joining the capabilities of human resources to provide initial screening
(reviewing CVs/resumes, phone screens, etc.), and then both practice managers
and Scrum team members to do in-house interviews. It is extremely important to
include Scrum team members in the interview process—they will be the best at
understanding if an individual will work well in a team. In fact, you might want
to have people from a couple different teams involved in the interviewing process
if possible; this will give you choices for placement on a team. Most importantly, it
ensures the Scrum team that someone isn’t going to be “forced” on them and keeps
the teams involved in the decision process.

Depending on the number of Scrum teams for which you are hiring, you will
want to describe the interview process with every team, to get their buy-in on the
process, to suggest potential improvements in the process, and to go about deter-
mining how the team will provide resources to the interview process (again, not only
keeping the teams involved in the hiring process, but making them decide which
individuals on the team will act as their “proxy” in the decision-to-hire meeting).

On the day of one or more candidate interviews, you’ll need to set up a series of
short (20 to 30 minutes) meetings with each candidate. The candidate should meet
with an HR representative first to make sure that the candidate is eligible to work in
your country. Then, the candidate should attend three more 30-minute meetings,
as follows (the order isn’t important):

	 1.	Hiring practice manager: Discuss the position with the candidate (making
sure you describe how your organization practices agile development), answer
any questions, etc.

	 2.	Soft skills: This should be with one or two team members. Ask probing ques-
tions about teams that the candidate has worked on before, how the candi-
date has resolved conflicts, and personal likes and dislikes regarding the work
environment. Will this candidate work well on a team? Can he or she handle
constructive criticism offered by other team members? Will he or she share
information? Will he or she take on tasks that no one else wants for the good
of the team? Does he or she want to learn more?

	 3.	Hard (technical) skills: This should be with one team member or a team
member and another manager. Ask probing questions about the candidate’s
part experience. Be willing to test their knowledge with specific questions.
Does this candidate have the basic skills needed to perform well in your
organization?

50    Enterprise-Scale Agile Software Development﻿

Give the candidates a break from time to time, being sensitive that they may
not be at their best after sixty or ninety minutes of potentially stressful questioning.
At the same time, observe how they handle stress—do they lose control? Shorten
their responses?

Having completed all of these meetings, get everyone that was involved in the
interviews together for one more short meeting to discuss the outcome of the inter-
views. First, after making sure that everyone is clear on which candidate is being
discussed and that no details of the discussion will go beyond the walls of the
meeting room, invite anyone to speak any thoughts they feel are important with
regard to the candidate—good or bad. Following this, everyone votes. A single no
vote with a clear (and legal) reason to back it up is enough to deny the candidate
a position in the organization—this is an important aspect of the interview pro-
cess; it gives the Scrum teams the ability, with reasonable cause, to outright deny a
candidate a position with the company. This, as mentioned earlier, keeps the team
involved in the hiring process and ensures that they continue to be empowered and
take some accountability for the staffing process. However, if the votes are all posi-
tive or mostly positive with no more than one or two “on the fence,” the candidate
is accepted and HR works with management in another discussion to determine
salary and other details.

The Care and Feeding of Scrum Teams
Managers face an interesting dilemma in an agile environment—how to maintain
organizational control while simultaneously allowing Scrum teams the freedom
to self-manage as much as possible. A manager ill-prepared for this type of work
environment may find himself or herself trying to be helpful by assisting a Scrum
team in planning a sprint only to discover, too late, that the team already had an
approach in mind, but deferred to the manager. Another manager changes team
membership every sprint, hoping to cross-train as much as possible. A third, hoping
to truly empower the team, waits for the team to resolve internal difficulties until it
is too late and the team self-destructs.

W. Edwards Deming suggests that there are basically two mistakes a man-
ager can make: They can react to an outcome as if it came from a common cause
(i.e., something that is inherent in the defined process) when, in fact, it came from
a special cause (i.e., something that is unexpected or unusual). Or, they can react to
an outcome as if it came from a special cause when, in fact, it came from a common
cause. We can simplify it further:

Tampering◾◾ : The manager gets involved to fix things when the process is work-
ing as defined.
Ignoring◾◾ : The manager avoids involvement, even though the process is out
of control.

Management in an Agile Environment    51

Some real-life examples of well-meaning management follow.

Tampering

A manager, who promoted Scrum within the organization, then proceeded to ◾◾
make all of the decisions for the Scrum teams. If you don’t allow your teams
to self-manage and self-organize, you’re basically telling them you don’t
trust them to do it right. Scrum failed in this organization within just a
few weeks.
An organization decided to “grade” Scrum teams on completing the stories they ◾◾
agreed to do during the sprint. Sounds reasonable, doesn’t it? Unfortunately,
this led the organization’s Scrum teams to repeatedly undercommit during
each sprint planning meeting. Why go out on a limb if being aggressive dur-
ing a sprint means getting a “bad grade” if they aren’t 100% finished by the
end of the sprint.

Ignoring

A Scrum team, having difficulty with a team member, was encouraged by the ◾◾
functional manager to continue to work to resolve their own conflicts. That’s what
we teach our Certified Scrum Masters—Scrum teams are supposed to resolve
their own conflicts. However, it can easily get out of control. In this case, the
manager did not act quickly enough and, rather than getting involved when
the team was clearly over their heads, the most experienced team members
were lost to transfers out of the team and out of the company.
A Scrum team entered its third sprint review without completing more than a ◾◾
small portion of their sprint goals. The Scrum team never asked for help and the
manager decided that the team simply needed some time to figure out their
mistakes and correct them. When the product owner, frustrated with the
lack of progress, finally unloaded his frustration on the functional manager,
a quick investigation revealed that a senior team member, convinced that
agile development couldn’t work, had used his influence to redirect the team’s
efforts into lengthy analysis efforts of the entire product backlog, certain that
coding should only proceed on small modifications and that detailed analysis
efforts were required before building any new features.

What this suggests is that the best training that managers can receive regard-
ing how to best “care and feed” their Scrum teams is the same training that their
Scrum team members receive, though perhaps presented from the perspective of
the manager instead of the team member.

Managers, for starters, need to understand how the agile methods (Scrum, test-
driven development (TDD), pairing, etc.) work so that they can clearly discern

52    Enterprise-Scale Agile Software Development﻿

between common causes (stuff that is supposed to happen from time to time) and
special causes (unexpected stuff). Even then, however, they need to understand when
to allow the team to handle special causes and when to step in and assist. In one
organization, management allowed a Scrum team that was suffering with problems
doing continuous integration to experience partial sprint failures over four consecu-
tive sprints, learning from their mistakes, rather than stepping in and imposing
their decisions on the team. There was legitimate concern that forcing continuous
integration on these teams would have created skeptics that would constantly hin-
der the effort. Letting them fail and succeed on their own would create developers
who would probably use continuous integration for the rest of their careers.

There are many managers who, during an organization’s transition, simply get
it. These managers create an effective fusion of management and leadership that
works well in an agile development environment. They understand that the agile
manager’s new role involves some very clear responsibilities:

Improve organizational performance◾◾
Improve Scrum team performance◾◾
Improve employee performance◾◾
Support Scrum teams◾◾

Improve Organization Performance
Many Scrum masters maintain an organizational impediments list. The manager
in the agile organization will be exposed to many additional impediments—often
ones different than the ones faced by the Scrum master. These impediments are
frequently caused by the organization itself and are not only beyond the scope
of responsibility of the Scrum master, but must be addressed by the manager.
Organizational impediments will appear in various forms:

Ineffective organizational structures◾◾
Ineffective development policies◾◾
Counteragile management direction◾◾

In all cases, the manager will need to protect their Scrum teams as much as possi-
ble from the effects of these impediments while, at the same time, working with man-
agement and others throughout the organization to identify and enact solutions.

Improve Scrum Team Performance
Teams are, of course, responsible for their performance and the quality of their
output. However, good managers will seek ways to challenge their Scrum teams

Management in an Agile Environment    53

to improve their performance by providing an overall direction and then assisting
with improvements in team skills and team practices. This can include things like:

Helping the team to locate training, seminars, or books that enable the team ◾◾
to acquire new, needed skills
Working with the team to brainstorm changes to practices to fix issues noted ◾◾
by the team during a sprint retrospective
Challenging the team to find ways to develop their product with less effort ◾◾
and higher quality
Clearing the way for the purchase of a data projector, a projection screen, new ◾◾
hardware, or new software that the team believes will help them get their
work done more effectively or with higher quality

In one case, a Scrum team found themselves with a dilemma because the team
could complete items considerably faster than the manager and the business analyst
could write new items much faster than the team’s tester could validate the com-
pleted items. The team, with help from the manager, changed the team’s develop-
ment processes so that other team members would step in to assist whenever they
recognized that process bottlenecks (writing the items or validating the software)
threatened to leave the developers with nothing to do.

The skilled manager will accomplish all of this while ensuring that the team
owns all of their improvements.

Improve Employee Performance
In any organization that makes continuous improvement a high priority, you will
also find attention must be paid to individual career development. Even on a Scrum
team, individual team members have individual needs. Employees are always inter-
ested in developing the skills that will allow them to move either laterally (from one
position to another similar position) or upward (to more senior—and better paid—
titles or potentially into management). Employees should be constantly challenged
to do some work outside their comfort zone during a sprint (this can be accom-
plished simply by volunteering for sprint backlog tasks that the employee wouldn’t
normally take on). The wise manager is always aware of the career development
plans of each of his or her employees (indeed, those plans should be documented
and clear goals set, reviewed, and updated on a regular basis). Within the scope
of those plans, the manager should always be looking for opportunities to allow
employees to grow without disturbing the progress of the Scrum team.

When working with an employee on performance development and career
development, consider a balanced plan that recognizes the employee’s responsibili-
ties to:

54    Enterprise-Scale Agile Software Development﻿

	 1.	Himself or herself (career/professional development): What responsibilities does
the employee aspire to? What does he or she want to be doing in five years?

	 2.	The company (performance development): What goals does the employee have
for the year that benefits both the employee and the company as a result of
improved skills and improved performance?

	 3.	The Scrum team (product development): What goals does the Scrum team have
(all employees on a Scrum team share the same goals)?

Regardless of the manner in which employee performance is connected to raises
and promotions, a balanced performance plan, and attention to it throughout the
year, helps to ensure that the individual employee feels valued by the organization
and does not feel that his or her accomplishments are lost in the recognition of what
the Scrum team accomplishes. A sample performance plan might look like the one
in Figure 5.5.

Support Scrum Teams
While the Scrum master is, by default, responsible for removing obstacles within
the Scrum team, there are many obstacles that he or she will be too busy to
address or simply unable (due to lack of authority) to remove at all. For exam-
ple, issues of budgeting, facilities management, procurement of materials, and
staffing (including staff-related performance problems, filling an empty posi-
tion, immigration, and work visa issues) must be handled by a manager with the
proper authority.

More generally, however, Scrum masters can be overwhelmed by their respon-
sibilities (particularly new Scrum masters or Scrum masters with potentially dif-
ficult teams). Management should not only always be standing by to aid the Scrum
master when needed; they should already be aware of the issues that the team is
dealing with so that they are prepared to help out when (if) the team or Scrum
master asks or if no one asks but, in the manager’s assessment, his or her involve-
ment is critical.

Care and Feeding: Summary
A manager’s first care for a Scrum team is to support the success of the Scrum
team. To do this, he or she needs to continually look for opportunities to improve
organizational performance, Scrum team performance, and individual employee
performance while, at the same time, supporting Scrum teams to be successful.
Managers have the added concern of balancing the needs of the organization with
the needs of the Scrum team. Does it make more sense to help the team solve a
problem or to let the team solve the problem themselves?

Management in an Agile Environment    55

2008 Employee Performance Plan for Smith, Nancy J.

Current job title: Advanced programmer/analyst
Since: April 10, 2005
Reporting manager: Jones, Marsha M.
Title: Senior manager
Reporting period: February 1, 2008, for 12 months with quarterly reviews

I.	 Career Development: High-Level Goals

Nancy wishes to satisfy all remaining requirements for promotion to senior
programmer/analyst during the current year. Longer-term goals (3 years) are to move
Nancy to a senior architectural position within her current product area.

II.	 Performance Management: High-Level Goals

Product development work currently planned for the year will require some
experience in J2EE and Java applet development. Nancy could also play a strong role
in some of the analysis backlog items currently on the product backlog. Also, I would
like to see Nancy more willing to be involved in pairing with other team members.
(Nancy agrees that there were opportunites to do so that she specifically passed up
this year that would have benefited her and her fellow team members.)

III.	 Specific Performance Goals

By April 1, 2008, Nancy will review the current organizational coding standards and •	
devise an alternative method for building supportability into the code. This will also
require her to work with current support teams to understand what makes code
more supportable. Nancy will review her proposed modifications with the Scrum
teams and support teams and, on approval, add her changes to the standards
(career).
By October 1, 2008, Nancy will mentor one new developer to be hired by the •	
company to ensure that this developer is fully knowledgeable in Scrum, the XP
practices used by the company, the product, and has a coach for programming
problems that may come up during his or her first three months of employment.
(career).
By April 1, 2008, Nancy will volunteer to work on a backlog item that will allow her •	
to build an applet. It is expected that she will do appropriate reading beforehand
(performance).
By July 1, 2008, Nancy will read two or more books on J2EE development and will •	
have volunteered to work on backlog items that involve J2EE development
(performance).
Scrum team will maintain code coverage of 86% (as measured on December 15, •	
2007) or better on unit tests (team).
Scrum team will continue to •	 not deliver backlog items that do not meet the team’s
and the organization’s definition of DONEness unless it is expressly requested by
the PO and the development manager that DONEness items be skipped and a new
backlog item opened to cover the skipped DONEness elements (team).

Figure 5.5 A sample balanced performance plan.

56    Enterprise-Scale Agile Software Development﻿

An analogy that I’ve heard used and find particularly apt is one where the man-
ager is likened to a sheepdog. Just as the sheepdog keeps the sheep together, protects
the sheep from wolves, and herds the sheep in the proper direction (to pasture in
the morning, to a barn in the evening), managers have similar responsibilities.
Managers help Scrum masters keep the team together and focused. It is expected
that teams will resolve most of their own conflicts, but managers will sometimes
need to either step in to help resolve the conflict, or give the employees the tools and
skills they need to resolve the conflict themselves. Managers help protect the Scrum
team from unnecessary or unexpected interruption caused by outside interference
or wolving, where someone from the organization “steals” a team member to solve a
critical problem elsewhere in the organization. Managers help provide support and
direction, ensuring that the team has the information, resources, tools, and skills
to get their job done.

IIPlanning the
Transition

In the first section of this book we laid out the basics of agile development. We
asked questions about why an organization would want to take on agile develop-
ment. In this section of the book, we will start with setting up agreements within
the organization about the transition to agile development, and then move on to
the transition team and the planning and execution of the transition. But first, let’s
talk a little about how we’ll actually run the transition.

It is appropriate that the transition itself is run as an agile project. We will form
the transition teams as Scrum teams, build our list of things to do in the form of
a transition backlog, and execute the transition as a series of sprints. In addition
to being an effective manner in which to manage the project, this approach has the
benefit of getting your organization used to Scrum and backlog management faster
by using it. The methods we will begin using in the transition planning and project
execution will be the same ones that we’ll use in an actual project once we actually
create development Scrum teams. Therefore, our plan of action for beginning the
transition will look like this:

	 1.	Determine project goals: Quantify the goals of the project.
	 2.	Create transition team: This team will drive the transition.
	 3.	Set agreements: How will the organization support the project?
	 4.	Create transition backlog: Define and prioritize the backlog; create the teams

to address.

Once the transition backlog is created, your highest priorities will likely be the
creation of:

58    Enterprise-Scale Agile Software Development﻿

	 1.	The communication plan: Define how, and to whom, information about the
transition will be communicated.

	 2.	The budget: How much money do you expect to spend on software, hard-
ware, training, etc.?

	 3.	The training plan: Define what kind of training will be needed, for which
roles, and how often.

The creation of these critical plans is outlined in the chapters that follow.

59

6Chapter

Create the
Transition Team

As we begin to discuss the elements that we will need to have in place to launch the
transition, the most important priority is for the creation of the initial transition
team. I suggest an initial team because the membership on the team at the end
of the formal transition may be quite different from the team that we begin with.
Early in the transition, we’ll be focused on higher-level organizational issues—
facilities changes, software and hardware purchases, development process changes,
maybe even some organizational (reporting structure) changes. Later in the transi-
tion our focus will be on more detailed and technical matters. Regardless, however,
the transition team should always be representative of as many areas and disciplines
of your organization as possible. It is important to have managers (first line, middle
management, and senior management) on the team, certainly, but you should also
ensure that you have coders, architects, analysts, writers, and testers on the team as
well. A transition to agile development has an organization-wide effect, and simi-
larly, the team driving the transition must be representative of as many different
views and needs within the organization as possible.

There are two approaches for the organization of the transition team depending
much on the size of the organization. In a small to medium-sized organization (up
to about 250 personnel), you may want to consider a single transition team that
drives the transition. However, in a larger organization, you will likely want to con-
sider creating subordinate teams that specialize in particular aspects of the overall
transition, but take the actual executing details away from the core transition team.
In the larger, more complex organizations, the transition team structure may look
something like Figure 6.1.

60    Enterprise-Scale Agile Software Development﻿

Where necessary, or in smaller organizations, you can reduce the number of
subordinate teams by combining multiple purposes into similar teams. For exam-
ple, you could have a single process and tools team (tools are generally, after all,
automated extension of the defined development process). You can also combine
infrastructure and deployment into a single team, as most deployment concerns
are addressed by infrastructure. Any functions not handled by a subordinate team
will need to be addressed by the core transition team. The result could look like the
structure in Figure 6.2.

As you put together your transition team and any subordinate teams, consider
the teams listed in Figure 6.1. These teams, whether or not you create them for your
transition, handle various aspects of the transition that you will need to address. By
understanding what the teams in Figure 6.1 are responsible for, you can be more cer-
tain that your teams have the membership that they need to handle the transition.

The core team◾◾ : This team drives the creation of project goals and measurement
and routinely reports transition status to the organization; it is the coordina-
tion point for all subordinate teams and all transition backlog items that are
not addressed by a subordinate team. When there are subordinate teams, a
core team member acts as the product owner for a subordinate team; thus,
the core team also manages the overall project and prioritizes the efforts of
the subordinate teams.
Communications◾◾ : This team drives the creation and execution of the com-
munication plan. It handles communication with other departments in

“Core” Transition Team

Process

Education

Infrastructure Facilities

Tools

Organization & Staffing

DeploymentCommunication Customer
Involvement

Figure 6.1  Complex transition team structure.

Create the Transition Team    61

the organization, ensuring that the broader organization is aware of the
transition.
Customer involvement◾◾ : This team will concern itself with the issues of getting
customers involved with the agile development teams. What do the teams
need to know and do? What do the customers need to know about their roles?
What about intellectual property rights or confidential information? What
happens when three, four, or even ten teams ask the same customer to get
involved with their work?
Deployment◾◾ : This team will concentrate on how to get software safely added to
the main product code base and go from there to a customer environment.
Education◾◾ : This team will deal with the creation and execution of the train-
ing plan.
Facilities◾◾ : This team will deal with issues involving the modification of your
organization’s work environment in order to ensure that the development
teams are working in open team rooms.
Infrastructure◾◾ : This team will help manage the artifact configuration (includ-
ing source code control) as well as handling the creation of new server envi-
ronments for team-level and product-level testing.
Organization and staffing◾◾ : This team will deal with possible changes in the
organizational structure, changes in staffing procedure, and change in job
descriptions and career paths caused by the transition to agile development.
Process◾◾ : This team will help create documented practices based on changes
caused by the agile transition and will work to ensure that applicable regula-
tory requirements are adhered to and that the new practices replace or are
properly integrated with the existing practices.

“Core” Transition Team

Process &
Tools

Education

Deployment
&

Infrastructure

Facilities

Organization & Staffing

Communication Customer
Involvement

Figure 6.2 A simplified transition team structure.

62    Enterprise-Scale Agile Software Development﻿

Tools◾◾ : This team will help drive the selection of tools that are needed to sup-
port the agile transition. Once the tools are selected and installed, this team
plays a significant role helping to ensure that the tools are properly integrated
into the organization’s practices.

The Transition Team Lead
While the transition teams are, for the most part, agile teams that self-organize
around their work, we still take a lesson from Scrum, looking for a single indi-
vidual with ultimate responsibility for the prioritization of the transition backlog
and the vision of the agile transition. Your choice for the transition owner (i.e., the
transition project’s product owner) needs to be someone with a good understanding
of the concepts of agile development and what the organization hopes to accom-
plish in undertaking this effort. The transition owner should be held accountable
for achieving the transition project’s goals, prioritizing the transition backlog, and
using the transition team (or teams) to resolve any issues that surface during the
project. The transition owner should also be a strong team leader and should excel
at working with teams to gain consensus.

The Executive Sponsor
The transition team also needs an executive sponsor. The sponsor needs to be an
individual who, by his or her involvement with the transition team:

Demonstrates the organization’s commitment to the agile transition. The ◾◾
executive sponsor should be the person from whom the rest of the organiza-
tion first hears about the agile transition. They should be able to speak at a
high level to the benefits of agile development and the transition plan. They
should plan on repeating the message frequently to the organization and the
stakeholders in order to demonstrate their commitment to the transition. The
executive sponsor must be willing to state clear and unwavering commitment
to the agile transition, explaining that there will be problems and mistakes,
but there will also be success.
Can defend any mistakes that the organization makes to corporate executive ◾◾
management. Corporate management, often removed from more than the
basic details of the transition, may initially be quick to blame failures in agile
development if the organization makes mistakes. The executive sponsor will
be in the difficult position of having to explain the nature of the changes that
agile development requires of an organization and will have to explain the
fine line between the organization having difficulty making the change and
how much benefit there will be after the change is successfully made.

Create the Transition Team    63

Can authorize certain expenditures on behalf of the transition team. The ◾◾
transition team will be developing the initial budget for the transition plan as
well as asking for resources necessary to execute the transition plan. Both will
likely be significant requests and will require senior management approval
before continuing anyway. In addition, when you are asking for resources to
take part on the transition team (or teams), you will need some of the best
people in the organization, not the ones that happen to be available. You
may need your executive sponsor to help get the type of participation that
you need.

65

7Chapter

Define the Organizational
Agreements

While it’s important to get the employees excited and ready for the transition, it’s
equally important to make sure that the management staff is involved in the defini-
tion of the new rules of engagement. Starting the transition without helping them
define their new roles invites confusion, frustration, and counterproductive deci-
sions that will echo continuously throughout the organization.

So, step 1 is to define the ground rules. Get the agreement of the executive
sponsor that the management team is going to hold a workshop1 to discuss several
critical issues common to agile transitions and come up with solutions that the
organization is going to have to commit to.

If you can get all of your management together in a workshop, do so.
Otherwise, get a representative group of managers together and make sure that
everyone understands what the workshop is for and that the managers that
attend will be setting operational policy for the organization. Start the work-
shop by making sure that everyone understands what agile development is and
how Scrum teams work. It is extremely important that you emphasize the fol-
lowing points:

	 1.	Product owners define the what of product. That is, they describe and priori-
tize what they want done based on the vision of the product and their role of
maximizing the return on investment of what is developed.

	 2.	Scrum teams define the how and how long of the product. No one else gets to
estimate development work or gets to make changes to the estimates except for
the developers. Scrum teams need support, but need control over the how.

66    Enterprise-Scale Agile Software Development﻿

	 3.	Management ensures that the right people are employed by the organiza-
tion, that they have or will attain the right tools/skills, and that manage-
ment immediately addresses any obstacles encountered but not solvable by
the team. Management sets the overall tone for the environment and is con-
stantly looking for ways to improve productivity.

These points are important as they clearly delineate some of the truly funda-
mental responsibilities in a software development shop, and you can refer back to
these points during the workshop while trying to work out some of the more dif-
ficult problems.

With the basic rules defined, you can continue the workshop by dividing the
groups into teams that include management from every level (first line, middle
level, and top level). Get them to discuss the following points and decide how each
will be handled:

Being a Scrum master is a full-time job. Asking a Scrum master to be a Scrum ◾◾
master and to develop code or write documentation or tests limits their ability
to be a strong Scrum master for your team. How will the organization deal
with this? What is the organization willing to commit to? What is the orga-
nization willing to give up?
Scrum teams determine the effort estimates for the product backlog items on ◾◾
which they work. More importantly, they determine how much work they
can reliably do during a sprint. No one else defines how much work a team
will do during a sprint—that has to come from the team itself. How will the
organization handle it when less is getting done during a sprint than was
originally anticipated on the release plan?
Scrum teams work best when the team members are 100% dedicated to their ◾◾
teams. Studies have clearly demonstrated that attempting to work on multiple
projects at the same time significantly reduces their effectiveness, quality, and
productivity. Will the organization try to ensure that all team members are
100% dedicated? If not, what is the organization willing to commit to?
Scrum teams need to be allowed to work in an uninterrupted manner dur-◾◾
ing the sprint. Pulling individuals off teams to address customer issues is not
recommended. In fact, teams perform better (although there is still a loss of
productivity) when customer issues are given to teams to figure out how to
resolve rather than pulling someone away from the team. Will the organiza-
tion agree that team membership must not be changed during the sprint? If
not, what is the organization willing to commit to?
Agile development embraces the concept of sustainable pace. This means that ◾◾
teams accelerate to their greatest natural rhythm while working an optimal
number of hours each week. Many organizations make up for schedule delays
by forcing overtime on the development teams. Many studies report the same

Define the Organizational Agreements    67

thing—developers can work reasonable overtime for approximately two weeks
before their performance drops to preovertime levels and their software qual-
ity drops even further. How will the organization manage schedule delays?
When overtime is seen as a possible solution, will it be for weeks or months on
end, or just two weeks? What is the organization willing to commit to?
Agile development leverages the Lean development concept of deferring ◾◾
decisions until the last reasonable moment. This helps to ensure that the
organization does not waste time on something until the odds of actually
doing it are fairly high. This also means that feature and task estimates will
be very roughly defined at the beginning of the project and will increase in
precision as the project moves forward. In other development methods, a
greater degree of precision is gained much earlier in the project by devoting
considerably more time to analysis at the cost of actually producing working
features. Can the organization agree to release planning and project status
based on rough estimates? Can the organization deal with scope projections
that may change each month as more features are completed and more is
known about the ones that aren’t? What is the organization willing to com-
mit to?

If you have the people who can do it, put people knowledgeable in agile devel-
opment on each team so that the managers can ask clarifying questions.

Give the groups an hour to work on these questions; you might even want to
give them a short break during the discussions. At the end, bring everyone back
together and pick one team to review a question and their decisions. Invite ques-
tions, different views, and other ideas from the other groups. Limit the discussion
to between fifteen and thirty minutes to ensure that you cover all of the material.
Then require the group to reach a final consensus on each question.

If you think it will be necessary to get help to get the management team to agree
on something, schedule the executive sponsor to join the workshop either dur-
ing the discussion or after all of the decisions have been documented. Remember,
though, this isn’t about the executive sponsor making the decisions. His or her
function in the meeting will be to discourage long, drawn-out discussions about
issues that really shouldn’t be issues and to encourage the team to make decisions.

Finally, it may also be necessary to get everyone to agree to follow the policies
during a probationary period, after which the policies and their results will be
reviewed in another management workshop. If someone really has doubts about
the policies and isn’t satisfied with the outcome of the workshop, encourage him or
her to follow the policies for now and, in the meantime, keep an open mind and
keep thinking about a better solution. Periodic management review of policies and
processes is a good idea anyway—get your organization thinking about this now.

The agenda for your workshop might look a little like Figure 7.1.

68    Enterprise-Scale Agile Software Development﻿

Document the Agreements
The agreements should be documented and distributed throughout the organiza-
tion as quickly as possible. Be as detailed and as precise as you possibly can. For
example, the first of the ground rules should handle the question of full-time Scrum
masters. A documented decision might look like this:

As of April 4, 2008, the three current agile transition pilot teams
will have dedicated trained Scrum masters. As the transition expands
beyond the pilot, however, there will only be a maximum of eight full-
time, dedicated Scrum masters. These Scrum masters may, when ready,
handle up to three teams each. All teams that cannot be covered by a
dedicated Scrum master will have to fill the role from their own staff-
ing. Training will be provided in those instances.

So, from this decision, we know that, while some teams will have dedicated
Scrum masters, other teams will not. As those teams take on the role of Scrum
master, however, proper training will be provided to them. As the transition moves

8:00am-8:30am – Breakfast/coffee (fill their
stomachs first!!)

8:30am-8:45am – Welcome, review agenda
8:45am-9:00am – Executive Sponsor welcome
9:00am-10:00am- Review of Agile Development
10:00am-10:15am- BREAK
10:15am-11:00am- Review Questions for Group

Discussion
11:00am-12:00pm- Group Discussion
12:00pm-1:00pm- LUNCH (best to provide it and

keep everyone in or near the
meeting room)

1:00pm-2:00pm – Group Discussion
2:00pm-4:30pm – Discuss Group Findings,

Decide on Policies, Document
2:30pm-2:45pm – BREAK
4:30pm-5:00pm – Review outcomes, next steps,

Adjourn

Figure 7.1 A sample agenda for the organizational agreements workshop.

Define the Organizational Agreements    69

forward, keep an eye on the progress of teams with and without full-time, dedicated
Scrum masters. If you see a good reason to revisit this decision in six months or a
year, be prepared to back up your position with hard facts.

How these issues are addressed by management will tell you a lot about how
successful your organization will be transitioning to agile development. Let’s take
a look at the rest of them:

Issue 1: Scrum teams determine the effort estimates for the product backlog items
on which they work. This issue challenges the common practice of reduc-
ing development estimates, estimate reduction, in order to make the project
schedule appear to be more in line with management expectation. When an
organization engages in the practice of estimate reduction, they are actually
recognizing the problem, but making the schedule look better anyway in
order to defer the bad news, often in the hope that something else will happen
that will make the schedule delay someone else’s fault.

		 An organization ready to make a transition to agile will accept that devel-
opers own the product backlog item estimates but, at the same time, will
be vigilant that the Scrum teams are not engaging in estimate inflation or
padding, a common practice used to mitigate the effects of estimate reduc-
tion. Managers familiar with the technical aspects of product development
should remain closely engaged in backlog grooming and backlog item esti-
mation activities in order to encourage the teams to resist the old tempta-
tion to inflate their estimates. Basically, the agreement here needs to be that
management promises not to reduce developer estimates while the develop-
ers agree to no longer inflate them. More than that, however, management
and product management need to accept the estimates provided to them by
development and resist the urge to reduce the estimates, except by the delib-
erate and systematic simplification of backlog items, in the hopes that simpler
items will result in lower estimates.

Issue 2: Scrum teams work best when the team members are 100% dedicated to
their teams. In organizations where there are multiple releases of multiple prod-
ucts and plenty of work to go around, there will be a constant desire to spread
the most experienced personnel across multiple teams in the hopes that their
experience will improve those teams’ likelihood of success. Unfortunately,
this practice often results in the senior personnel being ineffective for all their
teams. Rather than helping multiple teams, multiple teams are hurt.

		 Scrum defines teams as being self-managing and self-organizing. What
this means in terms of education is that the Scrum team is also at least partly
responsible for identifying what skills they lack and for making plans to cor-
rect that lack, whether it’s to get the proper training or to acquire the needed
skills from another source. One effective solution is to build an educational
policy for Scrum teams around the following points:

70    Enterprise-Scale Agile Software Development﻿

	 1.	 The organization holds continuous education as a high priority and will
devote up to eight hours per month to ongoing education (seminars,
reading, classes, etc.).

	 2.	 The typical duties of a senior developer will include training and coach-
ing other developers in their area of expertise.

	 3.	 Senior developers that demonstrate expertise in an area that few have but
many need are not assigned to Scrum teams. Instead, they take on an
advisory role (expert consultation), assisting many teams, but not owning
the individual tasks of any teams.

	 4.	 Senior developers that demonstrate expertise in an area that few have but
many may have to temporarily join a single team (expertise infusion) to
accomplish a specific goal and then disconnect from the team when they
are finished.

		 In the end, your organization must look for ways to keep resources 100%
dedicated to a single Scrum team, and your policies should enforce that goal.
Widely needed skills or knowledge that are held by a very few people in the
organization should be shared across the organization by expert consultation
or temporary expertise infusion, rather than trying to have your most experi-
enced personnel work on tasks for multiple teams at the same time.

Issue 3: Scrum teams need to be allowed to work in an uninterrupted manner during
the sprint. Just as Scrum team members need to be 100% dedicated to a single
team, the team also needs to be allowed to work in a relatively uninterrupted
manner during a sprint. Teams develop rhythms that (in most cases) tend to
allow them to become more and more productive as time goes on. In Bruce
Tuckman’s2 team development model, it was recognized that there are four
stages in team development:

FormingNN : High dependence on leader for guidance and direction. Little
agreement on team aims other than received from leader. Individual roles
and responsibilities are unclear.
StormingNN : Decisions don’t come easily within group. Team members vie for
position as they attempt to establish themselves in relation to other team
members and the leader, who might receive challenges from team mem-
bers. Clarity of purpose increases but plenty of uncertainties persist.
NormingNN : Agreement and consensus largely forms among team members,
who respond well to facilitation by leader. Roles and responsibilities are
clear and accepted. Big decisions are made by group agreement. Smaller
decisions may be delegated to individuals or small teams within group.
PerformingNN : The team is more strategically aware; the team knows clearly
why it is doing what it is doing. The team has a shared vision and is able
to stand on its own feet with no interference or participation from the
leader. There is a focus on overachieving goals, and the team makes most
of the decisions against criteria agreed to with the leader.

Define the Organizational Agreements    71

		 In this model, it is generally recognized that the performing stage is where
you want your teams to be as much as possible. Unfortunately, it is also gen-
erally accepted that any changes to the team (membership, health of team
members, organizational change, etc.) will cause a team to regress from what-
ever stage they are in to an earlier stage. Therefore, any changes to a team
during a sprint can have a significant impact on the team’s ability to meet the
commitment made to the product owner at sprint planning.

		 In enabling Scrum, the organization must recognize that it is the Scrum
team that is a key element in making agile development work. A strong, high-
performing Scrum team can make up for an inexperienced product owner.
However, even the best product owner cannot cover for a poor Scrum team.
It is extremely important, therefore, that the decisions that the organization
makes consider the need for stable Scrum teams of paramount importance.

		 At the same time, the “wolving” of a resource from a Scrum team is usu-
ally caused by an urgent customer issue that requires immediate attention
and a rapid response. So, as always, there must be a balance of the needs of the
team with the needs of the organization and the customer. One way to deal
with this is to understand that, like padding estimates, organizations often
seek out the best person to solve a problem instead of finding the most practi-
cal person to solve a problem. In other words, while there is always one person
who can solve the problem faster than anybody else, there are also likely a
number of people who are capable of solving the problem quickly enough.

		 Rather than pulling the best resource from the team to solve a problem,
assign the problem to the right team and let them decide how best to solve
the problem. They may request a consultation from the best resource, but
the teams affected will work together to decide how they can solve the prob-
lem quickly while still managing their sprint planning commitment. Most
importantly, the decision of how to solve the problem was never taken away
from the team.

Issue 4: Agile development embraces the concept of “sustainable pace.” The great
myth of employee overtime is that it’s pretty much the same as getting more
resource for the same money (most developers these days are salaried and
therefore not eligible for overtime). The problem with this myth is that we’ve
been using the wrong metaphor. Let’s try this one instead.

		 You’re driving a car down a dark highway. You frequently have to steer your
car to avoid rocks, potholes, and wildlife crossing the road. Visibility is poor,
so you have to be very careful, as you’ll have very little time to avoid these
obstacles when they first appear on the road. If you’re not careful, you could
drive off the road and down an embankment or, worse, hit whatever appears
on the road. Either way, once you do, your car will likely be ruined and you’ll
be stuck until you can fix the car or someone finds you. Since you’ve been
doing this for a while now, you’ve gotten pretty good at it and you’re able to
maintain a respectable velocity of forty-five miles per hour.

72    Enterprise-Scale Agile Software Development﻿

		 Now, increase your velocity to seventy miles per hour. How about ninety
miles per hour?

		 Getting worried? This is a more appropriate metaphor for what happens
when overtime is forced for more than a few weeks at a time. The obstacles
are the rocks, potholes, and wildlife. Your visibility is poor because it’s hard
in real life to see more than a few hours or a few days into the future with any
real accuracy (sure, we can plan, but reality is often very different—just look
at the nightly weather forecast). So, as the speed of the car is increased (that
is, overtime is worked), the risk of plowing head-on into an obstacle increases.
Sure, you’re getting more done (that is, your velocity has increased), but the
odds of hitting an obstacle with no warning increases too.

		 Studies show that developers can handle about two weeks of overtime
before quality and productivity drop below the preovertime levels. Unit
tests, normally required, will be skipped in order to get more code done.
Documentation that is supposed to be updated will be left for “later, when
we have more time.” Functional- and acceptance-level testing will be saved
until the end of the development effort and will often be considerably short-
ened in order to ensure that the project ends on time. The end result of this
corner cutting is a reduction in quality that, not surprisingly, will reduce
development productivity even further when your quality assurance depart-
ment and your customers begin reporting defects and your developers take
more and more time away from new feature development to fix the defects.

		 While this can be a difficult concept to embrace, unless your organization
seriously wishes to accelerate development at the cost of reducing quality, an
agreement must be reached among the management staff regarding the use
of mandatory overtime.

Issue 5: Agile development leverages the Lean development concept of deferring deci-
sions until the last reasonable moment. There are seven fundamental principles
in Lean development that are leveraged by Scrum to improve development
performance and product quality. These principles include eliminate waste
and defer commitment. It is these principles that will potentially cause sig-
nificant difficulty for those used to the illusion of precision that waterfall
projects often provide.

		 According to the Agile Manifesto, agile developers prefer to embrace
change as opposed to attempting to control change. We recognize that, while
we could provide detailed estimates of features in the beginning of a project,
there is a very high likelihood that information gained during the course of
the project will either cause us to have to reestimate the feature, restate the
feature, and then reestimate it, or remove the feature from the project entirely.
Additionally, were you to plot the accuracy of an estimate against the effort
expended to calculate that estimate, you would draw a curve of diminishing
returns (in other words, spending more time doesn’t necessarily return more
and more information; at some fairly early point in the analysis effort, most

Define the Organizational Agreements    73

of the knowable information has been discovered). Both these concepts being
true, agile projects usually provide very high-level estimates of effort in early
stages of the project. As the project progresses, estimates become more firm
and precise until the development actually builds the feature.

		 As a result, agile projects remove waste from development by reducing
the effort spent estimating features and defer commitment by delaying more
precise estimates (and avoiding unwanted rework) until a point in the project
just before the development team builds the feature. In the end, this allows
agile projects to begin producing code earlier in the project while still doing
a sufficient amount of analysis to ensure that the right product is built.

		 For those used to detailed project schedules early in the project, however,
this aspect of agile development will be difficult to get used to and may result
in demands to create and commit to detailed feature estimates at the begin-
ning of the project. An organization planning to engage in agile development
will need to determine how they will resolve the differences between the illu-
sion of precision that waterfall projects provide and the clarity of imprecision
demonstrated by agile projects.

Issue 6: Some developers will not successfully complete the transition. Unfortunately,
this past history of agile transitions has shown that a small percentage of
employees (estimates range from two to ten percent) will not be able to suc-
cessfully complete the transition. Developers that prefer to work by them-
selves and not on a team, or that want their achievements to stand out and
not be part of a larger team goal, are generally not good fits for a Scrum team.
There are also developers that I like to call heroes. These developers are easily
identified when they say something like, “It is easier to do it myself than to
explain it to you.” What’s worse is that these developers often feel that they
do perform well on a team; it is usually the team members that raise the issue
of the hero developer’s performance.

		 Whether the issue is raised by the employee or by the team, it is important
for the organization to react quickly. In some cases, the issue can be solved
with some education and team building. In others, it’s just a matter of mov-
ing the employee to another team where he or she might perform better. In
the most extreme, but hardly rare, instance, the employee may need to be
discharged from the organization to find work elsewhere.

		 What’s most important is that the organization be clear that developers
are required to work on and with Scrum teams; the organization should never
look to make special positions for employees to create their own environ-
ment outside the Scrum teams, no matter how important that employee may
appear to be to the organization. Once the decision is made to employ agile
development and form Scrum teams, the organization should not negotiate
this for individual employees.

Issue 7: The organization may need to reset some customer expectations. When the
transition to agile development begins, the organization is also recognizing

74    Enterprise-Scale Agile Software Development﻿

that development will occur based on a product backlog and at a pace set by
the Scrum teams. For this reason, it is possible that customer expectations
for the delivery of certain features may need to be changed. If the organiza-
tion is not willing to renegotiate some of these potentially unachievable goals,
it will be very difficult to properly implement agile development and Scrum.

Endnotes
	 1.	 You can find supporting materials at http://www.bigagiledevelopment.com/

organizationalagreements.
	 2.	 Tuckman, Bruce. “Developmental Sequence in Small Groups.” Psychological Bulletin 63

(1965): 384–99. http://findarticles.com/p/articles/mi_qa3954/is_200104/ai_n8943663
(accessed November 10, 2008).

75

8Chapter

Determine
Transition Goals

This crucial (and often overlooked) activity helps to set the expectations for the project.
How many products/groups/people will be involved? How long is the organization
willing to wait before seeing productivity and quality gains? How much gain is the
organization looking for, and how will those gains be measured? Unless these questions
are asked and answered early in the project, the transition teams will have a difficult
time answering questions that will come up again and again during the transition.

For example, without a clear idea of how the organization is planning to sup-
port continuous integration and testing (Is the organization planning to provide
a working environment for each Scrum team? Will those environments be real or
virtualized on centrally controlled servers? Will there be an infrastructure team
responsible for the servers, or will each Scrum team be responsible for their own?),
the transition team will be unable to make important decisions about training,
coaching, and hardware purchases.

Knowing how many people will be involved in the transition and how fast the
organization hopes to see returns from the transition is also critical information.
Will the transition team have six months? One year? Two years? This will have
a tremendous impact on how training is managed, how new teams are created,
and the requirements of any software purchased in support of the transition. I see
this step as similar to defining the product architecture before beginning feature
development. Without a good idea of the underpinnings of the product, it is very
difficult to proceed confidently.

76    Enterprise-Scale Agile Software Development﻿

With your goals identified, you are one step closer to being able to determine
how you will monitor the transition and measure its progress.

Measuring and Monitoring the Transition
Any organization that spends time and resources on an agile transition will want to
be able to measure the progress of the transition and what kind of effect the transi-
tion is having on the organization. We do this by observing certain outcomes of the
transition and measuring those outcomes against our expectations. Assuming those
expectations are the correct ones, we can quantitatively demonstrate the progress
the organization is making and, even more importantly, can acquire a level of sta-
tistical control over the organization as it transitions.

Having said that, it is extremely important to be aware that any measurement
of an organization will have an effect on that organization’s behavior. The organiza-
tion is going to act to improve the measurement in any way possible in an effort to
achieve its goals. So, if you’re going to measure an organization in some manner,
follow these two rules:

	 1.	Consider carefully whether a quantitative measurement is needed. Establishing
any measurement is a calculated risk that could cause unwanted and detri-
mental behavior.

	 2.	Use the goal/question/metric (GQM)1 paradigm to ensure that your mea-
surements are driven by the appropriate model, i.e., that your measurements
will yield useful information that directly impacts your transition goals.

Let’s talk about how to use the GQM paradigm to safely measure your organi-
zation. We’ll start by going back to your original goals.

In most organizations, goals for an agile transition will focus on performance,
quality, and costs. Except for the cost-related goals (which would have far too many
variables to accurately exemplify in a simple case study), an organization’s goals
might look something like this:

	 1.	Improve software development productivity by reducing software defects by
20% from the point of view of the corporation.

	 2.	Improve software development performance by increasing the overall value of
features by 30% from the point of view of the customer.

Contained within these two goals are the necessary elements for writing good
measurements. We have the object being measured (software development pro-
ductivity and software development performance), the object of interest (software
defects and overall value of features), and the perspective of the object of interest

Determine Transition Goals    77

(the corporation and the customer) to ensure that the measurements address the
proper perspective.

Improved Productivity through Reduced Defects
In the case of the first goal (improve productivity by reducing software defects), the
corporate perspective means that we’re only going to concern ourselves with defects
that are reported to the corporation either internally or by our customers. Defects
reported by customers that are duplicates, customer error, or issues where the soft-
ware is working as expected will not be included in this goal.2 We also want to be able
to measure a 20% reduction in monthly defect reports, so we need a starting point
(i.e., a baseline) from which to measure. To establish this, we need either historical
data that match what we plan to collect during the transition or a very good guess.
Usually, historical data regarding defect reports aren’t terribly difficult to get.

At its very simplest, then, we could decide to measure total defects reported
internally or by the customer. Taken over a period of months, we could easily graph
this as shown in Figure 8.1.

As you can see in the figure, total defects start around 230 and, over a two-year
period, decline to approximately 180. This demonstrates a reduction in software
defects of about 2.7 per month, or an overall reduction of (230 – 180)/230, or
21.7%. So, with this basic graph, we can prove that one of the goals of the transition
was achieved. But let’s look a little deeper.

From the perspective of the corporation, which is how this goal is written, we
may discover that the corporation would like a little more information about the
defect reports. For example, should the defect trend move upward, it would be a
good idea to understand where the defects are being reported, that is, at what point
in the development process. In an agile environment, we can separate defect reports
into the following useful categories:

300

250

200

150

100

50

0
J F M A M J J A S O N D J F M A M J J A S O N D

N
um

be
r o

f D
ef

ec
ts

 R
ep

or
te

d

Total defects

Figure 8.1 T otal defects measured over a 24-month period.

78    Enterprise-Scale Agile Software Development﻿

	 1.	Defects found during a project iteration (one important caveat here—defects
found during an iteration that were caused by work that occurred in that
iteration are fixed without being reported). What we are looking for here are
defects that “escape” an iteration.

	 2.	Defects found during final iteration of the project (the final iteration of an
agile project is often, but not always, given over to final testing and putting
the finishing touches on the release).

	 3.	Defects found during beta testing.
	 4.	Defects found for the first year after the product is considered generally

available.

This view will give the corporation a clearer view of where defects are being
found and, potentially, where those defects are coming from. If we take the same
data from Figure 8.1 and break it down into these more precise categories, we might
see something like Figure 8.2.

Figure 8.2 clearly shows the same total defects statistics as in Figure 8.1, but
we can now clearly also see where in our development system the defects were
discovered. For example, the “GA + 12 Months” line (which represents defects
reported against software from general availability, when the software was generally
available to consumers, through a period of 12 months) shows a trend of fewer and
fewer defects being reported by our customers. Assuming that our customers have
not suddenly decided to stop reporting defects, a decline in defects found by our
customers is most certainly evidence of improved development productivity.

Another positive indication is displayed in the “During Beta” line. This
line shows how many defects our beta customers are finding. As you can see in
Figure 8.2, our fictitious corporation is releasing a beta version to our customers
in April and May of both years. However, the defect spike seen in the second beta
is much smaller than the first beta. So, what’s getting to our customers is getting
better, from the beta customers to the general consumers.

During iteration
During beta
GA + 12 months
Total defects

300

250

200

150

100

50

0
FJ M A M J J A S O N D J F M A M J J A S O N D

N
um

be
r o

f D
ef

ec
ts

 R
ep

or
te

d

Figure 8.2  Defects reported broken down into categories.

Determine Transition Goals    79

One final noteworthy point is the pattern drawn by the “During Iteration”
and “GA + 12 Months” lines. These lines represent defects found during devel-
opment iteration as opposed to those found at the customer site, respectively. If
we are indeed improving the productivity of our development teams, we should
be seeing the total number of defects drop and, at the same time, a greater per-
centage of defects during development, with a lesser percentage being reported
by our customers. Take a look at just the defects found during development and
the defects found at the customer site as a bar chart instead, as illustrated in
Figure 8.3.

Figure 8.3 shows the relationship between defects found in the product during
development iterations and those defects found after the product was released to the
general consumer. In the first month of the transition, customer-reported defects
made up 43% of the total defects reported that month. By the end of the two-year
transition, customer-reported defects fell to 38% of the total defects, dropping from
94 in the first month to 71 in the last month.

Improved Performance through Increased
Feature Value
We could also measure the second example goal through a similar process: “Improve
software development performance by increasing the overall value of features by
30% from the point of view of the customer.” The key with this goal is to deter-
mine the value of every feature that we build so that the total value completed each
month can be calculated. Keep in mind that the goal is written to be measured
from the perspective of the customer, so we have to ensure that the value that we’re

N
um

be
r o

f D
ef

ec
ts

 R
ep

or
te

d

GA + 12 months
During iteration

300

250

200

150

100

50

0
FJ M A M J J A S O N D J F M A M J J A S O N D

Figure 8.3  Defects found during development sprints and during the final or
release iteration.

80    Enterprise-Scale Agile Software Development﻿

measuring is from the perspective of the customer as well (that is, we can’t measure
internal value). What this means, of course, is that technical items that have little
or no direct benefit for our customers (like adding support for a new database man-
ager, adding OS service packs to our base product) will provide little in the way
of increased value. Also, since we want to derive a baseline value, we will probably
need to:

	 1.	Calculate the value produced by previous months’ work
	 2.	Use the first month of production as the baseline
	 3.	Guess

In addition, we will need to establish very precise definitions for what is com-
pleted, or “done.” While there is the concept of earned value, we need to clearly dif-
ferentiate earned value (which calculates value in terms of how much of the feature
is completed) and customer value (which calculates value in terms of completed
features). The bottom line is that customers rarely see value in incomplete features.
It’s either done or it’s not. We will talk more about “DONEness” and how it is
achieved during agile development in a later chapter.

And, since value is value, we probably won’t even have a reason to break the
value down into different types, so the resulting graph is fairly simple. As Figure 8.4
clearly shows, value increased from 40 points to 49 points by the end of the two-
year period. This represents a 22.5% increase in value, which is, unfortunately,
short of the 30% goal. In this case, one of the two goals has been achieved. The
organization will have to review the transition plan and decide if they want to con-
tinue with the transition as designed, modify the transition plan, or scrap the plan
and try something else.

0

10

20

30

40

50

60

Value completed

Value Completed

FJ M A M J J A S O N D J F M A M J J A S O N D

Figure 8.4  Value completed by development.

Determine Transition Goals    81

Setting Control Limits to Manage Corrective Actions
In addition to monitoring and managing the direction of the transition project, you
can also use measurements to help manage when to take corrective action. This can
be quite useful to help ensure that the organization does not engage in tampering
(that is, interfering in the normal course of the development process because it is
perceived that something unexpected has occurred) or isolation (that is, not inter-
fering in abnormal course of the development process because it is perceived that
nothing unexpected has occurred). We do this by setting upper and lower control
limits on our measurements. These control limits are much like the red zone on a
gauge or meter. When the needle moves into the portion of the gauge that is red,
some user intervention is required; until then, however, no intervention is needed.

In the manufacturing world, control limits are set by observing the manufac-
turing process and then basing the upper and lower control limits on the data (it
is common practice in the United States to use three standard deviations, or 3σ;
other statisticians use probability limits). As long as the process remains within the
limits, the process is considered to be under statistical control. You can accomplish
the same in the software development world. I’ll use the defect information from
the previous example to show you what I mean. To keep it simple, we’ll use only the
defects found during the development iteration. You can see the original informa-
tion in Figure 8.2; Figure 8.5 shows the “During Iteration” data, but with an upper
and lower control limit established at three standard deviations above and below
the average of the data.

In Figure 8.5 you see the original “During Iteration” data (that is, the number
of defects found during the development iterations) and two new lines: the “Upper
Control Limit” and the “Lower Control Limit.” In this case, both limits have been
created based on the organization’s ongoing performance and by agreement with

0
20
40
60
80

100
120
140
160
180

During iteration
UCL
LCL

FJ M A M J J A S O N D J F M A M J J A S O N D

Figure 8.5  Managing defects with upper and lower control limits.

82    Enterprise-Scale Agile Software Development﻿

the developers and management. While 3σ has been used in this example, the
upper and lower control limits can also be established simply by selecting reasonable
upper and lower values. In either case, the concept is simple: if the number of
defects crosses above the upper control limit or below the lower control limit, the
organization begins an investigation to determine which of the following is true:

	 1.	Something has happened during development that needs to be corrected. In this
case, further investigation is needed to understand why the defect mea-
surement crossed the control limit. Are more peer reviews or code reviews
required? Have some of the developers become lax in their creation and exe-
cution of unit tests? Has there been an ongoing problem that has caused con-
tinuous integration and testing to not run to completion on a regular basis?
Did a number of developers take vacation? Was whatever changed temporary?
Is it going to self-correct? You may need to diagnose why the measurement
exceeded the control limit and then determine a proper solution.

	 2.	Something has changed that requires a change to one or more development pro-
cesses. This instance occurs when the developers are following the defined pro-
cesses properly despite the out-of-control measurement. As a result, you will
have to determine why the defined process is failing, determine what process
or processes need to be changed, make the proper changes, and roll out those
changes to the development teams.

	 3.	Something has happened that requires a change in the control limit. You may
find that your developers are doing everything right and your processes are
working fine, but the measurement is crossing the control limit anyway. It is
very possible for measurements to cross the control limit because the orga-
nization has changed in some fundamental manner. On a positive note, the
reported defects measure might cross the lower control limit simply because
the organization has gotten much better at finding and eliminating defects
before calling a feature done. Likewise, if your organization suddenly sold
your product to a number of new customers, you may find yourself dealing
with more defects as a result of more users of your product. Value, too, may
cross the upper control limit (indicating that the organization is now generat-
ing more value than it was before). Did you add more teams? Did your teams
simply improve a little each month until the value produced simply crossed
the control limit? Did your product owner suddenly add a number of very
high-value features to the backlog that your Scrum teams just finished? There
are many possibilities. As before, you will need to determine what changed
and, if the change is long term (more than three or four months), adjust the
control limit appropriately.

As you can see, there are so many reasons for a measurement to cross a control
limit that it is foolhardy to rush into a situation with grand notions of quick fixes

Determine Transition Goals    83

until a reasonable diagnosis can be made and a solution, if any is required, can be
determined and enacted.

Avoiding Organizational Dysfunction
Caused by Measurements
Unfortunately, there isn’t a single measurement that cannot be easily “cooked” in
order to create the desired outcome. For example, if you measure reported defects
(as in the example in this chapter), you may discover instances of defects that are
found by developers and are simply fixed without being reported. Likewise, mea-
suring reported defects may cause a testing manager to encourage the testers to
open more defects. One frequent instance of this is when testers, who previously
had opened one defect report to encompass multiple similar defects in the same
object or component (for example, a simple problem common to all of the fields
on a single dialog box or screen), begin opening defects for each and every field.
Suddenly your defect reports unexpectedly increase by a factor of ten or worse. In
another case, a product owner began increasing story value estimation by ten to
fifteen percent in order to achieve quarterly or annual goals. Examples of this type
of dysfunction caused by measurement collection are endless, and many instances
are actually damaging to the organization. For example, imagine the overhead that
was generated by the testers that began opening ten times as many defect reports as
before, not to mention the overhead experienced by the developers trying to work
their way through ten times as many defects in their queues.

There are a few ways to avoid these situations, or at least make it harder for these
dysfunctions to develop. First, communicate what you’re doing and why. When
employees become aware of measurements being gathered and reviewed without
any kind of explanation, all sorts of unexpected and unwanted behavior occurs.

Communicate what you’re collecting, how you are collecting it (this is very
important, as you may discover that what you thought was the right value really
isn’t—or isn’t in all cases), and what you’re doing with the information.

Second, do not use organizational performance measurements in an employee’s
individual performance plan or performance evaluation. Measurements collected
regarding the performance of the organization’s agile transition are intended to
demonstrate progress toward organization-level goals. They measure the interac-
tion of many people and groups in your organization and can rarely be significantly
affected by a single employee. Keep your employee’s performance evaluations (if you
must have them at all) focused on their soft skills (ability to work with teams, etc.)
and the hard skills (technical skills). Organizational measurements measure orga-
nizational goals. Personal measurements measure personal goals. Keep these defini-
tions clear and never confuse the two.

84    Enterprise-Scale Agile Software Development﻿

Third, consider creating pairs or trios of related measurements that support
proper conclusions and help rule out measurement cooking. By creating multiple
measurements for each goal, you create checks and balances so that changes in
one measurement caused by unwanted organizational dysfunctions can be vali-
dated by one or more other measurements. If one measurement of a trio shows
a significant change, it may be the result of an unwanted behavioral change. If,
however, two or three of the related measurements change, you can be much more
certain that something real has changed in the organization.

For example, we’ve discussed the following goal:

Improve software development productivity by reducing software defects by ◾◾
20% from the point of view of the corporation.

And we’ve established a measurement:

Total defects◾◾

In order to ensure that unwanted changes in practices do not unusually inflate
the total defects measurement, we need to create one or two other measurements that
support the total defects measurement. For example, we could put in place any of the
following supporting measurements to help validate the total defects measurement:

	 1.	Number of test scripts executed: Counting the number of test scripts being exe-
cuted during development iterations can help check against sudden increases
in defects found.

	 2.	Number of files (or classes or modules) changed: Understanding how much
code, in terms of files, classes, or modules, can help validate the number of
defects found.

	 3.	Number of new noncritical defects to the number of new critical defects: In
general, the proportion of new noncritical to new critical defects should remain
relatively constant (within control limits, of course). Should there be a sudden
increase in total defects that is coupled with a significant change in this ratio,
there might be reasonable cause for investigation into unwanted behavior.

Summary
At the beginning of any transition to agile development, it is vitally important that
clear goals for the transition be determined. How long should the transition take?
Why are we investing time and money into the transition? Is it about improving
quality? What about improving productivity? In all cases, how much? By clarify-
ing your transition goals, many questions about how to deploy your Scrum teams
and how to plan your transition can be answered.

Determine Transition Goals    85

Having established your goals, it is also a good idea to determine how to appro-
priately measure your progress in order to help the organization make the right
decisions at the right time. In support of those decisions, your measurements can
be combined with upper and lower control limits that can be determined by the
organization. These control limits help the organization understand how much pro-
cess deviation is to be expected and when process changes may be needed when the
measurements cross the control limits.

Since measuring any aspect of the organization can produce unwanted behav-
iors, it is also frequently a good idea to create measurements in pairs or trios
that can help validate the primary measurement. If the primary measurement
changes significantly without appropriate changes in the supporting measure-
ments, the organization should look for unwanted behavior changes. If, however,
the supporting measurements support changes in the primary measurement, the
organization should look for evidence that points to needed changes in practices
or process.

Endnotes
	 1.	Basili, Victor, Caldiera, Gianluigi, and Rombach, H. Dieter. The Goal Question

Metric Approach. ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf (accessed on
November 12, 2008).

	 2.	 This is not to imply that the customer’s perspective is unimportant, but merely that, in
an agile transition, we are focusing on software built during the transition, not before.
If we focus on software defects that the customer finds, we are more than likely going
to include a lot of defects created prior to the beginning of the agile transition.

87

9Chapter

Create the
Transition Backlog

Taken from the Scrum definition of a product backlog, a transition backlog is
a list of everything that needs to be done during the transition to agile devel-
opment. As with the product backlog, the transition backlog is emergent. It
changes and is reprioritized constantly in order to ensure that the items that
bring the most benefit to the organization are addressed as early and as quickly
as possible. Also, like the product backlog, while anyone on the project team
can contribute to it, the transition backlog is owned and prioritized by the
transition owner.

The genesis of the transition backlog is fairly straightforward. We do the initial
population of the list by starting with a couple standard planning items. These
items, once the transition begins, are then groomed by the transition team(s) into
more and more detailed items that will guide the transition project from that point
forward. Our transition backlog1 begins as follows in Figure 9.1.

While this backlog is not nearly complete in order to actually do a transition to
agile development, it does have the necessary items on it that will allow the transi-
tion teams to continue to groom the backlog once the transition actually begins.

Bringing the Transition Team Together
Once the initial transition backlog is in place, the transition team is kicked off with
the following suggested agenda:

88    Enterprise-Scale Agile Software Development﻿

	 1.	General introduction
	 a.	 Project introduction: What is the project and what are the goals? If the

executive sponsor is available, let him or her deliver this portion of the mes-
sage, or at least repeat to the team his or her commitment to the project.

	 b.	 Team introduction: Who is everyone and why are they there? If they were
selected for the project, why? What strengths do they bring to the table?
Who is the transition owner? Explain their responsibilities.

	 2.	Logistics
	 a.	 Project schedule (sprints)
	 b.	 Meeting schedule (locations and times)
	 c.	 Meeting minutes (rotation or assignment)
	 3.	Transition backlog: What’s on it? What does every item mean?
	 4.	Structure of transition team
	 a.	 Will there be subordinate teams?
	 b.	 How and when will they be staffed?
	 c.	 Who on the core team will take leadership roles over the subordinate

teams? Those who volunteer for this duty should be aware that they are
taking on product ownership of that portion of the transition backlog. In
other words, within their subordinate team’s responsibilities, they become
the product owner.

	 5.	Next steps

Backlog Items

Create the communication plan.•	

Create the transition budget.•	

Create the training plan.•	

Create the facilities plan.•	

Complete the pilot development project.•	

Select the pilot project.−−

Establish the pilot project sprint schedule.−−

Staff and train the initial development teams.−−

Staff and train the remaining development teams.−−

Create the product deployment plan.−−

Create the pilot project product backlog.−−

Figure 9.1 T he initial transition backlog.

Create the Transition Backlog    89

With the creation of the initial transition backlog completed, the transition
project is ready to begin.

Endnote
	 1.	 You can find more information about transition backlogs at http://www.bigagiledevel-

opment.com/transitionbacklog.

IIIStarting the
Transition

Exciting and Really Challenging
With the initial transition backlog ready and the transition team set up, it’s time to
actually begin the transition project itself. While this will be a very exciting time,
you should also be prepared for it to be a very difficult time. The reason for this is
in the nature of how agile development works. In traditional product development
methods (including both waterfall and spiral models), there is considerable focus
on phases of development. First we analyze, then we design, then we code, then
we test. We do this once in waterfall (theoretically, that is), and we do this once an
iteration in spiral or iterative models. This approach to development tends to easily
absorb the impact of organizational dysfunctions because the transitions from one
phase to another happen infrequently and, for the most part, across the entirety of
the project (that is, all activities in the project shift from analyze to design, code to
test simultaneously).

Given that model, think of an agile development project as extremely high-
speed development. Teams move between analysis, design, code, and test as fre-
quently as several times a day, and the only time there is a planned break in the
action is at the end of a sprint. In this approach to development, an organization’s
processes and structures will be tested to the extreme and, in the early days of the
transition, will frequently break. Common examples of these “breakages” include:

Product build times in excess of one hour◾◾
No automated build or the automated build process requires human inter-◾◾
vention to complete

92    Enterprise-Scale Agile Software Development﻿

Source code control tools that do not support frequent check-in and check-out◾◾
Source code control practices that do not support code versioning and thus ◾◾
the easy removal of code containing defects
Scarce skill sets that become in demand across several teams at the same time◾◾
Coding standards are not clear or not defined◾◾
Organizational “DONEness” is not defined◾◾
No automated testing◾◾
Performance requirements are not clearly specified until after development ◾◾
is finished
Procurement processes that are focused on most significant savings instead of ◾◾
keeping the development teams functioning

As these obstacles occur, one or more development teams will be either par-
tially or completely blocked from making progress until the problem is solved.
The nature of Scrum in its daily approach to examining the current reality and
making decisions also means that the problems that these obstacles cause will be
reported on a day-to-day basis until they are solved. In this book, we’ll approach
the transition by trying to deal with some of these potential obstacles before they
start causing problems.

Basic Approach
The basic approach to the transition project used in this book is to use agile devel-
opment concepts not only to develop software, but to drive the transition as well.
This means that the transition project will be an agile project, using Scrum to
manage the schedule and backlog. As each sprint begins, we’ll examine the back-
log and take the highest-priority items to the transition team(s) for work. During
the course of the sprint, we’ll look ahead to future sprints by grooming the back-
log (i.e., analyzing, estimating, and slicing backlog items into smaller and smaller
pieces of work). At the end of each sprint, we’ll look at what we accomplished to
make sure we did it right, and then discuss how we accomplished it, looking for
ways to improve our process. The overall process comes in two parts: (1) beginning
the transition and (2) executing pilot agile development projects.

Beginning the transition is all about building the transition backlog, forming
the transition teams, setting up the pilot development projects, monitoring the
pilot projects, and executing the transition plans. This effort begins first and con-
tinues throughout the entire transition. The first month will usually be taken up
entirely by:

Grooming the transition backlog◾◾
Establishing (staffing) the transition subordinate teams (if any)◾◾
Starting to build the training plan◾◾

Starting the Transition    93

Starting to build the communication plan◾◾
Starting to build the budget◾◾
Starting to build the facilities plan◾◾
Selecting the pilot projects◾◾

Planning for the transition project may take more than a month (depending
on the size of the overall organization and the size of the transition team). When it
does, the next month or two will be time for:

Grooming the transition backlog◾◾
Finishing any critical plans that are not finished◾◾
All transition subordinate teams working their backlogs◾◾
Staffing and training one or two Scrum teams for the pilot projects◾◾
Building the product backlog for the pilot projects◾◾
Grooming the product backlog for the pilot projects◾◾
Establishing DONEness criteria for the pilot projects◾◾

Executing the pilot agile development projects begins within a month or two of
beginning the transition and continues throughout the remainder of the transition
project. Once the transition project ends, of course, it is assumed that new devel-
opment projects will be agile, but they will no longer be pilot projects. When we
begin pilot agile development projects, each month will be a repetition of the same
development events:

Groom the product backlog◾◾
Complete the sprint (create some product functionality)◾◾
Do a retrospective that includes a discussion around the effectiveness of:◾◾

The training−−
Any facilities changes−−
Any new tools−−

Anything else that went well or went poorly and needs to be addressed◾◾

This last sprint description simply repeats itself over and over again. New proj-
ects can be added to this cycle at any time, as long as there are resources available
for training. This section of the book will review the work that occurs during the
initial month or two of the transition project. We’ll discuss communication plans,
training plans, facilities plans, and so on.

95

10Chapter

Beginning Transition
Sprint 1

We begin the transition project with our very first sprint. This chapter will provide
an example of much of what will likely happen (good and bad) as you plan that
first sprint. We’ll also talk about some of the practices that will begin here and
continue throughout the rest of the transition project, and some even for as long as
you continue to do agile development. We’ll start by setting up the sprint schedule,
reviewing the transition backlog (as established in a previous chapter), and talking
about the grooming process. Then, we’ll look at sprint planning and some of the
tasks that the transition team will want to focus on during this first sprint. The
chapters that follow will discuss, in detail, much of the planning and decisions
that you’ll have to make during your first couple transition sprints. Finally, we’ll
look at the sprint review and the sprint retrospective. During the sprint review,
our focus will be on what was accomplished and whether or not we’ll be able to
begin training development teams in the next sprint. We’ll also look at what was
accomplished, modify the transition backlog appropriately, and then start thinking
about sprint 2.

During the sprint retrospective, we’ll focus on the process we followed during
sprint 1—what worked and what didn’t. There are also a number of items we’ll take
a look at during the sprint retrospective, including:

Training that the team received. Was it effective? How could it be improved?◾◾
New practices created (or old ones modified) during the sprint. Are there any ◾◾
that need to be properly documented for regulatory reasons?1

The subordinate transition teams. Were they effective? Do any need bet-◾◾
ter direction?

96    Enterprise-Scale Agile Software Development﻿

The Sprint Schedule
My preference, over several years of using the Scrum process with software devel-
opment projects, is to use sprints that are either three or four weeks in length.
For the purposes of the transition, I’m going to suggest four-week sprints. Once
you begin the pilot project sprints, you should go with either three- or four-week
sprints. In the end, the difference between the transition sprints and the develop-
ment project sprints will not adversely affect the transition. One other suggestion,
when there are subordinate transition teams, is to put those teams on a staggered
schedule consisting of two-week sprints. What I mean by a staggered schedule is
to offset the subordinate team sprints by one week from the beginning of the core
team sprint (see Table 10.1).

What this accomplishes is:

	 1.	When there are subordinate teams in place, the core team is generally cover-
ing topics that there are no subordinate teams to cover or is simply managing
the project and maintaining the transition backlog. Under these conditions,
there is no particular reason to run a short sprint.

	 2.	Subordinate teams are generally very productive, moving through items
rather quickly if the right resources are in place (and if the right resources
aren’t in place, you’ll want to know about this quickly anyway). By shortening
the sprint length of the subordinate teams, you gain the flexibility of receiv-
ing and being able to use output from the subordinate teams much more
frequently than with longer sprints. Also, the shorter sprint length allows
the core transition team to constantly review the backlog and give the sub-
ordinate teams new instructions through the reprioritization of each team’s
portion of the transition backlog. Since many of the subordinate teams have
to work together, being able to rapidly and repeatedly realign their priorities
comes in quite handy.

	 3.	To a lesser extent, a small degree of mixing the sprint length based on the
focus of the individual teams helps to highlight some of the often unrealized
flexibility of the Scrum method.

Table 10.1  Suggested Sprint Schedule

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Core Team Sprinnt 1 Sprinnt 2 Sprinnt 3 Sprinnt 4

Subordinate
Teams S11 S22 S33 S44 S55 S66 S77

Beginning Transition Sprint 1    97

Of course, if there are no subordinate teams and the core team is handling the
transition, I would still recommend three- or four-week sprints for the core team,
as they would have much to do under these circumstances and may not be able to
get much done in the shorter two-week sprints. In the end, the decision is up to the
transition team. If there is a high degree of uncertainty in the transition, go with
shorter sprints. If, however, the transition backlog grooming is going well and the
information you need to get those stories done is available when you need it, the
longer sprint lengths (three to four weeks) will work just fine.

The Transition Backlog
As you begin the first transition sprint, the transition backlog2 will look something
like the one presented in Table 10.2.

This backlog doesn’t represent everything that you will need to do during the
transition at a detailed level, but it does cover the high-level requirements. During
your transition sprints, the core team will continuously work on the backlog items,
splitting them into smaller and smaller pieces that the core team or a subordinate
team can commit to completing during a sprint. As it is right now, the transition
backlog has few items that would be considered small enough for a Scrum develop-
ment team to commit to. Creating items of that size will be one of your goals for the
first transition sprint. We’ll talk more about the process for getting the items down
to the right size in the “Grooming: Reducing Backlog Items to Sprint Size” section.
In the meantime, let’s discuss the difference between core team backlog items and
subordinate team backlog items.

Table 10.2 T he Initial Transition Backlog (Unsliced)

Create the communication plan.

Create the transition budget.

Create the training plan.

Create the facilities plan.

Complete the pilot development project:

Select the pilot project.•	

Establish the pilot project sprint schedule.•	

Staff and train the initial development teams.•	

Staff and train the remaining development teams.•	

Create the product deployment plan.•	

98    Enterprise-Scale Agile Software Development﻿

The Structure of the Transition Backlog
The transition backlog is a prioritized list of items that represents the entirety of
everything that needs to be done in order for the transition to agile development
to be successful. When there is one core transition team and one transition owner,
that list is represented as a single list of items. However, if you charter subordinate
teams to handle various aspects of the transition (e.g., a communications team, a
facilities team, etc.) and those teams are staffed by mostly different people, you will
have to make a few changes to how you handle the transition backlog.

To describe it simply, when you create multiple teams, it becomes easier for each
team and the team’s product owner to manage their own transition backlog. Items
on the core transition backlog that are assigned to a subordinate team are moved
to that team’s backlog, where additional grooming continues until each item is
reduced to a sprint size.

Let’s look Table 10.3 to see both transition backlog management processes side-
by-side.

Once the ownership of a backlog item is transferred to a subordinate team, that
team begins grooming the backlog item preparatory to committing to it during
sprint planning. One rule, however, must be followed by the subordinate transi-
tion teams: the priority of each item on the subordinate team backlog must remain
consistent with the relative priority of the parent item on the core team’s backlog.
In other words, if the core team transfers two backlog items, say item 1 and item 2,
to the communications team, where item 1 is a higher priority than item 2, no mat-
ter how many times the communication team grooms those items into smaller and
smaller items, the items belonging to the original item 1 should continue to be a

Table 10.3  Comparing Transition Backlog Management Processes

When There’s Only a Single
Core Transition Team,

the Core Team Should:

When There Are One or More
Subordinate Transition Teams,

the Core Team Should:

	 1.	Prioritize the backlog.

	 2.	Groom the backlog.

	 3.	During sprint planning,
select items from the top of
the backlog first.

	 1.	Prioritize the backlog.

	 2.	If an item clearly belongs to a
subordinate team, assign the item to
the subordinate team and mark it as
“owned” by the subordinate team.

	 3.	If an item may be owned by several
teams, groom it (slice it into smaller
pieces).

	 4.	During sprint planning, select items
from the top of the backlog that are
owned by the core team.

Beginning Transition Sprint 1    99

higher priority than the items belonging to the original item 2. Of course, for every
rule there is an exception. The exception to this rule is thus: it is not unusual for the
team to determine that one item of a lower priority should be done before an item of
a higher priority for technical reasons. In such cases, the team should consult with
the product owner for his or her consent to reorder the items.

Grooming: Reducing Backlog Items to Sprint Size
Grooming backlog items is an activity that you will spend a lot of time doing
throughout any agile project, whether we’re talking about the transition project or
any typical product development project. Items that are placed on the backlog are
usually not placed there ready to be committed to and completed during a sprint.
They are often too big, and we usually know too little about them to go ahead and
start working on them. Backlog items are often called stories; large stories (stories
that contain smaller stories) are called epics. Conversely, a story or item that is small
enough to be committed to and completed during a sprint is called sprint-sized or
right-sized. There is a general agreement in the Scrum community that a right-
sized story is something that can be finished by a development team in less than
two weeks. Personally, my preference (and the one used throughout this book) is
that a right-sized or sprint-sized story is one that can be completed by two or three
people in less than a week. If you aren’t sure which standard to use, consider going
to the smaller sizing for new teams and let them work up to the larger sizes as they
gain experience. This approach will allow you to balance the effort of slicing a story
down to a small size with the risk of missing something important because the
story wasn’t sliced small enough.

To reduce stories to the proper sprint size or right size, we have to groom back-
log items. Grooming involves three steps:

	 1.	Learning about the item and saving that information for later
	 2.	Slicing the item down to smaller items
	 3.	Creating estimations about the new items created in step 2

We’ll discuss all of these steps in the following paragraphs.
The Scrum master for the team should schedule a series of grooming workshops

to be held during the sprint. Ideally, these workshops should take between four and
eight hours per week,3 should be scheduled for the same times each week during
the sprint, and no single session should be longer than two hours in length. During
the workshops, the team asks questions of the product owner to further clarify the
item. This information is often collected in item-specific documentation for later ref-
erence. When the team feels they understand the items well enough (usually just a few
minutes of questions can do the job), they slice the item down into smaller pieces.

100    Enterprise-Scale Agile Software Development﻿

The new items that the team comes up with are placed on the backlog (the
parent item they were sliced from is removed from the backlog) and estimated.
Estimation is usually done in story points, which are values that provide a compara-
tive idea of size and complexity across multiple items or stories. After the items have
been estimated, the process repeats on the next item in the backlog. We’ll talk much
more about grooming, story points, and estimation techniques later in this book.
For now, we’ll confine our discussion to the first sprint of the transition project.

Sprint Planning
When you enter sprint planning for the first transition sprint, you’ll find you have a
problem—there aren’t any items on the transition backlog that are broken down to
a sprint size, and none of the items are estimated. Basically, everything that we try to
avoid in a product backlog at sprint planning will be true here. The transition back-
log is not ready for the sprint. In a development sprint, this means that the team will
spend a lot of time trying to build a sprint backlog—determining all of the required
tasks will be difficult, and much of the work cannot be done without the product
owner helping to complete the understanding of the team members during the entire
planning effort. Even after the sprint begins, there’s a high likelihood of overcom-
mitment due to new tasks being added continuously during the first several days of
the sprint. Truthfully, the same thing is going to happen to the transition sprint. But
we’re in the earliest phase of the transition project and you need to expect that the
initial sprint or two will not be perfect. They will, however, be quite productive.

Step 1 in sprint planning is to find out what kind of availability you have from
your team members during the course of the next sprint (four weeks, if you’re
going with my recommendations). Find out if anyone is less than 100% commit-
ted to the team—you’ll want to look into this later anyway. How about vacations?
Scheduled training? Department meetings longer than two hours? Let’s get all this
out on the table from the very beginning so that we can keep an eye on what the
team can realistically commit to during the first transition sprint.

With that completed, let’s start reviewing the transition backlog from the
top down:

	 1.	Create the communication plan:4 If you have a communications team, you can
assign this item to them and be done with it for now. Make sure you have
someone on the core transition team that will act as the product owner for the
communications team. If you’ve followed the sprint schedule I recommended
in Table 10.2, the communications team product owner has a week before the
first sprint—he or she can use that week to get part or all of the communica-
tions team together and start grooming this item into sprint-sized pieces.

	 2.	Create the transition budget:5 This item is usually managed by the core transi-
tion team, even if there are subordinate teams.

Beginning Transition Sprint 1    101

	 3.	Create the training plan:6 If you have a training or education team, you can
assign this item to them and be done with it for now. Make sure you have
someone on the core transition team that will act as the product owner for
the education team. If you’ve followed the sprint schedule I recommended in
Table 10.1, the education team product owner has a week before his or her
first sprint; he or she can use that week to get part or all of the education team
together and start grooming this item into sprint-sized pieces.

	 4.	Create the facilities plan: If you have a facilities team, you can assign this item
to them and be done with it for now. Make sure you have someone on the
core transition team that will act as the product owner for the facilities team.
If you’ve followed the sprint schedule I recommended in Table 10.1, the facili-
ties team product owner has a week before his or her first sprint—he or she
can use that week to get part or all of the facilities team together and start
grooming this item into sprint-sized pieces.

	 5.	Complete the pilot development project: This will be the responsibility of the
core transition team, even if we have other subordinate teams. Since we’ve
already sliced this a little, let’s look at the pieces:

	 a.	 Select the pilot project: This can be a project already in progress or a proj-
ect that is about to begin. The question, for the purposes of estimation,
is this: Can the selection of a pilot project be done by two to three people
in less than a week? If the answer is yes, we don’t need to do anything.
However, the answer could well be no. If so, we need to discuss this item
more. For example, perhaps we have no idea what project we could use.
Or maybe there are lots of possibilities, but we don’t know if the project
and resource management are on board. Of the possibilities we know of,
perhaps several are simply too critical to be potentially delayed by the
transition. So, we might slice this item into several smaller items:

	 i.	 Identify the top five projects that would work well with the transition
(small, short, noncritical efforts that will begin shortly).

	 ii.	 Select the best project for the transition (talk with the management in
charge of the projects to get a short list of projects where management
is willing to be part of the agile transition).

	 iii.	 Identify the remaining projects to be included in the transition dur-
ing the course of the project (we’ll need this for later).

	 b.	 Establish the pilot project sprint schedule: This item usually doesn’t take too
long and can certainly be done in a few days (or less).

	 c.	 Staff and train the initial development teams: This one will take a little
work, and you should plan on slicing it down to something a little smaller.
The end result might look a little like this:

	 i.	 Get a list of developers, analysts, testers, QAers, etc., involved in the
target project.

	 ii.	 Work with management to identify potential development teams that
are no larger than seven people each.

102    Enterprise-Scale Agile Software Development﻿

	 iii.	 Order the teams by starting sprint (which are the first two teams,
which two go next, and then after that?) Overload the teams in
sprint 1 with two people each from the sprint 2 teams.

	 iv.	 Schedule and execute the training.
	 d.	 Staff and train the remaining development teams: This one is similar to

the previous. We already know which people are on which teams, so if
the plan is to launch two or three more teams in the next month, then:

	 i.	 Overload the teams for sprint 2 with two people each from the sprint
3 teams.

	 ii.	 Schedule and execute the training.
	 e.	 Create the product deployment plan: This item is going to be product spe-

cific (that is, every product can have a different deployment plan). Is the
product an internal application? Is it shrink-wrapped software, or do you
deliver to a finite list of customers? How often do you deliver? All of these
questions will lead you to a much more specific discussion about how
completed software goes from your development factory to your custom-
ers. Consider adding some of the following items to your backlog:

	 i.	 Determine what releases occur during the course of the pilot project.
	 ii.	 Determine what extra steps are needed for releases during the course

of the pilot project.

So, as you complete the first step of your sprint planning effort, you find yourself
with a growing transition backlog before much work has even gotten under way. In
fact, with each new transition sprint, you’ll see more and more items getting added
to the transition backlog even as you and your teams work to take other items off
the list by completing them. This is normal and reflects the emergent characteristic
of the transition backlog (and the product backlog). You may find that, during the
transition project, the transition backlog continues to simply get longer and longer
(in estimated size, not just number of items). Don’t be discouraged by this. What
is happening is that you and your transition teams are essentially evaluating the
development capabilities of your organization from top to bottom and creating a
very extensive list of items that need to be addressed. As long as you keep the transi-
tion backlog prioritized, you can ensure yourself and the organization that you are
spending your time working on the most important items first.

Now, we have one more problem to fix. Because the transition backlog is new
(and, in fact, we’ve been pretty much building it through the sprint planning
process), it still isn’t estimated. In the short term, that doesn’t pose a significant
problem. However, it won’t be long before executive management is going to start
asking questions about how much progress you are making and how much longer
you need to complete a significant portion of the transition. To do that, you’ll need
reasonable estimates on your transition backlog items, and the sooner we start esti-
mating transition items, the better off we’re going to be.7 Thankfully, we should be
able to do this quite easily, as our backlog is neither lengthy nor terribly complex.

Beginning Transition Sprint 1    103

During sprint planning, take an hour and write your entire backlog out on a
white board or flipchart. Create two columns: one for the item and one for the
estimate. You can also create the clear relationship between a smaller child story
and the original parent by adding a theme to the front of the item. I’ve done so
in the following table by adding themes to the front of some backlog items in
parentheses and italics. For example, if I had an item about creating the wheels
for a car, I might have a child item split off from building a car that would look
like this:

(Build a car) Create the wheels

This notation indicates that the “Create the wheels” item came ultimately from a
“Build a car” parent story.

If you’ve stuck pretty close to the example we’ve discussed so far, your backlog
will look like Table 10.4. Now, if you don’t have a communications team, a facilities
team, or a training team, you’re going to need to spend a lot more time on those ini-
tial items at the top of the list. You will likely find that the entire first two or three
transition project sprints will be dedicated to slicing these items down into smaller
and smaller child items, building the budget, communication plan, training plan,
and facilities plan. For now, however, we can size these items as being too large to
be sprint-sized—we call this extra large, or XL.8

As for the rest of the backlog, work with your team to review the effort that is
entailed within each item. Set a time limit for each item; some teams use a simple
egg timer, and others set the limit at five or ten minutes and someone becomes
responsible for keeping track of the time. If the time limit expires, the team can
very quickly decide to extend the time limit another five or ten minutes or to move
on to the next item and come back to the current item later. This method of time
boxing the discussion can be quite useful in any analysis effort—it recognizes that,
sometimes, our conversations get stalled (ever been in a conversation where people
simply repeat themselves over and over again?) and we need some kind of time limit
that forces us to stop, check, and decide. At some point, either in the first round
of talking or at the end of a couple five- or ten-minute time boxes, the team will
decide that they know enough about the item to go ahead and put an effort estima-
tion on it. For now, we’ll use t-shirt sizing as a means to shortcut the estimation
effort into basic categories of effort.

And here’s one of those big warnings! When you do any form of agile estima-
tion, there’s going to be a real desire to just fall back to hours as we always have in
the past. We’re used to using hours in our estimates, and when confronted with
uncomfortable change, people will naturally migrate back to more comfortable,
if less efficient, practices. The question will be asked: What’s the big deal between
estimating something as eight or sixteen hours or using XS or S? Believe me—it’ll
happen. The answer to this question will be heard over and over again when you
discuss agile analysis, so let’s get it nailed down right now.

104    Enterprise-Scale Agile Software Development﻿

What’s the Big Difference between Hours and Points?
We’ve started the process of agile analysis, and no sooner do we get ten minutes into
the conversation than someone asks that question: “What’s the big deal? This isn’t
any different than doing estimates in hours the way we always have.” After thank-
ing the individual for asking the question and giving you the opportunity to answer
it once and for all, you provide the following answer.

Table 10.4 T he Transition Backlog: Somewhat Expanded/Sliced

Backlog Items Estimate

Create the communication plan (handed off to communication
subteam).

Create the transition budget.

Create the training plan (handed off to training subteam).

Create the facilities plan (handed off to facilities subteam).

Identify top five projects for the agile transition.

Select the best pilot project from the candidate list.

Rank the remaining projects to follow the first.

Establish the pilot project sprint schedule.

(Staff/train) Get a list of developers involved in the target project.

(Staff/train) Work with management to identify potential Scrum teams.

(Staff/train) Order the teams by starting sprint.

(Staff/train) Overload sprint 1 teams with people allocated to sprint 2
teams.

(Staff/train) Schedule and execute the training (handed off to
training subteam).

(Staff/train) Determine the staffing for all remaining teams and
overload with two people each from the next sprint’s teams.

(Staff/train) Schedule and execute the follow-up training (handed
off to training subteam).

(Deployment) Determine what releases occur during the course of the
pilot project.

(Deployment) Determine what extra steps are needed for releases
during the course of the pilot project.

Beginning Transition Sprint 1    105

	 1.	Estimation is estimation: Whether we estimate in hours, days, points, t-shirt
sizes, it doesn’t matter. When we estimate the size, effort, or risk involved in
something, we analyze it for detail and then create an estimate. So, to a cer-
tain extent, the questioner is quite right: it isn’t any different—on the surface.
But then again, a cannon and a small gun both fall under the category of
“artillery” too, don’t they? However, we don’t use them interchangeably. My
father, a fantastic auto mechanic, used to say this over and over again: “the
right tool for the right job.” On to point 2.

	 2.	Precision costs money: In this particular meeting (during sprint planning, that
is), we aren’t looking for significant precision yet. A rough estimation is all I
need right now. Certainly, I could get a much more detailed and much more
precise estimate if I gave an analyst or two many hours to review the item in
detail, model out a solution and some tasks, estimate the smaller tasks, and
then add them up to come up with a considerably more precise estimate.

	 3.	Precision increases risk of waste: In agile development, much of what we do is
done “just in time,” as opposed to waterfall projects, where we attempt to pro-
duce our most detailed estimates at a time in the project (analysis phase) when
we know the least about them. When we estimate backlog items, we attempt
to do so while spending the least amount of effort on the items. When we’ve
learned enough about an item to estimate it, we probably also know enough
about the item to slice it into smaller pieces, learn more, and estimate again.
Since we do estimation frequently on items that are getting smaller and more
detailed, we don’t want to spend a considerable amount of time estimating
and reestimating. In addition, should we learn something about a story that
forces us to change the entire approach, we would have to rework and rees-
timate anyway. With simple, nonprecise estimates, we wouldn’t lose a lot of
time in wasted estimates. Similarly, if we spend a lot of time on a story that
is suddenly removed from the project, we would lose a considerable invest-
ment in estimation if we had done a detailed analysis up front. Our most
detailed estimation effort (creating tasks from the items and estimating them
in hours) comes right at the beginning of the sprint, when we’re the most
certain that we’re definitely going to build the items we’ve committed to.

Estimation in an agile environment, then, is about being prudent about the
effort and the precision that we’re putting into each item. Waterfall methods
require us to learn everything there is to know about an item from the beginning
of the project. This one-size-fits-all approach to estimation ignores the possibility
that an item may be removed from the project at a later date or that another item
may change the design or architectural approach so much that one or more other
items will need to be completely rethought and reestimated. Estimation in an agile
environment, therefore, applies the proper precision at the proper time in the proj-
ect and reduces waste rather than applying the maximum precision to every item in
the project without regard to its priority or complexity.

106    Enterprise-Scale Agile Software Development﻿

Building the Sprint Backlog
Once you finish estimating all of the items on the transition backlog, you’re
ready to start moving the items to the sprint backlog and deciding how much
you’ll actually get done during this sprint. How much you can do, however, is
going to have to be determined by your team. There are two methods for popu-
lating a sprint backlog. The first is called velocity-based planning. This method
allows you to load the sprint based on how much work the team has been get-
ting done during the past one, two, three, or more sprints. The problem with
velocity-based planning, however, is that since this is our first sprint, we don’t
have an established velocity. So, we have to use the second method: commitment-
based planning.

Commitment-based planning is a form of sprint planning that adds backlog
items to the sprint backlog one at a time, with the team evaluating the total amount
of work and then deciding if they can commit to more work. If an item doesn’t
“overload” the team’s ability to commit, the item is kept on the sprint backlog and
the team looks at the next item on the backlog. If the team can commit to the sec-
ond item, they move on to the third, and so on. When the team feels that they’ve
committed to as much as they can, the most recently considered item is not moved
to the sprint backlog. Let’s take a look at a couple examples:

A very aggressive transition team with no subordinate transition teams could ◾◾
commit to completing the “Create a transition budget” item (which is quite
large), but only feels that they can complete a draft communication plan. So,
they slice the “Create the communication plan” item into two items—“Create
a draft communication plan” and “Finalize the communication plan”—and
then commit only to the former, leaving the latter on the transition backlog
for the next sprint.
A transition team with a full complement of subordinate transition teams could ◾◾
assign the communications plan, training plan, budget, and facilities plan to
the subordinate teams and then commit to the rest of the transition backlog.
A transition team will a full complement of subordinate transition teams ◾◾
could assign the plans and budgeting to the subordinate teams, but hold
short of committing to the rest of the transition backlog.

Let’s take a brief look at some of the influences that drive over- and undercommit-
ment during sprint planning.

When Teams Attack! (The Backlog, That Is)
Some Scrum teams, for a variety of reasons (both understandable and not so under-
standable), tend to overcommit to items on the product backlog, learning very
quickly during the early part of the sprint that completing what they committed

Beginning Transition Sprint 1    107

to simply isn’t going to happen (or worse, can’t be done without cutting corners on
product quality). Teams often overcommit because:

	 1.	The items they committed to were actually larger than estimated.
	 2.	The team took an aggressive stance with the expectation that they could get

the work done.
	 3.	The team was “asked” (translate as “strongly urged”) to complete a certain

amount of work.

In a well-managed sprint, teams usually determine their overcommitment within a
few days of sprint planning. Whether it’s because new tasks are discovered that add
to the overall amount of work or because tasks that seemed straightforward seem to
take longer and longer to finish, as Figure 10.1 depicts, sprint burn-downs gener-
ally show overcommitment within the first week or ten days of the sprint, when the
slope of the burn-down line clearly indicates that the team will not finish without
heroic, unsustainable, and potentially risky effort.

When teams overcommit, for whatever reason, they need to correct their com-
mitment in order to adjust to the current reality. There should not be a penalty for
returning work to the backlog. In fact, the view of the team and the organization
needs to be that the work that can’t be done by the team couldn’t have been done
anyway.9 The error made by the team isn’t in their inability to follow up on their
commitments; the error, in fact, is in the commitment itself. The solution is to
simply return the work to the backlog. Unfortunately, the error made by most orga-
nizations is to look at sprint planning commitments as written in stone and forcing
teams to “stick to their commitments,” even at the risk of harming product quality.

0
1 3 5 7 9 11 13 15 17 19 21

100
200
300
400
500
600
700
800
900

Hours remaining
2 per. Mov. Avg. (hours
remaining)

Figure 10.1 O vercommitted sprint burn-down. In this figure, the team started
with about 810 hours of work, which grew slightly to 850 before trending down-
ward. However, in the ninth working day of the sprint, the possibility of getting done
in time is diminished. By the eleventh or twelfth day of the sprint, it is clear that a
correction is needed and some work needs to be returned to the product backlog.

108    Enterprise-Scale Agile Software Development﻿

And, of course, bad experiences with overcommitment usually result in an opposite
and potentially more harmful reaction: undercommitment.

When Undercommitment Is the Order of the Day
How much your team is willing to commit to during any sprint is going to depend
on a lot of things, including how comfortable your team is with not achieving all of
the planned results. Many Scrum teams will deliberately undercommit because they
work (or are under the impression that they work) in an environment that frowns
on not achieving their objectives as stated. This is a pervasive problem in business
today; we all work (or have worked) in environments where we make estimates,
make objectives based on those estimates, and then are stuck achieving those objec-
tives, even when the estimates were flawed (which they usually are) or the business
circumstances change in unpredictable ways, affecting our ability to achieve our
objectives. Unfortunately, this type of business promotes individual agendas that
often conflict with organizational goals, result in employee overwork (which invites
burnout, clinical depression, neglected families, and reduced product quality), and
engender creeping mediocrity.

In the agile development environment, undercommitment occurs during sprint
planning when teams either deliberately overestimate items or deliberately under-
commit to their sprint goals (refer to Figure 10.2). As mentioned before, teams
do this because they anticipate unwanted consequences when they don’t achieve
all of their sprint goals. In one example, a manager decided that an important
measurement of his Scrum teams’ productivity was the ratio of completed sto-
ries over committed stories. Therefore, if his teams completed only half of what

0
1 3 5 7 9 11 13 15 17 19 21

100
200
300
400
500
600
700
800

Hours remaining

2 per. Mov. Avg. (hours
remaining)

Figure 10.2  Undercommitted sprint burn-down. In this figure, the team started
with about 750 hours of work and, after a minor correction during the first cou-
ple days, burned down at a fairly even pace, completing all of the team’s work
with three or four days to spare. In a situation like this, teams should look to the
product backlog for more work to do if there’s work available that can be done
in the remaining time.

Beginning Transition Sprint 1    109

they committed to, the measurement would be 50%. Obviously, then, completing
everything that was committed to would result in a measurement of 100%. The
manager thought that this measure both was useful and would help his teams work
toward completing the stories they committed to. What actually happened was
that productivity dropped as the Scrum teams deliberately undercommitted sprint
after sprint. Even worse, when team members had time at the end of the sprint,
they absolutely would not take new work from the product backlog because that
would introduce the risk of not completing a story, which of course, would “mess
up” their metrics.

Teams either finish their goals during a sprint or they don’t. Sprints begin and
end on prescheduled dates that have nothing to do with how long stories on the
backlog will take to be finished. There will be many reasons for teams to not fin-
ish all of their goals, from a lack of experience on the part of the team members to
organizational dysfunctions that result in inefficient work patterns to, as mentioned
earlier, time simply running out. There’s nothing good or bad about not finishing
all of the items that a team committed to—it simply happens.

Clearly, we need to take a completely different approach to setting and reacting
to Scrum team goals. We need an environment that encourages aggressive, achiev-
able commitments while removing the stigma of failure related to not getting all
of the team’s commitments completed. Teams need to be encouraged to be reason-
ably aggressive with their commitments during sprint planning and to continu-
ously take steps to improve team performance. As the sprint progresses, if it seems
likely that a team cannot complete all of the stories that they’ve committed to, they
need to be permitted to return the lowest priority items to the backlog and reduce
their overall commitment.

Of course, having said all this, there is always that case where a team doesn’t
finish their sprint goals because they actually did not work in good faith with the
organization. They, to be blunt, slacked off. Some would suggest that this is the rea-
son why measurements of Scrum team progress are so important—to quickly iden-
tify and deal with situations like this. However, as common sense suggests, if a
team is truly not working in good faith with the organization, the signs would be
everywhere without having to be specifically measured. Observation of team activi-
ties during the sprint, the progress reflected by the sprint burn-down, the results
demonstrated during sprint review—all of these will show evidence that the team is
not performing to their capabilities. Should this be the case with any Scrum team,
some radical changes in the make-up of the team, up to and including disbanding
the team entirely, would certainly be called for.

Committing to Work in the First Transition Sprint
Bottom line, then, is that you will need to encourage your transition teams
(both the core team and the subordinate teams, if any) to set challenging but

110    Enterprise-Scale Agile Software Development﻿

achievable goals for their sprints, but not to get too worried if they discover
they’ve committed to too much or too little. That’s going to happen. If a team
commits to too much, we return the extra work to the backlog. If a team com-
mits to too little, we go back to the backlog for more work. This message also
needs to be delivered to the organization’s executive management. When the
transition project status is reported to management, you’ll likely talk about
what goals each team has set, and you will almost certainly, from time to time,
report goals that have been returned to the transition backlog to be worked
on in a later sprint. It’s very important to set this expectation early and often
with your management and your teams. Unless your teams are slacking off, the
assumption must be that they are always doing their best to complete as much
work as possible.

Whether or not you have subordinate teams, the first duty of the core transition
team is going to be to work on the transition project budget. Without the budget,
it’s hard to set the organization’s expectations for what’s going to come next and
how to plan financially for the project. The remaining chapters in this part of the
book are focused primarily on the types of work that the core transition team and
subordinate teams (if any) will have to address. Refer to the proper chapters in this
section of the book to help you do your planning.

Sprint Reviews for Transition Sprints
While most of us are used to sprint reviews evaluating the software completed by
a Scrum team during a sprint, there’s actually nothing in the Scrum method that
insists that we build software. So, doing reviews for transition sprints is pretty
much the same as doing the typical sprint review. The process is fairly simple and
can be summed up as follows:

Who should be there? The transition team, the transition owner, anyone else ◾◾
who feels like being there. When it’s a review for a transition subordinate team,
consider having as many members of the core transition team there as possible.
How long will it take? It really shouldn’t take more than an hour. However, ◾◾
if you discover that your transition owner has a lot of questions about what
the team produced, you should have a discussion with the owner about being
more in touch with what the team is doing during the sprint. A good transi-
tion owner or product owner should know beforehand what he or she is going
to see during a sprint review.
What needs to happen? Someone on the team (or different team members at ◾◾
different times) should review each backlog item that the team committed
to finish and should show the team’s transition owner the evidence that they
finished it. For example, if the team committed to finishing a communica-
tion plan, the transition owner should expect to see and “touch” a completed

Beginning Transition Sprint 1    111

communication plan (yes, it’s probably best to print a copy for the transi-
tion owner—everyone else can look at an electronic copy perhaps displayed
by data projector). The transition owner may ask questions about the plan,
may suggest improvements (which are written up and added to the transition
backlog to be addressed in a future transition sprint), or may even reject the
plan in part or completely. If the team’s output is rejected, the backlog item
that they thought they completed is moved back to the transition backlog to
be readdressed in a future sprint (again, this is why its better for the transition
owner to be in constant touch with the transition team—outright rejections
like this should be extremely rare).

Depending on the result of the sprint review, the team’s transition backlog is
updated to remove completed backlog items (if any) and the team moves on to the
sprint retrospective.

Sprint Retrospectives for Transition Sprints
As with sprint reviews, sprint retrospectives for transition sprints really aren’t all
that different. However, there are some important items that should also be dis-
cussed during the sprint retrospective. In general, there are many ways to effec-
tively execute a sprint retrospective. Some of the best texts on the subject have been
authored by Esther Derby and Diana Larsen. For transition sprints, however, I also
recommend that the transition team discuss the following items:

Training◾◾ : What feedback, if any, has been received from employees who have
taken the training provided for the transition? It should be expected that
agile development training will undergo some degree of maturation during
the course of the transition. Every organization learns in a slightly different
way, and no matter how you initially set up the training, you’ll find that it
needs periodic tuning. Sprint retrospectives for the core transition team are
an excellent opportunity to review any feedback and decide what, if any,
changes may need to be made to the training. Whatever decisions are made
with regard to the training can be added to the transition backlog as new
items that can be addressed by the core transition team or the proper sub
ordinate team in the future, depending on the item’s prioritization.
Process changes◾◾ : Since we’re doing the transition as an agile effort, we didn’t
plan to spend a lot of up-front time examining all of our defined practices
trying to detect possible impacts with agile development practices. Therefore,
once the pilot project(s) begins, Scrum teams will begin encountering prob-
lems with previously defined processes. What worked before starting agile
development may actually begin blocking (obstructing) Scrum teams. What
we’ll need is a way to communicate those process issues (and what the team

112    Enterprise-Scale Agile Software Development﻿

did about them) to the core transition team so that permanent changes can be
made to the defined process. In addition, we will also need a means by which
all teams are made aware of process changes so that the same problem isn’t
encountered in future sprints (this will actually be part of the communica-
tion plan).
Effectiveness of subordinate teams◾◾ : Lastly, if there are subordinate teams, the
transition core team should plan to spend a little discussion time during each
retrospective on the progress being made by the subordinate teams. The focus
here should be on identifying teams that:

	 1.	 Need staffing changes (this will happen as the transition project moves for-
ward, but may also present as a team that is having poor sprint reviews)

	 2.	 Are running out of work on the backlog (eventually, the subordinate
teams should be disbanded—this is a good thing!)

	 3.	 Are not making sufficient progress (watch for reductions in team veloc-
ity or signs that the team should be able to accomplish more in the time
they have)

Continuing beyond Transition Sprint 1
Once the first transition sprint is completed, you’ll have a slightly clearer picture
of how much your team can do during a sprint and, therefore, how many sprints
it may take before you will be ready to take on the first pilot project. The backlog
we’ve discussed in this chapter, and the details in the chapters that make up the
remainder of this part of the book, will help guide you in getting to that point in the
transition where you can take on the first pilot project and launch your first teams.

Look carefully at the results of your first transition sprint. Discuss the results
in detail during your sprint review and try to decide, based on what you see at that
point in time, what’s the next most important thing to do (that will help drive
possible prioritization changes to the transition backlog before you begin the next
transition sprint). Following this, use the sprint retrospective to carefully examine
what worked during your first transition sprint and what didn’t. Maybe the team
had a great time and got a lot of work done. That’s good—whatever you did during
the first sprint, make sure you repeat it. Even more likely, however, is that the team
felt that they didn’t have enough “free time” allocated to the project to get the
important stuff done. What can you do to change this? How important is the tran-
sition to the organization and what is it willing to do to make the transition work?
Make sure you clearly communicate any organizational-related difficulties to your
executive sponsor (or, better yet, get him or her to attend the retrospective unless
you feel the team won’t speak up with the executive there) immediately. Leverage
the transition backlog to show how much needs to be done and how much didn’t
get done because of the transition team members’ other commitments. If this is

Beginning Transition Sprint 1    113

going to be a problem in your transition project, you’ll want to deal with it early
and decisively.

With the sprint review and the sprint retrospective behind you, get sprint plan-
ning for the second transition sprint under way. The process is the same as discussed
throughout this chapter. For specific information on the budget, communications
plan, training plan, facilities plan, and more, see the remaining chapters in this
section of the book.

Endnotes
	 1.	 This should be done during the sprint (and as your teams get more experience, it will

get done during the sprint), but in my experience, it often isn’t clear that we need to
do this until after the sprint ends. Dealing with it during the sprint retrospective helps
ensure that nothing in missed in the early sprints and reminds the team to do this activ-
ity during the sprints instead.

	 2.	 You can find more information about the transition backlog at http://www.bigagilede-
velopment.com/transitionbacklog.

	 3.	 In cases where there are subordinate teams, the core team may not need more than
four hours per week in the early sprints, and possibly quite a bit less later in the tran-
sition project because the core team does not groom items that clearly belong to a
subordinate team. Those items are simply transferred to another team, which becomes
responsible for the grooming of the item.

	 4.	You can find more information at http://www.bigagiledevelopment.com/
communicationplan.

	 5.	 You can find more information at http://www.bigagiledevelopment.com/transitionbudget.
	 6.	 You can find more information at http://www.bigagiledevelopment.com/trainingplan.
	 7.	 In addition, the sooner the transition team starts doing story point estimation on back-

log items, the sooner they’ll become more familiar with the estimation process.
	 8.	 There are, in fact, XXL and XXXL sizes that are often used by some agile teams, but for

the purposes of simplification, I recommend going light on the X’s.
	 9.	 For more information on this point, see http://www.artisansoftwareconsulting.com/

file/Blogs/Entries/2009/8/11_Whatever_Happens_Is_The_Only_Thing_That_
Could_Have.html.

115

11Chapter

Create the
Transition Budget

While a successful transition to agile development will result in higher perfor-
mance, better-quality software, and a stronger working relationship with your
customers, there are costs that most organizations will likely occur during the
transition. We’ll discuss a lot of those possibilities in this section. However, since
prices vary and an organization’s readiness and size will vary, I cannot provide
adequate cost estimates. So, as with much of this book, use this section as a way
of helping to ensure that your planning is as detailed and comprehensive as you
can make it, but fill in the particular details based on the needs and capabilities of
your organization.

The major budgetary items1 that will likely occur during a transition to agile
development will fall into these categories:

Training and coaching◾◾
Software and hardware◾◾
Facilities◾◾
Travel◾◾
Personnel◾◾

We’ll discuss each of these categories in the sections that follow.

116    Enterprise-Scale Agile Software Development﻿

Training and Coaching
By far the largest portion of your budget will be spent in training and coaching.
A degree of understanding of agile development can be acquired through reading
books (thus, the tome you are currently perusing). However, much of agile develop-
ment is behavioral and even cultural in content. So, while you can easily learn the
concepts of Scrum by reading a few books (and even the litany of articles currently
available for free), you will benefit greatly by hiring or training some Certified Scrum
Masters who have some experience in how to take advantage of the roles, artifacts,
and meetings that make up Scrum. Similarly, test-driven development (TDD) is eas-
ily understood through a number of books and, again, free material available on the
web. However, it takes a developer with experience to really understand the various
nuances and situations that cannot adequately be described in a book or article.

The list of areas of expertise that are important if not critical to the imple-
mentation of agile development is rather extensive, and each comes with a similar
cautionary tale that, while book learning is important, direct training and coaching
is absolutely invaluable. Some of those areas, many of which are discussed to some
extent in this book, include:

Agile analysis (user stories, estimation, grooming)◾◾
Agile development◾◾

Automated acceptance testing−−
Configuration management and source code control−−
Continuous integration and testing−−
Test-driven development−−

Application build (compile and link)◾◾
Project management, release management, and reporting◾◾
Scrum◾◾

In general, you will find coaches that specialize in Scrum (and basic agile con-
cepts), agile programming (primarily Extreme Programming (XP)-based practices),
and agile analysis. In fact, even when you can find the rare but exceptional coaches
that can address all aspects of agile development quite well, you’ll still get more
flexibility in how you use your coaches by hiring specifically for the categories pre-
viously mentioned. From a cost perspective, you will need to estimate the number
of Scrum teams that will be created and active at the same time and then base your
coaching requirements on the following approximations:

One Scrum/agile principles coach for every six to eight Scrum teams◾◾
One agile programming coach for every two to three Scrum teams◾◾
One agile analysis coach for every four or five Scrum teams◾◾

Fortunately, there are many good consultants available that can help you in
several of these areas of expertise—you won’t have to find a different source of

Create the Transition Budget    117

information for each area. The Agile Alliance (http://www.agilealliance.org) and
the Scrum Alliance (http://www.scrumalliance.org) web sites are good places to
start to learn about some of the vendors that may be available to help you through
the transition.

Software and Hardware
The secret behind agile development’s success in improving software quality has a
lot to do with rapid software development cycles. In the typical agile development
team, software tests and code are written nearly simultaneously, and as each small
piece of software is finished and tested, the code and the tests are added to the rest
of the product code and tests. In order to ensure that the aggregated code continues
to work properly, the entire product is frequently rebuilt and retested by running
some or all of the tests. For two or three developers working together on a small
piece of a feature, this cycle of clarifying the requirements, writing the tests and the
code, testing the code, and adding the new code and tests to the rest of the applica-
tion can happen in thirty minutes or less (some very experienced agile developers
can complete the cycle in fifteen minutes or less). Within one Scrum team, new or
changed tests and code can be added to the rest of the product ten or twenty times
a day for each of the typical two or three subteams working on a separate story or
feature, meaning that your product code base could be modified thirty to sixty
times a day. Multiply this by three, four, or even twenty Scrum teams, and your
product code base is generally under constant modification.

Under these conditions, it is not unusual for your product to be rebuilt and
tested two, three, or four times an hour, each time incorporating new additions to
the code base that require testing. In order to keep this continuous build, integrate,
and test cycle running while your developers are working, you’ll need some soft-
ware and some hardware to make it all happen.

In addition to the challenges of continuously building and testing your soft-
ware, you may also need new tools to support the management of teams, prod-
ucts, and their respective backlogs (lists of things to do—stories, features, defects,
etc.). In a smaller organization, some simple tools can be created by using readily
available spreadsheet programs and even web-based wiki engines. However, as the
size of the organization grows and the need for supporting multiple development
sites, reporting, and the consolidation of data increases, a backlog and team man-
agement tool will prove to be invaluable. Backlog tools can also help:

Track the relationship of large stories (epics) when those stories are split into ◾◾
smaller stories (children). This creates traceability, something that is often
absolutely critical in organizations that are heavily regulated or have stringent
quality management practices.

118    Enterprise-Scale Agile Software Development﻿

Track the required sequence of stories and tasks. Despite the fact that product ◾◾
owners have ultimate responsibility for the prioritization of the product back-
log, many stories and tasks have to be done in a specific order or sequence. It
is quite difficult in a spreadsheet to track sequence effectively.
Flag when the sequence is broken. It is a fairly common occurrence for an ◾◾
item that is being worked on by one Scrum team and is a predecessor for
multiple other items to be scoped out of a sprint. Backlog tools can help flag
when this happens and can notify the responsible individuals in case addi-
tional action needs to be taken.
Manage the team’s sprint burn-down, relieving the team from this responsibility.◾◾

Here’s a list of some of the items you may want to consider when planning your
software and hardware budget for your transition:

Hardware: To the extent that you can, take full advantage of server ◾◾
virtualization.

One application environment for the live (production) version of your −−
backlog and team management tool and database.
One integration environment per product: This environment receives −−
updates on a continuous basis and represents the most current integra-
tion version of the software at any point in time.
One integration environment per Scrum team: This environment is updated −−
with the latest version of the product at least once or twice a day (more
often hourly if the software can be easily and automatically installed).

For products where each developer can install a separate environment •	
on their laptop or PC:

	 1.	 The developer will test their changes on their laptop or PC
	 2.	 Because the developer’s environment will not be the most up-

to-date version of the product (it can’t be, the up-to-date ver-
sion is constantly changing), he or she will move anything
he or she has tested on his or her laptop or PC to the team’s
server environment.

	 3.	 If the software works on the team’s server environment, it is
moved to the main code base, where it is tested again on the
product integration server.

For products where each developer must use a common environment •	
that cannot be built on his or her laptop or PC (because the personal
environment is too small, too underpowered, or the full install of the
product takes too long to apply):

	 1.	 The developer will code his or her changes on his or her laptop or
PC, but test them on the team’s environment.

	 2.	 If the software works on the team’s environment, it is moved to
the main code base, where it is tested again on the product inte-
gration server.

Create the Transition Budget    119

One environment per active release: While optional, it is still strongly recom-◾◾
mended that you keep one environment available for every active configura-
tion of software that exists in the customer base. Defects will be reported
on old releases, and you will not want your potentially delicate development
environment ruined by developers retrofitting software releases in order to
fix a defect.

Other optional hardware−−
Webcams: If your teams are not co-located, you will want to do what-•	
ever you can to eliminate as much of the effects of physical separation
as possible. One of the easiest ways to do this is to install webcams in
team rooms and to provide webcams to any individuals who are tele-
commuting. Then, when team meetings are held, the webcams can be
employed to provide as close to face-to-face contact as possible. Some
teams may even leave the webcams active (regardless of whether or
not a meeting is in progress) in order to give the remote employees
more of a “part of the team” feel.
Data projectors: Teams that are trying to display code, story informa-•	
tion, backlog information, etc., will benefit from having their own
data projector. These devices used to be quite expensive. However,
recent innovations have made data projectors quite affordable so that
every agile development team should have one as part of their equip-
ment. Included in this, of course, is some kind of free-standing pro-
jection screen upon which the team can display their information
(unless a good flat area of wall is available to the team).
Dry-erase boards and markers: Teams will also need a place upon which •	
to draw, discuss, revise, and (sometimes) argue over their ideas. Dry-
erase boards (particularly free-standing boards that can be easily rolled
from one location to another) are particularly suited for this purpose.
Status lights: I’ve seen some teams use lava lamps; others use simple •	
red and green lights. Some use an old CRT attached to their server
or another old laptop or PC that cannot be used for development any
longer. In any event, teams gain some effectiveness when there’s a
clear and large indication of when their product builds are working
(green) and when they’ve failed (red). An agile development team is
required to respond immediately when they’ve broken the product
build, and these clear indicators can become a tremendous part of a
team’s productivity.

Software◾◾
Automated testing: You will need software that is capable of running not −−
just your unit tests, but your functional acceptance tests as well. Further,
you want your software to let you know if there’s a problem.

Fitnesse: This is a great acceptance test automation tool written by the •	
folks at ObjectMentor. This tool is free and can be downloaded and

120    Enterprise-Scale Agile Software Development﻿

installed rather quickly. Fitnesse’s strongest feature is its use of a wiki
environment, which makes it surprisingly easy to write new tests.
Selenium: This is another fantastic tool for testing web-based pages •	
through scripting. Selenium and Fitnesse can be combined to allow
full UI testing driven by a Fitnesse page. Selenium is also free.
However, as with all UI testing tools, be careful. Selenium may not
handle everything you want it to.

Cruise Control or Hudson: Both of these tools (again, free) provide an −−
automated build and test capability. On a specific schedule, each tool
checks to see if any product files have been changed since the last build.
If any files are found to be different, these tools automatically start a
scripted build process (you have to write the script). After the build is
completed, the script can also kick off the existing automated tests. In
order to work, however, your build process needs to be rewritten to be
completely unattended.
Backlog and team management tool−−

Rally and Version One: Both of these tools provide all of the func-•	
tionality you’ll need from a backlog management tool. The only issue
I’ve seen with both products is that the vendors that provide them
seem to be trying to leverage interest in agile development to be the
everything tool vendor to their customers. While both products have
their strong points, be careful to purchase the tool that actually fits
your needs, and be wary of modifying your process to fit the tool.
ScrumWorks Pro: This tool is straightforward and built on the prin-•	
ciples of Scrum. It is easy to install and easy to use with most of the
features of its competitors. Because the tool is written specifically for
Scrum teams, you will usually be able to fit it into your existing prac-
tices quite well.

Optional software tools−−
Collaboration tools: Agile software development is driven by a high •	
degree of collaboration. Therefore, you will want to look for tools that
support the ability for the teams to communicate with themselves
and with other teams in a manner that supports the rapid entry of
large amounts of data, can track who is responsible for adding and
changing data, support the ability to alert one or more people when
specific events occur, and support easy searching capabilities. Wiki
tools are quite effective here, as are other collaboration tools, such as
Microsoft’s SharePoint® and IBM’s Lotus® Notes®.
Code inspection: You might also want to purchase and use code •	
inspection tools during your build process that help to ensure that
your developers are following your organization’s standards.

Create the Transition Budget    121

Code formatters: Some organizations like their code to be formatted in a very ◾◾
specific manner in order to improve readability. Code formatters can run
after-code inspection tools during the build process.

Facilities
As has been and will be said a few more times before you finish this book, agile devel-
opment is more than just a different way of developing application software. It has a
whole different culture of its own. Teams of developers are managed as teams—not
in separate offices, but like a team on a playing field with the supporting personnel
and equipment on the sidelines, ready whenever the team needs them.

In order for any agile development team to be successful, it has to be in a single,
open location. You need to encourage your team members to talk directly to one
another instead of using emails, instant messaging, or hand-written notes dropped on
their chairs. Unfortunately, if you leave absolutely any kind of divider between your
team members, they will often resort to these tools instead of talking face-to-face.

I often tell the story of the members of one team who sat in single-person cubi-
cles before I could set up their first team room. It was very frequent that a team
member in one cubicle would send an email to the team member in the very next
cubicle. Between the delay in the second person receiving the email and actually
reading and responding to the email, a few hours could easily pass before an answer
(if indeed the response email contained an answer) was sent back. When I discussed
this phenomenon with the team, they agreed that email took too long and imme-
diately installed and began using an instant messaging program instead. They then
found that the IMs were very distracting and started to set their system status to
“offline” or “busy.” In the end, the turnaround of answers to questions, even if the
team members were next door to one another, was simply too long. The only answer
that actually worked was to remove the walls altogether. By doing this, not only
could one team member easily see if another was too busy to answer a question, but
they could just as easily see when that team member (or any other team member)
was available, and they could get a very rapid answer to their query.

As odd as it might seem that one person would not stand up and walk ten steps
to ask the person next to them a question, it is, in fact, quite common. Studies have
clearly shown that any kind of separation between workers—whether it’s a wall, a
room, a floor, a building, a city, or an ocean—has the same effect. Interactions are
delayed and group-driven innovation can never get off the ground.

All this means one thing: if you’re going to have a successful transition to agile
development, you need to plan to rebuild your facilities to provide team rooms rather
than “cube jungles” or offices. That’s going to mean moving a lot of employees,
changing the office space, and rewiring. It also means that you’ll need to consider
two very interesting problems:

122    Enterprise-Scale Agile Software Development﻿

	 1.	How will you re-create your corporate directory so that the location of an
employee is updated even if they move from team to team when projects end?

	 2.	How will you manage your internal telephone system if employees move from
team to team (and location to location) in between projects?

Both of these problems are critical to solve and will also test your commitment
to the success of the transition. If you believe that your employees can have a home
location that never changes and they go from there to their teams each morning
when they come to work, well, you might not have completely bought into the team
concept yet.

Some organizations manage their corporate directory with a simple database
and modify their procedures to update the directory anytime an employee moves
from one team to another. A different process, however, kicks in when an entire
project ends and lots of people move simultaneously. Some organizations solve the
telephone problem by giving their employees a wireless “house” phone that they
keep with them no matter where they are working. The wireless phones work over
an internal voice-over-Internet-protocol (VOIP).

On the sidelines of the agile development team’s playing field you will find
the servers and other tools that the team uses to do their jobs. In some instances,
you may find that you’ll also have to plan for additional space to house the servers
needed by your teams, and security concerns or environmental concerns (cooling,
for example) may also play a part in your facilities planning.

Travel
Travel as part of a transition to agile development will be widely varied depending
on the specific organizational circumstances, but will likely include travel for the
following reasons:

	 1.	Travel to/from agile development conferences: There are a couple conferences
each year that offer organizations an opportunity to learn from the experi-
ences of others with case studies and reports that address topics central to
agile development. By sending one or two individuals from your organization
to these conferences each year, you can create a continuous flow of useful
information into the organization.

	 2.	Travel for coaches and trainers: You may decide to include coach/trainer travel
in your training/education budget or travel. But however you decide to do it,
be sure to remember the travel and living expenses for your trainers in your
planning. Ask your prospective trainers how they book their transportation
and lodging, how long they expect to need to be on site, and how often they
go home during longer engagements. Also, consider multiple development

Create the Transition Budget    123

sites in your budgeting. Will the trainers work only at one site, or will they
need to repeat the same training in multiple locations.

	 3.	Travel for multiple development sites: If your developers work in multiple
locations or from home, you will need to consider how often you will bring
remote or offshore employees to the home location in order to work directly
with their teams or to get centrally scheduled training. In cases where teams
cannot be co-located, there is still considerable gain to be had by ensuring
that everyone on the team has worked directly, face-to-face with everyone else
at least once.

	 4.	Travel for customers: Agile development teams work best when they have
direct contact with their customers. While this can sometimes be difficult to
arrange, when you do have a customer willing to work directly with one or
more development teams (perhaps on critical or market differentiating fea-
tures), you should be willing to subsidize if not completely pay for the cus-
tomer’s expenses.

People
While most transitions to agile development can be done without altering your total
employee count, you should carefully consider some of the following possibilities:

The installation and setup of a large number of new server environments may ◾◾
require a temporary increase in server administrators.
The possible one-time need to convert your product installation to an unat-◾◾
tended script could potentially be done by consultant developers.
The organization may wish to seed their Scrum master ranks with experi-◾◾
enced, certified Scrum masters on a short-term or long-term basis.
While coaching and training are effective tools in integrating new concepts ◾◾
and behaviors, your organization may see a real benefit in hiring contract
programmers that are already experienced agile developers to join some or all
of your teams and provide daily examples of how agile developers work.

Summary
Creating a budget for your agile transition is a necessary step that will help your
organization plan for the many types of changes you may have to make during the
course of the transition. From new hardware and software to facilities changes,
personnel changes, and setting aside money for travel, there is much to consider.
However, being completely clear about the costs that will be incurred in a transition
is extremely important. Ensuring that the transition has the funding it needs to be

124    Enterprise-Scale Agile Software Development﻿

successful avoids unwanted delays caused by getting separate approvals for everything
you’ll need, while also clearly outlining the types of expenses and the extent of those
expenses for the organization’s management to make carefully considered decisions.

Endnote
	 1.	You can find more information about transition backlogs at http://www.

bigagiledevelopment.com/transitionbacklog.

125

12Chapter

Develop the Transition
Communication Plan

As you begin to prepare to launch your transition to agile development, communi-
cation1 to all stakeholders should be a significant part of your planning. Everything
you do in the course of the transition is going to impact people that you will depend
on in order to make the transition successful. Changing development processes will
have an impact on your developers and managers, your customer support depart-
ments, and your training/education groups (for starters).

How you plan releases in an agile project will affect all of the aforemen-
tioned people as well as your sales and marketing groups, your customers, and
various levels of management. Changing to a very team-oriented environment
will have a significant impact on your developers and managers as well as the
human resources, staffing, and legal departments. In other words, you’re going
to need to evaluate every step of the transition to agile development with all of
your stakeholders.

Some of the most common stakeholders include:

	 1.	Developers and development managers (including analysts, testers, technical
writers, product management, project management, etc.)

	 2.	Training personnel: Those who offer classes to customers as well as those who
are responsible for internal training of employees.

	 3.	Legal, human resources: These groups are most affected by changes to contract-
ing policy, communication with external stakeholders, changes to staffing
policies, changes to compensatory policies (raises, promotions, incentives).

126    Enterprise-Scale Agile Software Development﻿

	 4.	Customer support/service: These groups are most affected by changes in how
the product is developed, changes in tools used to develop the product, and
(to some degree) how the development teams are organized.

	 5.	Sales and marketing: These groups are most affected by changes in how prod-
uct releases are scheduled, how customers are involved in the planning of
release content or with development teams directly, how release content may
or may not change during the course of the development project, how the
product is priced/contracted.

	 6.	Corporate/executive management: In a corporation, executive management
usually doesn’t get involved in the day-to-day development activities; how-
ever, they usually are uncomfortable unless they get periodic reports of
development progress and how the product is received and perceived by
their customers.

	 7.	Facilities management: Regardless of the size of the organization, someone is
responsible for the physical arrangement of the employees within the organi-
zation’s offices. The creation of team rooms will have a tremendous impact on
the facilities.

	 8.	Procurement/legal/internal information technology (IT): While implement-
ing new practices in Scrum and Extreme Programming (XP), it’s not at all
unusual for large purchases of new tools (software), new hardware, and new
physical equipment (e.g., whiteboards and tables, etc.). Getting your procure-
ment, legal, and IT departments involved in the transition early and keeping
them involved will help clear the way for the materials you need at a price that
the organization can live with.

In order to keep everyone aligned initially on what the transition is and why you
are doing it, and then later, the progress of the transition and changes being made
as part of the transition, you will need a communication plan (see Figure 12.1). This
plan should determine the channels of communication you plan to use for each
type of stakeholder and the type of information that will be communicated along
each channel and how often communication will occur. Typical communication
channels that you can use include:

	 1.	Internal and external web sites
	 2.	Email
	 3.	Posters
	 4.	Newsletters
	 5.	Internal closed-circuit TV
	 6.	Tip sheets
	 7.	Internal meetings (group/team, department)
	 8.	Customer meetings (with one or more customers)
	 9.	Trade conferences

Develop the Transition Communication Plan    127

For example, you can easily communicate with your developers and manag-
ers via email for important, time-sensitive information, but you probably don’t
want to overload this already overused channel for routine information like tran-
sition updates, training announcements, etc. Another channel, posters or time
during already scheduled department meetings, could be used for this informa-
tion. On the other hand, your customers don’t have a need for a lot of infor
mation about the specifics of the transition, nor are you likely to want to discuss
this information via email, where information can be easily stolen and even more
easily misinterpreted; face-to-face communication via account managers might
be better.

A completed communication plan for your transition might look something
like the one presented in Table 12.1.

Project Information Storage
Once the agile transition begins, you will need a common location in which to store
all of the transition’s artifacts, including items like:

The communication plan◾◾
The facilities plan◾◾
The training plan◾◾
The training materials◾◾
Project communications◾◾
Project reports◾◾

Backlog Items

Create the communication plan:

Define a central location for all project and practice documentation.•	

Define a means/schedule that determines what information is •	
communicated to whom and by which means.

Create a means by which information can be quickly communicated to all •	
Scrum teams.

Create a means for employees to understand who is on which team.•	

Create a means for everyone to understand which team is working on •	
what.

Create a means for communication of standards, design principles, and •	
coding practices across Scrum teams.

Figure 12.1  Slicing the “Create a Communication Plan” transition backlog item.

128    Enterprise-Scale Agile Software Development﻿
Ta

bl
e

12
.1

 A

 S
am

pl
e

C
om

m
un

ic
at

io
ns

 P
la

n

St
ak

eh
o

ld
er

(s
)

In
fo

rm
at

io
n

C
h

an
n

el
Fr

eq
u

en
cy

D
ev

el
o

p
er

s,
 m

an
ag

er
s

D
et

ai
le

d
 tr

an
si

ti
o

n
 s

ta
tu

s
Em

ai
l

Fi
rs

t o
f m

o
n

th

Ex
ec

u
ti

ve
 m

an
ag

em
en

t
Su

m
m

ar
y

tr
an

si
ti

o
n

 s
ta

tu
s,

p

ro
je

ct
 s

ta
tu

s
Em

ai
l,

p
re

se
n

ta
ti

o
n

M
o

n
th

ly
 (o

r
m

o
re

o

ft
en

, a
s

re
q

u
ir

ed
)

A
ll

o
th

er
 in

te
rn

al
 d

ep
ar

tm
en

ts
,

cu
st

o
m

er
 s

er
vi

ce
/s

u
p

p
o

rt
, p

ro
cu

re
m

en
t

Su
m

m
ar

y
tr

an
si

ti
o

n
 s

ta
tu

s,

p
la

n
n

in
g

in
fo

rm
at

io
n

Em
ai

l
M

o
n

th
ly

Tr
an

si
ti

o
n

 in
fo

rm
at

io
n

 a
n

d

p
ro

gr
es

s
(w

it
h

 le
ga

l a
n

d
 s

al
es

an

d
 m

ar
ke

ti
n

g
ap

p
ro

va
ls

)

Pr
es

s
re

le
as

es
, c

u
st

o
m

er

le
tt

er
s

Q
u

ar
te

rl
y

o
r

se
m

ia
n

n
u

al
ly

Ex
te

rn
al

 c
u

st
o

m
er

s
M

o
re

 d
et

ai
le

d
 tr

an
si

ti
o

n

in
fo

rm
at

io
n

 w
it

h
 r

eg
ar

d
 to

p

ro
d

u
ct

 im
p

ro
ve

m
en

ts

Fa
ce

-t
o

-f
ac

e
vi

a
ac

co
u

n
t

m
an

ag
er

M
o

n
th

ly
 o

r
q

u
ar

te
rl

y

C
u

st
o

m
er

 r
o

le
 tr

ai
n

in
g,

 w
o

rk
in

g
w

it
h

 S
cr

u
m

 te
am

s
Fa

ce
-t

o
-f

ac
e

o
r

w
eb

-
b

as
ed

 tr
ai

n
in

g
A

s
n

ee
d

ed

D
ev

el
o

p
m

en
t p

ro
ce

ss
 c

h
an

ge
s

Em
ai

l
A

s
n

ee
d

ed

D
ev

el
o

p
er

s
(i

n
cl

u
d

in
g

an
al

ys
is

, t
es

te
rs

,
te

ch
n

ic
al

 w
ri

te
rs

, e
tc

.)
D

ev
el

o
p

m
en

t p
ro

ce
ss

 tr
ai

n
in

g,

to
o

l t
ra

in
in

g
C

la
ss

ro
o

m
 o

r
w

eb
-b

as
ed

tr

ai
n

in
g

A
s

n
ee

d
ed

D
ev

el
o

p
m

en
t p

ro
ce

ss
 tr

ai
n

in
g

C
la

ss
ro

o
m

, w
eb

-b
as

ed
,

la
rg

e
gr

o
u

p
 p

re
se

n
ta

ti
o

n
M

o
n

th
ly

 o
r

as

n
ee

d
ed

H
u

m
an

 r
es

o
u

rc
es

, l
eg

al
, s

ta
ffi

n
g

A
n

y
ch

an
ge

s
to

 r
o

le
s,

 jo
b

d

es
cr

ip
ti

o
n

s,
 s

ta
ffi

n
g

re
q

u
ir

e-
m

en
ts

, j
o

b
 ti

tl
es

, c
o

m
p

en
sa

ti
o

n

Fa
ce

-t
o

-f
ac

e
A

s
n

ee
d

ed

Develop the Transition Communication Plan    129

You may also find it useful to create an artifact-naming standard that helps employ-
ees to find documents faster when your project information storage becomes heavily
populated. The naming standard need not be difficult or elaborate—it only needs to
help employees easily and quickly find the document that they are looking for.

Here’s a couple sample naming standards:

	 1.	In a simple directory structure, with one product and no change control:

	 yymmdd-documentname.document-type

ex. 090101-communication-plan.doc
ex. 090108-training-plan.doc
ex. 081112-Team-Diamond-Scrum-Backlog-Sprint-0811.doc

	 2.	In a simple directory structure, with two products and no change control:

	 productname-yymmdd-documentname.document-type

ex. productA-081101-product-backlog-snapshot.doc
ex. productA-081201-scrum-team-membership.doc
ex. productB-081202-training-plan.doc

	 3.	In a change control directory with one product:

	 documentname.document-type

ex. product-backlog-snapshot.doc
ex. training-plan.doc

	 4.	In a change control directory with two products:

	 productname-documentname.document-type

ex. productA-training-plan.doc
ex. productA-communication-plan.doc

Endnote
	 1.	 You can find more information at http://www.bigagiledevelopment.com/

communicationplan.

131

13Chapter

Create the Training Plan

A key element of a successful transition to agile development includes careful plan-
ning of effective training and coaching1 that addresses the various roles involved in
the transition and is sensitive to providing the right education in the right manner
at the right time. This chapter will discuss the four elements of the training plan
(role, topic, manner, and timing) in detail, with the goal of providing you with a
basic structure for a training plan that can be incorporated with the overarching
transition plan (see Figure 13.1).

Basic Concepts
The training plan follows some tried but true concepts that help to maximize the
benefit of training while, at the same time, attempting to reduce the risk to your
product development efforts by ensuring that employees working on an agile devel-
opment team have had the proper requisite training.

The first concept used throughout the training plan is also widely used in medical
practice. Put simply, the concept is summed up as “learn, watch, do.” In other words,
prior to actually writing code in an agile development team, every developer will
learn how to develop code in an agile manner, will then work with other more expe-
rienced developers, and only then will actually work on an agile development team,
producing code in the manner in which they’ve been taught. Similar approaches are
taken with agile analysis, story point estimation, scrum mastering, etc.

The second concept used throughout the training plan recognizes the impor-
tance of the development team in an agile environment. All non-role-specific train-
ing is planned for intact development teams; in other words, as much as possible,
teams will be trained as intact units to ensure that they all hear the same message

132    Enterprise-Scale Agile Software Development﻿

and that they all acquire the same shared experiences during the transition period.
When the two concepts are combined, you see that the foundations of the train-
ing plan are based on teams learning, watching, and doing and, by this approach,
learning how to create their own agile development identities.

The third concept used in the training program has to do with how we create
it. This chapter will describe an open approach that will allow you to customize the
training program as needed simply by following the same steps as laid out in this
chapter. Those steps are:

	 1.	Identify the roles that your agile projects will use. I’ll list many of those roles
in the following section.

	 2.	Identify the skills needed for each role. I’ll provide much of this later in
the chapter.

	 3.	For each skill area, create a training module that teaches the skill (could be classroom
work, independent work, team instruction, coaching, or any combination).

	 4.	Combine the modules together to create the curriculum. Your curriculum
will have five distinct tracks from which most of your employees will select or
be selected for training: external stakeholders, project management, resource
management, and two team membership tracks—one for technical person-
nel and the other for analytical personnel.

Having discussed the basic concepts of the training plan, we now need to explore
the basic structure of a large-scale agile project as well as the roles that make up the
large-scale agile environment.

Backlog Items

Create the training plan:

Identify the roles that your projects will use (product owners, •	
Scrum masters, project manager, etc.).

Identify the skills needed by each role.•	

For each skill area, create a training module.•	

Combine the training modules to create a curriculum.•	

Create a team of coaches to support Scrum teams.•	

Create a schedule of courses.•	

Determine external coaching needs (how can teams request help?)•	

Create a means to capture retrospective feedback and improve •	
the training.

Figure 13.1  Slicing the “Create a Training Plan” transition backlog item.

Create the Training Plan    133

Agile Project Structure
The agile project structure, while similar in many ways to more conventional
projects, has a very distinctive organization that focuses on self-organizing teams
“swarming” around a project or release backlog, continuously pushing new soft-
ware updates into a single code base that also contains a self-correcting mechanism
should faulty software be introduced into the code base.

As you can see from Figure 13.2, in addition to the release backlog and the
product itself (which includes the software and any documentation), there are four
types of teams in an agile project:

Quality assurance team◾◾ : This team continuously monitors and tests the condi-
tion of the product above and beyond what the development teams do. This
team develops new tests in addition to what the development teams create as
part of the product development effort. Defects found in the product are diag-
nosed to determine responsibility for the source of the defect; once determined,
the defect is sent to the proper development team with critical priority.
Development teams◾◾ : These teams (including customers that may be involved
in the development effort from time to time) develop all of the new features
and feature changes in the product. They accept their work from the release
backlog and send the results to the product. Defects found by teams are
fixed immediately. Defects found in the product are identified by the quality

Product
Backlog

Release Backlog
Management

Team

Infrastructure
Team

Development
Team

Development
Team

Development
Team

Quality Assurance Team

Figure 13.2 O verview of an agile project.

134    Enterprise-Scale Agile Software Development﻿

assurance (QA) team and returned directly to the responsible development
team for immediate correction.
Infrastructure teams◾◾ : These teams keep the entire “factory” working by man-
aging server environments and source code configurations.
Management team◾◾ : This team usually consists of a release manager, a project
manager, and an executive sponsor. They, together and separately, make the
decisions that keep the project on track.

The teams are made up of a variety of roles that employees either will hold for the
duration of the project or will switch between a few times during the project or even
several times a day during the project. Understanding these roles is very important,
as a clear knowledge of which roles an individual will play during the project will
provide you with a clear idea of the training that he or she will need to have in order
to do his or her jobs well. For example, while a project manager is likely to only
play the role of project management during the project, it is entirely possible that
an application analyst may also play the role of a documentation writer or that your
coders may also take on the roles of analyst, designer, and tester. Agile development
requires that employees be willing to take on whatever roles they can to meet the
team’s objectives, so it is particularly important that those who participate on an
agile team have a well-rounded education in agile development methods.

Roles in an Agile Project
In this section, we’ll talk about the roles that you will likely find in an agile project with
particular emphasis on the aspects of the roles that are distinct to agile development.

Management roles◾◾ : Management roles on a project manage the project budget,
handle the decision making, provide resources, and keep the project on track.

Development (R&D) manager−− : Supports the agile transition plan by ensur-
ing that his or her teams have the resources and support that they need
to get the job done. Handles conflicts and impediments that cannot be
handled by the Scrum teams.
Product manager−− : Supports the project by setting the goals and providing
direction for a product. Usually, the product owners report to the product
manager who is, in essence, an uber product owner.
Program manager−− : Supports multiple projects by setting the goals and
providing direction for a product family (or otherwise related products).
The product owners may report directly to the program manager or to
uber product owners that, in turn, report to the program manager.
Project manager−− : Supports the project by managing the project schedule
and handling all external issues that may have a direct impact on the
project; communicates project status on a regular basis.

Create the Training Plan    135

Quality manager−− : Supports the quality of the finished product by man-
aging the quality assurance team, providing testing resources directly
to the development teams, sometimes maintaining separate QA teams
that verify product quality independent of the development Scrum
teams, and providing and continuously improving organizational test-
ing skills.
Quality process manager−− : Supports the organization through the proper
documentation of all practices used by the organization. Helps to ensure
that the organization abides by defined quality practices, prepares the
organization for internal and external quality system audits of the orga-
nization, and drives resolution of corrective actions that may result from
internal or external audits.
Resource manager−− : Supports the project by providing resources to the
development teams. Responsible for supporting the continuous improve-
ment of employee performance and skills.

External roles◾◾
Sales and marketing−− : Supports the project by generating customer inter-
est in the product in time for the eventual release of the product to the
customer population.
Executive sponsor−− : Supports the project by strongly supporting the transi-
tion plan.

Supporting roles◾◾
Configuration manager−− : Supports the project by maintaining the artifact
version control configuration, software, access/security, and practices.
Environment manager−− : Supports the project by helping to maintain the
various hardware and software environments necessary for software devel-
opment. This may include the Scrum team-specific development environ-
ments, product integration environments, demonstration environments
for sales, and support environments for customer service.

Team roles◾◾
Analyst−− : Writes and clarifies stories, supports coders and designers to
build the product properly, and often provides interim acceptance of sto-
ries during sprints as a step prior to QA review.
Coder−− : Writes code, responsible for writing unit tests and acceptance tests
while also writing the product code.
Designer−− : Creates conceptual approaches to building the application
based on the information contained in the backlog items.
Product owner−− : Responsible for the product, its business plan, vision, and
return on investment. The product owner determines the prioritization of
the release backlog and is the final arbiter with regard to questions about
release backlog items.
Quality assurance analyst−− : Supports product quality by testing the application
beyond the unit and acceptance tests designed and built by the developers.

136    Enterprise-Scale Agile Software Development﻿

Scrum master−− : Enforces the Scrum process within the project teams, and
helps to keep everyone focused on their commitments.
Tester−− : Creates conceptual approaches to testing the application based on
the information contained in the backlog items. Helps write or clarify the
acceptance criteria.

Writer, technical writer◾◾ : Writes most customers and some internal
documentation.

Before continuing, consider your organization. What additional roles might
you have in your projects? For the purposes of training, I have deliberately not
included roles like database designer, UI analyst, and architect, as these roles are
generally covered under the designer, analyst, coder, and Scrum team member
descriptions. As much as possible, try to relate your new roles to the roles defined in
this section: On what teams do your new roles work? What do they do? In the next
section, we’ll take a role-by-role look at what skills are needed and what training
can be provided.

Matching Skills to Roles
The advantage of breaking the responsibilities into roles is that each role can then
be matched with a mostly distinct set of skills. Then, by understanding what roles
an individual will take on during a project, you can plan his or her training accord-
ingly. In this section, we’ll take each role and list the necessary skills. For each skill,
take the additional step of identifying if the person in the role needs a basic knowl-
edge of the topic or an advanced knowledge. Associate basic knowledge with an
understanding that allows individuals to be familiar with the terms and concepts
of a skill; they can perform the skill reasonably well with supervision. Advanced
knowledge is when an employee understands both the concepts and the applica-
tions of the skill, and helps others perform the skill effectively. For our current
purposes, the ability to teach others a skill will be considered beyond even the
advanced level of knowledge.

Tables 13.1 and 13.2 provide a list of all of the roles listed earlier in the chapter
and show the basic skills that each role will need in order to be successful in an agile
environment. For your organization, you may wish to change this table by adding,
modifying, or deleting roles; adding, modifying, or deleting skills; or changing the
entire table. Regardless of what you choose to do, when making your training plan,
start with this table to decide what roles you will have and how each role should
be skilled.

One note: Unless really necessary, don’t combine two or more of the listed
roles into one (there may be a real temptation to do so with designer and coder).
Unless there’s a real strong reason to combine roles together, continue to think

Create the Training Plan    137

of them as independent things that people do, sometimes in a sequence and
sometimes all at the same time. Keeping roles separate helps to modularize the
training and thus keep you from teaching the same thing in two or more incon-
sistent ways.

Skills Become Training Modules
Once you complete the table in the previous section, you essentially have an inven-
tory of skills that you need across your organization and for which you need train-
ing materials created. If we review the table of roles and skills and list only the skills
(removing the duplications), we come up with the following list:

Table 13.1 N ecessary Skills for Management, External, and Supporting Roles

Roles
Skills Required

(Level = Talking Points, Basic, or Advanced)

All•	 Introduction to Agile Development (Basic)•	

Development manager•	 Scrum (Basic)•	

Test-Driven Development (Basic)•	

Continuous Integration and Testing (Basic)•	

Agile Analysis (Basic)•	

Resource manager•	 Scrum (Basic)•	

Product manager, program •	
manager, project manager,
quality process manager

Scrum (Basic)•	

Agile Analysis (Basic)•	

Quality manager•	 Scrum (Basic)•	

Agile Analysis (Basic)•	

Software Deployment•	

Sales and marketing, •	
executive sponsor

Scrum (Talking Points)•	

Software Deployment (Talking Points)•	

Configuration manager, •	
environment manager

Scrum (Advanced)•	

Continuous Integration and Testing •	
(Advanced)

Software Deployment (Advanced)•	

Customer•	 Scrum (Basic)•	

A Customer’s Responsibilities•	

138    Enterprise-Scale Agile Software Development﻿

Introduction to Agile Development◾◾
Software Deployment in an Agile Environment (Basic, Advanced, and ◾◾
Talking Points)
Certified Scrum Master◾◾
Certified Scrum Product Owner◾◾
Scrum (Basic, Advanced, and Talking Points)◾◾
Test-Driven Development (Basic and Advanced)◾◾
Continuous Integration and Testing (Basic and Advanced)◾◾
Agile Analysis (Basic and Advanced)◾◾
A Customer’s Responsibilities◾◾

This list of skills is essentially a list of the training modules that we will need to
create. These modules, in turn, can be combined (or not) in multiple ways to cre-
ate the training sessions that will enable us to complete the training plan. A few of
the modules (those without the “basic” or “advanced” designations) either include
the skill level in their title (e.g., Introduction to Agile Development is clearly an
introductory module and therefore can be considered basic) or are complete, defined
courses (e.g., Certified Scrum Master and Certified Scrum Product Owner).

Two of the skills list “talking points” as a skill level. In these cases, we’re looking
for a simple page or two that can be used by senior employees that do not have the

Table 13.2 N ecessary Skills for Scrum Team Member Roles

Roles
Skills Required

(Level = Talking Points, Basic, or Advanced)

Analyst, designer, •	
writer/technical writer

Scrum (Advanced)•	

Agile Analysis (Advanced)•	

Coder•	 Scrum (Advanced)•	

Agile Analysis (Advanced)•	

Test-Driven Development (Advanced)•	

Continuous Integration and Testing (Advanced)•	

Product owner•	 Certified Scrum Product Owner (CSPO)•	

Agile Analysis (Advanced)•	

Scrum master•	 Certified Scrum Master (CSM)•	

Certified Scrum Master—Practicing (CSP)•	

Agile Analysis (Advanced)•	

Quality assurance •	
analyst, tester

Scrum (Advanced)•	

Agile Analysis (Advanced)•	

Continuous Integration and Testing (Advanced)•	

Create the Training Plan    139

availability for even a half-day work session, but need to be able to discuss the topics
at a high level. These materials are generally easily created from the basic materials
of the same skill.

The Training Modules
With the list of skills and the level (basic or advanced) defined, you’re ready to
detail out the content of the modules that you will need to build to complete your
training plan. This book includes the training module definition for the skills iden-
tified in the previous section. For any roles you may have added and new skills you
may have identified, you will also need to create the new training modules.

Training modules are “pieces” of a class or workshop. They can be as short as fif-
teen minutes or as long as a day. If you find yourself building a module larger in length
than one day (approximately six hours), consider the possibility that you’re actually
creating multiple modules. Look for clear delineations of topic material in the class
outline; if you see a clear change in direction, try splitting the module there.

The remainder of this section describes the training modules. The course num-
bers are added to help facilitate an understanding of prerequisite courses. In other
words, 100-level modules should occur in the training before 200-level modules,
which should occur in the training before the 300-level modules, and so on (see
Table 13.3).

Defining the Tracks
With the modules clearly defined, we can now define our curriculum paths and
assign roles to them. If you recall from earlier in the chapter, we will define four
tracks in our agile training curriculum: external stakeholders, project management,
resource management, and team membership technical and team membership ana-
lytical. In this section, we’ll define each track, the roles that are in the track, and the
arrangement of the training modules as presented in Table 13.4.

Executing the Tracks
If you follow the basic transition plan described later in this book, you will begin
the transition to agile development by staffing your transition team, building the
transition backlog, identifying a project that will be the pilot project, staffing that
project, and building that project’s initial backlog all in the first transition sprint.
Your second sprint will therefore consist of a transition team and one or two project
teams during which both transitional and project work is completed. The third
sprint consists of the transition team and even more project teams, and so on. Your

140    Enterprise-Scale Agile Software Development﻿

Ta
bl

e
13

.3
 

D
es

cr
ip

ti
on

s
of

 C
ou

rs
es

 in
 t

he
 A

gi
le

 T
ra

in
in

g
Pl

an

C
o

u
rs

e
Ti

tl
e

C
o

u
rs

e
Le

n
gt

h
/F

o
rm

at
C

o
u

rs
e

D
es

cr
ip

ti
o

n

10
0—

In
tr

o
d

u
ct

io
n

 to

A
gi

le
 D

ev
el

o
p

m
en

t
(B

as
ic

)

2.
5

h
o

u
rs

, c
la

ss
ro

o
m

In
tr

o
d

u
ce

s
th

e
st

u
d

en
t t

o
 th

e
b

as
ic

 c
o

n
ce

p
ts

 o
f a

gi
le

 d
ev

el
o

p
m

en
t.

Th
is

co

u
rs

e
ca

n
 b

e
u

se
d

 a
s

a
p

ri
m

er
 fo

r
th

o
se

 w
h

o
 a

re
 n

ew
 to

 a
gi

le

d
ev

el
o

p
m

en
t.

Th
e

co
u

rs
e

co
n

te
n

ts
 in

cl
u

d
e:

 th
e

A
gi

le
 M

an
if

es
to

, a
gi

le

p
ri

n
ci

p
le

s,
 b

ri
ef

 h
is

to
ry

 o
f a

gi
le

 d
ev

el
o

p
m

en
t,

ty
p

es
 o

f a
gi

le
 m

et
h

o
d

s
(S

cr
u

m
, X

P,
 F

D
D

, D
SD

M
, e

tc
.),

 q
u

al
it

y
in

fu
si

o
n

 th
ro

u
gh

 D
O

N
En

es
s,

d

es
cr

ip
ti

o
n

 o
f t

h
e

tr
an

si
ti

o
n

 p
la

n
 a

n
d

 th
e

cu
rr

en
t s

ta
te

10
1—

Sc
ru

m
 (B

as
ic

)
4

h
o

u
rs

, c
la

ss
ro

o
m

In
tr

o
d

u
ce

s
th

e
st

u
d

en
t t

o
 S

cr
u

m
 th

ro
u

gh
 a

 c
o

m
b

in
at

io
n

 o
f l

ec
tu

re
 a

n
d

te

am
-o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 th

e
b

as
ic

s
o

f S
cr

u
m

, r
o

le
s

(p
ro

d
u

ct

o
w

n
er

, t
ea

m
, S

cr
u

m
 m

as
te

r)
, a

rt
ifa

ct
s

(r
el

ea
se

 b
ac

kl
o

g,
 s

p
ri

n
t b

ac
kl

o
g)

,
m

ee
ti

n
gs

 (s
p

ri
n

t p
la

n
n

in
g,

 s
p

ri
n

t r
ev

ie
w

, d
ai

ly
 S

cr
u

m
, s

p
ri

n
t r

et
ro

sp
ec

ti
ve

)

10
2—

A
 C

u
st

o
m

er
’s

R

es
p

o
n

si
b

ili
ti

es
 (B

as
ic

)
2

h
o

u
rs

, w
eb

-b
as

ed

tr
ai

n
in

g
In

tr
o

d
u

ce
s

cu
st

o
m

er
s

to
 th

ei
r

re
sp

o
n

si
b

ili
ti

es
 o

n
 a

 S
cr

u
m

 te
am

10
5—

In
tr

o
d

u
ct

io
n

 to

Te
st

-D
ri

ve
n

D

ev
el

o
p

m
en

t (
B

as
ic

)

2
h

o
u

rs
, c

la
ss

ro
o

m
In

tr
o

d
u

ce
s

th
e

st
u

d
en

t t
o

 T
D

D
 th

ro
u

gh
 a

 c
o

m
b

in
at

io
n

 o
f l

ec
tu

re
 a

n
d

gr

o
u

p
-o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 c

o
n

ce
p

ts
 a

n
d

 p
ro

ce
d

u
re

10
6—

In
tr

o
d

u
ct

io
n

 to

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

an
d

 T
es

ti
n

g
(C

IT
; B

as
ic

)

2
h

o
u

rs
, c

la
ss

ro
o

m
In

tr
o

d
u

ce
s

th
e

st
u

d
en

t t
o

 C
IT

 th
ro

u
gh

 a
 c

o
m

b
in

at
io

n
 o

f l
ec

tu
re

 a
n

d

gr
o

u
p

-o
ri

en
te

d
 e

xe
rc

is
es

 th
at

 e
xp

lo
re

 th
e

co
n

ce
p

ts
 a

n
d

 m
et

h
o

d
s

10
7—

In
tr

o
d

u
ct

io
n

 to

A
gi

le
 A

n
al

ys
is

 (B
as

ic
)

4
h

o
u

rs
, c

la
ss

ro
o

m
In

tr
o

d
u

ce
s

th
e

st
u

d
en

t t
o

 a
gi

le
 a

n
al

ys
is

 th
ro

u
gh

 a
 c

o
m

b
in

at
io

n
 o

f l
ec

tu
re

an

d
 g

ro
u

p
-o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 c

o
n

ce
p

ts
, u

se
r

st
o

ri
es

, s
to

ry

p
o

in
t e

st
im

at
io

n
, m

an
ag

in
g

st
o

ry
 b

ac
kg

ro
u

n
d

s

Create the Training Plan    141

11
0—

In
tr

o
d

u
ct

io
n

 to

So
ft

w
ar

e
D

ep
lo

ym
en

t
in

 a
n

 A
gi

le

En
vi

ro
n

m
en

t (
B

as
ic

)

1
h

o
u

r,
cl

as
sr

o
o

m
In

tr
o

d
u

ce
s

th
e

st
u

d
en

t t
o

 th
e

b
as

ic
 c

o
n

ce
p

ts
 o

f s
o

ft
w

ar
e

d
ep

lo
ym

en
t i

n
 a

n

ag
ile

 e
n

vi
ro

n
m

en
t;

th
e

co
u

rs
e

co
n

te
n

ts
 in

cl
u

d
e

d
is

cu
ss

io
n

 o
f c

o
n

ce
p

ts

an
d

 c
h

al
le

n
ge

s

20
1—

Sc
ru

m

(A
d

va
n

ce
d

)
1

d
ay

, c
la

ss
ro

o
m

C
o

n
ti

n
u

es
 th

e
st

u
d

en
t’s

 e
d

u
ca

ti
o

n
 in

 S
cr

u
m

 th
ro

u
gh

 a
 c

o
m

b
in

at
io

n
 o

f
le

ct
u

re
 a

n
d

 te
am

-o
ri

en
te

d
 e

xe
rc

is
es

 th
at

 e
xp

lo
re

 b
ac

kl
o

g
gr

o
o

m
in

g,

w
ri

ti
n

g
st

o
ry

 a
gr

ee
m

en
ts

, s
to

ry
 p

o
in

t e
st

im
at

io
n

, q
u

al
it

y
in

fu
si

o
n

(D

O
N

En
es

s)
, r

et
ro

sp
ec

ti
ve

 te
ch

n
iq

u
es

20
2—

C
er

ti
fi

ed
 S

cr
u

m

M
as

te
r

(C
SM

)
(A

d
va

n
ce

d
)

2
d

ay
s,

 c
la

ss
ro

o
m

;
m

u
st

 b
e

p
ro

vi
d

ed
 b

y
a

C
er

ti
fi

ed
 S

cr
u

m

Tr
ai

n
er

 (C
ST

)

In
tr

o
d

u
ce

s
th

e
st

u
d

en
t t

o
 b

ei
n

g
a

Sc
ru

m
 m

as
te

r
th

ro
u

gh
 a

 c
o

m
b

in
at

io
n

 o
f

le
ct

u
re

 a
n

d
 te

am
-o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 S

cr
u

m
 b

as
ic

s,
 r

o
le

s
(p

ro
d

u
ct

 o
w

n
er

, t
ea

m
, S

cr
u

m
 m

as
te

r)
, a

rt
if

ac
ts

 (p
ro

d
u

ct
 b

ac
kl

o
g,

 s
p

ri
n

t
b

ac
kl

o
g)

, m
ee

ti
n

gs
 (s

p
ri

n
t p

la
n

n
in

g,
 s

p
ri

n
t r

ev
ie

w
, s

p
ri

n
t r

et
ro

sp
ec

ti
ve

,
d

ai
ly

 S
cr

u
m

, u
se

r
st

o
ri

es
, b

ac
kl

o
g

gr
o

o
m

in
g,

 s
to

ry
 p

o
in

t e
st

im
at

io
n

, t
ea

m

le
ad

er
sh

ip
)

20
3—

C
er

ti
fi

ed
 S

cr
u

m

Pr
o

d
u

ct
 O

w
n

er
 (C

SP
O

)
(A

d
va

n
ce

d
)

2
d

ay
s,

 c
la

ss
ro

o
m

;
m

u
st

 b
e

p
ro

vi
d

ed
 b

y
a

C
er

ti
fi

ed
 S

cr
u

m

Tr
ai

n
er

 (C
ST

)

In
tr

o
d

u
ce

s
th

e
st

u
d

en
t t

o
 b

ei
n

g
a

Sc
ru

m
 p

ro
d

u
ct

 o
w

n
er

 th
ro

u
gh

 a

co
m

b
in

at
io

n
 o

f l
ec

tu
re

 a
n

d
 te

am
-o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 S

cr
u

m

b
as

ic
s,

 r
o

le
s

(p
ro

d
u

ct
 o

w
n

er
, t

ea
m

, S
cr

u
m

 m
as

te
r)

, a
rt

if
ac

ts
 (p

ro
d

u
ct

b

ac
kl

o
g,

 s
p

ri
n

t b
ac

kl
o

g)
, m

ee
ti

n
gs

 (s
p

ri
n

t p
la

n
n

in
g,

 s
p

ri
n

t r
ev

ie
w

, s
p

ri
n

t
re

tr
o

sp
ec

ti
ve

, d
ai

ly
 S

cr
u

m
),

b
u

ild
in

g/
p

ri
o

ri
ti

zi
n

g/
gr

o
o

m
in

g
a

b
ac

kl
o

g,

u
n

d
er

st
an

d
in

g
b

u
si

n
es

s
va

lu
e

20
5—

Te
st

-D
ri

ve
n

D

ev
el

o
p

m
en

t f
o

r
D

ev
el

o
p

er
s

(A
d

va
n

ce
d

)

4
h

o
u

rs
, c

la
ss

ro
o

m
;

m
u

st
 b

e
fo

llo
w

ed
 b

y
o

n
-t

h
e-

jo
b

 c
o

ac
h

in
g

C
o

n
ti

n
u

es
 th

e
st

u
d

en
t’s

 tr
ai

n
in

g
o

n
 T

D
D

 th
ro

u
gh

 a
 c

o
m

b
in

at
io

n
 o

f l
ec

tu
re

an

d
 in

d
iv

id
u

al
ly

 o
ri

en
te

d
 e

xe
rc

is
es

 th
at

 e
xp

lo
re

 h
an

d
lin

g
ex

ce
p

ti
o

n

co
n

d
it

io
n

s,
 w

ri
ti

n
g

co
m

p
le

x
u

n
it

 te
st

s,
 s

ta
yi

n
g

aw
ay

 fr
o

m
 th

e
d

at
ab

as
e,

re

fa
ct

o
ri

n
g

(c
on

tin
ue

d
on

 n
ex

t p
ag

e)

142    Enterprise-Scale Agile Software Development﻿

Ta
bl

e
13

.3
 (c

on
ti

nu
ed

) 
D

es
cr

ip
ti

on
s

of
 C

ou
rs

es
 in

 t
he

 A
gi

le
 T

ra
in

in
g

Pl
an

C
o

u
rs

e
Ti

tl
e

C
o

u
rs

e
Le

n
gt

h
/F

o
rm

at
C

o
u

rs
e

D
es

cr
ip

ti
o

n

20
6—

C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n
 a

n
d

 T
es

ti
n

g
fo

r
D

ev
el

o
p

er
s

(A
d

va
n

ce
d

)

2
d

ay
s,

 c
la

ss
ro

o
m

;
m

u
st

 b
e

fo
llo

w
ed

 b
y

o
n

-t
h

e-
jo

b
 c

o
ac

h
in

g

C
o

n
ti

n
u

es
 th

e
st

u
d

en
t’s

 tr
ai

n
in

g
o

n
 C

IT
 th

ro
u

gh
 a

 c
o

m
b

in
at

io
n

 o
f l

ec
tu

re

an
d

 in
d

iv
id

u
al

ly
 o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 s

m
o

ke
 te

st
in

g,
 r

eg
re

ss
io

n

te
st

in
g,

 a
n

d
 u

si
n

g
to

o
ls

 (F
it

n
es

se
, C

ru
is

e
C

o
n

tr
o

l,
H

u
d

so
n

)

20
7—

A
gi

le
 A

n
al

ys
is

(A

d
va

n
ce

d
)

4
h

o
u

rs
, c

la
ss

ro
o

m
;

m
u

st
 b

e
fo

llo
w

ed
 b

y
o

n
-t

h
e-

jo
b

 c
o

ac
h

in
g

C
o

n
ti

n
u

es
 th

e
st

u
d

en
t’s

 tr
ai

n
in

g
in

 a
gi

le
 a

n
al

ys
is

 th
ro

u
gh

 a
 c

o
m

b
in

at
io

n
 o

f
le

ct
u

re
 a

n
d

 in
d

iv
id

u
al

ly
 o

ri
en

te
d

 e
xe

rc
is

es
 th

at
 e

xp
lo

re
 s

to
ry

 s
lic

in
g

an
d

w

ri
ti

n
g

ef
fe

ct
iv

e
ag

re
em

en
ts

21
0—

So
ft

w
ar

e
D

ep
lo

ym
en

t i
n

 a
n

 A
gi

le

En
vi

ro
n

m
en

t
(A

d
va

n
ce

d
)

4
h

o
u

rs
, c

la
ss

ro
o

m
;

m
u

st
 b

e
fo

llo
w

ed
 b

y
o

n
-t

h
e-

jo
b

 c
o

ac
h

in
g

C
o

n
ti

n
u

es
 th

e
st

u
d

en
t’s

 tr
ai

n
in

g
in

 s
o

ft
w

ar
e

d
ep

lo
ym

en
t t

h
ro

u
gh

 a

co
m

b
in

at
io

n
 o

f l
ec

tu
re

 a
n

d
 in

d
iv

id
u

al
ly

 o
ri

en
te

d
 e

xe
rc

is
es

 th
at

 e
xp

lo
re

b

ra
n

ch
in

g
st

ra
te

gi
es

 a
n

d
 s

to
ry

 b
ac

k-
o

u
t s

tr
at

eg
ie

s

Create the Training Plan    143

Table 13.4 T raining Tracks

External Stakeholders Track

Notes: These modules can be given as a one-day class or two half-day sessions
or as independent training. There are no specific timing issues with this track.

Roles Modules

Sales and marketing•	 Introduction to Agile (100)—•	 except customer
and sales and marketing

Executive sponsor•	 Scrum (101)•	

Resource manager•	 Scrum (Talking Points)—•	 only executive sponsor
and sales and marketing

Customer•	 A Customer’s Responsibilities—•	 only customer

Project Management Track

Notes: Recommended arrangement is to offer as three classes (100/101, 107,
and 110). Classes should be provided just in time for the beginning of an agile
project.

Roles Modules

Project manager•	 Introduction to Agile (100)•	

Product manager•	 Scrum (101)•	

Program manager•	 Agile Analysis (107)•	

Quality manager•	 Software Deployment (110)—•	 only quality manager

Quality process manager•	

Team Membership Technical Track

Notes: Recommended arrangement is to offer as five classes (100, 101/201,
105/205, 106/206, and 107). Consider offering the 100, 101/201, and 107 classes
prior to the beginning of the project, then offer the 105/205 and 106/206
training during the first sprint. Coaching for 205 and 206 courses should be
done on a follow-up basis within one or two weeks and then again for a
couple days during the next two or three sprints.

Roles Modules

Coder•	 Introduction to Agile (100)•	

Configuration manager•	 Scrum (101 and 201)•	

(continued on next page)

144    Enterprise-Scale Agile Software Development﻿

training will therefore follow similar cycles. A reasonable schedule for your training
is given in Table 13.5.

This pattern will help to ensure that (1) new Scrum team members will get the
proper training right before they will use it and (2) constant retrospection on the
training materials will guarantee that gaps in the training are quickly corrected.

The Role of Coaches in the Agile Transition
Teaching Scrum, Extreme Programming (XP), and other agile concepts isn’t ter-
ribly difficult. Much of agile development is about common sense. However, while
the concepts may be easy to explain and easy to grasp, putting the concepts to work
in your daily job can prove to be a major challenge. I have seen many instances

Table 13.4 (continued) T raining Tracks

Roles Modules

Designer•	 Test-Driven Development (105 and 205)—•	 only
coders

Environment manager•	 Continuous Integration (106 and 206)—•	 except
designers

Quality assurance •	
analyst

Agile Analysis (107)•	

Tester•	

Team Membership Analytical Track

Notes: Recommended arrangement is to offer as four classes (100, 101/201,
105/205, and 107/207). Consider offering the 100, 101/201, and 107 classes prior
to the beginning of the project, then offer the 207 training during the first
sprint. Coaching for 207 courses should be done on a follow-up basis within
one or two weeks and then again for a couple days during the next two or
three Sprints.

Roles Modules

Analyst•	 Introduction to Agile (100)•	

Product owner•	 Scrum (101 and 201)•	

Scrum master•	 Agile Analysis (107 and 207)•	

Writer/technical writer•	 Certified Scrum Master—•	 only Scrum master

Certified Scrum Product Owner—•	 only product
owner

Create the Training Plan    145

where developers were trained in intensive immersion courses, only to return to
their desks to continue to do things the way they did it before. This isn’t a sign of
resistance, however. It’s simply that learning a skill like, for example, test-driven
development (TDD), doesn’t prepare you to know exactly where to start when you
return to your desk. The only way to make skills like this effective is to follow the
same methods that American surgeons do in their training: learn, watch, do. First
they learn something, then they watch someone do it, then they do it themselves.

We’ve covered the learn part pretty thoroughly in this chapter. Coaches handle
the watch part by giving newly trained employees someone to watch who is actually
doing the work. They exemplify the proper behaviors. After watching, the doing part
becomes much easier to internalize. In exemplifying proper behaviors and skills,
good coaches also provide another form of assistance: “remind.” Good agile skills
are as often associated with good habits as anything else. In other words, using
TDD as an example again, most coders in today’s world have been taught to write
code, then write their tests (if they write any tests at all, that is). When you learn
how to do TDD, your perspective as a coder undergoes a significant paradigm shift
when you learn to write your tests and code at the same time (with the tests going
first, though not by much). This is a radical shift in thinking that, when the pres-
sure is on or when they simply get a little lazy, many coders forget and go back to
how they used to write code. Coaches provide an ongoing reminder to their teams
to keep building their code the right way by example and by discussion.

Table 13.5 A Sample Training Schedule

Sprint Week Training Tracks

1 1 Project management

Note: Transition team also attends Introduction to Agile and
Basic Scrum courses (100 and 101)

2 External stakeholder

3 Team membership analytical

4 Team membership technical

Retro Sprint retrospective, including review of training

2 1 Make training improvements and corrections based on
feedback

2–3 Team membership analytical (all team members to attend
basic agile analysis)

4 Team membership technical

Retro Retrospective on all training materials

146    Enterprise-Scale Agile Software Development﻿

Planning for coaching is part of the training plan (though we also discussed it,
at a high level, as part of the transition budgeting, because coaching can be a major
portion of the overall transition costs). Each team that you create will have addi-
tional coaching requirements, and some of the roles in your organization will also
need coaching. Let’s look at both instances here.

Team Coaching Requirements
Scrum teams require coaching in general concepts (like Scrum, customer involve-
ment on a team, and DONEness), coding practices (like test-driven development,
continuous integration and testing, paired programming, refactoring), and analysis
practices (writing user stories, estimating user stories, etc.). Newer teams need more
coaching; more experienced teams need less. There are some coaches that are very
good at coaching in all of these skills; however, you may find greater flexibility by
hiring coaches that specialize. Table 13.6 provides approximate coaching needs per
team during the critical first six months of any development project.

Table 13.6 demonstrates that you should consider providing a total of almost
five hundred hours of coaching to each Scrum team during the first six months
of their existence. You’ll need an expert in Scrum and basic agile principles to
spend about seventy hours with the team during this time. They’ll help ensure
that the Scrum method is being properly enforced, will support your new Scrum
masters, and will also help the team stay focused on delivering done software
at the end of every sprint. During this same time, you should plan on about
280 hours of time from a coach that can help the team understand test-driven
development, how to write unit and functional tests, and how to keep from
breaking build when they check code while, at the same time, checking code on
a frequent basis.

Also, you’ll need a coach who has, and can teach, a clear understanding of how
to write, use, slice, and estimate user stories. Maintaining the product backlog

Table 13.6 A pproximate Coaching Time by Type of Coaching and Sprint
in Hours

Skill
Sprint

1
Sprint

2
Sprint

3
Sprint

4
Sprint

5
Sprint

6
Total

Hours

Scrum and
agile principles

  30   20 10 10   70

Coding
practices

100   80 40 20 20 20 280

Agile analysis   40   20 20 20 20 20 140

Totals 170 120 70 50 40 40 490

Create the Training Plan    147

can be a very difficult task, and good agile analysis coaches will be able to provide
many different exercises for learning the most about user stories as quickly and as
efficiently as possible.

The big questions, of course, when planning for how many coaches you will
need are:

	 1.	How many Scrum teams will you create each month of each development
project?

	 2.	How long before you feel you will be able to provide coaches from within
the organization?

Based on the approximate times shown in Table 13.2, you will need one Scrum/
agile concepts coach for every six to eight Scrum teams. For the coaches that pro-
vide support with agile coding practices, you will need one coding practices coach
for every two or three Scrum teams. For the coaches that provide support with
agile analysis, you will probably need one agile analysis coach for every four or five
Scrum teams.

Coaching should always be done with an eye toward training internal employ-
ees to provide the coaching in the future. As coaching is one of the most crucial
pieces of the agile transition and one of the most expensive, your long-term plan-
ning needs to consider how soon teams can coach themselves rather than having an
external coach assigned. At the same time, be very careful not to try to save expenses
by hiring fewer coaches than recommended. Coaching is as crucial an aspect of the
agile transition as training classes and, indeed, will have a much longer-term impact
in terms of teams that have truly internalized what they’ve been taught. Reducing
the coaching availability for your teams will have a lasting impact on your Scrum
teams’ velocity, effectiveness, and on the quality of the software they produce.

Overload the Scrum Teams
As the new Scrum teams are being formed during the transition, consider over-
loading the Scrum teams with one or two extra members that will become the
experienced team members on new teams in the next sprint. For example, during
transition sprint 1, the first one or two scrum teams are formed and trained. Staff
the first two teams with up to nine team members, seven of which are permanent
team members and two of which will move on to be permanent members of the
next two teams. These temporary team members are placed with an initial team
for a sprint in order to internalize what they have learned and then benefit from
any follow-up coaching. At the beginning of the next sprint, they join their new
permanent teams (who received their initial training during the previous sprint)
and, along with the coaches, pass on what they have learned in the previous sprint.

148    Enterprise-Scale Agile Software Development﻿

Normally, it isn’t considered good practice to change the team makeup, but in
this case, the membership is known to be temporary in the first place and, more
importantly, the benefit of setting good behaviors in the first Scrum teams will be
realized in all of the following teams as long as the training and coaching remain
reasonably consistent.

Scrum Masters and Scrum Product Owners
Because proper training of Scrum masters and product owners usually involves
someone certified to train these roles (Certified Scrum Trainers), you will find that
the availability of the courses is not in line with your sprints. Your best move here
is to train two or three Scrum masters and Scrum product owners and use them to
mentor newer Scrum masters and product owners until such time as the training is
available again. Even if you can select and train all of your Scrum masters and prod-
uct owners all at once, I do not recommend it unless they will have teams to work
with immediately upon completing the course. Like the rest of agile development,
Scrum is very much a behavioral experience. If you cannot immediately apply what
is learned, you will find yourself with a large number of Certified Scrum Masters
and Certified Scrum Product Owners that do not remember how to do what they
were taught.

Prove Your Skill First
New scrum teams should be considered probationary teams during the first three
sprints. This means that the teams have not yet proven their skills at agile develop-
ment and the results of their work are to be carefully scrutinized. The most effective
way to do this is to examine the team’s overall behavior and two elements of the
team’s product output:

	 1.	Sprint review results
	 2.	Continuous integration impact

We can look at the team’s sprint review results to see if the team finished any sto-
ries during the sprint. It’s important not to worry too much about how much work
got done in the first couple sprints; instead, focus on the quality of the work. If the
team is completing work and their story acceptance criteria are sufficiently detailed
and rigorous, the team’s sprint review results should be considered to be positive.

Regardless, however, of the quality of the completed work, we also have to be
very concerned about the quality of the slices of work being added to the product
code base during the sprint. Even new scrum teams should be putting code and tests
in the product code base at least once a day (this number should increase to several

Create the Training Plan    149

times a day as the team matures, but initially the number will be relatively small).
More importantly, you will need to be sure that when code is pushed to the product
code base, the team’s contributions do not cause repeated failures in the continu-
ous build and test process that the product code base should be going through on
a constant basis. If a team repeatedly stops the continuous build and test process,
they may not fully understand the concepts of test-driven development or quality
infusion through story agreements.

In terms of the team’s overall behavior, just because you put them together on a
team doesn’t mean that the members will work well together. If you see significant
conflicts within the team, consider taking it apart and starting over, or identifying
the problem team members and trying them on a new team in the near future.

In any case, should a team prove to be a problem during the probationary
period, the following must occur to ensure that their problems do not spread to
other, successful teams:

	 1.	A coach must be assigned to the team for the next sprint to help with every
step of the sprint.

	 2.	A retrospective, facilitated by someone outside the team, must be held to
review the exact details of the team’s issues and determine both root causes
and a course of action to correct.

	 3.	If the team is overloaded in order to provide experienced team members to
another new team, those temporary team members usually should not be
allowed to move to their new teams until the team successfully completes at
least one successful sprint.

Summary
The training plan is a pivotal aspect of the overall transition plan. It is linked closely
with the transition schedule and, when well executed, creates the foundation of a
successful transition. We start with the roles that we need in our projects, deter-
mine the skills that each role requires, and then build our training modules around
the roles. The training plan is also tied closely to how teams are created, such that
training is offered to all who are going to participate on the agile project and the
training cycle is repeated continuously as long as there are more teams to create.
During each cycle, the training is assessed and improved for the next round.

In addition to the classes and coaching, teams should also be overloaded with
one or two temporary members that spend one sprint with their initial team to learn
and be coached; those members can then move to their permanent teams when those
teams are created and act as semiexperienced members for the rest of the team.

Newly created Scrum teams, even with the coaching and training provided,
are still considered to be probationary until they are able to complete two or three
sprints where their sprint review results show a solid trend of work being complete

150    Enterprise-Scale Agile Software Development﻿

in a manner consistent with each feature’s acceptance criteria and the team’s interim
deliveries to the product code base do not cause repeated failures in the product’s
continuous build and test process.

By following the training plan and ensuring that Scrum teams are understand-
ing and using the concepts they are taught during the training, you can ensure
that you install not only the proper concepts and skills, but also the right behaviors
needed in order for your transition to agile development to be successful.

Endnote
	 1.	 Find more information at http://www.bigagiledevelopment.com/trainingplan.

151

14Chapter

Facilities Planning

To some extent, it almost seems extreme to be talking about modifying your facili-
ties in order to introduce a software development method. However, as has been
and will be stated several times in this book, agile development focuses on people
producing software that satisfy customer needs. In order to create the best environ-
ment we can to support effective software development, we have to change much of
the thinking of the past that puts software developers alone or in pairs into offices
and cubicles (refer to Figure 14.1).

Software development teams work best when they are co-located. They need to
be able to work together, ask each other questions, bounce ideas off of one another,
and to be able to do all of these things without necessarily having a scheduled time
to do so. In many organizations, we stifle the creative possibilities of our develop-
ment teams by separating them. Then when they need to get together to meet,
they are confronted with scheduling hassles that create unnecessary delays in our
projects and do even more damage to our developers’ creativity. By creating team
rooms for our Scrum teams, we encourage creativeness, teamwork, innovation, and
imagination, and we remove delays caused by unavailable rooms and trying to work
important conversations into everyone’s schedule.

This chapter reviews the many aspects of how the adoption of agile develop-
ment in an organization may affect your facilities and the types of changes you may
want to consider planning for. At a high level, we will be discussing the following:

Team rooms: Where our Scrum teams will work.◾◾
Server rooms: Where the servers needed to provide Scrum teams with inde-◾◾
pendent development and testing environments will be set up.
Private rooms: Where employees can be temporarily seated when necessary ◾◾
and where employees, typically in team rooms, can go for short periods of
time to hold private meetings or handle private phone conversations.

152    Enterprise-Scale Agile Software Development﻿

Team Rooms
Team rooms are a key element in the successful implementation of agile develop-
ment. Team rooms support the need for developers to work very closely together by
removing any remaining walls or other obstructions that interfere with development
progress. When creating a team room, one has to carefully consider several proper-
ties that help to make team rooms more and more effective for the developers that
use them. We’ll discuss many of those properties through the rest of this section.

Size

When planning the creation of team rooms, you will have to consider the number
of people on your Scrum teams. Assuming that the organization will abide by the
generally accepted practices that Scrum teams should be between five and nine
people in size, you will be best served by creating team rooms that can easily sup-
port six people (for teams of five and six) and ten people (for teams between seven
and nine). Team rooms of this size leave a little extra room for each team and also
facilitate planning in large organizations by giving your floor space planning only
two room types to deal with.

Backlog Items

Create the facilities plan:

Determine how many team rooms are needed.•	

Determine whether or not server rooms are needed and, if so, how many.•	

Locate space within which teams can be located.•	

Locate space for server rooms to be created.•	

Build initial server room.•	

Create team room plan.•	

Build initial team room.•	

Create remaining team rooms and determine how to move personnel.•	

Determine how the employee directory will be maintained.•	

Determine how employee phones will be maintained.•	

Determine plans for dealing with noise (if needed).•	

Figure 14.1  Slicing the “Create a Facilities Plan” transition backlog item.

Facilities Planning    153

Location
When locating and organizing your team rooms, there are some additional factors
that you will want to consider to improve your teams’ experience. These include:

Traffic◾◾ : There are few things more distracting to a Scrum team than having
their team room used as a shortcut to get from “here to there.” Many Scrum
teams adapt to team rooms by quickly interrupting themselves when someone
walks in; there’s an assumption that, if someone walks in the team room, he
or she needs something from the team. When people simply “pass through,”
it becomes a major distraction. When planning for team rooms:

Consider whether team rooms can be limited to single entrances (unless, −−
of course, not having the second or third entrance might create an unsafe
situation).
Don’t put team rooms near public entrances.−−
Create “hallways” between team rooms to encourage walking through −−
them instead of through team rooms.
Label the entrances to team rooms with some kind of sign that says, −−
“Hey! This is a team room.” In organizations using a lot of modular walls
to build team rooms, it is often difficult to tell the difference between an
entrance to a team room and a passageway between team rooms until it’s
too late and you’ve already interrupted someone.
Establish a rule in your organization that team rooms are to be treated like −−
offices. You don’t just walk in unless you work there or need someone.

Natural lighting◾◾ : The International Labor Organization, an agency of the
United Nations, advises that “the quality of lighting in a workplace can have
a significant effect on productivity”1 and “using daylight improves morale
and is free.”2 Proper lighting reduces errors; helps to improve productivity;
decreases eyestrain, headaches, nausea, and neck pain; and allows employees
to concentrate better on their work. A rather interesting study of school chil-
dren in Alberta, Canada, used four different kinds of lighting and tracked the
benefits of classroom day-lighting.3 They found:

Exposure to daylight resulted in better attendance (3.5 fewer days absent −−
each year).
Day-lit libraries had significantly reduced noise levels, due to increased −−
concentration levels among the children.
Day-lighting induced more positive moods, resulting in better scholastic −−
performance.

Proximity to related teams◾◾ : While teams work better when they are co-located,
it is also important to make sure that teams working on closely related soft-
ware are placed in close proximity to one another. As these teams frequently
have to work together to make design changes and improvements to their

154    Enterprise-Scale Agile Software Development﻿

application, you need to ensure that you reduce the walking time in between
these teams. In addition to reducing unwanted movement (identified as waste
in Lean software development), putting too much distance4 between teams
that frequently work together results in less efficient behaviors, like sending
emails or using the phone to get answers.

Noise
There are two kinds of noise prevalent around team rooms: noise that comes from
within the team room as a by-product of the team working, and noise that comes
from outside the team room. Both can be quite disruptive to the team if there’s
too much noise or noise at the wrong time. Some of the noise can be reduced with
noise-reducing modular wall panels and ceiling panels. White noise generators can
reduce more noise. However, rather than implementing costly solutions up front
(and white noise generators often cause more problems than they’re worth), con-
sider making the noise problem something that the teams have to solve on their
own. In general, it is the teams that create noise as a by-product of working closely
together. Part of the self-management that teams are supposed to exhibit is the abil-
ity to solve these types of problems.

Setting Up a Team Room
With your floor plans in place to build your team rooms, you’ll then want to move
on to thinking about how each team room will be configured and what kinds of
supplies and materials you’ll need. We’ll talk about some of that in this section.

Configuration◾◾ : How will you set up the interior of the team room? Generally
this is something you will want to leave to your teams. They will know best
what they want their workplace to look like. However, you can give them
some basic configurations upon which they can expand.

Central table−− : Sometimes, teams work around a central table, sitting
along the sides of a table much like a family sitting down for dinner.
This leaves a lot of wall space around the sides of the team and also puts
everyone face-to-face, making conversation and working together that
much easier. The disadvantages to this approach include the problem that
some team members may have with a lack of privacy or a lack of working
space. Also, the number of cables and wires that collect under a table in
this situation can be quite a problem.
Around the walls−− : Some teams prefer to work at personal stations while
having a table in the center of the room for meetings and work sessions.
This works well for most teams, but can sometimes permit team members
to disengage from the rest of the team.

Facilities Planning    155

		 In general, you can support both configurations by creating team rooms
that support individual workstations, but with a large central table. If the
team chooses to work around the table, provide the additional assistance to
help them clean up the cables and keep them safe.

		 Keep in mind, of course, all pertinent regulations regarding occupational
and fire safety to ensure that your team rooms are both safe and legal. Some
great examples of team rooms can be found at http://www.xp123.com/xplor/
room-gallery/index.shtml and http://www.scissor.com/resources/teamroom.
What to put in the team room◾◾ : For a team room to be truly effective, there are
a number of items you may want to consider ensuring are in it when the team
moves in:

Wall space−− : Teams are usually taught to use walls to keep track of their
work. Teams will often use wall space for task boards (boards that show
what the team is currently working on), storyboards (boards that show
what work is due to be worked on in the near future), and burn-down
or burn-up charts (graphs that illustrate the progress and trends of the
team). Teams need a lot of clean, smooth space on which Post-it® notes
will stick, or corkboard space on which index cards can be pinned.
Meeting table−− : Discussed in previous paragraphs, this table should be long
enough to support everyone on the team plus two or three more “guests”
sitting at it at the same time.
White board−− : White boards (or dry-erase boards) are invaluable tools
for Scrum teams to do brainstorming, group design, etc. In addition,
you should also consider having a number of digital cameras available
to employees to take pictures of white boards in order to take the board
content and preserve it.
Data projector−− : Team members often have the need to show segments
of code, text, or working software to the entire team at the same time.
Sprint reviews are excellent examples of when this is needed. Some
teams will also use data projectors to support code reviews, document
reviews, and special presentations done by team members for the rest of
the team. Data projectors often drastically reduce the amount of paper
used by Scrum teams, reducing paper supply costs, copier costs, and
time wasted by employees making and organizing copies preparatory to
a team meeting.
Projection screen−− : If your team will be using a data projector, they will also
likely need a projection screen. In some cases, these can be hung from the
ceiling, reducing the footprint of the screen when not in use.
Speakerphone−− : Your team will likely need a speakerphone during the
course of normal development to support meetings with remote custom-
ers or remote employees.
For remote employees−− : If a team also has one or more members working remotely,
you may wish to also provide one or more web cams in order to improve

156    Enterprise-Scale Agile Software Development﻿

communication and remote desktop sharing software to allow employees to
access each other’s desktops as needed (i.e., for pair programming).
Miscellaneous supplies−− :

Post-it notes•	
Index cards and push pins•	
Dry-erase markers•	

Other options−− : While not every option is good for every team, here are
some additional features that many teams find add to their productivity:

Plants: A study•	 5 done with computer operators showed a twelve per-
cent improvement in productivity when plants were present com-
pared to when plants were not present.
Game tables: A small table in the room on which the team can build •	
a puzzle, play chess or checkers, or board games.
Permanently projected electronic task board: A real disadvantage •	
of backlog management tools that support online task boards is
the fact that they are only visible when displayed. Some teams
solve this problem with an old workstation with a keyboard,
mouse, and a very large monitor (twenty-one inches or better).
The workstation is always left displaying the task board. Team
members take tasks, update statuses, and update hours remaining
using the workstation.
Large monitors for developers’ workstations: Some Scrum teams •	
engage in an Extreme Programming (XP) practice known as pair
programming. This requires two developers to sit side-by-side to write
code. In order for this to be done without causing eye or neck strain,
you may want to consider purchasing larger monitors than the typical
fifteen- or seventeen-inch screens.

Employee Directories
When an organization gets large enough that it becomes impossible to know who
everyone is and where everyone sits, the organization’s first employee directory is
created. When team rooms are implemented, you’ll be faced with one or two new
challenges. First, when the team rooms are initially built, your entire directory will
have to be reworked. Instead of everyone having office numbers or cubicle num-
bers, many employees will now be located in team rooms. You’ll have to find a way
to number or name your team rooms, making the names easy to read by posting
them outside the team room walls, and you’ll need to find a way to make your team
rooms easy to find.

The difficulty gets a little worse, however, if your organization begins to change team
membership from time to time (as it should). When that begins, tracking employee

Facilities Planning    157

location gets more and more problematic. Your organization will likely have to create a
procedure that allows for the easy setting and resetting of employee location.

Employee Telephones
Similar to the problems with employees moving from team to team are the problems
with the employee telephones. Moving employee telephones every time an employee
moves from one location to another can be very expensive. Your organization may
wish to look into voice-over-Internet-protocol (VOIP) systems or other options that
allow employees to easily move their phone with them as they change teams.

Private Spaces
Part of your facilities planning should also result in the creation of several regular
offices that can be used as quiet spaces when needed or for small meetings. These
offices should have doors that when open, mean that the space is available, and
when closed, mean that the space is in use. The office can be set up with basic
furniture: a desk or table, two or three chairs, a white board, and a telephone or
speakerphone.

Server Rooms
The final item to discuss in this chapter is the server room. While this is by no
means a guaranteed portion of your facilities plan, agile development teams gen-
erally require development environments in which to test the application and at
least one additional environment to support continuous application building and
testing. When there are enough teams, it becomes more effective to build one or
more secure rooms in which to place the servers. Even when there aren’t many
Scrum teams, each server that is not properly protected, from both a hardware and
a software perspective, becomes a potential liability should the server be damaged
or become unavailable. Each organization has to make this decision based on its
willingness to manage the risk.

The Facilities Plan
This chapter is intended to give you an idea of what to expect when trying to decide
what kinds of facility changes will be necessary during your transition to agile
development. We’ve discussed team rooms, including how to configure, locate, and

158    Enterprise-Scale Agile Software Development﻿

supply them. We’ve discussed private spaces and server rooms. We’ve discussed
some of the problems you will have to deal with regarding employee directories
and employee telephones. My hope is that the content of this chapter will help you
create a more complete and comprehensive facilities plan.

Endnotes
	 1.	 “Lighting in the Workplace.” http://www.ilo.org/public/english/protection/safework/

hazardwk/ergono/lighting.pdf, p. 1.
	 2.	 Ibid., p. 2.
	 3.	 Hathaway, W. E., Hargreaves, J. A., Thompson, G. W., and Novitsky, D. A Study Into

the Effects of Light on Children of Elementary School Age: A Case of Daylight Robbery.
Edmonton, Alberta, Canada: Alberta Education, 1992.

	 4.	 Some have suggested that this distance can be as short as one hundred feet.
	 5.	 Pearson-Mims, C. H., and Lohr, V. I. Reported Impacts of Interior Plantscaping in

Office Environments in the United States. HortTechnology 10 (2000): 82–86.

159

15Chapter

Selecting the Pilot
Projects for the
Agile Transition

The first quality for a commander-in-chief is a cool head to receive a
correct impression of things. He should not allow himself to be con-
fused by either good or bad news.

Napoleon Bonaparte

Americans live in an interesting culture. We are a wary bunch, perhaps because the
earliest pages of our history are written by individuals run out of their homelands
due to their beliefs. Perhaps our reluctance to trust comes through our British
roots: “First impressions are often the truest, as we find (not infrequently) to our
cost, when we have been wheedled out of them by plausible professions or studied
actions.”1 Wherever our wariness comes from, it is most succinctly stated in the
more well-known phrase: “You never get a second chance to make a first impres-
sion.” Blow your first chance and it’s over.

Agile development, on the other hand, is about learning enough to take your
first steps, learning from your successes and mistakes, and using that information
to take your next step. In fact, a purely agile development saying goes like this:
“Fail fast, fail often.” This saying reflects a basic belief that agile developers hold
that there is much more to be learned in failure (or, perhaps, mistakes) than in con-
tinuous success. Mistakes provide the raw materials for new ideas and new ways of

160    Enterprise-Scale Agile Software Development﻿

doing things. Repeated success, over time, tends to limit the innovativeness of the
product developers: “If it ain’t broke, don’t fix it.”

This outlines the biggest problem that we have in the most crucial aspect of a
successful transition to agile development. Agile projects aren’t expected to be per-
fect from the start; they are expected to get better from sprint to sprint. However, if
the organization’s first impression of an agile project is that it failed, your organiza-
tion’s transition to agile development may come to a rapid conclusion for reasons
that may have had little to nothing to do with agile development. You will hear
phrases like “Agile won’t work for us” and “Our environment is too complex for
agile development.”

The selection of a pilot project for a transition to agile is one of the most critical
decisions that can be made early in the transition itself. I have, therefore, dedicated
an entire chapter to this single topic.

In the selection of a pilot project, you will need to accomplish several tasks, each
of which will be discussed in this chapter.

	 1.	Define your goals: What is it you want to achieve with the pilot project? Is
it simply how you plan to create your initial teams, or do you hope to learn
something specific in a short period of time. By understanding your goals,
you can make better pilot project selections.

	 2.	Set expectations: What should the organization expect of this project? Will it
produce code faster or is the focus elsewhere? Will the organization be aban-
doning any portion of the organization’s quality processes in order to achieve
real agility?

	 3.	Choose the best project to meet your goals: How long of a project should be
selected? What about staff size? What about the criticality of the project or
the project’s cost? How do these factors weigh in the final decision?

	 4.	Set your project up for success: In order to make the best first impression that we
can, we will want to not only select the best project, but also take steps that
give that project the best chance of success that we can provide.

The rest of this chapter will review each of previously mentioned topics with the
goal of giving you the information you will need to help your organization make
the best decision possible when selecting a pilot project.

Define Your Goals
The first step in selecting a pilot project for the agile transition is to determine what,
exactly, are the goals of the pilot in the first place. Pilot projects can be undertaken
for a number of reasons. We might want to simply see if our training is effective by
training the right people in the proper manner and then letting them start a project.
We might want to uncover some of the organizational dysfunction that we’re going

Selecting the Pilot Projects for the Agile Transition    161

to find during the transition, but in a more controlled manner and at a slower pace.
Many pilot projects are nothing more than the beginning of a ramping-up process
whereby more and more Scrum teams are added each month. The initial project, in
this case, is unimportant, though it is still important to understand what you want
out of your pilot project, even in this instance. In addition, understanding your
goals helps you to understand something very important to agile developers: When
are you done? In other words, when has the pilot project served its purpose and is
considered complete?

When setting the goals for a pilot project, you must ask yourself a few questions:

	 1.	Why do we want to do this? By asking this question, we hope to understand
better what it is we want to prove by doing a pilot. Perhaps the organization
is not satisfied with the rate at which projects are being completed and the
pilot project is about measuring improvements in productivity. In difficult
economic times, agile development is often positioned as a means by which
more features can be produced with higher quality without changing current
staffing levels. The organization may be uncomfortable with agile develop-
ment for a variety of different reasons and management wants to see it in a
smaller, controlled setting. Or, the organization may not be satisfied with the
product quality and is looking to agile development to help improve it.

	 2.	What do we hope to learn? In asking this question, we clarify the scope of
potential pilot projects as we seek to determine whether or not the organiza-
tion is even up to the challenge of performing a transition to agile develop-
ment. Organizations want to know what kinds of challenges will be surfaced
during the initial months of the transition. And of course, though most
coaches will tell you that agile development will work with your organiza-
tion, there are always the nagging doubts that agile development will be too
vague or random or touchy-feely for the real world.

	 3.	How long will we wait for results? As mentioned earlier, agile projects are
geared toward continuous improvement. We learn enough to get started,
take our first steps, and then use the information (good and bad) resulting
from our first steps to take the next steps. Looking for productivity improve-
ments from a Scrum team may take four to six months, at least (in fact, there’s
often a drop-off in productivity for a new Scrum team as they all learn how to
embrace new roles). If you are looking for improvements in quality, it is not
unusual for new defects to be found on new or changed code several months
after the code was completed (even with a formal source code control system).
How long is the organization willing to wait for results? Three months? Nine
months? Longer? How long will the organization be patient before it begins
tampering or fixing processes, or giving up entirely? By defining this length
of time early, you can either pick a project that will be amenable to changes
during the latter half of the project or short enough that it can finish before
management begins to start changing agile practices.

162    Enterprise-Scale Agile Software Development﻿

	 4.	How much are we willing to spend? If your pilot project is supposed to test
the real environment, you will find it necessary to spend money on training
your project personnel. This will possibly include training for your Scrum
masters, product owner, team personnel, and some management. In addition,
you may wish to add some coaching hours from an outside consultancy to
help your teams understand what is expected of them and to give them ways
to complete their work.

		 Next comes the issue of how much agile development will be done during
the sprint. If your Scrum teams are doing nothing more than Scrum, you will
want to ensure that there’s enough money in the project budget to support
rework in these areas and that you can afford to create one or two Scrum
team rooms for the purposes of the pilot project.

		 Should you, however, find yourself in a situation where your Scrum teams
will be instituting Extreme Programming (XP) practices, such as continu-
ous integration and testing, and test-driven development (TDD), you may
have to invest in new tools and new hardware to implement these practices.
For example, continuous integration requires an environment in which your
application software can be repeatedly built and tested automatically, twenty-
four hours a day, seven days a week. While there’s plenty of good, reliable,
and free software to handle the building and testing,2 you may need to find a
clean machine (perhaps server quality) in which to actually run these CPU-
intensive activities. Likewise, test-driven development may initially appear to
make everything take longer (though you’ll find that, if it’s done right, the
positive impact on quality and reduction in support time later in the devel-
opment process makes it all worth it) and paired programming may require
you to pick up some larger monitors for your developers’ desktops or laptops
in order for more than one person to easily see what is on the screen at the
same time.

Set Organizational Expectations
Even with your goals set, it will still be very important to prepare your organiza-
tion for what will happen while the pilot project is under way. Remember, the goals
that you are trying to achieve will not magically occur during the first sprint of the
project. More than likely, some bad things will occur before good things start to
happen. By setting the organization’s expectations up front, you can avoid some of
the panic that might otherwise set in.

So, what are some of the expectations you’ll want to set up front? Well, they will
vary considerably based on the organization, the people, and the software being
developed, but here are some of the common things you’ll want to discuss within
the organization:

Selecting the Pilot Projects for the Agile Transition    163

Short-term decreases in productivity◾◾ : Any time you introduce new people, new
practices, new tools, or new methods to an existing development situation,
you can expect that there will be some loss in productivity as the team adapts
to the new situation. New people on the team will require training and coach-
ing from an experienced team member, and the time spent results in a loss of
productivity. Learning how to use new tools, and cleaning up the messes made
from using them wrong, can result in significant losses of productivity.
Lots of questions and “retakes”◾◾ : As the pilot progresses, the team may discover
reasons that would lead them to wanting to modify the Scrum process to fix
(or rather, hide) an organizational problem. This may lead to frustration and
arguments within the team and from the product owner. It will have many
of the characteristics of Bruce Tuckman’s team storming phase,3 where the
team has difficulty working together and reaching consensus on a variety
of ideas, including how to design software and how to use Scrum and other
agile methods.
Some deviations from established quality practices or company standards◾◾ : As the
Scrum team strives to improve their use of Scrum and agile development,
there will be “collisions” with established quality practices or company stan-
dards. Agile development encourages challenging the status quo and, often,
will cause teams to question the existence of company standards or quality
practices when they do not perceive the value in the standard or practice.
Discussion between team members and your organization’s management
regarding these disagreements should be encouraged. There are many stories
of company and quality policies existing for so long that the reasons for their
original creation were no longer valid. Policies and standards that seem like
they are obsolete should be closely examined*; they should be changed or
dropped as needed. For the purposes of the pilot project, try to err on the
side of the pilot project and, at minimum, temporarily change or suspend
practices or standards if the pilot project might benefit. You can always decide

*	 The best example of obsolete standards that I know of comes from the reasons for the distance
between the rails of U.S. railroad tracks. It is a precise 4 feet 8½ inches. The reason for this
unusual measurement comes from the fact that English railroads were built the same way,
and it was English expatriates that built the first U.S. railroads. Of course, the English built
their railroads that way because that’s how they built the prerailroad tramways (used in min-
ing and logging operations), which were built that way because the jigs and tools used by
those who built the tramway cars were also used to build wagons and that’s how far apart the
wagon wheels were. The wagon wheels had that unusual spacing because if they were farther
apart or closer together, they would break on old, long-distance roads because of the spacing
of the wheel ruts in the old roads. The old roads were built by Imperial Rome—it was their
chariots that formed the initial ruts in the roads. The spacing between the wheels of the chariot
was a standard set by Imperial Rome because it was the rough total distance of two Roman
warhorses standing side-by-side. So, the 4-foot-8½-inch width of today’s railroads is based on
the width of the rear ends of two Roman warhorses standing side-by-side. It is easy to set a
standard and then get stuck with it.

164    Enterprise-Scale Agile Software Development﻿

later to reinstate the changed or suspended policies or standards later in the
pilot project or at its conclusion.

The pilot project may also produce results that leave room to interpret good out-
comes in a negative light. For example, what will your organization think when:

The pilot project team discovers major errors in design early in the project? The ◾◾
good news is that the team discovered the error before it could be built into
the product. The bad news is that the design changes will result in significant
delays bringing the project to completion. From a software engineering per-
spective, finding the design flaws early in the project is considerably less expen-
sive than finding it in the product at a customer site. This is the type of thing
that we would want to encourage. However, from the business standpoint, the
appearance may be that the design was fine until the pilot project began.
The pilot project team produces fewer lines of code each sprint, but it becomes ◾◾
clear during independent testing that the quality of the application is signifi-
cantly improved? The good news, clearly, is that the quality of the software has
been improved. The bad news is that perceived/interpreted productivity dropped
as soon as the pilot project began. How will this be by your organization?
The pilot project team, charged with finding the obstacles to the agile tran-◾◾
sition, succeeds quite well, finding problem after problem? At what point
does the organization blame the problems on the pilot project and not on
the likely fact that the pilot project is simply surfacing obstacles that had
been in existence all along? Organizations, even those willing to change how
they develop software, have a limited tolerance to being exposed to all of the
obstacles that exist within themselves. At some point, there is a natural ten-
dency to want to blame some external force (in this case, agile development
and the pilot project) for the problems.
The pilot project team, dealing with unrealistic timeframes and software ◾◾
that tends to be quite buggy, is unsuccessful in completing anything close to
what is hoped during the course of a sprint? The bad news, of course, is that
the team isn’t making any progress getting the product features built. On
the other hand, neither were teams prior to trying to use agile development.
There is clearly no good news here. But what does the organization see? That
the pilot project team was unsuccessful, or that they had a Herculean task set
for them in the first place?

The answer here is to set expectations with everyone even remotely involved
with the pilot project and to continue to communicate (and interpret) ongoing
results. One way of doing this is to clearly define what it means to hold a successful
pilot. What kinds of outcomes are you expecting to see, and how will you interpret
those outcomes during and after each sprint in the project? Here are some of the
questions you should ask yourself when defining success for the pilot project:

Selecting the Pilot Projects for the Agile Transition    165

Which do you value more: quality or quantity?◾◾
In other words, which is more valuable: less functionality with higher −−
quality or more functionality with the same or less quality? This will help
you understand which—quality or quantity—is more important.

Are you hoping to find obstacles, or hoping that none will be found?◾◾
Some pilot projects are started to see how well the organization performs −−
(in a small space) within the existing organization. This helps the transi-
tion team understand what will need to be addressed before any large
projects get started. If you are hoping that no obstacles are found dur-
ing the project, your assumption is probably that your organization is
already pretty lean and agile is begin implemented in order to achieve
additional gains.

Are you hoping to perfect the process during the project, or just get a handle ◾◾
on what works?

If you’re hoping to perfect the process, there’s going to be a lot more focus −−
during the sprints on identifying and correcting broken practices and
standards and a bit less focus on getting software done. You might also
be more willing to extend the project until the organization agrees that
significant gains in removing waste have been achieved.

If the project falls behind schedule will you cancel the pilot or keep going ◾◾
until it is finished?

This is almost a trick question; agile projects don’t have a predefined −−
schedule. Progress is made based on the established velocity of the teams.
If your expectation is that a predetermined project schedule should drive
the teams’ activities, try to redefine the pilot to simply run for a pre-
defined period of time, regardless of what gets finished. Evaluate the proj-
ect success on how development occurred, not how fast.

Which do you value more: the project timeframes or the completed ◾◾
functionality?

This is a follow-up to the previous question. Which do you want more: −−
that the teams stick to a specific schedule or that they produce working
functionality? If any portion of the organization is insisting on keeping to a
predefined schedule, try to reset expectations before beginning the pilot.

Under what conditions would you consider the pilot to be a failure?◾◾
Is there a point at which you or the organization would cancel the pilot −−
altogether, considering it a failure and moving away from agile develop-
ment? What are those conditions? Can you mitigate them in some way?
Are they appropriate?

Now, define success. Your definition will usually include some discussion of the
use of Scrum and agile methods, the creation of the product backlog, the definition
of roles and responsibilities, how the overall process is improved, and of course,
making progress in the completion of new or updated features. At first glance, it may

166    Enterprise-Scale Agile Software Development﻿

appear that your goals and your definition of success are the same thing. However,
while they are related in that your definition of success should support and clarify
the goals that you set for the project, the definition of success also gives you an
opportunity to address expectations. For example, one project’s definition of suc-
cess might look like this:

The pilot project will include four sprints, each sprint set to one calen-
dar month in length. The team will be co-located in a conference room
for the duration of the project. By the end of the project, we will have
completed the following:

	 1.	All team members will have been properly trained to fulfill the
requirements of their role.

	 2.	The Scrum method will be initially applied in terms of roles, meet-
ings, and artifacts as defined in “Agile Software Development
with Scrum.”

	 3.	Obstacles will be recorded on an impediments list by the teams’
Scrum master and will be worked during the project and reviewed
during sprint retrospectives.

	 4.	The Scrum teams may make standards and process changes dur-
ing the sprint, but the nature and reasons for such changes must
be reviewed and approved by appropriate personnel during sprint
retrospectives.

	 5.	The Scrum teams will make as much progress as possible in com-
pleting items on the project’s product backlog. The project length
will not be enough to determine velocity, and therefore, teams are
to complete as much as they effectively can.

This definition of success, while driven by the project goals, also clarifies the
expectation that the team is to focus on putting agile development in motion and
identifying and solving impediments while also getting as much of the product
backlog done as possible. There is less of a focus on developing features and more
of a focus on implementing agile development. You could, of course, create a pilot
project with a completely different definition of success, as follows:

The pilot project will include six sprints, each sprint set to one calendar
month in length. The team will be co-located in a conference room
for the duration of the project. By the end of the project, we will have
completed the following:

	 1.	All of the content identified for inclusion in release 2.2 will be
completed. Progress will be reviewed and discussed at each sprint
review to determine if the team’s velocity is sufficient and, if not,
how to improve it.

Selecting the Pilot Projects for the Agile Transition    167

	 2.	The Scrum method will be initially applied in terms of roles, meet-
ings, and artifacts as defined in “Agile Software Development
with Scrum.”

	 3.	The teams’ Scrum master will record obstacles on an impedi-
ments list, but only critical impediments will be addressed. All
others will be reviewed at the end of the pilot.

	 4.	Key team members will have been properly trained to fulfill the
requirements of their roles and will coach others to ensure that all
team members have been educated.

	 5.	The Scrum teams may not deviate from company standards and
quality policies. These standards and policies exist for reasons
that are verified annually. Scrum teams should incorporate tasks
made necessary by company standards and quality policies dur-
ing sprint planning.

In this version of the project’s definition of success, there is a clear focus on
getting a software release completed and ready for customer use by the end of
the project. An organization with a definition of success such as this is evidently
focused on ensuring itself that agile development does not jeopardize the com-
pany’s ability to produce a product release. In addition, this definition defers the
reviewing of all noncritical defects until after the project and restricts the Scrum
teams from making any changes to existing standards or quality policies (since
those standards and policies are being reviewed on an annual basis, it makes
sense that the organization would expect that they would not change because of
agile development).

Both definitions are equally valid and both represent the legitimate concerns
of two different organizations—one that is focused on the process and willing
(to some degree) to sacrifice delivery dates, and one that is willing to adapt to
agile development but not willing to change software delivery dates that may have
already been announced to their customers. Your organization may be like one of
these, or may be somewhere in between. While most organizations will be more
than willing to set the pilot project goal to something like “Test out Scrum and XP
practices to prove that they will work in our organization,” when you start defining
what that really looks like in terms of what the organization is willing to negotiate,
you will get a much clearer picture of what kind of a project you want to select in
order to begin your piloting effort.

Selecting Your Pilot Project
Determining your goals and definition of success will help you make a good selec-
tion for a pilot project. However, let’s discuss some common elements of projects
that make them good pilot choices first. Good candidates for pilot projects are:

168    Enterprise-Scale Agile Software Development﻿

Small staff sizes: Because the pilot project is all about learning and applying ◾◾
new skills, dealing with unexpected impediments, and trying to create good
working environments for Scrum teams, you will find that a project that has
no more than twenty development personnel assigned to it is easier to manage.
The additional administrative and logistical overhead introduced by larger
staff sizes does not contribute much value to the outcome of a pilot project.
Short duration: Pilot projects are intended to be tests of new methods or new ◾◾
tools (sometimes both). The idea is to put the new methods in action, observe,
and then decide what to do. Projects that last between three and six months
provide ample opportunity to experiment and work out most of the major
problems. Projects that run longer than six months tend to delay the decision
to move forward with the agile transition and provide very little new informa-
tion after the first few months. Remember, the purpose of a pilot project is to
see how agile development will work and what types of changes you may have
to make in your organization. Pilot projects are not intended to resolve all of
the problems of your transition.
Spotlighted: Pilot projects need to be noticed. They should have an impact on ◾◾
your organization. Creating a pilot project around a little used, little known
internal utility will not garner the lasting attention and appreciation of senior
and executive management. A successful pilot project should both satisfy the
definition of success and have an impact on your organization’s bottom line.
Will customers be happy when the project is successfully completed? Will
anybody care?

Now that we’ve identified some good candidate projects, let’s trim the list by
reviewing our goals and definition of success. Here are some guidelines that you
can use to help select a good pilot project:

If your organization values working software over evaluating agile development,
you should strongly consider projects that:

Develop mature products that are already stable and of good quality. This NN
will help ensure that the team is not bogged down in fixing defects and
working with brittle code.
Have a lot of product expertise available in the organization to help NN
answer questions and make decisions. Mature products often result in a
number of individuals in the organization that understand the products
and their users quite well. Having these people available, in addition to
the product owner, can help ensure that the team does not get stuck in
drawn-out discussions to make critical decisions.
Are focused on major releases of functionality. Small updates of mature NN
products do not tend to get a lot of attention from senior and executive
management. Go with a project that will produce something new and

Selecting the Pilot Projects for the Agile Transition    169

exciting in the mature product; a successful pilot will succeed both by
beginning the agile transition and by putting out a new key feature—not
a bad start for your transition.

If your organization values the evaluation of agile development practices over
working software, you should strongly consider projects that:

Develop a new product. New products have a lot of room for negotia-NN
tion in how features are implemented, and there are no preconceived
ideas about what the product is supposed to look like (except, maybe,
in the head of your product owner). This maximizes the potential
of Scrum and agile development practices to truly explore the pos-
sibilities of the product while developing the product iteratively. This
allows the product owner (and senior/executive management) to see
pieces of the new product early and improve the design as you go.
There’s no better advertisement for the advantages of agile develop-
ment than this.
Have a strong proponent in the organization. The trouble with new prod-NN
ucts is that we sometimes lack proper guidance and a clear vision of the
product’s direction. The development of a new product will be nearly
impossible to do with any efficiency without a good, strong product
owner that can guide the Scrum teams’ efforts.

If you have projects to choose from for your pilot, consider what we’ve covered
in this section. While some projects make good candidates for piloting, others
certainly do not.

Before we continue, one final note on selecting a good candidate project for
your pilot: Talk with the managers and developers that will be part of your first or
second choice for the pilot. Are they excited about the opportunity? Are they criti-
cal but willing to keep an open mind? Or, are they critical, convinced that agile
development “won’t work here.” People are your project’s biggest asset or your great-
est liability. Make sure you make the choice that improves your chances for success.
Other than people, there are a number of obstacles that can reduce any project’s
chances for success. If you are prepared for these obstacles, you can take steps to
remove them before they cause a serious problem. We’ll discuss the obstacles to a
successful pilot in the next section.

Obstacles to a Successful Pilot Project
No matter how good a choice you make in your project selection, all you’ve really
done is mitigated some of the major risks inherent in the success or failure of any
project. There are many more potential obstacles for which you need to be pre-
pared. We’ll discuss a number of them in this section.

170    Enterprise-Scale Agile Software Development﻿

Dysfunctions Come with the Territory

As any Scrum trainer or coach will tell you, understanding Scrum is easy, but
implementing it is hard. When you implement Scrum and agile methods in a pilot
project, there is often an expectation that Scrum is a sort of silver bullet that will
solve a number of organizational problems and speed your project along to a suc-
cessful delivery. However, the truth is that all successful Scrum projects start with
a period of time during which many of an organization’s dysfunctional processes
are raised and fixed. Part of the success of Scrum, in fact, is the removal of waste
from the development process. Implementing Scrum will not remove the dysfunc-
tions that come with the organization. Whether it’s a security process that results
in a two-week delay during which your teammates cannot access a particular data-
base, or a procurement process that results in a three-month delay before a new
server can be delivered, Scrum will ensure that these impediments are brought to
the attention of the Scrum master, the team, and probably management as well.
Your job will be managing the expectations of the organization so that everyone
realizes that the identification and removal of these dysfunctions is part of how
Scrum works.

Team Co-location

Even if you choose the perfect pilot project, if rooms, floors, buildings, cities, or even
oceans separate the team members, communication between them will be impeded
to some degree. This will negatively impact all team activities. You will need to take
additional steps to improve communication as much as possible. Installation of web
cams, speakerphones, and team collaboration tools are a good start. Bringing the
team members together for the duration of the project would be ideal.

Lack of Expertise or Necessary Skills

If the project you choose comes with a staff that lacks the proper skills or any
experts on the product, you may want to spend some initial time, prior to actual
development, getting the developers the requisite training they need to be effective
with the product. Asking your developers to learn new methods, new tools, and
a new product at the same time will create a very frustrating experience and will
likely have a substantial negative impact on the success of your project.

Improper Development Metrics

Many organizations measure progress and productivity based on the number of
lines of code produced or other metrics based on the amount of code produced.

Selecting the Pilot Projects for the Agile Transition    171

Agile development, on the other hand, focuses on completed and working func-
tionality rather than how many lines of code were written to complete the function.
By measuring our developers improperly, we unwittingly invite unwanted behav-
iors into the Scrum team that will negatively affect the performance of the team. In
general, all development metrics, save those included in the project’s definition of
success, should be suspended for the duration of the pilot project in order to ensure
that they do not affect the outcome of the project.

In this section, we’ve covered some of the obstacles that can have a detrimental
effect on the success of your pilot project. In the next section, we’ll discuss some
things you can do to help ensure success.

Setting Your Project Up for Success
Given how critical the pilot project is to the success of your Agile transition, it only
makes sense that you would want to do whatever was reasonable to ensure success.
In this section, we’ll discuss some of the things you can do to improve the odds
of success.

People First
First, and most importantly, remember that Scrum is not a development method!
Scrum is a method for organizing work and making teams of people more efficient.
Always focus on the people and let the process emerge. From how quickly they learn
and adapt to the new practices and new tools to the respect and commitment they
give to one another in putting the team first and the individual second, people will
drive the success or failure of your pilot project. People that are convinced that
agile development will not work will make sure, consciously or subconsciously,
that the pilot project does not succeed. Conversely, dedicated team members that
have bought into what Scrum and agile development are all about will internalize
the concepts quickly and, instead of complaining about things that go wrong, will
always be on the lookout for solutions to new problems.

In addition, I also mentioned “let the process emerge.” In too many instances,
I have seen organizations try to solve problems with processes and standards that
really only resulted from misunderstandings and poor training. Processes need to
be defined around the developers and the products, not vice versa. Start with the
most basic process you need to get the job done (of course, if you are building a
heavily regulated product, like a medical device or air traffic control software, you
will have a lot of regulatory requirements that you will have to translate into a mini-
mal set of process steps) and try it out. You will have ample opportunities during
sprint retrospectives to review the existing process and revise it accordingly.

172    Enterprise-Scale Agile Software Development﻿

Everyone Needs to Know Their Job
Training is critical when introducing Scrum and agile development to an orga-
nization. In particular, Scrum relies on a clear separation of responsibilities and
accountability that is defined in the roles that it includes (e.g., Scrum master, prod-
uct owner, team member). When everyone knows his or her job, there is less likeli-
hood of confusion and unnecessary adaption of practices. Make sure that everyone
that participates in the pilot project receives the proper training. In fact, you may
even want to restrict participation in the project to only those who have completed
the training.

Include management in as much training as you can get them to attend. At
minimum, managers must understand that the critical role they play in an agile
project is making sure that the Scrum teams within their sphere of influence have
everything they need to get the job done, that no obstacles are left unsolved, and
that any conflicts that escalate outside the team are resolve quickly and effectively.

Introduce XP Practices Carefully
While Scrum is an effective tool for making teams of people efficient, most orga-
nizations combine Scrum with XP in order to improve software quality and help
improve productivity beyond what Scrum alone accomplishes. This means that your
pilot project might also include test-driven development (TDD), pair programming,
and continuous integration and testing, among other possibilities. You may find
that introducing all of Scrum and all of the XP practices all at once is too much for
your teams to focus on and use effectively. All of these concepts are more than skills,
they are new behaviors; new behaviors take time to be appreciated and internalized
by your developers. Try starting your pilot project and introducing Scrum and,
perhaps, pair programming.4 In the second Sprint, you can begin introducing con-
tinuous integration by setting up the continuous integration server, doing builds,
and running whatever automated tests exist at the current time. Then, introduce
test-driven development to augment the tests running in the continuous integration
server. However you do it, introduce these skills one or two at a time. Let your team
learn, practice, and begin to master the skill before you introduce another.

Get a Good Product Owner
In an organization with established agile skills and Scrum-based projects, with
experienced developers and strong Scrum masters, a bad product owner can turn
an effective team into a frustrated and ineffective mess. Obviously, this is not some-
thing you want to happen to your pilot project. So, even if there are individuals in
your organization that know your product better, your product owner must also
be able to clearly communicate the product vision, resolve conflicts among team
members, and be available to your Scrum teams.

Selecting the Pilot Projects for the Agile Transition    173

Whether or not your product owner derives the product vision from discussion
with several experts and managers or does it on his or her own, the key is that the
product owner needs to be able to effectively communicate this vision to the Scrum
team. When the team has a clear idea of the product vision, they become much
more effective at estimating and completing product backlog items.

When team members disagree over how to resolve issues with backlog items,
the product owner needs to be able to step in and resolve the problem with a clear
and consistent answer and in a way that preserves everyone’s self-respect.

Scrum teams need constant access to their product owner to clarify questions
about backlog items. They need input during backlog grooming workshops, during
sprint planning, during sprint reviews, and during most days of the sprint. If the
product owner is available, the team can complete backlog items at a rapid pace and
be quite successful. If the product owner is difficult to get in touch with or does
a poor job answering questions, your team could find itself frustrated, angry, and
worse, completely unable to complete backlog items. For a successful pilot project,
a good product owner makes all the difference in the world.

Keep It Visible
No matter what, you don’t want your pilot project to be perceived as hiding any-
thing. Agile development is intended to be open and visible to all in the organiza-
tion. At the beginning of the pilot project, determine how (and how often) you will
communicate pilot project progress to management and stick to it. The expectation
should be that there will be problems, obstacles, and false starts during the pilot
project. Therefore, be clear, and leave little room for doubt that you’ve communi-
cated the entire and complete status—the good and the not so good.

Never Skip the Retrospective
There is an underlying assumption when you begin the pilot project that things
won’t go perfectly. There will be organizational obstacles, problems with how the
Scrum method is applied, difficulties with how the backlog is managed, and so on.
Problems and inefficiencies can appear at any time and as a result of any action that
the team or the organization takes. This is to be expected and is why you should
never skip the sprint retrospective.

The sprint retrospective is an opportunity for the team to look at what they
accomplished during the previous sprint and discuss ways to identify and prolifer-
ate the good things and improve the things that could have gone better. If the team
doesn’t like the way the daily Scrums went, they can suggest better ways. If they
don’t like how the task board was updated, they can change it. If they thought the
backlog grooming workshops could have been better, they can improve them. But,
more than that, the sprint retrospective is also a good opportunity to examine the
pilot project itself and decide what kinds of changes to make. Was the training that

174    Enterprise-Scale Agile Software Development﻿

everyone took sufficient, or was there anything that caught employees by surprise?
Was the product owner available enough, or does the team need more help? Are
there company standards or quality practices that interfered with meeting the goals
of the sprint? Are there too many new practices being introduced at the same time
(i.e., does the team need more time to get better at Scrum before introducing, for
instance, test-driven development)?

When the team identifies things that went well, there should be a general aware-
ness that they want to keep doing those things. On the other hand, retrospective
meeting attendees analyze activities that could have gone better to determine why
they were deficient and how they will be improved. The findings of a sprint retro-
spective during the pilot project should be organized as:

	 1.	A list of three or four items that the Scrum teams will carry into the next
sprint in order to improve performance

	 2.	A list of items about the pilot project that will be reviewed by the transition
team in order to improve how the organization adapts to agile development.

The Scrum teams are responsible for taking their part of the retrospective findings
and making those actions a part of their next sprint. The team responsible for the agile
transition is responsible for taking the remaining findings and making the appropriate
changes to organizational process and practices. For example, if the team determines
that the test-driven development training missed some major points, the agile transi-
tion team should take that input and modify the test-driven development training.

As with everything else in agile development, you take your best shot. Evaluate
the results, make the proper changes, and make sure that everyone knows what
changes were made—and then try again. That’s the true power of the sprint!

Summary
The pilot project is a tool for seeing how agile development works in your organiza-
tion, for seeing what kinds of changes you may have to make, and to prove to those
in your organization who might not yet be totally convinced that agile development
is the right move. In order to improve your odds of being successful, try the fol-
lowing steps:

Set your goals: Understand why you are doing the pilot project and what it is
you hope to learn.

Set the organization’s expectations: Pilot projects are not always about getting
software written. Frequently they are about the training, the organization,
and the people. Make sure that the organization understands the goals and
priorities of the project so that there’s no misunderstandings or miscommu-
nications with regard to the status and success of the project.

Selecting the Pilot Projects for the Agile Transition    175

Pick the right project for the pilot: You wouldn’t use a hammer to swat a fly,
right? It is equally important to pick the right project for the pilot. Pilot
projects should not take more than six months and generally shouldn’t have
more than twenty people on staff. Projects that take too long simply delay the
transition without good cause. Projects that have more than twenty people on
staff tend to create overcomplicated situations that dilute the focus from the
important goals of the pilot.

Set your project up for success: Even if you pick the best project in your organi-
zation to be your pilot project, you still will want to do everything you can to
improve the odds of success. First, focus on people and let the process emerge
from the pilot. People are the difference between success and failure. Process
should never be the priority in the pilot—start with a basic approach to agile
development and Scrum, and let process changes and improvements emerge
from the sprint retrospective efforts. Second, communicate constantly to all
stakeholders in the organization. Be clear, consistent, and comprehensive.
Don’t hide the failures (they’re good—we learn from them), and shout loudly
about your successes (they’re pretty good too)!

Use retrospection to review what’s worked and what hasn’t. Take the good
things and remind people repeatedly to do that again. Take the things that need
improvement, figure out how to improve them, and do it. Your pilot’s first sprint
will not be its best, but doing retrospectives on a regular basis will help ensure that
it gets better quickly.

Endnotes
	 1.	 William Hazlitt (1778–1830) was an English writer who is remembered for his human-

istic essays and literary criticism. Hazlitt was a prominent English literary critic, gram-
marian, and philosopher.

	 2.	 I recommend Fitnesse (http://www.fitnesse.org/) for automated functional testing,
Selenium (http://selenium.seleniumhq.org/) for automated user interface (UI) testing,
and either CruiseControl (http://cruisecontrol.sourceforge.net/) or Hudson (https://
hudson.dev.java.net/) for automated scheduling of builds and for kicking off your tests.

	 3.	 Bruce Tuckman (1938–) is a psychologist specializing in the study of group dynamics.
He formalized a model of team development in “Developmental Sequence in Small
Groups” in 1965. The model has been very accurate in its depiction of team dynamics
and has been only slightly modified since its creation.

	 4.	 Pair programming is a good choice for early introduction because it doesn’t require that
everyone on the team do it all the time. The more you do it, the better you get, but
unlike continuous integration, it doesn’t affect everyone as soon as you introduce it.

177

16Chapter

Tools in the Agile
Enterprise

Give us the tools and we will finish the job.

Winston Churchill

Agile development recognizes the reality that we often do not have a clear idea of
what we need to build until after we start building it. For agile developers, this
means that we will frequently be building software based on the best information
we have at the time. As we complete pieces of functionality, we show our customers
and users in the hopes that, on seeing what’s been created, that they will be able
to further elaborate a direction for us to continue. The natural result of building
software in this manner is that we will not always have a clear picture of what the
completed software application will look like until late in its construction. This
means that we will often refactor our software to remove unnecessary logic and to
improve efficiencies between the new code and the rest of the existing system.

The continuous integration of new code with preexisting code means that our
code base will be under constant modification, which places both our developers
and our software in a somewhat stressed situation. Software in an agile environ-
ment requires constant monitoring while it is under development in order to ensure
that it continues to work as expected. Developers in an agile environment require a
continuous stream of information, helping them keep track of the latest intelligence
from their customers and users to ensure that they continue to build software that
meets the customers’ current requirements and guidelines. Software development

178    Enterprise-Scale Agile Software Development﻿

tools help us to fulfill the needs of both the monitoring of software and the provid-
ing of a continuous stream of information to our developers.

Software development tools improve agile development by automatically han-
dling mundane tasks. For example, some tools help coders refactor lines of soft-
ware by providing functions that automatically modify code based on coders’
instructions. Most modern integrated development environments (e.g., Eclipse™,
NetBeans, Microsoft® Visual Studio®) provide refactoring tools that can remove iter-
ated code from a larger routine, place it in a new function, and then modify the
original routine to call the new function. Other tools automate the continuous
building and rebuilding of a product and automatically kick off unit and functional
tests when the build is successful. Still others support Scrum teams by providing
backlog management, sprint management, and automated reporting.

Software development tools also assist agile developers by speeding up complex
tasks and, through automation, making those tasks far less apt to fail due to human
error. A perfect example of this is scripting tools like Ant, which provide a means
by which Java™ applications can be automatically and repeatedly built. By automat-
ing these processes, we not only remove the possibility of unexpected human error
forcing us to redo the work later, but also reduce the cost of many tasks by removing
the human developer from the equation.

Tools improve progress and status reporting by creating consistency across all
teams in a project. Teams update task and item status on a daily basis, and report-
ing tools remove much of the work required to turn that information into useful
and up-to-date statuses for project and organizational management.

Tools also go a long way toward removing some of the barriers introduced when
all team members are not in the same location. For example, online story and task
boards (displays that help team members understand what stories and tasks are
being worked on in the current sprint, provide the means for team members to
assign themselves to tasks, and allow team members to update task status) are a
must for teams that are not co-located. These electronic boards provide a way for
teams to stay up-to-date with one another and give everyone something to reference
during daily Scrum meetings so that everyone understands what everyone else is
talking about during a conference call.

With all the good that tools can do to help agile developers, there are good
reasons (beyond just the cost of the tool and the support that comes with it) to be
concerned when planning to add a tool to your development system. Some of those
reasons are:

Tools need to add value to what your teams do.◾◾
Tools should complement process, not override it.◾◾
Tools usually introduce a standard of usage; you will need to take time to ◾◾
get everyone on board. Improper usage can lead to incorrect reporting and
additional time spent fixing what was done wrong.

Tools in the Agile Enterprise    179

First, and most importantly, put your people first when considering a tool. There
are a lot of good tools out there, but you shouldn’t be considering them unless you
can determine that having the tool will add more value than the cost of implement-
ing it (your best bet in finding this out is by polling your teams and finding out if
they see value in the tool you are proposing). When you implement a tool, there are
a lot of hidden and not so hidden costs. After the tool is purchased and installed, you
will need to determine the best way to use the tool for your environment. This may
be quite easy to do, or it may be a trial-and-error process with a couple of teams pilot-
ing the tool to see what happens (which also adds to the cost of the tool). Once the
decisions have been made regarding the tool and how to use it, you will then need to
put together the materials and training needed to roll out how the tool is to be used
by all of the Scrum teams. Lastly, you’ll also need to monitor usage of the tool (both
statistically and by talking with team members that use the tool) to ensure that it is
being used properly and is, in fact, providing value to your Scrum teams.

Second, tools need to complement your existing processes, not override them.
In an agile environment, processes are built as needed from a fundamental process
skeleton, changing and maturing from sprint to sprint as your organization and your
Scrum teams determine they need to be changed. When evaluating tools, you must
take into account the existing process. Bringing in the wrong tool could completely
invalidate the current process, forcing your teams to somehow reconcile a process that
they’ve built with a process introduced by an outside party (i.e., the tool vendor). Aside
from the fact that this may have a demoralizing effect on your Scrum teams, it may
also result in your teams being unable or unwilling to use the tool properly. Ideally, you
should seek out tools that are flexible in their usage and can be made to easily adapt to
your processes rather than forcing your processes and your teams to adapt to the tool.

The rest of this chapter will review some of the common types of tools that you
might decide to use. Some of the common requirements of these tools are provided
as well. Where possible, examples of effective tools are listed for you to consider.

Continuous Integration/Build
Because of the way software is undergoing continuous changes in agile develop-
ment, it is important that we ensure that the software continues to successfully
build. Building the software once a day is fine, but the sooner your developers
know that the software doesn’t build, the faster the problem can be isolated and
corrected. But of course, having someone manually run these builds opens the pos-
sibility for no one running the builds.

Requirements
Before implementing continuous builds, the product build must be completely
automated; no human intervention can be required.

180    Enterprise-Scale Agile Software Development﻿

The minimum requirements for a continuous integration tool are as follows:

	 1.	The tool must be able to initiate the product build automatically.
	 2.	The tool must be able to automatically save build results for a period of four

weeks and allow reports to be retrieved and reviewed.
	 3.	The tool must be able to alert someone immediately if the build fails.

Sample Products
Good tools for continuous integration include:

Ant (http://ant.apache.org): This build tool is a much more flexible approach ◾◾
to building Java application. It supports the creation of repeatable processes
that support complete automation of the build process.
CruiseControl (http://cruisecontrol.sourceforge.net): This tool supports con-◾◾
tinuous integration and works very well with Ant.
Hudson (https://hudson.dev.java.net/): This tool supports continuous ◾◾
integration.

Automated Testing
As mentioned earlier in the chapter, agile development creates a certain degree of
stress on software because the software is continuously being updated. Because
of this situation, it is necessary to continuously test the software, both when new
features are added and on an ongoing basis, to ensure that some other unexpected
change doesn’t cause the existing code base to break down. Clearly, it is too expen-
sive and too ineffective to have someone manually testing your product twenty-four
hours a day, seven days a week. Automated testing tools are among the most com-
mon tools used by agile and nonagile developers alike.

Requirements
The minimum requirements for an automated testing tool are as follows (and just
for the exercise, I’ve written them as user stories with Rachel Davies’1 template):

	 1.	As an agile developer, I want all of the functional and unit tests to be run
whenever the code base changes automatically and continuously against my
product so that I know that my product still works.

	 2.	As an agile developer, I want to be able to look at two weeks of test run results
so that I can see a history of test successes and failures.

	 3.	As an agile developer, I want to be informed by email whenever a test run fails
so that I can quickly fix what broke and run the tests again.

Tools in the Agile Enterprise    181

Sample Products

Good tools for automated testing include:

Fitnesse (http://www.fitnesse.org): This wiki-based product allows you to ◾◾
very easily build functional tests in a format that is clearly self-documenting.
Fitnesse can be combined with tools like CruiseControl or Hudson to run
functional tests on a schedule or continuously.
Selenium (http://selenium.seleniumhq.org): This product does a pretty good job ◾◾
of user-interface (UI) testing and can be combined with Fitnesse to identify test
cases and CruiseControl or Hudson to run functional tests on a schedule or
continuously.

Sprint and Backlog Management
As projects get larger and larger and there are more Scrum teams working and
more product backlogs to work with, it becomes more and more difficult to keep
track of progress. Similarly, as product backlogs become more complicated, back-
log items are sliced into smaller pieces, and interdependencies are found between
items, it becomes more and more difficult to manage the product backlog and
detect issues with backlog item interdependencies. For these reasons, and many
more, backlog management tools are becoming a common fixture in agile develop-
ment environments.

Requirements

The minimum requirements for a backlog management tool are as follows:

	 1.	The tool should help Scrum teams build and maintain their sprint backlogs.
This includes the creation of tasks and an electronic task board upon which
team members can see task status, take ownership of a task, change the task’s
remaining hours, and change the task status (up to and including “complete”).

	 2.	All project personnel, no matter where they are located, can easily access the
tool’s electronic task board.

	 3.	The tool must be able to automatically generate sprint burn-downs from the
information maintained in the sprint backlog.

	 4.	The tool must be able to help product owners create, display, revise, and delete
product backlog items.

	 5.	The tool must be able to allow product owners to group product backlog
items into releases.

	 6.	The tool must be able to help product owners easily prioritize backlog items.

182    Enterprise-Scale Agile Software Development﻿

	 7.	The tool should be flexible in the units used to support estimation of risk,
value, and cost.

	 8.	The tool should be able to alert the proper personnel when backlog items are
not properly prepared for sprint planning.

	 9.	The tool should be able to record and maintain interdependency informa-
tion about backlog items and, when items are in danger of being done out of
sequence, alert the proper personnel.

	 10.	The tool should be able to provide project status reporting using the combina-
tion of product backlog and sprint backlog data.

	 11.	The tool should be able to provide multiple views of the product backlog
to support:

	 a.	 A release view of backlog to define a release
	 b.	 A team view of the backlog to support backlog grooming and sprint

planning
	 c.	 A themed view (or otherwise tagged view) of the backlog to support a

variety of different viewing needs
	 12.	The tool should be able to identify the stakeholder(s) for a backlog item.

Sample Products
ScrumWorks Pro (http://www.scrumworks.com)◾◾
Rally (http://www.rallydev.com)◾◾
VersionOne (http://www.versionone.com)◾◾

Team Communication
The power of Scrum lies in collaboration between team members. When those
team members are separated by walls, floors, buildings, cities, or oceans, the
degree of collaboration and the effectiveness of the teams decrease. Co-locating
the teams until they have created a team identity and have internalized the team
processes and practices can circumvent much of the difficulty in non-co-located
teams. However, even when teams have spent a lot of time together, it is very com-
mon for a variety of solutions to be employed to help improve communication
between teams.

Common solutions for bringing teams together include:

Wiki servers: These allow teams to easily post and share information in a ◾◾
manner that is easy to update and easy to access.
Instant messaging: IM clients provide a means for non-co-located team ◾◾
members to easily, quickly, and quietly communicate with one another. Some
IM clients also support the ability to know if someone is “in the office” or

Tools in the Agile Enterprise    183

“in a meeting” or “away,” thus ensuring that people don’t wait around for a
response from someone who might not even be available.
Document repositories: While wiki servers provide a lot of support for text ◾◾
and pictures, the team still needs a way to electronically share and collaborate
on documents.
Web cams: Depending on the circumstances, web cams can be useful in ◾◾
eliminating the feeling of separation between teams. By installing web cams
and large monitors, team members can “see the other side of the room” and
know who is available and who is not.

Summary
Tools are a common staple in agile development. They can help ensure that the
application continues to work as designed (continuous integration and automated
testing tools), they can help ensure that everyone in the project knows what they
are doing and can manage their work to the best of their abilities (backlog man-
agement tools), and they can bring pieces of teams together that are separated by
minutes or by many miles (team collaboration tools and web cams). Tools are also
intended to take repetitive and mundane chores away from Scrum team members
to allow them to focus on developing features.

Tools are supposed to enforce and enhance development practices. When tools
are implemented without regard to the value (or lack of value) that they provide or
without regard to the effect they have on the existing practices, they generally have
a negative effect on the productivity of Scrum teams and never quite provide the
value that was originally intended.

In order to ensure that tools create the value that they are expected to create,
make sure you consider your people first. Will they use the tool? Do they feel that
the tool addresses an important need in the right way? Then, also consider the
impacted processes. How will they need to change? Are there any unwanted con-
sequences to those changes? Will you be able to train all of the developers quickly?

Endnote
	 1.	 Rachel Davies, an agile coach based in the UK, has suggested the following template

for user stories: “As a <role>, I want to <action>, so that <justification or value>” This
template does an excellent job of ensuring that we capture the real purpose of a user
story. I suggest this template to all of my Product Owners for their user stories.

185

17Chapter

Managing Customer
Involvement

In software development projects, customer involvement is second only to executive
management support in factors that support project success. This is recognized in
Extreme Programming (XP) practices and the Scrum method, where we invite the
customer to become a member of the development team. For companies operating
in highly competitive environments, good customer involvement can be a clear
differentiator between your product and everyone else’s. When I discuss customer
involvement with my Scrum masters, I tell them that customer involvement can be
the difference between a product that works and a product that works the way your
customers work.

Getting your customers involved in your Scrum teams does more than improve
your product. A customer that works successfully on a Scrum team forms a bond
with your developers. Because they have worked closely together with analysts,
testers, coders, and product owners, customers understand what works and what
doesn’t; they understand why certain decisions were made the way they were; they
understand how much work and dedication go into creating an application. They
learn to trust the team.

Your customers might also, speaking figuratively, form a bond with your prod-
uct. By being involved in the prioritization efforts and the design decisions, and the
UI decisions, they become more aware of why the product works the way it does.
They understand why certain features were added and why others were removed.
Because they put their time and effort into the product and, in many cases, they
can see pieces of the software on which they had an influence, they can defend your
product with their peers.

186    Enterprise-Scale Agile Software Development﻿

Competitive advantages aside, there’s no marketing you can buy that is worth
as much as one of your customers speaking to other customers or potential custom-
ers about the advantages of your product over the competition’s.

There are a lot of advantages to having your customers involved in your develop-
ment efforts: you get a better product and you get an ardent supporter of your prod-
uct that can be much more effective than any marketing campaigns that you can
field. However, none of this comes without some real work to understand how to
effectively involve your customers, how to select the right customer for your teams,
and what to do with customers when you make the wrong decision.

Selecting the Right Customer
Finding the right customer is the key to successful customer involvement in your
development projects. A good customer can galvanize a team, suggest the right
changes at the right time, and improve your product, your team’s morale, and his
or her own satisfaction with the product. On the other hand, the wrong choice can
cause the team’s morale to sink, have no positive impact on your product (or even a
negative impact), and even become a security risk when you are trying to keep the
announcement of critical features secret until a key meeting in the near future.

Selection of a customer to be involved with a Scrum team is generally the respon-
sibility of the product owner. The product owner, of course, would be well advised
to discuss possible candidates with any account representative that the organization
may have assigned to that customer. There are good reasons, from contract negotia-
tion to general politics, that a good candidate may need to be passed over, due to
reasons that an account manager could discuss with the product owner. Similarly,
having identified a good candidate, the product owner might also want to review
the candidate’s skills with the Scrum team to see if the candidate is a good fit for
the team.

In addition to ensuring that the political landscape is conducive to a good rela-
tionship, the product owner should also consider the following:

Is the candidate qualified to assist the Scrum team?◾◾
Does the candidate pose a potential threat to the organization?◾◾
Will the candidate cooperate with the Scrum team?◾◾

Is the Candidate Qualified?
Customer involvement with a Scrum team is only effective when the customer that
works with the Scrum team has something significant to contribute. Customers
that have not worked with the product for long or have not worked in the specific
field of expertise for long would not be able to offer much useful information to the
Scrum team. Qualified candidates are experts in their field and are often looked to

Managing Customer Involvement    187

within their organizations as such. They are often considered visionaries, finding
better ways to do things and coming up with ideas, approaches, or techniques that
have not yet been explored or even identified. Qualified candidates are willing to
share this information with the Scrum team in order to make some of their exper-
tise and vision part of the product in question.

Qualified candidates must also be able to represent the market segments critical
to the product development. Solutions built with a customer’s involvement should
address all of the customers that are in this product’s target market and should not be
customized solutions that only a few customers could possibly benefit from. In many
cases, the product owner will have to help some qualified candidates better understand
their role as market representatives rather than simply as a customer representative.

Is the Candidate a Potential Threat?
People come in infinite varieties and can even change from one day to the next.
When product owners are attempting to select a customer to work with their Scrum
teams, they also have to consider each candidate’s potential to be a threat to the
organization. When I use threat in this context, I’m not talking about physical
threats (also, certainly, if there’s a danger there, you might want to advise your
product owner to move on). What I’m talking about is the likelihood of your cus-
tomer candidate to:

	 1.	Leak confidential information despite a nondisclosure agreement: Even if you
have your candidate sign a nondisclosure agreement (more on this later), he or
she can break confidence and cost your organization more in the way of lost
revenue potential than anything that you might be able to recover by enforc-
ing the agreement. The wrong information given to the wrong person at the
wrong time could ruin your organization or, at the very least, trim your profit
margins considerably.

	 2.	Force their own agenda with your Scrum team: When you get a customer
involved with a Scrum team, the idea is to use his or her knowledge and expe-
rience to create a better product. However, should your customer decide to
force his or her own ideas into the product backlog or change the existing sto-
ries in ways that suits his or her own needs, he or she can cause considerable
damage to your development efforts and, in particular, your Scrum teams.

	 3.	“The customer is always right”: Customer involvement is about using knowl-
edge and expertise to build a better product by making the customer an inte-
gral part of the Scrum team. It should be expected that customers on Scrum
teams will take part in discussions, express their ideas, listen to other team
members, and collaborate to find the best solution from all of the ideas and
options discussed. When the customer short-circuits discussions by saying
“I’m the one using the product, not you” or “I’m the customer and I’m right”
or “Who’s the expert here anyway?” he or she constrains the team’s ability to

188    Enterprise-Scale Agile Software Development﻿

innovate to only what the customer suggests; all other opinions and options
are suppressed.

	 4.	Poor team player: Some people simply don’t work well on teams. They lack
the ability to communicate tactfully, to show respect for others, or to con-
structively negotiate to create the best possible solution. Anyone on a Scrum
team must exemplify values such as openness, respect, and courage. Being a
customer is not an excuse to disrespect Scrum team members.

	 5.	Prefers to place blame: Scrum teams succeed together and, of course, some-
times fail together. But whatever they do, they do it as a team, not as indi-
viduals. Individuals on teams that prefer to place blame (“Last week, you said
this” or “If you had done it my way, none of this would have happened”) cause
teamwork and collaboration to disappear as each team member scrambles to
reduce his or her risk of being blamed for anything. Worse, a lot of time is
lost in identifying who is responsible, what he or she should have done, and
arguing about all of it rather than simply accepting where the team is and
resolving the situation as a team.

Will the Candidate Cooperate?
Cooperation is the key to whether or not a candidate contributes to a Scrum team.
Candidates have to be willing to share their ideas and work with the Scrum team
to succeed. Here are some of the things that your product owner will want to look
for in a good customer candidate:

	 1.	Willing to participate in discussions: Good candidates will be willing to work
with a Scrum team and discuss their ideas and the ideas of the team freely
and without prejudice. They can handle critical feedback on their ideas and,
when necessary, constructively assert the advantages of their position without
being overbearing. Good candidates will work with the Scrum team to devise
the best solution from everyone’s knowledge and experience.

	 2.	Open-minded: Good candidates will keep an open mind about the prod-
uct, their own ideas, the members of the Scrum team, and your organi-
zation in general. They should be as willing to learn as to teach, and as
willing to change their minds as to challenge the rest of the team with
their ideas.

	 3.	Willing to work on backlog tasks: When possible, excellent customer candidates
will be willing to take tasks off the team’s backlog that they are qualified to
perform and work on those tasks with the team. If the customer candidates
are not able to work on team tasks, it should be because they are not quali-
fied, not because they see themselves as somehow special or different from
the rest of the team. Because most tasks in a sprint are done by multiple
people (and not by individuals), even the “not qualified” excuse should be
short-lived. Customers can be easily guided in writing test cases, creating test

Managing Customer Involvement    189

data, adding information to internal and external documentation, and even
running tests and evaluating the results.

	 4.	Good team player: At no time should someone who is unable or unwilling to
work on a team be made a member of a Scrum team. This is as true for cus-
tomer candidates as it is for the organization’s own employees.

	 5.	Respected by other customers: Excellent customer candidates have earned the
respect of their peers, both inside their own organization and across their spe-
cific industry. Individuals that have earned respect have done so, usually, by
consistently demonstrating their abilities to their peers and providing useful
and accurate information. These are the types of individuals that frequently
provide invaluable insight to the product. When these customers can contrib-
ute to a product through participation on a Scrum team, they bring respect to
the product itself and can sometimes provide priceless marketing in discussions
with other customers and presentations or seminars at industry conferences.

Managing the Involved Customer
Once a customer candidate has been selected for a Scrum team, you will want to
ensure that he or she is properly trained for the role. In fact, most of the dysfunc-
tions caused by customer involvement in a Scrum team are related to either or both
the customer and the Scrum team not properly understanding the role of the cus-
tomer in the sprint. Therefore, when you are ready to get a customer involved with
a Scrum team, make sure that the team is properly trained in the customer’s role on
the team. Deal with any questions of how the customer will be involved with the
team, where he or she will sit (if embedded with the team), and how he or she is to
interact with the team clearly and completely. Similarly, your customer candidate
should be familiar with Scrum, the customer’s role on a Scrum team, and in some
cases the customer’s role in agile analysis. You may also need to protect your intel-
lectual property rights.

When customers are involved with Scrum teams, they can be part of conver-
sations that can reveal information that provides a competitive advantage over a
competitor’s product. Your organization probably already has agreements with your
employees that protect against the release of confidential information. However,
you might not be protected against the involved customer should he or she decide
to speak publicly about confidential information. Similarly, the involved customer
might be part of discussions that could reveal new concepts or techniques that the
organization might consider to be intellectual property that could be confidential
or might even be under consideration as a patentable idea. In either case, revealing
the information publicly could cause the organization serious damage. To pro-
tect the organization from the accidental (or purposeful) release of information
against the organization’s wishes, you may want to consider asking any involved
customer to sign a nondisclosure agreement in which he or she is made aware that

190    Enterprise-Scale Agile Software Development﻿

he or she could be involved in sensitive discussions and to avoid revealing the con-
tent of any discussion to outside parties. Again, check with your legal council when
deciding whether or not to do this—you might also discover that the sales agree-
ment you have with your customers already includes such protection (although that
should not stop you from discussing the need for confidentiality with any customer
involved with a Scrum team).

As I mentioned in the previous section, it is the product owner’s responsibility
to identify the best customer candidate that he or she can. Candidates are evaluated
in terms of their qualifications, threat potential, and cooperativeness. While a can-
didate’s qualifications can usually be clearly delineated, his or her threat potential
and cooperativeness can not only be hidden or masked, but can even change during
the course of his or her involvement with the Scrum team. We’ll use the rest of this
chapter section to discuss strategies for handling customers on a Scrum team based
on their threat potential and their willingness to cooperate with the team. To select
the proper strategy, the team and the product owner will need to assess the involved
customer’s potential for difficulty as high or low, as well as the customer’s willing-
ness to cooperate, again in terms of high or low (refer to Figure 17.1).

The Helpful Customer Strategy: Involve
In the involve strategy, you can involve the customer completely in all team activi-
ties, including sprint planning, sprint reviews, daily Scrums, group design sessions,
UI design sessions, etc. The customer should be working with team members to
complete tasks from the sprint backlog. The customer should be sitting in the team
room with the Scrum team and can be entrusted with knowledge of the product’s
and the organization’s weaknesses as well as their strengths.

W
ill

in
gn

es
s t

o
Co

op
er

at
e

Potential for Difficulty
High Low

Lo
w

H
ig

h
Helpful Trouble

Collaborate

Helpful

Involve

Not Helpful

Protect

Not Useful

Watch

Figure 17.1 A ssessing a customer.

Managing Customer Involvement    191

The Not Useful Customer Strategy: Watch
The watch strategy assumes that the involved customer has only a small focus of
concern with regard to what the Scrum team is doing and does not wish to be
involved with the team any more than necessary. In these cases, it is usually best
to have the customer with the team only when discussing issues that need the cus-
tomer’s opinions. Defer debate and arguments about the customer’s contributions
until later, when they can be held without the customer in attendance.

As soon as the team moves on to backlog items that do not interest the involved
customer, work with the product owner to gracefully end the relationship.

The Not Helpful Candidate Strategy: Protect
The protect strategy focuses on limiting the involved customer’s exposure to the
team and to sensitive information regarding both the product and the organization.
Have the customer work with only a few representatives of the Scrum team and
the product owner, and have the discussions away from the rest of the team and,
if possible, away from all other Scrum teams. Hold no confidential conversations
with this customer; all team discussions should be held separate from this customer
at a later time. This customer should not attend any of the team’s regular meetings
(sprint planning, sprint review, daily Scrums). Additionally, work with the product
owner to find other customer candidates to provide the desired information, as
your goal should be to end the relationship with the current involved customer
before any serious damage can be done to your organization.

The Helpful Trouble Customer Strategy: Collaborate
The collaborate strategy assumes that the customer wants to help the Scrum as much
as possible. Keep the customer involved in discussions as much as possible, but ensure
that team members are sensitive to the customer’s mood at any given time. Should
the customer appear to be getting angry or frustrated, the team should switch to
more of an interview type discussion, getting information from the customer, rather
than the more interactive discussion that the team prefers. As long as the coopera-
tiveness persists, involve the customer in as much as possible. Allow the customer
to sit with the team, but make sure that the team understands that no sensitive or
confidential information should be discussed unless it is directly relevant to the
backlog items currently being addressed. Confidential matters should be discussed
in the customer’s absence or privately in a manager’s office. Should the relationship
appear to become challenged, work one-on-one with the customer to reassess his or
her cooperativeness with the Scrum team. Adjust your strategy appropriately.

Remember that a customer’s potential for threat as well as his or her coop-
erativeness with the Scrum team can change at any time. Always be watching for
changes in the customer’s attitude and react accordingly. As much as we would all

192    Enterprise-Scale Agile Software Development﻿

prefer openness and transparency, I don’t believe anyone would be willing to risk
his or her organization’s future on the principle that all customer involvement must
be completely open and transparent, no matter what. Most of us are not often in a
position to dismiss a customer employee from a Scrum team because we didn’t like
their attitude. As with many good business strategies, we set our sights high, but
we plan for the worst.

Managing Customer Involvement
in a Large Organization
In a large organization, we face challenges above and beyond those discussed previ-
ously in this chapter. As you might imagine, finding the right customer candidate
for a Scrum team tends to eliminate many of the possibilities. Even in a large cus-
tomer base, there are usually only a few customers that are even willing to provide
employees to assist your organization’s Scrum teams. In a shrinking economy, it
becomes even more difficult. When you have a project with up to five or six teams,
you can often find the right candidates at the right times for these teams. What
happens, however, when we scale up?

Imagine a project with forty Scrum teams. Many of them will benefit from
customer involvement, but each wants different skills sets that will possibly change
during the course of the project. To make matters even worse, projects that are
staffed by a large number of teams are often creating high-end, specialized products
with a relatively small number of customers. This means, of course, that though
they need more candidates, the pool of potential candidates is much smaller. In
turn, we end up with a difficult problem that faces many large projects: How do we
maximize the benefit of customer involvement across many Scrum teams without
overwhelming customers at the same time?

In this section, we will discuss the creation and responsibilities of a customer
involvement team to handle the coordination of team needs and customer willing-
ness and availability. This team could be created in a number of ways; the two most
likely options are:

	 1.	Virtual team: Since your product owners bear most of the responsibility for
the proper selection of customer candidates, a good option is to create a vir-
tual team from your product owners. Even in this case, however, you should
plan on staffing the team with one or two permanent employees to handle
the many administrative details (to follow). A disadvantage to this option
is that your product owners are usually very busy with customers, business
stakeholders, and Scrum teams to take on the activities of a virtual team.

	 2.	New, real team: Staff a completely new team (possibly a function of your
organization’s project management, product management, or sales support

Managing Customer Involvement    193

department). This staff would handle the administrative responsibilities of
the customer involvement, possibly working directly with customer account
managers to identify potential candidates, and then working with product
owners to determine their suitability for the role. A disadvantage to this
option is that the creation of a new, separate team could invite the creation of
processes or more dysfunctional handoffs during software development.

Regardless of how the team is staffed, its responsibilities are as follows:

	 1.	Working with account management, directly with customers, or both, identify:
	 a.	 Which customers are willing to even provide time to have one of their

employees work with your organization’s Scrum teams
	 b.	 What kind of participation the customer is willing to provide: on site

or remote
	 c.	 What is the extent of the customer’s willingness to participate: a few

hours a month, a few hours a week, every day?
	 2.	Working with product owners and account managers, identify the potential

candidates from the willing customers.
	 a.	 Product owners will need to assess each candidate (qualifications, threat

potential, willingness to cooperate).
	 b.	 The customer’s management will need to specifically sign off on the

selected candidate’s participation.
	 3.	Your organization may require that any customer that is working directly

with a Scrum team be specifically bound by a nondisclosure agreement. This
is meant to protect the organization should the customer candidate chose to
publicly reveal information that was considered confidential by your organi-
zation. In truth, these agreements do not actually protect your organization
from damage. While a nondisclosure agreement does a good job of making
sure that the candidate understands his or her responsibilities with regard to
confidential information, should he or she choose to ignore it, it is unlikely
your organization could correct the damage done by the revelation. Of course,
as with all legal matters, discuss the necessity and appropriateness of a nondis-
closure agreement with corporate council before deciding how to proceed.

	 4.	Work with Scrum teams to identify their specific needs. What skills do they
need? When do they need those skills and for how long? What mode would
be preferable: on site or remote? Of course, many Scrum teams will also
know exactly whom they want to get involved with their teams. When the
Scrum team can indicate a preference, the customer involvement team should
attempt to honor it as best they can.

	 5.	Keep track of customers that are or were involved with Scrum teams and
how it worked out. If a Scrum team had a poor experience with a customer
employee, that experience should be taken into account if the same employee

194    Enterprise-Scale Agile Software Development﻿

is ever considered again in the future. Likewise, customer employees that
work well with Scrum teams should be considered in the future if the skills
match and the customer is still willing. At the same time, try to keep your
pool of potential candidates as large as possible. This not only protects you
should a candidate’s behavior or a customer’s decision remove him or her
from the pool, but it also has the advantage of bringing in as many new, fresh
ideas as possible. Sticking with the same customer candidates over and over
again can stifle innovation.

Summary
Customer involvement in Scrum teams is a key factor in project success. Having
customers work directly with Scrum teams can create key market differentiation
for your product. It can also result in better relationships with customer employees
and can even result in customers providing priceless public relations for your orga-
nization and your product. In order to gain these advantages, however, you must
carefully select the right candidates by considering their technical qualifications,
their potential as a threat to your organization, and their willingness to cooperate
with your Scrum teams. There are strategies you can choose from, based on the
candidate’s threat potential and cooperativeness, but regardless, if the customer is
not very cooperative, the best move is to discontinue the relationship as quickly
as possible.

In a large organization where projects can have a large number of Scrum
teams, you may want to create a team to help manage customer involvement.
This team, which can be made up of product owners or staffed separately and
consulting with product owners, has a number of responsibilities that can help
coordinate matching of customer candidates with Scrum teams. In brief, these
responsibilities include working directly with customers and account managers
to identify customers that are willing to work with your Scrum teams, working
directly with product owners to identify good candidates for your Scrum teams,
and working directly with your Scrum teams to clearly understand their needs
and timeframes.

IVCreating
the Agile
Organization

Within two or three months of beginning the agile transition project, you will prob-
ably find yourself ready to start the first pilot project and ready to begin transform-
ing your organization into an agile one. You may, however, feel quite reticent about
starting a pilot project, because you aren’t ready (or some such reason). Welcome to
agile development! Get used to this feeling. Agile development is about doing just
enough to move to the next step. That can be unnerving in an industry that gener-
ally feels that you should plan for every contingency before getting started.

Planning for every contingency, theoretically, helps you to prepare for all those
obstacles that often present themselves during any project. The problem, unfortu-
nately, is that it costs a lot of money and time to plan for everything that might
happen. The return on investment for trying to think of everything ahead of time is
frequently poor. For all of the contingencies that don’t happen during a project, the
time spent planning for them is wasted. As for all of the contingencies that happen but
were not planned for, the value of all of the up-front planning similarly diminishes.

Agile development suggests doing high-level planning at the beginning of a
project, some medium-level planning on project iteration boundaries, and the real
in-the-trenches, low-level planning on a daily basis. So, if you’ve read the previous
sections of this book and taken what I’ve said into account in your planning, you’ve
done the up-front planning for the organization, for the transition project, and for
your pilot project. Whether or not you feel ready, it’s time to take the next step.

The transition project now has a working transition backlog and teams that are
working the backlog—as long as there are no significant changes in direction, the

196    Enterprise-Scale Agile Software Development﻿

transition project will run through the transition backlog and then end. However,
agile development projects don’t flourish unless they take place in an agile organi-
zation. That’s what this section of the book is all about. In the following chapters,
we’ll look at:

Managing an agile development project◾◾ : How do we start an agile development
project? Should the sprints all run at the same time, or can each team deter-
mine that? How do we produce project status reports, and how will they be
different from before?
Agile analysis◾◾ : The transition backlog started as a fairly straightforward list.
Breaking down took a little time, but not real detailed analysis. Analysis in
a development project is considerably more complex and, in some cases, is
affected by quality regulations. So, how should we plan to do this? What do
we need? Who manages it?
Launching Scrum teams◾◾ : In addition to people and a team room, what else does
a Scrum team need? We’ll discuss common problems, tools, hardware, etc.
Managing Scrum teams◾◾ : If Scrum teams are self-managing, what role do
resource managers play? How do Scrum teams grow and improve?
Agile product management◾◾ : How does product management change in an
agile environment, and what impacts do agile projects have on product man-
agement? How do we monitor and control our projects?

I recommend that you read this section of the book before you begin the transi-
tion, and then come back as you begin planning and running agile projects. What
you will find in this section may help you create your transition backlog, select your
pilot projects, and even launch those projects.

My greatest difficulty in writing this section was in the ordering of the
chapters. Should I go in time sequence (that is, what would you encounter first,
second, third, etc.)? Should I go in order of importance? Maybe I could group
them—infrastructure stuff followed by team stuff, then management, and so
on. The problem with time sequencing is that all of these disciplines occur all
of the time, so there really isn’t a first, second, or third. It’s all at once, all of the
time. Ordering by importance is too relative; what might be really critical for one
organization might be only a minor concern for another. My decision, then, was
to attempt to group the chapters as best I could. You should, however, plan to
jump around after your initial reading in order to find what you need when you
need it.

So, read this section once or twice to become familiar with its contents and arrange-
ment. Then, use the chapters for reference material as the situation demands.

197

18Chapter

Agile Project
Management—
Getting Started

As your organization converts to agile development, you will find that many tradi-
tional roles will change—some slightly, some considerably. The role of the project
manager is one of those that changes considerably when agile development is taken
on. With the introduction of Scrum, which eliminates much of the project sched-
uling effort, and the Scrum master, who handles some of the project manager’s
former responsibilities, the project manager will have to learn some new skills in
order to remain valuable to the organization.

In a traditional project, a schedule is built and maintained by a project manager.
This schedule lists nearly all of the tasks that must be performed during a project.
Each item on the schedule generally identifies who is responsible for performing the
task, when the task can be started, and by when it must be finished in order for the
project to be completed on time. The schedule also reflects the necessary sequence
of the tasks, frequently based on each task’s predecessors and successors or by the
availability of certain resources (or both). Because of the detail and precision that
goes into the schedule, and the inherently emergent nature of the work, the sched-
ule is almost always obsolete when published. The schedule therefore becomes the
object of considerable effort and rework to adapt to the nearly continuous changes
in tasks, priorities, resources, and timeframes.

In an agile project that uses Scrum, the product backlog and the sprint backlog
replace the project schedule. All work in a Scrum-based project is derived from the

198    Enterprise-Scale Agile Software Development﻿

prioritization and content of the product backlog. The sprint backlog is built and
maintained by each Scrum team throughout the course of each sprint. The ordering
of features and tasks emerges as the product backlog is groomed and Scrum teams
organize themselves around the work.

Scheduling in an Agile Project
Scheduling work in an agile project is quite different than in most other project
management methods. Agile projects execute in a manner similar to how an assem-
bly line takes on work. Just like an assembly line completes work based on how
quickly that work moves from the beginning to the end of the line, agile projects
work at a rate defined by the velocity of the teams on the project. Agile projects
also “stop the line” at the end of every sprint to see what we’ve produced and decide
what needs to happen next. Throughout the rest of this chapter, we’ll talk about
how to create an agile project schedule and how to deal with the many activities
and events that you will need to take into account when building and maintaining
your schedule.

Scheduling Challenges
Schedules in an agile project are cut up into time boxes called sprints. A project
could be one sprint in length or twenty or more sprints in length. There’s no practi-
cal limit on the length of an agile project except those imposed by business needs
(i.e., how long your customer waits for the product to be finished). When setting
up your schedule, you will need to consider the following:

	 1.	How much work is there to do?
	 2.	How many teams/people will be assigned to the project?
	 3.	How long will each sprint be?
	 4.	Will all teams use the same sprint length?

One of the hardest questions to answer deals with how much work there is to do
and how much it will cost to do it. Unfortunately, this is also quite frequently the
question that needs to be answered first in order for a corporation to properly plan
or for a software company to bid for a customer opportunity.

Determining the Project’s Estimated Costs
With no clear estimate of the agile project cost, we cannot create a reasonable sched-
ule. To solve this problem, we need to learn enough about our product backlog that

Agile Project Management—Getting Started    199

we can do some educated guessing about costs. The method for doing this focuses
on maintaining a balance between creating a reasonable estimate and the cost of
creating the estimate at a point in the project when you know the least about it.

Briefly described, we will use backlog-grooming methods to complete a high-
level estimation of our product backlog and then turn to sprint planning methods
to determine the rough size of our product backlog in hours. Once we have the
hours, we can decide the length of the project and the level of staffing needed. By
using an example of building a web site to purchase airline tickets, let’s examine
how to determine a project’s estimated costs. We’ll start with a basic list (shortened
a bit) of product backlog items (PBIs), shown in Table 18.1, that I frequently use
in my classes:

Here’s what we need to do:

	 1.	Start a one-week sprint for the estimation work. We do this first to set the
tone for the rest of the project. It also time boxes the team’s effort so that
we can look at our progress at reasonable intervals to ensure that we are still
making sufficient progress. Finally, doing your estimation in sprints helps to
keep the team focused on the goal of estimating the project’s total cost. You
should plan on one or more one-week sprints during which the estimation
work is performed.

		 Usually, however, unless the backlog is extensive and complex or the esti-
mation team’s resources aren’t dedicated to the effort, the estimation work
won’t take more than one week to complete.

	 2.	Estimate the backlog. We’ll use t-shirt sizing for this work; we only need a
rough sizing of effort to make this method work. We’re also going to assume
that two or three people on a team will work all items on the backlog. For
our current purposes, we can use three t-shirt sizes: small, medium, and large.
And we’ll define them as follows:

Small (S)—work that will take less than one week to finishNN
Medium (M)—work that may take up to two weeks to finishNN
Large (L)—work that will take about a month to finishNN

		 The team will more extensively discuss any features larger than “large.”
It may even be necessary to assign a portion of the team to do more detailed
analysis on a “larger than large” story before the team discusses the story again.
The end goal, of course, is to learn enough about the story to allow the team to
slice the story into smaller pieces that can be categorized as, at most, “large.”

	 3.	Add up the number of small, medium, and large stories. Let’s go back to the
original backlog for our ticket purchasing web site. After estimation, it might
look like Table 18.2.

This gives us five small stories, nine medium stories, and five large stories.
From here, we can approximate best-case and worst-care estimation by equating

200    Enterprise-Scale Agile Software Development﻿

Table 18.1 A n Abbreviated Sample
Product Backlog

Search for ticketsNN

From origin city to destination city•	

By airport code−−

By U.S. city−−

By international city−−

Leaving by a specific time•	

Leaving after a specific time•	

Arriving by a specific time•	

Arriving after a specific time•	

One preferred airline•	

List of preferred airlines•	

One-way only•	

Purchase ticketsNN

Using VISA•	

Using American Express•	

Using debit card•	

Using credit from returned tickets•	

Deliver ticketsNN

Deliver electronically•	

Deliver by mail•	

E-ticket (get at airport)•	

Other stuffNN

Return incorrect tickets•	

Exchange ticket•	

Agile Project Management—Getting Started    201

Table 18.2 A Sample Product Backlog with
T-Shirt Estimates

Search for ticketsNN

From origin city to destination city•	

By airport code−− M

By U.S. city−− M

By international city−− M

Leaving by a specific time•	 S

Leaving after a specific time•	 S

Arriving by a specific time•	 M

Arriving after a specific time•	 M

One preferred airline•	 M

List of preferred airlines•	 L

One-way only•	 S

Purchase ticketsNN

Using VISA•	 S

Using American Express•	 S

Using debit card•	 M

Using credit from returned tickets•	 L

Deliver ticketsNN

Deliver electronically•	 L

Deliver by mail•	 M

E-ticket (get at airport)•	 M

Other stuffNN

Return incorrect tickets•	 L

Exchange ticket•	 L

202    Enterprise-Scale Agile Software Development﻿

small, medium, and large with different numbers of hours. An example is given in
Table 18.3.

This gives us a total product estimate of 1,240 hours (best case) and 1,720
hours (worst case). From here, you can use one of the two values (best case if you
anticipate few surprises, worst case if you anticipate lots of surprises), any value in
between, or even a value outside this range, depending on how comfortable you are
with the estimations.

Further, if you feel that the estimation process needs a little more rigor (which
will result in a potentially more precise estimate, but will most certainly cost more
to produce), you can do any or all of the following:

	 1.	Add extra-small and extra-large sizes to your t-shirt sizes. This will give you
a bit more precision without adding excessively to your estimation costs.
However, try not to create sizes much larger than a month. For example:

Extra small (XS)—a couple daysNN
Small (S)—a weekNN
Medium (M)—two weeksNN
Large (L)—less than a monthNN
Extra large (XL)—approximately one monthNN

	 2.	Consider taking some estimation samples. In this method, you pick a small
sampling of stories of each size and test their sizing by doing enough analysis
to reduce each selected sample down to specific tasks. In other words, what
you would normally do during backlog grooming and would finish during
sprint planning, you’ll do during this early estimation process instead. So,
during the estimation effort, the team would select a number of small stories
and continue doing in-depth analysis and design until the story was broken
down into clear and concise tasks, none of which should be larger than ten
to sixteen hours. For example, let’s assume we sampled five small stories and
came up with the following totals:

Small story 1–15 hoursNN
Small story 2–5 hoursNN

Table 18.3  Determining Best- and Worst-Case Hours for T-Shirt Sizes

Stories Best Case Worst Case
Best Case

Total
Worst Case

Total

5 small stories 20 40 100 200

9 medium stories 60 80 540 720

5 large stories 120 160 600 800

Totals 1,240 1,720

Agile Project Management—Getting Started    203

Small story 3–12 hoursNN

Small story 4–25 hoursNN

Small story 5–18 hoursNN

		 These samples help us to ensure that our assumption of roughly twenty
hours is accurate. If our estimates were not in line with “small,” we can cor-
rect the size of small up or down as appropriate.

		 Of course, if you require more accuracy, sample more stories. However,
the more stories you sample, the more expensive your estimation effort will
cost you. You and your organization have to decide how much effort is rea-
sonable and how much precision is necessary in order to complete the proj-
ect estimate.

Planning and Staffing
With the project effort estimated, you can turn your attention to staffing teams and
setting the overall schedule. While staffing and timeframes generally have an inverse
relationship (that is, the more staffing you have, the faster you can get done), the real-
ity is that staffing is a term that oversimplifies the relationship between the individual
developer and the work that he or she can do. In other words, having two hundred
coders on a project doesn’t really do you much good if you need some detailed analy-
sis during the project. Likewise, two hundred analysts won’t get you very far in actu-
ally building the product. However, we often tend to refer to two hundred full-time
employees (FTEs) without regard to how many of those employees are analysts,
coders, designers, architects, testers, writers, database designers, and so on.

In this section, we’ll talk about the concerns that will drive your project plan-
ning and team staffing. We’ll divide this discussion into the following areas:

	 1.	Specialization: Many applications are so complex that they require specialized
skills that may have a lengthy learning curve in order to achieve proficiency.

	 2.	Architecture definition: Prior to beginning feature development, it is imper-
ative that your product’s architecture is fully defined. How will common
functions throughout the product be handled? How will authorization and
authentication of users be managed?1

	 3.	Unprepared backlog: While we may have completed a high-level evaluation
of the backlog for budgeting purposes, we still need backlog items that are of
the highest priority and are able to be completed in less than a week by two
or three members of a Scrum team.

204    Enterprise-Scale Agile Software Development﻿

Specialization and the Unbalanced Backlog
The reality in large project staffing is that Scrum teams frequently have the skills to
work on only one major piece of a product. For example, our ticket purchasing web
site might be divided into major functions (or modules) like:

Searching◾◾
Purchasing/refunds◾◾
Advertising◾◾
Third-party relationships (hotels, auto rentals, airport parking)◾◾

In such a situation, it is very likely that some number of Scrum teams would
be assigned to the searching module, while others would be assigned to the
purchasing/refunds module, and so on. Each team would, in a short time, specialize
in these areas of the product and the movement of personnel across modules would
become more difficult. These are called product specializations.

Similarly, while we work to encourage all individuals in an agile development
situation to take on whatever tasks are needed to help their team achieve their
goals, it will always continue to be the case that some employees are analysts, others
are designers/coders, and still others are testers or writers or database designers or
user interface (UI) analysts. Each individual on a Scrum team will excel in one
or two skill areas and will tend to commit to sprint backlog tasks that play to those
strengths. These are called skill specializations.

While we will often describe our project staffing in terms of the number of peo-
ple, it is critically important that we also think in terms of product specializations
and skill specializations. We attempt to address skill specializations by providing
adequate staffing to every Scrum team.

Scrum teams are best when they are between five and nine people in size. These
limits keep the teams small enough to have the skills they need and small enough that
everyone on the team can easily (through the daily Scrum) understand what everyone
else on the team is doing. In the Table 18.4, you’ll find a suggested staffing of a Scrum

Table 18.4  Suggested Skills Breakdown Based on Scrum Team Size

Team Size Analysts Coders/Designers Testers/QA Writers

5 1 2 2 0

6 1 3 2 0

7 2 3 2 0

8 2 3 2 1

9 2 4 2 1

Agile Project Management—Getting Started    205

team in terms of skill specializations. You are invited to use this table as a guideline,
but make the final decision based on your own experience in your organization.

We have a very different problem to deal with when we address product special-
ization. Product backlog items tend to stay within single modules, frequently using
the communications services provided by the system architecture to provide com-
munication between modules. This means that many stories can simply be assigned
to the module teams (the final selection of which team gets a particular story might
rely solely on who gets to it first), and this works fine when there are enough module
teams to get all of the items done during the project. However, when the number
of module teams available is insufficient to complete that module’s product backlog
items before the anticipated end of the project, you have to consider lengthening
the project, increasing the staffing, or removing some of the extra items from the
backlog. Likewise, you may discover that you have more teams than you need to
complete the scoped product backlog. In this case, you can shorten the project,
decrease the staffing, or add more items to the scoped portion of the product back-
log. In short, you will frequently be faced with projects that do not have backlogs
balanced against the teams that are qualified to do the work, and you will likely
need to be able to quantify the imbalance and potentially correct for it.

When considering how much work one or more specialized teams have on the
backlog, I calculate something that I call the developer load, a value that gives you
a rough idea of how much work a team would have to do to get their entire backlog
done instantaneously. I use this value in the beginning of the project. Once the proj-
ect is started and the Scrum teams are formed, however, I set the expectation that
each team is responsible for determining what skills are needed and taking steps
to acquire those skills. A team with a higher developer load will take longer to get
their portion of the backlog done than a team with a lower development load. This
value can be useful if you want to determine (1) how much imbalance there is in the
backlog and (2) if it’s possible to move people or teams to help level the imbalance.

Using the earlier example of the ticket purchasing web site, let’s look at three
different modules in the web site: searching for flights, purchasing tickets, and the
delivery of tickets to the purchaser. Having completed the project budget, we’ve
also determined how much work there is to do for each of the aforementioned
modules. For a breakdown of work, see Table 18.5.

Table 18.5 A dding Up the T-Shirt Sizes

Module Best Case Worst Case

Searching (1L, 6M, 3S) 540 760

Purchasing (1L, 1M, 2S) 300 320

Delivery (1L, 2M, 0S) 240 320

Total estimate in hours 1,080 1,400

206    Enterprise-Scale Agile Software Development﻿

Let’s assume worst-case estimation. That would mean that there was 760 hours
of work in the searching module and 320 hours of work each in the purchasing and
delivery modules. Now, let’s look at the Scrum teams that we have for this project. To
keep it simple, we’ll have one team for each module, broken down as in Table 18.6.

With this information, we can calculate developer load for each module. The
formula is simple: divide the total number of hours for each module by the total
number of coders available for each module. For example, if I had three coders and
three hundred hours of work to do, my developer load would be one hundred hours
per developer. Even if the team had two analysts, two testers, and a database archi-
tect, I would still only count the coders. My thinking for this is simple: if your team
is staffed properly (that is, there are enough analysts to keep the coders busy and
enough testers to completely validate what the coders are building), your coders
become the critical path through the Scrum team. Of course, I mean no disrespect
to the analysts, testers, writers, etc. (some of my best friends are analysts!). It simply
works out pretty well that the number of coders has a significantly greater impact
on velocity than any of the other roles taken individually.

For our hypothetical example, we can calculate the following developer loads
for each module:

Searching: 760 hours/2 coders = 380 hours developer load◾◾
Purchasing: 320 hours/3 coders = 106 hours developer load◾◾
Delivery: 320 hours/3 coders = 106 hours developer load◾◾

 (Please note that I rounded the answer for purchasing and delivery; developer load
is an approximation—the estimate would imply an accuracy that didn’t exist.)

A Balancing Act
As you can see, the developer load for the searching module is over three times that
of the purchasing and delivery modules. This means that, under the current staffing,
it will take three times longer to finish the searching module’s backlog than the other
two modules in the project. If we wish to balance the backlog, we’re going to have to
find a way to (1) slow down the other modules, (2) speed up the searching module, or
(3) both. We can most effectively do this by either hiring new employees to supple-
ment the searching team, or moving coders from the other modules to the searching

Table 18.6  Sample Distribution of Team Skills

Module Analysts Coders/Designers Testers/QA Writers

Searching 1 2 2 0

Purchasing 1 3 2 0

Delivery 1 3 2 0

Agile Project Management—Getting Started    207

team. If we hire two new developers into the searching team, we could effectively
lower their developer load to 760 hours/4 codes, or 190 hours developer load. If we
move one each from purchasing and delivery, it would look more like this:

Searching: 760 hours/4 coders = 190 hours developer load◾◾
Purchasing: 320 hours/2 coders = 160 hours developer load◾◾
Delivery: 320 hours/2 coders = 160 hours developer load◾◾

That looks better. Now that our modules are a little more balanced, we can
schedule the project and get moving, right? Actually, I’m sure you may already be
anticipating what comes next—the learning curve! In other words, in most envi-
ronments, I can’t just hire new employees or move employees from one team to
another. There will be time needed for each new employee to learn the ropes (and
time needed for some more experienced employees to provide the mentoring and
training). How do we solve this? Well, that depends on whether we’re just calculat-
ing developer load for what if scenarios or if we’re definitely going through with
some retraining to balance the backlog.

What if scenarios are just that: What if we did this? We don’t want to spend a
lot of time in calculation; we just want some high-level numbers to help us make
some difficult decisions. If you’re simply doing what if type calculations, you can
adjust the developer load calculation by not counting two developers as two devel-
opers. For example, if we’re just testing to see if we should move one coder each
from the purchasing and delivery modules, we can count them in total as 1.5,
or perhaps 1.25. What we’re really saying here is that each new coder will pro-
duce approximately 60% of what an experienced coder would do during the same
period. However (yes, there’s always a catch), those coders are still equal to one
when you remove them from their current teams. In other words, moving one coder
each from purchasing and delivery will result in the following calculations:

Searching: 760 hours/3.25 coders = 234 hours developer load◾◾
Purchasing: 320 hours/2 coders = 160 hours developer load◾◾
Delivery: 320 hours/2 coders = 160 hours developer load◾◾

Not as pretty a picture, is it? However, that’s the reality of moving developers
from one team to another. It hurts their productivity—a lot.

But let’s also look at this if we were planning on balancing the backlog for real.
We’re not doing a what if; we’re actually planning to do this. Our approach here
will be a little different. Rather than estimating the reduction in a developer’s pro-
ductivity, the method for doing actual balancing is to determine what kind of train-
ing and coaching would be required, and then modifying the product backlog to
incorporate the additional work. For example, the project planning team discusses
moving one coder each from the purchasing and delivery teams to the searching
team; we need to also discuss and estimate the following additional work:

208    Enterprise-Scale Agile Software Development﻿

Training for the new team members—medium◾◾
Coaching for the new team members—large◾◾
Setting up new environments for the new team members—small◾◾

Using our worst-case estimates, when we add these new items to the searching
module’s backlog, we add 280 hours. However, when doing the actual calculation,
we give the coders their full value (i.e., 2 rather than 1.25). So now our developer
loads look like this:

Searching: 1,040 hours/4 coders = 260 hours developer load◾◾
Purchasing: 320 hours/2 coders = 160 hours developer load◾◾
Delivery: 320 hours/2 coders = 160 hours developer load◾◾

Not too much different than when we simply counted them at sixty percent
instead of one hundred percent. However, there’s an added advantage here that
the product backlog now contains items that will account for the additional effort
needed to train our new team members. Having moved (or planned for the mov-
ing of) two employees from the purchasing and delivery modules over to the search-
ing module, we still have an imbalance (260 hour developer load vs. 160 hour
developer load). You could choose to hire an outside consultant for the project—
that would improve your numbers (and your costs) a little more. How balanced you
decide to make the backlog is completely up to you.

 In fact, you might even decide not to balance the backlog at all. Balancing the
backlog is an option when planning your project, but not a prerequisite for being
successful. When your backlog isn’t balanced, some of your teams will be done
before the project is finished. Is that necessarily a bad thing? In my opinion: no.
Those teams can do several things:

Improve the test coverage of their portion of the application◾◾
Continue to work on new backlog items for the next version of the product◾◾
Provide testing assistance to the searching module team◾◾

In the end, what these teams do should be, in a large part, based on the product
owner’s direction.

In short, skill and product specializations will have a tremendous effect on your
project planning. The number of teams that you can create may be constrained
by the availability of specific skill sets. You might need to create four teams in
order to get done on time, but only have enough of the needed skills to create two
teams. Certainly, you can create more teams and work hard to cross-train, but
your project planning will have to include extra time for training and coaching.
Also, you’ll have to plan on an overall decrease in team velocity as a result of our
cross-trained employees.

Agile Project Management—Getting Started    209

Architecture Definition
Another impact on your scheduling and staffing is the state of your product’s archi-
tecture definition. What I mean by architecture definition includes answers to the
following common questions:

How are authentication and authorization managed?◾◾
How will your application read from and write to your database?◾◾
How does your product communicate with other products?◾◾
How are common functions and objects managed?◾◾
How are reporting and archiving managed?◾◾

All of these questions, and many more like them, are generally answered by
the product architecture. How (and if) your product architecture deals with these
issues must be defined prior to the actual building of the architecture and feature
development begins. If you attempt to do otherwise, you will likely end up with
one or both of the following problems:

	 1.	Your Scrum teams will be frequently blocked trying to determine if they are
building something that should be part of the architecture. This can also lead
to teams severely under- or overcommitting during sprint planning as a result
of confusion surrounding what the architecture is supposed to do as opposed to
what the application is supposed to support (e.g., who handles sign-on authenti-
cation, or who handles the print queues—the application or the architecture?).

	 2.	Your product will end up with lots of redundant and inconsistently imple-
mented functionality (e.g., differently formatted timestamps, logging and
tracing functions that work differently, etc.).

At worst, you will experience an increased frequency of sprint failures2 as teams
are unable to make answer important questions and make proper design decisions
about how to deal with architecturally significant features.

Unprepared Backlog Items
In order for a product backlog item to be usable by a Scrum team, it must be
small enough that the team can easily translate the item into even smaller tasks.
“Small enough” is generally considered to be an item that two or three people on
a Scrum team can complete in less than a week; these items are called sprint-sized
or right-sized. Reducing product backlog items to right-sized is done in an activity
called backlog grooming.3 In order to actually begin writing code, we need to have
items that are right-sized, and to get there, we will schedule a number of backlog
grooming work sessions during the first project sprint.

210    Enterprise-Scale Agile Software Development﻿

Getting Your Project Started
Throughout the course of this chapter, we’ve talked about determining your proj-
ect budget, the challenges involved in staffing your teams, and building your project
schedule. In this section, we will talk about putting all of that into actual practice
in order to get our project started. Just as with all other aspects of our project, we
will do this as a sprint.

There are two inputs to the first sprint of a project: a prioritized product backlog
and the people that will be involved in this initial phase of the project. Those people
include the following:

	 1.	Project manager
	 2.	Product owners
	 3.	Scrum master
	 4.	Subject matter experts
	 5.	Other stakeholders, trainers, etc.
	 6.	Release manager

These people make up your initial project team and will be responsible for the
initial setup of the project (all of the topics we discussed earlier in the chapter, plus
more). We will add more people and more teams as we move forward, possibly dur-
ing this sprint, and definitely after.

Your product owners should have already prioritized the product backlog taken
into the first sprint. In a small-scale situation, you should expect to have just a single
product backlog. However, in a larger-scale scenario, you may be dealing with any-
where between two and ten product backlogs, each managed by a different product
owner, and each product owner with his or her own specialized Scrum teams. Let’s
look at a complex, but common project organization, as shown in Figure 18.1.

In Figure 18.1, I’ve illustrated a project organization that begins on top with the
business owner: the person(s) responsible for funding the project. Working for the
business owner we have:

Project manager: Responsible for managing the overall project, creating the ◾◾
project charter and project schedule, setting the sprint length, coordinating
assistance and support from other departments in the larger organization,
and reporting project status to management in a consistent manner.
Product manager: Responsible for the overall vision and return on investment ◾◾
of the product; coordinates prioritization of product features with the product
owners; ultimate arbiter of decisions across multiple product owner backlogs.

Next in the project organization comes the product owners, who each have
responsibility for a product module. A product module, as we discussed in a previ-
ous example, is a semi-independent, functionally specific portion of a product. For
example, in the case of the ticket purchasing web site we discussed earlier in the

Agile Project Management—Getting Started    211

chapter, we used “Search for tickets,” “Purchase tickets,” and “Delivery of tickets”
as modules. For each module and product owner, there may be one or more Scrum
teams with necessary specialized skills.

Regardless of whether you have one product module or several, the first sprint
of a project will have the following goals:

	 1.	Create the release goals.
	 2.	Create/update defined processes and policies.
	 3.	Create/update DONEness definition.
	 4.	Determine team staffing.
	 5.	Prepare the product backlog for grooming.
	 6.	Create the sprint schedule.
	 7.	Begin backlog grooming work sessions.

During sprint planning, the team should focus on breaking down each goal
into smaller steps. In the next sections, we will review each of these goals and how
they can be achieved.

Creating the Release Goals
Release goals help define the purpose of the release.4 They answer questions like:

What is the aim of the release?◾◾
 What market segment(s) are we trying to address? Is it a particular market ◾◾
segment? Is it a venture into a new market?

Business
Owner

Project
Manager

Product
Owner

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Product
Owner

Product
Owner

Product
Owner

Product
Owner

Product
Owner

Project
Manager

Figure 18.1 A large, agile project organization.

212    Enterprise-Scale Agile Software Development﻿

Are we just creating a release to fix a lot of previously reported problems ◾◾
and deficiencies?
Is this a big release with lots of new, high-value features, or a small release ◾◾
with some reasonable improvements?
When does the release have to hit the market?◾◾

Answering these questions, and perhaps many more, helps product owners pri-
oritize the backlog, determine the value of various items on the product backlog,
drive the creation of Scrum teams, and determine which portion of the product
backlog includes “must haves” and which portion includes “nice to haves.” By get-
ting them defined up front, you can avoid a lot of misunderstandings and miscom-
munications later in the release planning and development effort.

The release goals do not have to be overly formal in language. It is, in fact,
much more effective for the release goals to be clear and precise. For example, see
Figure 18.2.

In this figure, the example release goals tell us that v3.0 of the flight manage-
ment software is intended to be a major release targeting our largest customers. The
major features are listed (which means that any product backlog items related to
those features will be given the highest priority in the product backlog) and only
the high and critical severity defects will be addressed. Finally, there’s a desire from
sales and marketing for the product to be ready by the third quarter of 2010. Of
course, whether or not that’s doable remains to be seen, but we can use that date as
a target range for now and see what happens.

The target market segment is the very large-scale customer that has placed
orders for new aircraft with multiple decks for passenger seating and for customers
that are experiencing maximum load issues (or are expecting to experience load
issues when they purchase the new aircraft).

Only high and critical severity defects will be addressed (lower-priority defects
will be addressed in the 3.1 released).

This release is a major functionality improvement. The significant
features are:

	 1.	Support of multiple decks (for aircraft with seats on multiple decks)

	 2.	Creation of “seat hopper” feature to more effectively match
passengers with their seating preferences.

	 3.	Improved scale-up capabilities to take further advantage of server
visualization to gain improved end user performance

Figure 18.2  Sample release goals.

Agile Project Management—Getting Started    213

Sales and marketing wants to target the third quarter of 2010 (3Q10), just
before the first planned delivery of the larger, multideck aircraft.

Once our Scrum teams are formed, we’ll want to make sure that everyone
understands the release goals and, particularly, that there’s an understanding about
not working on anything less severe than a high-severity ticket.

Create/Update Defined Processes and Policies
If you’re in an organization where standards and regulatory requirements have
mandated the creation of development processes and policies, you should also take
advantage of the first sprint in your project to review the processes and policies and
make sure that they are up-to-date and that the project team is fully aware of the
applicable processes and policies. This is important, as processes and policies tend to
fall behind the realities of the current situation and, when not regularly examined,
often lead to things being done because “that’s the way it’s always been done.”

One special item to consider when reviewing the organizational policies is
the threshold at which defects, when discovered, are permitted to go directly to
a Scrum team as opposed to being placed on a queue or on the product backlog
for later prioritization. For example, assuming that your organization categorizes
defects as critical, high, medium, and low, your project team might decide that
critical and high-priority defects are passed directly to the responsible Scrum team
to be diagnosed and corrected. If this causes the Scrum team to no longer be able
to achieve their sprint goals, they must negotiate with their product owner to move
some unfinished work back to the product backlog.

Create/Update the DONEness Definition
Absolutely all Scrum projects should have a definition of DONEness5 that defines
what developers have to accomplish in order to produce quality software. This defi-
nition, like the policies we spoke of earlier, needs frequent tuning in order to ensure
that it remains current and relevant. When creating or updating the DONEness
definition, you will likely want to plan to hold one or two work sessions that involve
developers of a variety of different skills (e.g., application coders, analysts, archi-
tects, database architects, database designers, UI analysts, testers, etc.). Invite the
participants to brainstorm on various aspects of DONEness. Keep your work ses-
sions to ninety minutes or less, and hold as many as needed to get a comprehensive
list of criteria that everyone can agree on. Be prepared for the DONEness definition
to be quite extensive and for its length to be a source of concern for your Scrum
teams. You will need to explain that the items on the definition must be done in
order to ensure that the developers produce high-quality software. None of the
items can be deferred without incurring additional costs and unwanted delays later
in the project.

214    Enterprise-Scale Agile Software Development﻿

DONEness definitions tend to be defined in three comprehensive layers and
with three complementary types. The layers describe how the definition is applied
across the organization; the types describe how the definition is applied to different
states of development. The three layers of DONEness are the organizational layer,
the product layer, and the team layer (see Figure 18.3). These layers each represent a
scope at which the DONEness definition is defined and applied.

In other words, the organizational layer of DONEness deals with the acceptance
criteria for all stories, features, and defects completed by every team in every prod-
uct in the organization. Criteria that are frequently defined in this layer include:

Unit testing◾◾
Functional testing◾◾
Code and coding standards◾◾
Compliance with Sarbanes-Oxley Act◾◾
Designs refactored, meet standards, and are properly documented◾◾
Code covered sufficiently by unit tests◾◾
Code merged into the main development branch◾◾
Designs and code are reviewed◾◾
Baseline code builds work◾◾
Acceptance criteria and tests are green◾◾
UI testing is completed successfully◾◾
Product owner accepts◾◾
Internal documentation is completed, reviewed, and checked in◾◾
Deployed to an internal acceptance server (a tightly controlled environment ◾◾
meant to, as closely as possible, duplicate a customer’s environment)
Compliance with documented UI standards◾◾
Compliance with documented coding standards◾◾
Compliance with documented design (possibly pattern) standards and usages◾◾
Procedures to store all completed artifacts (internal software documentation, ◾◾
external user documentation, source code, training materials, review records,
test summaries, etc.) in a document management system such as Rational
Clearcase®, Subversion®, or Git

Organization Layer

Product Layer

Team Layer

Figure 18.3 L ayers of DONEness.

Agile Project Management—Getting Started    215

Internal product documentation (generally defining what kind of documen-◾◾
tation is required for every product)
Requirements to use specific organizationally sanctioned development tools ◾◾
(e.g., configuration management tools, project management tools, source
code archiving, defect tracking, etc.)
Requirements to include specific organizationally mandated service marks, ◾◾
logos, symbols, copyright language, etc.

The next layer, the product layer, is defined “on top of” the organization layer
and contains acceptance criteria in addition to (not in replacement of) the organi-
zation layer definitions. This layer describes the acceptance criteria for all stories,
features, and defects that must, in addition to the organization layer, be completed
by every team working on a specific product. Criteria frequently defined at this
layer include:

Additional standards or requirements specific to the product. For example, ◾◾
a product that is classified as a medical device may need to comply with
ISO 13485 (for sale in the United States) or MDD (for sale in Europe)
related requirements.
Documentation of the product’s data model in a specific manner and using ◾◾
a specific tool.
Automated functional testing of the product’s features using one or more ◾◾
approved tools.
Unit test code coverage at or above a specific percentage.◾◾
Requirement that certain functions of the product operate at or better than a ◾◾
specified level of performance.
Compliance with documented architectural standards.◾◾

The final layer, the team layer, is defined “on top of” the product layer and
contains acceptance criteria that are applied to stories in addition to the criteria
defined in the product and organization layers. This layer describes acceptance cri-
teria that an individual Scrum team has decided must apply to all stories, features,
and defects that they complete during a sprint. Criteria frequently defined at this
layer include rules that require:

Peer review of certain modules or functions or a certain percentage of all code ◾◾
added or changed during a sprint
Every completed story or defect to be independently validated by any team ◾◾
member not involved in the building or correction
Every completed story to be reviewed by the product owner prior to sprint ◾◾
review
All proposed database schema changes to be reviewed by the entire team prior ◾◾
to implementation

216    Enterprise-Scale Agile Software Development﻿

Spanning each DONEness layer are three more DONEness types: story, fea-
ture, and version. These types describe different stages of development at which
different aspects of DONEness may apply. These types are shown in Figure 18.4.

Story DONEness involves acceptance criteria that must be adhered to when
completing a story or correcting a defect. This is usually the most extensive type of
DONEness containing all of the requirements for unit testing, functional testing,
updating, and storage of internal documentation, among others. When a Scrum
team plans out their approach to any story or defect, they use story DONEness
across the organizational, product, and team layers to determine what must be done
in order for the team to consider a story completed or a defect solved.

Feature DONEness involves the acceptance criteria that must be adhered to
when a product feature is completed (either by virtue of finishing the last story in
the feature or because the product owner has indicated that the feature is complete).
This type of DONEness usually includes compliance with specific performance
requirements, validation of the ability to install or de-install the feature, and com-
pletion of end user documentation (of any form, including written or web based).
When a Scrum team plans to complete a feature during the sprint, they use feature
DONEness at the organization, product, and team layers in order to determine
what they have to do to consider the feature completed.

Version DONEness involves the acceptance criteria that must be adhered to
when a product version is completed. This type of DONEness usually includes the
completion of training materials and end user documentation as well as updating
the product’s installation and de-installation scripts and the solving and closure of
some percentage of open, known defects (e.g., all critical and high-priority defects

O
rg

an
iz

at
io

n
La

ye
r

Pr
od

uc
t

La
ye

r
Te

am
La

ye
r

Story
DONEness

Feature
DONEness

Version
DONEness

Figure 18.4 T he DONEness types overlaid on the DONEness layers.

Agile Project Management—Getting Started    217

must be solved and validated, but some small percentage of medium- and low-
priority defects may remain unsolved).

Determine Team Staffing
When staffing your teams, you want to consider how much imbalance is in your
product backlog (i.e., if there are specialized teams that have considerably less or
considerably more work to do than other teams on the project) and, of course, how
many teams you need. If your teams are already defined, there’s probably very little
you will need to do. If, however, your teams have to be defined (some organizations
rebuild their teams at the beginning of each project), you have a number of interest-
ing, exciting options available to determine how to staff your teams.

Regardless of whether your teams are already formed or you need to create new
ones, make sure that you create the teams that you need to respond to the highest-
priority items on the product backlog first.

Let’s review some of things that you can do to staff Scrum teams:

	 1.	Manager’s choice: This method is simplest, fastest, and the most de-moti-
vating for the developers. In this method, the functional managers and
product owners work together to determine team staffing. They then
announce team staffing, probably during a project kickoff meeting, and
let the teams get down to work. This method has the advantage of taking
into account a combination of the project’s priority requirements as well
as, if the managers involved are well informed, the employee’s career and
professional needs. Managers should always make team staffing choices
based on:

	 a.	 Which individuals will likely work well together (or have worked well
together in the past)?

	 b.	 Does the team have the expertise it needs? Can the team afford less expe-
rienced employees that want the opportunity to grow?

	 c.	 What does the employee want to do? What skills does he or she need to
advance in his or her position or otherwise within the company?

	 2.	Draft: This method has the advantage of allowing teams to form themselves.
In practice, we start with all of the product owners and Scrum masters and
a list of all employees involved in the project. The purpose of each team is
defined (there’s a Scrum master for each team and each team has a specific
product owner). Over the course of what can be a lengthy meeting, the prod-
uct owners and Scrum masters select (or draft) team members from the list of
employees. Disadvantages: Since most developers are not involved, this doesn’t
provide much more motivation than manager’s choice. Team members might
be selected for the wrong reasons—personal friends of the product owner or
Scrum master. In addition, selection to a team does not address the individual
employee’s career development and professional development hopes.

218    Enterprise-Scale Agile Software Development﻿

	 3.	Sign up: This method is probably the hardest to employ and, in fact, you will
often find yourself negotiating with some employees to get teams properly
staffed. In this method, best done in a single large room (like an auditorium
or large dining area), sign-up sheets are posted around the room with a team
name, product owner’s name, Scrum master’s name, and a number of blank
spots corresponding to the number of team members that the team is sup-
posed to have. Then, with all project personnel present, the product owners
take turns introducing their teams, what those teams will build, and who
will be the Scrum master for each. Then, once all of the teams have been
introduced, employees are invited to sign up for the team they would like to
be on. While this method does an excellent job of giving each individual an
opportunity to be on the teams they want to be on, it also has the disadvan-
tage of leaving some unlucky employees no choice but to join teams that they
would not consider joining except that there were no other available slots. In
addition, this mode of self-selection, while it can be quite motivating, doesn’t
ensure that the right people end up on the right teams.

 Your final selection of method to choose your teams, if indeed the teams aren’t
already chosen, will depend entirely on what you and the project management team
feel is the best approach for your organization at that point in time. Methods that
cannot work early in an organization’s transition might be very feasible a year or
two later.

Prepare the Product Backlog for Grooming

Though you may have completed a high-level estimation of product backlog when
determining the overall budget, the high-level estimate won’t be enough when your
Scrum teams start building what’s on your product backlog. At this point, it is
important to give your Scrum teams a firsthand view of the portion of the prod-
uct backlog targeted for the current project. By doing this, you can also create an
opportunity for your Scrum teams to use their expertise to organize the product
backlog to facilitate development. Try these steps to get your teams involved with
the product backlog:

First, prepare the workshop by ensuring that all of the product backlog items ◾◾
targeted for the current release are recorded on 5 × 7 inch index cards. Make sure
that each card contains a number that uniquely identifies the backlog item.
Using a large, open table space, the product owners lay their backlog item cards ◾◾
on a table in order, from highest priority to lowest priority (see Figure 18.5).
Invite your developers to review the backlog items looking for:◾◾

Dependencies with other backlog items and items that must be done in −−
a specific sequence. When a dependency is suspected, the product owner

Agile Project Management—Getting Started    219

should write down the dependency (by recording the ID numbers of the
cards) for later discussion and investigation.
Items that will require special handling because (1) the skills needed are −−
in short supply in the organization or (2) information or assistance will
be required from other departments in the larger organization. Product
owners note these possibilities (by recording the ID number and the
required skill or department) for later discussion and investigation.

Next, you will need to put your Scrum teams to work creating a baseline story
point estimation that will give them a good starting point for backlog grooming

Create chessboard
boundaries

Create a white space

Create a black space

Build raster table
for pawns

Put pieces on board
in starting position

Figure 18.5  Backlog item cards laid across a surface.

220    Enterprise-Scale Agile Software Development﻿

work sessions. The good news is that all of the work we put into the backlog dur-
ing the budgeting process will come in handy right now. Your teams can directly
convert t-shirt sizes to story points using a fairly straightforward scale, as illustrated
in Table 18.7.

If you haven’t done the budgeting step of creating high-level t-shirt size esti-
mates, your teams can also use Table 18.7 to estimate duration and go right to
story points.

 The important things to remember when preparing the product backlog are:

	 1.	Don’t do this yourself, or let your product owners do this, or any select group
of individuals. It’s really important for your Scrum teams to become famil-
iar with the product backlog before they start building features. Preparing
the backlog gives them a chance to identify which backlog items should be
assigned to their team (the team’s product owner will drive this part of the
process) and to look for connections or dependencies between the backlog
items that, in some cases, only developers can identify.

	 2.	Your teams should not be trying to be very precise at this point. There are
so many unknowns that the more assumptions they make, the more likely
they are to rely on a degree of precision that isn’t really there. That’s when the
unpleasant surprises begin.

	 3.	If the team feels strongly that the initial t-shirt size estimate is wrong, they
should be encouraged to derive the story point estimate based on what they
feel is the proper complexity. For example, if a backlog item is tagged as XS
(a couple days) and the team feels strongly that the item will definitely take
more than a week for two or three people on the team to do the job, the team
should reestimate the item as four story points (medium).

	 4.	Encourage your Scrum teams to not try to negotiate on the story points at
this point in time. If they think the “right” answer is somewhere between

Table 18.7  Converting T-Shirt Sizes to Story Points

Any T-Shirt Size That Means a
Duration/Complexity Less Than:

Or a T-Shirt
Size of:

...is about this many
story points

1–2 days XS 1

1 week S 2

2 weeks M 4

1 month L 8

2 months XL 16

(More than 2 months?) XXL 128

Agile Project Management—Getting Started    221

four and eight, they should go with whichever value (four or eight) they feel
is closer and move on to the next item.

 Once this conversion (or estimation) effort is complete, you will have a product
backlog that is ready for your Scrum teams to begin grooming.

Create the Sprint Schedule
Setting the sprint schedule has as much to do with your organization’s experience
with agile development as it does with the timing of your product releases. The first,
most important item to consider is your product release date or dates. Shorter proj-
ect timeframes will usually call for shorter sprints. Critical times during projects
also tend to apply pressure toward shorter sprints. Another factor to consider is that
less experienced Scrum teams will be more effective with longer sprints, while some
of the best Scrum teams have no problem with sprints of only one week in length.

In general, sprints should be between one and four weeks in length. You should
only plan one-week sprints in cases where you have very experienced teams that are
already producing high-quality code. Because one-week sprints are only five busi-
ness days in length and also have to include time for sprint planning, sprint review,
and sprint retrospective meetings, only teams that are very experienced in agile
practices will accomplish anything significant in so short a period of time. In addi-
tion, sprints should not be longer than one month. Sprints longer than one month
tend to lose the productive pressure that a month-long (or shorter) sprint possesses.
Most organizations transitioning to agile development find that sprints between
three weeks and one month work best. My recommendation for your first project is
to start with one-month sprints. As your organization matures, your teams acceler-
ate, and quality improves, you can try shorter and shorter sprints.

Should all of your teams follow the same schedule? That will be completely
up to you. While reporting progress across the project is simplified when all of
the sprints are the same length and begin and end at the same time, it is also

30 1 2 3292827
7 8 9 10654

Wed �u

Sprint
Review

Planning
Day

Fri SatTueMonSun

Sprint
Planning

Figure 18.6  Starting sprints on the fifth day of the month.

222    Enterprise-Scale Agile Software Development﻿

quite possible to determine project progress based on, for example, the condition
of the backlog based on all sprints completed as of a specific date. In fact, one of
the main drivers of the sprint schedule is the availability of the product owners. If
one product owner has three or four teams working on the backlog, that product
owner will have a difficult time attending three or four sprint planning meetings
simultaneously. However, by starting some sprints, say, on Monday and others on
Tuesday, the product owner will have a much easier time attending to his or her
teams’ needs.

One final recommendation for sprint scheduling is to try as much as possible to
keep your sprints of the same length throughout the project. Scrum teams commit
to work based on their experiences in previous sprints. When your sprints are of the
same length, teams tend to get the same approximate amount of work done each
month. This allows your teams to be more predictable; they can use that predict-
ability to groom just enough of their backlog each sprint in order to be ready for
the next sprint, and your project manager can use the team’s predictability to better
manage the project schedule, report progress, and make predictions regarding com-
pletion of features and the overall project. If you change the sprint length during
the project, team performance changes in unpredictable ways and the predictability
of the project likewise diminishes.

 When establishing the sprint schedule, consider the following:

	 1.	The experience level of your teams. Less experienced Scrum teams work best
at three to four weeks or one calendar month. More experienced Scrum teams
can work on one- or two-week sprints.

	 2.	The anticipated length of the project. Shorter projects will work better with
shorter sprints; longer projects with longer sprints. For example, while a six-
month project will work quite well with three- or four-week sprints, a two-
month project performs better with two-week sprints.

	 3.	The complexity (inherent risk) of the project. Riskier projects will demand a
greater visibility and flexibility during the development effort. Projects with
backlogs that are more clearly understood can handle longer sprints.

	 4.	How balanced is the backlog? An unbalanced backlog will leave one or more
teams finished before other teams on the project. What will be your plan dur-
ing those sprints? What will those teams do if they are still allocated to your
project? If they are not, what is your plan of attack should something they
write be discovered to contain a defect late in the project?

Sprint Schedules and Large Project Considerations
In some instances, when there are multiple modules (and thus multiple product
owners) and a large number of teams (twenty or more, for example), you may dis-
cover that longer sprints allow time for the more complex interactions between
product owners to take place. This is very important when product owners are

Agile Project Management—Getting Started    223

dealing with backlogs that are complex and interconnected. Product owners will
need a considerable amount of time each sprint to adjust to changing business
realities and realign all of the affected product backlogs accordingly. Because of
this, you may want to consider a sprint schedule with no fewer than three weeks
per sprint.

 In addition, when sprint reviews occur, each product backlog is affected by
what the Scrum teams completed during the sprint. When you complicate this
by adding multiple Scrum teams and multiple product owners, a situation devel-
ops immediately after the sprint reviews where the activity of all of the Scrum
teams (items that are done, items that are not done and are to be returned to the
product backlog) greatly affects the current condition of the product backlog. For
that reason alone, it is often a good idea to allow a single day in between the sprint
review and the sprint planning meetings. During this “planning” day, the product
owners can, collectively, review the new state of the product backlog and make
whatever changes they deem appropriate based on the outcome of the previous
sprint and the goals of the project.

For example, let’s take a situation where the sprints run for a calendar month,
starting on the fifth of each month. In a complex situation such as we’ve discussed,
the transition point between one sprint and the next might look like Figure 18.6
on page 221.

In Figure 18.6, we see that the sprint ends on the first of the month to allow for
an extra planning day, during which the product backlog is reorganized based on
the outcomes of the sprint reviews on the first. On the following Monday, the fifth,
the next sprints begin.

Before we finish this topic, let’s discuss a minor variation on this sprint schedule
that helps when product owners are having a difficult time attending all of their
teams’ sprint planning meetings. But let’s review the problem first. Product owners
are a necessary attendee at Scrum team sprint planning meetings. However, when
there are two, three, or more teams, the product owner has a harder and harder
time getting to his or her teams’ sprint planning meetings when they all happen

30 1 2 3292827
7 8 9 10654

Wed �u

Sprint
Review 1

Sprint
Review 2

Planning
Day

Fri SatTueMonSun

Sprint
Planning 1

Sprint
Planning 2

Figure 18.7  Setting up shifted sprints.

224    Enterprise-Scale Agile Software Development﻿

on the same day. To mitigate this problem a bit, we can shift our sprints to give the
product owners more options. You can see an example in Figure 18.7.

As illustrated in Figure 18.7, we have two sprint review days and two sprint
planning days. The way we use this is by putting half of our Scrum teams on a
schedule with sprints that begin on the fifth of the month, and the other half has
sprints that begin on the sixth of the month, making sure that a product owner’s
teams are equally distributed across both schedules. With half of their teams doing
planning on the fifth and the other half on the sixth, product owners have much
more opportunity to attend sprint planning meetings. The disadvantage, of course,
is that Scrum teams will find themselves between sprints for two days. However,
the “pause” in their development activities can be a good opportunity to catch up
on emails, technical reading, training sessions, and more.

The Unwanted Stabilization Sprint

As organizations transition to agile development, it is very common that
the product under development is not properly covered with automated unit
and functional tests. As development continues and portions of the product
remain untested due to the lack of automated tests, a significant amount of
“technical debt” is incurred. This means that some amount of work that should
be done to the product to ensure quality is not done (in this case, continuous
regression testing throughout the sprint). As this work accumulates, the risk of
defects also increases. Many organizations deal with this problem by inserting
a stabilization or “polishing” sprint at or near the end of the project (refer to
Figure 18.8).

While the stabilization sprint can be a reasonable stopgap measure, it has
many disadvantages:

Sprint 3 Sprint 4 Sprint 5 Sprint 6 Stabilization
Sprint

Sprint 2Sprint 1

Figure 18.8  Placing a stabilization sprint.

Agile Project Management—Getting Started    225

	 1.	When a project ends successfully with the stabilization sprint, many in the
organization will begin to accept the stabilization sprint as the “right way” to
do a project, forgetting that the stabilization sprint is actually covering for a
deficiency in the product development (i.e., the missing automated tests).

	 2.	With a stabilization sprint at the end of the project being used to catch any
accumulated technical debt, it becomes acceptable to simply assume that
work that cannot be finished during a sprint can simply be pushed to the
stabilization sprint. Unfortunately, there’s no one controlling how much work
is being shunted to the stabilization sprint, frequently resulting in a most
unwanted surprise when the stabilization sprint nears its end, while there’s
still a considerable amount of work to do. By deferring work during the devel-
opment sprints to the end of the project, the risk was also deferred to the end
of the project, when there’s no time to make any corrections without chang-
ing the project end dates.

	 3.	The stabilization sprint provides an excuse for Scrum teams to not write auto-
mated unit and functional tests, assuming that the stabilization sprint will
provide time for the necessary testing.

If stabilization sprints are to be used in your projects, make sure that the rules
governing the use and purpose of the stabilization sprint are clearly understood by
all development and management:

	 1.	The stabilization sprint is for the testing of legacy code (i.e., code not covered
by unit or functional tests) and, if applicable, the product UI.

	 2.	Work that cannot be completed during a sprint is returned to the product
backlog for reprioritization into another sprint. It cannot be deferred to the
stabilization sprint.

Dev
Sprint 1

QA
Sprint 1

QA
Sprint 2

QA
Sprint 3

QA
Sprint 4

QA
Sprint 5

Dev
Sprint 2

Dev
Sprint 3

Dev
Sprint 4

Dev
Sprint 5

Figure 18.9  Using a QA team in step with development Scrums.

226    Enterprise-Scale Agile Software Development﻿

	 3.	Work not finished by the beginning of the stabilization sprint is removed
from the product such that the stabilization sprint tests only the product that
preexisted the project plus all of those features completed during the project.

	 4.	No new backlog items may be scheduled for work during the stabiliza-
tion sprint.

In addition to the stabilization sprint, there are other methods you can employ
to help keep your product quality high when you don’t have the automated test
coverage you need to ensure quality throughout each day. We’ll talk about these
methods in the next section.

When the Automated Testing Isn’t Sufficient
As discussed in the preceding section on the stabilization sprint, many organiza-
tions transitioning to agile development are affected by a significant amount of
legacy code (i.e., code not covered by unit or function tests). While the stabilization
sprint can be useful for some last-minute testing of the product before the project
is finished, the major disadvantage is that, should anything significant go wrong,
there’s no time left in the project to fix it without delaying the project end.

There are three other methods you can employ in the project schedule to support
earlier testing. The first method can be used when your development organization
also includes quality assurance analysts and testers that are typically used to test-
ing products after the project is finished. Instead, you can use the QA personnel to
create a new Scrum team that tests the product in sprints that run in parallel with,
but one step behind, the development sprints. As the development teams complete
their sprints, the QA team goes into action testing the product that resulted from
the development sprint.

 As illustrated in Figure 18.9, developers build product during the development
sprint (labeled as “Dev Sprint n”). When the first development sprint is completed,
the development team moves on to the second development sprint while, simul
taneously, the QA team begins a sprint (labeled as “QA Sprint n”) to test the exist-
ing product, including what was added in the development sprint. Any defects that
are found during the testing are opened in the defect management system and are
addressed by the development team during the next sprint.

Dev Sprint 1 Stabilization
SprintDev Sprint 2 Dev Sprint 3 Dev Sprint 4 Stabilization

Sprint

Figure 18.10  Interleaved stabilization sprints.

Agile Project Management—Getting Started    227

The advantage to this approach is that there is very quick feedback to product
development. Since testing occurs immediately after the sprint, developers find out
within days if the product they created had a significant number of undetected
defects. The disadvantages to this approach are:

	 1.	There may be a tendency for the developers to rely on the QA team to find
the majority of the defects. When setting up an environment like this, make
sure that your Scrum teams have a very rigorous DONEness definition and
that the teams hold themselves responsible for completing every backlog item
based on that definition.

	 2.	This method requires a QA team to be dedicated to the project and to test
the product repeatedly during every development sprint. Many organizations
don’t always have the personnel to dedicate to a single project.

The second method for getting proper testing done when the automated testing
doesn’t provide sufficient coverage is to interrupt the development sprints with a
mid-project stabilization sprint. This differs from the stabilization sprint discussed
earlier in that we aren’t going to wait until the end of the project to make sure that
the product is in good shape.

In Figure 18.10, you can see how the stabilization sprints are interleaved with
the development sprints. After the initial two development sprints, focus turns to
testing the product and ensuring that all known defects are solved and closed.
Then, development begins again for two more sprints, followed by another sta-
bilization. The advantage to this method is that the risk of not testing the entire
product is deferred for only two development sprints—then the development staff
stops developing new software and begins to test the existing software. Any defects
discovered during the testing are immediately analyzed and solved. The testing pro-
cess, when possible, repeats a few times during the stabilization sprint to ensure that

Day
1

PBI 1

PBI 2

PBI 3

Day
2

Day
3

Day
4

Day
5

Day
6

Product Testing

Day
7

Day
8

Day
9

Day
10

Figure 18.11  Product testing in a development sprint.

228    Enterprise-Scale Agile Software Development﻿

as many defects as possible have been found and solved. At the end of the sprint,
the remaining defects are moved to the product backlog and prioritized with the
rest of the development work.

The disadvantage to this process is that the development work has to be halted
while the testing occurs. This can be hard to sell to management (although the
alternative of developing to the end of the project and then trying to stabilize the
product is a much greater evil!); however, the perceived delay can be mitigated by
restarting development work during the stabilization sprint if no critical defects are
found during testing (in other words, if the testing goes well, development can be
restarted, during the stabilization sprint back into a development sprint). Improved
testing during the development sprints can help make this a reality.

The third method for getting proper testing done when the automated testing
doesn’t provide sufficient coverage is to move the product testing into the develop-
ment sprints. This method provides the best chance of developing high-quality
software with few defects because it ensures that no product backlog item is con-
sidered finished unless the item passes a product test. In other words, the Scrum
team coordinates instances of manual testing of the product to coincide with the
completion of one or more of the Scrum team’s goals for the Sprint.

In Figure 18.11, we see the first ten days of a development sprint. The highest-
priority item in the sprint goals (PBI 1) is started by the Scrum team on day 1 of
the sprint and is finished on day 7. The second item in the sprint goals (PBI 2) is
likewise started on day 1 of the sprint, but is finished on day 5 of the sprint (the
third item on the sprint goals, PBI 3, is started immediately after the completion
of PBI 2). The Scrum team decides to do a complete round of product testing on
days 7 through 10 of the sprint. This testing is then guaranteed to include the
development work done on PBIs 1 and 2. Another round of testing, later in the
sprint, will be scheduled to include work done on the product to test the remaining
sprint goals. However, should any sprint goals fail the product testing at the end of
the sprint, it is unlikely that the failed goal will be able to be fixed before the sprint
review meeting, and will not be reviewable at the meeting.6

The advantage to this method is that, when the sprint ends, the product incre-
ment created by the sprint will have been fully tested in an integrated product
environment, thus helping to ensure that the product increment is shippable to a
customer. Another important advantage is that any defect will often be easier to
find, rather than more difficult, because the developer will not be far removed from
the coding effort that caused the defect. The disadvantage, similar to in the preced-
ing method, is that the Scrum teams will complete fewer product backlog items
during the sprint due to the additional manual testing.

 When the automated testing for a product does not cover a sufficient portion
of the product code (i.e., more than eighty-five percent), manual testing is the only
alternative to ensuring that the product under development continues to be of high
quality before delivery to its customers. Unfortunately, manual testing can be very
expensive, requiring several personnel many hours to fully complete the testing. At

Agile Project Management—Getting Started    229

the same time, however, the longer testing is deferred, the greater the risk that an
error will be found that has profound effects on the project schedule. The methods
reviewed in this section describe a practice for:

Testing at the end of the project—quite risky. The possibility for errors is sub-◾◾
stantial and the probability that one of those errors may impact the project
schedule is high.
Testing during the project, in between development sprints—better, but ◾◾
more expensive. The possibility for errors is high but, except for the final
round of testing at the end of the project, there will usually be time to correct
significant defects in stabilization sprint or a development sprint.
Testing during the sprint—best, but very expensive. Testing is done once or ◾◾
twice per sprint, reducing how much work the Scrum team can produce, but
also substantially reducing the possibility of defects at the end of the project
and improving the chances that the project schedule will not be impacted.

Your organization will need to make a decision weighing the cost of repeated
rounds of manual testing against the improved quality achieved by more testing
closer to when development occurs.

More testing? Higher quality? Maybe somewhere in between?

Begin Backlog Grooming Work Sessions

With the teams staffed and the product backlog prioritized and estimated, we are
finally ready to put our teams to work learning about the items on the backlog,
slicing those items down into smaller, less complex pieces, and reestimating them.
In the first sprint of the project, our goal is to ensure that there is enough work on
the product backlog that, when we start the second sprint, the Scrum team will
have enough properly sized stories to choose from that they can commit to as much
as they deem possible. Knowing how much to prepare during the first sprint can
be rather difficult, as not all Scrum teams will have enough of a history working
together to accurately predict how much they can complete during a sprint.

During the first sprint of the project, your Scrum teams should be focused on
preparing enough of the product backlog to carry them into the second sprint. The
easiest way to do this is to keep a clearly visible running list (on a white board or
large poster board) of everything that the team has successfully sliced down to the
proper size and to encourage the team to continue this activity until they are all
confident that there is more on the list than they could possibly commit to during
sprint planning for the next sprint.

Some Scrum teams might also begin building stories that they have successfully
reduced to a proper size, thus attempting to prepare the product backlog and finish
some of the highest-priority items on the backlog simultaneously.

230    Enterprise-Scale Agile Software Development﻿

Starting with the second sprint, each Scrum team should spend between five
and ten percent of their time in the process of grooming the backlog for the next
sprint. Ideally, these work sessions should be scheduled at the same time each week
during the sprint, allowing the team members to properly plan for the time away
from the current sprint’s backlog. My recommendation is to hold two work ses-
sions each week in the morning or the afternoon. The goal of these work sessions
is to prepare enough of the product backlog for the upcoming sprint, plus perhaps
another twenty-five or fifty percent (just in case one or more stories are removed
before sprint planning). Once that objective has been obtained, you can cancel the
remainder of the grooming work sessions for the sprint.

Summary
Agile project management involves many different steps, from creating an initial
estimate of the project’s budget based on the portion of the product backlog that
is targeted for completion to planning the deployment of Scrum teams, balancing
around the product backlog’s content, and creating the project’s sprint schedule.

In a Scrum project, we deal with much of the planning and estimation during
the first sprint of the project. In fact, the major goals of our first sprint can be rather
extensive, and during this first sprint, it is not unusual at all to have a significant
portion of the project team involved to prepare enough of the product backlog to
start building the product while continuing to prepare the product backlog for the
following sprint. During the first sprint, we want to make sure that the release goals
are in place, that the product architecture is fully defined, that we’ve reviewed and
updated any relevant corporate policies and processes (including the organizational
and product DONEness definitions), set the sprint schedule, and begun grooming
the product backlog preparatory to building software.

During this first sprint, we might also be taking time to determine how many
Scrum teams we are going to create and how each team will be staffed. When doing
this, we need to pay some amount of attention to specialization—the effect cre-
ated when a significant number of product backlog items require skills that only a
limited number of developers possess. When this occurs, we also have to be careful
about balancing our Scrum teams so that we have enough of the right skills in the
right place to ensure that the prioritization of the product backlog can be followed
during the course of the entire project. Once you understand how to balance your
teams, you can use a variety of methods for staffing them, from a traditional man-
ager’s choice to a more radical sign-up approach that allows employees to self-select
for a team.

With all this in place, the project begins in earnest, moving from the first sprint,
where we expect to see some kind of completed functionality, to the second sprint,
when more teams are deployed, the product backlog is ready for another sprint, and
the development effort ramps up to full (or nearly full) speed.

Agile Project Management—Getting Started    231

The key to agile project management is the same as the key to agile develop-
ment. Too much reliance on up-front planning will result in a lot of plans and
contingencies but no working software (and all, pretty much, for the same cost!).
Plan your first sprint around the key people needed to determine the product back-
log content, groom the backlog for the first and second sprints, and then go build
software while the remaining Scrum teams are staffed and prepped. Done properly,
you can finish the first sprint with a groomed product backlog, new Scrum teams,
the original Scrum team with experience that can be passed on to the new Scrum
teams, and some amount of working software to demonstrate to an eager audience
of product owners and stakeholders. Not bad for one sprint’s work, huh?

Endnotes
	 1.	 I have seen more sprints fail due to unfinished or incomplete architecture definitions

than almost any other cause. Scrum teams need to know how the product architecture
relates to the product application features prior to trying to analyze, design, and build
those features; otherwise, the team often comes to a standstill.

	 2.	 Sprint failures are actually good things when they force the team to stop writing appli-
cation features when the architecture definition doesn’t support good decisions. Ideally,
however, you can avoid most of these failures by ensuring that the architecture is prop-
erly defined before allowing application features to be built.

	 3.	 We will cover backlog grooming in Chapter 20.
	 4.	 Release goals provide the same information as the project charter (see http://

en.wikipedia.org/wiki/Project_charter).
	 5.	 You can find more information on DONEness definitions at http://www.bigagilede-

velopment.com/doneness.
 	 6.	 Product backlog items that fail product testing at the end of the sprint are returned

to the product backlog. When (and if) the failed PBI is committed to during another
subsequent sprint, it is corrected and retested.

233

19Chapter

Agile Project
Management:
Monitoring, Reporting,
and Controlling

In this chapter, we will continue the discussion of the responsibilities of the agile
project manager. In the previous chapter, we discussed the activities that the proj-
ect manager performs to get a project started. In this chapter, we will assume that
the project is already under way, and the project manager is now monitoring and
reporting the progress of the project and, when needed, making changes to assert
some control over the project.

	 1.	Monitoring and reporting progress: While I won’t campaign for collecting lots
of metrics and measuring uncounted aspects of development, there is a need
for some degree of monitoring and reporting the progress of development so
that product owners and management have an ongoing idea of how much of
the product backlog is completed and predicting how much might be com-
pleted during the next couple sprints.

	 2.	Controlling: As the number of Scrum teams increases and the number of
dependencies between backlog items increases, the possibility for moving
from the edge of chaos to total chaos increases. There are steps that the release
manager can take to help constrain some of the unwanted chaos.

We’ll talk about each of these responsibilities in the following sections of
this chapter.

234    Enterprise-Scale Agile Software Development﻿

Monitoring Project Progress
When monitoring project progress, we will focus on our project in terms of burn
rate, accumulation rate, earned business value, and feature completion. These met-
rics will help us understand the progress that the Scrum teams are making through
the product backlog and how much business value has been achieved during the
course of the development effort. The goals of monitoring project progress is to
provide the information needed by the business to make critical decisions that
have a direct impact on the return on investment of the development effort. In
other words, we try to provide the information that gives answers to questions like
“When will we have enough value in the product that we can sell it?”

We will not, however, embark on an effort to measure Scrum team perfor-
mance. Dr. Eli Goldratt points out in his book The Haystack Syndrome a rather
interesting behavioral principle: “Tell me how you measure me, and I will tell you
how I will behave.” The same concept is also called the observer effect or reactiv-
ity. Simply put, individuals change their behavior when they know they are being
watched. The same is true of Scrum teams. When you impose metrics on a Scrum
team, their behavior is changed, often leading to wasteful dysfunctions, in order
to respond or react to the collected metric. In order to avoid negatively impacting
Scrum team morale and performance, Scrum teams (perhaps with the support of a
functional manager) are expected to monitor and improve their own performance.

Let’s define the measurements before proceeding:

	 1.	Burn rate refers to the completion of product backlog items (which results in
their removal from the product backlog and an overall reduction in the number
of items left on the backlog; thus, the backlog is said to be burning down).

	 2.	Accumulation rate refers to the addition of new items to the product backlog
that occurs during the normal course of software development and require-
ments elaboration.

	 3	 Earned business value refers to the sum of the value of the completed product
backlog items. Often, projects earn a significant portion of the their total
value during the first two-thirds of the project. Keeping a close eye on this
value and how it changes can help organizations recognize when a product
might already be ready for sale or production use.

	 4.	Feature completion refers to the completion state of each of the major features
in the release. By understanding the feature completion of the project, prod-
uct owners can make intelligent decisions regarding when the key product
features have enough value to permit use in a production environment.

Burning Down the Product Backlog
In many software development projects, whether the project is date driven or fea-
ture driven, a specific portion of the product backlog is expected to be included in

Agile Project Management    235

the project and removed when completed. We can track the progress of the Scrum
teams completing features by noting the change in the product backlog from sprint
to sprint. By using the outcome of two or three sprints, we can even reasonably
predict how long it will take to finish the portion of the product backlog to be
included in the project.

For example, let’s assume that we are three months into a project that is intended
to be completed six months from today. The product backlog estimated at 10,300
story points at the beginning of the project was reduced by 500 story points during
the first sprint and 1,800 story points during the second sprint. Using this informa-
tion, and assuming the next six sprints will have similar results, we can track our
progress to date and predict our probable completion date.

In Figure 19.1, by adding a linear trend line, we can see that the 10,300 story
points in the project are predicted to be completed in sprint 10. The current burn
rate, calculated as the average of the number of points completed each sprint, is
1,150 story points. Let’s take this forward a few more months.

By the time we get to the eighth sprint (see Figure 19.2), the burn rate has
continued to be fairly consistent (1,043 story points) and the project will still be
finished if it is extended to a tenth sprint. However, we also have to consider the
new backlog items that are added to the product backlog because new ideas that
were not thought of when the project began are added during the project.

Let’s look at what happens to our sample project when we allow for the addi-
tion of items to the product backlog during the project: Figure 19.3 shows what

7654321
0

2,000

4,000

6,000

To
ta

l S
to

ry
 P

oi
nt

s 8,000

10,000

12,000

Sprint Number

Release Burndown

8 9

Story points remaining
Linear (story points
remaining)

10

Figure 19.1  Simple release burn-down.

236    Enterprise-Scale Agile Software Development﻿

7654321
0

2,000

4,000

6,000

To
ta

l S
to

ry
 P

oi
nt

s 8,000

10,000

12,000

Sprint Number

Release Burndown

8 9

Story points remaining

Linear (story points
remaining)

10

Figure 19.2  Simple release burn-down at sprint 8 of 9.

7654321
0

2,000

4,000

6,000

To
ta

l S
to

ry
 P

oi
nt

s 8,000

10,000

12,000

Sprint Number

Release Burndown

8 9

Original burndown
Story points remaining
Linear (story points
remaining)

1110

Figure 19.3  Simple release burn-down showing original burn and burn includ-
ing added items.

Agile Project Management    237

happens when we include the addition of new backlog items during the project.
Even though the same amount of work is being done, the effective burn rate has
dropped to 790 story points. The problem, of course, is that the simple release
burn-down tends to hide the difference between items being completed or removed
and items being added. Also, because the impact of adding items to the backlog is
incorporated into the impact of removing items from the backlog, it becomes much
harder to determine if our Scrum teams completed less during a sprint or if there
were simply a lot of new items added to the backlog.

For example, look at the difference between sprints 7 and 8 on the thick black
line in Figure 19.3. At the beginning of sprint 7, there are about 4,900 story points
left in the project. However, at the beginning of sprint 8, there are still nearly 4,800
story points left in the project. With an average burn rate of 790 story points, is it
that our Scrum teams only completed 100 story points? Or, is it that our Scrum
teams performed as per their average burn rate, but there were a lot of story points
worth of items added to the backlog during this sprint?

Mike Cohn, founder of Mountain Goat Software, has suggested a modified
release burn-down that separates the removal of product backlog items from the
addition of new product backlog items. When applied to the example in Figure 19.3,
it looks like what is shown in Figure 19.4.

In Figure 19.4, we’ve reproduced the same data used in the previous burn-
down examples using the enhanced product burn-down format. In this view,
the size of the original product backlog content is shown by how much the ver-
tical bars extend above the x-axis (the zero line). Any items added to the product

Enhanced Product Burndown

7654321

0

4,000

–4,000

St
or

y P
oi

nt
s R

em
ai

ni
ng

8,000

–8,000

12,000

–12,000

Sprints
8 9 1110

Figure 19.4 T he enhanced product burn-down.

238    Enterprise-Scale Agile Software Development﻿

backlog are represented by how much of the bars extend below the x-axis. At the
beginning of sprint 1, all of the content is original, so there’s nothing below the
x-axis and there are 10,300 story points of items represented above the x-axis.
By the time we get to the beginning of sprint 6, even though the Scrum teams
have burned the backlog down nearly 6,000 story points, there still seem to
be more than 7,000 story points left on the backlog (about 4,300 story points
above the x-axis and another 3,000 new story points added after the project
started).

More importantly, look at the trend lines. The dotted trend line indicates the
burn rate of the Scrum teams. This rate reflects only removal of product backlog
items due to either completion of an item or deletion of an item. The solid trend
line, on the other hand, indicates the accumulation rate and reflects only the addi-
tion of new items to the product backlog since the project began. To put it simply,
the dotted trend line (burn rate) shows how fast we are removing items from the
backlog and the solid trend line (accumulation rate) shows how fast we are adding
new items to the backlog.

You can make some broad predictions by examining the trend lines and under-
standing that the intersection of the trend lines indicates that all of the work origi-
nally included in the project, plus all of the work added after the project began, has
been completed. In Figure 19.4, you can see that the trend lines are slowly converg-
ing as each sprint is completed. However, the intersection of the two lines would
appear to be several more sprints in the future. If, on the other hand, the dotted and
solid lines are parallel or not converging at all, you can honestly say that the project
cannot end unless the decision is made to begin pushing the lowest priority work
to the next release. This is what the dark black line beginning at the bottom of the
sprint 7 bar indicates: if the project management team decided to balance any new
work with the removal of an equal amount of the lowest-priority backlog items, the
bars would not descend any further below the x-axis. If you then look for the inter-
section between the dotted trend line and the what if line, you can determine when
the current project might be finished. In the case of Figure 19.4, it seems like the
dotted trend line and the what if line will intersect in sprint 12. The scenario indi-
cated by the black line might be described by a project manager as:

If we stop the backlog from growing by de-scoping the lowest-priority
work when new items are added, we can finish the project in sprint 12.

If we were to allow the project to finish, pushing the lowest-priority work to the
next release when new items are added, the final burn-down might look a little like
that shown in Figure 19.5.

In Figure 19.5, we’ve followed the project manager’s suggestion of pushing
lower-priority work to the next release whenever new items are added to the prod-
uct backlog. This means that the “new work” portion of the bars on the burn-down

Agile Project Management    239

graph will not reach further below the x-axis and only the burn rate changes the
backlog size from that point forward. As you can see, beginning in sprint 7, while
the bars get shorter because of the efforts of the Scrum teams, the bars do not reach
further below the x-axis.

But let’s be very clear about this: this doesn’t mean that new items aren’t being
added to the product backlog any longer. Doing that would imply that, no matter
what good idea was thought of during the remainder of the project, the project
team would not consider doing it. That’s passing up on new opportunities and
ignoring the natural uncertainty that is part of software development. In short,
ignoring new ideas and new opportunities would be a shortsighted mistake. What
the burn-down in Figure 19.5 represents is a decision to remove an amount of the
lowest-priority work equal to the rough amount of new work added to the product
backlog. In other words, if, during sprint 9, we come up with a fantastic new idea
with a complexity estimate of about fifteen story points, we’re going to have to
remove the same (or roughly the same) amount of work from the bottom of the
product backlog.1 Fifteen new story points in, fifteen low-priority story points out.

Summary
In this section about monitoring project progress, we discussed how to show progress
through the product backlog by using the burn rate and the accumulation rate. The
burn rate reflects the rate (usually in average story points) at which backlog items
are removed from the product backlog due to item completion and item deletion.
The accumulation rate reflects the rate (also usually in average story points) at
which new backlog items are being added to the product backlog as new ideas and
new opportunities present themselves. We can show burn rate and accumulation

12,000

8,000

4,000

0

–4,000

–8,000

–12,000
1 2 43 65 87 109 11

Enhanced Product Burndown

Sprints

St
or

y P
oi

nt
s R

em
ai

ni
ng

12

Figure 19.5 T he completed project’s product burn-down.

240    Enterprise-Scale Agile Software Development﻿

rate on a variety of different graphs, but the enhanced versions (see Figures 19.4 and
19.5) provide the most useful information regarding both measurements. Using
this information, the agile project manager can assess project progress and help the
product owners to maximize return on investment.

The Release Plan
When reviewing the burn rate and the accumulation rate, the only aspect of the
product backlog that we are considering is its size in terms of how much work
the backlog represents. While this level of monitoring is useful from the project
perspective, agile project managers are often called upon to help product owners
understand not just how much work is getting done, but what work, in terms of
actual features and backlog items:

Finished by the Scrum teams◾◾
Under way within the Scrum teams◾◾
Coming up in the next sprint or two◾◾
Likely to be de-scoped from the project (this item often being the most critical)◾◾

This requires the agile project manager to also have a clear idea of the state of
the product backlog throughout the project. We accomplish this with the release
plan, a view of the portion of the product backlog that is included in the project
with separators indicating in which sprint each backlog item is anticipated to be
built by a Scrum team. Let’s consider a small gaming company with one Scrum
team of seven developers and a fairly basic product backlog for building a chess
game. Here’s the initial product backlog:

Collect the player’s information (3 SP).◾◾
Display an empty board (8 SP).◾◾
Build all of the board pieces (10 SP).◾◾
Put the pieces on the board in starting positions (5 SP).◾◾
Allow player to move pieces (3 SP).◾◾
Remove captured pieces (2 SP).◾◾
Allow a player to indicate check (2 SP).◾◾
Allow a player to indicate checkmate (2 SP).◾◾
Allow a player to resign (2 SP).◾◾
Allow both players to declare a draw (3 SP).◾◾
Identify common legal vs. illegal piece moves (3 SP).◾◾
Identify ◾◾ en passant pawn moves (3 SP).
Identify king-side castle (3 SP).◾◾
Identify queen-side castle (3 SP).◾◾
Identify check condition without user’s help (4 SP).◾◾

Agile Project Management    241

Identify checkmate condition without user’s help (7 SP).◾◾
Support pawn promotion using captured pieces (4 SP).◾◾
Support pawn promotion using any piece type (4 SP).◾◾
Incorporate a game clock (3 SP).◾◾
Provide a log of all moves in algebraic notation (3 SP).◾◾
Provide a log of all moves in descriptive notation (3 SP).◾◾
Playback the entire game using the move log (8 SP).◾◾
Allow user to control playback speed (3 SP).◾◾
Provide “forfeit on illegal move” option (2 SP).◾◾
Support crusader-style chess pieces (7 SP).◾◾
Support blitz-style game rules (4 SP).◾◾
Allow users to select colors other than black or white (4 SP).◾◾
Support new chessboard backgrounds (12 SP).◾◾

For the purposes of our CyberChess application, our release goals for version
1.0 are to create a basic game board; the players will be able to move their pieces
fairly indiscriminately—the game will not be able to tell if an illegal move is made,
nor will the game be able to detect a check or checkmate condition. The players will
have to do that. The portion of the product backlog that we’ll use in this project
will include only the following backlog items:

Collect the player’s information (3 SP).◾◾
Display an empty board (8 SP).◾◾
Build all of the board pieces (10 SP).◾◾
Put the pieces on the board in starting positions (5 SP).◾◾
Allow player to move pieces (3 SP).◾◾
Remove captured pieces (2 SP).◾◾
Allow a player to indicate check (2 SP).◾◾
Allow a player to indicate checkmate (2 SP).◾◾
Allow a player to resign (2 SP).◾◾
Allow both players to declare a draw (3 SP).◾◾

This small, low-tech release will give us a simple version that we can use to vali-
date the concept, the hardware platform, etc. A quick review of the scoped product
backlog shows that there are an anticipated forty story points in the content. If we
assume from past experience that our one Scrum team can get about eight story
points worth of work done in a sprint, we can slice up our product backlog along
eight story point divisions like so:

Sprint 1◾◾
Collect the player’s information (3 SP).−−
Create board boundaries and outlines (2 SP) (from “Display an empty −−
board—8 SP”).

242    Enterprise-Scale Agile Software Development﻿

Create a white space (1 SP) (from “Display an empty board—8 SP”).−−
Create a black space (1 SP) (from “Display an empty board—8 SP”).−−

Sprint 2◾◾
Compile spaces to create empty board (5 SP) (from “Display an empty −−
board—8 SP”).
Learn how to use the rendering routines (3 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for pawns (1 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 3◾◾
Build raster table for rooks and bishops (2 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for knights (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for king (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for queen (2 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 4◾◾
Put the pieces on the board in starting positions (5 SP).−−
Allow player to move pieces (3 SP).−−

Sprint 5◾◾
Remove captured pieces (2 SP).−−
Allow a player to indicate check (2 SP).−−
Allow a player to indicate checkmate (2 SP).−−
Allow a player to resign (2 SP).−−

Sprint 6◾◾
Allow both players to declare a draw (3 SP).−−

The result of slicing up the product backlog along the lines of which sprint
the items will be completed in is called the release plan. This plan gives us a basic
idea of what’s on the product backlog and when each item will be done. However,
since we can’t be sure what the Scrum team will actually complete by the end of
the sprint, we will have to wait until the sprint is over and then reassess the plan.
For instance, during the first sprint, the team ran into some difficulty display-
ing the board boundaries (the outline of the board). There were some unexpected
problems with the rendering software being used by the application that resulted
in some significant delays. So, at the end of sprint 1 and after the product owner
approves the player information screen and the appearance of the white and black
squares, the Scrum team completes five story points out of seven. We can now
re-create the release plan by removing the completed pieces and keeping each sprint
balanced at or near eight story points per sprint (we could take the team’s velocity of
five instead of eight, but one sprint is usually not enough to establish a pattern—the

Agile Project Management    243

team decided to stick with eight story points for now). The updated release plan
after sprint 1 looks like this:

Sprint 2◾◾
Create board boundaries and outlines (2 SP)(from “Display an empty −−
board—8 SP”).
Compile spaces to create empty board (5 SP).−−

Sprint 3◾◾
Learn how to use the rendering routines (3 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for pawns (1 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for rooks and bishops (2 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for knights (2 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 4◾◾
Build raster table for king (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for queen (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Put the pieces on the board in starting positions (5 SP).−−

Sprint 5◾◾
Allow player to move pieces (3 SP).−−
Remove captured pieces (2 SP).−−
Allow a player to indicate check (2 SP).−−

Sprint 6◾◾
Allow a player to indicate checkmate (2 SP).−−
Allow a player to resign (2 SP).−−
Allow both players to declare a draw (3 SP).−−

The new release plan is still six sprints long (down to five now that sprint 1 is
completed). We ended up rearranging the content of every sprint in order to keep
each sprint at or near eight story points per sprint. Unfortunately, the last sprint,
sprint 6, is already pretty full. This means that any more delays in the project may
result in dropping a feature or extending the project. After a quick check with
the product owner, we discover that he is fine dropping the lowest-priority story
(“Allow both players to declare a draw”) out of the release since players can accom-
plish the same thing by quitting the CyberChess program. At the same time, there
is always a possibility that the Scrum team may finish an item faster than expected
to achieve more than eight story points. In fact, we’ve overloaded sprint 4 with nine
story points in case the team gains some velocity.

244    Enterprise-Scale Agile Software Development﻿

Let’s jump ahead to the end of sprint 2. Our Scrum team was quite busy dur-
ing the sprint. They got the board boundaries to work properly, but it took so
much of the sprint that the story for putting all of the spaces together to make up
the full board wasn’t quite finished. The Scrum team achieved a velocity of two
story points (although everyone agrees that they almost finished the other five story
points). So, we rework the release plan again, but everyone agrees it would be OK
to overload sprint 3 a little, since the “Compile spaces to create empty board” was
almost finished:

Sprint 3◾◾
Compile spaces to create empty board (5 SP).−−
Learn how to use the rendering routines (3 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for pawns (1 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 4◾◾
Build raster table for rooks and bishops (2 SP) (from “Build all of the −−
board pieces—10 SP”).
Build raster table for knights (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for king (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for queen (2 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 5◾◾
Put the pieces on the board in starting positions (5 SP).−−
Allow player to move pieces (3 SP).−−

Sprint 6◾◾
Remove captured pieces (2 SP).−−
Allow a player to indicate check (2 SP).−−
Allow a player to indicate checkmate (2 SP).−−
Allow a player to resign (2 SP).−−

On the chopping block◾◾
Allow both players to declare a draw (3 SP).−−

With sprint 2 completed and the release plan rewritten, we see the projected
content for sprints 3 through 6. Unfortunately, I’ve also had to add a “On the chop-
ping block” category to the end of the release plan. This early in the project, I don’t
usually just de-scope items that fall out the bottom of the release plan. You never
know, a Scrum team may improve its velocity and, all of the sudden, you can bring
a feature back into the release.

One more example: We complete one more sprint and, true to everyone’s expec-
tation, the Scrum team completed the empty board, learned the rendering routines,

Agile Project Management    245

and completed the raster table for the pawns. They were also able to reach for-
ward and grab the “Build raster table for rooks and bishops” story from the next
sprint—a total of eleven story points. At this point, the release plan now looks
like this:

Sprint 4◾◾
Build raster table for knights (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for king (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for queen (2 SP) (from “Build all of the board −−
pieces—10 SP”).

Sprint 5◾◾
Put the pieces on the board in starting positions (5 SP).−−
Allow player to move pieces (3 SP).−−

Sprint 6◾◾
Remove captured pieces (2 SP).−−
Allow a player to indicate check (2 SP).−−
Allow a player to indicate checkmate (2 SP).−−
Allow a player to resign (2 SP).−−

On the chopping block◾◾
Allow both players to declare a draw (3 SP).−−

However, we’re faced with a little problem with this release plan—sprint 4 is
undercommitted. As a team, the project manager, product owner, and Scrum team
worked together to figure out a good arrangement of backlog items that promotes
continued progress. The Scrum team suggested that we could move the “Build the
raster table for king” item and the “Build the raster table for queen” item to another
sprint (since we’ve built all of the other pieces at this point) and start putting all of
the other pieces on the board. So, sprints 4 and 5 were changed to look like this:

Sprint 4◾◾
Build raster table for knights (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Put the pieces on the board in starting positions (5 SP).−−

Sprint 5◾◾
Build raster table for king (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Build raster table for queen (2 SP) (from “Build all of the board −−
pieces—10 SP”).
Allow player to move pieces (3 SP).−−

This allowed the release plan to put seven story points of items in sprint 4
and seven in sprint 5. Another advantage to this approach is that the team was

246    Enterprise-Scale Agile Software Development﻿

able to begin putting pieces on the board in sprint 4 instead of waiting until
sprint 5. By doing this, the team has moved a crucial step in the development of
the application (that of displaying pieces on the board) to be done earlier instead
of later.

Summary
The release plan is a very simple plan that lays out which features are planned to
be built and when during the course of the project. For the project manager, the
release plan provides information like:

Which features are finished?◾◾
Which features are in progress?◾◾
Which features are coming up?◾◾
Which features are in danger of being dropped from the project?◾◾

As each sprint is completed, the release plan is rewritten based on what the team
accomplished and what their anticipated velocity (how many story points they are
doing each sprint) is. The other advantage to the release plan is that it provides some
visibility to what the Scrum teams are working on and in what order (better even
than just looking at the product backlog). In some circumstances, project personnel
might find more effective ways to arrange the work by finding better fits or even
items that might be built more effectively in another order.

Feature Completion
In the previous sections, we discussed monitoring that helps product owners under-
stand how much work is getting done (burn rate and accumulation rate). Then we
discussed the release plan, which helps us to understand what specific backlog items
are getting done. In this section we’ll discuss how to actually understand how the
completed backlog items relate to the major business features slated for introduc-
tion in the current project. For example, let’s take another look at the CyberChess
example used in the previous section. When I work with development teams plan-
ning out a whole new product or a new release of a product, I often use a simple
group exercise where I draw a “cereal box” type figure on a flipchart or white board,
like that shown in Figure 19.6.

I then invite the Scrum team (including the product owner) to decorate the box
in a way that expresses the selling points of the product. Why would customers buy
it? Where’s the value? Were I to have the CyberChess development team work on
this box, the result might look like that shown in Figure 19.7.

This exercise does a fantastic job of finding out how much about the prod-
uct the Scrum team understands. Even if the product owner’s involvement drives

Agile Project Management    247

Figure 19.6 A n empty cereal box.

Cyber ChessTM

Version 1.0

NEW!!!!
Beautiful new 3D

Chessboard
Highly detailed chess

pieces
Personalized – you tell it

who you are

For Windows XPTM & Mac OS XTM

Figure 19.7 T he development team’s version of the CyberChess product
packaging.

248    Enterprise-Scale Agile Software Development﻿

much of the content, you might be surprised the number of times that the develop-
ers will find additional features that are key to product success. Looking at the box
shown in Figure 19.7, we can see that the developers have identified the following
major features:

	 1.	Product runs on Microsoft Windows XP2 operating system and Apple Mac
OS® X

	 2.	3D chessboard rendering
	 3.	Highly detailed chess pieces
	 4.	Personalized for the players

As it turns out, if we were to review the portion of the product backlog tagged
for the current release, we can see that most of the backlog items can be categorized
under one of the major features.

As you can see in Table 19.1, we can categorize most of the project’s backlog
items under one of the major product features. For example, the “3D chessboard”
feature contains the backlog items needed to create the board boundaries, the ren-
dering of the white and black spaces, and the creation and display of the empty
board. The “Highly detailed chess pieces” feature contains the backlog items to cre-
ate the chess pieces and put the pieces in the starting positions on the chessboard.
However, not all major features are accounted for and not all backlog items can
be categorized. This is because of the following two exceptions when categorizing
backlog items under major features:

	 1.	Nonfunctional constraints: Some features don’t actually describe things that
the product does; these constraints describe how the product works. For
example, in Table 19.1 we see that the “Product runs on Microsoft Windows
and Mac OS X” feature has no backlog items categorized under it. This is
because, in most instances, making the product work on one or more operat-
ing system platforms is a function of the DONEness criteria of each backlog
item. In other words, making the product work on both Microsoft Windows
and Mac OS X is something the Scrum team has to consider for every back-
log item it builds—making sure that all of the tests and code they create work
on both platforms.

	 2.	Baseline support: Some features create the fundamental functions of the
product. These features are usually not considered major; they aren’t selling
points. For example, telling CyberChess customers that the product supports
playing chess is not only redundant, but it won’t sell the product. Backlog
items that describe the basic functions of supporting a chess game are con-
sidered a given and are not “exciters” from the customer’s perspective, and
therefore not a major feature.

Agile Project Management    249

Having categorized the backlog items into major features and baseline support,
we can add up the story points within each category to get an idea of how big each
feature is (see Table 19.4).

Using the information in Table 19.2, we can now begin to track the comple-
tion of the project’s major features from sprint to sprint. Recall that, by the end of
sprint 1, the Scrum team had completed the stories shown in Table 19.3.

If we look at the results of sprint 1 in terms of the major features, we can actu-
ally start to see development progress in terms of the selling features of the product.
Take a look at Table 19.4.

Table 19.4 shows us the result of sprint 1 in terms of the completion of the
project’s major features. The Scrum team completed two story points of the total
seventeen story points required to build the 3D chessboard. This means that the 3D
chessboard is twelve percent completed by the end of sprint 1 and the personalization

Table 19.1  Product Backlog Categorized with Major Product Features
for Version 1.0

Major Feature Backlog Item

3D chessboard Create board boundaries and outlines (2 SP)•	

Create a white space (1 SP)•	

Create a black space (1 SP)•	

Compile spaces to create empty board (5 SP)•	

Highly detailed
chess pieces

Learn how to use the rendering routines (3 SP)•	

Build raster table for pawns (1 SP)•	

Build raster table for rooks and bishops (2 SP)•	

Build raster table for knights (2 SP)•	

Build raster table for king (2 SP)•	

Build raster table for queen (2 SP)•	

Put the pieces on the board in starting positions (5 SP)•	

Personalization Collect the player’s information (3 SP)•	

Product runs on Microsoft Windows and Apple Mac OS X•	

Baseline
support

Allow player to move pieces (3 SP)•	

Remove captured pieces (2 SP)•	

Allow a player to indicate check (2 SP)•	

Allow a player to indicate checkmate (2 SP)•	

Allow a player to resign (2 SP)•	

Allow both players to declare a draw (3 SP)•	

250    Enterprise-Scale Agile Software Development﻿

feature is already finished. Unfortunately, none of the chess pieces have been built,
and none of the baseline support has been completed to actually make the product
capable of playing chess. Let’s move forward to the end of sprint 2, where the Scrum
team completed the backlog items shown in Table 19.5.

When we translate this into completion percentages, it looks like Table 19.6.
Our feature completion at the end of sprint 2 shows us that we’re making good

progress against the 3D chessboard feature and the personalization is finished.
However, once again, we’ve made little to no progress against either the chess pieces

Table 19.3  Backlog Items Completed in Sprint 1

Backlog Item Category Size

Collect the player’s information Personalization 3 SP

Create a white space 3D chessboard 1 SP

Create a black space 3D chessboard 1 SP

Table 19.4  Major Feature Completion after CyberChess Version 1,
Sprint 1

Category Budget

Sprint 1

Points Complete % Complete

3D chessboard 9 SP 2 SP 22%

Highly detailed chess pieces 17 SP 0%

Personalization 3 SP 3 SP 100%

Baseline support 14 SP 0%

Table 19.5  Backlog Items Completed in Sprint 2

Backlog Item Category Size

Create board boundaries and outlines 3D chessboard 2 SP

Table 19.2  Major Feature Sizes

Major Feature Category Size

3D chessboard 9 SP

Highly detailed chess pieces 17 SP

Personalization 3 SP

Baseline support 14 SP

Agile Project Management    251

or the simple rules for playing chess. Our product owners would have to agree
unanimously—the product isn’t ready to ship. Let’s take a look at the result of
sprint 3. The Scrum team completed the backlog items in Table 19.7.

Finally, our Scrum team has begun to work on the chess pieces. When we
look at feature completion now (Table 19.8), we see some promising progress.
Unfortunately, though, there is still no baseline support to allow players to move
pieces, declare check or checkmate, or quit the game.

The project manager continues to review the feature completion with the prod-
uct owner, looking for opportunities to improve the prioritization of the product
backlog (which only the product owner can do) or somehow release the prod-
uct early, maximizing the value while reducing the overall project cost.

If we assume that the Scrum team completes sprints 4, 5, and 6 as planned in
the release plan (see Table 19.1), the feature completion looks Table 19.9 at the end
of both sprints.

As sprint 5 ends, we can see that all aspects of the product are ready to go except
for the baseline support (consisting of piece movement and end-game scenarios).
Sprint 6 is therefore completely dedicated to getting as much of the baseline sup-
port done as possible. In fact, at the end of sprint 6, we have an important decision
to make. The 3D chessboard is up and running, the chess pieces are ready, and the

Table 19.6  Major Feature Completion after CyberChess Version 1, Sprint 2

Category Budget

Sprint 1 Sprint 2

Points
Complete

%
Complete

Points
Complete

%
Complete

3D chessboard 9 SP 2 SP 22% 44%

Highly detailed
chess pieces

17 SP 0% 0%

Personalization 3 SP 3 SP 100% 100%

Baseline
support

14 SP 0% 0%

Table 19.7  Backlog Items Completed in Sprint 3

Backlog Item Category Size

Compile spaces to create empty board 3D chessboard 5 SP

Learn how to use the rendering routines Highly detailed chess pieces 3 SP

Build raster table for pawns Highly detailed chess pieces 1 SP

Build raster table for rooks and bishops Highly detailed chess pieces 2 SP

252    Enterprise-Scale Agile Software Development﻿
Ta

bl
e

19
.8

 
M

aj
or

 F
ea

tu
re

 C
om

pl
et

io
n

af
te

r
C

yb
er

C
he

ss
 V

er
si

on
 1

, S
pr

in
t

3

C
at

eg
o

ry
B

u
d

ge
t

Sp
ri

n
t 1

Sp
ri

n
t 2

Sp
ri

n
t 3

Po
in

ts

C
o

m
p

le
te

%

C
o

m
p

le
te

Po
in

ts

C
o

m
p

le
te

%

C
o

m
p

le
te

Po
in

ts

C
o

m
p

le
te

%

C
o

m
p

le
te

3D
 c

h
es

sb
o

ar
d

 9
 S

P
2

SP
 2

2%
2

SP
 4

4%
5

SP
10

0%

H
ig

h
ly

 d
et

ai
le

d
 c

h
es

s
p

ie
ce

s
17

 S
P

  
0%

  
0%

6
SP

 3
5%

Pe
rs

o
n

al
iz

at
io

n
 3

 S
P

3
SP

10
0%

10
0%

10
0%

B
as

el
in

e
su

p
p

o
rt

14
 S

P
  

0%
  

0%
  

0%

Ta
bl

e
19

.9
 

M
aj

or
 F

ea
tu

re
 C

om
pl

et
io

n
af

te
r

C
yb

er
C

he
ss

 V
er

si
on

 1
, S

pr
in

t
6

C
at

eg
o

ry
B

u
d

ge
t

Sp
ri

n
t 1

Sp
ri

n
t 2

Sp
ri

n
t 3

Sp
ri

n
t 4

Sp
ri

n
t 5

Sp
ri

n
t 6

Points
Complete

%
Complete

Points
Complete

%
Complete

Points
Complete

%
Complete

Points
Complete

%
Complete

Points
Complete

%
Complete

Points
Complete

%
Complete

3D
 c

h
es

sb
o

ar
d

 9
 S

P
2

SP
22

%
2

SP
44

%
5

SP
10

0%
10

0%

H
ig

h
ly

 d
et

ai
le

d

ch
es

s
p

ie
ce

s
17

 S
P

0%
0%

6
SP

35
%

7
SP

76
%

4
SP

10
0%

10
0%

Pe
rs

o
n

al
iz

at
io

n
 3

 S
P

3
SP

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

B
as

el
in

e
su

p
p

o
rt

14
 S

P
0%

0%
0%

0%
3

SP
21

%
8

SP
79

%

Agile Project Management    253

personalization works. The only missing item originally planned for the product
was the ability for the players to declare a draw. However, since the product owner
has already indicated a willingness to ship the product without the draw feature,
the product owner gives permission to go ahead and ship the product and the proj-
ect ends at this point. The “Allow both players to declare a draw” backlog item is
returned to the product backlog for possible inclusion in another release.

Summary
We learned in this portion of the chapter that feature completion helps our project
manager and product owners to identify how much of the critical, value-adding
backlog items have been completed. This is accomplished by grouping the backlog
items under the major features that require their completion (understanding that
not all features will have backlog items and not all backlog items will fit under a
major feature) and then reporting following each sprint on how much of each major
feature is completed based on a ratio of

	 ∑ (effort of completed items under major feaature)
(effort of all items under major f∑ eeature)

By calculating the feature completion after each sprint, we understand more
than just which backlog items are finished and which are coming up. Feature com-
pletion tells us when our product reaches the point where there might be enough
value to send it to its customers.

Controlling the Project
In general, agile projects do not require much in the way of specific controls. Each
Scrum team is responsible for organizing around their work; Scrum masters help
ensure that a working process is followed; Scrum teams ensure that development
practices are continuously improved; Scrum masters and managers help ensure
that obstacles identified by Scrum teams are corrected as quickly as possible. The
product owners manage the product backlog, and the product backlog drives how
work is taken into a sprint by the Scrum teams. However, there are frequently cir-
cumstances where a little additional control helps to bring a particularly complex
or risky project to a successful conclusion. In this section, we’ll discuss the follow-
ing techniques:

	 1.	Front-load your risk.
	 2.	Shorten your sprints.
	 3.	Manage interactions with nonagile development teams and providers.
	 4.	Monitor scope-outs.

254    Enterprise-Scale Agile Software Development﻿

Front-Load Your Risk
Given the guaranteed uncertainty that comes with software development, every
backlog item comes with a certain amount of risk. The Scrum team frequently
determines whether the risk is low, high, or unacceptable during backlog groom-
ing workshops. Of course, backlog items with unacceptable levels of risk are
usually removed from the backlog and either dropped completely as not feasible
or rethought and returned to the backlog as something with less inherent risk.
However, the remaining backlog items with higher degrees of risk present a sig-
nificant problem for the project. When the unexpected surprises occur, when the
expected effort significantly increases, the impact to the project can be catastrophic.
The best move is to give your Scrum teams as much time as possible to solve any
unexpected problems.

To that end, the project manager should work with the product owners to
encourage (1) Scrum teams to provide risk estimations3 as well as effort estima-
tions, and (2) product owners to review backlog item risk on a regular basis. In
order to give the Scrum teams more time to deal with the unexpected obstacles
that high-risk items tend to deliver, product owners should look for high-value,
high-risk items and prioritize them higher on the product backlog in order to give
Scrum teams more time to deal with unexpected problems. Of course, this has to
be weighed against other factors in prioritizing the product backlog, but product
owners need to be aware of the fact that you can’t blame Scrum teams for surprises
that occur too late in the project to be solved without delaying software delivery.

Shorten Your Sprints to Improve Visibility
As complex, risky, or critical projects draw toward completion, organizations have
been known to get quite nervous about the progress of the final sprints in the project.
During the early stages of the project, month-long or four-week-long sprints don’t
cause distress. Later in the project, however, the management team may want to
have more visibility to what is happening during the development sprints. In these
cases, it is very common to shorten four-week-long or one-month-long sprints to two
weeks. By doing so, product owners and organization management get more oppor-
tunities to attend sprint reviews, see completed features, reprioritize the product
backlog, and make critical changes to the project plan as the project nears the end.

As illustrated in Figure 19.8, a five-sprint project (where the sprints were either
one month long or four weeks long) switches to two-week-long sprints for the final
two months of the project. For logistical purposes, you can call these sprints 4A,
4B, 5A, and 5B. However, you can also just call them sprints 4, 5, 6, and 7—it
makes little difference.

Once your sprints have been cut in half, the organization will have twice as
many opportunities to review the result of the effort, approve or reject the results,
and make whatever changes are needed before allowing the Scrum teams to

Agile Project Management    255

continue development. There are twice as many opportunities to see what has been
completed, twice as many opportunities to make changes, twice as many opportu-
nities to reprioritize the product backlog.

In general, it is a bad idea to change the length of your sprints during a project.
Much of the predictability of a project (particularly with regard to the release plan)
is based on Scrum teams achieving roughly similar velocities each month. By chang-
ing the sprint length, the pace that the Scrum teams are familiar with is changed
and the predictability of the release plan may be seriously impacted. The effect of
this change is minimized because the sprints are cut in half—most Scrum teams
will be able to cut their typical commitment in half and be pretty close to accurate.

Manage Interactions with Nonagile Development
Teams and Providers
There are very few organizations existing today that have completed a corpora-
tion-wide transition. This means that, in many cases, your agile project is going
to need help from other, nonagile development teams and providers. This truly
isn’t difficult to manage in an agile project—since Scrum teams maintain their
own impediments list, dependencies with other organizations can be recorded on
the impediments list. Then, when the software or other service is provided by the
nonagile team, the impediment is cleared and the backlog item can be finished.
Let’s look at an example.

CyberChess v1.0 was a fantastic hit in its market and the company was gear-
ing up to produce version 2.0 of the game as quickly as possible. The orders for
version 1.0 have been phenomenal, but many of the comments from satisfied and
unsatisfied customers alike is that the game needs to support more advanced con-
cepts, including the ability to recognize check and checkmate conditions without
relying on the players to identify the conditions.

The content of version 2.0 was then selected from the remaining portion of the
product backlog based on customer feedback and the priorities set by the product
owner. The major features of this new version (including the product backlog items)
were determined to be:

Shortened Sprints

Sprint 1 Sprint 2 Sprint 3 Sp
4A

Sp
4B

Sp
5A

Sp
5B

Figure 19.8  Shortening the sprints near the end of the project.

256    Enterprise-Scale Agile Software Development﻿

	 1.	Advanced chess concepts (20 story points):
	 a.	 Identify common legal vs. illegal piece moves (3 SP).
	 b.	 Identify en passant pawn moves (3 SP).
	 c.	 Identify king-side castle (3 SP).
	 d.	 Identify queen-side castle (3 SP).
	 e.	 Support pawn promotion using captured pieces (4 SP).
	 f.	 Support pawn promotion using any piece type (4 SP).
	 2.	Identify end-game scenarios (14 story points):
	 a.	 Allow both players to declare a draw (3 SP).
	 b.	 Identify check condition without user’s help (4 SP).
	 c.	 Identify checkmate condition without user’s help (7 SP).
	 3.	Create logging and replay capability (14 story points):
	 a.	 Provide a log of all moves in algebraic notation (3 SP).
	 b.	 Provide a log of all moves in descriptive notation (3 SP).
	 c.	 Play back the entire game using the move log (8 SP).

With the proposed content for version 2.0 came another concern: at the rate
that the CyberChess product was growing in complexity, and the development staff
was likewise growing, there needed to be some additional infrastructure to support
two Scrum teams. As a result, two new items were added to the top of the product
backlog:

Implement source code version control software on a dedicated server (8 SP).◾◾
Implement an additional server for automated testing (4 SP).◾◾

Using the proposed content for Version 2.0 and these two new items, the proj-
ect manager formed a release plan (based on two Scrum teams at an estimated total
ten story points per sprint). One special note, though: The CyberChess procure-
ment department handles the ordering of hardware. All that the Scrum team can
do is identify the minimum requirements of the hardware.4 So, the backlog items
for ordering the hardware can really only be started by the Scrum team. Then it’s in
the procurement department’s hands. Since the typical delay from ordering hard-
ware to receiving and installing the hardware is twelve weeks, the project manager
placed the install and implement backlog items in sprint 4.

Sprint 1◾◾
Select a source code control software vendor (2 SP).−−
Order the server hardware to be used for the source code control server −−
(1 SP).
Order the server hardware to be used for automated testing (1 SP).−−
Order the source code control software (1 SP).−−
Identify common legal vs. illegal piece moves (3 SP).−−
Identify −− en passant pawn moves (3 SP).

Agile Project Management    257

Sprint 2◾◾
Identify king-side castle (3 SP).−−
Identify queen-side castle (3 SP).−−
Support pawn promotion using captured pieces (4 SP).−−

Sprint 3◾◾
Support pawn promotion using any piece type (4 SP).−−
Allow both players to declare a draw (3 SP).−−

Sprint 4◾◾
Implement the source code control software and the server (4 SP).−−
Implement the automated testing software (4 SP).−−
Identify check condition without user’s help (4 SP).−−

Sprint 5◾◾
Identify checkmate condition without user’s help (7 SP).−−
Provide a log of all moves in algebraic notation (3 SP).−−

Sprint 6◾◾
Provide a log of all moves in descriptive notation (3 SP).−−
Playback the entire game using the move log (8 SP).−−

During sprint 1, the Scrum teams identified the source code control soft-
ware they wanted and contacted procurement to place the software and hardware
order. With the order placed, the backlog items are completed. However, there
are now two backlog items—“Implement the source code control software and
the server” and “Implement the automated testing software”—that are blocked
because they cannot be done until the servers are delivered. As a result, the Scrum
team responsible for the implementation backlog items adds two items to their
impediment list:

Cannot implement source code control software until the server is delivered◾◾
Cannot implement automated testing server until the server is delivered◾◾

Listing the impediments in this manner keeps the issue of the receipt of the
servers and the software foremost in everyone’s minds. At each sprint planning
meeting, the impediment list can be reviewed against the backlog items being con-
sidered by the team. If the needed servers haven’t yet been delivered, the Scrum
team (with the product owner’s knowledge) can skip the blocked backlog item and
move on to another that is not blocked. As soon as the servers become available, the
Scrum master can remove the impediments from the list, effectively unblocking
the backlog items that required the servers.

This method of using the impediments list for external dependencies works very
well. As long as the Scrum master continues to work the impediment every sprint,
you can be assured that there is always someone responsible for following up on
these dependencies, making sure that problems are handled and backlog items are
worked as soon as they are no longer blocked.

258    Enterprise-Scale Agile Software Development﻿

Monitor Scope-outs
As Scrum teams work on their backlog items, it is not uncommon for items to have
to be returned to the product backlog. The problem, of course, is when another
Scrum team needs the scoped-out backlog item and is counting on it to be available
at the completion of the sprint. As a result, it is important that project managers
be aware when a Scrum team removes a backlog item from the sprint. The project
manager may need to get another Scrum team or another product owner involved
in order to determine the impact of the scoped-out item.

A number of popular backlog management tools support the tracking of depen-
dencies between backlog items and automatically alert the proper Scrum team and
product owner when a predecessor item is committed to a Sprint and then returned
to the backlog. These tools provide a means by which product backlog item depen-
dencies can be tracked (which, of course, requires product owners and Scrum
teams to identify and record dependencies between backlog items whenever new
items are added or existing items are discussed or split) and usually also provide a
means to alert product owners when a backlog item with one or more dependen-
cies is threatened by another item being scoped out by another Scrum team.

When a potentially serious scope-out is flagged, the project manager does not
need to become directly involved and, instead, should work to make sure that
the proper product owners and Scrum teams are involved to resolve the problem.
Prioritization of the backlog is a product owner concern, not a project manager’s
concern—except to get the matter resolved as quickly as possible. In a large orga-
nization, when product owners cannot agree on priority, they should discuss the
prioritization as a product owner team, and should that fail to resolve the situation,
they should escalate the issue to the “uber” product owner for final resolution.

Summary
In this chapter, we explored the concepts of monitoring and controlling an agile
project. When we monitor an agile project, we focus on features and the value those
features bring to the product. We want to know which features are completed,
which are under way, and which are yet to be done. By combining that informa-
tion with the estimated value of each feature, we understand how much value the
project has created so far, and we can make good business decisions based on the
desired value. We accomplish all of this by keeping a close eye on:

The burn rate and the accumulation rate◾◾ : This information tells us about how
much of the product backlog we are moving through during the project. It
helps us to understand the velocity of the Scrum teams and to predict when
the project will be finished.

Agile Project Management    259

Release planning◾◾ : This information tells us what we are working on in the
product backlog. It helps us understand which features are already finished,
which features are being built, and in which sprint the remaining unstarted
features will be done.
Feature completion◾◾ : This information tells us the condition of all major fea-
tures included in a release by looking at how many of the backlog items that
contribute to the feature are completed.

With this information, we not only have a much clearer understanding of how
the project is progressing, but also can tell how much of what the customer will be
looking for is finished and working. We will also be able to tell when enough of the
project is completed that we might be able to cut the project short and release it to
sales or internal customers at a reduced cost.

The monitoring and controlling of an agile project does not involve the monitoring
and controlling of Scrum teams. A Scrum team is a very dynamic environment that is
intended to be self-managing and, to a large extent, self-correcting. To the extent that
Scrum teams need guidance, there is usually a manager responsible to some degree
for assisting the team in improving their performance and helping to remove impedi-
ments. Most team measurements techniques, applied at the project level, become
more of a hindrance than a help, causing unwanted behavior as the Scrum team,
consciously or otherwise, adapts to the focus created by the measurement.

We also discussed controlling a project and the steps that a project man-
ager can take to ensure that the project is a success. Sprints can be shortened to
improve development visibility; risky product backlog items can be moved earlier
in the project; impediment lists can be used to track dependencies with outside,
nonagile departments.

Managing an agile project is all about helping product owners understand what
is happening in terms of the product backlog and in terms of the value built into the
project. We monitor the value created by the project, and when we achieve enough
value to take the product to our customers, we do so.

Endnotes
	 1.	Of course, if the fantastic new idea is still a lower priority than the lowest-

priority items currently on the product backlog, we simply add the new idea
to the product backlog for the next release.

	 2.	Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

	 3.	See Chapter 20 for more information.
	 4.	Of course, if a specific model is required, the Scrum team can request that,

but they have to justify the additional cost of the server with proof from the
vendor that only that model will work. Fun, huh?

261

20Chapter

Agile Analysis

Agile analysis is probably not the best term to use to describe how analysis is handled
during an agile project. Certainly, the analysis itself is not particularly agile when
it is under way. We don’t analyze features and requirements faster in agile develop-
ment. There’s no magic formula or novel exercise applied during agile analysis that
causes user stories to “stand up” and divulge all their secrets. The same require-
ments elicitation techniques we learned preagile apply when we work with agile
development. So, the term agile analysis is more a description of the steps that we
take than the effort of analysis itself.

When we say agile analysis, we are referring not to an analysis technique, but
rather a means by which we engage in requirements analysis throughout the agile
project. Agile analysis1 is probably most effectively described as “progressive elabo-
ration.” When we discuss agile analysis, we are really discussing:

	 1.	The timing of our analysis: As with much of agile development, agile analysis
is just in time. Our efforts to learn all of the details of a customer-desired fea-
ture are spread across the agile project and driven by the act of slicing large,
complex features into smaller and simpler pieces of features; we obtain the
final details when we begin to build the feature.

	 2.	The structure of our analysis: In order to provide for a rapid exchange of ideas
and ease of prioritization, we will build user stories that hold reminders of what
we wanted to discuss, while separate artifacts will contain all of the detail.

	 3.	The order of our analysis: We will focus on bringing the most value to the
product as early as possible during an agile project. This means our analysis
will not necessarily move functionally through a product (for example, we
might schedule our work to complete all of the analysis for our customer
registration requirements before moving on to our search requirements), but

262    Enterprise-Scale Agile Software Development﻿

rather will be done based on which user requirements provide the most value
to the customer (and therefore to our organization).

We will cover all of these concepts in this chapter as well as:

	 1.	Backlog grooming: How to break features into smaller, less complex pieces.
	 2.	Estimation: How to quickly estimate the relative effort required to build a story.
	 3.	Risk management: How to deal with features and stories that have an

increased likelihood of causing problems during the project.

We will also, first, do a quick review of user stories and related terms, as the rest
of the chapter will discuss the product backlog in terms of user stories.

User Stories and Related Terminology
The simplest definition for a user story is to call it a “reminder to have a conver-
sation with your customer about something.” User stories are intended to be no
more information than you could, literally, fit on an index card. User stories can
represent something that is quite large (e.g., “Build a ticket purchasing web site”)
or very small (e.g., “Allow the user to provide an airline preference for domestic
flights”). Small stories are just that—stories. Large stories, however—those that can
be further broken down into smaller pieces—are often called epics.

Believe it or not, that’s pretty much all we need to discuss to introduce user sto-
ries. For a more complete review of user stories and how to use them, refer to User
Stories Applied by Mike Cohn for more information.

The Life of a User Story
Probably the simplest way to describe agile analysis is in terms of the way ideas flow
into our development system and how they are turned into actual working software.

Figure 20.1 illustrates, at a high level, the concept of a user story: starting as a
customer’s idea, stories are written and added to the product backlog, broken down
into smaller stories, and finally handed off to the Scrum team for construction.
We’ll use this diagram as the basis for the rest of the discussion in this chapter. Let’s
start at the beginning.

The Next Great Idea
Ideas for products come from everywhere: customers, stakeholders, governments,
product owners, and developers. When new ideas come to the product owner, they

Agile Analysis    263

are frequently (though not always) rewritten as user stories. Some ideas are perfect
the way they are presented, for example:

Update the architecture to support the latest version of the supported OSs.

In cases like this, we don’t bother to rewrite the item, though we will still treat
it just like a user story. On the other hand, some ideas are actually not ideas, but
complaints, like:

The performance of the customer registration pathway is too slow.

Interestingly, complaints are quite often actually two items in disguise. The first
item is needed when research must be done in order to determine the cause behind
the complaint. In other words, why is the performance of the customer registration
pathway too slow? The second, of course, is based on the outcome of the first and
describes what needs to be done in order to solve the problem. Neither of these
items necessarily has to be written as a user story.

In many cases, however, customer and stakeholder needs are expressed in terms
of either solutions:

Please make the room reservation function support smoking and non-
smoking rooms.

or needs:

I want my nonsmoking customers to be able to reserve a non
smoking room.

Ideas

User Stories

Product Backlog

Sliced Stories
Scrum Team

Figure 20.1 T he life cycle of a user story.

264    Enterprise-Scale Agile Software Development﻿

In these cases, the product owner can rephrase the needs as user stories and add
them to the product backlog. In my experience, the best way to phrase a user story
is to follow a template introduced by Rachel Davies in 2002. Rachel suggested that
each user story should be phrased in three pieces, as follows:

As a <role>,
I want <something>,
so that <value or justification>.

This template has the distinct advantage of capturing not just the action, but
who (role) and why (result) as well. These additions force the product owner to care-
fully consider who uses the story and why they would want it. The trap that many
product owners fall into is writing user stories from the standpoint of themselves as
the user. For example:

As the product owner, I need the room reservation system to support
smoking and nonsmoking rooms.

Within a short period of time, your product backlog is completely stuffed with
items that begin with “As a product owner….” Stories written like this really aren’t
written from the standpoint of the user, and that could have a tremendous impact
on how the function is actually written. When writing a user story, always con-
sider who is going to use the story and what they really need it to do. For example,
in the case of the room reservation system, it is our nonsmoking customer that wants
the ability to reserve a nonsmoking room. With this in mind, we might now con-
sider that a nonsmoking customer is, more often than not, going to want to reserve
a nonsmoking room every time he or she makes a reservation. So, as we discuss the
story further, we might also realize that our customer profiling capability needs to
be extended to support smoking and nonsmoking preferences.

The product owner should also consider the value or justification for the story using
Ms. Davies approach. Why does the customer want a nonsmoking room? Assuming
this is primarily for comfort reasons, the resulting user story would look like:

As a nonsmoking customer, I want to be able to reserve a nonsmoking
room so that I can breathe comfortably within the room.

If the product owner is able to add any additional useful information to the user
story at this point, he or she should do so. For example, the product owner may
wish to ensure that the Scrum team considers the customer profiling functionality
mentioned earlier.

Once the user story is written, the product owner should decide where in the
product backlog the story belongs, effectively prioritizing the story for develop-
ment. This is an activity that belongs singularly to the product owner. While the

Agile Analysis    265

product owner may seek a number of opinions in order to prioritize or may be part
of a committee that determines prioritization, the user story is placed somewhere
on the product backlog that ultimately determines when the story will be built.

Grooming the Product Backlog
The product backlog represents a continuum of work targeted for a specific product.
Items on the backlog represent additional functionality, changes to existing func-
tionality (including making corrections and fixing defects), and (though somewhat
rarely) removal of outdated functionality. In practice, the product backlog can be
regarded as having a number of regions relative to the ongoing development effort.
These regions help us to better understand which items on the backlog are:

	 1.	Under construction
	 2.	About to be under construction
	 3.	In the near future and may be relevant to our immediate planning and mar-

keting efforts
	 4.	So far in the future as to be more strategic in nature

Of course, there are also items on the product backlog that are simply so far down
the list that by the time we could build them, our customers will likely have found
another way to solve the problem.

We can also describe these regions in terms of how they are engaged in agile
analysis efforts.

During the course of an agile project, we want to have our Scrum teams engaged
in agile analysis on those items with the highest probability of actually being built.
In terms of regions, this would be the area in Figure 20.2 called “Next Up.” Items in
this region are likely to be built during the next sprint, and we need to ensure that
the contents of the “Next Up” region are ready to be built by a Scrum team. If these
items are not properly prepared for the Scrum team, they will potentially be too
large and contain too many unknowns for a Scrum team to safely commit to com-
pleting them. When this happens, sprint planning takes too long (up to three or
four days), and the team frequently overcommits as a result of the unknowns still
hidden within each story. We ensure that stories are ready for Scrum teams through
an activity called backlog grooming.

Backlog grooming is actually a series of workshops scheduled during the sprint
where the Scrum teams stops what they are doing and focuses on gaining an
understanding of the items in the “Next Up” region of the product backlog. These
workshops are usually between two and four hours a week (between five and ten
percent of the team’s total capacity) and are best scheduled in advance and dur-
ing the same days and times each week. For example, some teams schedule their
backlog grooming workshops on Monday and Wednesday afternoons from 1:00

266    Enterprise-Scale Agile Software Development﻿

to 3:00. Maintaining a consistent schedule helps team members to remember
when and where the workshop will be held and also helps them to plan their days
more effectively.

Teams spend the bulk of their time during these workshops talking with the
product owner in an attempt to learn as much about the backlog items as they can.
When the team is comfortable that they fully understand an item, they will decide
whether or not to slice the story down into smaller pieces. The guideline I use is
simple: if the story seems like it is more work than can be done by two or three
team members in less than a week, it’s too big and needs to be sliced into smaller
pieces. For example, let’s assume that we are building a web site to sell a variety of
different kinds of merchandise. Our team is discussing the first story in the “Next
Up” region. It reads:

As a consumer, I want to be able to decide how I want the purchased
item shipped so that I can have it shipped as quickly or as inexpensively
as I wish.

This story, clearly, is quite large and will not be built by a couple people on the
team in less than a week. So, after having discussed the story with the product
owner, the team decides to slice the story into four parts, as follows:

In Progress
(now to the end of the current sprint)

In this region, all of the items are currently under construction. Analysis
occurs on an as-needed basis within the Scrum team and usually

consists of user interface details, exceptional condition handling, etc.

Next Up
(the next one or two sprints)

In this region, all of the items are undergoing final preparation where
they are sliced into smaller and smaller stories that can be easily

handled by a Scrum team. This is where the majority of the backlog
grooming occurs.

H
ig

h
Pr

io
rit

y

Product Backlog

Lo
w

 P
rio

rit
y

Release
(the planned release content)

In this region, you will find all of the items that are planned for the
current release of the product. Items in this region have been reviewed

at the start of the current project; some have been sliced down to
a reasonable (but still relatively large) size in order to create the

project budget.

Release + 1
(scheduled for inclusion in the next release)

In this region, you will find all of the items that are planned for the next
release of the software. The Product Owner placed items in this region.

No further analysis has been completed nor is any planned.

Someday
(from the end of Release + 1 to the bottom of the backlog)

In this region, you will find everything else on the backlog that does not
fit into the previous regions. The Product Owner has placed items in this

region. No further analysis has been completed nor is any planned.

Figure 20.2 R egions in the product backlog.

Agile Analysis    267

As a consumer, I want to ship my package overnight because I want
it tomorrow.

As a consumer, I want to ship my package via two-day air because I
want it quickly.

As a consumer, I want to ship my package by ground because I’m
not in a hurry.

As a consumer, I want to ship my package by the least expensive
means possible because I want to maximize my savings.

Note that we did not slice the story based on development activities. In other
words, there is no “Design the package shipment choices function.” Likewise, there
is no “Test the package shipment choices function.” Stories built like this simply
invite waterfall phases back into the development effort and are to be avoided.

After the slicing, the stories are much clearer and their scope much more lim-
ited, but still fairly complicated. In this case, we’ll do even more analysis on each
of the new stories by asking more questions of the product owner. For example, in
discussing the fourth story (shipping by the least expensive means possible), our
product owner has told us that this automatically means that we’ll use ship-for-less
for all of our domestic and international shipping and all that is needed are a valid
destination address, a valid origin address, and the weight of the package. This is
good, because now we can derive some new stories:

Collect a valid destination address for ship-for-less shipping.
Collect a valid origin address for ship-for-less shipping.
Use valid postal codes and the weight of one item to determine ship-

ping costs for ship-for-less.
Submit the shipping order for ship-for-less shipping.
Use valid postal codes and sum the weight of multiple items to deter-

mine shipping costs for ship-for-less.

Again, note that we did not slice the story into product layers like “Modify the UI
to collect destination and shipping addresses” or “Update the items object to provide
the weight of an item.” Whenever we talk about user stories, we need to remain focused
on actual, demonstrable, and complete function. For example, if we simply worked
on a story where we modified the UI to suit the collection of new data, we could very
likely end up in sprint review with nothing but updated screen shots. Screen shots
don’t work. You can’t prove they do what they are supposed to do unless the data they
collect end up used or stored somewhere in a manner that makes sense.

Our new stories slice the concept of shipping via the least expensive means pos-
sible and break the functionality down into pieces that are small, less complex than
before, and can be demonstrated at sprint review. For example, the first of our new
stories provides the capability to collect a valid destination address. When com-
pleted, we can demonstrate not only that the UI has been modified, but also that
edit and reasonability checks are in place, and even that the information ends up in

268    Enterprise-Scale Agile Software Development﻿

our database where it is supposed to be stored. In fact, this story could be further
subdivided into the following:

Collect the destination street address, edit it, and store it for ship-
for-less shipping.

Collect the domestic (U.S.) destination zip code, edit it, and store it
for ship-for-less shipping.

Collect the international destination postal code, edit it, and store it
for ship-for-less shipping.

Collect the domestic (U.S.) city and state, edit them, and store them
for ship-for-less shipping.

Collect the international region/province, edit them, and store them
for ship-for-less shipping.

As before, each of these stories slices the prior story (collecting a valid destination
address) into smaller pieces. Each of the new stories is independently demonstrable
when completed. Each story can be proven to either reject the provided data for a
specific reason or to place the data into the proper database location.

Avoiding the Waterfall User Story
When slicing user stories, it is important to think of each slice as an independent
piece of a bigger function. Think about it in terms of application architecture. The
typical application today is layered. Starting from the top, we often speak of the
following (see Figure 20.3):

User interface (UI): The screens or pages that the user actually sees.◾◾
Business logic: Data validation and reasonableness checks, the “intelligence” ◾◾
of the application.
Data access layer: An abstraction layer, separating the application from the ◾◾
database implementation.
Architecture: The underpinnings of the application providing common ◾◾
functionality.
Database: The storage layer of the application, usually a third-party engine, ◾◾
providing a means for data storage and retrieval.

Certainly we can argue from application to application whether or not these
layers are present and, indeed, if additional layers shouldn’t be included. Regardless
of what layers your specific application includes, we want to avoid a typical mis-
take that inexperienced teams make when they slice stories along task lines, rather
than functional ones. If we slice the stories properly, each and every story will
be independently verifiable. In other words, when the team finishes building the
“Collect the domestic (U.S.) city and state, edit them, and store them for ship-
for-less shipping” story, you should be able to type in a valid city and state and

Agile Analysis    269

then find them in the proper database locations. Whatever specifications need
to be created to properly document this story can be written at the same time.
This technique also has the advantage of allowing the developers to exercise every
layer of the application immediately upon the building of the very first story. For
example, if there is going to be a problem with the data access layer, we’ll probably
find out right away when we try to use it to store the city and state. Likewise, if
there’s a problem with the database access or the database server, or the database
management software needs an upgrade, we’ll find out immediately and we can
address the problem right away rather than having to wait until all of the pieces
are finished later in the project.

If, however, we incorrectly choose to slice the stories along task lines, we’ll end
up with stories like this:

Analyze the ship-for-less shipping option.
Design the ship-for-less shipping option.
Code the ship-for-less shipping option.
Test the ship-for-less shipping option.

Using these stories, we forfeit all of the aforementioned advantages and we rein-
troduce waterfall processes back into the sprint. When we complete the analysis
story, there is nothing to show for our efforts except, perhaps, some documentation.
When we complete the design story—well, more documentation. As we finally

Database

Architecture

Data Access Layer

UIUI UI UI UI

Business Logic Business Logic

Figure 20.3 T he typical layers of a client/server application.

270    Enterprise-Scale Agile Software Development﻿

move on to the coding story (perhaps in the following sprint), we could discover
that the way we planned to use the data access layer was completely wrong and, in
order to adjust our code, we also have to rework our design.

Think of it like drinking a hot cup of coffee. If you sip a little at first, you can
easily tell if it is too hot, too sweet, or too bitter without really subjecting yourself
to an uncomfortable experience. However, take that same cup of coffee and make
your first taste a nice big swallow and you could be in for a very painful surprise.
Proper slicing of user stories accomplishes the same thing—little functional “sips”
allow you to make sure that all of the pieces of the application are working before
you put a lot of time and planning into writing a large, complex function.

Making Sure the Backlog Is Ready for Grooming

When you have one product backlog and a number of Scrum teams, you will need
to make sure that every team knows which backlog items they will be working
on and which will be completed by other teams. Ideally, you will want the team
that builds an item to be the team that estimates and grooms it. In many cases,
this is quite easy—when you have teams that are specialized, it becomes very clear
which teams will work on which backlog items. However, in some circumstances,
there will be items that are not clearly part of one team’s specialization, or there
are multiple teams in a single specialization. It this instance, it will fall, usually to
the Scrum master and the product owner, to ensure that every item in the product
backlog (at least for the next two to three sprints) is clearly assigned to a specific
Scrum team. These assigned items become the list of items to be groomed by the
Scrum team.

Scheduling the Workshops
When scheduling backlog-grooming workshops, it is better to schedule more fre-
quent but shorter workshops than to schedule less frequent but longer workshops.
I have experienced cases where Scrum teams planned their backlog grooming
workshops for the last couple days of each sprint. Those teams initially felt that
doing so helped them to avoid unnecessary interruptions during the course of the
sprint caused by having to stop two or three times a week for grooming workshops.
Unfortunately, each and every team learned that there were some significant draw-
backs to this approach. First, they found that the last couple days of the sprint were
often tied up with final touches, little surprises, and preparation for the upcoming
sprint review. Being interrupted during this period to do backlog grooming was the
last thing they wanted. Second, because the workshops occurred only at the end
of the sprint, team members would often forget that the workshops were sched-
uled and would overcommit themselves to get work done. This led to some crucial
team members missing their goals or missing the workshops—both of which led
to very undesirable results. Even more importantly, however, is the effect on the

Agile Analysis    271

innovativeness and imagination of the team when you give them only a couple
days to get the backlog ready for the next sprint. The combination of long work-
shops (three to four hours per day) and the impending end of the current sprint
results in the team settling for second-class solutions. There just isn’t enough time
to be imaginative. As one team member put it, “It’s really hard to be innovative on
a schedule.”

My recommendation is that you schedule grooming workshops two times a
week, anywhere between ninety minutes and two hours, and at the same time
each week. I used to schedule workshops for Monday and Wednesday afternoons
between 1 and 3 p.m. There are a number of advantages to approaching the work-
shops in this manner:

	 1.	Because the meetings are short, they are over before team members start to
get tired and lose concentration (when I teach classes or facilitate workshops,
my rule is to take short breaks every 90 to 120 minutes; adults can only last
that long before they start losing concentration).

	 2.	Because the meetings are scheduled, team members get used to doing them
on, for example, Monday and Wednesday afternoons and rarely commit to
too much during those days.

	 3.	Because the meetings are frequent, if the team isn’t able to come to a conclu-
sion on how to deal with a particular story during one workshop, there is
always another opportunity just a couple days away to try again.

	 4.	Because the meetings are scheduled across the entire sprint, they have little
impact on last-minute work being done by the team at the end of the sprint.

	 5.	Because it is clear at the beginning of the sprint that the workshops will con-
sume up to ten percent of the team’s total capacity, your team can plan for that
ten percent when determining their total commitment at sprint planning.

One last advantage: when doing backlog grooming, your goal is to have enough
stories ready in the product backlog so that the team can conduct a successful sprint
planning meeting. Once you have achieved that goal, you can cancel the remaining
workshops for the rest of the sprint.

Setting Up the Workshop
There are a number of methods for backlog grooming. In this section, I will outline
a series of rules that I tend to use to create a clear understanding for the participants
of what their role is and what is expected of them. For starters, I invite the entire
Scrum team (including the product owner) to the workshop. This is a mandatory
and very important meeting, so I ask all participants to try to ensure that they
make no other commitments during the periods when the workshops are to be
held. However, should the product owner be unavailable (which happens frequently
due to the nature of the job), a business analyst should be assigned to “own” the

272    Enterprise-Scale Agile Software Development﻿

item and must, prior to the workshop, discuss the item thoroughly with the prod-
uct owner to ensure that the business analyst has the same clarity of direction and
detail as the product owner.

Before the workshop, I prepare a table in the middle of the room with the
following:

	 1.	Index cards, each representing stories the team discussed and estimated in
previous workshops, are stacked in estimation-specific piles on the table.
There is a one-point stack, a two-point stack, a three-point stack, and so on.
For the larger stories, around ten or so, I simply place a single stack of cards
that are arranged in ascending point-size order (in other words, the first card
in the stack might be a ten-point story, but as you flip through the cards in
the pile, they get bigger).

	 2.	A timer, used whenever a discussion exceeds a predefined ten- or fifteen-min-
ute limit, to help ensure that the discussion is time boxed and does not take
over the rest of the meeting.

	 3.	Blank index cards, used to create new stories and upon which are recorded
special notes and cost, value, and risk estimates.

	 4.	A copy of the product backlog, used by the team to determine which stories
need to be discussed and reviewed, looking for undiscovered dependencies.

	 5.	A deck of planning poker cards, used for estimating effort and risk.
	 6.	A flipchart page taped to the wall with the rules for the meeting.

In addition, I make available a digital camera for saving work done on a white
board during the meeting and ensure the room has at least one white board and one
or more flipcharts in it.

For new teams, we begin our first grooming workshop by reviewing the ground
rules and goals (I will revisit the rules and goals from time to time, even with expe-
rienced teams, to keep everyone on the same page during future workshops). The
rules are simple and negotiable, but they start like this:

	 1.	Workshop attendees must decide how what is accomplished during the work-
shop is recorded for later use (who is taking minutes, recording design deci-
sions, etc.).

	 2.	The product owner or business analyst introduces the backlog item and then
proceeds to answer any clarifying questions that the Scrum team may pose.

	 3.	If a backlog item represents more effort to solve than two or three team mem-
bers can complete over a period of one week, the item is to be sliced into two
or more smaller pieces.

	 4.	If a discussion about a backlog item continues for twenty minutes without the
Scrum team being able to determine how to slice the item into smaller pieces,
the team should agree to either:

Agile Analysis    273

	 a.	 Table the discussion until the next workshop
	 b.	 Continue the discussion for an additional five minutes and recheck to

continue or table the discussion
	 5.	When a backlog is sliced, it must be reestimated. If the item is still too large,

the team should continue to discuss and slice until there are no more remain-
ing items larger than what can be finished by two or three team members
in less than a week (many Scrum teams that use story points for complexity
estimation discover that appropriately sized items are no larger than three or
four story points.

	 6.	Once a backlog item is sliced to the proper size for inclusion in a sprint
(i.e., the item can be completed by two or three team members in less than
one week), discussion of the item ends and the team moves on to the next
item on the backlog.

Again, I consider these rules negotiable for the team. So, for example, if the
team wants to discuss one backlog item until they have the entire item sliced into
appropriately sized items, that’s their decision (they may prefer not to have their
discussions time boxed, though, at the same time, I’ve often found that teams that
don’t want to time box their discussions do so because they aren’t willing to keep
their discussions focused as they should). Similarly, teams might decide that prop-
erly sized items can be done in less than two weeks, rather than one. Let your teams
decide how to modify the basic structure of the workshop, but be sure to come back
and address the workshops during the next sprint retrospective.

Discussing a Backlog Item

The goal of backlog item grooming is to understand enough about a backlog item
that it can be easily sliced into smaller and smaller pieces. In the end, you want your
Scrum teams committing to items that are clearly enough understood that they can
be quickly reduced to tasks and that minimize the number of unexpected surprises
that occur during the course of the sprint. To do this effectively, you may want to
sit down with your Scrum teams prior to their first grooming workshop and start
working out how they can be thorough in their discussions while, at the same time,
avoiding unnecessarily long, drawn-out conversations.

Some of the items you will want your team to consider are:

Risk: Your Scrum teams can estimate risk in much the same way they esti-◾◾
mate the problem space of the backlog item. This can be useful in sprint plan-
ning for helping the Scrum team recognize if the sprint is overloaded with too
much risk; risk assessments can also be useful in helping the product owner
with backlog prioritization.

274    Enterprise-Scale Agile Software Development﻿

		 Your Scrum team can consider many aspects of risk when deciding how
to categorize an item’s risk. Any of the following could significantly raise the
risk of a backlog item:

Does the team understand the technology?−−
Does the team currently have all of the necessary skills to get the job −−
done? Will those skills be hard to get? Will those skills have to be hired
from outside the organizaton?
Is this more research than development?−−
Is there significant pressure from senior/executive management to get the −−
job done (in other words, is this a high-visibility item)?
Does this item require changes to a particularly error-prone portion of −−
the application?
If you have access to the end user of the item, has he or she bought into −−
this item? Does he or she agree that the item is needed?
Does the intent of the item seem to be fluid (i.e., when you discuss it with −−
the product owner, is he or she unsure what’s going to be needed)?

		 Items can be categorized in terms of 1 (greatest risk) to 5 (lowest risk). You
can also try risk categories that also help you decide what actions to take next,
for example:
Low risk: No special action is required.◾◾

Medium risk: Item may require more slicing to isolate or mitigate risk.−−
High risk: Item should be sliced into an analysis item and a problem −−
item. The analysis item must be completed before additional slicing of the
problem item can proceed. Table the problem item and move on.
Unacceptable risk: Item should be removed from the product backlog −−
and discussed with the product owner for appropriateness.

Interdependencies: Your Scrum teams should always be watching for con-◾◾
nections between different backlog items. These connections often force the
product owner to reprioritize the product backlog to ensure that the right
items get done in the right sequence. Understanding the interdependencies
between backlog items is crucial to any Scrum team, as their progress can be
completely blocked by an item that cannot be completed because another,
lower-priority item needs to be completed first. In a large environment where
two Scrum teams can exist that normally have little or no interaction, knowl-
edge of interdependencies can help ensure that these typically independent
teams coordinate on the order in which the items are built and can inform
each other in the case of difficulties getting the items built. I have been asked
to help in instances where a Scrum team finished a feature in a sprint only to
find out that a related but required feature in the application’s architecture
had been scoped out of the project due to overruns.2 It is vitally important
to know the interdependencies between backlog items and to consider those
dependencies during backlog grooming.

Agile Analysis    275

Special constraints or conditions: Your Scrum teams should always be look-◾◾
ing for unusual constraints or conditions that might affect how a backlog
item would be built. Does the item require a tool that hasn’t been installed
yet? Does the item require knowledge that no one in the organization has?
Nonfunctional requirements (NFRs): These can be very tedious to address, ◾◾
but are very important to deal with early. NFRs are requirements that your
application must abide by in terms of, among other things, environmental
and performance constraints. For example, you might be building a game
that is supposed to be portable across various gaming platforms. In this case,
just about every item on your backlog will be constrained by having to use
only those functions and capabilities common across all of the applicable
gaming platforms. In every case, your Scrum team will either have to build
the item to work in all environments or (if permitted) have to slice the item
into several items that will address each gaming platform independently.

		 You might also have to deal with performance constraints on an item (even
when not specified, you can usually assume that there’s a performance con-
straint on an item). Performance constraints usually take on the form “must
perform/complete in less than x seconds y% of the time.” Performance con-
straints drive nearly every aspect of the backlog item, from the type of solu-
tion employed to the final cost of the item.

		 The sooner nonfunctional requirements are known for each backlog item,
the more effective a job the Scrum team can do in slicing the items and
deriving the best solution for the circumstances. As I mentioned earlier, your
Scrum teams will need to consider the nonfunctional requirements for each
backlog item one at a time. The challenge is in ensuring that the team remem-
bers to take the time to review each criterion against each backlog. Creating
and posting a list of the common nonfunctional requirements in the room
where you hold the grooming workshops can, in part, accomplish this. Teams
should also make sure that backlog items have clear performance require-
ments. Where the nonfunctional requirements of a backlog item are not
clearly specified, the team should be able to get clarification on the require-
ments from the product owner.

Backlog Items That Need Special Handling
In a large organization (and even in small ones), even though we want our Scrum
teams to have all of the skills that they need to get the job done, there are always
some specialized skills that are in short supply. Skills such as database architec-
ture, database analysis, usability analysis, and even technical writing are frequently
counted among those in short supply. When a backlog item is discovered that
requires a specialized skill in order to be built, the item can be said to require spe-
cial handling. Let’s clarify this a little with a simple example.

276    Enterprise-Scale Agile Software Development﻿

Assume for a moment that you are managing the transition of an organization
to agile development. You’ve launched a project that includes eight Scrum teams
(roughly fifty or so developers). Supporting the development organization is a data-
base designer, a technical writer (who is responsible for all of the documentation
that accompanies your software), and a technical wizard who manages the server
environments that your teams use to develop and test the product. As backlog
grooming begins, a number of backlog items are discussed that require the creation
of new tables in the product’s database. Each item poses a problem for the Scrum
team that would “own” the item, as they don’t have a database designer as part of
the team. These items require special handling.

For the purposes of backlog grooming, the important aspect of special handling
is that the team recognizes that it is needed and that the item is “tagged”3 as requir-
ing a particular skill. Once an item is tagged as requiring special handling, teams
can decide at sprint planning how to get the right skills on the team (for the sprint
or just for a few days).

Remembering What We’ve Learned
Backlog grooming workshops have one main goal: to simplify the product back-
log by reducing complex and large items into smaller items that are more eas-
ily understood. During the course of each workshop, we learn enough about
various items on the backlog that we are able to slice those items into smaller
and smaller items. However, what happens to the information that we acquire
along the way about these items? Yes, some of that information is implicit in
the existence of an item (for example, it’s clear without additional information
that if you have three items that provide for the use of MasterCard, VISA, and
American Express credit cards in your product that your plan is to support those
three cards).

As we discuss backlog items, we often review (and sometimes decide) how a
particular item is to be constructed within the application or systems architecture
of our application. We might discuss various aspects of the item design, or at least
determine things to be careful of when the item is finally built.

What happens to all of that information after the grooming workshops?
Clearly, we don’t want to have to rediscover this information later in the

project. Having already discussed an item, we would ideally have this infor-
mation available for later grooming workshops and for sprint planning when
the item is finally reduced to tasks. Therefore, while we are slicing items into
smaller items during the grooming workshops, we will also need to capture
the information recorded on flipcharts, white boards, and in discussions some-
where. The simplest solution (and thus the one that appeals to me) is to capture
the information in pictures and text on pages in a wiki, keyed to the backlog
item number. In essence, we can create a wiki-based extension to our items (see
Figure 20.4).

Agile Analysis    277

As each backlog grooming session ends, through a means decided upon by the
Scrum team, the information collected during the workshop is added to the wiki.
The backlog item ID is saved as part of the page number to facilitate easily find-
ing the information later. The digital camera is used to capture drawings, and the
images are stored on the wiki with the rest of the information.

When a backlog item is sliced into smaller pieces, you need only place links on
the “parent” item page to the “child” items that were sliced from the parent (see
Figure 20.5).

Using a wiki site in this manner allows the Scrum teams to save the result of
all of their grooming workshop discussions in manner that allows for easy retrieval
when needed again.

Another approach to saving the critical information we discover during backlog
grooming is to build a series of documents based on the fundamental capabilities of
the product. Let’s go back to the ticket purchasing web site for an example. In that
case, the fundamental capabilities were listed as follows:

Search for tickets◾◾
Purchase tickets◾◾
Deliver tickets◾◾
Other stuff◾◾

In this scenario then, as your Scrum teams discussed and sliced items related to
searching for tickets, all of that information would be transferred to the “Search for

Item 8

Item 7

Item 5

Item 4

Item 3

Item 2

Item 1 Info about #1

Info about #2

Info about #3

Info about #5

Info about #7

Info about #8

Wiki Server

Info about #4

Info about #6Item 6

Figure 20.4 E xtending backlog items with a wiki.

278    Enterprise-Scale Agile Software Development﻿

Tickets” document. Likewise, information related to purchasing tickets would be
recorded in the “Purchase Tickets” document. This approach works well for small
products, but as the number of items increases, this approach can become cum-
bersome. Indeed, as the number of personnel increases, this approach can create
unnecessary obstacles when too many people need to access the same document.

One final thought on saving the outcomes of grooming workshops—be care-
ful not to fall back into “big design up front” or “big analysis up front” patterns.
In other words, don’t try to make the aforementioned wiki pages or documents
pretty, nor should you try to record every detail you can think of. These methods
of extending the backlog item are not intended to replace the longer-term inter-
nal and external documentation that your organization needs with regard to its
software applications. The information uncovered and discussed during grooming
workshops and stored in the manner we’ve discussed is merely to ensure that the
information is not lost or forgotten between workshops or before sprint planning.

Backlog Item #232

Item Name: Use Credit Cards to Purchase Airline Flight Tickets

Sliced into:
Use American Express to purchase tickets (#566)
Use Mastercard to purchase tickets (#567)
Use VISA to purchase tickets (#568)
Use PayPal to purchase tickets (#570)

Description:
In order to easily purchase tickets on a flight, we want our customers to be able
to use credit cards and other third party means.

Last Updated:
Friday, November 14, 2008 - 10:03:45 AM ET

Figure 20.5  Using a wiki page to show child item information.

Agile Analysis    279

Summary
This chapter covers (at a high level) the concepts surrounding the incorporation
of ideas and requirements for a product, how to get those ideas and requirements
onto the product backlog, and how to work the backlog in order to create easily
understood, small items for our Scrum teams to commit to and achieve success
while building. Agile analysis is all about the preparation of an inventory of ideas,
slowly adding more and more information until the order, structure, and timing of
our analysis makes each idea ready for construction.

The timing of analysis is important in an agile project. Our goal is to under-
stand more and more about backlog items as our project progresses. From sprint
to sprint, and from workshop to workshop, we learn more about the items that
we are planning to build so that we achieve a complete and comprehensive under-
standing only just before we’re ready to build the item. In addition to improving
our knowledge of the item by giving us time to learn more about the item, we also
reduce rework and risk by not spending a lot of time analyzing and making deci-
sions about an item that might later prove to be completely different or removed
from the project entirely.

The structure of analysis is also important. Rather than simply adding more
and more information to an item as we learn about it, we slice items into smaller
and smaller pieces, learning more about each piece every time we reduce its size.

The order of analysis is critically important to maximizing the value we bring
to our product. Rather than just analyzing the intended features of our product
in a random order, agile analysis forces us to focus on items in priority order. This
allows us to build only what our product owner and customers want and helps us
to avoid creating features and options that no one will use or even wanted in the
first place.

Backlog grooming workshops, held frequently throughout every sprint in the
project, help us to simultaneously build our product and learn more about our
backlog. These workshops are short enough to ensure that our Scrum teams can
be innovative and creative without being rushed or getting bored during the work-
shops. When discussing backlog items during backlog grooming, Scrum teams
should consider the risk that the item poses, interdependencies with other items,
special considerations that might add complexity to the item, and nonfunctional
requirements that might apply to the item, further increasing its complexity or, at
the least, constraining the possible solutions. The workshops also help us to not
analyze more items during a sprint than we really need; once we have enough for
the next sprint (plus a little extra, just in case), we can stop, further reducing risk
and the possibility of rework and waste.

When product backlog items are analyzed, we learn more about them prepara-
tory to slicing the item into smaller, less complex items. This information needs to be
captured and stored, perhaps in a wiki, perhaps in a version-controlled document,

280    Enterprise-Scale Agile Software Development﻿

in order to ensure that all of the information garnered during the backlog grooming
process is not lost.

Agile analysis is about progressive elaboration; that is, we learn a little more
each week about the product backlog items that we intend to work on in a future
sprint. We do this in a progressive fashion because doing so:

	 1.	Recognizes that the later we put the finishing details on a product backlog
item before we build it, the more we know about how that item is supposed
to work and appear once built.

	 2.	Helps us to ensure that we do not spend a lot of valuable time on product back-
log items that we can’t be sure we are actually going to build until the Scrum
team is actually ready to commit (and even then, there are possibilities).

By deferring decisions on backlog items until right before the Scrum team is ready to
work on them, we also recognize the inherent uncertainty of software development.

Endnotes
	 1.	 You can find more information at http://www.bigagiledevelopment.com/agileanalysis.
	 2.	 Unfortunately, no matter what decision you make at this point (to remove the com-

pleted feature, to leave the feature in place but disable it in the application until later,
or to find a way to get the necessary architecture feature built anyway), there’s going to
be a considerable expense incurred to deal with the situation.

	 3.	Tagging a backlog item can be managed easily, regardless of how you manage your
backlog. If you use cards, assign special colored cards to different specialized skills.
For example, assign database design to red cards. Blue cards can be architecturally
significant, requiring architectural changes and thus an architect. Yellow cards can
be for items that require special attention from a technical writer. If you use soft-
ware tools to manage your backlog, most tools provide the capability for tagging
items or for applying themes to backlog items; themes are really just tags under a
different name.

281

21Chapter

Launching Scrum Teams

As the transition progresses, you’ll find yourself forming and reforming Scrum
teams on a fairly regular basis. Properly launched, Scrum teams can avoid many of
the start-up difficulties that new teams face by recognizing the typical issues that
new teams face and then finding ways to mitigate or eliminate those stumbling
blocks as quickly and as early as possible. While every organization and culture
is different, this chapter will review many good practices that you can employ to
improve the initial start-up of Scrum teams. I also recommend reviewing the retro-
spective findings from new teams during the first three or four Sprints in order to
get an idea of the typical types of problems that they are facing and amending your
start-up procedures appropriately.

As with most small groups, Scrum teams typically follow Bruce Tuckman’s
model of group dynamics that includes the four phases forming, storming, norm-
ing, and performing. Dr. Tuckman observed that all small groups experience these
phases in order, and that they can move in both directions through these phases
when the team membership is changed and sometimes for absolutely no reason at
all. A brief explanation of these phases, and steps to take with Scrum teams can be
found in Table 21.1. We’ll talk about all of these practices and more throughout
the rest of this chapter.

Starting a New Scrum Team
When a new Scrum team is formed, it is a good idea to be proactive about bringing
the team together before other less productive behaviors can set in. Even when the
team is made up of experienced team members, be sure to go through the steps that
follow in order to ensure a successful start to your team.

282    Enterprise-Scale Agile Software Development﻿

Establish a Team Identity
Sit down with your team and discuss creating a name and identity for your team. In
one particularly interesting case, I worked with a team that not only identified them-
selves as a particular type of dinosaur, but they even had a seven-foot inflatable mascot
in their team room. In addition to creating some team spirit, the mascot also served as

Table 21.1 T he Tuckman Model and Scrum Teams

Phase Definition Scrum Team Steps

Forming The team comes together
with a new purpose. There
is a lot of energy and
excitement surrounding this
new venture, but the team
frequently doesn’t know
where to start.

Establish team identity•	

Team building (icebreakers)•	

Define ground rules•	

Define DONEness•	

Prepare the product backlog•	

Storming There’s a lot of role
confusion. Team members
have repeatedly upset other
members by doing or saying
things they don’t appreciate
or understand. Cliques have
formed within the team;
there’s an “us vs. them” feel
within the team.

Keep team goal focused•	

Continue to recognize and •	
address conflict

Revisit and revise ground rules•	

Continuous learning•	

Norming The team is feeling “burned”
from the storming phase,
but they are working
through the major
problems. There will be
some tentativeness in
discussions. There may be
reluctance to take tasks that
caused contention in the
past. Team may be unwilling
to assert action themselves.

Use silence to encourage •	
participation; don’t lead as
much as before

Continue to recognize and •	
address team concerns

Revisit and revise ground rules•	

Keep team goal focused•	

Continuous learning•	

Performing The team has found their
own stride and are
continuing to improve.

Stay on top of obstacle •	
resolution

Support the team as needed•	

Revisit and revise DONEness •	
definition

Continuous learning•	

Launching Scrum Teams    283

a location marker for many other teams (i.e., “Go to the second team room to the left
of the one with the big dinosaur”). Taking a picture of the team and posting it on the
organization’s wiki and even on the entrance to the team room also goes a long way
toward establishing a team identity in the eyes of everyone else in the organization.

When creating a team name, try to avoid self-denigrating names (e.g., “The
Losers” or “The Defects”). These names are initially intended to be funny, but they
create a poor reflection on the team across the rest of the organization. In some
cases, they even become self-fulfilling prophecies, causing good teams to fall apart
for avoidable reasons.

Encourage some decoration of the team room, either in a way that reflects the
team name and identity, or in some way that the team finds acceptable. Find out
what is unacceptable or not allowed by your organization and communicate that in
advance to your Scrum team. If they know what they can’t do before they begin,
they will be much less disappointed than if they decorate the room the way they
like and then have to remove some portion of the decoration due to organizational
policies or safety regulations.

Establish Team Ground Rules
Ground rules are very important when forming a new Scrum team. These rules
become the basis for the Scrum master’s ability to enforce the Scrum process and
make sure that everyone is contributing to team success. In later sprints, if it should
happen that a team member starts becoming habitually late to daily Scrums, or
doesn’t participate in backlog grooming, the Scrum master can review his or her con-
cerns with the employee, reminding the employee of the ground rules he or she agreed
to when the team was formed. If that doesn’t work, the Scrum master can bring the
entire team together under the pretense of revisiting and revising the ground rules
since they no longer apply to everyone. This gets the problem out into the open in
front of all the team members and creates a certain amount of pressure on the non-
compliant employee to perform to the standards of the team. As with any practice,
you also don’t have to get it complete or perfect in the first try. Plan on revisiting
the ground rules often during the first couple sprints and, even for very experienced
teams, once every four or five sprints, just to keep it fresh in everyone minds.

I usually go into a ground rule workshop with a short list of items that I believe
should be on the list. My starter set1 is shown in Table 21.2.

During the discussion, I start by suggesting that most of our ground rules
come from being a Scrum team. Therefore, I recommend starting the list with the
descriptor “We are a Scrum team …” and then let the team take it from there. Most
of the first nine elements will usually get on the list in the initial discussion with
just a little prompting from me. However, I usually have to suggest the tenth item
(“When I no longer feel I can work with my team …”). I call this the escape clause,
and I will keep the discussion going around it until it has the basic form that you
see in my example.

284    Enterprise-Scale Agile Software Development﻿

The escape clause is there to make sure that, should any team member in
the future feel that he or she simply cannot stand being on the team anymore,
he or she will specifically ask to be reassigned. I tend to require this ground rule
whenever I do this because of the number of teams I’ve coached that were being
dragged down by the deliberately poor performance of one team member who no
longer wanted to be a member of his team. Frankly, I’ve never understood why
people would rather be kicked off a team than asking to be removed. However, by
making it clear up front that if a team member wants out he or she has an option
other than just making everyone miserable, he or she usually takes the honorable
way out.

As I mentioned earlier, ground rules do not reach their final state in one work
session. Like the team itself, ground rules have to mature. For that reason, make
sure your teams’ Scrum masters plan to review the ground rules during the first
three or four sprint retrospectives to “tune” them up. In addition, for teams that are
together for a long period of time (i.e., eighteen months or more), plan on revisiting
the ground rules once every four or five sprints to keep them fresh and up-to-date.

Establish Team DONEness Definition
There are fewer things more important to someone doing a task than a clear defi-
nition of what it means to be finished with a task. Architects know a building
is done when they’ve finished constructing a bridge or a building and another

Table 21.2  My Initial Ground Rules

	 1.	We show up for meetings on time (especially daily Scrums).

	 2.	We keep our status updated on the team’s task board.

	 3.	We work together to complete stories.

	 4.	It is everyone’s responsibility to achieve our sprint commitment each
month. No one says, “It’s not my job” when being asked to work outside of
his or her typical comfort zone.

	 5.	We actively participate in sprint planning, backlog grooming, sprint
retrospectives, and all other team meetings requiring team discussion.

	 6.	We abide by the Scrum values of commitment, courage, focus, openness,
respect, and visibility.

	 7.	We will not call something done unless it is truly done, and we will not
deliver “not done” software unless required to by the organization.

	 8.	We work with each other to discuss and resolve conflict.

	 9.	We will watch for better ways to build our product.

	10.	When I no longer feel I can work with my team, I will ask to be reassigned.

Launching Scrum Teams    285

engineer double-checks their work (inspection). NASA’s space shuttle launches when
the weather conditions meet a specific set of acceptance criteria and the onboard
shuttle computers indicate that all other systems are ready; when all of this is done,
the shuttle is cleared for launch. U.S. presidential elections are done (the 2004
Bush-Gore debacle notwithstanding) when all of the popular votes are counted
and one candidate has a majority of the electoral votes. In the software development
field, however, we have been very loose with our definition of DONEness. This has
given us the ability to release incomplete software to our customers time and time
again. Think about it: compare the number of building collapses caused by struc-
tural deficiency to software crashes caused by coding deficiencies. It’s not pretty,
and it makes software engineers look like a rather incompetent lot.

Therefore, following the establishment of ground rules, the team’s next goal
should be the creation of DONEness criteria against which every piece of code
will be examined and weighed. Features that do not pass the team’s definition of
DONEness will not be demonstrated to the product owner at sprint review. Or, if
the team is requested to demonstrate an incomplete feature, they will clearly state
that the feature is not done.

When I sit down with new teams, I again walk in with a starter set of criteria
that I bring into the team discussion if needed. As with the ground rules, I intro-
duce items with the intention of getting the team to discuss and buy in. Nothing,
even those items that I introduce, goes into the DONEness definition if the team
doesn’t unanimously accept the item. My DONEness starter set2 has grown over
the years and is shown in Table 21.3.

As with the ground rules, remember to revisit the team’s DONEness definition
every two or three sprints and definitely when the team has experienced a large
number of defects in the previous sprint. Should this happen, the team should
engage in some root cause analysis work to determine why a defect escaped the
sprint and if it was from a deficiency in the DONEness definition or a deficiency in
enforcing or proving that the software passed the DONEness criteria.

Preparing the Product Backlog: The Team’s First Sprint
In some instances, a new Scrum team will be faced with a new product backlog. In
others, the product backlog has already been groomed to some extent by previously
existing teams. In either case, the next step for your new team is to begin grooming
the backlog in order to (1) get some stories on the top of the backlog ready for con-
struction and (2) become more familiar with the content of the backlog through
discussing it. In a team’s first sprint together, the team can follow a pattern that is
similar to what most teams do in the beginning of a new project. The pattern works
quite simply:

286    Enterprise-Scale Agile Software Development﻿

	 1.	The Scrum master schedules backlog grooming sessions for the entire sprint.
There should be four total hours of work sessions each week, separated across
two days. I often go with Monday and Wednesday afternoons from 1 to 3 p.m.

	 2.	The first two days of the sprint is backlog grooming (regardless of the work
session schedule). The goal of these two days is to get enough backlog items
down to size that, on the third day of the sprint, the team can start building
one or two items.

Table 21.3  DONEness Definition Starter Set

No software feature is finished unless the following is true:

The software satisfies the acceptance criteria as defined by the product •	
owner.

All product source code (application code as well as test harnesses) is •	
properly integrated into the code base and checked into source code
control.

All unit tests pass on an integrated environment considered reflective of a •	
customer environment.

All acceptance tests pass on an integrated environment considered •	
reflective of a customer environment.

The feature’s performance criteria have been met or exceeded.•	

The feature’s sizing criteria have been met or exceeded. (Sometimes, the •	
executing profile for a feature, which includes code and all in-flight memory
usage, is not allowed to exceed a predetermined size to allow the software
to fit in limited memory.)

All internal documentation has been properly updated, reviewed, and •	
checked in.

All external (user) documentation has been properly updated, reviewed, and •	
checked in.

All training materials have been properly updated and reviewed or the •	
necessary changes have been communicated to those who will update the
training materials.

All upgrade scripts have been completed and tested.•	

All installation scripts have been completed and tested.•	

All de-installation scripts have been completed and tested.•	

All new or changed functions demonstrate a code coverage of at least 85%.•	

All known stubs have been removed from the code.•	

Code is refactored and meets all naming standards and coding standards.•	

Designs are refactored and meet all design standards.•	

Launching Scrum Teams    287

	 3.	From the third day of the sprint, the team continues to work on the initial
backlog items and hold backlog grooming work sessions. When the initial sto-
ries are finished, the team continues to work from the top of the newly groomed
backlog, taking and finishing as many items as they are able to manage.

By the end of the first sprint, the team will have groomed enough of the backlog
to last at least one full sprint, they will have completed a considerable amount of
work on the new groomed items, and they have a beginning velocity based on how
much the team finished during the first sprint. The second sprint, of course, does
not require any additional grooming workshops—four hours per week will usually
be sufficient from that point forward.

Getting Ready for Sprint Planning
If you’ve worked with Scrum before, you are probably already aware of the basics of
sprint planning and how it works. You’ve already learned commitment-based plan-
ning, where the team cycles through each backlog item—discuss, reach an agree-
ment with the product owner, slice into tasks, commit—until they believe they can
do no more during the sprint. You may also have experience with velocity-based
planning, where teams commit to approximately the same amount of work com-
pleted in previous sprints. Most teams learn how to do their first sprint planning
session as they do it. However, my recommendation is that, before the meeting, you
or your team’s Scrum master sit down with the team and explain the entire process
with particular emphasis on the following points:

The focus of sprint planning is to determine how much work the team will do dur-◾◾
ing the current sprint and how the team will do the work. Many teams mistak-
enly assume that the main deliverable of the sprint planning meeting is the
sprint backlog. This is entirely incorrect. The main deliverable of the sprint
planning meeting is the team’s plan and commitment to complete one or
more backlog items during the course of the sprint. In fact, the sprint backlog
is actually just a by-product of the team’s discussion about what needs to be
done in order to complete a backlog item.
Get as much information from the product owner as you can.◾◾ While there will
still be time for details during the sprint, you can avoid significant over- or
undercommitment by being thorough now. Also, remember to work out
specific details regarding the acceptance criteria that the product owner has
for the item. Nearly every Scrum team I’ve ever worked with (and, in fact,
nearly every Scrum team simulation I’ve run in my classes) has revealed in a
sprint retrospective following their first two or three sprints that they need to
improve upon the acceptance criteria that they worked out with the product

288    Enterprise-Scale Agile Software Development﻿

owner. Lack of detail is a primary cause of delays in backlog item completion
and in the rejection of items by the product owner at sprint review.
Work together as a team to decide how each item will be built.◾◾ Sprint planning
is an excellent opportunity to discuss how and where new code will be added
or where existing code can be found. If the design is too complex to discuss in
the meeting, schedule follow-up meetings to discuss it further.
The sprint backlog is meant to reflect the decisions made regarding how an item is ◾◾
to be designed. Also, include in the sprint backlog as much of the team’s defi-
nition of DONEness that needs to be included to ensure that the definition is
actually achieved during the sprint (e.g., updating all relevant documentation,
getting that documentation reviewed and approved, writing all of the tests
and verifying that the tests pass, installation documentation and scripts are
completed, etc.). Less experienced Scrum teams and teams that have a history
of not meeting DONEness criteria will usually create more and more detailed
tasks to make sure that nothing is missed. More experienced teams tend to
need fewer individual tasks to remind them of what to do.
Remember that the product owner is concerned about what gets done and about ◾◾
how much backlog items costs. Should an item prove to be considerably more
effort than originally thought, the product owner must be consulted to
decide if he or she still wants the item to be completed. This is because
the effort estimate of the item as created at sprint planning is, in fact, a
budget. For example, assume an item was estimated during sprint plan-
ning as costing 120 hours, but during the course of the sprint, the item
grew to over 300 hours due to forgotten and underestimated tasks. In this
circumstance, the product owner may decide remove the item from the
sprint in favor of other items. Remember, product owners are responsible
for return on investment. That means that both the cost of the item and
the value of the item are a factor in determining if an item is to be built.
Don’t surprise your product owner after the fact with a sudden, substantial
change in item cost.
Tell the product owner immediately if you believe an item can’t be finished during ◾◾
the sprint. When backlog items are sliced during backlog grooming, teams
are advised to stop grooming the item when it falls into an acceptable size3
for commitment to a sprint. This means that there’s still some room left for
slicing if necessary. Therefore, if a Scrum team feels that a backlog item may
not be able to be finished in a sprint, it is incumbent on the team to discuss
the item with the product backlog as early in the sprint as possible to give
the product owner as many options as possible, including slicing the prob-
lem item again, leaving the “important” part in the sprint and placing the
remainder on the product backlog. Don’t wait until the end of the sprint if
you can avoid it—the later in the sprint you involve the product owner, the
fewer options he or she will have to help you out.

Launching Scrum Teams    289

Be conservative late in the project. ◾◾ If your project is nearing the end, Scrum
teams and product owners should consider being more conservative in their
acceptance of risk in the sprint. Because timeframes will be limited late in
a project, backlog items that introduce too much risk can end up costing
Scrum teams unwanted delays and may even result in the team having to
back out or remove code already added to the product, but there isn’t enough
time to finish the backlog item. Product owners should be careful to remove
or de-prioritize risky features late in a project; Scrum teams should be willing
to challenge product owners should they discover a highly risky item reaching
the top of the product backlog late in the project.

Running a Successful Daily Scrum
The wonderful thing about daily Scrums is that, while they have very few rules,
they are so incredibly powerful at making sure that everyone on the Scrum team
knows what everyone else is doing and is more able to adapt their direction to
the daily reality than any other kind of development team. A well-executed daily
Scrum is over in less than fifteen minutes and allows the team to consider the kinds
of conversations and decisions that need to be made immediately following the
daily Scrum. Likewise, a poorly managed daily Scrum can become long (between
thirty minutes and an hour each day), wasteful, and de-motivating for the Scrum
team. The Scrum master is the key to a successful daily Scrum. Here are some
things to remember when running that all-important meeting:

Start the daily Scrum at the same time and in the same place. ◾◾ There are few times
that are better than other times for having the daily Scrum. Some Scrum
masters have discovered that holding the meeting at 11:45 in the morning
keeps everyone motivated to end the meeting quickly (in time for lunch).
Morning daily Scrums work out pretty well because they encourage each
team member to consider what they accomplished the day before and to plan
out their current day before it gets too late. Afternoon daily Scrums have the
advantage of what’s been done being fresh on everyone’s mind. My advice is
to leave it up to the team to decide when to hold the daily Scrum. The meet-
ing is for them, after all.
Hold the daily Scrum every day.◾◾ Despite the fact that the name of the meet-
ing—daily Scrum—answers the question, many people have asked me if they
should hold the meeting every day. My answer is yes one hundred percent
of the time. “But,” they say, “what if very little changes from one day to the
next and there’s nothing new for the team members to report?” “Good,” I
reply, “your daily Scrum will be very short.” All humor aside, you never know
when the daily Scrum is going to turn up something important. Even if you

290    Enterprise-Scale Agile Software Development﻿

feel that there isn’t enough getting done everyday to make the daily Scrum
interesting, the purpose of the meeting is to set the team up to make decisions
about how to handle their current reality. Well, sometimes it’s a good feeling
just knowing that your current plan is the right plan. And that day you’re
surprised by something the team hadn’t anticipated, you will be glad you had
them together to discover it.
Announce the beginning of the Scrum.◾◾ Make sure everyone knows that the
meeting is starting by saying something like “Scrum!” or “Stand up!” This
gives team members an opportunity to gather together. This also gives non-
team members an understanding of what is happening and why the team
member they were talking with suddenly stepped away to handle another
meeting. Announcing the beginning of the daily Scrum also alerts everyone
that a specific set of rules are now in place—there are three questions to be
answered, all other conversation should stop, and only Scrum team members
are invited to speak.
Announce the end of the Scrum.◾◾ Just like the beginning, announcing the end
of the daily Scrum provides a number of signals. First, it tells everyone that
the daily Scrum is over and the rules surrounding who is supposed to talk and
what questions are answered are lifted. In other words, the focused activity
known as the daily Scrum is over. Second, it signals that the team members
that need to gather to discuss decisions about what to do today should do so.
Team members that don’t need to participate in these “sidebar” conversations
can return to work. Lastly, it tells any nonteam members in the team room
that, should they wish to update the team with new information or ask ques-
tions of the team, they can do so before the team members break up to go
back to their workstations or other conversations.

In addition, here are some dos and don’ts for your Scrum masters:

Do◾◾ be prompt and consistent about your starting times.
Do◾◾ be disciplined about the three questions; encourage your team to keep
their answers brief.
Do◾◾ make sure to get more information on obstacles reported during the daily
Scrum as quickly as possible after the meeting is over.
Do◾◾ answer the questions yourself as well; your team members want to know
what you are doing too.
Do◾◾ encourage modifications to the style of the meeting, as long as the basic
rules continue to apply (three questions, only team members speak, etc.).
Do◾◾ encourage your product owner to participate; your team members want to
know what he or she is doing as well.
Do◾◾ encourage other team members to start, manage, and end the daily Scrum;
just because you may be on vacation that day is no excuse for the daily Scrum
to not be done.

Launching Scrum Teams    291

Don’t◾◾ take notes; this isn’t a meeting that requires minutes. It’s a tool for the
team to figure out what’s going on and whether or not they need to consider
new information.
Don’t◾◾ allow team members to show up late; if someone’s late, discuss it with
them immediately following the meeting.
Don’t◾◾ tell team members what to do or give out assignments during or after
the daily Scrum; that’s their job, make them figure it out.
Don’t◾◾ bring a laptop; there should be no distractions during the daily Scrum.
Don’t◾◾ permit any nonteam members to contribute during the daily Scrum;
ask them politely to wait no more than fifteen minutes until the meeting is
done, then you’ll give them an opportunity. Discuss this with them after the
daily Scrum should they persist.

Before I finish the section on the daily Scrum, I want to give you a way to run the
daily Scrum that has proven quite effective. Just follow the rules and dos and don’ts I
gave you in the preceding paragraphs, and the following changes to the procedure:

	 1.	Get your team used to starting the daily Scrum at the same time every day by
encouraging anyone on the team that notices the time to call out the begin-
ning of the daily Scrum. Right at 10 a.m., for example, someone should yell,
“Scrum!” If necessary, the person who does it the most during a sprint can be
given some kind of token award.

	 2.	Have a stuffed animal or other token on the team’s central table around which
the team gathers when the daily Scrum is started. Whoever is standing closest
to the token when the team gathers goes first.

	 3.	The team member with the token goes by answering the three questions.
When finished, the team member passes the token to any nonadjacent4 per-
son on the team who hasn’t answered the questions yet.

	 4.	We repeat step 3 until everyone on the team has answered the question. The
last person announces that the daily Scrum is over.

The advantages of this practice are several:

The meeting is self-starting; the Scrum master need not be present to run the ◾◾
meeting. This also has the added advantage of putting the Scrum master on
the same level as the other team members. No special duties or privileges—
sometimes being the one responsible for calling and running a meeting cre-
ates a false sense of authority. This practice defeats that.
The team members don’t have to argue about who goes first. The placement of ◾◾
the animal and how people gather around the table does it for them.
Because the team members have to pass the token to someone who hasn’t ◾◾
gone yet, everyone has to pay attention to make sure that they remember who
answered the questions so far, and who hasn’t. This keeps everyone engaged.

292    Enterprise-Scale Agile Software Development﻿

Getting Ready for Sprint Review
The ironic thing about sprint review meetings is that many teams spend too much
time getting ready for the meeting, treating it as a formal demonstration of software
functionality. When preparing your Scrum team for the first sprint review, you will
save yourself a lot of excess worry and effort by remembering the following:

The sprint review is an informal checkpoint◾◾ : Most people understand that the
sprint review is about demonstrating to the product owner what was com-
pleted during the previous sprint. What many teams misunderstand, how-
ever, is that the sprint review meeting is meant to be informal. While you can
schedule a conference room to hold the meeting, the best sprint reviews are
done at a workstation in the team room, where the product owner can not
only see the software, but also ask questions, make comments, and take notes.
If the team has been working based on the DONEness definition (and that
definition is fairly comprehensive), there is little to no preparation needed by
the team to get ready for the product owner. While there is nothing wrong
with an impending sprint review meeting causing a little last-minute pressure
to get to DONE, energy should be put into achieving DONEness, not add-
ing formality to the sprint review.
Avoid discussions about metrics during the sprint review◾◾ : The sprint review is
supposed to be about software, not how many lines of code were written or
how many new tests were added to the test suite. This is good information,
certainly, but the sprint review is the wrong time to discuss it. In one case
that I’m aware of, a company created a standardized threefold brochure on
which were placed all of their metrics. The brochure was handed out, but
not discussed, during the sprint review. If anybody had questions about
the metrics, they were welcome to ask questions after the sprint review
had ended.
Demonstrate only what is done◾◾ : During the review, demonstrate only that
which the team agrees is fully done. One outcome you really want to avoid
is demonstrating something that is almost finished and then coming under
pressure to deliver the nearly completed item before it is ready. Unless your
team is specifically asked otherwise, the only discussion of unfinished items
should be about what’s not complete and why.
Be prepared to be challenged◾◾ : Part of the product owner’s responsibility during
the sprint review is to satisfy himself of herself that each item demonstrated
is actually done per the item’s acceptance criteria and the team’s definition of
DONEness. Be prepared to have your claim of DONEness challenged dur-
ing the sprint review. Can you provide a list of test cases and results that show
that all defined test cases worked properly? Can you produce a copy of the
product user documentation that has been updated to reflect the changes you
made during the sprint? Scrum teams that have failed to achieve DONEness

Launching Scrum Teams    293

(even accidentally) while saying that they were actually done should be pre-
pared to offer additional proof beyond just saying that something is ready for
sprint review.

Making sure your teams are ready for sprint reviews should be much more
about making sure that your software is done than anything else. Keep your sprint
reviews simple and informal, or they will assume a life of their own and will cost
more and more each sprint.

Going to the First Sprint Retrospective
Much has been written about sprint retrospectives, and I will not spend much
time in this chapter trying to review or somehow add to that body of work.
Instead, there are just a few basic points that I would like to discuss in this sec-
tion. Keep in mind that while the sprint review is all about the product that
the Scrum team produces, the sprint retrospective is an opportunity to discuss
how well the team worked during the sprint—what went well and what could be
improved. Other than the daily Scrum, there is neither a more important meeting
nor a meeting more effective at improving your application than the sprint retro-
spective meeting. It is therefore extremely critical that the sprint retrospective be
managed properly.

I also recommend discussing the following important points with your team
before they go to their first sprint retrospective:

Nothing worthwhile is ever painless◾◾ : The sprint retrospective can be a very dif-
ficult time for a Scrum team. A lot of anger and frustration can be voiced at
the meeting that others in the meeting can take personally, whether it was
intended to be so or not. However, it is always more important to deal with
issues like these early, rather than letting them grow into bigger issues that
can frequently bring a Scrum team to the point of total failure. Scrum team
members need to be encouraged to attend the meeting and participate as
much as possible.
Don’t leave stuff “undone”◾◾ : Try not to end retrospective meetings with a lot
of open issues. If there are conflicts or disagreements that need to be settled,
settle them or agree on how they will be settled before you end the meeting.
Carrying baggage from one sprint to the next will cause serious problems in
the Scrum team and will result in reduced productivity.
Discuss every aspect of your development process◾◾ : Remember that the sprint ret-
rospective is about all aspects of the development process, not just Scrum,
Extreme Programming (XP), or stuff related to what the team worked on in
the previous sprint. Encourage your team to discuss organizational standards
and how those standards help or hinder your team’s progress. How would

294    Enterprise-Scale Agile Software Development﻿

you improve on the organization’s standards? Discuss any important training
received during the past couple sprints. Was that training effective? Are you
able to use what you learned? How would you improve the training?
Don’t try to “boil the ocean”◾◾ : Findings from retrospectives are almost always
about changing behaviors—and behaviors do not change immediately. When
I coach teams or teach classes, I recommend that they take one or two things
that they want to continue to do well and one or two things they want to do
differently, and then concentrate just on changing those things during the next
sprint. Teams that try to change too much too fast are generally disappointed.

Removing Obstacles
Removing obstacles is one of the Scrum masters most important duties. In order
to ensure that all Scrum team members remain as focused as possible on getting
the tasks done on the sprint backlog, the Scrum master takes on impediments and
obstacles and, after getting the obstructed developer back to work, takes it upon
himself or herself to resolve the impediment as rapidly as possible. Simple examples
of obstacles that the Scrum master would resolve while ensuring that the team
member continued to work on something else in the meantime include:

	 1.	Getting time from the organization’s expert: Frequently, a Scrum team member
is blocked when the expertise they need from the organization is not available
or difficult to identify. The Scrum master’s responsibility is to find out who
in the organization can aid the Scrum team member, secure some time from
him or her, and then get the Scrum team member and the expert together as
quickly as possible.

	 2.	Hardware problems: Very often, Scrum team members are impacted when
their laptops or desktop computers develop hardware problems. In my experi-
ence, I’ve seen everything from display monitors with lines running through
them to broken keyboards to crashed hard drives to CD/DVD readers that
were jammed and would not open. After getting the Scrum team member
working with someone else on the Scrum team, the Scrum master should
seek out replacement hardware.

	 3.	Security/access problems: The greater the focus on security (for good reasons),
the more trouble we make for ourselves when developing software. This prob-
lem often surfaces when a new team member wants access to any file system
or network resource or when an existing team member wants access to a new
database or new network resource. The Scrum master can clear these hurdles
while keeping team members focused on the sprint backlog.

When the impediment is beyond the Scrum master’s scope or authority to
resolve, he or she should involve management in whatever capacity required for

Launching Scrum Teams    295

solving the problem. For example, in the previous example regarding security and
network resource access, it is often a manager who must step in to approve the
security request or even bring enough pressure to bear on the security department
to get the problem resolved more quickly than is typical.

Continuous Learning
President John F. Kennedy probably said it best when he said, “Our progress as a
nation can be no swifter than our progress in education. The human mind is our
fundamental resource.” It would be hard to find a truer statement with regard to
software development. As developers, we routinely take the imaginary and make
it real. Every time a function is written, it is written for the first time. For that
reason, it is critically important that Scrum teams embark on a journey of continu-
ous learning during their sprints. In this section, I will discuss a way to ensure that
Scrum teams can achieve continuous learning.

First, it’s very important that the goal of continuous learning come from the
organization’s executive management. It is very easy to reduce the priority of edu-
cational efforts unless the directive comes “from the top” of the organization.
With the importance of training established by executive management, the next
step is to work with the Scrum team to determine how they want to manage con-
tinuous learning.

I start with reaching a consensus on how often the team wants to do the train-
ing. This decision also needs to be consistent with the senior management direc-
tive. In other words, holding the training too frequently or not frequently enough
could cause problems for the Scrum team in the future. Most teams go with once a
month, but I’ve worked with many teams that go with an hour every week or every
other week. With the frequency determined, we can turn to the question of topics.

When I coach teams that have learning goals like this, I simply recommend
starting by writing down as many topics as they can think of over the course of
five or ten minutes and, using Post-it® notes, stick the topics to a wall. If there are
a lot of topics, I’ll ask the team to group the items in order to reduce the overall
clutter. Then, I give every team member ten votes and have them use those votes for
the topics they care the most about. With the list of topics created and prioritized
(using the team members’ votes), we have created a training backlog. Just like a
product backlog, we can use the training backlog to look ahead at the upcoming
training and decide:

	 1.	Who on the team will own the training session? It is a good idea to make some-
one on the team the owner of the session. That way, no matter how the training
is accomplished, there is a team member that coordinates for the team.

	 2.	Who’s going to do the training? There are many things the team can take
advantage of, including:

296    Enterprise-Scale Agile Software Development﻿

	 a.	 Let the team members provide the training.
	 b.	 Let experts in the organization provide the training.
	 c.	 Take advantage of a relationship with a consultant/coach.
	 d.	 Use A/V materials already provided by your organization.
	 e.	 Find something on the Internet.
	 3.	What’s the format of the training? Some of the common options include:
	 a.	 Lunchtime session: Everyone brings their lunch and one or two team

members provide a sixty-minute (or less) presentation to the team. These
sessions are considered productivity-friendly as they use lunchtime for the
session and result in no loss of productive time.

	 b.	 Classroom: More formalized training provided in a classroom setting
that may or may not include hands-on examples. Classes of this nature
are usually either four hours (half day) or full-day sessions.

	 c.	 Team room: Some training works well in the team room, where skills can
be taught and then developers can use those skills immediately during
the training on the code that they are (or will be) working on. These ses-
sions take an hour or two to start, but the coaching continues throughout
the day or even for several days (test-driven development is often taught
this way—some intensive initial training and then coaching for one or
more days until the team members completely understand it).

	 4.	When should the training be scheduled? In general, the scheduling of the
training has more to do with when the training can be ready than anything
else. However, try to avoid scheduling the training on the same day as a
backlog grooming workshop or late in the sprint when the team is likely to be
focused on completing as much as possible.

Just like with the product backlog, don’t try to put together a long-term train-
ing plan. Try to stay one or two sprints in the future. That provides enough time for
the logistical planning of the course. Digging deeper in the training backlog has the
same disadvantages of going too deep in the product backlog—you end up doing a
lot of long-range planning that ends up having to be replanned or scrapped anyway.

Summary
Scrum teams are the key to success in an agile development. It is therefore critically
important to give Scrum teams the best start you can. This starts with defining a
clear team identity and setting the team’s operating (ground) rules and definition
of DONEness. With these in place, the team moves on to learning the best way to
handle sprint planning and then gets their product backlog ready for development.
This chapter also discusses good practices for daily Scrums, sprint reviews, and
sprint retrospective meetings.

Launching Scrum Teams    297

We also discussed the Scrum master’s responsibility for removing team obsta-
cles in order to keep the Scrum team focused on the sprint backlog.

Lastly, we discussed the concept of continuous learning and a way to create a
form of a training backlog that can be used by the Scrum team to create a list of
training topics. The Scrum team can then decide who will own the management of
each training session as well as the format and source of each training session.

As with everything else in agile development, check back with Scrum teams
during sprint retrospective meetings to make sure that the launch is working prop-
erly. Find out from your Scrum teams what they think worked and what didn’t.
Then, change your practices appropriately.

Endnotes

	 1.	You can find more information at http://www.bigagiledevelopment.com/
groundrules.

	 2.	You can find more information at http://www.bigagiledevelopment.com/
donenessdefinition.

	 3.	As mentioned elsewhere in this book, I usually consider a backlog item sprint-
sized when it can be completed by two or three people on the Scrum team in
less than a week.

	 4.	Yes, that means they can’t simply hand the animal to the person next to them
unless everyone else has gone already.

299

22Chapter

Managing Scrum Teams

In the very first chapter of this book, I listed a number of factors that absolutely
had to be present in order for an organization’s transition to have any hope of suc-
cess. Two of those eight factors discussed management support of the agile tran-
sition and management’s involvement in the transition. In this chapter, we will
discuss the relationship of management to Scrum teams and how managers can
truly enable Scrum teams to achieve high performance. However, in order to first
discuss management principles in this environment, we need to truly understand
the science behind the environment in which agile development thrives.

The Edge of Chaos
First, it is important to explain that the environment created by Scrum and agile
development and required in order to continue is not the typical work environ-
ment that we all grew up learning about and in which we worked. Since the eigh-
teenth century, the manufacturing environment has matured into science around
which successes may be repeated by following carefully prepared, clearly defined
processes. Indeed, as the burgeoning software engineering industry took root in
the mid-1960s, a 1968 North American Treaty Organization (NATO) conference
defined software engineering as being similar to other fields of engineering in that
there are clear processes and laws that can be followed. Since the formation of the
first data processing (DP), management information systems (MIS), or information
technology (IT) departments, businesses have tried repeatedly and with relatively
few successes to manage application development as a clearly defined practice.
However, recent developments in complexity theory and management practices
have revealed some interesting facts about software engineering.

300    Enterprise-Scale Agile Software Development﻿

In response to the increasing complexities of organizations and the need to
develop management practices to address today’s needs, there has been growing
interest in a field of study called complexity theory. While there is already a significant
amount of writing done on the subject of complexity theory by rather prominent
scientists, I will attempt to provide a brief description. Consider first the concept
of stable and unstable systems. A stable system, when affected by some outside
interference, quickly returns to its stable state once the interference is removed. A
great example of a stable system is how our moon orbits the earth. The moon orbits
the earth once every 27.3 days and repeats its phases (due to something called the
synodic period) once every 29.5 days. The moon has stuck to this schedule, despite
thousands of meteorite collisions, for a bit over 4.5 billion years. On the other hand,
an unstable system moves farther and farther away from stability until it stops due
to some overriding constraint. Imagine someone riding a bicycle on an icy road.
When the bicycle crosses an unexpectedly slippery patch, the cyclist goes down.

In between the stable system and the unstable system is a form of system that is
called chaotic behavior. However, this version of chaos is different from the common
definition of “a state of total confusion and disorder.” Chaotic behavior describes a
system that, while it has certain regularities, defies prediction. Consider the weather.
Despite years and years of information and some of the most detailed computer
models in existence, today’s meteorologists still cannot predict the weather with
any real success. Still, however, the Nile doesn’t freeze and Toronto doesn’t experi-
ence monsoons.1 A chaotic system sits in between the stable and the unstable sys-
tem and exhibits characteristics of both. Software development fits the description
of a chaotic system; anyone who needs proof of this need only look as far as the
original 1994 CHAOS survey2 that brought light to the fact that 83.8% of software
development projects were either being cancelled, delivering less than promised,
finishing significantly overbudget (to the tune of 189%), or were both overbudget
and short of delivery targets.

Further scientific research has yielded some additional principles that sum up
what is being experienced across the entire software development industry. We
know these principles today as:

Ziv’s uncertainty principle in software engineering◾◾ :3 Uncertainty is inherent
and inevitable in software development processes and products.
Humphrey’s requirements uncertainty principle◾◾ :4 For a new software system,
the requirements will not be completely known until after the users have
used it.
Wegner’s lemma◾◾ :5 An interactive system can never be fully specified, nor can
it ever be fully tested.

Software engineering clearly does not behave as a stable system. The aforemen-
tioned principles prove through modeling and empirical evidence that there is a con-
siderable degree of uncertainty in software engineering. This inherent uncertainty

Managing Scrum Teams    301

makes impossible the concept that we could define processes that we can follow
and be successful time and time again. The software engineering industry cannot
derive a “magic process formula” that will provide greater success in writing soft-
ware applications.

Software engineering is also not an unstable system. After all, we have been suc-
cessful in creating applications over the years. Even when our projects are set back
by unexpected changes and the massive uncertainty that Ziv’s, Humphrey’s, and
Wegner’s principles describe, we are still able to regroup, replan, and finish some
of our projects. So, we are left somewhere in between stability and instability. As
mentioned earlier, the space in between these systems is the edge of chaos.

Management in a Chaotic System
Though the field of complexity theory and how it applies to management practices
is still quite new, the recognition that conventional management practices do not
work well in a chaotic system has been embraced successfully by large, modern
corporations. For example, consider the web portal giant Google. This is an organi-
zation that has a business vision and mission like more conventional organizations,
yet how it manages its personnel truly reflects an understanding of complexity
theory and work in a chaotic system. Some of the behaviors that make Google dif-
ferent are:

	 1.	When developers are hired, they are given time to review the projects and
the teams that currently exist. They then “apply” to join a team by producing
an original “new” feature for that team’s product. If the team appreciates the
developer’s work, he or she is invited to join.

	 2.	Should a developer tire of a team and need a change, he or she needs only com-
municate the desire and is quickly moved from one team room to another.

	 3.	Developers are encouraged to spend a portion of their time, every week,
working on something that has nothing to do with their current project.

	 4.	Google’s philosophy is that they it doesn’t tell developers what to do. The
development teams decide what to do and how to do it.

Google’s management style reflects some of the basic lessons to be learned about
management in a chaotic system. We’ll discuss these lessons in terms of how they
apply to Scrum teams and an agile development environment.

Continuous Learning
In a chaotic system, we generally understand that, while our organizations have
a direction and a purpose (a mission and vision), much of what we are going to
encounter is unknown to us at the outset. We can try to analyze ourselves out of

302    Enterprise-Scale Agile Software Development﻿

the corner and prepare for every contingency, but there’s only so much we can learn
by analysis, and the effort itself is costly and doesn’t guarantee success. Even worse,
the analysis can tend to paralyze the organization while the analysis is under way
and the organization convinces itself that it is safe to move forward. Management
and software development in an environment such as this requires that there be a
continuous learning cycle under way at all times.

Retrospection is generally employed in an agile environment to understand
what worked and what didn’t during a period of time. Questions are asked not only
about practices and methods, but also about skills and training. At the end of every
sprint, Scrum teams and management teams alike should be looking at what they
achieved during the previous sprint to evaluate their performance and decide how
they can improve. In many cases, items will surface during these discussions that
require the team to acquire or improve upon some important skill. Teams should
be encouraged to identify these needed skills and take steps to improve upon those
skills as quickly as possible.

In addition, the organizational culture itself should be focused on continuous learn-
ing. Employees (including managers) should have personal learning goals for spending
a specific amount of time each week or each month on professional and technical skills
improvement (don’t set yearly goals—they always end up waiting until the end of the
year). In my experience, however, the choices made for training by many employees just
end up being a list they put together at the last minute based on a generic job descrip-
tion of their next title. To improve upon the decisions made for training goals, your
employees should work with teams to determine, as a group, what training would most
benefit the organization and, starting with that list, develop individual training goals.

Encourage Change and Chaos
Organizations that seek out stability and define themselves by their rigid structures
generally find themselves seeking out fewer and fewer innovations and, instead,
“stick with what works.” In fact, a great way to describe such organizations can be
found in the motto: “If it ain’t broke, don’t fix it.” If everything in the corporation
works well enough to get the job done, there’s no incentive to get better and to get
the job done in more innovative and revolutionary ways. However, software devel-
opment being as uncertain as it is, the better motto might be: “If it works, break
it and see if you can make it better.” I’ve made the point several times in this book
that organizations hoping to become agile have to be willing to make mistakes and,
indeed, that a motto of agile developers is to “fail fast and fail often”—embracing
the concept that real improvement comes from learning what doesn’t work because
once we find something that does work, we tend to stop looking. Management
complexity theorists emphasize the importance of openness to accident, coinci-
dence, and serendipity. Strategy is the emergent result.6

Think of it like refactoring at the organizational level. I often teach my stu-
dents that a close look at Da Vinci’s Mona Lisa shows there may be up to thirty

Managing Scrum Teams    303

layers of paint on parts of the famous painting. In fact, the painting itself seems
to have taken the genius nearly two decades to finish. Da Vinci knew that the first
pass at the painting would not be the best, and he continued to improve both the
painting and his methods from the painting’s beginnings somewhere between 1503
and 1506 CE and its completion in 1519 CE. Likewise, finding a “right” way to
accomplish a task in an organization doesn’t mean you found the best way. Chaotic
systems keep looking and keep changing.

Fluidity of Structure
One of the principles of Scrum teams is that they should have the skills that they
need in order to get the job done. This usually means that we look at what needs
to be done, and then form the proper team (which is the right way to do this).
Unfortunately, it also frequently means that, once a team is formed and becomes
productive, we subordinate the work to the team. In other words, we will change or
reassign the work to another team rather than look at the current team and decide
if the reason that the team was formed is still valid.

In a chaotic system, management is encouraged to facilitate the spontaneous
creation of informal structures, made up of people from across the organization, in
response to the problems that the organization is currently facing or to take advan-
tage of opportunities that the organization wants to seize. These structures must
be self-organizing and capable of redefining or extending their charter, rather than
being bound by a fixed definition.

Likewise, having formed Scrum teams to contain the proper skills to address
specific needs, there should be a constant reevaluation of the team’s purpose and
capabilities. After any given sprint, the team should decide:

	 1.	Does the opportunity or problem that caused the origination of our team still exist?
If not, the team must seriously consider disbanding and finding other teams
to work with. Without an opportunity to take advantage of or a problem to
solve, the value of the team has diminished. Don’t keep the team around
longer than necessary.

	 2.	Has the opportunity or problem changed in such a way that the team’s skills are no
longer a match? In some cases, this may simply require a rebalancing of skills to
the problem or opportunity. Can the team take on a new member? Does the
team need to give up an existing member whose skills are no longer needed?

Chaotic environments provide ways to address problems and take advantage of
opportunities in a manner that taps into the individual skills and interests in your
employees—skills and interests that can remain hidden, unknown, and untapped
in more conventional management strategies. Senior management’s part in all of
this is to help ensure a balance between traditional methods of managing a stable
system (analysis and planning) and more unconventional methods of managing a

304    Enterprise-Scale Agile Software Development﻿

chaotic system (learning and fluidity). Too much enforced stability and the organi-
zation stagnates and loses to its competition. Too much chaos and the organization
descends into anarchy, becoming incapable of achieving even its short-term goals.

Management in an Agile Environment
We discussed in preceding sections that software development is an activity
fraught with uncertainty at every turn. We don’t know all of the requirements we
need to know until after we’ve built our product and, in fact, we concede that we
can’t ever completely test our own interactive software. In embracing these reali-
ties and with a growing understanding of complexity theory and chaotic system,
agile development methods were created. But what are the management practices
that work best in an agile environment? Using some practical experience and the
information reviewed previously in this chapter, we’ll discuss management in an
agile environment.

In general, management in an agile environment, a chaotic system, is all about
maintaining a balance between stability and chaos. We need our organization to
be stable so that it can operate in today’s business environment. The business needs
to be able to define its vision and mission and then make the large-scale business
decisions based on those tenets. The organization’s accounting practices need to be
stable and, in most countries, abide by very specific guidelines regarding how the
organization’s accounting is to be done. At the same time, the same organization
needs to recognize that software development activities are more chaotic. There
may, in fact, be closely tied combinations of stable and chaotic systems; for exam-
ple, while the accounting practices need to be clearly defined and followed (stable),
the accounting department itself may be more flexible and innovative by following
practices that are more chaotic (agile). The most difficult aspect of any manager’s
job will be to understand the true difference: When does the organization benefit
from stability and when does it benefit from chaos?

The Front-Line Manager
Let’s start with the front-line (or first-line) manager. This manager is usually the
administrative supervisor of the developers (including analysts, testers, coders, etc.)
that participate on Scrum teams. The first-line manager has more direct exposure to
the Scrum team than any other manager in the organization and will be involved in
most staffing decisions regarding the team. The manager is sometimes a technical
resource, sometimes a leader. In other cases, the first-line manager is an obstacle,
a de-motivational force that can quickly take good teams and make them entirely
ineffective. The best description I’ve heard so far talks about the first-line manager
as a sheepdog, continuously moving around the Scrum team, keeping everyone
focused and together, and handling defects and obstacles that interfere with the

Managing Scrum Teams    305

progress of the Scrum team. We’ll take a look at a first-line manager’s responsibili-
ties in the following paragraphs:

Help resolve impediments◾◾ : In many instances, Scrum masters are either over-
whelmed by obstacles reported by their team or lack the authority to resolve
some of the obstacles that they’ve inherited. In these cases, the first-line man-
ager should frequently check with the Scrum master to ensure that no obsta-
cles go unaddressed for lack of authority.
Scrum teams, to help mediate or resolve arguments between Scrum team ◾◾
members, may call upon first-line managers for their assistance. These argu-
ments can be about the product (a disagreement about a design approach) or
about a personality conflict. In either case, the manager should attempt to
respect the team’s self-managing responsibilities while still trying to guide
the disputing parties to a reasonable solution. In other words, in the case of
most disagreements within the team, the manager’s job is to help the team
help themselves.
Support individual development◾◾ : While developers need to continue to be
responsible for their performance plans and career development plans, man-
agers are the people that can help provide the ideas, the structure, and the
support. If the organization uses employee performance plans, the manager
needs to ensure that the plans are an appropriate combination of team goals
and organizational goals. If the organization also employs career develop-
ment plans, the manager needs to ensure that the employee has the informa-
tion and input he or she needs to make appropriate decisions.
Help filter organizational “noise”◾◾ : The typical organization is a very busy place.
New employees are being hired; others are transferring to new positions or
leaving the organization entirely. News from other parts of the organization is
announced and discussed. Of course, there are also the escalations, the upset
customers, the visiting executive, and so on. All of these events create noise,
which is pervasive throughout the organization. It is critical for the man-
ager to support his or her Scrum masters in organizing the noise so that the
Scrum teams hear what they need to hear at the right time. That doesn’t
mean keeping information from the team, but rather keeping the team from
being interrupted every ten minutes when something new is learned by the
organization’s grapevine.
Handle administrative responsibilities◾◾ : Of course, a manager in an agile envi-
ronment still has all of the typical responsibilities he or she has to deal with
on a regular basis—status reports to be written, meetings to attend, organi-
zational strategies to help plan.

While performing all of the aforementioned responsibilities, the first-line man-
ager also has to learn and master a very difficult skill. As Scrum teams are supposed to
be self-managing, that management responsibility has to come from somewhere. The

306    Enterprise-Scale Agile Software Development﻿

first-line manager must learn how to delegate much of his or her responsibilities to the
Scrum team. This means that the manager, other than supporting the Scrum team,
will have to learn to how to leave the decisions on what the Scrum teams commits
to at sprint planning and the decisions they make during the sprint; the outcomes of
sprint reviews and the decisions made during sprint retrospectives must be managed
by the Scrum team. While it certainly is not unheard of that a manager might make a
suggestion or two to a Scrum team, managers must be very careful not to provide too
much coaching to their Scrum teams as they risk making their Scrum teams depen-
dent upon them. Coaching of Scrum teams should always be aimed at helping the
teams to find the solution themselves, rather than having a solution handed to them.

In addition to delegating responsibility to Scrum teams, managers also have
to learn to trust their Scrum teams. This means that managers will have to trust
their teams to make good decisions and, on some occasions, to make poor decisions
and learn from the consequences. In one story, a team attempting to implement con-
tinuous integration practices failed four sprints in a row while their manager watched
and waited. This manager knew that forcing the team to implement continuous inte-
gration in a specific way would create skeptics on the team that might never com-
pletely embrace the value and concepts of continuous integration. By allowing the
team to make mistakes and learn from those mistakes, the team learned the value
of continuous integration and how to properly implement it. While the delays the
organization experienced as a result created a hardship, the Scrum team had not
only internalized the practice of continuous integration, but had become continuous
integration’s biggest proponent in the organization. Managers must also avoid micro-
management, allowing the team to make decisions without the manager, and even
more importantly, the temptation to assert control over the team during a crisis.

Lastly, the first-line manager may also be faced with the fact that, unfortu-
nately, not everyone will appreciate working in a team environment where everyone
works together. Managers will frequently be faced with the question of what to
do with team members that do not know how to work with others, do not want
to work on the team any longer, or have angered their team members so fully that
they have requested the removal of the problem employee from the team. Managers
in these situations have very little time to make the right decision. Leave the wrong
employee on a team long enough and the entire team will become demoralized.

General Management Responsibilities
While the first-line managers have significant interactions with Scrum teams, man-
agers in general (including middle management and executive management) share
some other important responsibilities in an agile environment:

Be accessible to your employees◾◾ : Agile development will raise a lot of issues in
your organization. Employees will want to express both their concerns and
their ideas to executive management. They want to know that their executives

Managing Scrum Teams    307

understand agile development, and they need to know that while they are
dealing with the impediments, executives are willing to deal with the bigger
problems in the organization. Sometimes doing nothing more than listening
and showing concern for your employees is all that’s really being asked for.
Show your commitment to the transition to agile development◾◾ : Several years ago,
Ken Schwaber noted that seventy percent of all transitions to Scrum ended
in failure. More recently, another survey conducted by IBM concluded that
sixty percent of projects aimed at achieving business change did not fully meet
their objectives,7 and seventy percent of respondents indicated that honest
and timely communication is important in project success. Transitioning to
agile development is much more than a change in development process; it will
affect nearly every aspect of your business and, at a very basic level, will have
a tremendous impact on your corporate culture as well. Employees will need
to know at the beginning and frequently during the transition that the orga-
nization’s management (particularly executive management) completely sup-
ports the transition, even when mistakes and missteps occur.
Communicate your vision◾◾ : Make a point of explaining your business vision
and that your organization’s product reflects and supports that vision. Do it
every opportunity that you can. Repeat and expand upon your vision so often
that your employees know what you are going to say before you say it. Make
it how you open and close every meeting and every presentation. Visit your
Scrum teams frequently and relate your vision to what the Scrum teams are
doing. What’s their role in achieving the vision?
Lead from behind◾◾ : Managers who have delegated their authority to the Scrum
team must learn to lead by coaching from the sidelines. This requires manag-
ers to ask leading questions, rather than simply suggesting solutions or courses
of action. More importantly, managers need to see themselves as supporting
their teams rather than talking about teams that “report to them.”
Let the teams decide◾◾ : Get the Scrum teams to decide on standards and prac-
tices and make sure that you discuss these standards and practices, as well as
problems caused by the standards and improvements made to the standards,
in terms of what “you [the team] decided” and “the decisions you made.”
When you discuss standards and practices in terms of “we decided” or “they
were decided upon,” you remove responsibility from the team and place it on
the organization. Keep your teams in the driver’s seat.

Helping to Improve Team Performance
As self-managing and self-organizing teams, Scrum teams are expected to evaluate
and improve their own performance on a regular basis (usually starting through
sprint retrospective meetings). However, a good manager will always be watching
for opportunities to help his or her Scrum teams excel. Most Scrum teams, after a

308    Enterprise-Scale Agile Software Development﻿

while, tend to reach a point where their performance plateaus. They’ve solved all
of the low-hanging impediments and there are few known obstacles left for the
team to address. By looking closely, however, many managers will see that the team
has created practices that circumvent rather than solve other issues. For example,
Scrum teams frequently ask me for advice on how they should handle defects that
are reported during the sprint. The usual plan is to set aside a certain percentage
of the team’s availability at sprint planning for defect diagnosis and solution. For
example, many teams start by setting aside thirty percent of their time during
sprint planning, so that the team doesn’t overcommit. While that’s a reasonable
question,8 it is sometimes troubling the number of teams that don’t also couple
the desire to plan for support with a plan for reducing the number of defects being
found in their code. In other words, the major concern becomes planning for the
defects, while too little thinking goes into reducing the defects in the first place.

In observing Scrum teams while evaluating team performance, managers must
be very careful not to commit either of the following sins:

	 1.	Tampering: Scrum teams are intended to be responsible for their own perfor-
mance and for the improvement of that performance. Managers charged with
evaluating Scrum team performance and helping the team improve their per-
formance must be very careful not to tamper with the teams, i.e., not to make
changes to the Scrum team’s practices.

	 2.	Micromanagement: By being too involved in the daily activities of a Scrum
team, the team’s own self-management will tend to dissipate under the close
supervision, and the team will revert to relying on the manager to provide
direction and solve problems.

Managers trying to search for a way to challenge their Scrum teams to higher levels
of performance should review team activities looking for practices that support agility.
It is not uncommon for teams to decide to give up or ease off on important practices
that eventually make the teams ineffective. Some of the things you can look for9 are:

Sprint planning:◾◾
Are your teams’ sprint planning sessions effective? Do they set a commitment −−
for the sprint, determine how they are going to complete each backlog item
committed to, and derive a sprint backlog that supports the commitment?
Is DONEness a key element of determining how to complete backlog items?−−
Is the entire Scrum team (including the product owner) present at the −−
meeting?
Is the product backlog prioritized, sized, and ready for the Scrum team −−
prior to sprint planning?

Sprinting◾◾
Is the sprint longer than thirty-one days?−−
Is the sprint ever extended to allow team members to “finish up”?−−

Managing Scrum Teams    309

Does anyone other than the Scrum team modify the sprint planning −−
commitment?
Does anyone other than the Scrum team cause the sprint planning com-−−
mitment to be modified?
Is the sprint backlog updated daily?−−
Do the sprints end with working software?−−
Does the team produce documentation that no one uses?−−
Does the Scrum master work to protect the team from outside interfer-−−
ence and noise?
Is the Scrum master always actively working on getting rid of obstacles?−−
Are the team’s committed backlog items and tasks located somewhere −−
that everyone can see them?

Daily Scrums◾◾
Is the daily Scrum held every day?−−
Does everyone participate in the daily Scrum?−−
Is the daily Scrum finished in fifteen minutes or less?−−
Does anyone other than the Scrum team participate in the daily Scrum?−−
Does everyone stick to the three questions?−−

Backlog grooming◾◾
Are backlog grooming sessions held throughout the sprint?−−
Does the entire team participate (including the product owner)?−−
Does the team continue to slice backlog items until they are small enough to −−
fit into a sprint? Do they then stop and move on to other backlog items?
Does the team get bogged down in lengthy conversations that do not −−
provide value? Do they have a means for checking where they are and
deciding whether or not to continue the discussion?
Does the team stop when there’s enough groomed items on the product −−
backlog (plus a little more) for the next sprint?

Sprint reviews◾◾
Are reviews primarily about demonstrating software?−−
Does management attend sprint reviews?−−
Sprint retrospectives−−
Does your Scrum team hold a retrospective meeting after every sprint?−−
Do retrospectives result in improvements in team practices, and do the −−
team decisions focus on root cause or just the aftereffects?
Do retrospectives end with a list of three or four things to continue to do −−
or to do differently?

About the Scrum team◾◾
Is the Scrum team too big (more than nine people)?−−
Does the Scrum master tend to tell team members what to do?−−
Do any managers tend to tell team members what to do?−−
Where do team members look for answers to questions? To themselves or −−
others outside the team?

310    Enterprise-Scale Agile Software Development﻿

Does the Scrum team have a clear definition of what it means to be done?−−
Does the Scrum team first evaluate problems from a standpoint of how to −−
deal with the problem or do they focus on who caused it?
Does the Scrum team look at mistakes and failures as an opportunity to −−
improve, or a reason to be more conservative?
Does the team focus on spreading skills horizontally, or do they continue −−
to become more and more specialized?
Is everyone on the team participating in discussions? Are all opinions −−
heard, or do one or two opinions dominate the decisions?
Does the team have the skills and knowledge they need to get the job −−
done, or do they constantly have to wait for the information they need to
finish their work?
Does the team seem willing to take risks and make mistakes, or do they −−
tend to avoid trying new things?
Does the team tend to pass responsibility for correcting organizational −−
decisions and problems back to the organization, or do they see them-
selves as empowered to make decisions? Do they complain about the
problems, ignore the problems, or fix the problems?

About development practices◾◾
Is the team writing unit tests that support what the code is supposed to −−
do, or what the code already does?10

Do team members work together to write code and tests, build UIs, and −−
update documentation at the same time, or are they handing work off to
one another?
Does the team build their product several times a day to make sure that −−
nothing they have done in the past couple of hours broke the build?
Does the team test their product several times a day to make sure that noth-−−
ing that they have done in the past couple of hours broke the application?
Does the team engage in frequent refactoring of their code in order to −−
improve the supportability of the code itself?
Does the team engage in any kind of peer review of the code written or −−
changed during a sprint?

While working with Scrum teams to help them improve their performance,
remember that it is unwise to compare one team’s performance to another’s. While
we can classify teams into various categories (e.g., forming, storming, norming, and
performing11), it is equally true that, like fingerprints,12 no two Scrum teams are
alike. Scrum teams are made up of people, not resources, and each team must be
evaluated on its own merits. For example, I will never coach an organization that
its Scrum teams (assuming they are all roughly the same size) should all achieve a
velocity of at least twenty story points. This is effectively the same as saying that all
Scrum teams should be able to achieve the same result, despite the fact that they
are all working on different software, are solving different problems, and are made

Managing Scrum Teams    311

up of different personalities and different skill sets.13 With all the uncertainty of
software development and the differences introduced by personalities, what cause is
there to suppose that different Scrum teams would perform identically? The actions
taken by a manager must be independently determined by the actions and the deci-
sions of the Scrum team itself.

Endnotes
	 1.	 Rosenhead, Jonathan. Complexity Theory and Management Practice. http://human-

nature.com/science-as-culture/rosenhead.html.
	 2.	 The Standish Group. The Standish Group Report: CHAOS. 1995. http://net.educause.

edu/ir/library/pdf/NCP08083B.pdf.
	 3.	 Ziv, Hadar, and Richardson, Debra J. The Uncertainty Principle in Software Engineering.

University of California, Irvine, CA: 1996.
	 4.	 The concept of calling this Humphrey’s principle seems to have been coined by Jeff

Sutherland and is a reference to Watts Humphrey’s paper, “Some Programming Principles:
Requirements.” http://www.sei.cmu.edu/news-at-sei/columns/watts_new/2003/1q03/
watts-new-1q03.htm.

	 5.	 Wegner, Peter. The Paradigm Shift from Algorithms to Interaction. Brown University,
October 14, 1996. Also, for those of you in the same boat I was in when I saw this, a
lemma is a proven statement used as a way of proving another statement.

	 6.	 Rosenhead.
	 7.	 IBM Global Study: Majority of Organizational Change Projects Fail. http://www-935.

ibm.com/services/us/index.wss/summary/imc/a1030548?cntxt=a1000401.
	 8.	My answer usually is not to bother planning for support at all. If the team is prop-

erly calculating velocity as the sum of the story point sizes of completed backlog
items, is using that value to groom enough for the next sprint, and also uses that
value to determine their likely commitment for the next sprint, then there’s no rea-
son to plan specifically for support—using velocity allows the team’s commitment
to self-correct.

	 9.	 You can find more information at http://www.bigagiledevelopment.com/watchlist.
	 10.	 This is the fundamental difference between writing unit tests and writing them using

test-driven development. For more information, I recommend looking at Scott
Ambler’s web site: http://www.agiledata.org/essays/tdd.html.

	 11.	 These are categorizations of group dynamics as proposed by Bruce Tuckman.
	 12.	 Fingerprints can be classified in ways that describe their appearance (i.e., whorl, loop, and

arch) as well as the mode of the fingerprint itself (i.e., visible, latent, and impressed).
	 13.	 It also tends to cause Scrum teams to modify their story point estimations to ensure

that they are hitting the expected goals.

313

23Chapter

Agile Product Management

Product management in an agile environment is very similar to product manage-
ment in any application development environment. Much of the work of prod-
uct management centers on understanding what features will make your product
valuable to the eventual users. This requires a clear understanding of develop-
ment constraints and timeframes and a delicate balancing of market and cus-
tomer needs, business needs, and an endless variety of competing limitations and
requirements. In agile development, specifically when using Scrum, we more fully
enhance the product manager role by giving a more appropriate title of “product
owner” and, from the perspective of the development teams, limiting the author-
ity to prioritize and interpret requirements solely to the product owner. In this
chapter, we will review the major responsibilities of the product owner, how the
product owner uses and maintains the product backlog, and how defects affect
the product backlog.

The fundamental responsibilities of the product owner make the person in this
role accountable for the success or failure of their product. We’ll start by discussing
these responsibilities and then move on to how product ownership is often managed
in a larger organization. The product owner’s responsibilities include the following:

Understanding the needs of your customers◾◾ : While this should be a clear-cut
description, the reality of understanding your customers’ needs actually
requires the product owner to understand the difference between a customer’s
wants (what they say they need) and a customer’s needs (what they actually
need). A good product owner must be able to detect when solutions (wants)
are being given to them by their customers and must know how to work with
the customer to reinterpret those solutions as actual needs.

314    Enterprise-Scale Agile Software Development﻿

		 Market segmentation tends to make the problem even more difficult—a
product with a number of customers will find that those customers often
have competing if not completely opposing needs. This happens when your
product is sold to customers that are in the same industry but have completely
different business drivers. Typical market segmentation occurs within indus-
tries where there are both for-profit and not-for-profit players in the industry
at the same time. A third segmentation occurs when there are government-
subsidized businesses in the industry as well. This occurs frequently in the
healthcare industry, where you might have hospitals run by for-profit orga-
nizations, hospitals run by charities (e.g., Shriners), and hospitals run all or
in part by the national government (e.g., Veterans Administration). You can
find similar segmentation in education with schools at all levels of education
occurring in for-profit (private schools and colleges), not-for-profit (religious
schools), and public schools managed by state and local governments.

		 Complicating the product owner’s job still further is that he or she needs
to possess an excellent ability to predict events up to three, four, or even five
years in the future, and how those events might change the needs of the cus-
tomer so that the product can be ready (or nearly ready) at the same time that
substantial pressure for a resolution to the need begins to surface.
Represent your stakeholders◾◾ : The product owner is the voice of the customer
within the organization.1 The product owner must represent the priorities,
needs, and opinions of customers, government regulators, and executive
management alike. By constantly representing the stakeholder in everything
that the product owner does, the product is built with the features that pro-
vide the greatest value to the customers. Additionally, good representation of
stakeholder needs will help produce a product that works the way customers
would wish it to work and is customizable within the parameters set by the
needs of the largest part of the customer base.
Maximize your product’s return on investment (ROI)◾◾ : While evaluating which
features to put in the product and which to leave for another day, the product
owner is expected to maximize the return on development activities. In other
words, the product owner is supposed to get the greatest value for the least
cost from every single feature added to the product. This puts intense pres-
sure on the product owner and the development teams to minimize defects
(because defects lead to having to work on the same feature more than
once for the same initial value or less) and carefully balance customer-valued
functionality with architectural improvements that do not provide direct
functionality but are necessary nonetheless.
Prioritize the work◾◾ : The product owner drives what his or her Scrum teams
develop by prioritizing the product backlog. Scrum teams take their work
from the top of the product backlog and are required to obtain permission
from the product owner to do any item out of the defined order. While anyone

Agile Product Management    315

is allowed to add items to the product backlog, these items are usually added
to the bottom of the product backlog or, alternatively, into a holding queue
pending review by the product owner. Only the product owner is allowed to
prioritize the product backlog or to remove items from the product backlog
(see Figure 23.1).
Translate backlog items for development teams◾◾ : No matter how product backlog
items are written, the product owner is the final authority on what they mean
and how the product should behave when the item is completed (e.g., features
that the customer can see, that includes what the customer sees and how the
UI works as well as how any formulas work, search criteria, whether or not
data is optional, and even the performance characteristics of the feature—that
it should run in less than 1 second 95% of the time under normal load condi-
tions). For architectural items, the product owner could communicate that the
architectural change should not be visible to the customer in any way unless
the customer activates a specific option. Product owners accomplish most of
this communication during backlog grooming workshops, sprint planning,
and the sprints themselves. In general, many details are discussed and docu-
mented during backlog grooming sessions and are further developed during
sprint planning. During the sprint, the product owner is frequently involved
to answer very detailed questions as the features are actually being built.
Achieve and sustain a maintainable development pace◾◾ : I teach all of my product
owners that there is one basic and unavoidable truth in agile product manage-
ment: your Scrum teams will never complete as many features during their
sprints as you want them to. I suggest that, as product owners, if they can’t

1. A developer
has a new idea

and opens a new
backlog item.

2. The new
backlog item is
placed into a

holding queue.

Holding
Queue

Product
Backlog

3. The Product Owner discusses
the merits of the new backlog

item and, if the Product Owner
agrees, moves the item to the

Product Backlog.

Figure 23.1  Using a holding queue with the product backlog.

316    Enterprise-Scale Agile Software Development﻿

accept that truth, they reconsider being product owners in the first place. It
is an unfortunate reality, but product owners are always focused on complet-
ing as much value as they can for as little cost as possible. That will always
have the product owners focused on getting their Scrum teams to produce
more and more every sprint, even if the teams are not prepared to do so. A
good Scrum team will know when to say no to the product owner, drawing
the line at the point where they produce the best-quality software at a pace
that they can sustain for several consecutive sprints. The product owner needs
to be very careful to push his or her Scrum teams just enough to keep them
motivated and challenged and to help them find that maximum sustainable
pace. Push too hard, and if your teams don’t push back (and many won’t, if
they fear reprisal), they will begin to both produce lower-quality software and
work at a pace that cannot be sustained for long.
Understand the needs of multiple teams◾◾ : The product owner is the beginning
point from which new product ideas are introduced to the product backlog
and, indeed, to many other potentially nonagile portions of the larger orga-
nization. Product owners have to understand how the following teams are
affected by changed and additions to the product backlog and need to ensure
that the right steps are taken by the right people at the right time:

Development teams: Of course, our development teams are where the −−
items have to be built, and product owners must work directly with the
development teams (with or without business analysts) to break down
items into work that the development teams can understand and com-
plete within a sprint.
Sales: Product owners have a delicate balancing act to do with the sales −−
teams. While it is crucial to keep the sales teams prepared for what is
planned for development, the product owner must also keep lines of com-
munication open to ensure that the sales team does not release informa-
tion to customers or the press that the product owner is not certain will
be finished in time for the product release. Communication regarding the
availability of features has to be very clear and always up-to-date.
Technical marketing: Product owners need to be able to communicate −−
to technical marketing how new features will be added to the product,
the effect those features will have on the overall product, and what if any
architectural changes may be made as a result. Some of this informa-
tion won’t be available until after the development teams begin groom-
ing the related items or building the feature—the product owner should
ensure that he or she or a business analyst or a Scrum team member
handles the ongoing communication with technical marketing to keep
them up-to-date as the feature construction continues.
Education services: Product owners need to be able to communicate to −−
education services teams how the planned changes to the product will
affect training materials and even training schedules. As the creation of

Agile Product Management    317

new materials and updating of existing materials usually lags behind the
actual development activity, it is critical that the product owner keep
the education services teams as up-to-date as possible.
Customer service/technical support: All too often, technical support −−
personnel are not considered in the development of new features or the
changes made to existing features. Ideally, technical and customer sup-
port personnel should be involved in the development of new features as
those features are planned. Product owners, often through their business
analysts, must get technical support personnel involved in how items are
added to the product, what the technical support requirements are of
those changes, and help get the technical support personnel ready to pro-
vide support for the new features and product changes.

Plan for your beta testing◾◾ : No matter how good a job you do with agile devel-
opment, building and testing your product every day, you will still need to
install your product in one or more actual customer environments in order
to ensure that your product is tested under the most production-like circum-
stances possible. The product owner needs to plan for one or more betas,
solicit potential customers, manage the delivery of the beta software, collect
bugs reported by the customers, and ensure that the bugs are actually diag-
nosed and fixed.

With all these responsibilities, reaching outward to customers to understand their
needs, reaching inward to Scrum teams to help explain the product backlog, the prod-
uct owner in a large organization often has to be more than just a single person.

Large-Scale Product Ownership
In a larger organization, the product owner is often part of a team of product man-
agers and business analysts that work together to accomplish the responsibilities
of the product owner. In these larger teams, one or more product owners support
complex pieces of a large application by working directly with stakeholders and
customers and prioritizing the product backlog. Several business analysts, working
closely with the product owners, support the Scrum teams during backlog groom-
ing, sprint planning, and throughout the sprint. Two common organizations are
shown in Figure 23.2.

In Figure 23.2, we see an example of a small product owner arrangement. In
this example, we have a single product owner. While this product owner is still
wholly accountable for the success of the product, this product owner will focus
primarily on outward facing responsibilities—meeting with customers, meeting
with management, and attending industry conferences. Working closely and fre-
quently with the product owner are four business analysts. These analysts learn as
much as they can from the product owner about each and every backlog item on

318    Enterprise-Scale Agile Software Development﻿

the product backlog in order for them to properly represent the product owner’s
desires. The business analysts work directly with each Scrum team, fulfilling most
of the product owner’s responsibilities for the Scrum team. The business analysts
participate in backlog grooming workshops, sprint planning meetings, and assist
the Scrum teams during the sprint.

In Figure 23.3, we see an example of a much larger product owner arrangement
that helps us to deal with a much larger and more complex product. In this scenario,
our product is so complex as to require us to have several product owners. Each
product owner is responsible for some major portion of the product (e.g., student
registration, class scheduling, billing for college management software or patient
registration, patient orders, billing for hospital management software). As with the
small group arrangement, each product owner has one or more business analysts
working directly with him or her to help communicate and coordinate with the
Scrum teams. However, in this arrangement there is one more product owner, an
“uber” product owner that has overall responsibility for the entire product and
delegates his or her authority to the “unter” product owners. Together, the product
owners share responsibility for prioritizing their backlogs, though the uber prod-
uct owner drives the overall product priorities.

On a regular basis, but at least once per sprint, the uber product owner should
be sure to bring all of the product owners together to compare business needs and
current opportunities. At this meeting, the product owners should:

	 1.	Review the outcomes of the previous sprints (what was finished, what was
returned to the backlog) and adjust accordingly.

	 2.	Review the current project status to ensure that all product backlogs reflect
the organization’s priorities and needs.

Product Owner

Business
Analysts

Scrum
Teams

Figure 23.2 A small product owner arrangement.

Agile Product Management    319

	 3.	Negotiate with other product owners to resolve any issues caused by depen-
dencies between the backlogs.

	 4.	Identify new opportunities and challenges and update the product back-
logs accordingly.

Let’s talk a bit about how this works. For example, let’s assume we’re responsible
for a large software package that manages all of the flights and the booking of seats
on our customer’s airlines. Every passenger’s reservation, no matter how they book
their flight, ends up in our system. Of course, our software handles everything for
our customers for every flight, including:

Seat reservation: Who’s in which seat?◾◾
Seat availability: Which seats are available? Remember, some stay unavailable ◾◾
until twenty-four hours before the flight.
Seat location: Is this a bulkhead seat (the seats in the front of each cabin with ◾◾
nothing but a wall right in front of them)? Is this seat in an exit row?
Meal preferences: No preference, vegetarian, kosher, gluten-free?◾◾
Gate assignment at each airport: From which gate does the flight leave and at ◾◾
which does it arrive?
Seat pricing: How much does it cost to reserve the seat? Many airlines now have ◾◾
multiple levels of economy/coach, then business class, and then first class.
Seat juggling: This is a special function provided when a party (usually a ◾◾
family) all books together and wants to sit together. This function tries to get

Product Owners

Business
Analysts

Scrum
Teams

“Uber” Product Owner
or

Program Owner

Figure 23.3 A large product owner arrangement.

320    Enterprise-Scale Agile Software Development﻿

everyone in the party as close together as possible while honoring as much as
of the affected passengers’ preferences it can. Priority, of course, is given to
those who booked first.
Customer status: Some customers have preferred status due to their fre-◾◾
quent flights with our customers. So, these customers can be automati-
cally upgraded, when available, to the next class of seat. Of course, when
the upgrade occurs, other passengers’ preferences are also taken into
account, causing a cascade of reseating to put everyone where they most
prefer to be.

Having created this basic outline of functionality, let’s also assume that we
have three product owners that work with an uber product owner to manage the
ongoing development of our flight management software. Responsibility across the
product breaks down like this:

Paul: The uber product owner; has been with the company for twenty years ◾◾
and knows the product and the customers inside and out. His guidance has
brought our product to a leading position within the industry.
Linda: Knows the fare calculations like no one else in the industry and is ◾◾
responsible for the seat pricing, location, and availability functions. Since no
one else seemed to want it, Linda handles the gate assignment capabilities as
well. Linda’s been with the company for a little less time than Paul. The team
tends to defer to Linda if Paul isn’t available to help solve a problem or answer
a question.
Jody: Has a hotel management background and came to our company as a ◾◾
result of an interesting gambit to see if her training could help us create a
better experience for our customers’ passengers. Jody handles the meal prefer-
ences and customer status capabilities and is responsible for looking for ways
to improve repeat ridership on our customers’ airlines.
Bill: The newest member of the team; brought onboard when the company ◾◾
decided to add some new capabilities to differentiate us further from the
competition. There were a growing number of passenger complaints about
their seat assignments being changed from “window” to “aisle” or “aisle” to
“center,” and there was a concern that passenger loyalty was being directly
affected. Bill came onboard to create the complex seat juggling capabilities
that, given passenger preferences, would continuously reseat passengers until
two hours before boarding, always trying to achieve a balance that satisfies as
many passengers as possible. Bill also handles the architectural aspects of the
product, being more familiar with the technical details of the product than
his peers.

The unter product owners, Linda, Jody, and Bill, all have between two and five
business analysts working with them to assist their Scrum teams in understanding

Agile Product Management    321

and building the items on the flight management system’s product backlog. They meet
regularly (at least once per sprint) to discuss the direction of the product, the newest
flight regulations from the FAA,2 press releases and information from the competi-
tion, new customer requests, and information coming from the industry. Based on
their discussions, the product backlogs managed by product owners are modified by
adding new items, deleting unnecessary ones, and reprioritizing the items.

In fact, in one meeting, Paul (the uber product owner) decided it was time
to begin discussing the new fleet of Airbus A380s that the company’s customers
were beginning to place orders for. By considering the impacts of this new aircraft
early, Paul was considering all of the opportunities for product promotion that
the company could take advantage of if they could start thinking about what the
A380 would mean and getting some of that work prioritized and into the hands of
the business analysts and the Scrum teams as soon as possible. The Airbus A380
is a two-deck aircraft that seats 525 passengers with improved galley facilities. The
aircraft is also much larger than previous versions and requires a larger and higher
jet way and more room to taxi and park.

During the course of the meeting, the product owner team decided to add the
following items to their product backlogs:

Architectural◾◾
		 The team knew this was coming eventually—the current architecture does

not support multiple decks on an aircraft. However, since our customers are
placing orders for an aircraft with two decks, we’ve also got to make exten-
sive database and architectural changes to support upper and lower decks.
The team agreed that this item would have to get attention right away—
pretty much nothing else related to the A380 could be done until this was
under way. Bill and Linda’s teams will need to work closely together to figure
out exactly how the extensions to the architecture should affect the applica-
tion code.
Seat reservations/pricing/availability/location◾◾

		 Need to add the A380 seat configuration to the software. With the architec-
tural changes, this item shouldn’t be extensive, but the team agreed to review
with their customers how the decks might be divided into different classes of
seating to see if there could be a more extensive impact.
Gate assignment◾◾

		 The team agreed, at Paul’s urging of course, that the product would have the
ability to flag when an A380 has been assigned to a gate that cannot support
the size of the aircraft. Seeing this might be useful in the future as aircraft
become larger and airports become older, Paul felt this might be a good time
to introduce this capability.
Meal preferences/customer status◾◾

		 With the increased galley capabilities, Jody decided to follow up with some
customers to see if they might increase their food offerings to passengers.

322    Enterprise-Scale Agile Software Development﻿

Jody had recently become familiar with a growing need for gluten-free foods
and wanted to see if this might be when the airlines would begin introducing
that option.
Seat juggling◾◾

		 With the architectural changes, the seat juggling routines should not be
affected, but the team agreed that it may be necessary to create more test
cases for the juggling routines based on the increased complexity created by
500+ seats and two decks. Bill’s teams will have to work closely with Linda’s
teams to figure out the new test cases.

Because Paul was very concerned about getting the architectural changes under
way (they were clearly key to completing any of the rest of the code), some fea-
tures previously planned for the next quarter were pushed a little further down
the product backlogs of the various product owners in order to allow some room
for the architectural work and the collaboration needed between several teams to
ensure that the architectural changes truly supported the application functionality.
Immediately following the meetings, the product owners met with their business
analysts to discuss the new items and the prioritization changes.

At the daily Scrums of the Scrum teams, the product owners introduced, at a high
level, the new items and why they were being added to the product backlogs. It was
left to the business analysts to go into details during backlog grooming workshops.

The preceding example illustrates how a product owner team functions in a
large organization. While the uber product owner drives overall product direction,
a team of highly qualified unter product owners provide the ability to evaluate
market trends, industry changes, and customer needs, turning those influences into
backlog items for grooming and development and into decisions to speak with cus-
tomers about future needs and opportunities. The product owners are also respon-
sible for communicating all of these decisions and concepts to the business analysts,
enabling the business analysts in turn to speak with the Scrum teams.

However, as in the example, I recommend that product owners speak with
Scrum teams directly about what is going on with the product, why decisions are
being made, why prioritizations are changed, and how those changes will improve
the profitability of the product and the value it provides to the customer. Don’t
use your business analysts as a “go-between” with your Scrum teams. It is good
advice for all product owners to always maintain an open line of communication
with their Scrum teams—don’t use others to transmit important information about
changes to the product backlog.

The Extended Product Backlog
As the product owner defines more and more of the product that he or she wishes to
have built, the information takes partial shape in the product backlog. However, as

Agile Product Management    323

more and more information is uncovered and defined, it becomes clear that, while
the product backlog defines and orders the work, there is much more to the prod-
uct backlog than simply the list that we call the product backlog. As backlog items
are discussed, analyzed, and sliced into smaller and smaller items, information is
uncovered and documented, and that information needs to go to some kind of
permanent storage. As software is built and tested, defects are found. Information
about those defects is placed into a defect tracking system just as the defects them-
selves often end up on the product backlog as defect numbers or brief descriptions.
This concept of an extended product backlog, consisting of the product backlog,
an item information library, and defect management software, is illustrated in
Figure 23.4.

Let’s discuss the pieces in a little detail:

	 1.	The product backlog: This piece of the extended backlog has been discussed
thoroughly throughout this book and most literature about Scrum. We
needn’t go into more detail on the backlog here.

	 2.	The item information library: The library portion of the extended backlog is a
storage area for all of the information gleaned from the various conversations
that the Scrum team has regarding the backlog item. Information stored in
the library can include (but certainly is not limited to):

Flowcharts−−
UI mock-ups−−
Database schema designs−−
Test case definitions−−
Any other information that the team finds useful−−

	 3.	The defect management system: The defect management portion of the extended
backlog contains information regarding defects found in the product after the
Scrum team has decided that the software feature is done. Defects are found

Item
Information

Library

Defect
Management

Product
Backlog

Figure 23.4 T he extended product backlog.

324    Enterprise-Scale Agile Software Development﻿

by other developers, testers, and customers (among many others), so the real
importance of a defect management system is that it can collect important
and necessary information about the nature of the defect from a variety of
sources and can categorize defects to facilitate easy searching, prioritization,
and reporting. When defects are added to the defect management system, the
product owner can choose to put placeholders for the defects in the product
backlog, prioritized relative to other work on the product backlog, to ensure
that the defect is analyzed and solved by the Scrum team.

We’ll use the aircraft management example from the previous section to illus-
trate a little more fully what this means. Let’s assume that there’s an item on the
product backlog to add multideck support to the aircraft management system’s
architecture in order to allow the application to support aircraft with passenger
seats on multiple decks. The item description itself will reflect the most basic, gen-
eral decisions about the enhancement. For example, we can assume that Paul, the
uber product owner, has already confirmed that the team need not consider more
than two decks. Paul may have also allowed the team to limit the number of seats
on the aircraft to no more than 999 (the maximum seating capacity of the Airbus
A390 is only 525 passengers, so this constraint didn’t seem very limiting to Paul).
The resulting backlog item might look more like this:

Modify the architecture to support aircraft of one or two decks and less
than 1,000 seats.

However, as the team continues to evaluate and analyze this backlog item, infor-
mation related to the design is created that doesn’t fit on the backlog item and has
to be stored somewhere. The team builds tentative schemas for the “aircraft” and
“seats” tables and also starts constructing a list of code modules and reports that
will be impacted by the changes. Further discussions lead to agreed upon modifica-
tions to existing internal application interfaces to support the new database and the
new functions. None of this information really belongs on the backlog itself, but
it’s important to retain the information for future discussions and reference during
the actual building of the items during a sprint.

In addition, during the detailed discussions, one of the architects identifies two
bugs in one of the routines supporting the “seats” table in the database and adds
those defects to the defect management system for tracking. Bill, the product owner
for this portion of the application, decides that the defects will be made critical by
the planned changes and therefore decides to put the defects IDs of the new defects
on the product backlog.

As a result of discussions regarding this single backlog item, all three pieces of
the extended product backlog are modified: the product backlog itself, the item
information library, and the defect management system (see Figure 23.5).

Figure 23.5 illustrates how discussion concerning a single backlog item (num-
ber 100) creates new information in the library storage tool about the “aircraft”

Agile Product Management    325

table schema, the “seats” table schema, and a list of modules affected by backlog
item 100. In addition, the discussion yields information on two new defects, bug 1
and bug 2, which are not only opened in the defect management tool for track-
ing, but also responsible for the creation of two new items in the product backlog
that allow the product owner to essentially schedule the correction of the defects.

All three pieces of the extended product backlog, therefore, work together to
help ensure that the product owner and the Scrum teams have all of the informa-
tion they need to understand, estimate, plan, and finally build the product as the
product owner envisions it.

The Product Backlog
The real challenge of the product backlog is making it visible to everyone in the
organization, making it easy to access and understand, making it easy to rear-
range and prioritize, and yet, at the same time, restricting access so that only the
product owner and the business analysts can add and update information and only
the product owner can prioritize the items. It is the reporting and security needs
that usually drive organizations to select specialized tools to manage the product
backlog rather than using a spreadsheet. The most common tools for managing the
product backlog are:

Item 100:
“Aircraft”

table schema

Bug 1: Seat table
reporting error in

headings

Defect ManagementProduct Backlog

Item Information Library

Bug 2: Seat table
report error with

dates

Reporting
Bug 2

Reporting
Bug 1

Item 100: Modify architecture
to support up to 2 decks and

 less than 1,000 seats.

Item 100:
“Seats” table

schema

Item 100:
Affected
modules

Figure 23.5 H ow the extended product backlog works.

326    Enterprise-Scale Agile Software Development﻿

Excel (http://www.microsoft.com/office)◾◾
ScrumWorks (http://www.scrumworks.com)◾◾
XPlanner (http://www.xplanner.org)◾◾
Rally (http://www.rallydev.com)◾◾
VersionOne (http://www.versionone.com)◾◾

Other than the spreadsheets, most of these tools provide some degree of security
to protect the backlog and utilities to support the viewing, modification, and priori-
tization of product backlog items. Most of them also provide features that simplify
the slicing of items into smaller “child” items. One unique feature of ScrumWorks
Pro by Danube Technologies, Inc. is its ability to print backlog items on cards,
which can then be used by Scrum teams to populate their story walls.

The Information Library
The information library, holding all of the information that supports the content
of the product backlog, needs to be able to hold many types of information and
must also allow Scrum teams to easily organize the content of the library around
the product backlog items. In other words, users of the information library must
be able to easily see what backlog item the information supports. Team collabora-
tion tools often provide all of the capability that a Scrum team needs—the biggest
concerns are keeping the information organized relative to the product backlog and
keeping the information up-to-date. Organizations that I have worked with in the
past have used the following tools to support this capability:

Sharepoint (http://www.microsoft.com/sharepoint)◾◾
Basecamp (http://www.basecamphq.com)◾◾
Lotus Notes (http://www-01.ibm.com/software/lotus/)◾◾
Wiki (http://www.mediawiki.org)◾◾

While some of these tools are more about document management than team
collaboration, all of them support the ability to tag documents (providing the ability
to associate a document with a backlog item number) and, more importantly, can
be configured to allow appropriate access to the information in the library. My per-
sonal preference for the information library is to use any modern wiki application;
with some very simple naming and usage standards, a simple wiki application can
manage a significant amount of complex information.

The Defect Management System
The third component of the extended product backlog is the defect management
system. The defect management system needs to be able to store all of the informa-
tion needed to help developers understand, diagnose, and solve defects that have

Agile Product Management    327

been found in the application software. There are no special agile needs for a defect
management system that nearly all currently available products do not provide.
Some common, easily used, and mostly free products that will work fine in this
environment are:

BugTracker.NET (http://ifdefined.com/bugtrackernet.html)◾◾
Bugzilla (http://www.bugzilla.org/)◾◾
Mantis (http://www.mantisbt.org/)◾◾
GNATS (http://www.gnu.org/software/gnats/)◾◾
Redmine (http://www.redmine.org/)◾◾

The key with the defect management system is to use it like the library sys-
tem—an extended pool of information about problems in the product. However,
there are two views on how to approach the solving of defects. We’ll review both
approaches later in this chapter.

With the concept of the extended product backlog defined, we can move on to
discuss how to put information on the product backlog in the first place and what
kind of information should accompany each item.

Adding Items to the Product Backlog
As mentioned earlier in this chapter, the product backlog represents the means by
which the product owner defines what he or she wants in the product and in what
order. To that end, the product owner must be vigilant in ensuring that anything he or
she wants for the product ends up on the product backlog. This includes items like:

Features◾◾ : Of course, most of the product backlog contains items that describe
“stuff” that the product owner wants his or her product to be able to do.
Architectural needs◾◾ :3 Common printing and reporting routines, queue man-
agement, list management, event management, authentication and authori-
zation, common UI rendering routines, etc.
Technical debt◾◾ : These are items of “DONEness” that were, in fact, not done
by the developers when the feature was built. This list can be quite extensive
as the organization begins a transition to agile development, and should (if
the organization properly enforces the definition of DONEness in determin-
ing whether or not a feature is actually ready for production use) diminish
rather rapidly during the first two years of agile development. These often
include items like:

Incomplete refactoring−−
Writing missing unit tests−−
Writing missing acceptance tests−−

328    Enterprise-Scale Agile Software Development﻿

Checking all product artifacts (code, documents, etc.) into source −−
code control
Fixing the code to pass all unit and acceptance tests−−
Completing quality checks required by your quality system requirements−−
Completing artifacts and other documentation required by the regula-−−
tions that govern your product’s development
Updating internal specifications−−
Updating product documentation−−

Infrastructure items◾◾ : These items don’t actually contribute features to the
product, but they do directly support the developer’s ability to build the prod-
uct. These items can include things like:

Building or fixing a continuous integration server−−
Researching, installing, implementing developer tools−−

Now that we’ve defined some of the many types of items that can be on the prod-
uct backlog, let’s take a closer look at some of the information we might want to add
to the item that helps us to make sure that our Scrum teams build the right product.

Adding Defects to the Product Backlog
As the completed software moves from the Scrum team to additional quality assur-
ance teams, other development teams, and customers, defects in the software oper-
ation will be found. In most organizations, newly opened defects are categorized
based on their severity and impact to the customer: low, medium, high, and critical.
Low and medium defects usually indicate problems that can be worked around
or ignored; high-severity defects require some kind of a solution within a specific
timeframe; critical-severity defects require immediate attention.

When defects are discovered, they are recorded and tracked in the organiza-
tion’s defect management system. From that point forward, defects are often han-
dled as follows:

Defects rated as critical go directly to the responsible Scrum team to be ◾◾
immediately addressed. The Scrum team will need to determine how the
defect will affect the current sprint and discuss with the product owner how
to modify the sprint commitment.
All other defects are assigned to a Scrum team and then handled in one of ◾◾
two ways:

The defects are added to the product backlog and prioritized with the rest −−
of the work. In some cases, only the high-severity defects are added to the
product backlog; the medium- and low-severity defects are added during
project planning for a subsequent project.

Agile Product Management    329

Scrum teams save a little capacity every sprint and solve defects in their −−
queue in priority order. The Scrum team should negotiate with the prod-
uct owner on an ongoing basis to determine how much capacity should
be set aside for defect resolution.

Setting Up Your Product Backlog Items for Success
Items on the product backlog drive the creation of the product. Therefore, it follows
that when the Scrum team starts building an item, the more clearly defined it is, the
more successful the Scrum team can be. In this section, we’ll discuss many ideas
that you can use with your Scrum teams to provide good and useful information to
assist both with their building of the item and with the product owner’s prioritiza-
tion of the item. The important thing to consider when deciding which of these
approaches to use and which to skip is the value that each piece of information
provides. Doing something simply because it is suggested herein leads to spending
time on process steps without getting any value in return. Since the product owner’s
job includes maximizing the return on investment (ROI), the product owner must
be careful not to implement zero-value-adding steps in the development process.

One more item before we review some of the information you might want to
include with your backlog items. Items in the product backlog “mature” through
a process of progressive elaboration. In other words, when the item is added to the
product backlog, we may know nothing about it except that the product owner
wants it. As the Scrum team (and the business analysts) more fully considers the
backlog item during backlog grooming workshops, the amount of information
about the backlog item grows. This means that none of the information discussed
in this section need be part of the backlog item at the time that the item is created.
Information can and should be added over time, culminating only at the time that
the item is finally under construction by the Scrum team. So, no matter what type
of information your product owners decide to add to their backlog items (and not
all items will need all of the same information), it should be expected that this
information would collect over time, not all at once.

So, other than a description of the desired feature itself, what other types of
information might your product owners and Scrum teams want to include on a
backlog item? Following are some common examples.

Estimation of Problem Complexity
This, of course, is the typical estimate of the backlog item and should be present
on every item on the backlog. The Scrum team that will build the item is respon-
sible for an item’s estimation (the product owner should never provide an estimate
on his or her own). Whenever a new item is found on the backlog during backlog
grooming, the Scrum team should be sure to put at least a high-level estimate on

330    Enterprise-Scale Agile Software Development﻿

the item. Whether this estimate is in hours, ideal person-days, ideal team-days, or
(my preference) story points, it is best if a consistent approach to estimation is a part
of the grooming process from day 1.

Acceptance Criteria
Acceptance criteria help define what it is the product owner wants an item to be able
to do. Typically, these items are written as if the phrase “When finished, if you do
<x>, the result will be <y>” was used as a template. In other words, the acceptance
criteria help the Scrum team to define DONEness for the backlog item by laying
out the conditions that must be satisfied for the item to actually be considered done.
Product owners and business analysts define acceptance criteria. The Scrum team
can also contribute ideas for acceptance, but the product owner owns these criteria.
It is recommended that all backlog items have acceptance criteria before the Scrum
teams attempt to build them.

Risk
When we discuss the risk of an item, we are generally talking about the risk of
building the item. In other words, how likely is it that an item may cause signifi-
cant difficulty during or after being built? By doing a quick assessment of a backlog
item’s risk, the Scrum team can decide whether or not to consider the possibility of
encountering significant obstacles during sprint planning and, as a result, increase
the complexity estimate of the backlog item.

When assessing an item’s risk, the idea is to avoid lengthy evaluation unless
specifically called for. We want to keep the ROI on this activity high; since the
value returned by risk assessment is somewhat directly proportionate to the risk
of building the item, it pays to avoid detailed analysis of an item’s risk unless that
initial assessment indicates that the risk is inordinately high. Therefore, there are
some statements you can consider about an item to obtain a quick evaluation of its
risk, before deciding whether or not to do additional, deeper, analysis. Respond to
each statement on a scale of 1 through 5.

	 1.	Rate the team’s understanding of the technology, algorithms, and concepts
needed to build the item (1 = completely understood, 5 = no understanding).

	 2.	Rate the clarity of the product owner’s understanding of the feature (1 =
completely clear, 5 = constantly changing).

	 3.	Rate the team’s ability to work well together (1 = very good, 5 = very poor).
	 4.	Rate the team’s overall level of experience with the product (1 = multiple

senior developers with years on the product, 5 = mostly new team members
with no more than one senior developer with experience).

	 5.	Rate the stability of the application being modified (1 = very stable, 5 =
very unstable).

Agile Product Management    331

By considering each of these statements (the team can “vote” on their answers
to each statement with a rock-paper-scissors approach using between one and five
fingers), you can add all of the answers together to derive a basic concept of the risk.
The team can either negotiate to come to a single answer or just average the answers
together and round the average off. Either way, they can reach a quick evaluation
of the risk as follows:

Minimal risk (total is less than 10): The backlog item is probably fine as ◾◾
defined and the team needn’t consider taking any steps with regard to the
risk of the item.
Moderate risk (total is between 10 and 14): The Scrum team may wish to ◾◾
reestimate the complexity of the item (they don’t have to change it, but they
may want to rethink it).
High risk (total is between 15 and 19): The product owner may want to ◾◾
consider spending a little bit more time gaining some clarity on the item.
Additionally, the Scrum team may want to reestimate the complexity of the
item and do some additional work understanding how the item might be
built in a way that might reduce the risk. By digging a little deeper than nor-
mal, it is possible that the team, working with the product owner, can isolate
and mitigate some of the risk inherent in the backlog item.
Unacceptable risk (total is greater than 19): The product owner should strongly ◾◾
consider removing the item from the backlog (or drastically lowering its pri-
ority) until any or all of the following are true:

	 1.	 The item is understood more fully.
	 2.	 The Scrum team is better prepared to build the item.
	 3.	 Technology exists that make the item a less risky proposition.

As the Scrum team gets better at estimating risk, they will often learn how to
use previously assessed backlog items as examples in order to assess the risk in a
single estimation. In other words, rather than considering the five statements listed
above, team members will be able to simply assess the item as minimal, moderate,
high, and unacceptable.

Value
Of course, no backlog item should be on the product backlog without some indica-
tion of the value of the item from the product owner. This piece(s) of information
helps the product owner to prioritize the backlog properly and also assists in deter-
mining the ROI of the item, allowing the product owner to more objectively assess
individual backlog items.

Assessing the value of a backlog item is the sole responsibility of the product
owner. Just as the Scrum team owns the complexity estimation, the product owner
owns the value estimate. What unit the product owner chooses to use, however, is

332    Enterprise-Scale Agile Software Development﻿

up to him or her, as long as the unit is used consistently across the backlog. The
product owner can use actual monetary amounts (although this can be quite dif-
ficult to do across the entire backlog) or other custom-defined units (e.g., on a scale
of 0 to 10, high/medium/low, $/$$/$$$, etc.).

One approach that I have seen implemented very successfully is a method that
actually uses two numbers in order to determine the overall value of the item. In
this approach, we define two kinds of value as follows:

	 1.	Benefit: This is a value from 0 to 20 that reflects the benefit to the customer of
building a particular backlog item. A benefit of 0 indicates that the product’s
customers will not recognize the item as providing any value to them whatso-
ever. Setting the benefit to 20 means that the product won’t sell without the
feature represented by the backlog item.

	 2.	Penalty: This is also a value from 0 to 20 that reflects the penalty or harm that
may come to the product or the organization if the feature represented by the
backlog item is not built. A penalty of 0 means that no harm will come to
the product or organization if the feature is not built. On the other hand, a
penalty of 20 indicates the likelihood that the organization would suffer near
irreparable harm if the feature represented by the backlog item was not built.

The brilliance behind the penalty concept is that many backlog items represent
features that are either architecturally significant or mandated by government regu-
lations or industry standards. Items of this nature are either completely transparent
to the customer or are merely baseline functions that customers will not be excited
to have, but will probably not purchase the product without.

After calculating both the benefit and the penalty, the item’s business value is
then said to be the sum of the two values. For example, a backlog item with a ben-
efit of 15 and a penalty of 7 would have a value of 22. Referring back to the example
used earlier in the chapter, let’s look at the backlog item added to the product back-
log to adjust the aircraft management system’s database to handle aircraft with two
decks (see the “Large-Scale Product Ownership” section above).

Initial discussions of the backlog item to adjust the database schemas and several
affected modules clearly demonstrated to the product owner that the architectural
changes were required for the application to handle aircraft with multiple decks.
While the developers made it clear that the application could be modified to support
multiple decks without changing either the architecture or the database, they also
made it clear that they would have to “fake out” both the database and the archi-
tecture. When the product owner asked what it meant to fake out the database, the
developers responded that they would have to “force the database to do stuff it wasn’t
intended to do.” With that reassuring thought sitting in the back of Bill’s (the prod-
uct owner) mind, the penalty was set to 15. At the same time, changing the architec-
ture and the database schema would, by necessity, have absolutely no impact on the
customer’s view of the data or use of the application (in fact, customer transparency

Agile Product Management    333

was one of the acceptance criteria for the item). Therefore, Bill set the benefit for the
item to 3 (it would have been 0, but one of the developers mentioned that some cus-
tomer would see “lower deck” on their passenger listings; assuming that there would
probably be other such dubious “improvements,” Bill set the benefit to 3).

Items thus valued can now be compared with other items and their complexity
estimates to aid the product owner in effectively prioritizing the product backlog.
Of course, you should not assume that value is the only information needed to do a
proper prioritization of the product backlog. In fact, value is only one piece of all of
the information needed. Product backlog prioritization is a very subjective process.

Performance Constraints
One of my major concerns with how modern software is developed (yes, even soft-
ware developed using agile practices) is how little attention is given to the per-
formance of the system until extremely late in the development effort. When I
coach product owners, I suggest to them that, when they create a new item in the
product backlog, they should consider the required performance of the item from
the perspective of the customer. Does the item need to run nearly instantaneously?
Will the customer care if the item took three or four seconds to complete? What
about twenty or thirty seconds? Will the customer even notice the performance
of the item (i.e., does the feature run behind the scenes or at night)? By adding
performance characteristics to the backlog item, the Scrum team can derive accep-
tance criteria that reflect the performance requirements and, by writing automated
acceptance tests that prove the performance criteria are met or exceeded, can ensure
that system performance continues to be, at minimum, acceptable throughout the
development effort.

For example, let’s assume that the flight management software we’ve discussed
throughout this chapter (again, for more information see “Large-Scale Product
Ownership”) had backlog items completed many months before regarding the
recording of a seat reservation on one of the customer’s flights. The performance
characteristic for the original backlog item indicates that every seat reservation had
to be completed within 1.5 seconds. When the feature was originally built, the
Scrum teams created acceptance tests that validated that the 1.5-second limit was
met under various conditions (first seat booked, last seat booked, etc.). Because
the developers employ continuous integration and testing, the test that verifies the
performance of the seat reservation function runs several times every day. As work
begins on the architecture and the database schema to support multiple decks on an
aircraft, the test will continue to execute and, should the seat reservation function
performance degrade, will alert the developers at the first sign of a problem.

One method for indicating performance criteria on a backlog item is for the
product owner to initially specify a relative value that will later, during backlog
grooming, evolve into more detailed criteria. By adding the high-level relative value
early, the Scrum team has a reasonable idea of the product owner’s expectations

334    Enterprise-Scale Agile Software Development﻿

and can evaluate the complexity of the item appropriately (i.e., the complexity of
building a search capability that can search over 1 million seat reservation listings
for a specific passenger in less than ten seconds can be considerably less than that of
a function that has to do the same thing in less than one second). Product owners
can set relative performance criteria with a very simple system, like this one:

B (for ◾◾ batch or background): This feature will run overnight or in the back-
ground and won’t affect the customer experience at all. In general, features in
this category will run at least five minutes.
S (for ◾◾ search): This feature will likely be a long-running search that will take
up to five minutes to execute. It is expected that the feature will include a
notification to the user that the search may take a while, some kind of prog-
ress bar or indicator that the system is indeed working, and a means for the
user to cancel the search.
C (for ◾◾ commit): This feature will likely be the completion of a complex work-
flow and the user should expect a short delay while all of the unsaved data
are committed. The feature may take up to fifteen seconds to complete. It is
expected that the feature will include some kind of progress bar or indicator
that the system is indeed working.
F (for ◾◾ fast): This feature will not include screen updates/flips that take longer
than three seconds to complete.
VF (for ◾◾ very fast): This feature will not include screen updates/flips that take
longer than one second to complete.

Once a Scrum team begins grooming a backlog item, the item is usually sliced
into smaller and smaller pieces. As backlog items are sliced, the performance charac-
teristics of the original backlog item have to be carried forward to the smaller items.

As illustrated in Figure 23.6, we start with a “search for flights” item with a
three-second performance constraint. As the item is sliced down into “searching by
city” or “searching by an airport code,” the three-second performance constraint
remains. Then searching by an airport code is sliced into the original item and
additional items to limit the search by dates, the number of stops, the time of day,
and the display items. However, as the “search by airport code” item is sliced into
smaller pieces, its performance constraint is lowered to allow time for processing
the search limits and the display capabilities in the other items. In other words, if
a user were to:

Search for a flight by airport code (2.6 seconds), plus◾◾
Limit the search to the first through the third of the next month (0.05 sec-◾◾
onds), plus
Limit the search to nonstop flights (0.05 seconds), plus◾◾
Limit the search to flights that leave before noon (0.05 seconds), plus◾◾
Display the results as an abbreviated listing (0.2 seconds)◾◾

Agile Product Management    335

The end result, if all of the performance constraints were obeyed, must be finished
within 2.95 seconds (the sum total of the performance constraints of all of the
affected items).

Specialized Skills
In many organizations, Scrum teams work on backlog items that frequently require
skills that the team does not have and the organization has only in short supply.
This leaves the time struggling to find the right people in the organization and then
hoping to get enough of their time during the sprint that the backlog item can be
completed in time. I frequently see this happen with limited skills such as:

Database architect◾◾
Database analyst◾◾
UI usability analyst◾◾
Technical writers/user documentation writers◾◾

In order to allow the Scrum team additional time to identify the skills they
need and get a commitment of time from the proper resources before the sprint
begins, Scrum teams can flag backlog items that required specialized skills. By
doing so, the Scrum team can, one or two Sprints in advance, see the flagged item
(see Figure 23.7) and make the necessary arrangements so that when the Scrum
teams commits to the backlog item, the proper individuals can be involved.

The many preceding sections detail a number of different types of information
that your product owners and Scrum teams can choose to include on their backlog

Search for flights,
3 second limit

Search by city,
 3 second limit

Search by airport
code, 3 second

limit

Search by airport
code, 2.6 second

limit

Limit search by
dates, 0.05 second

limit

Limit search by
number of stops,
0.05 second limit

Limit search by
time of day, 0.05

second limit

Display selected
flights, 0.2 second

limit

Display with
details, 0.2 second

limit

Display
abbreviated listing,

0.2 second limit

Figure 23.6  Splitting an item with a performance constraint.

336    Enterprise-Scale Agile Software Development﻿

items. My recommendation is to use these only when the organization feels strongly
that their use will bring some positive value. For example, the preceding example of
flagging backlog items that required specialized skills should probably not be imple-
mented unless Scrum teams are suffering from lack of contact with the needed
expertise. A possible plan for implementing these practices is suggested as follows:

Implement immediately◾◾
Complexity estimate: This helps the Scrum teams understand how much −−
they can get done each month (velocity) and also helps limit the backlog
grooming done during a given sprint.
Acceptance criteria: Absolutely essential for every item, acceptance crite-−−
ria help the Scrum teams understand how to build the item.
Value estimate: This helps the product owner maximize the return on −−
investment during the course of the project.

Implement as needed◾◾
Risk: Should your Scrum teams experience a number of unexpected com-−−
plications during their sprints, implement a risk evaluation during back-
log grooming. This extra thinking about complexity before building the
item will reduce the number of unwanted complications.
Performance constraints: If your development process does not include −−
enough performance testing until too late or if your application is very

Item 100: Modify architecture for
multi-deck aircraft

Product Backlog

Item 100.1: Modify “aircraft”
schema

Item 100.2: Modify “seats”
schema

Item 100.3: Create “decks”
table

Item 100.4: Change basic seat report

= Data base analyst

Figure 23.7 F lagging product backlog items.

Agile Product Management    337

dependent on performance, implement performance constraints on your
backlog items.
Specialized skills: If your Scrum teams are frequently finding that they −−
can’t complete backlog items because they don’t have the necessary skills
(but the organization does), implement backlog item flagging.

Prioritizing Items in the Product Backlog
With the product backlog filled with items that are constantly being reviewed
and sliced, the product owner has the difficult job of continuously prioritizing and
reprioritizing the backlog items. And there’s no simple formula for prioritizing!
There are many different approaches for prioritizing, and if your organization is
estimating value, risk, and complexity on all of the backlog items, you’ll give your
product owner some information to start with. However, prioritizing the product
backlog is a completely subjective experience. Here are some ideas your product
owners can use to help them prioritize:

Which items provide the greatest business value?◾◾ By comparing the backlog item
value to its complexity estimate, a rough business value can be calculated.4
Which items cost less if done earlier or in combination with other items?◾◾ Some
backlog items are less expensive to complete if done early in the develop-
ment of a product. For example, making significant changes to a product’s
database schema makes is easier to do before adding a number of new tables
to the database. Adding authentication and authorization capabilities is also
much easier when the product is initially built than adding the capability
later. Similarly, some backlog items are easier done in combination with other
items, rather than separately.
Which items may be riskier if done later? ◾◾ Some backlog items become harder
and harder to build as the product gains features and thus complexity. For
example, auditing and logging capabilities become more and more risky as
functions of this sort tend to require modifications across the entire product.
Which items add excitement, but wouldn’t be asked for unless it was suggested? ◾◾
Customers don’t initially think of some features but, when present, those fea-
tures tend to add excitement to the product and gain customer interest in it.

There are no perfect prioritizations, and the conditions that drive the order of
items on the backlog change constantly. A good product owner keeps his or her eye
on the current opportunities and organizes the product backlog to take advantage
of them.

338    Enterprise-Scale Agile Software Development﻿

Managing System Constraints
We’ve spent most of this chapter talking about the product backlog and backlog items
that help Scrum teams to understand what it is they are supposed to build. Before I
close this chapter, I also want to discuss what to do with system constraints. Whereas
the items on the product backlog tell us what we want the application to do, system
constraints (also frequently called nonfunctional requirements) tell us the character-
istics of the application. System constraints generally occur in two “flavors”:

Operational characteristics◾◾ : These describe how the application is supposed to
operate. On which operating systems is the application supposed to execute?
How portable is the application supposed to be? What kind of database man-
agement systems is the application supposed to work with? What kind of
security applications is the application supposed to support?
Structural characteristics◾◾ : These describe how the application is supposed to be built.
There can be many kinds of structural characteristics to consider, including:

Maintainability: Is the application and the code itself easy to understand −−
and make changes?
Scalability: How well will the application scale up (support and use addi-−−
tional CPUs or memory) and scale out (support and use additional nodes,
like a new server in a distributed application)?
Testability: How well does the application support testing? Can all of the −−
pieces of the application be tested?
Portability: How portable is the code? Can the code be easily moved from −−
platform to platform without changes?

In general, structural characteristics need to be built into every Scrum team’s
definition of DONEness, though many of them should and will be defined at the
product or organizational level. In other words, the structural characteristics of an
application apply to the entire application, not just the work done by a single Scrum
team. Therefore, the organization may, for example, define maintainability in terms
of very clear coding standards that detail rules for writing code, commenting the
code, and avoiding overly complex code. Each Scrum team, however, is responsible
for determining how they will ensure that all of their code meets the standards
mandated by the organization.

Operational characteristics, on the other hand, constrain how Scrum teams
build features. Each and every backlog item, as it is being discussed, analyzed, and
estimated, must be considered with respect to every operational characteristic. For
example, consider the impact of an operational characteristic like this:

The application will support version 3.0.1 SP 4 of MyDatabaseManager.5

Agile Product Management    339

Unfortunately for the Scrum teams, version 3.1 of MyDatabaseManager comes
with some fantastic sorting and selection routines that really speed up data table
access. As the Scrum teams review the backlog items, every time they come across
an item that requires reading a significant number of records from the database,
they realize they are constrained to use the older selection routines and they have to
be much more concerned about functional performance.

When the list of operational characteristics is fairly short, Scrum teams can
consider these constraints during backlog grooming and sprint planning and note
the impacts. When this is true, print the operational constraints on a large poster
board and place them in the Scrum team’s room and wherever backlog grooming
occurs, if not the team room. However, since the list of operational characteristics
can sometimes be extensive, it may sometimes be difficult to ensure that each and
every backlog item is reviewed with respect to the operational constraints. Under
these circumstances, consider this alternative. During backlog grooming, when a
backlog item is sliced into smaller items, someone on the Scrum team takes respon-
sibility for reviewing the new item against the operational constraints to look for
any impacts. While this seems like a lot of work (and frequently it is), once an
original backlog item is reviewed against the operational constraints, the “children”
items that are sliced from the parent are impacted in much the same way.

Summary
In an agile environment, the product owner handles product management by
populating, prioritizing, and explaining the product backlog. The items on the
product backlog are defined through the product owner’s contact with business
management, customers, stakeholders, and developers. The product owner’s pri-
mary responsibilities are several and include:

Understanding the needs of his or her customers◾◾
Representing the needs of the stakeholders◾◾
Understanding the needs of multiple teams (including development, sales, ◾◾
technical marketing, education services, and customer service teams)
Maximizing the return on investment of developing the product◾◾
Prioritizing the work on the product backlog◾◾
Translating backlog items into details for the Scrum teams◾◾
Helping the Scrum teams to achieve a sustainable pace of development◾◾
Planning the product beta◾◾

In large organizations, the product owner may be supplemented with busi-
ness analysts to help him or her keep on top of his or her responsibilities. In these

340    Enterprise-Scale Agile Software Development﻿

instances, the business analysts support the Scrum teams while the product own-
ers handle the prioritization of the backlog as well as working with customers,
stakeholders, and management to understand their needs. In larger projects with
complex applications, the product owner is often part of a group of product owners,
each with responsibility over a portion of the overall product (or, each with respon-
sibility for a single smaller product in a family of products). In these instances, an
uber product owner leads the product owner team and also sets the direction for
the entire product. Product owner groups work together to coordinate their back-
logs, resolve dependencies between the product backlogs, and discuss how to take
advantage of new opportunities.

The product owner is responsible for the content and prioritization of the prod-
uct backlog. In many organizations, the product backlog is actually made up of
three pieces: the backlog itself, which contains the items that describe at a high
level what needs to be done to the product; an information library into which the
details of each backlog item are placed; and a defect tracking system into which
information is placed that describes the defects found in the application software.
The product backlog contains high-level descriptions of features to be added to
the product, architectural features to be added to the product, technical debt that
helps Scrum teams finish pieces of the product that had not been previously fin-
ished, and infrastructure items that help the Scrum teams to build the product.
The information library and the defect tracking system support the product back-
log by containing the important details needed when the Scrum team is ready to
build the item or solve the defect. In this chapter, we reviewed a number of tools
that many organizations use to manage their product backlog, information library,
and defects.

When the product owner adds items to the product backlog, and as those items
are analyzed and discussed by the product owner, the business analysts, and the
Scrum team, information is added to the backlog items that can be crucial in help-
ing the product owner to prioritize the backlog, the Scrum team assess risk, and
even the Scrum team get the right expertise at the right time.

With all this information on the product backlog, the product owner is respon-
sible for prioritizing the backlog to maximize the value of the product to his or her
customers. Unfortunately, there is no good formula for helping a product owner
prioritize the backlog except to keep in mind the needs of the business, stake-
holder, and customers—and then to keep trying to improve the product backlog
through more research, more discussion, and more prioritization.

Agile Product Management    341

Endnotes
	 1.	 Even in cases where actual customers support the Scrum teams, those customers have

been selected by the product owner to assist the Scrum team in building features that
the product owner has defined for the Scrum team.

	 2.	 FAA is the abbreviation for the U.S. agency that is responsible for the advancement,
safety, and regulation of civil aviation. This is similar to the Civil Aviation Authority
in the United Kingdom and Germany’s Bundesministerium für Verkehr, Bau und
Stadtentwicklung (Federal Ministry of Transport, Building, and Urban Affairs).

	 3.	 One particular note about architectural items: I prefer to handle architectural needs
from the standpoint of application needs. In other words, are there any Scrum teams
working on the application that actually need the architectural changes proposed by
the item in question? Granted, some architectural changes are needed to support newer
frameworks, newer operating systems, and newer hardware. These changes should be
considered as part of the product direction.

	 4.	 ScrumWorks Pro, by Danube Technologies, Inc., supports the unique ability to cal-
culate relative business weight based on the total complexity and total value in the
product backlog.

	 5.	 Yes, this is a fictional product—I’m making it up.

343

24Chapter

Incorporating ISO 9001
into the Agile Transition

One of the most significant concerns when implementing agile development in an
organization is how to ensure that the organization can obtain or keep its ISO 9001
certification while still remaining agile. These concerns usually come from (1) the
organization’s quality and process managers who are concerned that agile develop-
ment is too undisciplined to be successfully combined with a quality management
system (QMS) and (2) developers and managers who feel that agility’s strengths
are threatened by being forced into a structure that allows it to work with a QMS.
Fortunately, the reality is that agile development does work with a QMS and it can
remain effective at the same time.

We must discuss two important points before continuing, so that you under-
stand the focus of this chapter:

	 1.	Implementing ISO 9001 requires expertise in the standard. If there is no
one in your organization who both understands the standard and is familiar
with how the standard is interpreted, hire someone to help you. Many orga-
nizations adopt the ISO 9001 standard not because they feel the need, but
because their industry requires that they become ISO 9001 certified in order
to sell to their market. Going about the adoption of ISO 9001 in the wrong
manner will result in a lot of useless processes and bureaucracy that accom-
plishes nothing except slowing down your developers.

	 2.	This chapter only covers a small portion of the ISO 9001 standard. We will
discuss portions of the following:

344    Enterprise-Scale Agile Software Development﻿

Section 4: General RequirementsNN
Section 4.2: Document your QMSNN
Section 5: Management ResponsibilitiesNN
Section 5.2: Customer FocusNN
Section 5.6: Management ReviewNN
Section 6: Resource ManagementNN
Section 6.2.2: CompetenceNN
Section 6.3: Provide Necessary InfrastructureNN
Section 6.4: Provide Suitable Work EnvironmentNN
Section 7: Product RealizationNN
Section 8: Measurement, Analysis, and ImprovementNN

		 There is a considerable portion of the standard that will be left unreviewed
by the end of this chapter that you and your organization will need to review
and decide what to do about.

Implementing agile development creates a fascinating paradigm in the organiza-
tion that is the root of both aforementioned, but needless, concerns: that agile is too
chaotic and that agile development is weakened by structured quality management
systems. Agile development can, in fact, be chaotic, but that chaos encapsulates the
collaborative, creative process of knowledge creation that occurs within the devel-
opment teams. Scrum builds “containers” for this chaos (sprints) that have clearly
defined entry and exit points (sprint planning and sprint review meetings) and, as
we have discussed elsewhere in this book, clearly defined exit criteria known as a the
DONEness definition. We can focus our processes toward clarifying the exit crite-
ria and, thus, driving quality into the sprint without having to define our processes
through the sprint. Let’s look at a few examples of DONEness definition items:

All code within critical modules (defined by the organization) must be reviewed.◾◾
All preexisting tests must work at the end of the sprint as they did at the ◾◾
beginning.
All code must achieve unit test coverage of 90%.◾◾

The first item helps ensure that code reviews are done when the organization’s
most critical (or perhaps most brittle) modules are modified. Of course, whenever
there’s a must defined in the process, the Scrum team will have to prove that the
proper code reviews were done. That will require a code review record that identi-
fies what code was reviewed, who participated in the review, and what was the
outcome of the review (including steps taken based on the review findings).

The second item requires that all preexisting tests work at the end of the sprint as
they did at the beginning of the sprint. That will require that the team acquire the
outcome of the regression test run just prior to the beginning of the sprint and at the
end of the sprint (or run the tests themselves) and provide those at the sprint review.

Incorporating ISO 9001 into the Agile Transition    345

Similarly, the third item also requires proof, generated by a tool of some kind,
that the total unit test coverage of the application is still at or above 90%. This can
only be demonstrated by running the tool at the end of the sprint and providing the
proof during the sprint review.

By setting these criteria into the organization’s DONEness definition, we drive
quality into the sprint without creating additional and unnecessary process steps
in or around the sprint at the same time. The Scrum team still has the flexibility to
build the product as they see fit, within the bounds of the organization’s standards
for quality. While this does mean that the Scrum team will need to show proof that
the DONEness criteria have been adhered to during the sprint (which means the
creation and collection of records and signatures from time to time), we’re really
not doing anything more than asking for evidence that the work that they say is
done is actually done (this is part of the team’s responsibility for self-management).
We ask no less from a contractor that puts a roof on our house or does electrical
work in our office buildings. We would certainly not dream of asking less from our
physicians and surgeons.

In short, we allow the chaos of the sprint, but we protect the rest of the organi-
zation from that chaos by surrounding it with controls like:

DONEness criteria: These help the Scrum team, whenever they build a prod-◾◾
uct backlog item, incorporate all of the activities that are proven to improve
product quality.
A product backlog, groomed and ready: A groomed product backlog has been ◾◾
reviewed and discussed many times by the Scrum teams. When it comes time
for sprint planning, the Scrum teams are already very familiar with the con-
tent of the product backlog and can easily break the items down into tasks.
Continuous build and testing: By continuously rebuilding and retesting the ◾◾
product, the Scrum teams can be alerted immediately when the product suf-
fers a failure of any kind.
Product owners: By enforcing the DONEness criteria at sprint review, the ◾◾
Scrum team gets repeated reminders to use the DONEness criteria and, more
importantly, software that isn’t done won’t be released into the final product.
Scrum master: By enforcing the DONEness criteria during sprint planning ◾◾
and throughout the sprint, there is a force throughout the development pro-
cess ensuring that good development practices are followed and quality is
programmed into the product, rather than being added on later.

There’s a standard mantra around ISO 9001: “Say what you do and do what you
say.” In other words, the whole point behind ISO 9001 is to take something that
works and to ensure that it continues to work by documenting the processes and
ensuring that those processes are repeated. However, ISO 9001 is not prescriptive—
it instructs you on what needs documentation, but you and your organization have

346    Enterprise-Scale Agile Software Development﻿

to decide on the content of the document. If you can deliver good, high-quality
code most of the time, ISO 9001 will help you do it all of the time.1 The real key
to ISO 9001 and agile development is to step your way through the standard one
slice at a time and not to try for perfection (you’ll end up creating big, fat processes
that you don’t need and you’ll drive a wedge between your Scrum teams and your
quality managers). Develop your processes a bit at a time, taking time during sprint
retrospectives to correct, enhance, and improve your processes as needed.

Setup
There are several steps that you’ll have to consider during the implementation of the
ISO 9001 standard, but it primarily boils down to:

Document◾◾ : In order to get anyone to review, provide feedback, or even learn
and follow procedure, you have to give your organization something to read.
Thus, all of your development procedures will need to be documented.
Communicate and train◾◾ : Your Scrum teams will want to understand why you
are implementing the ISO 9001 standard. Many developers naturally see
standards as barriers to getting the job done, though this is often because:

The implementation is done wrong.−−
The processes are too restrictive or too heavy.−−
They were not properly communicated.−−
All of the above.−−

		 It will be up to you and the transition team to explain to the develop-
ment community in your organization why you are implementing ISO 9001.
Be clear and be honest. ISO 9001 is usually implemented for two reasons:
(1) having ISO 9001 certification is a market differentiator (or even a market
requirement) for a manufacturer, and (2) ISO 9001 helps to produce con-
sistent quality—this makes the manufacturing process (or, in our case, the
development process) more predictable and enables better planning. Your
teams will have lots of arguments, particularly about creating and signing
records and other items that they will see as waste. As the ISO 9001 standard
is implemented, you will need to begin training that will be repeated on a
frequent basis to ensure that all employees affected by the standard are aware
of how to do their jobs based on your organization’s processes.
Monitor◾◾ : Once you have everything ready, you will need to ensure two things:
(1) that your processes are being followed and (2) that your processes are
working. Quality managers should always be working to improve processes
that require improvement, improve training when the training is not suf-
ficient, and completely remove policies that are proving to be counterproduc-
tive or do not add value and are unable to be improved.

Incorporating ISO 9001 into the Agile Transition    347

Creating Your Policy and Process Documentation
If you recall from earlier, the first part of the mantra concerning ISO 9001 is to say
what you are going to do. That’s what the documentation step is all about—putting
into writing how you develop your application. In this section, we’ll identify what
needs to be documented. However, don’t forget that your organization may have
additional requirements and standards (e.g., ISO 13485, Sarbanes-Oxley, etc.) that
also need to be factored into this outline of processes.

To get started, you’ll need to create some basic policies.2 You can do this in a
very agile way by defining the basic policies and then reviewing the impact of each
policy during the next sprint retrospective meeting. Changes and additions to the
policies can be discussed in the retrospective and then the policy documents can
be updated.

Quality policy: Think of this document as the top of your quality manage-◾◾
ment system. It sets the stage and provides an entry point for the rest of your
system. You can either document your entire QMS in this single document,
or modify this document to provide the location of all of the other significant
documents that will make up your quality management system.

Involve all roles in the creation of the quality policy.−−
What’s your goal? Why are you doing this?−−
How will you manage your documented policies, keep them up-to-date, −−
and communicate them to new and current employees alike?
Write it up and explain your commitment.−−

“Our policy is that we develop only the highest-quality products.”•	
“Our policy is that we partner with our customers to build the best •	
custom software.”

Audit policy: An active internal auditing policy helps your organization do ◾◾
an excellent job during the compliance audits that are required at regular
intervals to maintain certification.

Who will do the audit? Who is trained to do audits? How will they −−
be done (all policies or focused, surprise or scheduled, both/all)? Who
enforces the outcomes (corrective actions)?

Surprise audits can be problematic. How will you account for the •	
potential loss in velocity when the audit interrupts the team? Quality
managers may need the authority to override the product owner.

Who will be engaged to handle formal compliance audits?−−
Document control: Where will important artifacts (including documents, ◾◾
records, and source code) be stored?

Is there a naming standard?−−
How are they versioned?−−
Archiving: How long are documents saved?−−

348    Enterprise-Scale Agile Software Development﻿

Which documents are considered controlled documents? You will defi-−−
nitely want to consider the following documents:

DONEness definition•	
Product backlog•	
Design specifications (if applicable)•	
Functional specifications (if applicable)•	

Review and approval policy: Many artifacts require review by multiple people ◾◾
within the organization, and some require approval by specific individuals
within the organization.

Who reviews which artifacts? Who approves them?−−
This will also drive which artifacts must be created during development. −−
Take advantage of this to find out who really needs what information
(don’t create information that no one wants or needs to read).
It is also a good idea to create some kind of template or description so −−
everyone knows what each artifact is supposed to hold (at the same time,
make sure that everyone understands which parts of the templates are
required and which can be dropped if not useful or applicable).

Nonconformance policy: How does the organization respond when defects ◾◾
are found at the customer site?

How do we confirm the defect? (Do we bring their environment to us? Do −−
we go to them? Do we just take their word for it and hope to re-create?)
How do we rate the severity of the defect (routine, annoying, serious, −−
critical)?
Which severities are allowed to go directly to a Scrum team? Which −−
severities go to the product backlog for later consideration (based on the
prioritization of the item)?
How do we assess the impact of the defect on other customers? Which −−
customers are affected? How do we inform the customers? What do they
do until it’s fixed?

Corrective and preventative action policy: What does the organization do ◾◾
with defects?

Corrective action:−−
How do we fix defects at the customer site (hot fix, patch, complete •	
redelivery, using remote connections to get in and change it)?
How do we track which customer has what versions? Fixes? Patches?•	

Preventative action:−−
How do we ensure that defects don’t make it to our customers?•	

Development Processes
You will also need to document your development processes. In an agile environ-
ment, you will want to include some or all of the processes (not to mention adding
some of your own) shown in Tables 24.1 and 24.2.

Incorporating ISO 9001 into the Agile Transition    349

Focusing on Customers
Section 5.2 of the ISO 9001 standard addresses some interesting aspects of cus-
tomer focus.

How does management ensure that the organization is meeting customer
requirements? In an agile project, that’s actually fairly easy to do. Customer needs
are addressed using the product backlog that is maintained and prioritized by the
organization, led by the product owner. To complete the picture, however, you need
to consider the following:

Table 24.1  Scrum Processes That Will Require Documentation

Process

Items to Consider
(Remember that Scrum defines some of this quite
clearly. For example, only the product owner can
prioritize the backlog, but everyone should be able to
see it and add to it. Don’t change the basic rules of
Scrum when documenting this.)

Backlog
management

Who changes the product backlog?•	

Who prioritizes the product backlog?•	

Who is allowed to view the product backlog?•	

When an item is added or modified, how do you •	
know who did it?

Sprint planning
meeting

Timing?•	

Attendance?•	

Purpose?•	

Sprint review
meeting

Timing?•	

Attendance?•	

Purpose?•	

Is a record of decisions made during the meeting •	
required?

Daily Scrum
meeting

Timing?•	

Attendance?•	

Purpose?•	

Sprint retrospective
meeting

Timing?•	

Attendance?•	

Purpose?•	

350    Enterprise-Scale Agile Software Development﻿

How do you prove that every item that the Scrum teams work on came from ◾◾
the product backlog?
How do you ensure that Scrum teams only take their work from the prod-◾◾
uct backlog?
How do you keep Scrum teams focused only on product backlog items?◾◾

Resource Management
Resource management is likely where many of your problems will begin to occur. Many
organizations try to “do more with less” to the extent that they often lack enough of the
proper skills to get the job done. But this is exactly what Section 6 of the ISO 9001 stan-
dard is all about—Do you have enough money and people to test your software, audit
your processes, and keep the entire QMS up-to-date and effective? If your organization
is unwilling to commit the proper resources, stop now—ISO 9001 isn’t for you.

Whenever you introduce an employee (newly hired or otherwise) to one or more
roles that he or she has never handled in your development organization, you will

Table 24.2 O ther Processes That Will Require Documentation

Process Items to Consider

Release planning workshop This is the workshop held when we are getting
an initial sizing and arrangement of the release
backlog for a project.

Timing? •	

Attendance?•	

Purpose?•	

T-shirt sizing practice?•	

Scrum team staffing How do we define our teams? Are there
guidelines for the types of expertise needed on
each team?

5 to 9 people per team •	

Who is the Scrum master?•	

Who is the product owner?•	

Who is on the team?•	

Application testing What type of testing is required?•	

Who is supposed to do it and how often? •	

What happens when a test breaks?•	

Who writes the tests?•	

Who validates the tests?•	

Incorporating ISO 9001 into the Agile Transition    351

want to be sure that the employee has received the appropriate training and that the
training was effective. You will also need to be able to prove that the employee has
had the proper training through some form of training record.

Infrastructure and Work Environment
Infrastructure and work environment considerations in an agile development can
be very fluid. A lot depends on how many teams you will have, how complex your
product runtime and development environments are, and how you plan to test your
products. For ISO 9001, your infrastructure and work environment must reflect
what is genuinely necessary to meet your product quality goals. While this cer-
tainly includes computer hardware and software (Scrum teams need to have hard-
ware and software environments that support development and testing and enough
environments to properly support high-quality development), it also includes what
might end up being significant facility modifications to create team rooms, white
boards for brainstorming, tables and chairs for the team rooms, in-house wire-
less phones, white noise generators to reduce team room noise, wireless laptops
for developers, extensive reworking of your internal wireless access point capacity,
software for continuous build and test servers, etc. There can be quite a lot to worry
about here.

For ISO 9001, your goal is to document what your teams and your products
need in order to develop a quality product. In general, you should be clear about
the software and hardware requirements that every team must meet, while you can
be a lot less specific in the definition and content of the team room. This is because,
while a significant problem can develop because two different versions of a particu-
lar software tool might be in use, the exact size and shape of a team room is much
more flexible. However, be careful not to cut corners here. It will seem like every-
thing you do is going to produce little to no tangible benefit. However, everything
you do here will improve the work environment of your developers, and that will
result in a high-quality product.

Measurement, Analysis, and Improvement
ISO 9001 will also require you to define how you plan to measure, analyze, and
improve your processes in order to reduce failure (any outcomes that do not meet
your quality standards) to zero. In this section, you will need to consider issues
presented in Figure 24.1.

Review and Revise

The same forces that drive the emergence of the product backlog—market needs, cus-
tomer needs, business needs—also drive changes in the organization’s quality man-
agement system. What is important today may be of secondary concern tomorrow.

352    Enterprise-Scale Agile Software Development﻿

How will you ensure that you are actually meeting customer
requirements?

Are your customers still reporting defects?

Are customers reporting that your product isn’t meeting their needs?

Monitoring and measurement of processes: Are they resulting in
consistent quality? Is the resulting quality good enough?

Continuous Improvement

Sprint retrospectives: Results will need to be saved as a record. How
the team uses the information will also need to be recorded.

Look for ways to improve system-wide processes (continuous
integration, configuration management, etc.).

How do you define a major/critical defect? How does one product’s
defects compare with the organization’s other products?

Tracking Defects and Customer Complaints

Handle customer complaints and fix defects. How can you ensure
that defects don’t make it to the customer again? How can you ensure
that defects can’t escape the sprint? How does management review
your major defects? What caused them? How much time was lost as a
result of rework/redelivery?

More than fixing, though, how do you make sure that your system
documentation reflects the corrections? How do your test suites get
updated?

How do you handle informing your customer base when a major/
critical defect is found in your product?

What should your customers do until the defect is fixed?

How do you get critical fixes to all of the right customers quickly?

Can your customers back off their fix patches or releases?

How are they added to the backlog and prioritized with other work?

Use risk management tools to help prioritize defects.

Defects that linger for a long period of time without updates/
comments can draw the attention of auditors.

Are defects being resolved quickly enough? Are they prioritized
properly?

Figure 24.1  Measurement concerns.

Incorporating ISO 9001 into the Agile Transition    353

The focus of today’s development activity may be quite different tomorrow. Taiichi
Ohno,3 considered the father of Toyota’s groundbreaking Toyota Production System,
suggested that proper standards change fairly constantly (at least once a month).
In the complex world of software development, we need to build the capability for
review and revision of our quality management system into our daily lives.

Leveraging Scrum to Improve Process
Scrum, by definition, provides opportunities on a daily basis to identify obstacles.
These obstacles can be as simple as a basic hardware failure (e.g., “My mouse doesn’t
work anymore”) and as complex as a significant process failure (e.g., “I can’t finish
my task because no one will give me access to the proper database tables”). We can
learn from these obstacles and create improvements in our processes that mitigate
or altogether eliminate the possibility of the same problems in the future. We can
leverage Scrum to make it happen by:

Using the DONEness definition to capture development policies◾◾
Using sprint planning to review the DONEness definition and building its ◾◾
requirements directly into the sprint backlog
Using sprint review to accomplish the requirements of the organization’s ◾◾
review and approval policies
Using sprint retrospectives to identify ineffective policies and correct them◾◾

Using the DONEness Definition
Build applicable development policies right into the organizational definition of
DONEness. Some examples of this are:

Document control◾◾
“By the end of the Sprint, all PBI-related artifacts must be updated −−
(their change description tables updated), and checked in to the project
source repository.”
Change logs should include the date and name of the person who made −−
the changes.

Review and approval policy◾◾
“Before the end of the sprint, completed source code must be reviewed by −−
two senior team members.” Make sure that you have some kind of proof
that a review was done.

Preventative action policy◾◾
“Root causes for critical defects should be determined and reviewed −−
during sprint retrospective for potential policy or DONEness defini-
tion changes.”

354    Enterprise-Scale Agile Software Development﻿

Using Sprint Planning
When any Scrum team does sprint planning, they can use the current DONEness
definition to ensure that the latest policy changes make it into their planning.

Always make sure you have the latest version of the DONEness definition!◾◾
Convert those DONEness needs into tasks:◾◾

“Update story narrative document and change log.”−−
“Ensure all artifacts are checked into project repository.”−−
“John to review source code for correctness and coding standards.”−−
“George to review source code for correctness and coding standards.”−−

Of course, more experienced teams can create fewer tasks, but there needs to ◾◾
be proof of any reviews (what was reviewed, who reviewed, and for what).

Using Sprint Reviews
You may also want to consider the creation of a sprint review record that is completed
at every sprint review meeting and helps to ensure that there is recorded proof of the
periodic software review and all documentation modified during the course of the
sprint. The record will need to be saved according to your document control policies,
can be quite simple in structure, and can help to provide information regarding:

What was reviewed (can refer to PBI ID if applicable)?◾◾
Final status of each item (DONE or NOT DONE)?◾◾

This must be tested against the DONEness definition; review as much as −−
possible—be prepared to offer proof of documentation, tests successfully
run, internal reviews, etc.

Who approved? Collect their signature as well.◾◾

Using Sprint Retrospectives
Just as with the formal policies, use your sprint retrospective meetings to review
the effectiveness of the documented processes and decide on changes and improve-
ments to make. Scrum teams should alert the quality manager whenever:

	 1.	A policy is unclear or incorrect.
	 2.	A policy had to be deviated from during the sprint and why.
	 3.	The team finds an improvement to the policy
	 4.	The DONEness definition is missing something

The findings of all retrospective meetings should be documented and saved as a
project artifact (per your organization’s document control policy). Quality manag-
ers should be held responsible for periodically reviewing all retrospective findings
in order to locate trends and common problems.

Incorporating ISO 9001 into the Agile Transition    355

Formal Reviews
Even though sprint retrospective meetings provide excellent opportunities to reas-
sess policies and processes on a regular basis, you may still find it useful to hold
a periodic, detailed review of your collective quality management system. Scrum
teams will often question processes, but a management review needs to go deeper.
Management reviews periodically assess the quality management system to ensure
that it is meeting its stated objectives. In an agile project, this can be easily managed
by adding a step to the project planning process to review the QMS and its impact
on previous projects. While a once-a-project review is usually sufficient, your orga-
nization may want additional reviews, in which case you could:

Review at a predetermined midpoint during the project◾◾
Review during sprint retrospection every one, two, three, or even four sprints ◾◾
during the project

If doing a review once during a project is too often, you could also schedule
quarterly reviews, biannual reviews, yearly reviews, etc. How often you review your
QMS should be driven by how well the system is working for you and how often
you have to deviate from it during the course of your project. However, even a solid,
proven QMS should be reviewed no less often than once a year.

The review itself should include an examination of the following:

Objectives of the QMS: Are they still applicable?◾◾
Deviations from the QMS during recent projects (completed and ongoing): ◾◾
Do those deviations indicate processes that are obsolete or ineffective?
Results of audits.◾◾
Corrective and preventative actions (CAPA) status: Do your defects indicate ◾◾
possible failures in the development process?
Results from previous changes to the QMS: Did your changes better enable ◾◾
the QMS to meet its objectives? Are your customers more satisfied?

Reviews of the QMS should include all roles from the development community
(coders, testers, analysts, etc.) to ensure that all relevant perspectives are brought
into the discussion.

Summary
ISO 9001 was written to establish consistency in product quality. Agile develop-
ment creates improved product quality by fostering more collaboration between
team members and establishing a closer connection to the customer. Implementing
ISO 9001 and agile development are not mutually exclusive activities.

356    Enterprise-Scale Agile Software Development﻿

To implement ISO 9001 in an agile development environment, one needs only
to learn the basic rules of the standard (either by attending the proper training or
by hiring someone who has) and then following these steps:

	 1.	Create a starter set of policies: Your organization will need to document its
initial quality policies (i.e., quality, auditing, document control, review and
approval, nonconformance, and corrective and preventative action) and
development processes (e.g., sprint planning, sprint review, sprint retrospec-
tives, backlog grooming, etc.).

	 2.	Teach the policies: Anytime that a new policy is created or an existing one is
changed, the users of the policies (primarily management and the developers)
must be informed of the change, taught how the change affects them, and
taught how to follow the policy. This can take place in a classroom setting for
a significant change, or just an email for a minor change.

	 3.	Execute the policies: Build your code. Follow the policies unless you discover
you can’t, and then make sure you can justify why you couldn’t when the
organization assesses the policies again.

	 4.	Assess and correct: Review your policies. What worked? What didn’t? Fix
what didn’t.

	 5.	Repeat: Go back to step 2. Teach your organization about the policy changes
(if any) arising from step 4 and do the steps again.

By following these steps, your organization will create a quality manage-
ment system that works, rather than a system that gets in the way of actually
getting work done. By involving your entire organization in the creation of the
system, instead of just a select few, you will achieve better buy-in and better
understanding of the policies and processes, why they exist, and how to use and
follow them.

Lastly, of course, should your quality management system get in the way, be
prepared to scrap the pieces that don’t work and try again. As Dr. Ohno suggested,
standards that don’t change every month are a waste. Don’t waste your time and
energy on useless policies.

Endnotes
	 1.	 This is really important. ISO 9001 will not help you deliver high-quality code. If you

have poor processes and deliver poor code, all ISO 9001 will do is help you deliver
poor code all of the time. Make sure you can deliver code that meets your quality
standard when applying ISO 9001. Otherwise, you’ll find yourself in a constant state
of process revision that will cause breakdowns all throughout your organization.

	 2.	You can find more information at http://www.bigagiledevelopment.com/
qualitymanagement.

	 3.	 Ohno, Taiichi. Workplace Management, trans. Jon Miller. Mukilteo, WA: Gemba Press,
2007.

357

Index

A

acceptance criteria, 24, 214, 330
acceptance testing, 116
accumulation rate, 234, 238
Agile Alliance, 117
agile analysis, 116

defined, 261
timing, 261

agile development
Agile Manifesto, 10
defined, 21
employee education, 44
executive training, 44
implementation

bottom-up, 43
top-down, 43

myths, 9
planning, 195
principles, 7

Agile Manifesto, 10, 14, 21, 72
agile transitions, 3

agreements, 57
artifact naming standards, 129
backlog, 21, 57, 87, 97, 195–196

initial state, 88
prioritizing, 98

barriers, 33
budget, 93, 110
budgeting, 116
coaching, 116

quantified, 146
role defined, 144
skills, 146

communication channels, 126
communication plan, 93, 100, 126

core team, 98
employees

telephone directory, 157
executive sponsor

assisting with agreements, 67
responsibilities, 62–63

facilities plan, 93, 101
hardware requirements, 118
information storage, 127
monitoring

control limits, 81
metric pairs, 84
metric trios, 84
organizational dysfunction, 83

offshore employees, 123
organization

agreements, 65
transition teams, 57, 59–60

owner, 87, 110
planning Sprint Reviews, 110
product deployment plan, 102
running as a project, 57
sales & marketing, 125
setting goals, 75
software requirements, 119
Sprint Retrospectives, 111
sprints, 96
subordinate teams, 98
supplies

data projectors, 119
dry erase boards, 119
status lights, 119
web cameras, 119

teams, 92
members, 59
team lead, 62

358    Index

team rooms, 121, 152
configuration, 154
contents, 155
lighting, 153
location, 153

tools
code inspection, 120
code formatter, 121
collaboration, 120
software

Cruise Control, 120
Fitnesse, 119
Hudson, 120
Rally, 120
Scrumworks Pro, 120
Selenium, 120
VersionOne, 120

training, 131–132
class list, 138
certified Scrum Masters (CSM), 116
learn-watch-do, 131
modules, 139
plan, 93, 101

travel, 122
anarchic development, 4
application architecture, 268
architecture definition, 203
Ant, 178
Audit policy, 347
automated testing, 3, 92, 226–227

tools
Fitnesse, 181
Selenium, 181

B

backlog items, see product backlog item
beta test, 25
burn rate, 234–235

C

cereal box exercise, 246–247
CHAOS survey, 300
chaotic behavior, 300
code reviews, 344

records of, 344
coder

defined, 6
coding standards, 92, 214

community of practice, 46
practice group, 46
practice managers, 46

complexity theory, 299–300
configuration management, 116
continuous integration, 4, 176, 177, 306
Correction and Preventative Action policy, 348
customer

collaboration, 15
involvement, 15

assessment, 190
competitive advantage, 186
coordination, 192
helpful, 190
helpful trouble, 191
managing, 193
not helpful, 191
not useful, 191
preparation, 189
product owner responsibilities, 190
relationship with Scrum Team, 185
qualifications, 186–187
Scrum Team preparation, 189
selection, 186
threats, 187

resetting expectations, 73–74
subject matter experts, 15

D

Daily Scrum Meeting
DOs and DON’Ts, 290–291
proper management of, 289
suggested approach, 291

data projector, 155
defects, 25, 77

handling or critical severity, 328
design standards, 214
developer

can’t handle Agile, 73
defined, 6
“heroes,” 73
late to meetings, 35
morale, 12
mandatory overtime, 72
overtime, 12
productivity, 34, 37

developer load, 205
Document Control policy, 347
documentation

Index    359

application testing, 350
backlog management, 349
Daily Scrum meeting, 349
end-user, 216
in cancelled project, 12
internal specifications, 214
just-in-time, 14
managing system constraints, 338
release planning, 350
Scrum team staffing, 350
Sprint Planning meeting, 349
Sprint Retrospective meeting, 349
Sprint Review meeting, 349
training materials, 216
writing, 10

DONEness, 34, 80, 92
as a controlled document, 348
as exit criteria, 344
creating, 213
definition of, 13, 227
enforcing policies, 353
establishing criteria, 93
layers, 214
Scrum team definition, 284
types, 216

feature, 216
story, 216
version, 216

updating, 213
DSDM, see dynamic systems development

method
dynamic systems development method, 22

E

earned business value, 234
edge of chaos, 301
employee

cross training, 208
performance planning, 53, 83

balanced, 54
training goals, 302

epics, 262
estimation

done in teams, 220
planning poker, 272
reduction, 69
sampling, 202–203
t-shirt sizing, 199, 201, 220
worst case approach, 206

extreme programming
practices, 2

automated testing, 4
continuous integration and testing, 4, 13
test-driven development, 4, 13

F

FDD, see feature-driven design
FTE, see full-time employee
feature-driven design, 22
full-time employee, 203

G

goal-question-measure, 76
GQM, see goal-question-measure
grooming, see product backlog grooming
group design, 36, 190

H

Humphrey’s Requirements Uncertainty
Principle, 300

I

impediment list, 257
index cards, 15, 218
intellectual property protection, 61
ISO 13485, 215
ISO 9001, 343

implementation, 343

J

Java, 178

K

KLOC, see Lines-of-Code metric

L

lean development
deferring decisions, 67

lean manufacturing, 14
learn-watch-do, 145
Lines-of-Code metric, 37

360    Index

M

management
changes caused by transition, 41
command and control, 36, 41
directives that hinder agile development, 45
front-line responsibilities, 304–305
general responsibilities, 306–307
handling non-Agile suppliers, 255
in Agile environment, 304
layers and inherent conflict, 45
of chaotic system, 301
of limited skill sets, 335
of scrum teams, 50–52, 299

coaching, 306
common causes, 50
ignoring, 50
micromanagement, 308
special causes, 50
tampering, 50, 308

organizational agreements, 65
sheepdogging, 56
structured fluidity, 303
supporting Scrum teams, 54
training, 172
training goals, 302

market segmentation, 314
MDD, see medical device directives
medical device directives, 215

N

NATO, see North American Treaty
Organization

NDA, see non-disclosure agreement
North American Treaty Organization, 299
non-conformance policy, 348
non-disclosure agreement, 187, 189–190

O

observer effect, 234
organizational agreements

documenting, 68
organizational structure

bureaucratic, 42
matrixed, 42

P

PBI, see product backlog item

planning
contingency, 195
just-in-time, 10
organizational, 12
up-front, 10, 11

policies, 163
updating, 213

Post-It notes, 155
practices

planning game, 13
product backlog, 25–26, 87, 198

adding defects, 328
adding items, 327
and ordering hardware, 256
assignment based on Scrum team

specialization, 270
compared to project schedules, 197
emergent properties of, 31
external dependencies, 257
information library, 326
extended, 322–324
grooming, 23–24, 27, 92, 99–100, 265
preparation, 218, 272

rules, 272–273
scheduling, 230, 270–271
supplies, 272
work sessions, 229

large project considerations, 223
prioritization, 23, 251

discussed, 337
“nice to have,” 212
“must haves,” 212
reduced risk late in the project, 289

proper condition, 26
regions, 265–266
“uber”, 319
unbalanced, 204
unprepared, 203
“unter”, 320

product backlog Item, 15, 22
acceptance criteria, 330
accounting for upskilling, 208
balancing, 207
benefit and penalty, 332
complexity estimate, 329–330
interdependencies, 218, 274
maturation of, 329
non-functional constraints, 248
non-functional requirements, 31, 275

performance, 275
performance characteristics, 333
right-sized, 209

Index    361

risk, 330–331
determining, 274

scoping out, 258
special handling, 219, 275
tagging for special skills, 276
unprepared, 209
using wikis to capture information,

276–277
value, 80, 331–332

product burndown, 235
accumulation rate, 238
modified, 237
trendlines, 238

Product Owner, 23
as part of a larger team, 319
and customer support, 317
and marketing, 316
and sales, 316
cost of backlog items, 288
handling multiple Scrum teams, 223
large project considerations, 223
paired with business analyst, 318
quality of skills, 172–173
representation of stakeholders, 314
responsibilities, 313
ROI, 314

product vision, 23
progressive elaboration, 280
projects

architecture definition, 209
controlling, 253
cost, 12
deadlines, 37
decision-making milestones, 37
detailed schedules, 73
estimating total cost, 198–203
fixed-scope/fixed-date, 11
front-loading risk, 253–254
kickoff meetings, 217
organization, 210

product modules, 210
pilot, 4, 92, 160

apparent failures, 164
communicating status, 173
defining success criteria, 166

emerging process, 171
good candidates for, 168
introducing XP practices, 172
Sprint Retrospectives, 173
training, 172

“planning day,” 223

schedules, 11
starting

first Sprint, 210
goals, 211
release goals, 211–212
Sprint Planning, 211
staffing, 210

waterfall, 11, 91
as compared to agile projects, 91

Q

quality 12, 13
assurance, 37
creating policies iteratively, 347
infusion, 37
management systems, 22
policy, 347

quality policy, 347
quotes

Bonaparte, Napoleon, 159
Churchill, Winston, 177
“fail fast, fail often,” 159
Goldratt, Dr. Eli, 234
Hazlitt, William, 159
Kennedy, John F., 295
Patton, General George S., 1

R

reactivity, 234
release backlog, 133

defined, 26
release planning, 240

overloading, 243
updating the plan, 242–243

requirements management, 14
resource slicing, 34
return on investment, 329

and Product Owner, 314
Review and Approval policy, 348
ROI, see return on investment
roles

Business Analyst, 137
paired with Product Owner, 318

Business Owner, 210
changes to traditional, 197
coder, 135
Configuration Manager, 135
designer, 135
Executive Sponsor, 135
Product Manager, 134, 210

362    Index

Product Owner, 135
Program Manager, 134
Project Manager, 134, 210
Quality Assurance Analyst, 135, 226
Quality Manager, 135
Quality Process Manager, 135
R&D Manager, 134
Release Manager, 210
Resource Manager, 135
Scrum Master, 136
Technical writer, 276
tester, 136

S

Sarbanes-Oxley Act, 214
sashimi, 32; see also User Stories
Scrum

framework, 34
practices, 2
separation of responsibilities, 172

Scrum Alliance, 117
Scrum Master, 136

defined, 6
as a full-time job, 66
managing the Daily Scrum, 289
removing obstacles, 294
role in improving the organization, 47
role in staffing teams, 217–218
scheduling Product Backlog grooming, 286
using the impediment list, 257

Scrum Teams
blocked by architecture definition, 209
co-location, 36, 170
continuous learning, 295
cross-functional skills, 35
culture, 121
customers

confidential meetings, 191
dedicated members, 69
deliberate underperformance, 109
demoralization of, 306
effect of poor metrics on, 170
effect of specialized skills on, 335
emails, 121
failure to meet commitments, 109
finishing commitments, 109
for quality assurance testing, 226
getting ready for, 287–289, 292
ground rules, 283–284

escape clause, 284

improve through Sprint Retrospective,
284

handling risk, 254
hiring

hard skills, 48
interview process, 49
practices, 48–50
soft skills, 48

identity, 282
impact of changing membership, 207
instant messaging, 121
lack of proper skills, 170
launching, 281
managing the team, 35
“not my job”, 35
overstaffing for training, 147
probationary period, 148
remote employees, 155
responsibilities, 66
self-denegrating team names, 283
self-managing, 35–36, 69
self-organizing, 35–36, 62, 69
size, 35, 204
staffing practices

“Draft,” 217
“Manager’s Choice,” 217
“Sign up,” 218

storming, 35, 163
swarming, 133
team rooms

decoration, 283
under-commitment, 108–109
when backlog item can’t be finished, 298
velocity

decrease caused by training, 208
visibility, 173

sheepdogging, 56
skills specialization, 203–204
source code control, 92, 116
specialization, see Skills Specialization
Sprint, 24, 198

failures, 209
ISO9001 entry and exit criteria, 345
length, 96

challenges of one-week, 221
changing, 255
considerations, 221
impact of project risk, 222
not changing, 222
shortening for visibility, 254–255

polishing, 224

Index    363

schedule
creation, 96, 221
shifted, 223
staggered, 96

stabilization, 224
disadvantages, 225
interleaving, 227
rules, 225–226

synchronization, 221–222
Sprint Planning Meeting, 36, 100

commitment-based planning, 106
overloading, 106
purpose, 287
velocity-based planning, 106

Sprint Retrospective Meeting, 53
getting ready for, 293
outcomes, 174

Sprint Review Meeting, 14, 24, 35
discussing metrics, 292
Product Owner’s role in, 292
over preparation for, 292

stable systems, 300
standards

ISO 13485, 215
ISO 9001, 343
MDD, 215

sustainable pace, 66, 71, 316

T

tasks boards, 178
TDD, see test-driven development
technical debt, 224
test-driven development, 4, 13, 116

defined, 6
testing

during Sprint, 228
manual, 228
cost vs. quality, 226–229

tools
automated testing

costs, 180
minimum requirements, 180
Fitnesse, 181
Selenium, 181

backlog management
minumum requirements, 181
Rally, 182
Scrumworks Pro, 182
VersionOne, 182

collaboration

document repository, 182
instant messaging, 182
web cameras, 182
wikis, 182

costs, 179
configuration management

Clearcase, 214
Git, 214
Subversion, 214

continuous integration
Ant, 180
Cruise Control, 180
Hudson, 180
minimum requirements, 180

defect management
BugTracker, 327
Bugzilla, 327
GNATS, 327
Mantis, 327
Redmine, 327

general criteria for use, 178–179
information library

Basecamp, 326
Lotus Notes, 326
Sharepoint, 326
wiki, 326

integrated development environments
Eclipse, 178
NetBeans, 178
Visual Studio, 178

product backlog management, 258
value provided, 179

training
backlog, 295
cross-training, 208

transition, see agile transition
Tuckman’s model, 281

U

UI standards, 214
unstable systems, 300
user stories

acceptance criteria, 28
add detailed requirements, 30
complexity estimate, 28
content, 27
defined, 262
epics, 99, 117, 262
Rachel Davies, 264
right-sized, 26, 99

364    Index

risk, 28
handling defects, 263
lifecycle, 262
sashimi, 32
scrum-sized, 26
slicing, 26, 99

examples, 266–268
proper, 268–270
waterfall, 268–269

sprint-sized, 26, 99
value, 28

benefit and penalty, 28

W

waste, 10, 14, 22, 73
Wegner’s lemma, 300

wiki
use of, 24
documentation, 24

wolving, 33, 71
work estimates, 12, 37

hours vs. points, 104
reduction, 69
setting discussion time limits, 103
t-shirt sizing, 103

www.bigagiledevelopment.com, 2

X

XP, see extreme programming

Z

ZIV’s Uncertainty Principle, 300

	Enterprise-Scale Agile Software Development (Nov 2009) (ATTiCA)
	Contents
	Preface
	Acknowledgments
	Biography
	Chapter 1. Introduction
	Chapter 2. Why Agile?
	Chapter 3. Transitional Concepts
	Chapter 4. Transition Barriers
	Chapter 5. Management in an Agile Environment
	Chapter 6. Create the Transition Team
	Chapter 7. Define the Organizationl Agreements
	Chapter 8. Determine Transition Goals
	Chapter 9. Create the Transition Backlog
	Chapter 10. Beginning Transition Sprint 1
	Chapter 11. Create the Transition Budget
	Chapter 12. Develop the Transition Communication Plan
	Chapter 13. Create the Training Plan
	Chapter 14. Facilities Planning
	Chapter 15. Selecting the Pilot Projects for the Agile Transition
	Chapter 16. Tools in the Agile Enterprise
	Chapter 17. Managing Customer Involvement
	Chapter 18. Agile Project Management-Getting Started
	Chapter 19. Agile Project Management: Monitoring, Reporting, and Controlling
	Chapter 20. Agile Analysis
	Chapter 21. Launching Scrum Teams
	Chapter 22. Managing Scrums Teams
	Chapter 23. Agile Product Management
	Chapter 24. Incorporating ISO 9001 into the Agile Transition
	Index

