

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 488

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

 Contents at a Glance

 About the Authors... xv

 About the Technical Reviewers ... xvi

 Acknowledgments .. xvii

 Introduction ... xviii

 Chapter 1: The Art of Agile Development..1

 Chapter 3: eXtreme Programming ..29

 Chapter 4: Sprint 0: Generating the Product Backlog..53

 Chapter 5: Sprint 1: Starting a Game..87

 Chapter 6: Sprint 2: Playing a Basic Game ...135

 Chapter 7: Sprint 3: Changing the Game...161

 Chapter 8: Sprint 4: The Release ..203

 Chapter 9: Code Review..243

 Chapter 10: What’s Ahead for You and Scrum?..273

 Appendix A: TDD Primer with NUnit..281

 Appendix B: BDD Primer with SpecFlow...297

 Appendix C: Mocking with Moq ..311

 Appendix D: Manage a Product Backlog with Pivotal Tracker319

 Appendix E: Web Testing with WatiN ..325

 Appendix F: Source Control with SVN...335

 Appendix G: Continuous Integration with Cruise Control.NET351

 Index ...365

xviii

Introduction

The Agile Manifesto set forth a set of principles on how we as developers create software for our
customers. Over the past 10 or so years, we have seen those ideas and principles expanded upon by
developers all over the world.

Transitioning into an agile team takes hard work and may be a bit overwhelming. What we hope
to show in this book is what this transition might look like for a .NET development team.

Who This Book Is For
This book is for software developers who want to learn how to work in an agile environment and develop
software using a test-first/behavior-first approach. This book is for developers who want to start with the
business, not a column in a table.

This book assumes that you have some familiarity with the .NET framework. When it comes to
the testing and mocking frameworks, this book assumes you have little familiarity.

How This Book Is Structured
This book contains ten chapters and seven appendices.

Chapter 1: “The Art of Agile Development” gives a general overview of agile. This overview includes
the difference between plan-driven and value-driven development.

Chapter 2: “Managing Agile Projects with Scrum” provides an introduction to Scrum.

Chapter 3: “eXtreme Programming” discusses the fundamentals of eXtreme Programming (XP) and
its relationship with Scrum and behavior-driven development.

Starting in Chapter 4, the book provides a fictional case study about a team utilizing the

concepts and ideas from the previous chapters to develop a web-based blackjack game.

Chapter 4: “Sprint 0: Generating the Product Backlog,” covers establishing a baseline sprint to
develop three different user stories: Initial Bet, Start Game, and Deck of Cards. We'll establish the
logistical fundamentals of a sprint and set the tone for the next four chapters.

Chapter 5: “Sprint 1: Starting a Game” introduces the team experiencing their first sprint in the
project. It shows how the daily stand-up, retrospective, planning, and product demo meetings work
in the real world.

Chapter 6: “Sprint 2: Playing a Basic Game” shows the team dealing with their second sprint and the
user stories they have completed.

 INTRODUCTION

xix

Chapter 7: “Sprint 3: Changing the Game” finds the team dealing with a change in their group
dynamics.

Chapter 8: “Sprint 4: The Release” presents the culmination of four sprints’ worth of work for the
first release of the blackjack game to the customer.

Chapter 9: “Code Review” gives a brief overview of the behind-the-scenes framework used on the
blackjack web application.

Chapter 10: “What’s Ahead for You and Scrum,” is our retrospective of the product release; it takes a
look at what we've covered and gives some pointers on where to go from here.

Appendix A: “TDD Primer with NUnit” is a tutorial on installing and using NUnit to begin to build
an automated test suite.

Appendix B: “BDD Primer with SpecFlow” gets you started with the basics of SpecFlow and shows
how to transform specifications into workable code.

Appendix C: “Mocking with Moq” is a tutorial explaining why mocking is important and showing
you how to mock using the Moq framework.

Appendix D: “Manage a Product Backlog with Pivotal Tracker” is an introduction to a free, online
agile management tool to track user stories throughout their lifecycle.

Appendix E: “Web Testing with WaitiN” discusses how to use WaitiN, an automated GUI framework
for the browser.

Appendix F: “Source Control with SVN” discusses how to set up and use a version control system for
your source code.

Appendix G: “Continuous Integration with CruiseControl .NET” explains how to install and
configure a continuous integration server using CruiseControl .NET.

Conventions
You will notice a tremendous amount of dialog among the team members in the case study chapters.
These conversations are italicized.

In instances where a code line is too long to fit the page’s width, we break it with a code
continuation character. Please note that when you try to type the code, you have to concatenate the line
without any spaces.

Prerequisites
A knowledge of C# and ASP.NET MVC is tremendously useful. No other previous knowledge is required.

To make the most of this book, install Visual Studio 2010 Express with Service Pack 1 or higher
and SQL Server 2008 Express R2 or higher. Both are available for free download from
www.microsoft.com/visualstudio/en-us/products/2010-editions/express.

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express

 INTRODUCTION

xx

Downloading the Code
The source code for this book is available from the Apress web site (www.apress.com) in the Source Code /
Download section.

Contacting the Authors
We always welcome your questions and feedback regarding the contents of this book. You can reach
Jerrel Blankenship by e-mail at jerrel@jerrelblankenship.com or via his web site at
www.jerrelblankenship.com. You can contact Matthew Bussa via e-mail at matthew@matthewbussa.com or
through his web site at www.matthewbussa.com.

http://www.apress.com
mailto:jerrel@jerrelblankenship.com
http://www.jerrelblankenship.com
mailto:matthew@matthewbussa.com
http://www.matthewbussa.com

C H A P T E R 1

1

The Art of Agile Development

In this chapter you will be introduced to the principles and practices that constitute agile development.
You will learn that agile development is as much a philosophical and cultural shift as it is a set of
practices and processes. You will understand why the need for an agile approach to software
development has developed, the issues it helps to solve, and the reasons for its rapid rise in popularity.

In this chapter you will also dive into the Agile Manifesto, the document that started the agile
movement. You will then examine the key features of agile by digging deeper into the principles and
values as laid out by the manifesto and understand what they mean at a more granular level.

Finally you will be introduced to a number of practices that all fall under the agile umbrella. These
practices share a common goal of striving to make your development effort more flexible, adaptable, and
ultimately of more value to the business.

The aim of this chapter is to provide you with the knowledge that will form the foundations on your
road to becoming a master agile practitioner over the course of this book.

Why the Need for Agile?
So where did the need for an agile software development methodology come from and what was so bad
about agile’s predecessors?

It’s What I Asked for But Not What I Need
Previously, when a team would develop software they would use plan-driven development. This type of
development was characterized by gated stages, where one would gather all the requirements the
customer would need on the project, and then do an analysis of the problem. Next, the whole
application was designed before the first line of code was ever written.

One of the most widely adopted methodologies associated with plan-driven development was the
waterfall approach to software development. The waterfall approach uses gated stages of requirements
gathering, planning, designing, development, testing, and then, eventually, deploying, as seen in Figure
1-1.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

2

Figure 1-1. The waterfall process

The plan-driven method, while great for industries like construction—where requirements remain
fixed throughout the project, has its drawbacks when applied to an industry where requirements can
change during the lifecycle of the project, as is often the case with software development. Real-world
software projects change, not every requirement can be gathered up front, things get missed, and the
business is always learning and figuring out better ways to do things. We want the software to outlive
the business requirements; not the business requirements outliving the software.

Plan-driven development relies on unchanging requirements. That is to say, once they have been
gathered and agreed they may not be changed. If they have to be changed, it is at a great cost to the
development team as well as the customer. The notion that a business would remain static for nine to
thirty-six months, which is what an average project lasts, is almost absurd. Businesses and project
stakeholders are constantly looking to improve process and innovate, and cannot jeopardize this
evolution because they are waiting on a software tool to be completed. During the lifecycle of a plan-
driven project, the business would find it difficult to give feedback on requirements and design
documentation. Because requirements are a gated stage in the process, many plan-driven projects
would proceed without the stakeholders really understanding what was to be delivered. Many times
stakeholders are uncertain about what they want. A 400-page requirements document is not the ideal
way to communicate what the new system will do. However, this was necessary to satisfy a gated stage of
the plan-driven method, and development would not start until the project was through that gate.

With this gated process there is not a convenient mechanism for the development team to show
their work and for the stakeholders to offer feedback on that work. Therefore, oftentimes the first
opportunity that stakeholders would have to offer feedback on the project was during the QA (quality
assurance) stage of the process, which would happen after the coding gate was completed. What this
means is that a stakeholder would ask for a solution to a problem and would not see a response from the
team for a year or more. This is a black-box type of development environment. The customer sends
issues in and doesn't see a possible resolution for a year or more.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

3

In this situation, the stakeholder and business would have to accept that they met the requirements
as they were defined at the beginning of the project, even if the needs of the business and the
environment that the business works in had changed since the requirements’ gated stage. A plan-driven
approach can only expect to deliver up to the requirements that were agreed upon at the beginning.
What the business knew then has been eclipsed by what they know now, perhaps making the software
redundant, or worse, obsolete.

One of the biggest issues with the plan-driven process is the lack of any real return on investment to
the business until the end of project, during the deployment stage. There is no tangible benefit or value
to the business during the months of design and detailed requirement documents. The business cannot
just take that 400-page requirements document and use it in their day-to-day operations. It is only when
the project is finally finished that the business can expect to see any inkling of business value.

The plan-driven method makes no provision for the unknown. You could say that the plan-driven
method of software development’s goal is to eliminate the unknown from a project precisely because it
has no mechanism for dealing with it. Hence the need for gated stages: you cannot move to the next
stage until all the unknowns are known. Because of this need to remove the unknown from a project, no
provision is made for altering the initial design when technical issues surface that require these changes.

A by-product of this need to remove the unknown from a project is the way estimation is handled.
By removing the unknown and agreeing on the time estimates of the project, all delays that occur in the
project are stacked up to the end of the project. In plan-driven development, there is no correction
mechanism for estimation errors and the only buffer on this is the amount of over-estimation (slack)
that was originally added on to the project.

It is also true that the process does not take into consideration the technical expertise of the
developers who will carry out the implementation. These developers carry the responsibility for the
eventual implementation of the project. The smallest coding error can have major consequences that
may go unnoticed for years, so it is appropriate to think of developers as engineers who make a myriad
of decisions, implement technical designs, and solve problems many times during their working day.

The plan-driven method has some shortcomings that do not adequately support the needs of
certain organizations. Experiencing projects that overrun or under-deliver also highlights the
weaknesses of this method.

Plan-driven development only works in a situation where product managers and business
stakeholders know exactly what they want, will not change their minds, are clear on priorities, and are
sure that the business process does not change. We have not been able to find any examples of this
mythical project, but if you happen to find yourself working on one, then please give us a call and we will
be more than happy to join you!

Putting too much emphasis and time into upfront design and requirements gathering can be a risk
to the business in terms of both opportunity and cost. The need for a more reliable and iterative
approach, where risk is minimized, and that can give businesses maximum return on their investment,
is where agile comes in.

Iterative Change
Software development is simply a means to an end. It enables organizations to automate, streamline,
and improve their business processes to solve business problems in order to ultimately reach their goals.
By adopting an agile development methodology, and its idea of value-driven development, you will be
able to understand and meet the challenges of today’s businesses, and in turn you will be able to offer
much more value to your stakeholders.

Frequent feedback and interaction between the development team and the stakeholders, domain
experts and sponsors, means that agile projects deliver value very rapidly. Task prioritization ensures
urgent needs are satisfied first. Iterative development cycles minimize risk, and regular delivery of

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

4

working software leads to smooth roll-outs, user satisfaction, and reduced training and maintenance
costs.

As the software development discipline has matured, agile methods were developed as an evolution
from earlier methodologies.

The agile methodology is as much a philosophical shift as it is a process shift. Agile has a firm
emphasis on customer satisfaction and a quick return on investment via an iterative approach to
software development. Figure 1-2 shows the process of an agile workflow.

Figure 1-2. The agile process

Instead of upfront design and planning stages that strive to remove the unknown from a project
before development, agile focuses on small, feature-driven iterations that strive to solve specific
business problems. These iterations usually occupy a time box of a fixed two to four weeks’ duration.
These iterations include all steps of the plan-driven process and enable the business to give frequent
feedback on working software in a very short time. The difference between an iteration and doing a
project using the plan-driven method of software development is that each iteration is working on small
chunks of the project. These chunks are what the stakeholders have designated as the highest priority
requirements in the system.

The ability to give working software back to the business within a short time enables the business to
start working with that software and gaining value from it—even if that value is to learn that this is not
what they really wanted after all. Because agile is so closely aligned with the business, domain experts
are considered first-class team members and often meet with the development teams.

Unlike the relaxed start and frantic finish of the more traditional waterfall-based approach, agile
promotes a more sustainable working pace.

By breaking down the deliverables of the project into smaller pieces that can be completed in an
iteration, agile is providing a mechanism for improving the accuracy of the team’s estimates. This
mechanism is missing in a plan-driven project. Typically, by the third or fourth iteration the team will be
producing fairly accurate estimates. With more accurate estimates, the project manager or sponsor can
get a good prediction of the time required to complete the whole system.

Agile is very much like a business, where it is always focusing on improvement of the process by
learning and refining its processes. Constant feedback loops from business and development
stakeholders help to hone these skills and processes, enabling more efficient delivery of valuable
software.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

5

In the end, by applying the agile methodology and using value-driven software development, you as
a developer are delivering software that meets the needs of the business in an iterative timeframe.

Now that you have a handle on some of the problems agile has been designed to tackle, let’s take a
closer look at how to be an agile developer—starting by looking at the Agile Manifesto and some key
features that it contains.

Defining Agile
This section will provide you with a clear definition of the agile development process and some of the
key features it encompasses.

The Agile Manifesto
In the 1990s there were several people in our profession who were talking about changing the way we
wrote software. These discussions came to a head in 2001, when a number of software development
luminaries, including the likes of Martin Fowler, Kent Beck, Bob Martin, Ken Schwaber, Jess Sutherland,
and Dave Thomas met in a lodge at the Snowbird ski resort in the Wasatch Mountains of Utah. What
came of this meeting became known as the Agile Manifesto (see Figure 1-3).

Figure 1-3. The Agile Manifesto

In addition to the manifesto, twelve principles of agile, shown in Figure 1-4, were created to expand
on the manifesto’s declaration.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

6

Figure 1-4. The Twelve Principles behind the Agile Manifesto

Let’s expand on the manifesto and its principles to define a set of key features that an agile process
should have.

Key Features of Agile
Looking through the Agile Manifesto and, in particular, the twelve principles, we can identify some key
features that define the process and mindset. Let’s explore these at a deeper level.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

7

• Embracing change by understanding the needs of the business: Being agile is a
realization that change is inevitable, nobody gets it right the first time, business
priorities change, and people get things wrong. Agility comes about by embracing
change, and learning from and with the business. With this in mind agile defines
the ability to adapt and be flexible, to embrace change rather than resist it or sit
around and moan that the goalposts have moved. Agile teams embrace change
and actively identify changes in applications that will increase business value.

• Focusing on the business value and return on investment (ROI): Agile development
is a development mind shift and a refocusing of efforts and priorities. There are a
number of techniques that you will be introduced to in this book that will help you
become a more agile developer. However, becoming truly agile is so much more
than the sum of its parts. The tools, project methodologies, and programming
methods can certainly go some way to help one become agile, but it is the ability
to apply these techniques to an ever-changing business that will truly reap the
rewards. Fundamentally you must understand the business domain you are
working within and align your efforts, practices, and process to realize its value.

• Continuous delivery via incremental and iterative development: Being agile is all
about delivering working software of value as often as possible. Success of
software development is not measured in the amount of design work. Businesses
measure success in working software; this should be your measure of progress as
well.

• Continuous improvement by learning from and with the business: As part of the
software development team, it’s our job to turn the language and processes of the
business into software systems. In order to do this it is vital that we work closely
with the domain experts themselves, that is, the people that will use the software.
The users aren’t always domain experts. They have experience using the existing
process, but do not necessarily understand why it is that way. That is where the
domain experts come in. The more you as a developer understand about the
business you are writing software for, the better the software will be.

• Eric Evans in his book Domain-Driven Design: Tackling Complexity in the
Heart of Software (Addison-Wesley Professional, 2003) picks up on this
point when he mentions the “ubiquitous language.” This is a language that
is shared between the developers and the business to describe the business
domain being modeled.

• Keeping the process lean by continuous reflection on process and the removal of
waste: Keeping process and practices lean is all about eliminating waste. Don’t
bother with lots of documentation before developing systems. Create the
documentation when it is needed. You should be able to cope with a few
architectural diagrams that any member of the team can reproduce on a white
board. Instead of masses of requirements documentation, use story or tasks cards
and write features that can act as reminders for conversations when it is time to
build the feature. Lots of upfront documentation is no good to the business—
there is simply no value in it. The amount of documentation that is produced in an
agile project is defined as a requirement. It is not true that agile equals no
documentation. Agile equals the removal of useless information. The code and the
user stories with their corresponding acceptance criteria become the
documentation of the project. Not a 400-page, stagnant requirements document.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

8

• Keeping lean is also achieved with regular retrospectives on work carried
out and meetings on what’s working and not working with the current
processes. Continuously refining how we work and concentrating on the
work at hand will contribute towards a leaner and more effective working
practice.

• Strong focus on team effort that spans more than developers in order to reduce risk
and find better ways of working: Agile is about working together with a strong
focus on the team in an effort to improve your working practices and ultimately
deliver more value for your business. Domain experts, product managers,
business analysts, security and IT infrastructure stakeholders, and testers should
be first-class citizens along with developers during the project. Including non-
developers in the team helps to increase knowledge and shared ownership and
decreases the “them and us” gap between developers and everyone else in more
traditional methods.

• Agile development can be the proverbial silver bullet. The problem that
occurs has to do with changing the people around you. That being said, an
agile project methodology can be very valuable to any organization with a
need to be flexible when prioritizing application development.

The Flavors of Agile
There are various forms of agile methodologies, but they all share similar characteristics. You can think
of these various methodologies as branches of the same religion. The cornerstone of each branch is the
idea of customer satisfaction. They also feature many of the key ideas listed previously, as well as the
practices and principles laid out in the Agile Manifesto. The key thing to remember about all the agile
flavors is that every one of them is iterative.

Scrum
The Scrum methodology consists of a series of “sprints,” typically lasting two to four weeks, each
delivering some working, potentially shippable software. The workload of each of these sprints is driven
from the “product backlog.” The product backlog consists of new features, bug fixes, technical debt, and
anything else that will contribute to the end deliverable. A product owner, with help from the customer,
prioritizes the product backlog and works closely with the team via regular stand-up meetings and sprint
retrospectives. The iterative aspect of Scrum is that this cycle is repeated over and over until the project
is complete.

You will look at Scrum in more detail in Chapter 2.

eXtreme Programming (XP)
eXtreme Programming (XP) is strongly focused on customer interaction and involvement. It has the
following five values:

• Simplicity

• Communication

• Feedback

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

9

• Courage

• Respect

It also follows these twelve practices:

1. Planning Game

2. Small Releases

3. Customer Acceptance Tests

4. Simple Design

5. Pair Programming

6. Test-Driven Development

7. Refactoring

8. Continuous Integration

9. Collective Code Ownership

10. Coding Standards

11. Metaphor

12. Sustainable Pace

In XP, user stories are created to capture requirements from customers. These stories are then
estimated by the developers, prioritized by the customer, and then developed into working software on
an iteration-by-iteration basis. Continuous planning and delivery underpin the disciplined XP process.
It is also worth noting that many of the practices in XP are shared by other branches of agile, like Scrum.

You will take a closer look at XP in Chapter 3.

Crystal
The Crystal group of agile methodologies focuses more on people rather than process. It has a simple set
of principles that enhances teamwork by concentrating on communication and the removal of project
management noise. It also concentrates teams on the priorities and critical paths of the software
development. Like Scrum and XP, it also encourages frequent delivery of working software.

Dynamic Systems Development Method (DSDM)
The Dynamic Systems Development Method (DSDM) is based on the 80/20 rule, in that 80 percent of
the benefit a system will be derived from only 20 percent of the systems requirements. With this in mind,
only work that is deemed critical for the system to operate is prioritized; that is, the first 20 percent of
requirements. DSDM is prioritized using the so-called MoSCoW method, which is as follows:

M: Must have

S: Should have, if at all possible

C: Could have, but not critical

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

10

W: Won’t have this time, but potentially later

All “must have” work is committed to being completed in the course of the project; all other work is
deemed a “nice to have” and is picked up only when the core requirements have been implemented.

Feature-Driven Development (FDD)
Feature-driven development (FDD) begins by creating a model of the domain under development. Once
this is completed, an iterative process of feature design and implementation begins. Features represent a
useful grouping of functionality to the customer. FDD is made up of the following five simple activities:

1. Develop the Domain Object Model

2. Create a feature list

3. Plan by feature

4. Design by feature

5. Build by feature

Lean Software Development
Lean software development comes from the Lean manufacturing principles that were derived mostly
from the production system created by Toyota. Lean focuses on customer value and the elimination of
waste. It achieves this by following these next seven principles:

1. Eliminate waste: Selects only the most valuable features for a customer.

2. Amplify learning: Learn by doing and testing things rather than documenting.

3. Decide as late as possible: Delay decisions in order to enable more facts to be
gathered and changes to take place.

4. Deliver as fast as possible: The sooner software is delivered, the sooner
feedback is received and incorporated into the next release, giving fast return
on investment to the business.

5. Empower the team: Make the team responsible and increase motivation by
including all members in the decision-making process.

6. Build integrity in: Re-factor regularly to keep code flexible and adaptable to
change.

7. See the whole: Ensure that domain knowledge is spread throughout the team
in order for problems to be identified at any level of the system.

Throughout this book we will be using the more popular agile methodologies, Scrum and XP, to
show you what it means to be agile.

CHAPTER 1  THE ART OF AGILE DEVELOPMENT

11

Summary
This chapter has introduced you to the need for agile with its idea of value-driven development. You first
read about the failings of the traditional plan-driven approach to software development. Many of its
shortcomings were based on the following presumptions:

• Requirements won’t change.

• There will be no obstacles or surprises.

• The business can wait for several months before taking delivery of the first version
of the software.

A new process that could react and embrace changes while working alongside the business and
treating its people as first-class team members was badly needed to deliver real business value on
investment.

With a firm knowledge of why we needed value-driven development you then examined the
characteristics of agile by looking at the Agile Manifesto. Some key features you have learned about the
agile methodology include:

• Focusing on the business value and ROI

• Embracing change by understanding the needs of the business

• Continuous improvement by learning from and with the business

• Keeping lean by continuous reflection on practices and the removal of waste

Lastly, you were introduced to a number of popular flavors of agile, each having its own terminology
but all sharing a common focus on customer satisfaction through working closely with the business and
giving a fast return on investment. The agile methodologies you will follow in the remainder of this book
are Scrum and XP, although many of the concepts in this book can be applied to the other
methodologies.

In the next chapter you will look at the Scrum process in more detail, as this will be the project
methodology that you will follow for the case study that forms the second part of this book.

C H A P T E R 2

13

Managing Agile Projects
with Scrum

In this chapter you will learn all about the Scrum project methodology. You will be introduced to the
iterative nature of Scrum, which defines a process skeleton containing a set of roles, activities, and
artifacts, all focused on supporting a team committed to delivering a product.

The case study that features in Part Two of this book follows the Scrum methodology, so you will get
to see a practical implementation of all of the key characteristics of Scrum as discussed in this chapter,
which will help to cement the process and benefits of the methodology.

What Is Scrum?
Scrum is an iterative approach to software development tightly aligned with agile principles and the
Agile Manifesto. Scrum is made up of a series of time blocks called sprints, which focus on delivering
working software. A sprint is typically two to four weeks in length and is defined by a goal or theme that
helps to clarify the objective of the sprint. Sprints are isolated from change, allowing the team to focus
on delivering working software without distraction. Scrum focuses on helping the people committed to
develop the project deliver that project.

Work is prioritized from a product backlog that is managed by a product owner. Before each sprint
occurs, a feature from the product backlog is chosen and the team commits to deliver it by the end of the
sprint.

To keep things running smoothly, a ScrumMaster is appointed to ensure there are no obstacles
impeding the team from delivering the features that the team committed to. Daily stand-up meetings
help the team communicate about any issues preventing them from delivering. Retrospectives at the
end of each sprint help to improve process.

Figure 2-1 shows a graphical representation of the Scrum methodology, including all of the roles,
activities, and artifacts that you will read in more detail in the following sections of this chapter.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

14

Figure 2-1. The Scrum process

The consistent sprint duration combined with the team being time boxed to work on features that
cannot be changed in that time frame, as well as short meetings and regular retrospectives, improve
development practice by generating a development rhythm. This rhythm enables the team to
concentrate on designing and developing high-quality software.

Now that you have an overview of what Scrum is, let’s dive deeper into the wonderful world of
Scrum.

Plan-Driven vs. Value-Driven Methods
When looking at the differences between the Waterfall method and the Agile method you need to look at
the core behind each method. One method is driven by the plan that was created at the beginning of the
project and the other method is driven by the value that you give the customer.

Waterfall Method (Plan Driven)
The waterfall method can be thought of as a plan-driven method of software development. In the past,
this method of development was used by many—not because it was the best way to develop software,
but because it was the only method known.

A project that used the waterfall method involved a large amount of risk, mainly because everything
was done at the beginning of the project. All the requirements gathering, and discovery and scope
definition was completed before the first line of code was ever written. Customers had to know up front
everything that they needed or wanted the system to do. At times customers did not know exactly what
they wanted, but yet, they had to define every last detail of their needs; and once they defined the details,
they could not change them—even if they later realized that their needs had changed.

This approach destined the project for failure before it even began. The entire process led to
problems that were hidden until toward the end of a project, simply because the customer had not
considered every little detail, and there was no way make changes as the need arose. Sometimes it was
too expensive to make a change. Scope creep was rampant in these kinds of projects; developers didn’t
understand the problem that the customer was trying to solve—and the customer didn’t either.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

15

Plan-driven development could be like a hoop jumping process: you started at discovery and once
you jumped through that hoop, it was on to the requirements-gathering hoop, and from there you went
on to the design hoop. You could not jump through one hoop until you had jumped through the
previous hoop, and once you were through a hoop it was near impossible to go back to a previous hoop
if the need arose. There was no allowance to do a little bit of everything and then pause to make sure you
were still on the right path. The waterfall process did not foster an environment where developers could
go to a customer and say, “I would like to show you what I am working on to make sure it is what you
want.”

Usually the big issues would surface toward the end of a project, which was rather late in the
process. This led to many development teams being behind on their projects. When teams got behind
on a project, they would just throw more bodies at the project, with the hope that the more people on
the project, the faster it would get done. That rarely happened. Most of the time the project would
remain behind schedule, so the team had to cut the scope, cut testing, or both.

Scrum Method (Value Driven)
Scrum is considered a value-driven method for software development. Scrum is a dramatic change over
the waterfall method for a number of reasons. Instead of first gathering all the requirements needed for
every feature of the project, completing all the designs based on these requirements, and then coding
the application based upon these up-front designs, Scrum looks at doing iterative, incremental
development.

Scrum is all about taking small passes at a problem and reassessing that problem after each pass.
Scrum is all about small:

• Small time blocks called sprints

• Small features

• Small teams

Small time blocks are how the team works on a solution for the customer. Each sprint can be looked
at as a mini waterfall project. This is because in every sprint you are doing everything you would
normally do in a waterfall project, except you are doing it on a smaller scale. In each sprint, you take a
feature and you gather requirements on that feature, you design that feature based on those
requirements, and you code and test that feature based on those designs. In Scrum, unlike waterfall, you
are not trying to do everything up front; you are doing everything you need to do when you need to do it.
The goal of each sprint is to deliver an increment of the final product—but an increment that is
potentially releasable.

So how can we do numerous waterfall projects in each sprint, when we could barely do one
waterfall project before? By doing these sprints against small features. Small features are pieces of a
project that try to solve a particular problem for the customer; they don’t attempt to create the whole
application. The massive features of the project are broken down into smaller chunks that can still
provide value to the customer and are able to be completed more quickly. As more and more of these
features are completed, the customer will start seeing the entire application coming into view.

All of this is done with a small team of developers, testers, and designers that are dedicated to
getting the project done. This team is cross functional in that every member knows how to do
everything. Each member may not be the best at everything, but everyone knows how to do everything

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

16

necessary to complete the project. Think of them as a SEAL1 team, where every member knows how to
do everything needed, but there are also experts on every aspect of the operation.

By doing things on a small scale, problems are less likely to arise near the end of the project. In fact,
Scrum works to expose problems as soon as possible. Issues can’t hide because the process is broken
down to a manageable scale. When a problem does surface, it causes major discomfort for the team until
they address and fix it. They can’t ignore the problem because it is visible to everyone.

There is one important thing to realize about Scrum, however: it works to expose problems to the
team as soon as possible, but it is not designed to fix the problems. It exposes the mud, but it is still the
team’s job to clean it up.

With Scrum, you are not just creating features for the sales and marketing teams to show the
customers, you are creating solutions for the customer. This is done by prioritizing the features that
need to be completed based on the customer’s needs and wants. If a customer deems feature A to be
more important than feature B, then the developer would be wasting his time working on feature B
before feature A. Give the customers what they want when you say you can deliver it.

Fixed vs. Variable Factors
There are three key factors or constraints to every software project: time, resources, and scope.
Unfortunately you can’t have all three at the same time. In a triangle-like fashion, you can work within
the influence of two of them at any one time and those two will dictate what happens with the third.

Figure 2-2. The triangles

1 An elite US Navy special operations force.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

17

In the plan-driven development model, the project’s scope is usually one of the two fixed items,
with the project’s resources and time being variable. In this case, scope dictates resources and time.
This all sounds well and good until you are in the middle of the project and scope creep rears its ugly
head. In such a case the scope will increase, but neither the resources nor the time can be changed to
reflect that increase. This is when you experience the desperation of throwing more bodies and
technology at the project, hoping for the best, ultimately achieving varying degrees of success.

In the value-driven development model, resources and time are fixed on the triangle. You know the
size of your team and you roughly know their velocity from their work on previous sprints. The scope of
the project becomes the variable in the triangle. In other words, the project’s resources and time dictate
the project’s scope.

You may be asking: how is this even possible with customers always changing their minds? Well,
since the team is able to release workable and valuable software to a customer at the end of each sprint,
scope creep becomes nearly impossible. As new features are requested by the customer, they are
prioritized against other items already in the product backlog that the team has yet to start. After this
prioritization, the customer’s “must haves” move to the top of the list and their “would like to haves” are
pushed to the bottom of the list. Over-commitment is prevented because the team is only working on
features that the customer wants right away.

Now let’s talk about the pieces and parts of the Scrum framework.

Scrum Artifacts
Scrum contains three main artifacts: product backlog, sprint backlog, and the burn-down chart. These
artifacts are the by-products of the Scrum activities and help give direction and transparency to the
team. In addition to these main artifacts, there is also an important secondary artifact: acceptance
criteria.

Product Backlog
The product backlog is a list of all work remaining on a project that the team needs to complete. This list
represents the customer’s product needs and wants. At the heart of this list is the user story, a key
component of Scrum. It defines the increment of value to the customer that the developer is trying to
deliver.

The product backlog is managed by the product owner, who is responsible for adding and removing
user stories to and from the list. The product backlog is constantly prioritized by both the product owner
and the customer. This constant prioritization is the key to Scrum. It ensures that the user stories that
provide the greatest value to the customer are listed at the top of the product backlog. As user stories are
added, they are compared to the user stories already on the list to see where they fit in value to the
customer. During a sprint, user stories can be added to the product backlog, however, they will not be
presented to the team until after the current sprint is completed.

User Stories
As mentioned earlier, the product backlog is nothing more that a prioritized list of user stories. A user
story is a card that describes an increment of value to the customer. The user story is written for the
developer in order to express the increment of value. The key to a good user story is that it is a vertical
slice through the product. A horizontal slice is a feature that just touches one level, such as the database
level or the UI (user interface) level. A vertical slice, on the other hand touches all the levels of the

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

18

product, as illustrated in Figure 2-3. This is the smallest amount of work that touches all levels of the
product and still provides value to the customer. By writing the user stories in a way that allows for
vertical slicing, you can create basic functionality in the first user story and then easily add functionality
to this feature as the customer needs it.

Figure 2-3. Vertical slicing of the product

A way to make sure that a user story accomplishes the goal of being a vertical slice through the
system is to make sure that it fits the INVEST acronym. INVEST2 stands for:

• Independent: The user story should be self contained, so that there is no inherent
dependency on another story.

• Negotiable: User stories, up until they are a part of a sprint, can always be changed
and rewritten.

• Valuable: A user story must deliver value to the end user.

• Estimable: You must always be able to estimate the size of a user story.

• Sized appropriately: User stories should not be so big as to become impossible to
plan/task/prioritize with a degree of certainty.

• Testable: The user story or its related description must provide the necessary
information to make test development possible.

Backlog Sizing
Sizing the product backlog is a measure of the pace at which the Scrum team can deliver items. People
are not good at estimating work. We all know how terrible we are at accurately estimating how long

2 This mnemonic is hard to attribute, as it has become pervasive. See
www.scrumalliance.org/articles/80-keep-your-team-seeing-red for more information.

http://www.scrumalliance.org/articles/80-keep-your-team-seeing-red

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

19

something will take us to complete. How many times have we heard or said ourselves, “I am 80 percent
complete on this. The remaining 20 percent will be done in an hour.” Yet two days later, it’s still not
done. People are just naturally bad at estimating.

We may not be good on our estimates, but we are great at comparing things. For example, we are
able to look at two cooking recipes and tell which one is more complex without being a professional
chef. We can look at two items and see that one is larger than the other. Sizing the backlog is all about
making decisions based on the complexity and amount of work, not on how long it will take to do the
work. Sizing is not equal to estimating.

You may ask: how do I know how long something will take? Consider, as an example, a manager
who wants to know how long it will take your team to produce a widget. You can derive the time
estimate of completing the widget from the complexity of the widget. After your team has gone through a
sprint, you can then look at that sprint and calculate how long it took the team to complete it. The team
is only concerned with how complex a task is.

To perhaps better explain the idea of estimating the amount of work over the time to complete it,
let’s compare it to painting your house. Let’s say you went to your local hardware store and bought
several gallons of paint to paint your house. Then you call three contractors to give you an estimate on
painting the house. The first contractor comes out and walks around the house, looks at all the buckets
of paint you bought, and explains that he has old rusty ladders and handheld brushes and a scrawny kid
to help him, so it will take him two days to do the job.

The second contractor comes out and walks around the house, looks at the buckets of paint, and
explains that he just recently purchased new ladders and brushes, and the local high school varsity
football team is working for him that weekend. With all those hands and the new equipment it will only
take him a day to paint your house.

The third contractor comes out, walks around the house, looks at the paint, and explains that he
owns some brand new mechanical paint sprayers and top-of-the-line machinery and he can have the
house painted by lunch time.

What you see in this story are three contractors with three different time estimates on how long it
will take to paint the house, but there is one thing that did not change throughout all of this and that is
the size of the house and the amount of paint. No matter who was doing the job, the house size never
changed, even though the time estimates did. The moral of the story is to do your best not to estimate
the duration of the work, but instead estimate the amount of effort it will take to complete the work.
Once you have the estimation of the amount of work, you can derive the duration to complete the work.

Sprint Backlog
The sprint backlog is a list of all work remaining in a sprint that needs to be done by the team. Think of
the sprint backlog as a subset of the product backlog. Whereas the product backlog lists all the user
stories remaining for the product, the sprint backlog contains all the user stories and tasks remaining for
the sprint. Typically when a user story is chosen for a sprint, the team will split that user story into tasks.

A task is a small chunk of the user story that can be done by any member on the team. Examples
would be a task to implement the database changes needed for the user story, or a task to implement the
UI for the user story. These tasks are displayed on a task board—also known as a Kanban3 board—that is
visible to the entire organization. Other items can appear on this board as well, including information on
set-up meetings to gather requirements, review checks, research, testing, design, and stages of coding.
Figure 2-4 shows an example.

3 Japanese for “signboard” or “billboard.”

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

20

Team members take a card from the board and during the sprint commit to doing the task the card
describes. As team members work through tasks, other tasks may emerge and original estimates are
adjusted. All members of the team are responsible for updating the Kanban board based on new
information gained on the feature being worked on.

Figure 2-4. An example Kanban board with a sprint backlog

The sprint backlog supplies the information needed by the burn-down chart. At the end of each
sprint, the sprint backlog is emptied. Any remaining items on the backlog are pushed back to the
product backlog, where they are reprioritized against user stories currently in the product backlog, in
addition to any new user stories that were added during the sprint.

Burn-down chart
A burn-down chart is a visual way to track how the sprint is progressing. The chart graphically shows the
amount of remaining work on any given day of the sprint, as seen in Figure 2-5. It is usually displayed in
a public area where anyone can see it. This aids the communication among team members and anyone
else in the organization. This chart can also act as an early indicator that there is a problem in the sprint
and the team may not be able to fulfill the commitment.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

21

Figure 2-5. Example burn-down chart for a sprint

Acceptance Criteria
Although product backlog, sprint backlog, and the burn-down chart are the primary parts of Scrum,
acceptance criteria is a very important secondary artifact in the Scrum process. Without good
acceptance criteria a project is doomed to fail.

Acceptance criteria is essentially a clarification of the story. It gives the developer a set of steps that
must be completed before the story can be considered done. The acceptance criteria are created by the
product owner with the help of the customer. It sets the expectation of the user story. With this in place,
a developer has a great starting point in which to write automated tests or even use test-driven
development (TDD). In this way, the developer is creating something that the customer needs and wants
with the understanding of how the customer will use it.

Another benefit of acceptance criteria appears when a feature cannot be completed in a sprint and
needs to be spread out across sprints. Then the team can use the acceptance criteria as a tool to see
where the user story could be broken into smaller pieces that still provide value to the customer, but can
be completed in a sprint.

Scrum Roles
Scrum makes a strong distinction between the people committed to the project and those that are just
interested in it. The most famous way of explaining this concept is via the fable of the pig and the
chicken.

A pig and a chicken are walking down a road. The chicken looks at the pig and says, “Hey, why don’t
we open a restaurant?” The pig looks back at the chicken and says, “Good idea, what do you want to call
it?” The chicken thinks about it and says, “Why don’t we call it ‘Ham and Eggs’?”

“I don’t think so,” says the pig, “I’d be committed, but you’d only be involved.”

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

22

The “Pigs” are the people who are committed to the project. They are the ones that handle the
creating, testing, and deploying of the project. The “Chickens,” on the other hand, are less committed.
They are the stakeholders and/or interested parties who benefit from the project, but are not responsible
for delivering it. Input from people classified as Chickens on the project should be taken into
consideration; however it should not prevent the team from delivering the project.

Scrum promotes the support of the Pigs, but values and takes into account the views of the
Chickens.

Pig Roles
The following are the three Pig roles that make up a Scrum team:

• ScrumMaster

• Product owner

• Delivery team

ScrumMaster
If the team is the engine of a Scrum project, then you can think of the ScrumMaster as the oil that keeps
the engine running. The ScrumMaster is responsible for ensuring that the Scrum process is understood
and followed. A ScrumMaster facilitates the team meetings and removes any blockages that the team
may have in the course of the doing their work. He ensures that there are no obstacles keeping the team
from achieving their goals and also isolates the team from outside distractions, all of which ensures
focus is kept on the job at hand.

The ScrumMaster also liaises with different parts of the team, from product owners to testers and
business stakeholders, ensuring that all members of the team are productive and share the common
goal of delivering the sprint. Don’t liken the ScrumMaster position to that of a traditional project
manager because the role is much more than that.

The key characteristic of a ScrumMaster is to be a “servant leader.” A ScrumMaster is not the boss of
the team, but is there to help the team achieve what it needs to accomplish in the sprint. The
ScrumMaster is there to help the team align the work in order to deliver value to the customer. A
ScrumMaster is the team coach. He facilitates the decision-making aspects within a team. He is the
point person for the team to those outside the group, and thus needs to be a top-notch communicator.
When issues arise among a team, it is up to the ScrumMaster to manage that conflict and get the team
back on track.

There are times, however, when the ScrumMaster stops being the servant leader and starts
becoming a dictator. Since a key responsibility of the ScrumMaster is to ensure that the practices of
Scrum are being followed as a team, any issue or attack against the framework should be handled by the
ScrumMaster. Hopefully this is something that rarely happens.

Product Owner
A product (or project) owner represents the customer and is responsible for maximizing the value of the
work that the team produces. The product owner meets with the customers to determine their wants
and needs, and prioritizes those items so that the team is always working on the items of highest
customer value. A product owner manages the product backlog and is the only person who can prioritize
the user stories for a sprint; all features are developed for her and she is responsible for the sign-off of

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

23

sprint deliverables. The product owner’s responsibilities change from being classified as a “Pig” before
and after a sprint to being a “Chicken” during a sprint.

The product owner role is also vital in that this person is the customer’s representative to the team.
A product owner is similar to a ScrumMaster, but the main difference is the nature of the roles: the
ScrumMaster is looking after the team’s best interest during a sprint while the product owner is looking
after the customer’s best interest during the sprint.

In a Scrum team, the product owner is the one role that cannot be miscast. A product owner who is
unable to accurately portray the customer’s wants and needs will result in failure. The product owner is
key to delivering a product that brings value to the customer and success to the team.

Delivery Team
The delivery team is the group of people responsible for actually delivering the product. The team
usually consists of two to ten people and includes a combination of programmers, testers, front-end
designers, and members from any other required disciplines. The team works on each sprint to move the
user story and related tasks through the different stages on the Kanban board until completion.

The key characteristic of a Scrum delivery team is that it is a self-organizing unit. There is no one
leader; everyone decides as a group what they can commit to each sprint. Team members also decide
what tools they need to be successful for the project. This level of autonomy was unheard of in a
waterfall method.

Delivery teams are designed to optimize flexibility and productivity. They are cross functional in
that each member of the team should know all aspects of the product to varying degrees. Each individual
on the team is not an expert at everything in the application, but each is a generalist in everything and an
expert on a few aspects of the product.

The delivery team, along with the ScrumMaster and product owner, work together to complete the
user stories and successfully accomplish each sprint. The ScrumMaster is geared to look after the team’s
interests and the product owner is geared to look after the customer’s interests. With those two roles in
place, the team does can concentrate on creating the application that the customer wants.

Chicken Roles
The people classified in the Chicken roles vary, ranging from business managers and directors to
stakeholders such as customers, vendors, and sponsors. The Chickens are not actively involved in the
development of the project; rather they are an interested party. Ultimately, the project is developed for
these people, so their views are important and must be taken into account, but not at the expense of the
development. This is why the ScrumMaster liaises between other people and the team and makes sure
that these interested other people provide the resources that the team needs to get the job done, but
don’t act as a distraction. Chicken roles are only involved in the process during sprint reviews, when
feedback from stakeholders and other interested parties is of high value.

Because Chicken roles typically enjoy higher salaries in an organization they are not usually called
chickens! Instead, they are told the pig and chicken story and then invited (and actively encouraged) to
attend the Scrum meetings from time to time. Generally they do so and are very happy to observe and
hear firsthand about what is going on.

Scrum Activities

The activities involved in Scrum center around project planning, review, and meeting.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

24

Sprint Planning
Before the start of each sprint, a planning meeting is held to determine which features will be included
in the sprint. Features come from the product backlog, which is prioritized by the product owner. The
first time that this meeting occurs on a project the product backlog is created. You can think of this as
sprint 0. The user stories chosen by the product owner to be included in the sprint are given to the team
and through a tool called Planning Poker, they are resized to show the complexity of a story related to
the other stories in group (this will be further discussed in the following section). Once the user stories
are sized, they are turned into a number of tasks by the team and a time estimate on how long each task
will take is determined. Once all this is done, the team will look at the entire list of submitted work for
the sprint and decide if they can commit to completing the work by the end of the sprint. To decide this,
the team does a five-finger vote to gauge individual members’ opinions.

A team member simply raises his hand and through the number of fingers he is holding up, he
displays what bests reflects his confidence level. A hand value of a “1” means that the team member is
very doubtful of the proposal. A hand value of a “5” means the team member is extremely confident in
the proposal. If no one holds up a value of a “1” or “2” then the team commits to that work for the sprint.
If a value of “1” or “2” is shown, then the team discusses why that team member voted this way and
adjusts the proposal accordingly.

Once the team commits to delivering the list of user stories and tasks within the sprint, the
ScrumMaster enacts a change freeze to allow the team time to develop the user story as written before
any changes can be made (to prevent scope creep). A sprint backlog is made up of all the user stories and
tasks required to complete the sprint. All members of the team, including the ScrumMaster and the
product owner, are involved in sprint planning meetings. Once the planning meeting is over, the team
will get together without the product owner to discuss the high-level design of the system.

Planning Poker
Planning Poker is a game that encourages the team members to give their honest assessment of the
complexity of a user story in relation to other stories. The tools required for the game are simple: you can
use your hand or purchase a set Planning Poker cards to handle it.

To play this game, the product owner will read the user story and explain it to the team. The team is
free to ask questions about the story. Once all the questions have been answered, the ScrumMaster will
ask the team to privately determine a number that best represents the complexity of the story. Team
members should not share their numbers with anyone in order to prevent inadvertently influencing
other team members. Once the team members have each come up with a number, the ScrumMaster
asks everyone to reveal their numbers. If all the team members decided the same number, that number
is assigned to the user story and everyone moves on to the next one. If the numbers do not match, then
the team members with the lowest number and the highest number are asked to explain why they
selected the number that they did.

After the discussion, another round of poker is played with each member deciding on a number for
the user story. This goes on until the team has unanimously settled on a number. On average, there will
be no more than three rounds to agree on numbers. If at the end of three rounds there is still no
consensus, however, we suggest that the ScrumMaster take the number in the middle and move on to
the next user story.

Planning Poker accomplishes a conversation about a user story among the entire team. When this
discussion occurs, “rabbit holes” and “gotchas” are usually avoided for the developer.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

25

Daily Stand-Ups (Scrums)
During a sprint, the team, the ScrumMaster, and the product owner commit to meeting once daily in the
same place and at the same time to discuss any issues that are preventing work from being done.
Meetings are held with everyone standing and time boxed to no longer than 15 minutes. Anyone
interested is invited to attend these meetings; however, only the people classified as Pigs are allowed to
speak at these meetings.

At the meeting, each team member answers the following three questions:

• What have you done since yesterday?

• What are you planning to do today?

• Do you have any problems preventing you from accomplishing your goal? What
progress has been made on existing impediments? Can the blockage be removed
or must it be escalated? (The ScrumMaster looks after this area.)

To keep the meeting from becoming a long, drawn-out ordeal and to stay within the 15-minute time
box, team members agree to meet after the meeting to further discuss any problems raised during the
stand-up. The daily stand-up meetings are about team members committing to work and giving a
platform to talk about issues early in the process.

Sprint Review
The sprint review is held at the end of the sprint. Its purpose is for the team to present the user stories it
has completed during the sprint. The team, product owner, and ScrumMaster are present at the review,
along with any interested parties—especially managers and customers. The review consists of an
informal demo of the developed software as it stands at the end of the sprint. This product demo
meeting is a chance for the customer to give feedback on the product to the team. This opportunity for
the customer to see the product and provide feedback on it gives the customer the chance to see a return
on investment that was not possible in the waterfall development process. The aim of the review is to
show the actual working software; there should be no formal slide show presentation or masses of
preparation for this review. This meeting aligns with the agile principle of satisfying the customer
through early and continuous delivery of valuable software.

Sprint Retrospectives
Along with the sprint review, a sprint retrospective occurs at the end of a sprint. The sprint retrospective
is an opportunity for the team to reflect on the sprint that was. This is the team’s chance to congratulate
itself for the things that went well and discuss the things that went wrong. This is an open area where the
team should feel free to discuss any issue that affects the team and their ability to deliver the product to
the customer. During this meeting, the entire team is present, including the ScrumMaster and the
product owner.

At the beginning of this meeting the ScrumMaster gives each person three stacks of Post-it notes in
three colors. One color is designated to mean “things that went well during the sprint;” another color is
designated to mean “things that were confusing during the sprint;” and the third color is designated to
mean “things that were bad during the sprint.” The group is then given a time box (three to five minutes)
to write down as many thoughts as they can about the sprint onto the Post-it notes. This is quiet time
with everyone writing. Once the time is up, all the notes are gathered and put on a wall in the office

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

26

room. The cards are then organized into similar categories. As time progresses on the product, you start
to see some common categories that come up with every sprint.

The ScrumMaster reads the notes for each category and the team discusses them. If during the
discussion an action item is presented, the ScrumMaster will write it down. Once the team has finished
discussing the category, the ScrumMaster will move on to the next category. This is done until all the
categories are discussed.

 Note To keep the meeting moving and to avoid having a four-hour retrospective, the ScrumMaster may time
box the discussion of each category.

Toward the end of the meeting, the ScrumMaster reads all the action items that were presented and
the team assigns members to be responsible for making sure the action items get addressed.

This is a good time for the team to try new ideas on how to fix problems. Do not be afraid to try
something new with a sprint. If it does not work for the team, then throw it out and try something else.
This meeting aligns with the agile principles of continuous improvement of practices and process, and
owes much to Lean principles.

Summary
This chapter has examined the details of the Scrum methodology and its differences compared to the
waterfall method of development. The Scrum process is designed to support all who are committed to
the delivery of a product and it promotes continuous improvement via regular, short, team meetings in
the form of sprints, sprint retrospectives, and daily stand-ups.

Scrum is aligned with many of the key features of the Agile Manifesto and agile principles that
Scrum values, as follows:

• Customer satisfaction through regular delivery of software demonstrated in the
sprint review.

• Embracing change by allowing customers to add to the product backlog and
permitting changes to be incorporated in the next sprint.

• Business and developers communicating regularly and during sprint reviews.

• Team members communicating daily at the stand-ups.

• Building projects around motivated individuals, allowing teams to self-organize,
shielding teams from outside distractions, and rapidly removing obstacles.

• Effective face-to-face communication via sprint planning, daily stand-ups, sprint
reviews, and sprint retrospectives.

• Providing working software by committing to deliver software of value for each
sprint.

• Reflecting on how to become more effective via sprint retrospectives.

CHAPTER 2  MANAGING AGILE PROJECTS WITH SCRUM

27

• Sustainable development by a consistent sprint duration and team estimation of
workloads.

This chapter also examined the artifacts of Scrum, which include the following:

• Kanban board

• Sprint burn-down charts

• Product backlog

• Sprint backlog

Scrum roles were covered, as follows:

• ScrumMaster

• Product owner

• Delivery team

And Scrum activities were also covered, including the following:

• Sprint planning

• Daily stand-ups

• Sprint retrospectives

Scrum is a process that embraces the principles and themes of agile development. It has a great
lightweight framework for supporting teams in delivering quality software at regular intervals. Because
Scrum doesn’t dictate how to develop, it can easily be complemented by other flavors of agile
development.

In the next chapter you will take a closer look at the features of eXtreme Programming (XP). You will
use XP in conjunction with Scrum during the case study that starts in the second part of this book.

C H A P T E R 3

29

eXtreme Programming

A number of different implementation frameworks have been conceived within the spirit of the Agile
Manifesto. eXtreme Programming (XP) is such a framework and focuses on delivering business value
through a lean process, customer satisfaction, and short development cycles. Whereas Scrum is
primarily focused on the project management side of things, XP is more focused on development details.
Thus Scrum and XP are complementary, and are often used together to become more efficient in
delivering customer valued software.

In this chapter, you will learn about the concepts behind the XP methodology and see how closely
it's aligned with the Agile Manifesto's principles and practices. Following the values of XP, we will
discuss the following XP practices: Planning, Environment, Self-Organization, Shared Understanding,
Commitment to Development Excellence, and Quality Assurance.

XP Values
eXtreme Programming is based on the following five core values:

• Respect: Respect is a two-way street: it needs to be given to fellow teammates so that everyone
feels respected as a valued team member; and it is also required from management so that the
team owns and is responsible for what they have committed to.

Respect is not attacking a fellow developer for the code that he has written. Respect implies
criticizing the code, not the developer, and working with that developer to increase his level of
code quality. Respect is being humble and leading by example to bring others on your team
up, not disrespectfully tear them down.

• Communication: In order to develop quality software efficiently, clear and frequent
communication is required between the customer and team members. If possible, sit down
with the customer and flush out ideas, point to things, make communication highly visible and
interactive, and avoid "pie in the sky" types of conversations. Stick figures and a whiteboard or
pointing at the computer screen to bring across a point go a long way. Such methods often
work better than trying to write a multi-page document attempting to get the same point
across.

Clear and frequent communication is required by code as well as people. XP practices such as
simple design, refactoring, pair programming, and test-driven development (TDD) help define

CHAPTER 3  EXTREME PROGRAMMING

30

a simple system architecture that is understood by the team and represents the domain that
the model is based on.

• Simplicity: Albert Einstein had it right he said, "Make everything as simple as possible, but not
simpler." Simplicity is an art form. Keeping the code simple means doing what is required and
nothing more, rather than over-complicating things that may never be needed. The value of
having a simple code base is that it enables developers to quickly understand and work with the
code, which in turn enables features to be added and modified easily and quickly.

•
Feedback: Feedback is an essential part of XP programming and it can come in various flavors.
Feedback is important when working with the code base to ensure that it is not broken when
making a modification. This is achieved through TDD and a continuous integration process.
Feedback is also valuable when demoing working code to a customer. The customer’s feedback
can be integrated into the code right away, or added to the next iteration. Having customers sit
with the team allows constant feedback to happen. Finally, feedback from the rest of the
development team is crucial in XP. Team feedback can help validate system design decisions
and ensure the design remains simple. Feedback from the team via pair programming enables
knowledge sharing and increased technical excellence; for when a member of the team learns a
new technique, she can share it. Team feedback is enabled by the team sitting together, which
is an XP practice that you will read more about later.

• Courage: Last, but certainly not least, courage is a must. The XP methodology empowers
developers to self-organize and estimate their work; and to be honest and transparent with
estimates and roadblocks. To have courage opens the possibility of failure; but the key is to fail
early, change course, and continue along the path to success. Courage is needed for developers
to leave preconceptions behind when they start a project. Thus they are able to embrace new
ideas and come up with the simplest design for the project they are working on, rather than (for
instance) trying to reuse a design that is familiar from a previous project.

The project management methodology of XP, as you’ll see, is very similar to Scrum; we will discuss
similarities. Now let’s take a look at the practices of XP, which can help you achieve an agile software
development process.

XP Practices and Principles
XP is made up of a set of twelve practices that can be used independently, but are far more powerful
when used in concert. Figure 3-1 shows all twelve XP practices and where they fit in relation to the
development process.

CHAPTER 3  EXTREME PROGRAMMING

31

Figure 3-1. The twelve practices that comprise XP

Let's take a look at how these practices relate to the iterative development process.

1. Planning Game: The planning game captures the features of the system as user
stories, and defines the releases of the project. During iteration planning, user
stories selected for the iteration are broken down into development tasks.

2. System Metaphor: When communicating with the business, it helps to have a
ubiquitous language so that complex systems can be explained easily.

3. Simple Design: High-level system design occurs at the start and during an
iteration.

4. On-Site Customer: During an iteration, it is ideal for the customer to be on-site
to aid in quickly answering details of a user story. While physical meetings are
ideal, virtual meetings are better than no meeting at all. The important point is
to have an available customer who can quickly provide answers as the
developers explore the details of a user story.

5. Team Sitting Together: It’s important for all of the team committed to the
project to be within shouting distance of each other. This improves
communication and imparts a feeling of camaraderie.

CHAPTER 3  EXTREME PROGRAMMING

32

6. Pair Programming: Pair programming is a development practice that pairs
developers so that they can work on a problem together. A pair will share a
development machine, and while one codes, the other will assist with design
decisions and look ahead to the next feature. With pair programming, code
reviews become “real time,” producing a level of quality that “inspection-only”
cannot. With two people developing, it's highly unlikely that they will both
overlook the same mistake.

7. Collective Code Ownership: Through sitting together and pair programming,
the entire team shares a collective ownership of the code base. All developers
are allowed to fix and work on any part of the code base.

8. Coding Standards: To help with collective ownership, best practices are used
to keep a simple design and ensure all code is created in a consistent manner.
This ensures that source code can be understood quickly when working on any
part of the system and with any other developer.

9. Testing: To ensure quality is delivered to the customer, emphasis is placed on
testing through the XP process. Testing starts by identifying acceptance criteria
from user stories. These acceptance criteria are used to write unit tests and
start development in TDD style. User acceptance testing also derives from the
acceptance criteria and will be automated as much as possible.

10. Continuous Integration: To ensure that all of the code that the team is
collectively developing actually works, the team integrates often and early. A
continuous integration (CI) server will pull the code base from a source control
repository, build it, and run all the automated tests to ensure the build is not
broken. The publicly published output of the CI server can be notified
instantly to developers, customers, and project managers. This report includes
the number of tests that are pass/fail at this point. Daily tracking provides an
indicator of progress in creating customer value. This quick feedback loop also
enables developers to fix the build. The sooner an issue is identified, the
cheaper it is to fix.

11. Sustainable Pace: Because of the short release cycles and the iterative nature of
XP, requirements gathering, design, development, testing, and deploying all
happen often. This means that issues found after review and testing can be
incorporated into the next iteration. This quick feedback model ensures that
developers can work at a sustainable pace. Thus, they save long weeks
compared to more traditional development methodologies that have clearly
defined stages for the development life-cycle, leaving feedback and testing
until the end. Sustainable pace also helps management to plan more
efficiently for staff holidays, unplanned absences, and the occasional
production “fire” that needs to be extinguished immediately.

12. Small Releases: XP is all about customer satisfaction and delivering business
value through quality software. As far as the business is concerned, the more
often this can happen, the better. XP promotes frequent releases, which may
be relatively small, but highlights the features prioritized by the business. XP
does not allow the development team to go into hiding for months on end,
hoping that the project completes on time. This transparency of frequent

CHAPTER 3  EXTREME PROGRAMMING

33

releases encourages customers by showing them the team is adding value to
the project all along the way.

Each of these twelve practices forms the practical application of XP, which realizes the five values
discussed in the previous section.

The remainder of this chapter will take a more detailed look at the twelve XP practices, starting with
project planning.

Planning
Planning is an important part of any project and an XP project is no different. In XP, the planning phase
occurs before each iteration.

User Stories
Developers estimate features by capturing requirements as user stories and assigning points to them
based on relative complexity. With a list of sized stories and a development time budget, customers are
able to select features for inclusion in the next iteration. The development budget is made up of the
amount of work the development team can commit to in an iteration. The budget for Iteration 1 is
simply an educated guess. Be comfortable in the knowledge that the budget estimate will be wrong
initially, but it will be correct by the start of the next iteration. At the end of the iteration, add up the
points from each completed story. The total of completed points becomes your velocity. This velocity
will be a good indicator of how to budget for the next iteration. Once enough data points have been
gathered, another good budgeting indicator is a "rolling velocity," which is the average of the last three
iterations.

Now that you have a high-level overview of the planning phase, let's take a more detailed look at all
of the methods that make up the planning game.

The planning game is divided into two phases: the exploration phase and the planning phase. The
exploration phase brings the developers and customers together to discuss the requirements of the
system being designed. Remember, this is just-in-time planning and development, so discuss only
enough features to begin working. Know that this list of captured features is not complete. Customers
oftentimes don't know or can't articulate what they want, so this list will typically be fluid. As features
are refined, more will be added; or you can remove some features that are no longer as relevant. During
exploration, features are broken down and documented as user stories.

A user story is a short description of a feature that represents a single unit of business value to the
customer. User stories are told from the user perspective and are written using the following template:

As a <type of user>, I want <some action> so that < business benefit>

Or,

In order for <some reason>, as a <user role> I want <some action>

Typically user stories are recorded on index cards during meetings with the customer, using terms
and a language that the customer understands. You may think that the documenting of requirements
goes against the agile theme given that agile values working software over comprehensive
documentation. In fact, user stories simply act as reminders or a commitment for a more detailed
conversation to happen at a later date and are deliberately kept short and focused. This requires more
communication between developers and customers to understand lower-level details, in line with the
agile principle that states, “The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.”

CHAPTER 3  EXTREME PROGRAMMING

34

When capturing features as user stories, use the mnemonic INVEST to ensure good user stories, as
follows:

• Independent: The user story should be independent of others. This is important
because a customer can reprioritize or even toss out user stories that aren't in an
iteration. Having a user story that has a number of dependencies is apt to reduce
this flexibility.

• Negotiable: Until a story card is in an iteration, user stories need to be negotiable
and considered fluid. This allows the customer to continue refining the user story
as more information is gathered.

• Valuable: A user story must deliver value to the end user.

• Estimable: Estimation is a mix between art and science. Humans are better at
estimating relatively smaller things than larger things. We are also good at
comparing things (“this user story is larger than that user story”).

• Sized Appropriately or Small: This is iterative development and we want relatively
quick turnaround so define tasks that are relatively small. Small tasks are much
easier to manage and estimate.

• Testable: How can we test this user story? The user story must be able to be tested.
Determining that a user story is testable and identifying what those tests are will
aid in determining in the definition of done. Based on these tests passing, we
know that this user story is complete. Not defining done allows for ambiguity. A
definition of done is important and needs to be agreed to by both the Customer
and the team.

Figure 3-2 shows an example of a user story that describes the feature of a customer adding a
voucher to a basket. "Receive a discount" is the business benefit to the primary actor (the Customer).
"Add a voucher to (my) basket" is the name of the process or use case.

Figure 3-2. Add discount voucher to basket

User acceptance criteria can also be captured during the story generation. Story cards can be
turned over and the acceptance criteria should be captured on the reverse side, as shown in Figure 3-3.
Using the opposite side of the card allows team members and customers to gather information in one
location.

CHAPTER 3  EXTREME PROGRAMMING

35

Figure 3-3. User acceptance criteria on the back of a story card

The acceptant criteria also aids in flushing out more details or identifying dependencies. In the case
of Figure 3-3, what is the definition of "in date" and what determines the "voucher threshold"? Typically
there should be a minimum of three acceptance criteria.

You will learn more about user stories when you create them for the case study that begins in the
next chapter. A great resource for more information is User Stories Applied: For Agile Software
Development by Mike Cohn (Addison-Wesley Professional, 2004).

When the customers and the team feel as if they have 75 percent of the most important features, the
developers estimate the size of the stories to get them ready for the customer to prioritize.

Estimating
Estimation is hard, no doubt about it. It's both a science and an art. When a project first begins,
estimation is really difficult, as there are many unknowns. XP meets the challenge by relative estimation
and adjusting estimates as the project progresses, for example, when the developers gain a greater
understanding of the system that they are creating. Estimates are captured as story points. Story points
can be a combination of complexity and time or the concept of a perfect day.

One tool in group estimation is a technique called Planning Poker. Planning Poker incorporates all
the technical members of the team. In the case of Planning Poker, the team is composed of software
developers, analysts, and security and infrastructure experts who each bring a different technical
perspective. The customer is involved in Planning Poker only to answer questions that the team might
ask in order to develop a better estimate.

A member of the team picks up a user story and explains it to the team. The team discusses the
feature with the customer to discover more details. After the team has a good understanding, the voting
begins. Each team member can vote with a pack of cards with the numbers 0, 1, 2, 3, 5, 8, 13, 20, 40, and
100.

The team should start with a story that is relatively small and easy to size. It becomes the baseline.
Each user story's effort estimate should be relative to this baseline story. The baseline story is important.
It is key that this estimate is accurate, as it forms the basis for future estimates. If the baseline story is
wildly incorrect, the rest of the estimates will also be incorrect.

If all team members vote with the same number, then that's the estimate for that story. If, however,
they don't vote with the same number, the moderator—anyone who is not voting—will ask the persons
who voted the highest and the lowest to each explain the reasoning behind their vote. The team further
discusses the feature and another round of voting commences. From experience, it's good to have a
reasonable time block for each discussion. This keeps the group focused on the task at hand.

CHAPTER 3  EXTREME PROGRAMMING

36

If a story is too difficult to estimate due to the lack of technical knowledge, it can be useful to leave
the story and instead create another story to spike the unfamiliar technology. After the spike has been
completed, the development team should be in a better position to estimate the story. The difference
between a spike and a dependency is that a spike involves gaining enough technical knowledge to be
able to provide an estimate, whereas a dependency occurs when the technical knowledge exists but
another task or feature needs to be completed first. A spike could be to learn Silverlight in order to
develop a Windows Phone 7 application versus a dependency where a subscreen needs to be developed,
but the home screen needs to be developed first.

Stories that total more than one week's worth of work are known as epic stories and are usually too
big to estimate. Realistically, these stories will be broken into smaller stories that are easier to
comprehend and estimate. One way to break down a task is using vertical slices. This means taking a
large feature and creating a user story that will provide less functionality, but will work through all layers
of architecture instead of slicing it horizontally by architecture layer. The advantage of this is twofold.
One, since a vertical slice runs through all layers of architecture, it provides immediate customer value.
Two, it provides a proof of concept to verify that implementing this feature works as intended through
all layers of architecture.

For the first iteration, if the team hasn't worked together before, the estimates will either be too low
or too high. But as each iteration goes by and more experience and knowledge is gained by the team,
story estimation should improve.

There are many benefits of using Planning Poker. You get more accurate estimates because there
are many different technical perspectives involved. It also helps the team to “speak with one voice”
because everyone hears what is said and everyone is on the same page. Planning Poker is a great tool to
facilitate conversation and come up with a well-rounded estimate.

After the stories have been estimated, the customer and product owner will work with the team to
produce a release plan.

Release Planning
Although potentially shippable code can be released at the end of each iteration, an XP project is
delivered in a series of releases. A release is made up of just enough stories to offer business value,
which helps to keep it small. It's good to have a theme or a goal during a release, as this helps to keep
the release focused on some element of business value that drives the release. Typically a release is
made up of four iterations, as depicted in Figure 3-4.

CHAPTER 3  EXTREME PROGRAMMING

37

Figure 3-4. Release versus Iteration

During release planning, an iteration length is also determined, which is usually between two and four
weeks. From experience, if your environment is one of constant interruption, you may want to initially
limit the iteration to one week.

One project we worked on was a legacy application that was very difficult to maintain and extremely
unstable. The team received frequent calls from the customer, who reported critical bugs and
“production down” issues. Initially we had an iteration length of one week due to the number of
frequent, yet unknown interruptions. This kept the feedback loop small and we were able to focus on
stabilizing the product one iteration at a time. Once the product became a bit more stable, the customer
calls became more infrequent, and we could plan for an iteration more accurately because there were
few interruptions.

A one-week iteration length is good if you need a tighter feedback loop as well as the ability to
deploy that shippable code at the end of the iteration. But it does incur an additional amount of
overhead from breaking user stories down into smaller segments so that they can be completed within
one iteration. As we'll discuss later, each iteration includes a planning meeting and a retrospective.
While these meetings tend to be shorter due to a smaller iteration length, they still represent additional
overhead.

As the team becomes more familiar with the process and comes to have fewer high-priority issues, it
can move to two-week iterations. The iteration length is largely set by the team environment and the
customer. If the environment is a high-context switching environment or the team is just starting out,
one-week iterations are often better. If, however, you're developing larger features that cannot be
broken down into one-week iterations and the team is still learning, then a longer iteration is acceptable.

With the iteration length and an initial story budget set (made up of the team's estimated points),
the customer selects which stories included for the first release will be completed during the first
iteration.

Customers need to prioritize stories to determine which delivers the most business value at the
earliest time. Since the customer owns and is responsible for the user stories, the team needs to explain
that there are often some stories that need to be created for purely technical reasons. Let’s say that the
team is working on a large legacy system that needs to be refactored. Then, they should add a user story
to refactor a component of the system and write automated tests around the newly refactored code.
This type of user story needs to be sold to the customer as an investment. The team knows there are a
lot of changes happening in this one component and if they take the time to refactor now, this will pay

CHAPTER 3  EXTREME PROGRAMMING

38

off later, as the code will be easier to maintain in a refactored state with automated tests. This is known
as “paying back technical debt.”

Typically user stories that entail high risk or a larger set of unknowns should be added in the first
one or two iterations. Because they are higher risk, it may be acceptable to continue working on them
over two iterations. Perhaps the user story was grossly underestimated or it was not broken down
properly. While it is not ideal or even recommended, a single user story may occasionally span multiple
iterations. If this happens, commit to these user stories early so that even if they do span multiple
iterations, no "half-done" user story ever goes into a release.

Once the customer has used up the budget, then no additional stories can be piled on. Customers
and/or managers are notorious for adding additional items. When this happens, it needs to happen
earlier rather than later, but once an additional user story tries to get into the release, the team needs to
be courageous and push back and communicate that this new user story can be done, but an existing
user story that has not yet been started will need to be eliminated from this release; or if the team thinks
they are budgeted light, they can choose to take the new user story and communicate that they did not
commit to it but will put the story in their “stretch” backlog. A stretch backlog consists of stories that
were not committed to, but if time remains, the team can work to complete it.

Once the first release plan has been defined, the team can plan their first iteration.

Iteration Planning
Once the customer has selected the stories they want included in the iteration, a set of acceptance
criteria is defined for each of the stories. As you'll notice, at each phase we are spending more and more
time gathering more and more details for each user story and digging deeper into each one. This is
beneficial because if a user story is created at the beginning of a project, it may be determined not to be
a high priority or deemed unimportant and get tossed out before time is spent on it.

If we spend a lot of time detailing all stories at the beginning, a lot of time would be wasted if a story
is discarded later. So the further along a story gets in the process, the more detailed it gets. At the
iteration planning level, we define a set of acceptance criteria for each user story. The acceptance
criteria help the developer to know when a user story is done. They are typically written in terms of a
scenario in the Given/When/Then template.

The following example describes the scenarios and steps for a customer adding items to their
basket:

Feature Title: Add Products to a Basket
 As a Customer
 I want to be able to add products to my basket
 So that I can continue shopping

Scenario: An Empty Basket
 Given I have an empty basket
 Then the total number of products available to order in my basket should be "0"

CHAPTER 3  EXTREME PROGRAMMING

39

Scenario: Add a Product to a Basket
 Given I have an empty basket
 When I add product id "1" to my basket
 Then the total number of products available to order in my basket should be "1"

Scenario: Add Products to a Basket
 Given I have an empty basket
 When I add product id "1" to my basket and product id "2" to my basket
 Then the total number of products available to order in my basket should be "2"

Scenario: Add the Same Product to a Basket Twice
 Given I have an empty basket
 When I add product id "1" to my basket
 And I add product id "1" to my basket again
 Then the quantity of product "1" in my basket should be "2"

Scenario: Add a Product that is Out-of-Stock to a Basket
 Given I have an empty basket and that product id "2" is not currently in stock
 When I add product id "2" to my basket
 Then the total number of products available to order in my basket should be "0" and alert the user

 that the product is out-of-stock

As acceptance tests are written in ordinary language, business rules tend to emerge. In the basket
example, let’s say that questions arise about how to remove an item from a basket. And, if an item is not
currently in stock and the user is alerted, what should happen next? Scenarios help the team to uncover
the implications, explicitly declare them, and write additional scenarios to test for them.

These scenarios are used by developers as the starting point of their unit tests during test-driven
and behavior-driven development, which you will read about later in this chapter. The scenario also
helps with acceptance testing, allowing the developers and testers to agree upon when a story is
complete.

After the stories’ acceptance criteria has been defined, the development team sets about splitting
each story into the development tasks that are required to complete the story. Tasks that relate to the
story are then added to a task wall and the development team assigns estimates in some unit of measure
(man hours, gummy bears, etc.) to them. Figure 3-5 shows a task board.

An example of tasks may include creating a database schema for a story, or integrating with an
existing part of the system. Tasks can also include technical items such as adding a logging subsystem or
an exception handler framework. Often these types of tasks are overlooked when it comes to tracking a
user story. A user story will have many tasks associated to it; for example:

User Story: As a User, I want the ability to manage a user.

The following tasks could come out of that:

Create a database schema to store the user in
Create a User class to manage the user programmatically

Any team member can sign up for and work on any task on the board; this enables collective code

ownership and shared knowledge. When a team member picks a task, he simply needs to add his initials
to the task card in order to show the rest of the team that the task is being worked on. Typically, but not
always, one developer will take ownership for all tasks related to a story. Taking ownership of a story
means that that developer, with the support of the team, will see that story to completion. The

CHAPTER 3  EXTREME PROGRAMMING

40

developer may need to acquire additional information on a user story, but the developer is the
responsible party for getting a user story done. The responsible party for the user story also serves as a
point of contact if anyone else on the team has questions regarding the user story.

Figure 3-5. A task board showing project progress

Typically, at the start of the iteration, the architecture and lead developer develops and documents a
high-level architecture design to support the system design for the iteration. This document outlines
how the components or any third-party application interacts.

As with Scrum, once an iteration has begun, the stories being worked on cannot be changed. It is
important not to change the iteration plan during the iteration because this leads to context switching.
Context switching, for developers, is very costly, both in time and money. Once developers get “in the
zone” and are highly focused on what they are doing, they become very productive; but initially, it takes
a while to get into that zone. Unfortunately, it takes very little to get them out of the zone. Switching
stories (and thus requiring developers to switch context) leads to them not getting anything done
because they are being shifted around.

Instead of trying to change an iteration in midstream, determine if the additional work or additional
user story can wait until the next iteration. Customers or managers typically can accept something
going into the next iteration because they realize they are not going to have to wait months to get it. If
the additional work really cannot wait, then to the team should courageously explain the risk of pulling
the existing code out and switching to other functionality. The team should also warn that, if extra work
is added to the iteration, some previously planned work may get pushed into the next iteration. The rule
of thumb is that if something new comes in and cannot wait, then something of equal or greater value
must come out. Again, this being the case, typically customers and managers are willing to wait for the
next iteration.

Velocity shows us what the team completed during an iteration and it is used for planning future
iterations. In order to track velocity, a burn-down chart is used. A burn-down chart (see Figure 3-6)
shows the number of story points left in a project and the number completed in each iteration. Velocity
is calculated at the end of each iteration; it is defined by the number of story points completed in the last
iteration. Based on the current velocity and the number of story points remaining, an estimate can be
given as to when all story points will be completed, as shown by the dashed lines in Figure 3-6.

The burn-down chart gives managers a good tracking tool to see if the team will be finished by the
target date or not; and if not, how management should react to it. Should they add more bodies (which
doesn't always help)? Should they decrease the number of features or extend the end date?

CHAPTER 3  EXTREME PROGRAMMING

41

Figure 3-6. Burn-down Chart

During an iteration, a stand-up meeting with all committed team members starts each day and, as
with Scrum, any issues that may prevent the team from delivering the business value that day are
discussed. The team also updates the task list and the board to make visible the progress they are making
or any roadblocks that are in their way.

Environment
Having a working environment that is conducive to open communication and team work is a big factor
in the success of a project. XP promotes a dedicated, open work space where open communication from
all members of the team is actively encouraged. The ability to have impromptu conversations within
earshot of everyone means that the entire team is aware of what is going on and can get involved if the
conversation is relevant to what they are working on.

Other factors that contribute to a better XP working environment include, ideally, having the
customer on site, but at the very least reachable. The option of impromptu meetings is highly important
to quickly delivering business value. If a customer is not available, this immediately slows down
development and becomes a roadblock because waiting on the customer is preventing the developer
from completing the user story; therefore, velocity goes down and decisions from management have to
be considered since the target date cannot be hit.

Having the team—including the business analysts, the testers, and the project manager—sit
together encourages open dialogue and impromptu meetings. As with customers, having timely
conversations with the rest of the team is critical to getting user stories completed in a timely fashion.
There are times when a stand-up conversation will solve an issue, but holding it in a room with
whiteboard is preferable. Whiteboard drawings and explanations help to get at the heart of solving a
problem. Sometimes the entire team needs to be involved, but more often than not it's only one or two
individuals working to solve a particular problem.

3

CHAPTER 3  EXTREME PROGRAMMING

42

On-Site Customer
The commitment and availability of the customer is vital to a successful XP project. Because the process
trades documentation for working software, more often communication needs to occur between the
developer and the customer. The customer needs to be available in order to do this. With the waterfall
methodology, requirements analysis ends when developers begin coding and then picks back up during
the release. In reality, the business process or requirements may have changed during the development
process. XP works with the customer to become reactive to the business and deliver real value, not
potentially outdated value, to the customer. In order to keep up-to-date with the business, a clear and
constant communication must occur with the customer.

By sitting with the rest of the team, customers will solidify their commitment and responsibility to
the project. The developers can also learn much from constant feedback and knowledge sessions with
the customer. Bottom line: the more involved the customer is, the greater the likelihood that the
development team can deliver real value.

Sit Together
Sitting together is essential for effective pair programming, a practice that you will learn about later in
this chapter. Perhaps at a more fundamental level, seating the team together with customers is essential
for easy and effective communication, which is the underpinning of the XP process and one of the five
core values. Sitting together increases the shared understanding of the team and helps to build team
spirit, which is crucial when committing as a team to a project. Building team spirit is important
because, over time, relationships begin to form with team members; you become invested with your
team members. Good relationships and team spirit really boosts productivity. All tasks are handled by
the team rather than “tossed over the wall” to someone that you don't know. People have a more vested
interest in those they know than some “voice” at the other end of the phone line. And, a large part of
personal vocabulary is in body language—and this can only be noted from sitting together.

Self-Organization
The operation of XP teams is based on trust and self-organization. Trust is a big part of the XP
methodology. Developers are trusted to estimate fairly, to work together in a dedicated environment, to
self-organize, to be responsible for selecting their own tasks, and for the quality and state of the code
base.

Team members need to trust each other. This is vital to the success of the project and is earned by
team members consistently completing their tasks on time and with a high standard, as well as by
helping fellow teammates. In the XP environment, it is every team member's duty to help teammates.
Team members should practice offering “servant leadership” to other team members. This is
demonstrated by leading by example and getting tasks completed on time, and, again, by helping and
encouraging other team members.

There must also be trust between the team and management. Trust is typically earned at the first
review meeting, when managers hear exactly what the team has achieved in the iteration. Developers
learn to trust their customers as they communicate more fully. The first review meeting should also
make known any roadblocks and clearly communicate if and why something did not get done. The
principles of Agile have unique ways of exposing failures, roadblocks, and weaknesses, but don't always
address ways to resolve them. A successful project means identifying these issues and solving them.
Problems can no longer be shoved under the rug as often done with older development technologies.
Agile encourages teams to clearly communicate the state of the project with each other, with the
customer, and with management.

CHAPTER 3  EXTREME PROGRAMMING

43

Two other factors under the umbrella of self-organization are working at a sustainable pace and
having a collective code ownership.

Sustainable Pace
Working at a sustainable pace is essential to avoiding burnout. A sustainable pace means working a
standard workweek and not putting in overtime. XP promotes a sustainable development pace, which is
feasible due to the iterative process, the short release cycle, and continuous integration. These ensure
that there are no surprises during the lead up to product releases, which in turn makes for a more stress-
free working environment.

Working at a sustainable pace is achieved by planning the work. Most often overtime is the direct
result of a lack of planning or surprises. With iteration planning and the team committing to a certain
amount of work, these surprises should not occur; the team can work at a sustainable pace. Since the
team is involved during story and task estimation, they commit to a certain amount of work; this
prevents over-committing, which can occur in non-agile methods and can lead to working many late
nights. Consistently working at a non-sustainable pace leads to burnout, which leads to sloppy code
being written, which increases the amount of technical debt that will need to be paid back later.
Companies don't want to lose good developers to burnout nor do they want an unreasonable amount of
technical debt. Creating burn-down charts and communicating with managers about the progress of
work produces a big and visible metric that prevents surprises at the end date. We have the necessary
information to get the job done earlier rather than later. It is management’s responsibility to react
appropriately.

Agile also ensures that customers work with the development team to define release plans, rather
than enforcing an unrealistic delivery date that can never be met by the team.

Collective Code Ownership
The programmers within the team are responsible for the state of the source code on a project and any
member can work on any part of the system and perform changes. Collective code ownership ensures
that every part of the system is accessible to all programmers, which in turn empowers any member of
the team to fix a bug when it is found, regardless if they have been working on that part of the code base.

We can provide a real-life story demonstrating the importance of collective code ownership. During
a project, we introduced continuous integration to the team. The builds broke quite frequently as team
members checked-in code. One day a team member checked-in code and then left for a meeting before
the build could complete. Consequently, the build broke due to his check-in. As a result, another team
member became angry, interrupted the meeting that the “build breaker” was in, pointed his finger
accusingly, and yelled, "YOU! You broke the build!"

Though we still laugh about this story, it was not an example of teamwork. The team member
responsible for breaking the code should not have walked away before the build completed; nor should
the other team member have lost his temper. By the time he returned to his desk, a third team member
had already fixed the error and checked-in the code.

We tell this story to urge you to be patient with your teammates. Everyone has different
personalities and different skill sets. If there's an issue, remain calm, approach the teammate who may
have caused the issue, and ask how you can help resolve it. Supporting fellow teammates goes a long
way in building trust, building effective communication, and delivering quality and value.

To encourage team building and collective code ownership, make it clearly visible when the code
breaks on the CI server. Our team hung a big, traffic light from the ceiling and wired it to the CI server to
make it clearly visible when the code was broken (red), a build was running (yellow), or a build was
successful (green). Make team members accountable for breaking the build. Peer pressure goes a long

CHAPTER 3  EXTREME PROGRAMMING

44

way in making sure that your code doesn't break the build. Create a “doughnut-able offense” rule that
says if a person breaks the build and leaves for the day before it is fixed, then that person must bring in
doughnuts the following morning for everyone. Or, have some fun with it. If a build breaks, turn on a
lava lamp. If the lava lamp bubbles up before a successful build, that's a “doughnut-able offense.”

On the flip side, praise and reward the team when they do well. Promote an attainable, automated
testing goal in which after a certain number of tests are built, pizza is brought in to celebrate. Also
celebrate the end of an iteration whenever the team goes above and beyond to make it happen. Peer
pressure can have a positive influence and is an effective tool for collective code ownership.

Encourage brown-bag lunches where team members who are learning new, more efficient ways of
doing things present these ideas to the team. Let the team decide if they want to adopt the new ideas.

Collective code ownership is also achieved through sitting together and pair programming, getting
involved in each other's code, and doing code reviews often. Rather than making code reviews a big,
formal process, have them frequently through the valuable impromptu conversations that you have
while sitting together.

Shared Understanding
An understanding of the domain that you are working within is fundamental to the success of a project.
Understanding complex business logic, workflow, and rules and modeling them in a programming
language becomes more difficult without a shared understanding of the business domain between the
team and the domain experts.

A lot of this domain knowledge should come at Iteration 0. By the end of Iteration 0, a good
understanding of both the project and the business domain should be shared by the team. This gives the
team the foundational knowledge for building software. The earlier the domain knowledge is shared,
the clearer and more concise the communication becomes.

Simple Design
A simple design is fairly free of code smells. A code smell is any symptom in code that indicates a
potential deeper problem and makes the system more difficult to maintain. Duplicated code, over-
engineering, large classes, dead code, and uncommunicated names are all examples of code smells.

Simple design allows for a maintainable, understandable, and, therefore, changeable system.
Simple design allows the code to outlive the business process, not for the business process to outlive the
code.

As an example, a project that we were on required significant modifications to a legacy application
that had been written by a programmer who had long ago left the company. After many developers read
this code, no one could get a sense of what it was doing or even how we could begin making changes to
it. We told the company that we would spend more time trying to figure out this needlessly overly-
complex system than if we rewrote the application from scratch. We rewrote the application, added the
new functionality, and wrote the code in a maintainable way. This is an example of the business
outliving the code. The goal of simple design is for the software to outlive the business, not the other
way around.

Coding to well-known patterns and best practices (when appropriate), and refactoring regularly can
help to reinforce the idea of a shared language and promote a simple design.

Other XP practices, such as TDD, behavior-driven development (BDD), and refactoring also keep
the design of a system simple and concise. TDD and BDD are especially useful, as they adhere to the
YAGNI (“You ain't gonna need it”) Principle, which states that you should only implement features that
you actually need rather than ones you might need later.

CHAPTER 3  EXTREME PROGRAMMING

45

System Metaphor
In Extreme Programming Explained: Embrace Change (Addison-Wesley Professional, 2004), authors Kent
Beck and Cynthia Andres explain the System Metaphor as a practice that allows all team members,
customers, and stakeholders to explain the system under development in simple terms. He also
mentions how code should adopt the System Metaphor in order for source code to be self-describing.

Agile encourages developers to go light on documentation and heavy on delivered value. The
System Metaphor equates a system to objects and develops thoughts, ideas, and naming conventions
around them. Let the code document what the system actually does, rather than producing heavy paper
documentation that will become outdated as soon as changes are made to the system. Using the System
Metaphor should allow anyone, even a non-programmer, to look at the code and have a general
understanding of what the system does based on how things are named and how they relate to each
other. This becomes possible because the domain language is consistent with the way in which a
customer would describe processes.

In projects that we work on that use XP, we adopt the domain-driven design (DDD) methodology as
laid out by Eric Evans in his book Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional, 2003).

 Note One challenge of methodologies is that they are ideas. There is no "silver bullet" methodology that will
solve every problem. Instead, look at methodologies as tools. For example, in order to make a wooden chair, a
combination of tools needs to be used: a saw, wood glue, measuring tape, pencil, and so forth. Think of this when
building software. Use hybrid models when it makes sense. A methodology can be read from a book, but what
really matters is how it is implemented in the "real world," and the discernment of knowing what will or what will
not work in a particular situation.

DDD has the notion of a “ubiquitous language,” which is a language shared by the business and the
developers. This shared language should be found within the code base so that when developers are
working on complex problems, they are able to communicate with business users in a language that the
latter clearly understands.

DDD also has a number of building blocks that—along with architectural patterns such as the
domain model, design patterns, and best practices and principles—help keep developers focused on
business problems rather than infrastructure concerns. As a by-product, they also help to form a shared
vocabulary for developers when communicating complex design scenarios.

These practices that focus on modeling a problem domain make it easier for developers to
understand the business processes and rules that the code base is trying to replicate. This focus on the
business model creates a shared vision among the team, both for technical and non-technical people.

Refactoring and Design Improvement
Refactoring code is the process of improving and simplifying the design of existing code; keeping the
same functionality, but producing a better (because it’s simpler) design. Refactoring allows automated
tests to be written and makes the application more maintainable. Legacy applications often need to be
refactored in order to strip away dependencies so that automated tests can be performed.

CHAPTER 3  EXTREME PROGRAMMING

46

As an example, consider a 200-line function. A general guideline for the length of a function is the
height of your screen. If it's larger than the height of your screen, seriously consider refactoring the
function into smaller, more manageable sections of code.

Refactoring is as much an art as a science. Experienced developers gain a sense for good design and
can quickly see how to refactor with minimal impact. A number of standard refactoring patterns can be
found in the classic book Refactoring: Improving the Design of Existing Code, by Martin Fowler, Kent
Beck, John Brant, William Opdyke, and Don Roberts (Addison-Wesley Professional, 1999).

XP practices such as simple design and TDD/BDD promote the idea of doing just what is needed to
meet the feature request. As systems get bigger, however, there is a need to ensure that the structure and
design of code is not ignored in favor of adding features. Refactoring can help to make code more
maintainable and adaptable to change. Popular frameworks such as JetBrains’ ReSharper make
refactoring code very easy, and with a suite of unit tests, the design of code can be changed with
confidence as behavior can be tested and confirmed very easily.

Refactoring towards well-known patterns and best practices is another way of simplifying the design
of a system and introducing a common design vocabulary. In his book Refactoring to Patterns (Addison-
Wesley Professional, 2004), Joshua Kerievsky shows how code can be refactored to well-known design
patterns in order to further improve design.

Commitment to Development Excellence
The XP process is nothing without technically proficient developers. In order for developers to hone
their skills and become better craftsmen, it’s important to have an automated environment that helps,
rather than hinders, development.

A continuous integration environment ensures code that is worked on by many developers is tested
when code commits are made, and that notifications are sent to all team members in case of a break to
the source code. Coding standards and pair programming also increase technical ability within the team
by the sharing of ideas and experience. XP encourages technical knowledge sharing. Pair programming
creates the opportunity for a senior developer to elevate a junior developer by teaching best
development practices. This mentorship is a win-win situation because both the domain and code
knowledge is shared. This would also be true of any new hire, whether it be a programmer or a business
analyst. By extending the idea of pair programming to business analysts, the more senior analyst can
mentor the junior in a shared, collaborative environment. This is in stark contrast to the notorious
knowledge silos that have to be torn down at high cost when someone leaves a project.

Continuous Integration
Continuous integration (CI) checks quality continuously throughout the process, rather than leaving all
the quality checking to be performed at the end of a project.

The components of a CI system include a source control repository, a build script, automated tests,
and a notification system to alert developers of a broken build. This notification system could be as
simple as a web page or a little tray icon on your computer that indicates the build status.

Figure 3-7 shows the workflow of a basic CI environment.

CHAPTER 3  EXTREME PROGRAMMING

47

Figure 3-7. Continuous integration process

Developers should commit to the source control system early and often. They should also ensure
before committing changes that they update their code to the latest version of the code base and run
their automated test suite in order to ensure a successful build. A CI process will then pull the latest
code from the repository, either at a specified interval or once code is committed by a developer, and
then will run through the build script.

A build tool is used by the CI environment to build the solution and run all of the automated tests
that confirm the behavior of the system in order to ensure that the latest commit has not broken the
build. Tests can be developer unit tests, as well as complete end-to-end user acceptance tests defined by
the customer and testers.

Once the build process finishes and is successful, the CI environment can optionally deploy the
compiled assemblies to a staging environment for more user testing. If the build does not succeed or
tests fail, the developers and any other interested parties should be notified so that they can resolve the
error and fix the build.

The benefits of CI are a reduction in large integration issues towards the end of a project and the
ability to deploy a consistent build of the software quickly and easily.

Coding Standards
Traditionally the XP practice of coding standards focused on a set of rules that the development team
agreed upon for the formatting and naming conventions of code. In our experience, coding standards go
far beyond formatting and naming conventions. We are far more concerned with overly long methods
and poorly named variables than the need to underscore local variables.

CHAPTER 3  EXTREME PROGRAMMING

48

Coding standards dictate such things as keeping each method’s source code no longer than the
height of your monitor, and having self-documenting code. That, in turn, entails properly naming
variables—avoiding such mysterious names as i or j—and instead giving each variable a meaningful
name so that the next programmer can quickly understand the role it plays. A good software craftsman
will not program only for himself, but “program ahead” and write easily maintainable code for the next
person coming in to add a new feature.

A standard code style throughout a project will certainly contribute to collective ownership and help
people working on different parts of the system to recognize the style and formatting. Popular tools such
as JetBrains’ ReSharper can highlight coding that does not adhere to a defined set of coding standards,
so when a coding style is agreed upon it is easy to implement.

We feel it is important to ensure that code is well written and clearly conveys its intention. A great
resource that can help with creating clean code is Clean Code: A Handbook of Agile Software
Craftsmanship by Robert Martin (Prentice Hall, 2008). Another way to ensure coding standards are
adhered to is to have all developers understand the SOLID set of design principles as catalogued in Agile
Principles, Patterns, and Practices in C# by Robert Martin (Prentice Hall, 2006).

Briefly, the SOLID design principles are as follows:

• Single Responsibility Principle: An object should have only a single
responsibility—a focused task.

• Open/Closed Principle: Software entities should be open for extension, but closed
for modification.

• Liskov Substitution Principle: Objects in a program should have the ability to be
replaced by instances of their subtypes without altering the correctness of that
program. Typically, this is accomplished through design by contract.

• Interface Segregation Principle: Many client-specific interfaces are better than one
general-purpose interface.

• Dependency Inversion Principle: Develop against abstractions and do not depend
upon concretions.

Pair Programming
Pair programming comes from the understanding that two heads are better than one. In pair
programming, two developers share the duties of completing a user story task; the idea is that both
developers have time at the keyboard. There’s a driver and a navigator. The driver is the one sitting at
the keyboard typing in code, while the navigator is the one reviewing the code being written, thinking
about how to code the next step, and guiding the driver down a focused path.

At first, management is often skeptical of this idea. They think that productivity will be cut in half
because you have two developers doing what one developer could do. In reality, productivity increases
in the following areas:

1. Programmers stay focused: While we may not like to admit it, developers tend
to be easily distracted. If they are stumped with a problem they typically go to
the web to find some inspiration. This inspiration time typically slides into
checking Twitter or Facebook or reading the latest blogs. With pair
programming, each programmer is held accountable to the other to stay
focused on the task at hand. Besides, it’s easier to bounce ideas off one another
and come up with a solution quicker.

CHAPTER 3  EXTREME PROGRAMMING

49

2. Increase the “bus factor:” When one developer works on a feature, he works in a
silo. His knowledge is therefore “siloed,” leading to a “bus factor” of 1. This
colorful term focuses attention on the question: If you get hit by a bus or leave
the company, what happens? Typically someone else needs to get ramped up
on the code, but that takes time. With pair programming, the “bus factor” is
increased to 2, which makes maintaining the system easier because two people
have the knowledge. Moreover, they can usually add new features more
quickly than if they were siloed.

Pair programming is typically a developer practice, but it can be extended (for instance) to having a
business analyst and a developer sitting down together. They can discuss the tests to be written, so
questions and ideas can be answered quickly.

Quality Assurance
Quality assurance is essential when creating software. It’s no good having great practices for gathering
requirements, working closely with the customer, and understanding what you are doing if you don’t get
the final product right. Knowing when you have completed a story, feature, or task is essential if you are
to truly satisfy your customer’s expectations. XP promotes the practices of TDD and User Acceptance
Testing (UAT) to ensure quality working software is delivered at the end of each iteration.

Testing
TDD is the process of driving the design of your system using test-first coding. The fundamental concept
behind TDD is to write a test that proves the behavior of a feature before writing any production code;
and then write just enough code to get the test to pass. Figure 3-8 shows the famous red, green, and
refactoring steps.

Figure 3-8. The test-driven development process

While the chance of finding a bug with TDD decreases dramatically with good unit tests, a bug may
still be found. If a bug is found, it needs to be fixed and a unit test created to verify that the bug is
permanently gone and to make sure it isn’t introduced again. With legacy systems, a defect-driven
methodology can be used. Defect-driven testing involves refactoring not the entire system, but only the
parts where bugs are prone to occur. Fixing those bugs is critical, but refactoring the area of code each

CHAPTER 3  EXTREME PROGRAMMING

50

bug occurred in and wrapping automated tests around those areas, ensures that the bug is not
introduced again.

A primer on TDD featuring a TDD code kata1 and deeper details on the process can be found in
Appendix A.

Another important testing discipline in XP is UAT. This is used to confirm that the behavior of a
story has been completed. UAT is typically carried out by the testing team. The testers will not wait until
a story is complete to start UAT; rather testers will work with the development team on test plans. In this
phase, new requirements and edge cases will be discovered—including those overlooked during story
capturing. This information will allow the developers to resolve issues before customers use the
software, ensuring a higher-quality, production-ready product is delivered.

BDD is a relatively new way of driving design using a test-first approach. BDD is an evolution of
TDD; it also takes concepts from DDD and UAT.

The BDD process focuses first on the behavior of a system from a user’s point of view. Testing the
outside behaviors of the system first enables lower-level objects to be discovered through all of the
various architectural layers. The steps for each of the story scenarios gathered during the planning phase
form the initial tests. Figure 3-9 shows the process of the BDD methodology.

Figure 3-9. Behavior-driven design process

You will find a premier on BDD in Appendix B, with a code kata exercise that delves deeper into the
methodology and practice of BDD.

The result of using methods such as TDD, BDD, and UAT is that you can confidently deliver quality
software that satisfies the requirements of the customer. These three methodologies combine to cover
all of the architectural layers of an application. They also act as a confidence layer for refactoring and

http://en.wikipedia.org/wiki/Kata_(programming)

http://en.wikipedia.org/wiki/Kata_

CHAPTER 3  EXTREME PROGRAMMING

51

modifying code, due to the automated “safety barrier” that offers immediate feedback if changes have
altered the behavior of the system.

Summary
This chapter detailed the values and practices of XP. Although XP and Scrum are similar in that they both
adhere to the agile principles of using short development cycles and working closely with the customer,
the XP practices give a more practical way of implementing the principles and themes of agile.

This chapter covered the five values of XP, as follows:

• Respect

• Communication

• Simplicity

• Feedback

• Courage

The bulk of the chapter then discussed the practices of XP. These twelve practices enable the theme
of XP to be realized in various practical applications and bring about certain specific benefits. These
practices are as follows:

• The Planning Game

• System Metaphor

• Simple Design

• On-Site Customer

• Team Sitting Together

• Pair Programming

• Collective Code Ownership

• Coding Standards

• Testing

• Continuous Integration

• Sustainable Pace

• Small Releases

In Part Two of this book you will work on a case study that will employ the Scrum methodology and
feature the practices of XP covered in this chapter. During the case study you will be introduced to many
of the open-source tools that can assist you with the practices of XP. You will also see how these
practices are applied to a real working application.

C H A P T E R 4

53

Sprint 0: Generating the
Product Backlog

Welcome to Kojack Games! Over the next five chapters you will be watching a development team from
the Kojack Games Company. You will watch as this team delivers a new and exciting product that will be
implemented using agile development methods: Scrum for project management and eXtreme
Programming for the day-to-day work.

This chapter introduces you to the project that the team will be working on and ends with a product
backlog of work, a release plan, and the user stories that the team will be committed to completing
during the first sprint. Essential to delivering a successful project is understanding exactly what the
customer wants. In order to do this effectively, the team will be working closely with the product owner
to capture what business value this software brings.

Without further ado, let's jump right in!

The Project: Online Blackjack Gambling
The online gaming market is huge—and Kojack Games believes that there is room for a simple, no-
nonsense blackjack gaming site of its own. You will work on developing the company’s online game, and
based on the success of this project, Kojack Games will look to expand its online game portfolio.

Let's meet the team. Table 4-1 lists each team member along with a description of his or her
individual role and responsibilities.

Table 4-1. Meet the Team

Name Role Responsibilities

Bill Customer/Senior Sponsor Our main point of contact with the customer.

Simon Product Owner/Business Analyst Responsible for prioritizing the features that go
into the product.

Responsible for communication with the
customer to gather all of the business
requirements. Serves as the domain expert.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

54

Name Role Responsibilities

Tim ScrumMaster Responsible for guiding the team and ensuring
that the agile process is followed, as well as
maintaining big, visible charts, such as the burn-
down chart.

Sarah Technical Lead/Senior Developer Responsible for the programming.

Tyler Junior Developer Work-pairs with Sarah and is responsible for
coding.

Mission Statement
Bill: Let's start with a mission statement. “Kojack Games is dedicated to stylish, simple, and easy-to-play
games, packed with fun for our players.”

Team Name
Tim: Now let’s have some fun. Since we are a team and every team has a name, I open up the floor to
suggestions on our team name. Now, some may wonder, what is the need for having a team name? Well,
having the team create its own name is a great way to liven the mood and build relationships within the
team. It’s a way for every member of the team to build ownership of the team.

Tyler: How about “The Agile Enforcers”?

Sarah: That is a nice name, but how about “Agile League of America”? It would be a nice play on comics.

Tyler: That sounds great! It has my vote.

Tim: If no one else has any suggestions and if everyone is okay with Sarah’s submission, then I say
“welcome to the first meeting of the ‘Agile League of America’.”

Team Ground Rules
Tim: The next thing we want to do is to set a level of expectation among ourselves. We are all adults,

but getting the ground rules established will prevent some unwanted drama later on. This is a chance for
us as a team to state what we expect from our fellow team members, as well as ourselves.

Tyler: Is this really necessary?

Simon: I think it is necessary. With the ground rules established, we will all be on the same page from

the beginning, and it gives us one less thing to worry about. How about we start with our core hours?

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

55

Tim: That’s a good idea. I know we all work different hours, but how about we set aside a core time
range where we all agree, developers and customer, to be available to one another.

Bill: I can get on board with that. That way if you all need something from me, you know where I will

be at that time and if I need to ask one of you a question, I know where you will be. I propose a time frame
of 10 AM to 2 PM.

Tim: I will put that down. For now, let’s stop with that. This is a fluid list and I don’t want to

overburden everyone at the beginning trying to come up with rules for the team. If the need arises, we can
revisit this list, but for now this is it.

Simon: I agree. Only create a rule when we have a need for one.

Technical User Stories
As a means to efficiently deliver quality code to our customer, proper software development
infrastructure must be put in place, including source control, a continuous integration (CI) server, and a
development environment. Doing this up front enables us to focus on the behaviors of the system and
also proves that we can integrate our system with existing servers, databases, and so forth. Let's walk the
development skeleton to ensure that we have our infrastructure in place.

 Note You can learn more about BDD Primer with SpecFlow in Appendix B, Source Control with SVN in Appendix
F, and Continuous Integration with Cruise Control.NET in Appendix G.

Walking the Development Skeleton
Walking the development skeleton enables the full implementation of a small part of the system from
end to end. It helps you to discover potential stumbling blocks, such as deployment problems or trouble
accessing external resources like databases or web services, early in the project.

Given what the team knows about the project at this point, the team needs to make some decisions.
This includes the types of tools to use, such as any third-party tools like NUnit or WatiN; which
programming language(s) to use; and how the project structure should be set up. Coming to these
decisions depends on the team's experience with the tools or its willingness to learn new tools, as well as
the way the customer plans to deploy the application.

The team decided to use ASP.NET MVC as its programming framework, NUnit as its unit testing
framework, and WatiN for its acceptance tests. The customer decided on a web application, but didn't
have a preference on anything beyond that.

The team also wants the flexibility to easily add tools to the project, if need be. A source control tree
structure will be set up to allow this flexibility.

On to setting up a folder structure for source control!

Setting Up for Source Control
To kick off the project, you will create a folder structure that is set up to be stored within a source control
management system, as shown in Figure 4-1.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

56

Figure 4-1. Solution folder structure

The folders are used as follows:

• Libs: This folder contains all of the libraries required to run and test the
application. This allows us to be scalable. If we need to add an additional third-
party DLL (dynamic link libraries) later, just place it in the Libs folder and
reference it. It's a centralized solution for referencing compiled DLLs. Having this
consistency is important for ease of referencing DLLs and it makes creating the
build script more streamlined.

• Src: This folder contains the source code for the application, and includes the
following sub-folders:

• Branches: This folder contains development branches, spiking sessions,
and longer development efforts that span a release.

• Releases: This folder contains all of your application release stages.

• Trunk: This is your working directory. You create release and branches
from the trunk. The trunk is a work in progress.

• Tools: This folder contains all of the tools that are used to develop, test, package,
and deploy your application. It’s important to keep these under source control so
that your CI server can find dependent toolsets with ease, because it will not have
the same tools installed as your development machine.

With the folder structure created, we now need somewhere for the code we create to be stored.

Setting Up the Solution
Fire up Visual Studio and create a new solution named KojackGames.Blackjack within the Trunk folder,
as shown in Figure 4-2, consisting of four, class-library projects and one ASP.NET MVC web application
project.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

57

Figure 4-2. Initial solution structure

Let’s take a look at the roles of each of the projects.

• KojackGames.Blackjack.Domain: The domain project represents the domain of
blackjack game, all business rules and logic that govern and represent the world of
blackjack, and repayments residing in the project. This project is free of any
infrastructure and persistence concerns.

• KojackGames.Blackjack.Core.Tests: The core tests project contains all tests aimed
at the domain and the MVC project. The tests in this project are unit tests focused
on small units of functionality. The tests are designed to be run often and fast; this
is the reason they are kept separate of the slower acceptance tests.

• KojackGames.Blackjack.Acceptance.Tests: The acceptance tests project contains
integration tests that test the system end to end with no fake or mock
implementation of dependant classes or infrastructure. These tests typically run a
lot slower than the core tests, hence the need to separate them.

• KojackGames.Blackjack.Infrastructure: The infrastructure project represents the
plumbing of the application. This project contains all of the supporting framework
for the domain model and CQRS implementation.

• KojackGames.Blackjack.Ui.Web: The MVC project contains the controllers, view
models, and views that represent the user interface for the application. The MVC
project will have a dependency on the domain project.

• When you are starting out, having both the acceptance and unit tests run after
each build is acceptable because the test suite is small and can run quickly. Over
time, as the test suite grows, (particularly in the Tests.Acceptance project), to
continue quick feedback to the developers it is acceptable to run the
Tests.Acceptance just a few times a day rather than after every check-in.

Installing Open Source Libraries with NuGet
In this chapter you will utilize a number of open source tools to aid the development of each

feature. In order to make finding and installing open source components easy, a package manager has

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

58

been developed for the .NET community, its name is NuGet. A package manager makes it easy to find
online projects or DLLs that you can easily install. Once installed, NuGet will also check for and prompt
you to install updates for all of the packages that you have installed. This makes the life of a developer
easy because she doesn't have to search for all of these components and then search later to check for
updates; it's all managed through NuGet.

To install the NuGet package extension from within Visual Studio, click Tools and then Extension
Manager. To find the NuGet Package Manager extension, select the Online Gallery tab, and enter
"nuget" in the search box when the Extension Manager Dialog box appears. When found, download the
NuGet Package Manager and run the installer. You will need to restart Visual Studio after the installation
completes. When Visual Studio has restarted, select Library Package Manager from the Tools menu, and
then click Package Manager Console.

In order for NuGet to download the packages to the Lib folder that we have already set up, you will
need to include a config file named NuGet.config. Add this file to your solution, rather than a project,
and then create it in the root of your solution, as follows:

<settings>
 <repositoryPath>../../../../libs</repositoryPath>
</settings>

With the destination for packages configured, switch to the NuGet Package Console, select the
Core.Tests project from the drop-down, and type the following into the console:

PM> Install-Package MvcContrib.WatiN

Hit Enter and the package will be pulled down and install a new folder within your Libs folder, and
also add a reference to them to the Core.Tests project, as shown in Figure 4-3. The MvcContrib.WatiN
package allows you to perform automated GUI tests using WatiN (pronounced What-in).

Figure 4-3. Using NuGet to install dependencies

Setting Up the Acceptance Tests Project
We will be using SpecFlow to drive the design of our project directly from the acceptance criteria shown
previously. The KojackGames.Blackjack.Acceptance.Tests project will be organized as shown in
Figure 4-4.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

59

Figure 4-4. KojackGames.Blackjack.Acceptance.Tests project folder layout

With the structure of the Tests.Acceptance set up, you can now install SpecFlow and NUnit
respectively. Make a point of adding the SpecFlow.MSI installer to the tools folder of the folder structure
and ensure you add a folder each for the SpecFlow and NUnit libraries that you will reference in the
Tests.Acceptance project. You can reference the SpecFlow library using NuGet or by locating the
TechTalk.SpecFlow.dll from the installation folder. Similarily, with NUnit you can download the tool or
add it from NuGet. Once it is all set up, your folder structure should look like Figure 4-5. The Libs folder
contains the TechTalk.SpecFlow.dll that should be referenced by the Tests.Acceptance folder and the
Tools folder contains the MSI that can be used by other developers who pull the code out of source
control, alleviating the need to scour the web for the correct version of the SpecFlow tool.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

60

Figure 4-5. Bet folder structure with NUnit and SpecFlow libraries

Now we have our project structure and our source control tree!

Capturing Features with User Stories
The beginning of any project is critical for its ultimate success. Starting off on the right foot can give the
team a tremendous boost in confidence and morale. To start off on the right foot, you need time with the
product owner and/or customer to define the initial features that will make up the application.
Remember, in an agile environment, this list is a fluid list and after each sprint there is an opportunity
for the stakeholders to modify the list to better suit their needs. Think of this as a baseline, a line in the
sand where the team can start from.

We will take these features and turn them into user stories. The user story becomes a contract
between the team and the stakeholder that states that they will have a conversation about this user story
at the appropriate time. The conversation allows the stakeholder to provide some initial feedback to the
team and helps the team to better understand the domain so that they may provide value to the
stakeholder through this feature.

Tim: Okay, let’s get on with capturing requirements.

Playing Blackjack Stories
Simon and the rest of the team meet to begin capturing the initial features of the project.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

61

 Tip Finding enough uninterrupted time for both the team and the stakeholder can be challenging, so don’t be
afraid to have this meeting as many times as necessary to ascertain the needed initial features.

Tim: Simon, there are a couple of us on the team that have never played blackjack or have played it so
infrequently that we do not know all the rules. Since you are the domain expert, can you explain how to
play blackjack? Once we have this domain knowledge, we can begin capturing requirements.

Simon: Not a problem. I will talk you through the basics. Well, as you will have gathered, blackjack is

a card game, the aim of which is to get as close as possible to 21 without exceeding it, while ensuring that
you are closer to 21 than the dealer. The game starts with all players placing bets on the outcome of the
game. Once bets are placed, each player and the dealer receive two cards from the deck. Players’ cards are
placed face up. The dealer has one of his cards face down, also known as “in the hole.” Each player makes a
decision to either hit, which will provide another card, or stand, which will pass on another card. If a
player hits and the extra card results in the player’s total exceeding 21, then the player has bust and he is
out. Once all players have either selected to stand or have busted, the dealer then reveals his second card. If
the dealer is closer to 21 than any other player, then the dealer wins. Or, the dealer hits until either he is the
closest to 21 or goes bust. If the dealer and a player tie, that is called a “push” and the player receives his bet
back. Those are the basics to the game. Should I carry on?

Tim: That is a great overview of the game, Simon. It is vital for us that we understand the domain that

we are going to be working in.

Tyler: Shall we begin dissecting that overview into features that we can capture as user stories?

Tim: Not yet. It’s really important that Simon writes the stories out in a language that he understands.

We can help him, but at the end of the day these are his requirements and he needs to have them in a
language that makes sense to him.

Simon: Right. So how should I start?

Tim: We typically write stories from the perspective of a user of the system, following a simple

template along the lines of: “In order to achieve something, I should be able to perform some action.” To
better explain this idea, how about we start by writing out our first user story. Sarah, would you like to
tackle the first story?

Sarah: Sure, can do. Simon, you mentioned that in order to start a game of blackjack, a player has to

make a bet. I will take that bit of domain knowledge and create an Initial Bet user story that both you and
I can understand.

Sarah writes the first story card, as shown in Figure 4-6.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

62

Figure 4-6. Story card for placing a bet to start the game

Simon: Right. I see what you mean now. We are taking the domain knowledge and writing user stories
in a way that both the developers and I can understand.

Tim: Simon, how about you try your hand at writing the next user story?

Simon: Okay. The next feature we need is one that has two cards dealt to each player as the next

action after the bet has been placed. I supposed I can create a user story that captures that feature.

Simon adds the Start Game story card, as shown in Figure 4-7.

Figure 4-7. Start Game user story

Tyler: Simon, is there any criteria that we need to cover when we work on this user story?

Simon: Yes, actually there is one. You need to make sure that when the game starts, only one of the

dealer’s cards is showing. We don’t want to give the player an unfair advantage.

Tyler: Okay, that is a perfect example of acceptance criteria. It gives us an indication of when a user

story is done. I will add this as a note to the back of the story that you have just written to remind me and
the developers.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

63

Tyler flips over the Start Game story card and adds a note about the dealer showing only one of his
two initially-dealt cards, as shown in Figure 4-8.

Figure 4-8. Acceptance criteria on the Start Game story

Tyler: So we have talked about placing an initial bet and being dealt two cards, now I think we need
to talk about how and what to do during the course of a game. Simon, how does a player get close to 21
again? I remember something about getting an additional card.

Simon: What you are describing, Tyler, is called a “hit.” When a player has less than 21, she can

request an additional card (hit) from the deck. That is definitely a feature we need.

Simon grabs a new index card and writes out the next story, as shown in Figure 4-9.

Figure 4-9. Story card to capture hitting

Simon: And if a player doesn’t want a hit or has finished hitting, he can “stand” and, thus, won’t
receive any additional cards. I will write that story out.

The story card to stand is shown in Figure 4-10.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

64

Figure 4-10. Story card to capture the feature of a player “standing”

Sarah: Okay, what’s next?

Simon: Well, the next part of the game, once all the players have stopped getting additional cards, is to

work out who has won. The winner is the player who is closest to 21 without going over.

Tim: Okay, Simon, can you turn that into a user story?

Simon writes the story to capture the winning condition, shown in Figure 4-11.

Figure 4-11. A story card to capture the blackjack winning condition

Sarah: So are kings, queens, and jacks worth 10 points? What is an ace worth?

Simon: Face cards are worth 10 and an ace can be 11 or 1.

Sarah: Since we are talking about the scoring of a game, I will add this information to the back of this

user story. One thing to keep in mind is that this is a good spot to split this story into two cards, if the story
becomes too large.

In Figure 4-12, Sarah has added the worth of the aces and face cards to the back of the user story

card.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

65

Figure 4-12. Notes on the Win a Game story

Tyler: So, it’s possible to get 21 with the first two cards dealt if you get an ace and a face card?

Simon: Yes. This is what’s known as “blackjack.” If you get “blackjack,” you will not be prompted to hit

or stand, and automatically win your bet—because this is the best hand you can get.

Sarah: So what happens if a player and the dealer get 21 with two cards?

Simon: In that case, both have gotten “blackjack” and have tied. This is called a “push.” In the event of

a push, the player keeps his money. In fact, all cases of “push” end up with the player retaining his chips.

Tyler: Hang on a minute. It seems to me that all the dealer needs to do is wait and see what the player

does before making a move.

Simon: Not quite. Dealers have certain rules that they must abide. They must hit until reaching at

least 17 or bust by going over 21. In the event that the dealer goes over 21, all players who have not busted
win their bets.

Tyler: So what happens if everyone busts?

Simon: If all players go bust, the house wins.

Simon: I will create a user story that encompasses the dealer’s rules.

Simon creates a story describing the dealer’s rules, as shown in Figure 4-13.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

66

Figure 4-13. A story to capture the playing rules of the dealer

Simon: There are a couple of things that I forgot to mention. First, you do not take turns to play. Each
player has his turn until he stands, busts, or hits 21. Second, the payout for winning is your bet plus the
same amount from the dealer. In a case when the player hits a “blackjack,” the payout is his bet plus 1.5
times that amount from the dealer.

Okay, you have the basics covered, let’s move to some of the advanced rules of the game specifically

related to the gambling side. For instance, if your initial two cards add up to 9, 10, or 11, you will be
offered the chance to “double down.” If you choose to double down, your stake on the current hand is
doubled, you are dealt only one more card, and your turn is over.

Sarah: What happens if you don’t have enough money?

Simon: Then you won’t be able to double down, or you will have to cash in to get more chips.

Tyler: Okay, so if your cards add up to 9, 10, or 11, you can double your bet, but you will only be

allowed one more card.

Simon: Oh, one more thing. [Simon does a poor impression of “Columbo.”] You cannot double down

on an ace and a 10-value card, but you can double down with an ace and a 9 or an ace and an 8.

Tyler: Let’s capture this logic as the Double Down user story. [See Figure 4-14.]

z

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

67

Figure 4-14. A story to capture the double-down feature

Sarah: We had better make a note on the reverse of the card about making 11 with an ace and a 10
card. [(See Figure 4-15)].

Figure 4-15. Notes on the Double Down story

Simon: Another way to increase the stakes is to split your hand into two. You can only do this if your
initial two cards are a pair. If you split, you will need to bet the same amount of chips on the new hand.

Tyler: Okay, so when you split do you get another two cards?

Simon: Yes, that’s right. You will have two hands.

Sarah: So what happens if you get another pair, can you split again?

Simon: No, you can’t split again and you can’t achieve blackjack. For example, if you get to 21 with

two cards this will not be blackjack, it will only be 21.

Tyler: Okay, you write the Split story and I will make a note of the acceptance criteria that we talked

about on the back of the card. [(See Figures 4-16 and 4-17)].

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

68

Figure 4-16. A story to capture the split feature

Figure 4-17. Some acceptance criteria on the split story

Sarah: Are you allowed to double down after a split?

Simon: Yes, you can double down on either or both of the hands if you have a total of 9, 10, or 11.

Sarah: Are there any additional, game play options?

Simon: No, that’s about it really. I suggest that we all sit down and play a couple of hands just for fun

to ensure that we have captured all the requirements.

Tyler: Sounds like a good idea.

As if by magic, a deck of cards appears from Simon’s pocket and you play a few hands of blackjack to

confirm that you understand the game.

Playing for Money Stories
You have captured the features that describe playing a game of blackjack; now you can move onto the
stories that describe playing blackjack for money.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

69

Simon: Alright team, now that you know how to play blackjack, let’s move onto what the site is all
about— playing for money. The basic idea is that a member will be able to cash in, which means buying
some chips to use to bet with.1 We have worked a good deal with PayPal2 on fees, so I think we will be using
them as the payment gateway.

Sarah: Okay, there seems to be a couple of features here. So let me ask you this, Simon: is it safe to
assume that a player will need to create an account on the site before being able to play the game?

Simon: Yes, that’s right. I will add a user story that contains the logic for registering a user on the site.
[(See Figure 4-18.)]

Figure 4-18. A story about the feature of creating an account

Tyler: I guess the player will also want to manage her account so that she can update details such as
e-mail address, password, etc.?

Simon: Yes that’s correct. We won’t need to store a lot of details—only name, e-mail, password, and
the balance or the amount of money the player has in her account. I will create a user story that captures
the ability of the player to manager her account. [(See Figure 4-19.)]

1In blackjack, “cash in” means to buy and “cash out” means to sell.
2PayPal.com. “What Is PayPal?” https://www.paypal.com/us/cgi-bin/?cmd=xpt/Marketing/
general/what-is-paypal-outside.

https://www.paypal.com/us/cgi-bin/?cmd=xpt/Marketing/

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

70

Figure 4-19. A story on managing a user’s account

Tyler: Okay, we have captured the features for membership. Now let’s capture the feature of a member
cashing in. Simon, can you write a user story that captures the feature of cashing in? [(See Figure 4-20.)]

Simon: Sure, no problem.

Figure 4-20. A story on the feature of cashing in

Sarah: So, a registered member of the site has created an account and buys chips to bet with. Any
limits on what she can bet per hand?

Simon: Yes, there is. In order to play, a member has to place a bet within the range of $5 to $20 for

each hand she chooses. I will write a user story to account for this betting range. [(See Figure 4-21.)]

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

71

Figure 4-21. A user story on the feature of a betting range

Simon: We also need to account for the fact that a player can play more than one hand in a game. In
fact, he can play up to three. I will write a user story that captures playing multiple hands at once. [(See
Figure 4-22.)]

Figure 4-22. A story on a player playing multiple hands

Tyler: Should we let the player know how much he has won or lost, so he doesn’t get carried away with
his betting?

Simon: Yes, we will want the player to be able to view some stats on how he has been playing. Sarah,

can you write a user story on maintaining a player’s betting history?

Sarah: Sure. I will write a user story to capture that. [(See Figure 4-23.)]

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

72

Figure 4-23. A story on reporting a player’s betting history

Tyler: So, we allow players to put money into the system, and it is only reasonable to allow them to
remove money from the system when they are done. Simon, does this happen a lot and is it something that
we need to account for?

Simon: Hopefully, players removing their money from the system won’t happen too much! But when it

does, then, yes, the member should be able to cash out her winnings. We need another user story to account
for the player cashing out. [(See Figure 4-24.)]

Figure 4-24. A story on a member cashing out

Sarah: Are there any other features that relate to the gambling side of this application that we need to
concern ourselves with?

Simon: No, I believe that’s it. You bring up a good question, though. What happens if, after the team

got started, I realized that we missed a feature needed in the system? Would it be too late to get it in the
project?

Tim: That’s not a problem. Because we will be working in short time blocks, the project will be built in

an iterative manner, meaning that every two weeks we are planning, developing, testing, and reviewing.
At the end of those two weeks, we will show you what we have done and ask you to show us which items
are the most important to complete in the upcoming sprint. Now, once a sprint starts, it’s best not to

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

73

change the features in that sprint because the team will be actively working on those items. You can add,
edit, or delete a user story from the product backlog at any time. Basically, you will have full control over
what goes into this application and what the team works on each sprint.

Simon: Brilliant!

Sarah: Okay, let’s talk more about a member’s account and what he can do with it.

Member Account Stories
Simon: The member account section won’t be that complex. I have already jotted down a story on

managing an account and cashing in. The only other action I see is for a member to view statements on his
balance.

Tyler: Can you write down the story about viewing statements? If you think of anything else, we can

always add it to the product backlog later. [(See Figure 4-25.)]

Figure 4-25. A story on member account statements

Sarah: Any other requirements for the system?

Simon: The only other features that we would like would be some reports on player registration and, of
course, the balances across all players for our accounts.

Reporting Stories
Tyler: Okay, let’s capture those reporting features in two stories.

Simon: Right. So the first is for reporting on the financials of each account. [(See Figure 4-26.)]

x

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

74

Figure 4-26. A story on reporting account financials

Simon: And the second is for reporting member registration.[(See Figure 4-27.)]

Figure 4-27. A story on reporting of member registration

Technical Stories
Sarah: As the game will be played online, how should we handle the event of a player losing

connection mid-game?

Simon: Well, because blackjack is in essence a one-player game with an automated dealer, the player

should be able to pick up where he left off, if he loses connection to the game for whatever reason.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

75

Figure 4-28. A story on saving the state of a game

Tyler: Brilliant. I can’t think of anything else we need to cover, can you?

Simon: No, I think we have covered all of the features I had in mind.

Tim: Okay, well, if you do think of anything else, please let us know and we can add it to the product

backlog of features.

Simon: So, what happens now?

Tim: Well, now that we have this list of user stories that will make up the application, it is time for us

to compare them to one another to create an order of complexity. Once this comparison is done, we should
have a general idea about which user stories may cause us trouble later on. Since we are only worried
about comparing complexity between the different user stories, the system we will use to score the
comparison will be T-shirt sizes—small or S, medium or M,, large or L, and extra-large or XL.

Simon: T-shirt sizes? I can’t do anything with that.

Tim: Right. You will not be able to calculate delivery time from these in the beginning. That is the

point. What we are trying to accomplish is to see which user stories are very complex, not how long it will
take us to complete them all. You see, people are terrible at estimating how long it will take to get
something done. However, anyone can compare two items, even if he doesn’t understand the context for
these items. Now, you will get some hard numbers, but not now. Later on in the process you will be able to
derive how long it took us to do something from these shirt sizes and story points.

Simon: Okay, I am a little nervous, but I will give it a try. I'll let you get on with it then. When do we

meet next?

Tim: How about we each look at our calendars and see what time works best for all of us? Thank you.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

76

Initial Product Backlog
The stories shown in Table 4-2 form your initial product backlog of features. Keep in mind, this is not an
exhaustive list, so don’t be surprised if requirements change or are added or removed during the course
of the project.

Table 4-2. Initial Product Backlog of Features

Story Name Story Description

Game Play: Initial Bet In order to be in a game of blackjack
As a player
I should make a bet

Game Play: Start Game In order to start a game of blackjack
As a player
I should be dealt two cards

Game Play: Hit In order to achieve 21
As a player
I should be able to hit and receive an extra card from the pack

Game Play: Stand In order to avoid going bust
As a player
I should be able to stand (keep your existing hand as it is) for each hand in
turn

Game Play: Double In order to double my stake
As a player
I should be offered to double down when my initial two cards add up to 9,
10, or 11

Game Play: Split In order to increase my chance of winning
As a player
I should be offered to split my hand if my initial two cards make a pair

Game Play: Win In order to win a hand of blackjack
As a player
I must be closer to 21 than the dealer and not go bust

Game Play: Dealer Rules In order to give a player a sporting chance
As a dealer
I will hit on any score below 17 and stand on any score above 17

Member Registration In order to gamble
As a player
I should be able to register my details

1

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

77

Story Name Story Description

Manage Member Account In order to keep my details up-to-date
As a member
I should be able to be able to manage my account

Cashing In In order to get chips to play with
As a player
I should be able to cash in

Betting Range In order to play a game for money
As a player
I must bet between $5.00 and $20.00 max

Playing Multiple Hands In order to increase my chances of winning
As a player
I should be able to choose between playing one and five hands at a time

Game Betting History In order to see how I am playing
As a player
I should be able to see my betting history for the current session

Cashing Out In order to spend my winnings
As a player
I should be able to cash out

Member Account
Statements

In order to keep track of money
As a player
I should see a statement of funds transferred

Reporting Accounts In order to keep track of funds
As an account
I should be able to see all funds for all accounts

Reporting Registrations In order to see how successful the site is
As a director
I should be able to see the number of member registrations

Saving Game State In order to continue playing
As a player
I should pick up where I left off if I am disconnected from the internet

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

78

Planning Poker
Before we can plan the sprints that will make up the project, we need to understand the complexity of
the work that is needed in the project. We will use Planning Poker as a tool to facilitate the conversation
among the customer and the members of the team about the complexity of the user story. We are not
concerned with how long it will take a developer to complete the user story. Those particular
conversations take place further down in the individual sprints. What we are trying to accomplish with
this is finding user stories that may be too large to complete in an individual sprint; the user stories that
may cause us trouble later on.

Since this will be our initial Planning Poker session for this project, we will handle it slightly different
from how we will handle them during our sprint-planning meeting. During this session we will generally
compare the user stories to one another. To reflect this high-level comparison of complexity, we will use
a different unit for measurement: T-shirt sizes (S, M, L, and XL). The understanding will be that if a user
story is classified as XL, then that user story is flagged as one that potentially needs to be broken down.

Let’s join our team as they start this initial Planning Poker session.

 Note For the sake of brevity, the user stories themselves will not be duplicated during the complexity
comparison. Please note, however, that the product owner will read aloud each story before the team estimates its
complexity.

Game Play: Initial Play
Tim: Any thoughts on this user story?

Sarah: This one seems to be fairly simple. All we need to do is store the amount of chips that the player

has waged on the hand.

Tyler: Hmmm. I’m not so sure it’s that easy. We will need to have checks on whether the player has

enough chips to make a bet. We will also need objects outside of the system to be to able to get to the point
of actually running it.

Sarah: Yes, perhaps there is a little more to it. One key piece of logic we will need is to have the ability

to update the player’s balance according to the winnings or losings after a game is finished.

Tyler: So, what shall we set this at? I don’t think it is a small user story. However, I also don’t believe

that this user story is large. How about we give it a “medium” size?

Sarah: I think I can go along with that. I vote medium, as well.

The team decides a size of medium (M) for this user story. Let’s move onto the next one.

Game Play: Start Game
Tyler: I think that this is much more complex than the last story. First off, we have to create the deck of

cards to deal from. Second, we need to have logic in the system to handle which players have which cards
at what time. Third, we need logic to keep track of which players in the game have busted.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

79

Sarah: And, we need to create a dealer because the dealer also gets dealt two cards when the game

starts. After looking at all of this, I have to say this is a story card that could give us some trouble. I vote this
card an XL.

Tyler: I would have to agree with Sarah. This seems like a terribly large amount of work. Too much
work for one sprint, I would surmise. I vote XL also.

Tim: Okay, so we flag this user story as one that is potentially troublesome. Since we are here, do you
all have some ideas on how we could break up this extra-large story card into smaller cards?”

Sarah: What if we broke the user story along the lines of the cards? We create one user story about
creating the deck of cards and place the remaining parts of the original user story into another one. Simon,
do you have any feedback on this? Tyler, what are your thoughts?

Tyler: That idea makes sense to me. I have done something similar to creating a deck of cards in the

past, so I could work on that part easily.

Simon: Since the deck of cards is a major linchpin of the whole system, it makes sense to me to break
that off into its own user story. Since this is a vital piece, now that I think about it, we will need to make
sure this user story gets done sooner rather than later. I will go ahead and write up another user story on
creating the deck of cards. [(See Figure 4-29.)]

Figure 4-29. A user story on the creation of the deck of cards needed for the game

Tyler: Let’s re-examine the two cards and compare them to the one we have already done. First, let’s
look at the Start Game user story minus the deck-of-cards piece. I change my vote from XL to M.

Sarah: I vote S.

Tyler: Sarah, why did you vote S? We still have to handle the logic for maintaining what everyone has
throughout the game. I think it is more complicated than our baseline.

Sarah: I know. The reason I voted S is because I have handled logic like this before. It’s maintaining
where something is throughout a length of time. I can create a class that can handle that logic. Granted it
is not a cake walk, but I think it is pretty close to an S.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

80

Tyler: I am still a little unsure about that vote, but since you have experience in this, I will back you up
and say S as well.

Game Play: Deck of Cards
Tim: Now let’s talk about the Deck of Cards user story.

Sarah: I am not sure. I think this user story is as complex as the Initial Bet user story. However, I am

not that good with graphics, so it may be larger.

Tim: Sarah, what you must remember is that you are not estimating based on how quickly you could

do this. You are simply comparing this user story to the user stories done before and seeing where it stacks
up.

Tyler: I vote S.

Sarah: I forgot. Thanks, Tim, for reminding me. I vote S, as well.

Game Play: Hit
Sarah: So after the initial cards have been dealt, the player can hit to get more cards. We will need to

add some rules to check if the player goes bust.

Tyler: Okay, so all we are worried about here is giving a player more cards and checking that he hasn’t

gone bust. Sounds straightforward and on par with our baseline user story. Let’s estimate.

The team selects a size of S.

Game Play: Stand
Tyler: So, if a player hasn’t bust but doesn’t want to hit anymore, he can elect to stand—which

basically means the player’s turn is over?

Sarah: Yeah, we just need to end the player’s turn and prevent her from doing anything else until the

dealer has made his move. This should also be straightforward and on par with our baseline user story.
Let’s estimate the complexity.

The team selects a size of S.

Game Play: Win
Sarah: This is the winning condition story. We need to add a check to work out who has the best hand

based on a number of winning combinations.

Tyler: Among the players or just between the player and the dealer?

Simon: You will always compare the hands of an individual player to that of a dealer.

Sarah: What are the winning combinations? Simon, what are these conditions?

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

81

Simon: Well, as an ace can be 11 or 1, it means a score of 11 can be achieved in a variety of ways. Also
if you get to 21 with three cards, then it beats a winning hand using more than three cards.

Tyler: It sounds like there are some more acceptance criteria for this user story. I will add these

conditions to the back of the card. I think this is more complicated that the Hit or the Stand user stories, so
I vote M.

Sarah: Sounds good, I vote M, too.

Game Play: Dealer Rules
Simon: This feature deals with the dealer’s game play. There are a few things to remember about the

logic behind this. If a dealer has a score lower than 17, then he will continue to hit until he has more than
17 or goes bust.

Sarah: That’s right. Regardless of what a player does, if the dealer is below 17, he will keep hitting until

he goes bust or is above 17.

Tyler: Seems like that won’t be too much trouble. But it seems to be more complex than a lot of the

small ones.

The team selects a size of M.

Game Play: Double
Tyler: Doubling is when you have a total card value of 9, 10, or 11.

Sarah: That’s right. You get the chance to double your stake.

Tyler: If you have the chips to do so.

Sarah: Ah yes. If not, we need to give the player the option to buy some more.

Tyler: The state of the game will need to be persisted anyway, so if a player goes off mid-game to buy

more chips, that shouldn’t cause any issues.

Sarah: Yes, I was thinking the same thing.

Tyler: So all we need to do is check for a 9, 10, or 11, and offer the player to double up if he has enough

chips?

Sarah:Yeah, seems that way.

Tyler: Okay, let’s estimate.

The team selects a size of M.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

82

Game Play: Split
Sarah: Splitting is the option given to a player when his initial two cards are a pair. If he has a pair, he

can make two separate hands. Again, he will need to have enough chips to cover the bet for the second
hand.

Tyler: Yes, and after splitting blackjack cannot be achieved, neither can the player split again in the

event he is dealt another pair.

Sarah: Although you can still double down.

Tyler: Yes, that’s correct. Okay, this seems a little more complex than simply doubling down. Ready to

estimate?

Sarah: Yep!

The team selects a size of L.

Member Registration
Sarah: We’ve created a lot of membership registration systems in the past, so I think this one should be

fairly easy.

Tyler: I agree. Plus there are a number of ready-made membership providers that we can use, so I

don’t think that this feature is going to be too complex.

Sarah and Tyler select a size of S.

Managing Member Accounts
Sarah: This is, again, a bread-and-butter requirement. Just forms over data really. No real behavior to

this at all.

Tyler: Yes I agree. This should be an easy one to estimate.

Sarah and Tyler select size of S.

Cashing In
Tyler: Cashing in is the act of the player paying money in return for chips, right?

Sarah: Yes, that’s right. We will need to code the workflow of buying chips and taking the player

through the steps of paying.

Tyler: Okay, that sounds complex.

Sarah: I agree. It seems like a lot of items that need to be performed in order to consider this card done.

I think this is another XL card.

Tyler: I think I would have to agree.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

83

Tim: Okay, guys, since we have another XL card, do we want to try and break it up?

Sarah: No, not at the moment. We could do that when we look to implement this card in a sprint.

Tyler and Sarah select a size of XL.

For the sake of brevity, we will skip over comparing the remaining user stories. This might be a good

time for you to look at the remaining user stories and compare them to the ones we have already
compared. See what you think about their complexity. The following is a list of user stories that need to
be compared and assigned a T-shirt size:

• Betting Range

• Playing Multiple Hands

• Game Betting History

• Cashing Out

• Member Account Statements

• Reporting Accounts

• Reporting Registrations

• Saving Game State

Prioritizing the Backlog
With the user stories compared to one another and given a T-shirt size, it is time for the product owner
to prioritize this backlog for the first sprint, as shown in Table 4-3.

Table 4-3. Updated Product Backlog of Features

Story Size Description

Game Play: Initial Bet M In order to be in a game of blackjack
As a player
I should make a bet

Game Play: Start Game

S In order to start a game of blackjack
As a player
I should be dealt two cards

Game Play: Deck of Cards

S In order to play “blackjack”
As a player
I will need a deck of cards to play with

Game Play: Hit

S In order to achieve 21
As a player
I should be able to Hit and receive an extra card from the pack

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

84

Story Size Description

Game Play: Stand

S In order to avoid going bust
As a player
I should be able to stand (keep your existing hand as it is) for
each hand in turn

Game Play: Double

M In order to double my stake
As a player
I should be offered to double down when my initial two cards
add up to 9, 10, or 11

Game Play: Split

L In order to increase my chance of winning
As a player
I should be offered to split my hand initial two cards make a pair

Game Play: Win

M In order to win a hand of blackjack
As a player
I must be closer to 21 than the dealer and not go bust

Game Play: Dealer Rules

M In order to give a player a sporting chance
As a dealer
I will hit on any score below 17 and stand on any score above 17

Member Registration

S In order to gamble
As a player
I should be able to register my details

Manage Member Account

S In order to keep my details up to date
As a member
I should be able to be able to manage my account

Cashing In (XL)

XL In order to get chips to play with
As a player
I should be able to cash in

Betting Range S In order to play a game for money
As a player
I must bet between $5.00 and $20.00 max

Playing Multiple Hands L In order to increase my chances of winning
As a player
I should be able to choose between playing one and five hands
at a time

Game Betting History L In order to see how I am playing
As a player
I should be able to see my betting history for the current session

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

85

Story Size Description

Cashing Out (XL) XL In order to spend my winnings
As a player
I should be able to cash out

Member Account
Statements (XL)

XL In order to keep track of money
As a player
I should see a statement of funds transferred

Reporting Accounts L In order to keep track of funds
As an account
I should be able to see a all funds for all accounts

Reporting Registrations L In order to see how successful the site is
As a director
I should be able to see the number of member registrations

Saving Game State L In order to continue playing
As a player
I should pick up were I left off if I am disconnected from the
internet

Committing to the First Sprint
Tim: Simon, which user stories would you like for us to work on in the first sprint?

Simon: I have given it some thought and this is what I am thinking I will need in the first sprint. First,

Game Play: Initial Bet. Second, Game Play: Start Game. Third, Game Play: Deck of Cards. Fourth, Game
Play: Hit.

Sarah: That sounds all right, except for one thing. I am not confident that we can complete all that

work in one sprint. Would you be open to dropping one of them? I feel we could get three user stories done,
but I think adding a fourth right now would be pushing it.

Tyler: I agree with Sarah. Might as well pay for the stuff now and then use it when we need it.

Simon: I could let the “Game Play: Hit” user story slide to the following week. This is a critical piece of

the application, so it has to be able to run on the computer.

Tim: It’s official then: Tyler and Sarah will drop the Hit user story from the sprint backlog and will

work on it next week.

Table 4-4 shows the Sprint 1 backlog.

CHAPTER 4  SPRINT 0: GENERATING THE PRODUCT BACKLOG

86

Table 4-4. Sprint 1 Backlog

Story Heading Shirt Size

Game Play: Initial Bet M

Game Play: Deck of Cards S

Game Play: Start Game L

Summary
This chapter introduced you to the blackjack project that you will be creating over the next five chapters
as part of our case study. You met the team, and with an understanding of the goal of the project (in the
form of a mission statement), you set about capturing the features of the system with the product owner.

With a list of features forming a product backlog, you then used Planning Poker to assign relative
complexity points to those stories. With the stories’ complexity estimated, the product owner then
prioritized the backlog.

One thing to keep in mind is that the product backlog is a fluid document and can change anytime.
Just make sure you are communicating well with your team and your product owner so that you are sure
you are working on the user stories that will bring the greatest value.

From this prioritized backlog, the product owner was able to pick the three user stories that he felt
were the most important; these will be the focus of the first sprint.

In the next chapter you will start your first sprint and work through the tasks that you defined.

C H A P T E R 5

87

Sprint 1: Starting a Game

It's time to begin writing features for Kojack Games! With our initial backlog created and prioritized, our
development infrastructure established, and our initial product backlog prioritized, we are ready to start
coding features! In this chapter we'll layout a plan on how to approach writing features using BDD and
see it through to the code implementation. We'll go through the practice of a sprint planning session,
the way daily stands-up work, and how to manage the task board and burn-down charts.

Sprint Planning Meeting
The team has gathered in the conference room. Simon has brought in user stories for the team to work
on and discuss.

Tim: Good morning, team. Since this is our first feature-driven sprint, we'll discuss each user story and
gather more information and acceptance criteria, so that as a team we know when we are done with a
particular user story. Simon will give us an overview of the user story, we'll discuss acceptance criteria,
and decide when this card is done, and then we'll size the user story to commit to during this sprint. First,
let's define the theme of this sprint.

The Theme of the Sprint
Tim: I wanted to take this opportunity to discuss with you all what the theme of this sprint is.

Sarah: Why do sprints need themes? We are just working on user stories for the customer.

Tim: A theme for the sprint gives us a chance to see what goal we are trying to accomplish with the sprint.
It shows us the common purpose that all the user stories in the sprint are striving toward. By having a
sprint theme, we have a way to make sure we are working on the items we need to be working on for that
sprint. If you are working on something that doesn’t reflect the theme of the current sprint, then you need
to let us know so we can assess the situation and see what the right course of action is.

The theme for Sprint 1 is going to be “Starting a Game.” The reason for this is because all the work being
done in this sprint will lay the foundation for all future sprints. We can’t work on cashing in unless we
have a basic game to play. The stories in this sprint are in regards to the basic gameplay of the game. User
stories in the remaining sprints will add onto the basic gameplay that will be implemented in this sprint.

CHAPTER 5  SPRINT 1: STARTING A GAME

88

Determining Availability and Capacity
Tim: Since we are working in two-week sprints, we need to determine who will not be able to work on the
project any time during this sprint. Since we don't have any holidays over the next two weeks and everyone
is 100 percent allocated to this project, is anyone taking time off during the next two weeks?

Sarah: I’m still wrapping up my previous project with quick support questions, but other than that I’m
fully available to this project.

Tyler: I’m fully dedicated to this project.

Simon: Me too.

Tim: Great, we are pretty much at full capacity! Capacity is the availability of everyone on the team for the
sprint. As all of us know, life happens. Time away is inevitable so we need to account for that. If someone is
going to be out any time during the sprint, it’s best for the team to know early of the absence so that we can
factor it into what we commit to for the sprint and re-adjust the schedule if we need to. Now that we have
determined our availability for this sprint, let's get on with planning what user stories we want to commit
to!

Planning Poker
Tim: Simon, what user story do you want bring forward to the team first to size?

Sarah: Didn't we size this in the release planning meeting? Why do we need to size it again?

Tim: Yes, we did. In the release planning we sized it using T-shirt sizes so we could get a ballpark estimate
of what it would take to develop the feature. Now that we are planning for the sprint, we want to get more
detailed information on the story and play Planning Poker using a Fibonacci-like sequence: 1, 2, 3, 5, 8, 13,
20, 40, 60, 80, 100. While the numbers are similar to the Fibonacci sequence, they are not exactly the same.
The intent is to not show a direct correlation between the numbers. If we've broken down the user stories
correctly, estimates should be in the single digits. If we discover that we've missed complex functionality
within the user story and it needs to be broken down further, we'll split the user story up, give it back to
Simon, the product owner, and have him prioritize it. As with release planning, these estimates are
arbitrary and relative in size. We will say that displaying a form over a database table is a 2-point story, in
other words, the easiest thing you will do. You can use this to estimate the relative complexity of future
stories. Simon, what's the first user story we need to discuss?

Simon: Let's begin with the Game Play: Initial Bet user story. [(See Figure 5-1.)] In release planning, we
mentioned that a player will need to be able to make an initial bet and our T-shirt size for this story was M.

CHAPTER 5  SPRINT 1: STARTING A GAME

89

Figure 5-1. User story: Initial Bet

Tyler: Yes, I remember Sarah brought up the idea of a game and player and determining whether or not
the player has enough chips to play, as well as updating the player's balance.

Simon turns over the user story says the acceptance criteria tells the team the following:
• The player must have navigated to the bet page.
• The player needs to have money in order to bet.

Tim: Now that we've reviewed the acceptance criteria, does anyone have any additional questions?

Sarah: No, I think I have what I need.

Tyler: Me too.

Tim: Great, let's play Planning Poker! What level of effort do you believe this would be?

Sarah: I vote for an 8.

Tyler: I agree with Sarah. It's a lot more difficult than a form over a database table.

Tim: Great, 8 it is. Let's move on. Simon, the next user story?

Simon: The next user story is Game Play: Start Game. (See Figure 5-2.)

CHAPTER 5  SPRINT 1: STARTING A GAME

90

Figure 5-2. User story: Start Game

Sarah: What are the acceptance criteria of this user story?

Simon: Good question.

Simon flips over the card and tells the team the following:

• The player and the dealer must be dealt two cards.
• The player’s cards will both be face up. The dealer will have one card face up, one card face

down.
• A bet must be placed before the cards are dealt.

Sarah: Didn't we talk about having a deck of cards user story?

Tim: Yes, we did. We can size this one under the assumption that the Deck of Cards user story is done. We
know that there will be a dependency on that particular user story by this user story. While user stories
should be independent of each other, oftentimes there is a dependency that cannot be worked around. In
this case, the dealer cannot deal the cards unless there is a deck to deal from.

Sarah: Okay, that makes sense to me. So let me get this straight. Assuming that the Deck of Cards user story
is done, we need to deal two cards each to the dealer and the player, with both cards face up to the player
and one card face up and one card face down to the dealer?

Simon: That's correct.

Tim: Any more questions? If not, let's play Planning Poker on this user story.

Tyler: This doesn't seem to be as difficult as the initial bet, so I'll say a 3.

Sarah: I agree this one isn't too much more difficult than having a form over a database table. I'm
comfortable with a 3.

Tim: A 3 it is. Let's move onto the next one. Right now, as a team, we have committed to 8 points. What do
you all think about committing to another user story for this sprint?

CHAPTER 5  SPRINT 1: STARTING A GAME

91

Tyler: I don’t see why not. Nothing that we have committed to so far seems overly complicated.

Sarah: I would agree. I think we can commit to one smaller one during this sprint and get them all done.

Tim: Okay. Let's do one, more, small feature, because we don't want to commit to work we can't
accomplish.

Simon: The next user story in the backlog that the team deemed an S in the release planning is Game Play:
Deck of Cards. [(See Figure 5-3.)]

Figure 5-3. A user story on the creation of the deck of cards needed for the game

Simon: As part of this user story I have a list of acceptance criteria that will mark this user story as done.

Simon tells the team the following:

1. Create a deck of cards

2. Add ability to deal cards from the dealer

3. Add ability to shuffle cards so each hand is unique

4. There has to be 52 unique cards in the deck

Tim: Given the two user stories we've estimated, is the effort similar to either of those?

Sarah: I think this is similar to the Start Game user story, so I vote a 3.

Tyler: I vote a 5 because I think the graphics are a larger undertaking than I first thought.

Sarah: I vote a 3. I checked—we can use the graphics from a free, online site. That will allow us not to
worry about the graphics and focus on the logic.

Tyler: Great, that seems like less effort.

Tim: Let's play another round.

Sarah: I vote 3.

CHAPTER 5  SPRINT 1: STARTING A GAME

92

Tyler: I still have concerns. The online site is unknown and will be a learning curve, so I’ll go 4.

Sarah: So do I.

Tim: Great, we've sized this as a 4. If there’s nothing else…

Simon: Wait, can we put one more story in?

Tim: Team, what do you think?

Tyler: I’m uncomfortable adding more stories. I think we have a solid amount of work. If we add more
work, I’m afraid we won’t be able to get it all done in time.

Sarah: I agree. I think adding more user stories will set us up for failure to get all the stories done on time.

Simon: Okay. I’d rather have fewer stories 100 percent completed than have more stories half completed.

Tim: Since this is our first sprint, we need to be cautious on our commitments until we are comfortable
with the velocity of the team. Tyler and Sarah will work on getting these user stories done and we'll demo
the completed user stories to make sure we are delivering value to the customer.

Simon: Sounds great. I'll be looking forward to seeing them!

Project Management/Feedback Progress
Tim: Now that we have the stories sized, I want to share information on how we'll make our progress
transparent for our team members and whoever would like to check on the progress. In order to keep track
of our progress, we will use a simple, daily burn-down chart that will visually help us to understand if we
are on course to deliver all of the stories that we committed to. There are a wide variety of open source,
online, and integrated software solutions for managing the backlog of items on an agile project. Our
project will be minimalistic, and use an Excel spreadsheet along with a task card wall to map progress.

Figure 5-4 shows all the items that the team has on backlog for the current sprint. It’s a good idea to

have a physical board placed where the team can see it. It’s also a great idea to allow pairs to select their
own story to work on. You can also add the tasks to the board, but we prefer team members to work on a
story from start to finish. If you have a pair of developers and no stories left, then you can break down
stories that other teams are working on into tasks so that the workload can be shared. Alternatively,
developers with no work can start to work on technical debt tasks or perhaps scope out the features for
the next sprint.

CHAPTER 5  SPRINT 1: STARTING A GAME

93

Figure 5-4. Task wall for Sprint 1

Figure 5-5 shows the daily burn-down for the sprint. The bars along the bottom of the graph show
the number of hours that have been burnt each day. The scale on the left-hand side is in ideal hours
(6 hours/day). The straight line shows the “happy day” scenario when the sprint should be complete and
the wavy line shows how much work there is left to complete. This daily burn-down chart is not essential
for most Scrum teams, however, if you find that you are consistently unable to complete stories that you
committed to, it’s useful to see where your time has gone.

CHAPTER 5  SPRINT 1: STARTING A GAME

94

Figure 5-5. Daily burn-down chart example

Tim: Now you know how we'll communicate our progress to others. Everyone should have enough
information to get started on their user stories. Let's meet tomorrow morning at 9 AM for a quick, daily
stand-up.

Sprint 1’s Backlog
Table 5-1 reviews the user stories that team committed to for this iteration.

Table 5-1. Sprint 1 Backlog

User Story Name Initial Size

Game Play: Initial Bet 8

Game Play: Deck of Cards 4

Game Play: Start Game 3

CHAPTER 5  SPRINT 1: STARTING A GAME

95

Day 1
Welcome to the first day of the first sprint. As we enter this and every day, we will begin with a daily
stand-up meeting where the team talks about what it did yesterday, as well as what everyone plans to do
today and if there are any roadblocks that prevent us from accomplishing our work.

Daily Stand-Up
Tim: Hello everyone. I wanted to take some time here at the beginning and discuss with you what our daily
stand-up meetings are. These meetings are a way for members of the team to bring issues or concerns to the
forefront early in the process. These meetings will happen every day at the same time and should last no
more than 10 to 15 minutes.

Sarah: Fifteen minutes? What do we plan to accomplish in a 15-minute meeting? Seems like a waste of
time to me.

Simon: I agree. Shouldn’t we be spending that time working on story cards for the customer?

Tim: These meetings are not a waste of time. They are meant to be short so the people in the meeting can
get in, share the information they have for that day, and get out. With that goal in mind, the meeting will
follow a pattern. Each team member will answer three questions in this meeting: One, what did you do
yesterday? Two, what are you doing today? And three, is there anything blocking you from doing your work
for today? This gives everyone on the team a chance to know what is going on with the work that the team
has committed to. If someone is having an issue, then these meetings are a chance for you to notify either
me or Simon of the problem, so that we can start working on a solution. It is better to find a problem at the
beginning of the sprint, than to have it fester the entire sprint unbeknownst to anyone that could have
solved it.

Sarah: How do we keep this to 10 to 15 minutes? We can get long-winded sometimes and sometimes we
only need to discuss issues with a sub-set of the group, not the whole group.

Tim: If a team member needs to meet with another team member to discuss an issue that doesn't really
benefit the whole team, then have a one-on-one "meeting after the meeting" to not take up everyone's time.
Keep in mind, these daily stand-ups are merely quick, status meetings—they are not problem-solving
sessions. It is the responsibility of the ScrumMaster to keep these meetings quick. As for the long-
windedness, it is the team’s responsibility to police themselves and each other so that we can all move on
with our day.

Tyler: What about our customers or management? If we really are committed to a 15-minute meeting,
then we better make sure not to invite them.

Tim: Everybody is invited to attend these meetings. In fact, we are going to have these meetings in the open
area so there is no hiding what we are working on or discussing. That being said, just because everyone is
invited to attend this meeting does not mean they can talk in these meetings. If you remember from earlier,
about the story of the chicken and the pig, we members of the team are classified as the pigs. We have the
larger stake in this project. Everyone else is classified as the chickens. They can attend, but they can only
observe.

Tyler: What happens if one of these “chickens” tries to interrupt our meeting by talking about issues
outside of the team’s control?

CHAPTER 5  SPRINT 1: STARTING A GAME

96

Tim: Then it is the job of every member of this team to politely let the person know that this meeting is not
the right venue for the discussion. If they are still having an issue with that, then I will pull them aside
sometime later and explain it to them. If there are no further questions, how about we get this meeting
started? Sarah, would you like to start?

Sarah: Let’s see. Yesterday I worked with other members of the team and our customer to size the user
stories we are doing for this sprint using a variation of the Fibonacci sequence. I plan on working on the
highest priority story in the backlog and there is nothing at the moment that is blocking me from getting to
work on the story.

Tim: Tyler, your turn.

Tyler: Well, yesterday I worked with Sarah and the customer on the backlog thing, like Sarah said. Today, I
plan on working on a user story and I have no blocks.

Simon: Yesterday, worked with the customer on the product backlog. Today, I plan on spending some
more time with the customer hashing out more of the remaining user stories in the backlog to make sure
we are not missing any key piece of functionality. I have no blocks.

Tim: Great! So you can see, these meetings won’t take long after this first one, and it will give us a chance to
see how we are doing as a team.

Developing the First Story: The Initial Bet Feature
This is where we will start looking at the coding side of the project. With the Initial Bet user story, we will
show you how to develop it from the ground up using test-driven development (TDD) and behavior-
driven development (BDD). You will see how a pair of developers can create a stable feature from writing
their tests first.

Implementing the First Story
Sarah: I'll take the Initial Bet feature. Tyler, do you want to pair with me?

Tyler: Sure, let's do it!

Sarah moves the Initial Bet user story in the In Process swim lane to let people know that this user
story is being work on. The first thing we need to do is to add our first SpecFlow feature.

Adding the First SpecFlow Feature
Once SpecFlow has been installed, add a new feature to the Features folder named 001-
BetAtTheStartOfAGame.feature. Once created, update the feature file so that it matches the feature
shown in Figure 5-6.

CHAPTER 5  SPRINT 1: STARTING A GAME

97

Figure 5-6. Bet feature with the first scenario

If you run the tests, you will, of course, find that there are no step definitions set up for the steps in
our first scenario. As described in Appendix B, SpecFlow outputs the skeleton code for us so that we can
simply copy and paste it into our Steps folder. In order to organize steps, we will group them by function.

Add a new NavigationSteps class to the Steps folder and update with the following code definition:

using TechTalk.SpecFlow.

namespace KojackGames.Blackjack.Acceptance.Tests.Steps
{
 [Binding]
 public class NavigationSteps
 {
 [Given(@"I have navigated to the game play screen to play a hand")]
 public void GivenIAmOnTheGamePlayScreen()
 {
 SiteNavigator.go_to_bet_page();
 }
 }
}

Don’t worry that the SiteNavigator class doesn’t exist; this is merely a placeholder that tells us the
type of behavior we want to provide in order to run our test. In other words, this step in our scenario
describes a user navigating to the bet page, so we need an object that will do just that. We will get back to
this class in just a moment, but before we do, we should press on and fill out the remaining step
definitions.

Add a second class to the Steps folder named GamePlaySteps with the following definition:

using NUnit.Framework;
using TechTalk.SpecFlow;

namespace KojackGames.Blackjack.Acceptance.Tests.Steps
{
 [Binding]
 public class GamePlaySteps

CHAPTER 5  SPRINT 1: STARTING A GAME

98

 {

 [When(@"I click on the bet button")]
 public void WhenIClickOnTheBetButton()
 {
 BetOnHandPage.bet();
 }
 }
}

The GamePlaySteps class has methods that match the scenario steps with code that we have yet to
write, which will confirm the existence of a Deal button and will also click the Bet button.

Again, the code within the step definitions for the GamePlaySteps doesn’t yet exist; however, we are
not concerned with that, we are more concerned with the behavior that the code is trying to portray.
Even though this is only a test and not production code, it is still important to put the same effort into
creating intention, revealing methods and classes.

The last step class that you will create deals with steps that assert on the view of the game. Add a
new class to the Steps folder named GameDisplaySteps and update it as shown in the following code
listing:

using NUnit.Framework;
using TechTalk.SpecFlow;

namespace KojackGames.Blackjack.Acceptance.Tests.Steps
{
 [Binding]
 public class GameDisplaySteps
 {
 [Then(@"I should see the deal button")]
 public void ThenIShouldSeeTheDealButton()
 {
 Assert.That(BetOnHandPage.Has_Deal_Button, Is.True);
 }
 }
}

Again, this code will not compile because the BetOnHandPage object does not exist.

Interacting with the Browser Using WatiN
Now that we have all of the step definitions for our first scenario defined, we can start to add the code
that will perform the actions of the steps, in other words, the code that is currently giving the compiler
lots to moan about. The first piece of code that we will deal with is the non-existent SiteNavigator class
that is used in the NavigationSteps class. The purpose of this class is to navigate to the blackjack site. In
order for this class to operate, it will need to talk to the browser; so before we create the SiteNavigator
class, let's create the browser.

The browser abstraction will use WatiN (see Appendix E) to interact with the web browser during
testing, so go ahead and install this class along with the Cassini web server (also covered in Appendix E)
that we will use when running acceptance tests. You should add these tools and libraries to the local
project folder so that they are referenced locally and can be included when we check the source code in.

CHAPTER 5  SPRINT 1: STARTING A GAME

99

With the WatiN and Cassini libraries in place, add a reference to them from them Acceptance.Tests
project and add a new class named WebBrowser to the Utilities folder with the following definition:

using System.IO;
using Cassini;
using TechTalk.SpecFlow;
using WatiN.Core;

namespace KojackGames.Blackjack.Acceptance.Tests.Utilities
{
 public class WebBrowser
 {
 public const string RelativePath = @"KojackGames.Blackjack.Ui.Web";

 public const int Port = 14387;

 public static Browser Current
 {
 get
 {
 if (!ScenarioContext.Current.ContainsKey("browser"))
 ScenarioContext.Current["browser"] = new IE();
 return (Browser)ScenarioContext.Current["browser"];
 }
 }

 public static void Stop()
 {
 if (ScenarioContext.Current.ContainsKey("browser"))
 Current.Close();
 }

 protected static Server WebServer { get; private set; }

 private static string GetPhysicalPath()
 {
 var dir = Directory.GetCurrentDirectory();

 var index = dir.LastIndexOf(
 "KojackGames.Blackjack.Acceptance.Tests");

 dir = dir.Remove(index);

 return Path.Combine(dir, RelativePath);
 }

 public static void InitializeBrowser()
 {
 WebServer = new Server(Port, "/", GetPhysicalPath());

 WebServer.Start();

CHAPTER 5  SPRINT 1: STARTING A GAME

100

 }

 public static void ShutdownBrowser()
 {
 WebServer.Stop();
 }
 }
}

This class uses WatiN to interact with the browser and also uses the development web server to run
the project. Again, the details of this class can be found in Appendix E, which covers WatiN.

With the WebBrowser class in place, we can now tackle the SiteNavigator that is referenced in the
NavigationSteps class. The role of the SiteNavigator class is to make it easy to navigate the site and
abstract away the details of interacting with the WebBrowser class.

Add a new class named SiteNavigator with the following definition. You will also need to include a
using statement in the NavigationSteps class to leverage this class.

namespace KojackGames.Blackjack.Acceptance.Tests.Utilities
{
 public static class SiteNavigator
 {
 private static void go_to(string relativeUrl)
 {
 WebBrowser.Current.GoTo(
 string.Format("http://localhost:{0}/{1}",
 WebBrowser.Port,relativeUrl));
 }

 public static void go_to_bet_page()
 {
 go_to("bet");
 }
 }
}

The SiteNavigator is very straightforward and provides a façade to navigate the site, hiding away
the details of the URLs. This will make it easier to reuse this class throughout the project.

If you notice we have already made the first design decision of our application, in that the bet page
will map to the URL site/bet.

We have failing tests and code that doesn't compile. Let's work on getting the code to compile.

Interacting with Pages Using the Page Object Pattern
To structure our tests in order to enable easy maintenance as our acceptance test project grows, we will
use the page object pattern.

The GamePlaySteps and GameDisplaySteps classes already use this non-existent class, so you already
know what it’s going to look like based on how we want to interact with it. This is a great design process;
always create objects from the client’s point of view, even if it’s in the test code. Remember that your test
code can still get just as messy as production code if it is not looked after.

Add the new BetOnHandPage to the PageObjects folder with the following definition:

using KojackGames.Blackjack.Acceptance.Tests.Utilities;

CHAPTER 5  SPRINT 1: STARTING A GAME

101

namespace KojackGames.Blackjack.Acceptance.Tests.PageObjects
{
 public class BetOnHandPage
 {
 public static void bet()
 {
 WebBrowser.Current.Button("btnBet").Click();
 }

 public static void deal()
 {
 WebBrowser.Current.Button("btnDeal").Click();
 }

 public static bool has_deal_button
 {
 get { return WebBrowser.Current.Button("btnDeal").Exists; }
 }
 }
}

You will need to add a using statement to the GamePlaySteps and GameDisplaySteps class in order to
satisfy the compiler. The BetOnHandPage simply wraps the calls to WatiN to interact with the page. As
previously mentioned, this abstracts away the implementation of the view and provides a cleaner, more
manageable class for clients to work against.

In order for the web server and browser to be in a clean state for each scenario, you will need to
initialize the browser object and then shut down that browser object after each feature, and close the
current instance of IE after each scenario has completed. SpecFlow has some bindings you can use to
run code during these specific events. Add a new class named FeatureEvents to the Events folder with
the following definition. The code should be self-explanatory.

using KojackGames.Blackjack.Acceptance.Tests.Utilities;
using TechTalk.SpecFlow;

namespace KojackGames.Blackjack.Acceptance.Tests.Events
{
 [Binding]
 public class FeatureEvents
 {
 [BeforeFeature]
 public static void BeforeFeature()
 {
 WebBrowser.InitializeBrowser();
 }

 [AfterFeature]
 public static void AfterFeature()
 {
 WebBrowser.ShutdownBrowser();
 }

CHAPTER 5  SPRINT 1: STARTING A GAME

102

 [AfterScenario]
 public void AfterScenario()
 {
 WebBrowser.Current.Close();
 }
 }
}

You should now be able to build your solution. However, before we run the tests we need to
reference the CassiniWebServer.exe in the Ui.Web ASP.NET MVC project. Ensure that SQL 2008 R2 SQL
Express is installed.

If you run the tests as is, you will receive an error. This is due to the fact that IE is not thread-safe, so
in order to resolve the error you will need to configure NUnit to run in single thread state mode by
adding a configuration file to the Acceptance.Tests project named App.config with the following mark-
up:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <sectionGroup name="NUnit">
 <section name="TestRunner"
 type="System.Configuration.NameValueSectionHandler"/>
 </sectionGroup>
 </configSections>

 <NUnit>
 <TestRunner>
 <add key="ApartmentState" value="STA" />
 </TestRunner>
 </NUnit>

</configuration>

Once the App.Config file is in place, build the solution and run the acceptance tests. Once the tests
have ran you will find that it compiles but fails due to the lack of any production code, as shown in
Figure 5-7.

CHAPTER 5  SPRINT 1: STARTING A GAME

103

Figure 5-7. SpecFlow output from failing step

At this stage, all we have are failing step definitions, but code that compiles. It’s time to start
development.

Using Behavior-Driven Design to Drive the Feature Development
With the acceptance test project set up and with a good idea of what we need to develop, we can now
jump into code. Following the “outside in” development process shown in Figure 5-8, we can start to
discover all of the underlying classes that will form our application, without straying from the required
behaviors of the system as laid out in the acceptance criteria scenario.

CHAPTER 5  SPRINT 1: STARTING A GAME

104

Figure 5-8. The TDD/ BDD process

The first failing step deals with navigating to the bet page, so it makes sense to write a test that
confirms that the Url/bets URL results in an appropriate controller method being mapped to it.

We will use the MSpec framework (covered in Appendix B) to drive the design of the applications
objects, so add the MSpec libraries to the Lib folder of the solution structure and add a reference to it
from the Core.Tests project.

To keep our unit tests organized, add a new folder into the Core.Tests project named
Controller_specs to store all of your controller tests. As you are going to be testing against the ASP.NET
MVC framework, a great third-party framework to assist can be found within the MVC Contrib
framework (http://mvccontrib.codeplex.com/) or by installing it using NuGet. Again, ensure you add
the library to the Lib folder of your solution structure.

Now that you have MSpec and the MvcContrib library in place, you can add your first specification
that will confirm the behavior of the route mapping. Add a new class to the Controller_Specs folder
named route_mapping_specs, as shown in the following:

using System.Web.Routing;

using Machine.Specifications;
using MvcContrib.TestHelper;

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 [Subject(typeof(RouteMapper), "route mapper")]
 public class route_mapping_specs
 {
 private Establish context = () =>
 {

http://mvccontrib.codeplex.com/

CHAPTER 5  SPRINT 1: STARTING A GAME

105

 var routes = RouteTable.Routes;
 routes.Clear();
 RouteMapper.add_mappings_to(routes);
 };

 private It should_map_to_the_bet_route = () =>
 {
 "~/bet/".Route().ShouldMapTo<BetController>();
 };
 }

}
You will notice that we have had to add a reference to the System.Web.Routing and System.Web.Mvc

libraries in order to test the routing maps. Currently, the spec will not compile as the RouteMapper class
that will contain the route mappings does not yet exist. Add this class to the root of the Ui.Web project
with the following definition:

using System.Web.Mvc;
using System.Web.Routing;

namespace KojackGames.Blackjack.UI.Web
{
 public class RouteMapper
 {
 public static void add_mappings_to(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.IgnoreRoute("{*favicon}",
 new { favicon = @"(.*/)?favicon.ico(/.*)?" });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Bet", action = "Bet",
 id = UrlParameter.Optional } // Parameter defaults
);
 }
 }
}

The other class to add is the missing BetController. Add this to the Ui.Web projects controllers folder

as laid out in the following:

using System.Web.Mvc;

namespace KojackGames.Blackjack.UI.Web.Controllers
{
 public class BetController : Controller
 {

 public BetController()
 { }

CHAPTER 5  SPRINT 1: STARTING A GAME

106

 public ActionResult Bet()
 {
 return View();
 }
}

In order to get the BetController to compile, you will need to add a corresponding view. Right-click
on the highlighted View method and select “add view without a master page.” Add the following code to
the view markup:

…

<body>
 using (Html.BeginForm())
 {%>
 <input id="btnBet" type="submit" value="Bet $5" />
 <%
 }%>
</body>
</html>

In order to register your route mappings with the ASP.NET MVC engine, you will need to add the
following code snippet to the Global.asax file:

public static void RegisterRoutes(RouteCollection routes)
{
 RouteMapper.add_mappings_to(routes);
}

Finally, include a reference to the BetController and RouteMapper classes in your
route_mapping_specs class.
You will now be able to run the acceptance test and you should find that the first two steps will pass, as
seen in Figure 5-9.

CHAPTER 5  SPRINT 1: STARTING A GAME

107

Figure 5-9. SpecFlow showing two of the three steps passing

Discovering the Lower-Level Objects Using BDD

With the first two steps passing, we move onto the next failing step—which handles the registering of a
bet and the display of a Deal button signifying to the player that the game is ready to begin.

To drive the design and focus on testing a single class at a time, we will use the RhinoMocks
mocking engine. As with all other third-party libraries, remember to include and reference the library
from the Libs folder so that it is available for other developers when they check the code out of source
code.

Creating a plan of attack, we need to first see what we want to test. Starting with the behavior of the
BetController reacting to a call to place a bet on a hand results in a to-do list, as shown in Figure 5-10,
that will form the basis of the specification. This becomes our plan of attack.

Figure 5-10. Checklist for BetController Behaviors

CHAPTER 5  SPRINT 1: STARTING A GAME

108

Add the following class into the Controller_Specs folder and name it when_betting_on_a_hand, that
covers getting the players id. Note how the name of the specification closely matches our original note;
it’s important to have well-named specifications that reveal what you are asserting.

using Rhino.Mocks;
using KojackGames.Blackjack.Ui.Web.Controllers;
using Machine.Specifications;

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 [Subject(typeof(BetController), "BetController")]
 public class when_betting_on_a_hand
 {
 private Establish context = () =>
 {
 player_token = Guid.NewGuid();

 bet_on_hand_form = new BetOnHandForm() { bet = 5m};

 player_authenticator =
 MockRepository.GenerateStub<IPlayerAuthenticator>();
 player_authenticator.Stub(x =>
 x.get_player_token()).Return(player_token);

 SUT = new BetController(player_authenticator);
 };

 private Because of = () => SUT.Bet(bet_on_hand_form);

 private It should_ask_for_my_player_token = () =>
 {
 player_authenticator.AssertWasCalled(x =>
 x.get_player_token());
 };

 private static BetOnHandForm bet_on_hand_form;
 private static Guid player_token;
 protected static IPlayerAuthenticator player_authenticator;
 protected static BetController SUT;
 }
}

So let’s take a look at what is going on in this specification. The action of posting a BetOnHandForm to
the BetController should result in a call to the IPlayerAuthenticator to obtain the player’s identity
token. In order to use the IPlayerAuthenticator, we have elected to use constructor dependency
injection. This is logical because we need to identify the player when communicating with the server. To
get the spec to compile, create the IPlayerAuthenticator and put it in the Infrastructure project under
a folder named Authentication, as this is a non-domain concern..

using System;

namespace KojackGames.Blackjack.Infrastructure.Authentication
{

CHAPTER 5  SPRINT 1: STARTING A GAME

109

 public interface IPlayerAuthenticator
 {
 Guid get_player_token();
 }
}

Next, add a BetOnHandForm class to the Models folder of the Ui.Web project. This will be the object that
is created by the framework when we hit the Bet button and the form data is posted backed to the server.

namespace KojackGames.Blackjack.Ui.Web.Models
{
 public class BetOnHandForm
 {
 public decimal bet { get; set; }
 }
}

Finally, update the BetController to add a new action and to include the IPlayerAuthenticator as a
constructor parameter. Don’t forget to make the call to the IPlayerAuthenticator from within the new
Bet action to obtain the player’s token.

using System.Web.Mvc;
using KojackGames.Blackjack.Infrastructure.Authentication;
using KojackGames.Blackjack.Ui.Web.Models;

namespace KojackGames.Blackjack.Ui.Web.Controllers
{
 public class BetController : Controller
 {
 private readonly IPlayerAuthenticator _player_authenticator;

 public BetController(IPlayerAuthenticator player_authenticator)
 {
 _player_authenticator = player_authenticator;
 }

 public ActionResult Bet()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Bet(BetOnHandForm bet_on_hand_form)
 {
 var player = _player_authenticator.get_player_token();

 return View();
 }
 }
}

You will need to reference the two new classes from within your when_betting_on_a_hand class by
adding the following two using directives:

CHAPTER 5  SPRINT 1: STARTING A GAME

110

using KojackGames.Blackjack.Infrastructure.Authentication;
using KojackGames.Blackjack.Ui.Web.Models;

If you run the spec, it will pass as shown in Figure 5-11.

Figure 5-11. Passing specification

Because we are going to be writing a number of specifications against the BetController, it’s a good
idea to have a base class that sets up the BetController. Create a new class named with_a_BetController
with the following definition:

using KojackGames.Blackjack.Infrastructure.Authentication;

using KojackGames.Blackjack.Ui.Web.Controllers;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 public abstract class with_a_BetController
 {
 protected static IPlayerAuthenticator player_authenticator;
 protected static BetController SUT;

 public with_a_BetController()
 {
 player_authenticator =
 MockRepository.GenerateStub<IPlayerAuthenticator>();

 SUT = new BetController(player_authenticator);
 }
 }
}

You can now update the when_betting_on_a_hand class to inherit from the base class to simplify
some of the setup code. This will help when the complexity of the BetController grows.

using System;
using KojackGames.Blackjack.Ui.Web.Models;
using KojackGames.Blackjack.Ui.Web.Controllers;

CHAPTER 5  SPRINT 1: STARTING A GAME

111

using Machine.Specifications;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 [Subject(typeof(BetController))]
 public class when_betting_on_a_hand : with_a_BetController
 {
 private Establish context = () =>
 {
 player_token = Guid.NewGuid();
 bet_on_hand_form = new BetOnHandForm() { bet = 5m};
 player_authenticator.Stub(x =>
 x.get_player_token()).Return(player_token);
 };

 private Because of = () => SUT.Bet(bet_on_hand_form);

 private It should_ask_for_my_player_token = () =>
 {
 player_authenticator.AssertWasCalled(x => x.get_player_token());
 };

 private static BetOnHandForm bet_on_hand_form;
 private static Guid player_token;
 }
}

After obtaining the id of the player, the next step in the betting process is to create a command to
send. Add another assertion to the when_betting_on_a_hand class, as seen in the following code listng:

 [Subject(typeof(BetController))]
 public class when_betting_on_a_hand : with_a_BetController
 {
 …

 private It should_map_the_viewmodel_to_a_bet_command = () =>
 {
 bet_command_mapper.AssertWasCalled(x =>
 x.map_from(bet_on_hand_form, player_token));
 };

 …
 }

We will explain what the bet_command_mapper field is after you have updated the base class as listed
in the following code snippet:

using KojackGames.Blackjack.Infrastructure.Authentication;
using KojackGames.Blackjack.Ui.Web.Controllers;
using KojackGames.Blackjack.Ui.Web.Models;
using Rhino.Mocks;

1

CHAPTER 5  SPRINT 1: STARTING A GAME

112

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 public abstract class with_a_BetController
 {
 protected static IPlayerAuthenticator player_authenticator;
 protected static BetController SUT;
 protected static ICommandMapper<BetCommand, BetOnHandForm>
 bet_command_mapper;

 public with_a_BetController()
 {
 player_authenticator =
 MockRepository.GenerateStub<IPlayerAuthenticator>();
 bet_command_mapper = MockRepository
 .GenerateStub<ICommandMapper<BetCommand, BetOnHandForm>>();

 SUT = new BetController(player_authenticator,
 bet_command_mapper);
 }
 }
}

The job of the ICommandMapper<BetCommand, BetOnHandForm> is to convert a BetOnHandForm that is
generated from the posted form data to a BetCommand that can be sent to the domain model for
auctioning. Note also that the BetController requires the ICommandMapper to do its job, so we inject it via
the constructor.

With an idea for the contract and the behavior of the ICommandMapper set, you can now implement it.
As this interface is specific to the Ui.Web project, go ahead and add it to the Models folder of the UI.Web
project, as shown in the following listing. Note how we have used generics to enable reuse of the
contract throughout the application.

using System;

namespace KojackGames.Blackjack.UI.Web.Models
{
 public interface ICommandMapper<out TCommand, in TFrom>
 {
 TCommand map_from(TFrom view_model, Guid player_token);
 }
}

Next, add a BetCommand that will contain all of the information required to action the placing of a bet
for a player; for example, the player’s identifying token and the wager amount.

The BetCommand is part of the core domain, so it will live in the Domain project. Create a new folder
structure within the Domain project starting with a context folder of GamePlay and then an artifact folder
named Commands. When the folder structure is complete, add the BetCommand class to it, as defined in the
following listing:

using System;

namespace KojackGames.Blackjack.Domain.GamePlay.Commands
{
 public class BetCommand

CHAPTER 5  SPRINT 1: STARTING A GAME

113

 {
 public decimal wager { get; set; }
 public Guid player_token { get; set; }
 }
}

All that remains to do in order for the specification to pass is to call the ICommandMapper from within
the overloaded Bet method. Again, inject the ICommandMapper in via the constructor and call the
ICommandMapper in the Bet Action, as seen in the following listing:

using System.Web.Mvc;
using KojackGames.Blackjack.Domain.GamePlay.Commands;
using KojackGames.Blackjack.Infrastructure.Authentication;
using KojackGames.Blackjack.Ui.Web.Models;

namespace KojackGames.Blackjack.Ui.Web.Controllers
{
 public class BetController : Controller
 {
 private readonly IPlayerAuthenticator _player_authenticator;
 private readonly ICommandMapper<BetCommand, BetOnHandForm>
 _bet_command_mapper;
 public BetController(IPlayerAuthenticator player_authenticator,
 ICommandMapper<BetCommand, BetOnHandForm> bet_command_mapper)
 {
 _player_authenticator = player_authenticator;
 _bet_command_mapper = bet_command_mapper;
 }

 public ActionResult Bet()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Bet(BetOnHandForm bet_on_hand_form)
 {
 var bet_command = _bet_command_mapper.map_from(bet_on_hand_form,
 _player_authenticator.get_player_token());

 return View();
 }
 }
}

The next specification to write is to assert that after the BetCommand is created, that it is sent via a bus
to be auctioned. This follows the Command Query Responsibility Segregation architecture that we are
following. The specification is shown in the following listing.

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 [Subject(typeof(BetController))]
 public class when_betting_on_a_hand : with_a_BetController

CHAPTER 5  SPRINT 1: STARTING A GAME

114

 {
 private Establish context = () =>
 {
 player_token = Guid.NewGuid();
 bet_on_hand_form = new BetOnHandForm() { bet = 5m};
 player_authenticator.Stub(x =>
 x.get_player_token()).Return(player_token);

 bet_command = new BetCommand()
 { wager = 5m, player_token = player_token };

 bet_command_mapper.Stub(x => x.map_from(bet_on_hand_form,
 player_token)).Return(bet_command);
 };

 …

 private It should_send_a_bet_command_to_the_bus = () =>
 {
 command_bus.AssertWasCalled(x => x.send(bet_command));
 };

 private static BetOnHandForm bet_on_hand_form;
 private static Guid player_token;
 private static BetCommand bet_command;
 }
}

Again, you will need to update the base class to provide the ICommandBus via the constructor.

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 public abstract class with_a_BetController
 {
 protected static IPlayerAuthenticator player_authenticator;
 protected static BetController SUT;
 protected static ICommandMapper<BetCommand, BetOnHandForm>
 bet_command_mapper;
 protected static ICommandBus command_bus;

 public with_a_BetController()
 {
 player_authenticator =
 MockRepository.GenerateStub<IPlayerAuthenticator>();
 bet_command_mapper = MockRepository
 .GenerateStub<ICommandMapper<BetCommand, BetOnHandForm>>();
 command_bus = MockRepository.GenerateStub<ICommandBus>();

 SUT = new BetController(player_authenticator,
 bet_command_mapper, command_bus);
 }
 }
}

CHAPTER 5  SPRINT 1: STARTING A GAME

115

The ICommandBus forms part of the framework for our Command Query Responsibility Segregation
(CQRS) architecture. It will live in the Infrastructure project under the folder structure of Cqrs/Command.
The ICommandBus has a single method that accepts the BetCommand, as shown in the following code listing:

namespace KojackGames.Blackjack.Infrastructure.Cqrs.Command
{
 public interface ICommandBus
 {
 void send(BetCommand bet_command);
 }
}

There is an issue with this, though, as the job of the ICommandBus is to send all of the domain commands
and not have a method for each. With this in mind, create a marker interface called ICommandBus. Again,
add it to the Cqrs/Command folder with the following definition:

namespace KojackGames.Blackjack.Infrastructure.Cqrs.Command
{
 public interface ICommand
 {
 }
}

You can now update the ICommandBus interface to accept an ICommand rather than a BetCommand.

namespace KojackGames.Blackjack.Infrastructure.Cqrs.Command
{
 public interface ICommandBus
 {
 void send(ICommand bet_command);
 }
}

This means, of course, that now the BetCommand needs to implement the new ICommand marker
interface; so go ahead and add this to the BetCommand.

using System;
using KojackGames.Blackjack.Infrastructure.Cqrs.Command;

namespace KojackGames.Blackjack.Domain.GamePlay.Commands
{
 public class BetCommand : ICommand
 {
 public decimal wager { get; set; }
 public Guid player_token { get; set; }
 }
}

To make the specification pass, you will again need to modify the BetController class as shown in
the following listing.

using System.Web.Mvc;
using KojackGames.Blackjack.Domain.GamePlay.Commands;
using KojackGames.Blackjack.Infrastructure.Authentication;
using KojackGames.Blackjack.Infrastructure.Cqrs.Command;

CHAPTER 5  SPRINT 1: STARTING A GAME

116

using KojackGames.Blackjack.Ui.Web.Models;

namespace KojackGames.Blackjack.Ui.Web.Controllers
{
 public class BetController : Controller
 {
 private readonly IPlayerAuthenticator _player_authenticator;
 private readonly ICommandMapper<BetCommand, BetOnHandForm>
 _bet_command_mapper;
 private readonly ICommandBus _command_bus;

 public BetController(IPlayerAuthenticator player_authenticator,
 ICommandMapper<BetCommand, BetOnHandForm> bet_command_mapper,
 ICommandBus command_bus)
 {
 _player_authenticator = player_authenticator;
 _bet_command_mapper = bet_command_mapper;
 _command_bus = command_bus;
 }

 …

 [HttpPost]
 public ActionResult Bet(BetOnHandForm bet_on_hand_form)
 {
 var bet_command =
 _bet_command_mapper.map_from(bet_on_hand_form,
 _player_authenticator.get_player_token());

 _command_bus.send(bet_command);

 return View();
 }
 }
}

As you can see the ICommandBus is injected via the constructor and is passed into the BetCommand in
the overloaded Bet method.

The final specification on our checklist is to ensure that the controller redirects the client back to the
original Bet action in order to avoid the customer resubmitting by mistake. Also, the user will want to see
confirmation of his action and so in a later specification the behavior to present the placed bet will be
added to the original Bet method.

Update the when_betting_on_a_hand class to include the new specification assertion, as shown in the
following listing:

…
using MvcContrib.TestHelper;

namespace KojackGames.Blackjack.Core.Tests.Controller_specs
{
 [Subject(typeof(BetController))]

CHAPTER 5  SPRINT 1: STARTING A GAME

117

 public class when_betting_on_a_hand : with_a_BetController
 {

 private Because of = () => result = SUT.Bet(bet_on_hand_form);

 …

 private It should_return_a_redirect_to_display_the_bet_page = () =>
 {
 result.AssertActionRedirect().ToAction("Bet");

 };

 private static BetOnHandForm bet_on_hand_form;
 private static Guid player_token;
 private static BetCommand bet_command;
 private static ActionResult result;
 }
}

This assertion utilizes another helper from the Mvc Contrib library to test that the result of the
controller method call is a RedirectToAction ActionResult.

There are no other supporting classes to create for this action, so go ahead and update the
BetControllers Bet action to return RedirectToAction method back to the original Bet action, as seen in
the following listing:

[HttpPost]
public ActionResult Bet(BetOnHandForm bet_on_hand_form)
{
 var bet_command = _bet_command_mapper.map_from(bet_on_hand_form,
 _player_authenticator.get_player_token());

 _command_bus.send(bet_command);

 return RedirectToAction("Bet");
}

This completes the demonstration of how you can drive the design of you application via your
acceptance criteria and then discover the lower-level object using behavior-driven design.

If you compare the checklist that we wrote in Figure 5-10 to the output from MSpec in Figure 5-12,
you will see a very near match. Like we said before, it’s a great idea to jot down what behaviors and what
responsibilities you feel that the system under test has before you start to program.

CHAPTER 5  SPRINT 1: STARTING A GAME

118

Figure 5-12. Passing specifications for the BetController

Now that we have implemented the first feature and we have confidence that it works, it's now
ready for QA. We are sure you are wondering where the QA people are on the team. Well, the main QA
for the project are the automated tests, with the developers handling the more hands on portions of
testing of the application. To see the entire code, you can download from the Apress web site
(www.apress.com).

Day 4
At this point we are partway through the first half of our initial two-week sprint. Let’s look in on the team
to see where they are at with the user stories that they committed to for this sprint.

Daily Stand-Up
Tim: All right, everyone. Let’s get the meeting started. Tyler, would you like to start us off?

Tyler: Sure, let’s see. I continued my pairing with Sarah on the Initial Bet feature. We have finished coding
the feature, and have all the Acceptance and WatiN tests passing, so now it is ready for one of us to give it a
smoke test, and show Simon what we implemented. Today, I plan on taking the next card on the board,
which I believe is the Deck of Cards feature, and working on it with Sarah. And, I have no blocks.

Tim: Sarah, you’re next.

Sarah: Well, I worked with Tyler on the Initial Bet feature, and got it ready for testing like Tyler said. Today
I plan on pairing up with Tyler on the next user story, and I have no blocks.

Simon: Okay, I guess it’s my turn now. I spent some time answering questions from the developers on the
user stories, as well as some time with the customer going over ordering of the user stories for future
sprints. Today, I plan on getting with Tyler and/or Sarah to look over the user story they have completed. I
have no blocks.

http://www.apress.com

CHAPTER 5  SPRINT 1: STARTING A GAME

119

Tim: Okay. I wanted to share with you where we stand on the current sprint. From the looks of the burn-
down chart, we are right on schedule with everything we planned for this sprint. [(See Figure 5-13)]. I also
wanted to reiterate that I am here for you all. If there is something that is blocking you from doing your
work, let me know and I will try my best to remove it.

Tyler: Well, now that you mention it, I am having an issue that is beginning to affect my productivity.

Tim: What is the problem?

Tyler: Well, I have been having issues running Visual Studio and the application on my machine. The
same setup on Sarah’s machine seems to run fine, but on mine it goes at a crawl. Upon further research,
we found that Sarah’s machine has 4GB of RAM whereas my machine only has 2GB of RAM. It’s really
beginning to affect how much I get done each day. I didn’t think that was something you handled, so that’s
why I didn’t bring it up.

Tim: No, anything that hinders your daily work should be brought to my attention so we can discuss it and
see if we can fix it. Your machine definitely needs to match Sarah’s machine when it comes to specs. I will
get in touch with some people and see if I can get some more memory for you machine.

Tyler: Thanks!
Tim: Well, that’s all for now. Everyone have a great day.

Figure 5-13. Burn-down chart, Day 4 of Sprint 1

Working on the Next User Story: Deck of Cards
Sarah: All right, Tyler. Let’s get started on the Deck of Cards feature. Do you have some ideas on this one?

Sarah moves the Deck of Cards user story to the In Process swim lane to let the team and anyone
outside the team know what is currently being worked on. An updated shot of the task board is shown in
Figure 5-14.

CHAPTER 5  SPRINT 1: STARTING A GAME

120

Figure 5-14. Updated task board

Tyler: No, not really, I think we should get Simon involved to make sure we are implementing what we
need to be implementing. Do you think that we should get Tim involved, as well?

Sarah: I don’t think so. If we have any questions, I am sure we can pull him into the meeting then. We
should give this a shot by ourselves.

Sarah and Tyler sit down with Simon to go over the user story and the acceptance criteria for the
story. At the end of the conversation, the developers have a better understanding of what is required for
this user story.

Sarah: How about I drive for a while on this one?

Tyler: You drove a lot on the last feature. I would like to get some time at the keyboard. What if we did
Ping-pong programming?

Sarah: What is that?

Tyler: It’s a pair-programming style where one of the developers writes a test and then hands off the
keyboard to the other developer so she can write the code to get the test to pass. This way, we both can have
some time driving.

Sarah: That sounds like an interesting idea. Wouldn’t that slow us down, though?

Tyler: Maybe at first, but as time goes on and we get better at it, the more efficient we’ll get at it. I think the
end improvements are worth the up-front cost.

Sarah: I think this is something that we should bounce off Tim.

Sarah and Tyler find Tim where they explain their plan to him.

Tim: I like the idea, try it out on this user story. Only do it for this user story in this sprint and at the end of
the sprint, we can talk about using it long term.

CHAPTER 5  SPRINT 1: STARTING A GAME

121

Adding the SpecFlow Feature
To start off, add a new feature to the Features folder in the Acceptance.Tests project named 021-
DeckOfCards.feature. Update the file to contain the feature we need for this user story, as shown in
Figure 5-15.

Figure 5-15. Deck of Cards feature

Adding Scenarios
Now that we have added our feature file and feature to the system, let’s add some scenarios to the
feature.

Update the 021-DeckOfCards.feature with the following scenarios, see the Figure 5 -16.

Figure 5-16. Scenarios for the Deck of Cards feature

CHAPTER 5  SPRINT 1: STARTING A GAME

122

 Note Even though we have listed four scenarios in the feature file, for the sake of brevity, we are only going to
go through one of the scenarios.

When you run the tests, you will see that there are no step definitions defined for the steps in the
“check for 52 different cards” scenario. SpecFlow was nice enough to output the skeleton of these steps
for us.

Add a new steps file to the Steps folder called CardDeckSteps.cs and update the file with the code
skeleton that was generated by SpecFlow, as follows:

[Binding]
 public class CardDeckSteps
 {
 [Given(@"I have a new deck of 52 cards")]
 public void GivenIHaveANewDeckOf52Cards()
 {
 var deck = new Deck();
 deck.initialize();
 current_deck = deck;
 }

 [When(@"I take ""(.*)"" cards")]
 public void WhenITakeCards(int number_of_cards_to_take)
 {
 var deck = current_deck;

 int no_of_cards_left_to_take = number_of_cards_to_take;

 while(no_of_cards_left_to_take > 0)
 {
 cards_taken.Add(deck.take_card());
 no_of_cards_left_to_take --;
 }
 }

 [Then(@"I should have 52 unique cards")]
 public void ThenIShouldHave52UniqueCards()
 {
 var cards = cards_taken;

 Assert.That(cards.Count(), Is.EqualTo(52));

 foreach(var card in cards)
 {
 Assert.That(cards.Count(x => x.Equals(card)), Is.EqualTo(1));
 }
 }

CHAPTER 5  SPRINT 1: STARTING A GAME

123

 [Then(@"an empty deck")]

 public void ThenAnEmptyDeck()
 {
 Assert.That(current_deck.no_of_cards_left_in_deck, Is.EqualTo(0));
 }
 }

Implementing the “Check for 52 Different Cards” Scenario
Now that we have the steps we need to get the steps to compile, one thing you will notice is that we need
to create a Deck object. To do this, go to the KojackGames.Blackjack.Domain project and create a new
folder under the Model folder called CardDeck. This folder will house all the objects related to a deck of
cards. Inside this folder create a new file called Deck.cs and update it with the following code:

public class Deck
 {
 public Deck()
 {
 }
 }

Remember, right now we are only concerned about getting the test to fail and to do that we only
need to get it to compile.

Inside the Deck object we need to create an Initialize method. Add the following code to the Deck
object:

public void initialize() {}

Now let’s talk about the current_deck variable. This variable is part of the steps class and will be
used to store the Deck object between tests. This is done because we are only testing against one Deck
object. Add the following code to the CardDeckSteps.cs file:

public Deck current_deck
 {
 get { return (Deck)ScenarioContext.Current["current_deck"]; }
 set { ScenarioContext.Current["current_deck"] = value; }
 }

We also need to have a variable in the step class to store the cards already pulled from the deck. Add
this property to the CardDeckSteps.cs file.

public List<Card> cards_taken
 {
 get
 {
 if(!ScenarioContext .Current.ContainsKey("cards_taken"))
 ScenarioContext.Current["cards_taken"] = new List<Card>();

CHAPTER 5  SPRINT 1: STARTING A GAME

124

 return (List<Card>)ScenarioContext.Current["cards_taken"];

 }
 set { ScenarioContext.Current["cards_taken"] = value; }
 }

Finally, to get this test to compile we need to add a take_card method as well as a property to tell us
if there are any cards left in the deck. Add the following code to the Deck object.

 public int no_of_cards_left_in_deck { get { return -1; }}

public Card take_card()
 {
 return new Card();
 }

This method should return a Card from the deck. We now need to add a Card object to the domain,
as well. Add a new file to the KojackGames.Blackjack.Domain project under the Model\CardDeck folder
called Card.cs.

We should have compiling tests that fail. Now we need to get them to pass. To get these tests to pass,
we need to implement two pieces. We need to implement the take_card method as well as the
no_of_cards_left_in_deck property on the Deck object. To implement them, we are going to need to add
another object to the domain. We also need a way to keep track of the position of a card in the deck. To
do that, we will create a DeckPosition object in the domain project to store that information.

public class DeckPosition
 {
 public int position_in_pack { get; set; }
 public Card card { get; set; }
 }

We will now create a private variable to house a list of these types of objects.

private IList<DeckPosition> _cards_in_deck;

With the private variable in place, we can implement the take_card method. Update the take_card
method to look like the following.

public Card take_card()
 {

var card = _cards_in_deck.First();
_cards_in_deck.RemoveAt(0);

 return card.card;
 }

With that implementation, we have one passing test and one failing test. To get the remaining
failing test to pass, we need to update the no_of_cards_left_in_deck property with the following code:

public int no_of_cards_left_in_deck { get { return _cards_in_deck.Count(); } }

CHAPTER 5  SPRINT 1: STARTING A GAME

125

With that we have finished the implementation of the scenario. The remaining scenarios are
available for you to finish, or you can look at the finished results by downloading the code.

Day 6
Entering the second week of the first sprint, the team starts to see some of the fruits of their labors.

Daily Stand-Up
Tim: All right, let’s get going. Sarah, you have the honors.

Sarah: Well, I worked with Tyler to finish up the Deck of Cards feature. All the code is implemented and the
tests are passing, so we are ready to show Simon the user story and handle the testing of it. One thing I
want to add was that Tyler and I used a pair-programming style called “ping-pong programming” and it
worked very well for us. If anyone wants to know more about it, I can stay after the meeting and answer
questions. Today, I will start on the Start Game feature, and I have no blocks.

Tim: Sounds great! I love hearing how you two are trying different approaches to pair programming. Do
you feel that this impacted your capacity for this sprint?

Sarah: No, we were a little slow at first, but towards the end of the implementation we were cranking out
tests and code pretty quickly.

Tim: Okay, Tyler, you are next.

Tyler: Let’s see. Like Sarah said, I worked with her on the Deck of Cards feature, and with that finished, I
will probably pair up with Sarah again on the Start Game feature. I have no blocks.

Simon: I worked with the customer and answered questions from the developers. I also looked over the
Initial Bet user story and I have signed off on it. I am planning on getting ready for the product demo and
talking with the customer about the upcoming sprint. I have no blocks.

Tim: Awesome! We have our very first story done. Congratulations team! Everyone have a great day!

Final User Story of the Sprint: Start Game
Tyler: Sarah, shall we start on the last user story?

Tyler moves the Start Game user story to the In Process swim lane. An updated shot of the task
board is shown in Figure 5-17.

CHAPTER 5  SPRINT 1: STARTING A GAME

126

Figure 5-17. Updated task board

Sarah: I am not sure at all about the domain aspects of this. We need to grab Simon for a little bit and
hammer this out.

Tyler: Okay. Isn’t it nice that we have this avenue for “real-time” communication with the customer on
questions about the application? I mean, the old methodology we had told us to implement what was on
the spec and if we had questions, to use our best guess. It feels refreshing to be able to get the questions
answered up front so that we are creating what the customer needs.

Sarah: I would have to agree. In a way it takes a lot of guesswork out of our time.

Adding the SpecFlow Feature
Let’s start by adding a new Feature file to the system. Create a new feature file called 002-
DealCards.feature. Update the file to contain the feature we need for this user story ,as shown in
Figure 5-18.

Figure 5-18. Deal Cards feature

Adding Scenarios
Now that we have added our feature file and feature to the system, let’s add some scenarios to the
feature.

Update the 002-DealCards.feature with the scenario shown in Figure 5-19.

CHAPTER 5  SPRINT 1: STARTING A GAME

127

Figure 5-19. Scenarios for the Deal Cards feature

An interesting thing about this feature is that a large portion of the setup for this feature is already
created by the previous features. For instance, navigating to the game play screen and placing a bet is
already covered in the Initial Bet feature. To implement this feature, we will concentrate on the Deal
button and the deck.

Go to the GameSetUpSteps.cs file and add the following step:

[Given(@"the deck contains the following cards:")]
public void GivenTheDeckContainsTheFollowingCards(Table table)
{
 var mapper = new TableObjectMapper();
 var game_builder = new GameBuilder().find_game_by_player_id(PlayerToken.player_id);

 int card_position = 1;
 foreach(var row in table.Rows)
 {
 game_builder.add_to_deck(mapper.create_deck_row_from(row, card_position));
 card_position++;
 }

 var game = game_builder.build();

 DataBaseHelper.save_or_add<BlackJackTableRow>(game);

CHAPTER 5  SPRINT 1: STARTING A GAME

128

}

What this step is going to do is verify that the deck contains the cards we requested in the scenario.
In this step we are also introducing a new object called TableObjectMapper. This object is a utility object
that is only used in testing, and would not be shipped out with production code. What this object does is
take the table parameter that is passed into the step method and converts it to a collection of a new type
called a DeckRow object.

public class TableObjectMapper
 {
 public DeckRow create_deck_row_from(TableRow row, int card_position)
 {
 DeckRow deckRow = new DeckRow();

 var suit = EnumParser.parse_enum<Suit>(row["Suit"]);
 var value = EnumParser.parse_enum<CardValue>(row["Value"]);

 deckRow.suit = (int)suit;
 deckRow.card_value = (int)value;
 deckRow.position_in_pack = card_position;

 return deckRow;
 }
 }

The DeckRow object is another utility object that easily stores the card information for use later in the
test.

Now, with the Deal button, you have a lot of the same infrastructure as in the Initial Bet feature.
Instead of duplicating code here, we wanted to give you an overview of what you are testing and
implementing. You will be testing the interaction of the web page with their related controllers as before.
You can see the finished result in the code available for this book.

Day 10
Congratulations, you've made it through your first sprint! Today, the team has its sprint retrospective
and performs a sprint demo for the customer.

Sprint 1 Retrospective
Tim: Well, team, you made it through your first sprint. Congratulations. Now it’s time for us to have the
retrospective meeting. The retrospective is a meeting in which the team gets together and reflects on the
sprint that was. We look at the things that went right in the sprint and the things that went wrong in the
sprint.

Sarah: Why would we want to do that?

Tim: We want to have these meetings so that we can be proud of the things we as a team accomplished.
This positive reinforcement will strengthen our resolve to continue to do the right thing even when the
easier thing to do would be to revert back to the old way of doing. Just as we want to be proud of the things
we accomplished, we also need to address the things we did not do so well.

CHAPTER 5  SPRINT 1: STARTING A GAME

129

Scrum and agile as a whole are about iterative change. We may not get it right the first time out. If we
don’t, then we try something else and we keep trying something new until we find the solution to our
problem. Other members of the team might not know that a person is having a problem. The problems
could range from the technical side, like “the test suite we are using is causing major performance
problems” to “I don’t feel like we are getting enough direction from the product owner or the customer.”
The sooner we know these issues, the sooner we as a team can start working on solutions.

Sarah: What is the format for these meetings? How are we going to feel comfortable enough to talk about
the problems we are having?

Tim: The format of the meeting can vary from sprint to sprint. We keep it changing so we don’t get stuck in
a rut of using the same structure to produce the same comments. This time I’d like to do the following.
When each person comes into the room, they will get a set of Post-it notes in three different colors: red,
blue, and green. At the start of the meeting someone will set a timer for three to five minutes. When the
timer starts, everyone will have that time to write their thoughts on the Post-it notes. There will be no
talking at this time, so there cannot be any influence on your thoughts from anyone else.

Tyler: What do the different color Post-it notes mean?

Tim: On the green Post-its, jot down your opinions on things that went well during the sprint. Use the blue
Post-its to note your thoughts on things that were confusing during the sprint. Finally, on the red Post-its,
write your thoughts on things that went wrong or caused trouble during the sprint. The colors give
everyone a visual impression of any major issues during the sprint.

Once the time is up, we will gather everyone’s notes and put them on the board. As the ScrumMaster, I,
along with one other person, will try to group all the notes into general categories. Once we have done the
grouping, we will read aloud the notes from each group and discuss them. We will try to generate any
action items from the blue and red notes. We will keep doing this until we have gone over all the
categories. If there are no further questions, let’s get started.

The timer buzzes after five minutes.

Tim: Okay, time is up. Sarah, will you help me gather up all the notes and group them into general
categories?

Sarah: Sure.

Tim and Sarah organize the Post-its into three categories for this retrospective. They are as follows:

• Testing

• Process

• Team Dynamics

Tim: Let’s start with the Testing category. We seem to have a lot of the green, or “good things,” notes here so
let's read off a few.

Tim reads the following comments:

• “Testing showing bugs earlier in the process.”

CHAPTER 5  SPRINT 1: STARTING A GAME

130

• “Confident in refactoring code due to having tests wrapped around the code in
 question.”

• “Unit tests rock!”

Tim: Since there are not any blue or red notes in the Testing category, which is great, let’s move on to the
next category, which is Team Dynamics. Let’s read the positive notes before we address any problem notes.

Tim reads the following positive comments:

• “With acceptance criteria we know when something is really done.”

• “Daily stand-ups giving us an opportunity to address roadblocks as soon as
 possible.”

• “Ping-pong programming was great!”

Tim: There's a red Post-it, or a critical note, saying that the build is breaking regularly.

Sarah: I wrote the red Post-it. While I was working on my feature, I would update the latest but learned
that the build was breaking regularly. I have no way of easily knowing that the build was broken and every
time I got latest or tried to run the tests locally, I would get errors that were causing me real headaches. I
think we need a way to notify the team that the build is broken. That way, while it is broken, they know
not to check in or get the latest version of the code until the build is working again.

Tim: How about we set up the e-mail notification on CruiseControl. [(See Appendix G.)] That way, when
the build breaks, CruiseControl will send out an e-mail to all of us to let us know.

Sarah: Sounds like a good idea. If it’s all right with everyone, I would like to take this action item. I want to
know more about the inner workings of CruiseControl and this would be as good of a time as any.

Tim: Consider it yours. Let's move onto the Process category. This category had one critical point and one
“uncertain” point. The red note states, “Daily stand-ups seem to be long.” The blue note reads, “I'm being
pulled away to another project too often.”

Tyler: I put the red card up. The daily stand-ups seem to be over-running the intentional 10 minutes
because we like to go into problem-solving sessions. This causes issues because not everyone needs to be
concerned with what is being discussed. I'd rather go back and continue my work.

Tim: Good point, Tyler. As a reminder, daily stand-ups are only to be used to answer the following
questions: what did you do yesterday, what are you doing today, and do you have any roadblocks
preventing you from getting your work done. So as a team we need to be aware of that. If there are
additional discussions or problem-solving sessions that need to happen, which is very likely, bring the
needed people aside after the stand-up and have a “meeting after the meeting.” The purpose of the
"meeting after the meeting" is for a targeted group of people to discuss issues while the other team
members return to working. As ScrumMaster, I'll take this is as an action item to keep everyone on track to
ensure that the stand-ups are effective and not overly long. Let's move on to the blue card, which reads,
“I'm being pulled away to another project too often.”

Sarah: I wrote this card. It's very frustrating because the expectation was that I would spend the majority of
my time on this project while wrapping up some loose ends on my previous project. During this past
sprint, the project manager for the other project kept pulling me off this project to fix issues, although I'm
not the only person capable of handling them. This takes time away from me working on this project.

CHAPTER 5  SPRINT 1: STARTING A GAME

131

Tim: This is definitely a roadblock and sounds like an action item. I know the project manager you're
referring to. I'll talk with him and see what kind of solution we can come up with. We need you on this
project, so I'll handle this and follow up with him.

Sarah: Thanks. I don't want to get anyone in trouble, but that's surely an issue.

Tim: No worries. That took courage to bring up. Thanks for informing me. I'll follow up with you once I've
talking to the project manager.

Sarah: Great, thanks.

Tim: Looks like we have discussed all the categories of the retrospective and we are done with the
retrospective. Let’s recap the action items from this meeting.

Tim states that action items from the sprint are as follows:

• Set up an e-mail notification on CruiseControl to alert team members when the
build is broken. This is assigned to Sarah to handle.

• Keep everyone on focused so that the team can have short, yet effective daily
stand-ups. This is assigned to Tim.

• Speak with the project manager on Sarah’s previous project regarding her capacity
on this current project. Tim also takes this action item.

Tim: Thanks, everyone, for your time. This ends our first retrospective!

Product Demo
At the end of each sprint, the team will sit down with the customer, at a time that is convenient for the
customer, to demonstrate all the user stories that were completed in the sprint. This product demo adds
a layer of transparency to the project. The development team no longer remains closed off without
communicating until the end of the project—when they ultimately deliver a product that isn’t what the
customer wanted. The team also gets feedback from the customer during these demo meetings to clarify
that they are working on the items the customer deems most important.

Let’s look in on the team as they sit down with Bill, the customer and senior sponsor, and Simon to
show what they have accomplished in this iteration.

Tim: Bill, we wanted to take this time to show you all that the team accomplished in this sprint. This is
also a chance for you to give us feedback on what we did. Taking a look at the screen, is it what you
envisioned? Are there things you would like us to add to features going forward? Or are there things that
you see now that you don’t need? Let us know things of that nature. Simon has already seen these features
and has given us some good feedback on them. This is your chance to look over the features and give us the
final OK on them. If you do want any changes, we can address them as user stories in the upcoming
sprints.

Bill: That sounds great. I would very much like to see the progress being made. It helps me feel more
confident that the project is moving along and the team is creating what Kojack Games really wants. I was
wondering, is this code for real? What I mean is, can we use this code at any time?”

Tim: Bill, one of the main points of Scrum is that the team creates potentially releaseable code at the end of
every sprint. What this means is that if you ever wanted us to push code to production at the end of a

CHAPTER 5  SPRINT 1: STARTING A GAME

132

sprint, we would be able to do that without hesitation. I can’t stress this enough. Though we want your
feedback on what we are about to show you. I want to make sure that the team is delivering what you
want this application to be. If we’re not, then tell us and we can make the necessary changes to give you
what you need and want.

If there are no further questions, let’s begin with the demo. One of the first things the team completed was
the Initial Bet feature. With this story complete, the player can click on the Bet button to place his initial
wager. Once the user clicks on the button, he will also see the Deal button and the wager that he placed.
[(See Figure 5-20.)] The code generated from the story passed all the acceptance criteria and we now
consider this story done. Bill, what are your thoughts on this piece?

Figure 5-20. The result of clicking the Bet $5 button

Bill: I think it looks good. It does everything we need it to do when the user is placing an initial bet. Now
that I see it firsthand, I don’t see anything I would like to change. I hope we can build on this, but for now
keep it as it is. What else do you have to show me?

Due to the size of this application and for the sake of readability, we have elected to skip over the

remaining parts of the product demo. The customer, Bill, was shown every feature that was completed
by the team and his feedback on it was positive. There were, however, a few minor changes in the
product from Simon’s perspective.

Summary
This was your first glimpse into the Blackjack project. While going through this chapter you may have
asked yourself why there weren’t any discussions about the baseline architecture or load or stress
testing. The reason is that we wanted to concentrate on the team dynamics first and the code second.

Through witnessing how team dynamics evolve, you learn a vital lesson. You learn how
communication is key in software development and how Scrum facilitates conversations. This is done
through the different types of meetings, such as daily stand-ups, sprint planning, sprint retrospectives,
and sprint demo meetings. These meetings give the team and the customer avenues where they can
discuss the project and any ideas or concerns they may have about it. The developers are front and
center in these discussions with the customer.

Communication is key. We cannot stress this enough. If team members and customers aren’t
talking, then no one is certain that what is being developed and delivered is accurate.

You also saw how the team broke down a user story to create testable working code using BDD and
TDD practices. By starting with a set of behaviors that the customer wanted the feature to have, the
developers were able to generate a test bed. Once the tests were written, they generated the code to get
the tests to pass. This is also known as “red-green-refactor.” By starting with behavior that the customer

CHAPTER 5  SPRINT 1: STARTING A GAME

133

wants, we are more in line with producing something the customer needs. Another nice part about this
is that we are not writing as much bloat code into our system. We are only writing the bare minimum of
code needed to get the test to pass—nothing more, nothing less.

A side effect of this minimalist approach on code generation is that our technical debt should be
kept to a minimum as we move forward into the project.

If you would like a more in-depth look at the framework that is driving this application, check out
the appendices at the end of this book. If you would like to have a deeper dive into the code itself, skip to
Chapter 9, which reviews the baseline architecture.

Finally, you saw a glimpse of a product demo and the team’s transparency with showing the
customer what was accomplished in the sprint. This presented an avenue for discussion on the
customer’s needs. By getting the customer involved early in the process, you can be sure that you are
producing customer value.

In the next chapter the team takes the action items from this sprint’s retrospective, as well as the
customer feedback to plan and layout Sprint 2.

C H A P T E R 6

135

Sprint 2: Playing a Basic Game

With our first development sprint under our belt, we are learning what Scrum activities occur during a
sprint. These include sprint planning, daily stand-ups, keeping track of user stories using a task board,
and having a sprint retrospective.

Sprint Planning Meeting
The team has gathered in the conference room. Simon has brought in user stories for the team to work
on, discuss, and size.

Tim: Good morning, team. We had a great Sprint 1. For this sprint, we'll do like we did in Sprint 1: size
the stories and work with Simon on what needs to be done for this sprint. Before we begin, I would like to
go ahead and define the theme for this sprint.

The Theme of the Sprint
Tim: The theme for Sprint 2 is going to be “Playing a Basic Game.” The reason for this is that in the last
sprint, we were able to implement what was needed to start a game. Now, building on that success, the
next thing we want to be able to do is play a game. Again, I want to reiterate that a theme is a way to show
a common purpose of all the user stories we do in a sprint, and if you find yourself working on items that
don’t reflect the theme of the current sprint, let me or Simon know so we can address the situation.

Determining Availability and Capacity
Tim: Now it is time for us to determine any availability issues that may crop up this sprint. Sarah, as a
follow-up to our last sprint retrospective meeting, I spoke with your project manager regarding your
availability for this project. He agreed that he could get another developer involved, so he should stop
pulling you away from this project. Starting with this sprint, your availability should be greater than it
was in the previous sprint.

Sarah: Thanks, Tim, for following up. I’m excited to have more availability for this project. I will keep you
apprised of changes.

Tim: Thanks Sarah. Please do keep me apprised. Looking at the calendar, there are no holidays during
this next sprint. Is anyone taking time off during the next two weeks?

Sarah: No, I should be here.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

136

Tyler: Me too.

Simon: Me three.

Tim: Great. Everyone should be here the entire the sprint. Well, based on the last sprint, we were able to
complete 15 points. By using that as a basis, we have a capacity of 15 points. With that being said, let's get
on with planning the user stories we decide to commit to!

Planning Poker
Simon: All right gang, here is the first user story. We are going to start with the Game Play: Hit user story.
[(See Figure 6-1.)] When this user story came up in the release planning, we mentioned that a player will
need the ability to receive an additional card from the deck if they ask for it. The T-shirt size for this user
story is an S.

Figure 6-1. User story: Hit

Tyler: Simon, what can you tell us about this story?

Simon: Well, the basics of this user story are to give the player the chance to get closer to 21 by giving her
another card from the deck. There are guidelines for giving the player the card.

Tyler: What are these guidelines? Can we turn these guidelines into the acceptance criteria?

Simon: Yes, that’s a good idea to turn these into the acceptance criteria.

Simon tells the team the following guidelines for this user story:

• There must be a game in progress before this functionality is available to the
player.

• The card dealt to the player from the dealer must be face up.

• The player can receive an additional card until he either reaches a score of 21 or he
goes over 21.

Tim: If there are no further questions, please vote on the level of complexity.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

137

Tyler: I vote a 5.

Sarah: I vote an 8.

Tim: Sarah, why did you vote an 8?

Sarah: I choose an 8 because I think there will be a large amount of work involved with getting the game in
a state that we can implement the hit.

Tyler: Actually, Sarah, it won’t be that bad at all. Most of the framework to get us to that point is already
implemented.

Sarah: Ah, I didn’t realize that.

Tim: All right, round two of voting.

Tyler and Sarah: Five.

Tim: We have a 5. Next!

Simon: The next user story is Game Play: Stand. [(See Figure 6-2.)] This user story gives the player the
ability to stand on her hand. What I mean by this is the player has the ability to say, “I don’t want any
more cards; this is the hand I am using against the dealer.” In the release planning, this user story was
sized as an S.

Figure 6-2. User story: Stand

Tyler: What are the acceptance criteria for this user story?

Simon: Currently, it looks like there are no acceptance criteria.

Sarah: How about we work on some? How many times can a player stand during a hand?

Simon: Well, once a player stands, his hand is done. So a player can only stand once per game.

Tyler: Okay, I have another question. At what point can the player stand during the game?

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

138

Simon: Well, the player can stand at any point during the game, except in the following two scenarios: the
player has a score of 21, at which point he can no longer play. Or, the player goes bust, at which point he
has lost his hand.

Sarah: So, let’s sum it up.

Sarah lists the following as the acceptance criteria:

• A player can only stand once per hand.

• A player cannot stand once he has hit 21.

• A player cannot stand once he has gone over 21.

Simon: That sounds great! Let’s go with that.

Tim: If there are no questions, place your votes.

Tyler: There is a lot in common with this user story and the Hit user story. I would almost consider this an
add-on to that story. With that in mind, I vote a 3 for this user story.

Sarah: I agree with Tyler on this. I vote a 3 as well.

Tim: All right, 3 it is. Simon, what is next?

Simon: Winning. The next user story is defining how to win a game. [(See Figure 6-3.)] In order for a
player to win a hand of blackjack, he must be closer to 21 than the dealer, without going bust—or over 21.
If the player goes over 21, then he has lost the hand. So let’s discuss this one and determine acceptance
criteria and how we can determine when it is finished.

Figure 6-3. User story: Win

Tyler: I have been reading through this user story and there are three scenarios that I would like to ask you
about, Simon.

Simon: Tyler, what is the first scenario?

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

139

Tyler: How does a player win the game when both she and the dealer finish under 21?

Simon: In that scenario the person closest to 21 is the winner.

Tyler: Okay. Next scenario: what happens if either the player or the dealer finishes the game over 21? Can
both player and dealer go bust in the same hand?

Simon: I will answer your second question first. No, both the player and the dealer cannot go bust in the
same hand. The reason for that is the answer to your first question. Since the player goes first, if she goes
bust—ends up over 21—then she automatically loses to the dealer. Now here is the confusing part: there
can be multiple players and hands at a table. When a hand busts, that hand loses to the dealer and the
dealer takes the bet. If a hand does not go bust, the dealer has to play its hand, which could end up going
bust. In this scenario, the dealer loses to the players that have stopped over 21 and wins the hands where
the players went bust.

Sarah: So, we should look at this scenario on a hand-by-hand basis?

Simon: That is correct. What is the third scenario you had questions about, Tyler?

Tyler: What happens if the player and the dealer finish the game tied?

Simon: That scenario is called a draw or push. In the event of a push, the player gets back the money he
bet. The player and the dealer neither win nor lose the game. Is there anything else in question here?

Sarah: It sounds like we could break this user story up into multiple user stories. Should we do that?

Tyler: I don’t think we need to. I think we can get this all done within the sprint. However, if we get behind,
I think these scenarios give us a good place to break up the user story into multiple user stories that are
vertical slices through the system.

Simon: I would agree with Tyler on this. The customer really needs this user story, and if we can get it done
in the sprint, I don’t see why we need to break it up. If we can’t get it done in the sprint, then, yes, we should
break it up so that I have something to show the customer after each sprint.

Sarah: Sounds like a sound plan. I have nothing further.

Tim: If there are no further questions, let’s vote.

Tyler: Based on the different scenarios we have to account for and handling on a hand-by-hand basis, this
seems a little more complicated than the previous user stories that we’ve covered in this meeting. So, I vote
an 8.

Sarah: I would agree with Tyler and vote 8 as well.

Tim: So, I will mark this one down as an 8. Does the team feel they can tackle any more user stories for this
sprint?

Sarah: I feel comfortable committing to this amount of work. Any more and I would worry about not
getting it done in this sprint.

Tyler: I second that.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

140

Tim: Well, then I guess that wraps up the sprint planning meeting. I will see you all at the stand-up
meeting tomorrow.

Sprint 2’s Backlog
Let’s review what the team committed to for this iteration. The team committed to the user stories
shown in Table 6-1 for a total of 16 points, which is the team’s capacity for this sprint.

Table 6-1. Sprint 2 Sized Backlog

User Story Name Initial Size

Game Play: Hit 5

Game Play: Stand 3

Game Play: Win 8

Day 1
We’ll start Day 1 with the daily stand-up and continue on working with the user story. One advantage of
Scrum is a consistent, predictable pattern of how the days in a sprint play out.

Daily Stand-Up
Tim: Good to see everyone here. Let’s get the meeting started. Simon, would you like to start us off?

Simon: Yesterday, I worked with the customer on the product backlog. I was also involved in the sprint
planning meeting where I worked with the other members of the team to hash out the work for this sprint.
Today, I plan on being available for questions from the team, as well as working with the customer to hash
some more user stories. I have no blocks.

Tyler: Okay, I am going to go next. Yesterday, I worked with the team to size the user stories that we have
agreed to do for this sprint. I plan on pairing with Sarah starting today to work on the Game Play: Hit user
story. I have no blocks.

Sarah: Yesterday, I also worked with the team to size the user stories for the sprint. Today, I plan on pairing
with Tyler on the Game Play: Hit user story. I have no blocks.

Tim: All right, guys and gals, that is all for now.

Developing the User Story: Hit
Tyler: Sarah, want to get started on the Hit feature?

Sarah: Sure. Let’s get started.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

141

Tyler moves the Hit user story into the In Process swim lane to notify the team that the story is
currently being worked on. Tyler and Sarah begin by talking to Simon to clarify all the acceptance
criteria.

Sarah: Hey Simon. Got a moment?

Simon: Sure. What’s up?

Tyler: We have looked over the information for the Game Play: Hit user story and believe we have come up
with all the behaviors of the user story. Would you mind looking at it and make sure we covered it all?

Simon: No problem.

Sarah: Here is what we have.

Sarah and Tyler show Simon two scenarios for the Hit user story, as shown in Figures 6-4 and 6-5.

Figure 6-4. Option to Hit scenario

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

142

Figure 6-5. Hit scenario

Simon: It looks pretty good. I can’t think of anything else we need to cover.

Tyler: Thanks!

Adding the SpecFlow Feature
Now that we have the acceptance criteria for the Hit user story completed, it is time to start coding.

Start by adding a new feature to the Features folder named 003-HitHand.feature. Once the file is
created, update the contents of it to match the feature shown in Figure 6-6.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

143

Figure 6-6. Hit SpecFlow feature option to Hit scenario

You will notice that it is more verbose than the initial scenarios that the developers went through
with the product owner, because of the steps required to set up the game state. It is still important,
however, that it is written in a language that the product owner understands so that he is able to confirm
the completed feature.

If you run your Acceptance.Tests project, you will be presented with the following missing step
definition:

[Then(@"I should given the option to hit")]
 public void ThenIShouldGivenTheOptionToHit()
 {
 ScenarioContext.Current.Pending();
 }

Tyler: It looks like the only action we need to verify is that the Hit button displayed. Am I missing
something or is that it?

Sarah: You’re right. That’s it.

Now we need to update the step definition so that it will actually do something. Update the step to

contain the following code:

[Then(@"I should given the option to hit")]
 public void ThenIShouldGivenTheOptionToHit()
 {
 Assert.That(BetOnHandPage.has_hit_button, Is.True);
 }

The next step is to add a new property called has_hit_button to the BetOnHandPage class to keep the
compiler from complaining. This property will return whether the web page contains the Hit button at
the correct time.

namespace KojackGames.Blackjack.Acceptance.Tests.PageObjects
{

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

144

 public class BetOnHandPage
 {
 . . .

 public static bool has_hit_button
 {
 get { return WebBrowser.Current.Button("btnHit").Exists; }
 }
 }
}

With the last compiler error corrected, run all the acceptance tests. When you run these tests, they
should all run and fail. We know we hate failing tests and assume that you do, too. Let’s get some green
on the screen.

Using BDD to Drive the Feature Development
Tyler: Okay, so we have our acceptance test working, but failing. I say we jump into a test. Where should
we start?

Sarah: Well, there really isn’t any test we can do in the controller because the query service will just return a
domain view, which will have to update in a minute.

Tyler: Okay, so we should just jump into the domain model and write a test that checks for a hit option
after the hands have been dealt?

Sarah: Yeah. I will write a specification for exactly that.

Add a new test class named when_hitting_the_players_hand to the DealerAction_Specs/HitHand
folder of the Core.Tests project with the following definition:

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs.HitHand
{
 [Subject(typeof(Domain.GamePlay.Model.Dealer.Actions.HitHand), "Hit")]
 public class when_hitting_the_players_hand : with_a_hit_hand_action
 {
 private Establish context = () =>
 {
 };

 Because of = () => SUT.action_to_perform(playing_positions, card_shoe, player);

 private It should_take_a_card_from_the_card_shoe = () =>
 {
 };

 private It should_add_a_card_to_the_players_hand = () =>
 {
 };
 }
}

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

145

What you want to make sure is that you are asserting that some kind of specification class is called at
the start of the hit action, like so:

private It should_take_a_card_from_the_card_shoe = () =>
 {
 card_shoe.AssertWasCalled(x => x.take_card());
 };

What this does is assert that when the Hit button is pressed, the card will be removed from the card
shoe. The next thing you could assert is that the card that was removed from the card shoe shows up in
the player’s hand, as follows:

private It should_add_a_card_to_the_players_hand = () =>
 {
 players_hand.AssertWasCalled(x => x.add(Arg<Card>.Is.Anything));
 };

This specification can be added to the base with_a_hit_hand_action class in a roundabout way.
What you can do is add objects that will be adversely affected by this, namely the IHandStatusFactory
and IPlayDealersHand interfaces, as follows:

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs.HitHand
{
 public abstract class with_a_hit_hand_action
 {
 protected static Domain.GamePlay.Model.Dealer.Actions.HitHand SUT;
 protected static IAnnouceWinnerAction annouce_winner_action;
 protected static IHandStatusFactory hand_status_factory;
 protected static IPlayDealersHand player_dealers_hand;

 public with_a_hit_hand_action()
 {
 hand_status_factory = MockRepository.GenerateStub<IHandStatusFactory>();

 annouce_winner_action = MockRepository.GenerateStub<IAnnouceWinnerAction>();
 player_dealers_hand = MockRepository.GenerateStub<IPlayDealersHand>();

 SUT = new Domain.GamePlay.Model.Dealer.Actions.HitHand(hand_status_factory,
player_dealers_hand, annouce_winner_action);
 }
 }
}

From this point on, you need to work from the outside in. You will implement the HitHand class, as
well as the methods behind the process of removing a card from the shoe and adding it to the player’s
collection of cards for the game. Please see the source code available at www.apress.com if you have any
questions.

Day 4
As we move a few days into this sprint, we come to our team starting their daily stand-up and discussing
a roadblock.

http://www.apress.com

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

146

Daily Stand-Up
Tim: Tyler, start us off.

Tyler: Well, I worked with Sarah on the Hit feature. We have hit numerous roadblocks. Unfortunately,
Simon is not around. We hope to find out soon where he is and talk to him about this user story.

Sarah: Ditto for me on the Hit user story and with Simon. I have e-mails out to him, but until we hear
back, we will work on the next user story.

Tim: Okay. I will try to reach Simon myself and see if I can get some kind of response for you guys. How
much is Simon’s absence hampering your time in this sprint?

Tyler: If we don’t get some answers from Simon soon, we risk not getting user stories completed this
iteration. It’s getting frustrating because we are fairly close to getting this particular user story done.

Sarah: I agree. It’s not an emergency yet, but a couple more days and it will be.

Tim: Okay. I will try to contact Simon right after this meeting and see what I can find out. Thank you all
for the update. I wanted to share with you where we stand on the current sprint. From the looks of the
things, we are on schedule. [(See Figure 6-7.)] However, the roadblock on the Hit user story has me
concerned. I will let you know when I hear something from Simon. If you hear something from him before
that, please let me know.

Figure 6-7. Burn-down chart, Day 4 of Sprint 2

Working on the User Story: Stand
Sarah: While we are waiting on Simon, let’s start on the Stand user story.

Sarah moves the Stand user story to the In Process swim lane, as shown in Figure 6-8.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

147

Figure 6-8. Updated task board

Tyler: Okay, I think I have an understanding of what we need to do with this one. Shall we begin?

Sarah: Sure.

Adding the SpecFlow Feature
To begin this user story, add the new feature to the system. Create a new file called 004-
StandHand.feature. Update the file to contain the feature we need for the user story, as shown in Figure
6-9.

Figure 6-9. Stand feature

Add Scenario
As before, now that we have the feature file and feature added to the system, we need to add a scenario
to that feature.

Update the StandHand.feature user story file with the scenario shown in Figure 6-10.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

148

Figure 6-10. Scenario for the Stand feature

One thing you will notice is that as we move further along into this application, more of the basic
foundation of the app is already written. Each new user story just extends the existing architecture. With
that information at hand, you know that navigating to the game play screen, placing a bet, and dealing
the cards is already covered and implemented by previous user stories and tests. One additional thing
you will notice is how most of the And conditions are already implemented. This reusability of setup code
between tests can improve the efficiency and productivity of a team. From the Hit user story, we know
that the “my hand contains the following cards” and “the dealer’s hand contains the following cards”
steps are already implemented. We only need to concern ourselves with the act of standing on a hand,
which in this case is the Then part of the scenario.

When you run the feature, you will notice that you are missing just one of the steps of the scenario.
Go to the GameDisplaySteps.cs file located in the Steps folder. Once in there, add a new method to the
class called TheIShouldGivenTheOptionToStick. Rerun the tests and you will notice that you have a
failure. Update the method with the following code:

namespace KojackGames.Blackjack.Acceptance.Tests.Steps
{
 [Binding]
 public class GameDisplaySteps
 {
 . . .

 [Then(@"I should given the option to stick")]
 public void ThenIShouldGivenTheOptionToStick()
 {
 Assert.That(BetOnHandPage.has_stick_button, Is.True);
 }
 }

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

149

}

From here you see that you need to add properties and methods to the BetOnHandPage class to get
this test to pass. This process is very similar to the previous user stories in that regard, so we will not
duplicate it here.

Day 6
We have skipped ahead to Day 6 to check on our team and see how they are doing.

Daily Stand-Up
Tim: Let’s get this started. Who wants to start?

Tyler: I will. Sarah and I continued to pair to finish up the Stand user story. We have all the code and tests
done for it, so we are ready to show Simon and get his approval. Today, I plan on pairing with Sarah on
the remaining user story in the sprint. And, I have no blocks.

Sarah: Let’s see. A lot of what Tyler said applies to me. I will pair with Tyler today on the Game Play: Win
user story. I have no blocks.

Tim: Is there an update on the Hit user story?

Sarah: Yes, we were finally able to get in touch with Simon and get the answers to the questions we had.
With the information from Simon, we were able to complete the code and tests for the user story. The user
story is ready to show Simon and get his approval on it.

Tim: Okay. We need to get with Simon soon to get approval for these user stories. If we end up with
numerous user stories blocked waiting on his approval, then we will need to come up with another
solution to get them out the door. It’s better to have a couple of user stories completed and out the door
than numerous user stories in various stages of incompleteness. Well, that is all for now. Everyone have a
great day.

Final User Story of the Sprint: Win
Tyler: Sarah, I am ready to start on the last user story whenever you are.

Tyler moves the Game Play: Win user story to the In Process swim lane. Figure 6-11 shows what the

task board currently looks like.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

150

Figure 6-11. Updated task board

Sarah: There seems to be more complexity to this one than previous ones.

Tyler: I would agree. I get the feeling that there is more involved on the business-rules side. Let’s find Simon
to see if he is free for some questions.

Simon: Hi guys. What can I do for you?

Sarah: We’re starting on the Game Play: Win user story and have some questions. We know the basics are
that if a player is closer to 21 than the dealer, without going over, the player is the winner. We’ve talked
about the scoring of each card and things of that sort. Could you explain to us again exactly what a “push”
is?

Simon: Sure. A push is when a dealer and a player end the game with the same point total. When this
happens, the player receives back his bet and the game is over. Neither the player nor the dealer wins or
loses the game. Do you guys remember the scenarios we talked about for this card during the planning
meeting?

Sarah: Yes, we do. The first scenario is when both dealer and player stand on a point total less than 21. The
second scenario is when either the player or the dealer goes bust. And the third scenario is when the player
and the dealer tie or push. Tyler and I understand the other scenarios, but were a little hazy on the push
scenario. Thank you, Simon. That should be all we need.

Simon: Anytime.

Adding the SpecFlow Feature
We begin by adding a new feature file to the Features folder called 005-WinGame.feature. Update it with
the feature definition shown in Figure 6-12.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

151

Figure 6-12. User story feature, Win game

The thing about this feature is that there are numerous scenarios that we will need to test. We need
to think of all the ways that a player could win and lose a game, and write scenarios about them. Some of
the ways a player could win or lose include the following:

• Player has blackjack with first two cards dealt. Player wins.

• Dealer has blackjack with first two cards dealt. Player loses.

• Player and the dealer have blackjack with first two cards dealt or any time both
finish with the same point total. Player pushes.

• Player ends up with a point total higher than the dealer. Player wins.

• Player ends up with a point total lower than the dealer. Player loses.

• Player stands on a hand and the dealer busts. Player wins.

Adding Scenarios
Let’s start with the first one on the list. Update the feature file with the scenario shown in Figure 6-13.

Figure 6-13. Win Game feature updated with a scenario

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

152

As per the previous user stories, most, if not all, of the Given and When steps for this scenario are
already implemented by previous user stories. We only need to concern ourselves with the Then in this
scenario.

Go to the GameDisplaySteps.cs file and add a method called ThenThePlayerShouldLoseTheGame. You
will need to update the method, as shown in Figure 6-14.

[Then(@"the player should win the game")]
public void ThenThePlayerShouldWinTheGame()
{
 Assert.That(GameDisplayPage.player_status_message, Is.EqualTo("Won"));
}

With this method in place, you can continue trying to get this test to pass by adding functionality to
the GameDisplayPage class.

The next scenario in the list is very similar to the previous scenario. Update the feature to look like
Figure 6-14.

Figure 6-14. Win Game feature updated with a scenario

In the previous scenario the player won the game, now the player will lose the game. Add the
following method to the GameDisplaySteps.cs file:

[Then(@"the player should lose the game")]
public void ThenThePlayerShouldLoseTheGame()
{

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

153

 Assert.That(GameDisplayPage.player_status_message, Is.EqualTo("Lost"));
}

For the push scenario, add the following method to the same class:

[Then(@"the game should be drawn")]
public void ThenTheGameShouldBeDrawn()
{
 Assert.That(GameDisplayPage.player_status_message, Is.EqualTo("Push"));
}

The scenarios about the player scoring more or less than the dealer have a couple more steps in
them. Update the feature to include the scenario in Figure 6-15.

Figure 6-15. Win Game feature updated with an additional scenario

Now, everything in this scenario is implemented except for the When step.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

154

To implement the When step, we need to add the step skeleton generated for us to the
GamePlaySteps.cs file. Update this file to contain the following method:

[When(@"I stick")]
public void WhenIStick()
{
 GameDisplayPage.stick();
}

What you see is that you need to implement a stick method on the GameDisplayPage. The Then is the
same Then step that we have already implemented in the previous scenarios, so nothing more is required
here except to add the necessary functionality to get the test to pass. The finished result is available at
www.apress.com.

Day 10
Congratulations, you've made it through your second sprint! As this is the second full sprint, we hope
that a consistent and predictable pattern is starting to emerge from this Scrum process. Since this is the
last day of our sprint, we'll do a retrospective to see how we can improve the process. We'll also do a
sprint demo with the customer.

Sprint 2 Retrospective
Tim: Congratulations, team! You've made it through Sprint 2. I hope as we are introducing Scrum and XP
that you've seen common themes from these past two sprints. While agile consistently looks at how to
improve process, it also aims to become consistent and predictable. We want to remain consistent in
developing quality, maintainable code and predictable by delivering the features the team commits to. In
the last sprint, our primary action item was assigned to Sarah to set up an e-mail notification on
CruiseControl to let other members of the team know when the build is broken. Sarah, how did that go?

Sarah: It went well. I was able to learn more about the inner workings of CruiseControl, plus add value to
the team. I discovered that CruiseControl is configured through an XML file and that we can set up e-mail
notifications from within the cc.config file. If anyone wants to know more about it, I'm happy to share
with you. Just contact me after our meeting. I also discovered the CCTray, which a system client can
download. It's an icon that sits beside your system clock and changes color based on the status of the build.

Sarah explains that the CCTray icon works as follows:

• Red : the build broke

• Yellow : the build is currently running

• Green : the last build was successful

Sarah: I set this up on my machine. If you'd like to know how to do this, let me know and I can walk you
through it.

Tyler: Yes, Sarah showed me the CCTray and it's pretty neat! I can show anyone that would like this, too.

Tim: Fantastic! Thanks for completing that action item, Sarah. Let's review the work that was
accomplished over this sprint. The board says that the following stories were completed during this sprint.
Is this correct?

http://www.apress.com

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

155

Tim points to the status of completed user stories, as shown Table 6-2.

Table 6-2. Sprint 2 Completed User Stories

User Story Name Initial Size

Game Play: Hit 5

Game Play: Stand 3

Game Play: Win 8

Tyler: Yes, that's correct by my account.

Sarah: Same here. That's what we got accomplished this week.

Tim: Great. That means, adding up the user story points, we have a velocity of 16 points. Does this
workload seem sustainable to you, or did we plan a sufficient amount of work for the sprint?
Tyler: For me, this was a sufficient amount of work.

Sarah: Same here. I wasn't sitting around twiddling my thumbs all day waiting for something to do. We
had enough user stories in the backlog to continue to work on and get things done.

Tim: We will take this into account during our next sprint. With each sprint retrospective, one item we
need to monitor is the amount of work we get done, which is measured as velocity compared to what we
planned for. This sprint, it seemed we planned for a sufficient amount of work and all this work was
completed in a sustainable manner. Now let's move onto this week's retrospective activity. Similar to the
last retrospective, please take a few of the red, blue, and green Post-its. Do you remember what each stood
for?

Tyler: No, I forget. What do they stand for again?

Sarah: I remember. Red stands for things that went badly during the sprint, blue is for the confusing parts
of the sprint, and green represents things that went well.

Tim: That's right, Sarah! Good job! I'm going to put three minutes on the buzzer. Jot down your feedback
on the appropriate Post-it notes.

Three minutes pass.

Tim: Time's up. Let’s gather the Post-its. Tyler, would you help me arrange them into three categories?

Tyler: Sure.

Tim: It looks like we have only two categories for this iteration: Testing and Process. Process is the larger
category, so let's start with that one. We seem to have a lot of good things in the Process.

Tim states that the positive Process feedback is as follows:

• “Working together, pair programming”

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

156

• “Having work laid out for us to work on”

• “Daily stand-up and the “meeting after the meeting”

Tim then states that the only negative feedback is the following:

• “Domain knowledge—product owner was out”

Tim: Let's talk about the negative item.

Sarah: I wrote this note. Simon was out at a show and the customer wasn't available. Tyler and I had a
number of questions and clarifications on specifically how the Hit feature was supposed to work, but
unfortunately, we didn't think of these questions until we started working on it. No one was available to
answer these questions, so that was a roadblock. So we started another story instead, but that held us up.
What happens when neither Simon nor the customer is available?

Simon: As I informed the team at one of our daily stand-ups, I was going to be out for part of this sprint. I
hoped the team would work around me.

Tim: I have a suggestion. The next time Simon is out, Simon needs to inform Bill of his absence and verify
that Bill will be available if the team has any further domain-related questions. When Simon is
unavailable, there is a problem with getting domain knowledge from the domain expert. If the team has
an issue where they need to get domain questions answered, the team should brainstorm to see if they can
collectively come up with a working solution based on their collective knowledge. Once that occurs, Bill
can be brought in and the proposed solution will be presented and worked through with Bill. Once Simon
has returned, Bill will check with Simon about the information he's given to the team so that everyone
continues to be on the same page and so the team is not held up due to Simon's absence.

Simon: I'm okay with that. I will coordinate with Bill whenever I'll be unavailable for a few days. I’ll tell
him that he'll need to serve as the liaison in my absence, but that the team will first try and work through
the question themselves. If the team sees fit to bring Bill in, they will do so.

Tim: Sarah, Tyler, does that sound good to you?

Sarah: Yes, it sounds like we still have someone available to ask questions when we need to and we'll get
answers instead of hitting roadblocks.

Tyler: Sounds good to me too.

Tim: If the team has domain questions, the team will collectively come up with a proposed solution first
and present it to Bill. Bill will work with the team and inform Simon when he returns, of what he
conveyed to the team. Simon, we'll assign this action item to you since you'll inform Bill of this process.
Now, let's move on to the Testing category.

Tim says that the Testing category has one blue note, which means a “confusing issue” comment.

The note read as follows:

• “We spend so many more hours per user story writing tests vs. just cranking out
code.”

Tyler: I wrote this card. Before agile and this project, I just spent time cranking out code and not worrying
about writing a lot of tests. With this agile thing, it seems as if I'm spending more time writing test code

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

157

than production code. It's frustrating because I just want to develop features and not worry about the
tests.
Tim: Tyler, I understand where you are coming from, but when you only spent time “cranking out code,”
how many bugs did you have to fix once that code was released—and did you ever see the same bug twice?

Tyler: Sometimes we'd have to make a large number of bug fixes and, I'll have to admit, I have seen the
same bug twice. It typically happens when someone checked in changes over another team member’s
changes or didn't get the latest, or someone implemented a new feature and introduced the same bug
again.

Tim: Exactly! One goal we want to achieve is a sustainable working pace. In past projects you've worked
on, did you hurry to get the code out the door, but then had to work a bunch of overtime to fix a ton of bugs
that you didn't know you had?

Tyler: Yes, I must admit, I've worked a lot of overtime at the end of projects just to fix bugs.

Tim: We don't want that to happen on this project. The reason we provide potentially shippable code at
the end of each sprint is because when we say something is done, we don't want to have to do the same
thing or fix the same thing over again. With the CI server in place, we know that a third-party tool is doing
our builds. The work we've done in Sprint 0 enables us to compile and deploy much more quickly. That
way, you guys know within minutes if someone checked in changes or didn't get the latest. Plus, because
we have already written our automated tests, we have a level of confidence that we never had before.
Having a good automated test suite that is derived from the acceptance criteria allows us to call something
done, actually done. Let me ask you this, how many projects have you worked on where you were trying to
integrate a new feature into an existing system without automated tests? You developed the new feature
only to find out that you broke other features further into the system, which you didn't even know existed
and didn't even find out about until later in the process?

Tyler: Yes, I must admit that that has happened to me. It's frustrating when you think you have a simple
change but, in reality, it breaks three other things down the line. Think of rock climbing, it's better to inch
up a cliff slowly and carefully, driving pitons and cutting footholds, than to race up hastily and wind up
dead at the foot of the cliff because you slipped. You even reach the top sooner because dead people can’t
climb very quickly.

Tim: So the reason we are spending all this time writing automated tests and developing from “the outside
in” is because we want to minimize bugs, and if bugs exist, we want to know sooner than later—using the
CI server. Automated testing also allows traceability between the requirements and the code, and because
we are only developing enough code to make the test pass, this ensures that we develop each card based on
the requirements, and that each card, once developed, stays developed. Also, we need to develop for the
next developer that's going to work on this code. Later, the customer will want features added to this code
base and another developer will have to come in and develop that feature. With a solid set of tests, that
other developer will know what he broke when implementing a new feature. These automated tests bring
value to the customer over the entire software development lifecycle because it creates a tighter feedback
loop between the code and the developer, who now has the ability to quickly add features without risk to
the existing features. Does that help, Tyler?

Tyler: Yes, I understand better now. We want to deliver a solid product and be able to develop for this code
base's posterity. We build in automated tests now so the code can outlive the business requirements.

Tim: You got it. Tyler, I've run across other business users who don’t understand the importance of unit
testing and TDD. I think it would be helpful if someone would do a short, 15-minute presentation on unit

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

158

testing and TDD, and how it relates to the business. Mostly discussing what we just discussed. Would you
be willing to prepare a short presentation and present the case of unit testing and TDD to the business?
Tyler: Sure, I think that sounds like a good idea. Sometimes when you need to explain a topic to other
people you understand it better. I would be willing to do that.

Tim: Great, thank you. Let me know if you have any questions. I can help you out if you need, but I think
you have the general idea.

Sarah: I have a question, but it's not related to these notes. Is now a good time to ask?

Tim: Sure, we have a few minutes left before the discussion portion is over. What’s up?

Sarah: We've discussed all these user stories, but I haven't seen a user story about how the site should look.
We've spent most of our time getting the functionality down. Is there a story about the UI and how the site
should look?

Tim: Good question. Simon do you have that in the backlog?

Simon: No, that is a good question. I'll meet with the customer during this sprint and we will get that
ironed out. Thanks for bringing that to our attention.

Tim: Great. Sounds like another action item. If that's all, let's recap our action items.

Tim lists the action items as follows:

• Whenever he is to be unavailable, Simon needs to coordinate with Bill, who will
serve as the domain expert in Simon's absence. If the team has a domain question
during Simon’s absence, the team will collectively first try to solve it and then
work with Bill. Bill will touch base with Simon on his return to ensure everyone is
on the same page. This item is assigned to Simon.

• Tyler will do a 15-minute presentation to business users on the value of unit
testing and TDD.

• Simon will determine, with the customer, how the site should look and then meet
with the developers to plan the UI for the site.

Tim: This concludes our retrospective. Everyone, thanks for your feedback!

Product Demo
Now it’s show-and-tell time. It's important for the customer to be present and involved in the product
demo and it's important that everyone, customer and team, have agreed to the definition of the product
being “done,” which is the same as the acceptance criteria, before the product demo. The purpose of
the product demo is to show the customer what the team has done over the course of the sprint.

Agile brings transparency, being open and honest with what the team has accomplished;
eliminating the concept of developers hiding in a room while the customer hopes to get something
desirable after a period of months. We want to remain consistently transparent to the customer,
showing them, in small increments, what the team has accomplished or not accomplished. This level of
transparency has a way of openly exposing the risks to a project. These risks need to be identified sooner
than later so that a plan can be put in place to mitigate them. The product demo also provides the
chance to allow the customer to share with the team any political changes, and for both the customer
and the team to communicate over a working piece of software.

CHAPTER 6  SPRINT 2: PLAYING A BASIC GAME

159

Sarah is meeting with Bill and Tim for this product demo.

Sarah: We wanted to show you what the team has accomplished in this sprint. As you know, the team
committed to and, I'm pleased to announce, accomplished getting the following three stories done: Game
Play: Hit, Game Play: Stand, and Game Play: Win. This product demo will allow you to see the
functionality the team added to the software as it relates to these stories. In the Game Play: Hit user story,
the player can click the Hit button and the player will receive another card.

Bill: I think this looks fine. Can we put different images on the back of the cards that a user could choose
from?

Tim: Yes, we can do that. However, since that wasn't part of either this story or an existing user story, we
can write a user story for that additional functionality and get it worked into the backlog. If you and the
customer decide that it's important enough to develop that functionality, we can add it into a release. If
you think it needs to be done sooner, we can work that into an upcoming sprint, but in exchange, we will
have to remove a user story that's planned in this release.

Bill: Okay, that sounds good. I agree it wasn't part of this user story. It's another idea I just came up with
while looking at the demo that I think could be useful. I'll talk to the customer about adding that
functionality and if deemed important, we'll replace another user story of a similar size with this one in a
future sprint. The functionality, as it currently is, does meet what we determined by our definition of done.
Good job, team! I am really enjoying the transparency of this process. In previous projects, I never knew
what the developers were working on because we never saw anything until the end. I like seeing what the
team has been working on. It gives me confidence that we are moving forward, creating value, and
delivering a quality product. Let's move on to the next user story.

As before, due to the size of this application and for the sake of readability, we have elected to skip
the remaining parts of the product demo. The customer, Bill, was also shown every feature completed by
the team and his feedback was good. There were no changes needed to the product from Bill’s
perspective.

Summary
As we worked on our second sprint, we learned some important lessons. They included the following:

• The team realized the importance of having an available product owner or
customer. When either of these two cannot be reached or the developers are not
confident about what they should be implementing, confusion arises and
becomes a roadblock to development.

• We also learned that although we spend time with release planning and user
stories, items come up that were either forgotten or not previously considered.
Using agile and the retrospective, we caught an item early. Sarah brought to our
attention that the UI had not yet been discussed, which resulted in an action item
for Simon to go over with the client. Tight feedback loops are extremely important
so that any weaknesses can be exposed and fixed early in the process. Larger
issues at the end of a project are avoided.

C H A P T E R 7

161

Sprint 3: Changing the Game

Now that we have a couple of sprints under our belt, we want to shake things up a little bit. In this shake-
up, we are going to change the dynamics of the team by adding a new developer to the mix. Keep an eye
on the team in this sprint and see how this additional person affects them.

Sprint Planning Meeting
The team has gathered in the conference room. Simon has brought in user stories for the team to work
on, discuss, and size. Tim enters the room with someone new close behind.

Tim: Good morning, team. With two sprints under our belts, things should be getting to be a routine.
Today we are going to size the user stories that Simon has brought to the meeting and see what we can
commit to in this sprint. I also wanted to let you know that there is a new person joining the team. Say
hello to Joe.

All: Hello Joe!

Joe: Hello everybody. I’m excited to be joining this team. I have heard good things about you, so I’m really
excited to get up to speed and contribute what I can to this project.

Tyler: First of all, I would like to say welcome aboard, Joe. Second, Tim, why are we adding a developer to
the team at this point in the project?

Tim: That’s a great question, Tyler. The main reason is to give people outside our original team some
exposure to Scrum and agile. The ultimate goal is to branch out and use these methodologies and practices
in other teams. Second, while I know that adding people to a project will not get work done sooner—it will
actually take longer initially—after an initial drop in velocity, we will start to see an increase as Joe
becomes more comfortable with the team, the product, and the process.

Sarah: No offense to Joe, but are we sure this is the right idea? We are coming up on a release soon and with
our velocity and capacity plummeting, it will limit what is ultimately in that release. Is the customer okay
with this?

Simon: I have talked to the stakeholders and they have come to a consensus that exposing Scrum and agile
to the rest of the company is beneficial. Now is the time to begin rebuilding our company infrastructure
through an agile lens. We do this by involving other developers in the process, even if that means a drop in

CHAPTER 7  SPRINT 3: CHANGING THE GAME

162

velocity. This should be looked at as an investment in the company and, Joe in particular, and not as a
drain to our velocity.

Tyler: Wow, that is a first!

Simon: Yeah, it took a lot of convincing on my part and Tim’s, but we were able to show the potential
upswing on this—and the business agreed.

Tim: All right, guys. I will go ahead and define the theme for this sprint.

The Theme of the Sprint
Tim: The theme for Sprint 3 is going to be “Changing the Game.” The reason for this is because the user
stories that we need to do in this sprint are all related to changing the basic game of blackjack. Once again,
I would like to reiterate that a theme is a way to show the team a common purpose to all the user stories
done in this sprint. Continually ask yourself if what you are working on reflects the theme of the sprint. If
not, then please let me or Simon know so that we can address it.

Determining Availability and Capacity
Tim: Do any of you know if you are going to be out for an extended period during this sprint?

Joe: I will be here the whole time.

Tyler: I will not be available the entire sprint. I received notice that I have jury duty. It’s only for a couple of
days, so it should not be a major impact, but it will have some impact, nonetheless.

Tim: Okay, well that is going to hurt us some in our capacity this sprint, but we will plan accordingly.
Thank you, Tyler, for the heads up.

Sarah: I will be here the entire sprint. Just make sure they don’t put you on trial, Tyler!

Simon: We have been forewarned. I will be available the entire sprint.

Tim: All right. During the last sprint, our velocity was 16 points. Considering that Tyler is going to be out a
couple of days and that we’re bringing on Joe, we need to consider a lower capacity. Let’s move on to
planning.

Planning Poker
Tim: Simon, please take it away.

Simon: All right, gang, I would like to bring up the first user story. We are going to start with the Game
Play: Dealer Rules user story. [(See Figure 7-1.)] When this particular user story came up in the release
planning meeting, we stated that its purpose is to give the blackjack dealer certain rules to play by. The T-
shirt size for this user story is an M.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

163

Figure 7-1. User story: Dealer Rules

Simon: Are there any questions?

Tyler: Can you refresh our memories and tell us what the business rules are?

Simon tells everyone the rules are as follows:

• The dealer must continue to hit on its hand until reaching at least 17.

• Once the dealer reaches at least 17 it must stay.

• If the dealer goes over 21, it goes bust.

Simon: You must remember that this user story is the logic that the dealer needs when playing the game so
they know what to do. Without this we could have many, many unhappy customers.

Sarah: So, can we safely assume that these are the acceptance criteria for this user story and once they are
implemented, we can count this user story done?

Simon: That is correct.

Tim: If there are no further questions, let’s vote.

Sarah: I vote 5.

Tyler: I vote 3.

Tim: Joe, do you have a feeling about this yet?

Joe: Not yet, since I’m new and just observing for now to get a sense of what this agile thing is about.

Tim: All right. Tyler, why did you vote a 3?

Tyler: Well, the framework is already there. We can hit and stay on a player, and the dealer is nothing
more than a type of player. The only thing we have to do is factor in these rules when programmatically
deciding to hit or stay.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

164

Sarah: That is a great point, Tyler! I was overlooking some of that and didn’t realize how simple this is.

Tim: Sarah, do you care to discuss why you voted a 5 or shall we go ahead with the next round of voting?

Sarah: I am ready to vote.

Tim: All right, round two in voting.

All: Three.

Tim: Let’s mark it as a 3 and move on. What’s next?

Simon: The next user story is Game Play: Double. [(See Figure 7-2.)] This user story gives the player the
ability to double the player’s stake in the current and be dealt exactly one more card, under certain
circumstances. The T-shirt size on this user story is an M.

Figure 7-2. User story: Double Stake

Tyler: Simon, can you give us an example of this? We need to know what the acceptance criteria are for
this user story.

Simon: Sure, to double down is a way a player can increase his initial bet on a hand. There is a catch to it,
though. By giving a player the option to increase his bet, he must commit to stand after receiving exactly
one more card. This option is only available on the initial two cards that are dealt to the player that total 9,
10, or 11. There is one additional rule: double down does not apply to the dealer. The dealer’s rules trump
any playing rules like this in the system.

Sarah asks if the acceptance criteria for this user story are as follows:

• The option can only be given to the player once the first two cards are dealt and
before he “hits” or “stands.”

• The option can only be given to the player if the initial two cards total 9, 10, or 11.

• The player must “stand” after taking one additional card.

Simon: That is correct.

Sarah: That’s good to know, Simon. I am ready to vote.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

165

Tim: Sounds good to me. All right, people, what are your numbers?

All: Five.

Tim: Five sounds good. Next.

Simon: Next up is the user story, Game Play: Insurance. [(See Figure 7-3.)] Now this user story was not one
that was in the initial product backlog, so there is no T-shirt size on this one. This user story gives the
player the ability to make an insurance bet if the dealer’s first card that was dealt face up is an ace.

Figure 7-3. User story: Insurance

Joe: If this was not in the initial list of work, how can we work on it? This sounds like scope creep and I
thought agile was supposed to hinder scope creep from coming into a project.

Tim: Good question, Joe. This is not scope creep because the list is always in motion. The customer and
Simon are always prioritizing the backlog. With them constantly prioritizing the backlog, there is no scope
creep because we are always working on the most important features for the customer. Does that answer
your question?

Joe: Yes it does, thank you.

Sarah: So what is insurance and what does it do?

Simon: An insurance bet is a completely separate bet. What the player is betting on is whether the dealer
has blackjack or not. This bet is not dependent on the outcome of a player’s hand. The amount of an
insurance bet is fixed at half the original bet of each hand the player is currently playing.

Tyler: What happens if the dealer does not have blackjack? Is the game over at that point?

Simon: No. If the dealer does not have blackjack, the player loses the insurance bet, but she can continue to
play the hands she has on the table. If the dealer does have blackjack, then the player will win the
insurance bet, but lose the hands she was playing in that game.

Tim: Okay, let’s vote on this one.

Tyler: Five.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

166

Sarah: Three.

Tim: Okay, Sarah, why did you vote a 3?

Sarah: I voted a 3 because the logic for this user story is very similar to the Double Down user story. The
framework for this user story is already there. We are only talking about adding to an existing
functionality.

Tim: Sounds good. Tyler, why did you vote a 5?

Tyler: I voted a 5 because I thought it was going to be the same level of complexity as the Double Down user
story. I didn’t realize that since most of the work would be done with the other user story that this one will
be less complex.

Tim: How about another round of voting?

Sarah and Tyler: Three.

Tim: Looks like we have a 3 on this user story. Simon, do you have any more user stories that you would
like us to look at?

Simon: I have one more. This next user story is Saving Game State. [(See Figure 7-4.)] It is a little more
technical in nature than ones we have done in the past, but is still a high priority for the customer. This
user story is needed to add functionality to the system in the event that the player happens to lose his
internet connection or something like that, mid-game. In the initial planning, this user story had a T-shirt
size of L.

Figure 7-4. User story: Saving Game State

Tyler: How should this work?

Simon: Well, since blackjack is in essence a one player game, this user story should give the player ability to
pick up where he left off if he loses connection.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

167

Sarah: So, it sounds like we need to maintain some kind of “state of the game.” That way, if the player loses
his connection to the game, when he reconnects, we can see that there is a game in progress and reload that
game. Simon, how often should we save the state of the game?

Simon: There is no definite information on that. I am comfortable letting you all decide how often to save.

Tyler: How many games should we save at one time for the player?

Simon: I would say one game at a time.

Tim: All right, it is time for a vote.

Tyler: It does not sound that complicated. Three.

Sarah: I would agree with Tyler.

Tim: Looks like the 3s have it. Simon is there anything more for this sprint?

Simon: No, that is all I have.

Tim: Are there any questions about the amount of work that we have? Do we, as a team, feel comfortable
committing to this sprint?

Sarah: It is less than what we have been producing the last couple of sprints, but with Tyler being out for
jury duty, I feel we can handle it.

Tyler: I would agree. I am not expecting my time on jury duty to be more than a few days. Taking that into
consideration, I think this amount is enough for the team.

Joe: This being my first time planning with the team, I have to defer to my teammates.

Tim: Well, then, I guess this is it for the planning meeting. I will see you all at the stand-up meeting
tomorrow.

Sprint 3’s Backlog
Let’s review what the team committed to for this iteration. The team committed to the user stories
shown in Table 7-1 for a total of 14 points. This is the team’s capacity for Sprint 3 and you will notice that
it is less than the previous sprints. This is a reflection of the scheduled absences of team members.

Table 7-1. Sprint 3 Sized Backlog

User Story Name Initial Size

Game Play: Dealer Rules 3

Game Play: Double Stake 5

Game Play: Insurance 3

CHAPTER 7  SPRINT 3: CHANGING THE GAME

168

Saving Game State 3

Day 1
As we enter the start of the sprint, we have our first daily stand-up to get a sense of what the team will be
tackling first in this sprint.

Daily Stand-Up
Tim: Good morning, everyone. Joe, this will be your first stand-up experience. You'll quickly get the hang
of it, but we want to concisely answer the following three questions: What did you do yesterday? What are
you doing today? What roadblocks are you experiencing, if any?

Joe: Great, sounds easy enough.

Tim: Okay Joe, how about you start us off?

Joe: Yesterday I attended my first-ever sprint planning meeting. Today, I'm not sure what I'll be doing, so I
guess that's a roadblock I have right now.

Sarah: Same as Joe, I attended the sprint planning meeting yesterday. Today I plan to tackle the Dealer
Rules story. Joe, you can pair with me and I can begin to show you how we develop software since it's a bit
different than what you might be used to. Simon, will you be available this morning to go over the Dealer
Rules story?

Simon: I have some free time right after this meeting, but that is it for me. I am busy all day.

Tyler: Yesterday, I attended the sprint planning meeting. Today, I guess I'll plan to pick up the Double
Stake user story. My goal is to begin sketching out tests and I'll review those tests with Sarah and Joe before
I begin to implement them. That way, Sarah can still be in the loop on this user story and it will also
expose Joe to some tests on a different user story.

Tim: Yes, it might be a challenge having an odd number of developers because the pair programming isn't
so “pair,” but I think you guys can handle it. Tyler, thanks for being flexible and starting on the tests with
the Double Stake user story, and Sarah, thanks for showing Joe the ropes. Joe, these guys are top-notch.
I'm sure they'll be able to bring you up to speed quickly. Thanks everyone!

Developing the User Story: Dealer Rules
Joe: Shall we get started, Sarah?

Sarah: Let’s get to it.

Sarah moves the Dealer Rules user story into the In Process swim lane to notify the team that the
user story is currently being worked on.

Sarah: Hey Simon. You ready to look over what we have in the way of behavior for this user story?

CHAPTER 7  SPRINT 3: CHANGING THE GAME

169

Simon: Sure, I would be happy to.

Sarah shows Simon the Dealer Rules scenario, as shown in Figure 7-5.

Figure 7-5. Dealer Rules scenario

Simon: That looks about enough to cover it. I’d say to move ahead with it.

Joe: Great. Thanks Simon!

Adding the SpecFlow Feature
Now that we have the acceptance criteria for the user story, we can start writing the tests that we need.

Start by adding a new feature object to the Features folder named 006-DealerPlayingRules.feature.
Once the file is created, update the file contents to match the feature shown in Figure 7-6.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

170

Figure 7-6. Dealer Rules SpecFlow feature

When you run the Acceptance.Tests project, you will notice that there are no missing step
definitions. All of the steps have already been defined from previous user stories.

Sarah: This is fortunate. It looks like everything is defined for this test. All we need to do is modify the logic
of the code for this user story and make sure our tests pass.

Joe: Is this a common thing?

Sarah: By using TDD and BDD, the further into the project we get, the more the foundation for our user
stories are completed.

Since there are no compile errors when you write this feature, your next step is to handle the failing
tests. To do that, you need to look at the CanHitDealer object that is located in the
Domain.GamePlay.Model.Dealer.Actions namespace. This object will contain the logic that says if the

CHAPTER 7  SPRINT 3: CHANGING THE GAME

171

dealer can hit or stand. In the same namespace, the object called PlayDealersHand will contain the action
that hits on the dealer’s hand if the logic is true. Look at the companion code for an example of how this
is done.

Day 4
Day 4 brings the completion of one user story and the start of another.

Daily Stand-Up
Tim: Joe, how about you start today?

Joe: Sure. Well, I have been pairing with Sarah on the Dealer Rules user story and I have been learning a
tremendous amount from her about testing and Scrum. Today, I plan on working with Sarah and Simon
on acceptance criteria and scenarios for other user stories in this sprint.

Sarah: Yesterday I worked with Joe on the Dealer Rules user story and today I plan on working with Tyler
on the next user story. I have been talking with Tyler, and I may have a block, but I will let Tyler discuss
this first.

Tyler: Well, I was stuck in jury duty for the last couple of days, but that is over with now. Today, I plan on
working with Sarah on the Double Stake user story. However, I have been feeling under the weather the
last couple of hours. I am not getting any better, so I may end up going home by lunchtime.

Tim: How is that going to affect you, Sarah?

Sarah: Well, Tyler has been doing some of the preliminary work on that user story, so if he ends up going
home, I will not be able to work with him and I won’t have the information that he has.

Tim: What if we did a knowledge dump between you and Tyler right after this meeting to see if we can get
you both on the same page in case he goes home?

Tyler: I am up for that.

Sarah: It’s better than nothing.

Tim: Good. We will have an after-meeting after the stand-up. Next.

Simon: I have been working with the customer on getting the backlog prioritized and hashing out the user
stories at the top of the list for the next sprint. Today, I plan on continuing to work with the customer on
that, as well as provide any support that is needed to the team.

Tim: Great. Guys, thank you for the updates. I want to share with you where we stand on the current
sprint. From the looks of things, we are starting off a little slow. We are only averaging 0.75 points
completed each day. I am not completely worried yet, but we all need to keep an eye on this.
[(See Figure 7-7.)]

CHAPTER 7  SPRINT 3: CHANGING THE GAME

172

Figure 7-7. Burn-down chart, Day 4 of Sprint 3

Working on the User Story: Double Stake
Sarah: Shall we get started?

Tyler: I’m sorry, Sarah, but I am still feeling terrible, so I am going to head home.

Sarah: I’m sorry to hear that. Well, go home and don’t keep infecting us with your germs. Tim, what should
I do?

Tim: Did you have the knowledge transfer with Tyler?

Sarah: Yes.

Tim: Okay, I would suggest that you bring Joe on board with this.

Sarah: Okay. Joe, you want to pair with me on this user story?

Joe: Sure.

Sarah: Great. We are starting to work on the Double Stake user story. [(See Figure 7-8.)]

CHAPTER 7  SPRINT 3: CHANGING THE GAME

173

Figure 7-8. User story; Double Stake

Sarah: Before we start work, let’s have a chat with Simon and come up with some acceptance criteria for
this story.

Sarah and Joe locate Simon.

Sarah: Hey Simon. We are working on the Double Stake game play story and we have come up with
acceptance criteria based on our meetings. Could you take a look to see if we have captured all of the
behaviors of this feature? [(See Figure 7-9)].

Simon: Sure. I only have a few minutes to spare before my next meeting, so we need to make this quick.

Figure 7-9. Double Stake user story feature

Simon: What if a player doesn’t have the funds to double down?

Sarah: Could we just hide the option to double down?

Simon: Not quite. Remember, we want players to spend money with us, so we should give them the option
to cash in and get more funds —and return to the game to double down.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

174

Sarah: Well, we have a user story currently in the product backlog that talks about allowing the user to
cash into the system. Should this scenario be added to that user story? I am afraid if we add it to this user
story, it will become too large to complete in this sprint.

Simon: I would love to have it as part of this user story, but I also want something instead of potentially
nothing this sprint, so I am okay with adding this to the Cashing In user story and getting it done later.
Other than that, I think you have it covered.

Adding the Double Stake SpecFlow Feature
Sarah: Okay, now that we have gathered the initial acceptance criteria for the Double Stake story, it’s time
to fire up Visual Studio and start coding the new feature.

To begin, add the new feature to the system. Create a new file called 007-DoubleStake to the

Features folder of the Acceptance.Tests. Once created, update the feature file so that it matches the
feature, as shown in Figure 7-10.

Figure 7-10. Double Down SpecFlow feature offer to double scenario

You will notice that it is more verbose than the initial scenarios that the developers went through
with the product owner. This is due to the steps required to set the game state up. It is still important,
however, that it is written in a language that the product owner understands in order for him to be able
to confirm the completed feature.

If you run your Acceptance.Tests project, you will be presented with the following missing step
definition:

 [Then(@"I should be offered to double my stake")]
 public void ThenIShouldBeOfferedToDoubleMyStake()
 {

CHAPTER 7  SPRINT 3: CHANGING THE GAME

175

 ScenarioContext.Current.Pending();
 }

To create these missing step definitions, the only action is to verify that the Double button is
displayed.

namespace KojackGames.Blackjack.Acceptance.Tests.Steps
{
 [Binding]
 public class GameDisplaySteps
 {
 [Then(@"I should be offered to double my stake")]
 public void ThenIShouldBeOfferedToDoubleMyStake()
 {
 Assert.That(GameDisplayPage.has_double_button, Is.True);
 }

 ...
 }
}

To stop the compiler from complaining, we will need to update the GameDisplayPage with the new
has_double_button property.

namespace KojackGames.Blackjack.Acceptance.Tests.PageObjects
{
 public class GameDisplayPage
 {
 public static bool has_double_button
 {
 get { return WebBrowser.Current.Button("btnDouble").Exists; }
 }

 ...
 }
}

Sarah: Let’s run the suite of acceptance tests to ensure that we haven’t broken anything and to confirm our
failing scenario.

If you run the acceptance tests, all should pass—apart from the Double Stake scenario that you have

just created.

Using BDD to Drive the Feature Development
Sarah: We have our acceptance test working, but failing. I say we jump into a test, but where should we
start?

Joe: I don’t understand. Do you mean “working, but failing” in regards to our tests?

Sarah: What I mean is that our tests are now compiling and the system is running them. However, the test
itself is currently failing. The test runs, but it is passing at this moment. Well, there really isn’t any test we
can do in the controller, as the query service will just return a domain view, which will have to update in a

CHAPTER 7  SPRINT 3: CHANGING THE GAME

176

minute. What I am thinking we do is jump into the domain model and write a test that checks for a double
option after the hands have been dealt.

Joe: Sounds good to me. I will write up a specification for exactly that.

Sarah: Okay. Let’s make a note of exactly what we want to happen. [(See Figure 7-11.)]

Figure 7-11. Notes on expected behavior

Sarah: With that in place, let’s write the skeleton of the tests.

Add a new test class named when_a_players_hand_meets_the_criteria_to_double_after_dealing to

the DealerAction_Specs/DealCardsIn folder of the Core.Tests project with the following definition:

namespace KojackGames.Blackjack.Core.Tests
 .Domain_Specs.DealerAction_Specs.DealCardsIn
{
 [Subject(typeof(Domain.GamePlay.Model.Dealer.Actions.DealCardsIn))]
 public class
 when_a_players_hand_meets_the_criteria_to_double_after_dealing
 : with_a_deal_in_cards_action
 {
 private Establish context = () =>
 {

 };

 Because of = () => SUT.perform_on(positions, card_shoe);

 It should_check_the_players_hand_for_a_double = () => { };

 It should_mark_the_players_hand_as_being_able_to_double_down =
 () => { };

 }
}

CHAPTER 7  SPRINT 3: CHANGING THE GAME

177

Ideally, you want to be able to assert that some kind of specification class is called after the hands
are dealt.

It should_check_the_players_hand_for_a_double = () =>
{
 double_down_spec.AssertWasCalled(x => x.is_satisfied_by(players_hand));
};

Let’s add this specification to the base with_a_deal_in_cards_action class and include it as a
constructor parameter to the DealCardsIn class that’s under test.

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs.DealCardsIn
{
 public abstract class with_a_deal_in_cards_action
 {
 ...

 protected static ICanDoubleDown can_double_down_spec;

 public with_a_deal_in_cards_action()
 {
 can_double_down_spec =
 MockRepository.GenerateStub<ICanDoubleDown>();

 ...

 SUT = new Domain.GamePlay.Model.Dealer.Actions.DealCardsIn(
 hand_status_factory,
 annouce_winner_action,
 can_double_down_spec);
 }
 }
}

Now add the new interface and put it with the other Dealer observation specifications.
Add the ICanDoubleDown to the GamePlay/Model/Dealer/Observations folder of the Domain project

with the following definition:

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands;
using KojackGames.Blackjack.Infrastructure.Domain;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations
{
 public interface ICanDoubleDown : ISpecification<IHand>
 {
 }
}

To stop the compiler from complaining, include the ICanDoubleDown specification as a new
constructor parameter. Add a new method within the perform_on to check if a player’s hand can double
down.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{

CHAPTER 7  SPRINT 3: CHANGING THE GAME

178

 public class DealCardsIn : IDealerAction
 {
 ...

 private readonly ICanDoubleDown _double_down_spec;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IAnnouceWinnerAction annouce_winner_action,
 ICanDoubleDown double_down_spec)
 {
 _hand_status_factory = hand_status_factory;
 _annouce_winner_action = annouce_winner_action;
 _double_down_spec = double_down_spec;
 }

 ...

 public void perform_on(IPlayingPositions hands, ICardShoe card_shoe)
 {
 if (can_perform_on(hands))
 {
 deal_two_cards_to_each_hand_in(hands, card_shoe);

 update_the_status_of_each_hand_in(hands);

 if (hands.contain_a_hand_with_blackjack())
 _annouce_winner_action.determine_winner_from(hands);

 check_if_player_can_double_down(hands);

 hands.mark_cards_as_dealt();
 }
 else
 throw new IllegalMoveException();
 }

 private void check_if_player_can_double_down(IPlayingPositions hands)
 {
 _double_down_spec.is_satisfied_by(hands.players_hand);

 }

 ...
 }
}

Joe: Should we add a new property or method on the player’s hand to be updated with the result of the call
to see if the hand satisfies the criteria for double down?

Sarah: No, this test is just asserting that the specification is called. Don’t think of these as tests, think of
them more along the lines of design scaffolding. By writing tests first we can drive the design of the system
from the behaviors we want it to portray. Right now, build and run the test.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

179

The test passes. Now we can test the behavior of the player’s hand being told that it can double
down. Update the second test to assert that the player’s hand has a method named
mark_as_able_to_double_down and that it was called.

It should_mark_the_players_hand_as_being_able_to_double_down = () =>
{
 players_hand.AssertWasCalled(x => x.mark_as_able_to_double_down());
};

We will need to add the new method to the IPlayersHand interface and PlayersHand class.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Player
{
 public interface IPlayersHand: IHand
 {
 Bet wager { get; }
 void mark_as_able_to_double_down();
 }
}

Joe: So why didn’t we just expose a Boolean property instead of a method?

Sarah: The answer lies in the question, young one…

Joe: Huh?

Sarah: We don’t want to expose anything about the data structure of our classes, only expose behaviors. By
making it a method, we can control the logic of how a hand will be marked as having the ability to be
doubled down without letting the user know how we do it.

Update the PlayersHand and have it implement the new mark_as_able_to_double_down method and
privately update an internal field.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Player
{
 public class PlayersHand : Hand, IPlayersHand
 {
 private bool _can_double_down;

 public PlayersHand(Bet bet_amount, IBlackJackTable black_jack_table)
 : base(black_jack_table)
 {
 wager = bet_amount;
 }

 protected PlayersHand() : base()
 { }

 public Bet wager { get; private set; }

 public void mark_as_able_to_double_down()
 {
 _can_double_down = true;

CHAPTER 7  SPRINT 3: CHANGING THE GAME

180

 }

 public override void add(Card card)
 {
 card.show();
 base._cards.Add(card);
 }
 }
}

Sarah: Now if we just update the class under test so that it calls the player’s hand, we should be able to get
the test to pass.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public class DealCardsIn : IDealerAction
 {
 ...

 private void check_if_player_can_double_down(IPlayingPositions hands)
 {
 if (_double_down_spec.is_satisfied_by(hands.players_hand))
 hands.players_hand.mark_as_able_to_double_down();
 }

 ...
 }
}

Joe: Oh, that’s odd, the test failed.

Sarah: Ah, that’s because you didn’t set the expected return value of the double down specification.

Tell the stub to return true when asked if the player’s hand satisfies its criteria.

private Establish context = () =>
{
 double_down_spec.Stub(x => x.is_satisfied_by(players_hand)).Return(true);
};

Sarah: Brilliant. Two new tests passing and no broken tests!

Figure 7-12 shows the two passing tests.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

181

Figure 7-12. Two new passing tests

Joe: Next, I suppose we had better create the double down specification.

Sarah: Good idea. I guess we need a couple of tests to prove that a hand with a score that is between and
inclusive of 8 and 10 with the first two cards meets the specification criteria, and a hand without does not.
We will also need a test to confirm that you can’t double down with an ace and a 10. Let’s create those tests.

Add a new folder to the Core.Tests project named DoubleDownSpecification within
DomainSpecs/HandObservations_Specs. Add new class to the folder named
when_checking_if_a_hand_with_a_score_of_8_can_double_down.

using KojackGames.Blackjack.Domain.GamePlay
 .Model.Dealer.Observations;
using KojackGames.Blackjack.Domain.GamePlay
 .Model.PlayingPosition.Hands.Player;
using Machine.Specifications;
using NUnit.Framework;
using Rhino.Mocks;

namespace
KojackGames.Blackjack.Core.Tests.Domain_Specs.HandObservations_Specs.DoubleDownSpecification
{
 [Subject(typeof(CanDoubleDown))]
 public class when_checking_if_a_hand_with_a_score_of_8_can_double_down
 {
 private Establish context = () =>
 {
 SUT = new CanDoubleDown();
 players_hand = MockRepository.GenerateStub<IPlayersHand>();
 players_hand.Stub(x => x.score).Return(8);
 players_hand.Stub(x => x.number_of_cards).Return(2);
 };

 private Because of = () => result =
 SUT.is_satisfied_by(players_hand);

 It should_be_able_to_double_down = () =>
 {

CHAPTER 7  SPRINT 3: CHANGING THE GAME

182

 Assert.That(result, Is.True);
 };

 private static CanDoubleDown SUT;
 private static IPlayersHand players_hand;
 private static bool result;
 }
}

After a few minutes and a couple of extra tests, the developers come up with the following definition
for the CanDoubleDown. Add this class to the GamePlay/Model/Dealer/Observations folder of the Domain
project.

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations
{
 public class CanDoubleDown : ICanDoubleDown
 {
 public bool is_satisfied_by(IHand hand)
 {
 if (hand.number_of_cards == 2)
 {
 if (hand.score > 7 && hand.score < 11 ||
 hand.score == 11 && hand.number_of_aces == 0)
 {
 return true;
 }
 }

 return false;
 }
 }
}

That’s all the cases for the CanDoubleDown specification covered, as seen in Figure 7-13.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

183

Figure 7-13. The CanDoubleDown specification passing tests

Wiring Up and Getting the Scenario to Pass
Let’s wire up the code and get this scenario to pass. The first thing we need to do is add a new column to
the Hands table to store the field on the PlayersHand that signifies that a player can double down, as seen
in Figure 7-14. Remember to allow nulls, as this table also stores, the dealer’s hands won’t have a value
for it.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

184

Figure 7-14. The new can_double_down column on the Hands table

Now we need to update the NHibernate mapping mark up so that it will write up the PlayersHand to
store and retrieve the _can_double_down field.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands"
 assembly="KojackGames.Blackjack.Domain">
 <class name="Hand" table="Hands" lazy="false" >

 <subclass
name="KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Player.PlayersHand"
discriminator-value="Player" lazy="false">

 <property name="_can_double_down" access="field"

CHAPTER 7  SPRINT 3: CHANGING THE GAME

185

 column="can_double_down"/>

 <component name="wager"
class="KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Player.Bet">
 <property name="value" column="bet"/>
 </component>

 </subclass>

 <subclass
name="KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Dealer.DealersHand"
discriminator-value="Dealer" lazy="false">
 </subclass>

 </class>
</hibernate-mapping>

We added a new parameter to the DealCardsIn class, so we will have to update the StructureMap
registry so that it knows about it at runtime.

Joe: Okay good point, I will update that now.

namespace KojackGames.Blackjack.UI.Web
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {
 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();
 x.AddRegistry<CommandHandlerRegistry>();
 x.AddRegistry<CommandMappersRegistry>();
 x.AddRegistry<DomainRegistry>();
 });
 }

 ...

 public class DomainRegistry : Registry
 {
 public DomainRegistry()
 {
 ...

 For<ICanHitDealerSpecification>().Use<CanHitDealer>();
 }
 }

 }
}

CHAPTER 7  SPRINT 3: CHANGING THE GAME

186

Now we need to update the query side of the CQRS architecture. Go ahead and add a new
can_double_down property to the PlayerHandView.

namespace KojackGames.Blackjack.Domain.GamePlay.DomainViews.InPlayView
{
 public class PlayersHandView : HandView
 {
 public bool turn_ended { get; set; }
 public decimal wager { get; set; }
 public bool can_double_down { get; set; }
 }
}

We will also need to update the markup so that NHibernate can rehydrate it for us.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="KojackGames.Blackjack.Domain.GamePlay.DomainViews.InPlayView"
 assembly="KojackGames.Blackjack.Domain">

 <class name="HandView" table="Hands" mutable="false" lazy="false">

 ...

 <subclass name="PlayersHandView" discriminator-value="Player"
 lazy="false">
 <property name="wager" column="bet"/>
 <property name="turn_ended" column="turn_ended"/>
 <property name="can_double_down" column="can_double_down"/>
 </subclass>

 <subclass name="DealersHandView" discriminator-value="Dealer"
 lazy="false">
 </subclass>

 </class>
</hibernate-mapping>

Finally, we need to update view to show a Double button if the hand.

<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<KojackGames.Blackjack.Domain.GamePlay.DomainViews.InPlayView
.BlackJackTableView>" %>
 ...

<body>

 <%
 if (!hand.turn_ended)
 {
 using (Html.BeginForm("Index", "Stick"))
 { %><input id="btnStick" type="submit" value="Stick" /> <% }

 using (Html.BeginForm("HitActiveHand", "Hit"))

CHAPTER 7  SPRINT 3: CHANGING THE GAME

187

 {%> <input id="btnHit" type="submit" value="Hit" /> <% }

 if (hand.can_double_down)
 {%> <input id="btnDouble" type="submit" value="Double" /> <% }
 }
 }%>
 </p>

 ...

</body>
</html>

Sarah: Right. Now let’s run the acceptance tests, core unit tests to see if all is good.

Joe: Bingo! All pass.

Figure 7-15 shows the passing of the Double Stake user story acceptance tests.

Figure 7-15. The passing double acceptance test

CHAPTER 7  SPRINT 3: CHANGING THE GAME

188

Day 6

Daily Stand-Up
Tim: Good morning, team. Who wants to go first?

Joe: I will. I worked with Sarah yesterday on the Game Play: Double Stake user story. Today, I plan on
working with Tyler on the Game Play: Insurance user story. And I don't have any blocks.

Sarah: Let’s see. Yesterday I started looking into the Saving Game State user story. This user story is looking
to be a bit more complex than we originally estimated, but I'm going to work on that today and also
answer any questions Joe or Tyler may have. The complexity of this user story and the fact that we have
been short-handed the last couple of days makes me worry that we will not get this user story done in time.

Tim: Is there something that Joe or Tyler can help you with to help you get it done sooner?

Sarah: No. I'm still figuring out what pieces need implementing from a development perspective. Once we
have that, then either Tyler or Joe can help, but right now, in my opinion, I'd rather have Tyler and Joe
pairing together to get the Insurance user story done.

Tim: Okay, we'll keep an eye on the Saving Game State user story. The worst-case scenario is that we don't
get it done and we'll have to tell the customer, but continue working on it because we know it's a priority
and will add value. Tyler?

Tyler: I have been out of the office randomly the last few days. I am still not feeling 100 percent, but I feel
like every day is better. Like Joe said, we finished up the Double Stake user story yesterday and I'll be
pairing with him, to work on the Insurance user story today.

Tim: Well, that is all for now. Everyone have a great day!

User Story: Game Play Insurance
Tyler: Joe, I am ready to start on the Insurance user story whenever you are.

Joe: I'll be right over. I'll go ahead and move the Insurance user story card to the In Progress swim lane.

Figure 7-16 shows the current task board.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

189

Figure 7-16. Updated task board

Tyler: Let's first review the Game Play: Insurance user story and acceptance criteria. [(See Figure 7-17)].

Figure 7-17. Game Play: Insurance

Tyler flips the card over and reviews the acceptance criteria, as shown in Figure 7-18.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

190

Figure 7-18. Acceptance criteria

Joe: How about we start developing the ability to offer an insurance bet? I'll get into the code and begin
making the changes.

Tyler: Hang on a second, Joe. We begin with writing out specs and different scenarios with SpecFlow. We
develop from the outside in. Rather than the traditional way of developing from the database out, we
create scenarios that a business user can understand and we develop from those scenarios. The first thing
we want to do is to add this feature to our project.

Adding the SpecFlow Feature
We will begin as usual. Add a new feature file to the Features folder called 009-Insurance.feature and
update it with the following feature definition:

Feature: Insurance
 In order to increases my chances of making money
 As a player
 I should be offered an insurance bet

The thing about this feature is that there are numerous scenarios that we will need to test for. Based

on the acceptance criteria, we need to think of different ways that the Insurance feature can be offered
and used. Since we have good acceptance criteria, we can translate those into our different testing
scenarios.

Joe: How do we translate the acceptance criteria into a usable scenario?

Tyler: Let's look at the first acceptance criterion. We need to offer an insurance bet.

Tyler explains that to offer an insurance bet, the following needs to happen:

• Start a new game

• Check the deck for specific cards

CHAPTER 7  SPRINT 3: CHANGING THE GAME

191

• Click the deal button, which should give the player an option for insurance

Joe: Okay, that makes a bit more sense as we are laying out the steps we need to do to develop the
functionality, but shouldn't we need to log in or something?

Tyler: As of right now, the system doesn't have that functionality. We only need to develop what is
associated with the acceptance criteria and nothing more. We don't want to get into a scope creep
situation, so we stick to what the business wants. That may be a user story for later, but for now we're
focusing on Insurance. So let's walk through how we turn these steps into a scenario we can run.

Adding Scenarios
Let’s start with the first scenario on the list, offering an insurance bet. Update the feature file with the
scenario shown in Figure 7-19.

Figure 7-19. Offer insurance bet scenario

As per the previous user stories, most if not all of the “Given” and “When” steps for this scenario are
already implemented from previous user stories. We only need to concern ourselves with the “Then” in
this scenario. Go to the GameDisplaySteps.cs file and add a method called
ThenIShouldBeGivenTheOptionForInsurance, as with the following code snippet:

 [Then(@"I should be given the option for insurance")]
 public void ThenIShouldBeGivenTheOptionForInsurance()
 {
 Assert.That(GameDisplayPage.has_insurance_button, Is.True);
 }

With this method in place, you can continue trying to get this test to pass by adding functionality to
the GameDisplayPage class.

The next scenario should deal with the next item in the acceptance, the ability to offer an insurance
bet—but only on a visible ace. Most of this was implemented in the previous scenario; we will add just
one bit of functionality. The scenario will look like Figure 7-20.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

192

Figure 7-20. Offer insurance bet, scenario 2

As with the previous scenario, the "Then" piece is the only one we need to implement. Back in the
GameDisplaySteps.cs file, you'll need to update it with the following:

 [Then(@"I should not be given the option for insurance")]
 public void ThenIShouldNotBeGivenTheOptionForInsurance()
 {
 Assert.That(GameDisplayPage.does_not_have_insurance_button, Is.True);
 }

With the test scenario in place, you can add functionality to the GameDisplayPage class.

Tyler: Since we've done two different scenarios, is this starting to make sense?

Joe: I'm confused as to why we use a certain card state and it still seems to me that this is a lot of overhead
to implement a feature, although I can see how the text in the scenarios would be helpful to a business user
or someone who isn't a developer.

Tyler: In order to test, we need to have an expected input with an expected output. We can't leave it to
chance, so we set up the deck with a certain configuration to get a desired outcome. You want to take a
look at the next scenario, taking the offer of insurance?

Joe: Sure. Seems like the steps would be similar to the others, but we need to build into the test, “When I
click ‘take insurance,’” then something should happen. Is that right?

Tyler: You're on the right track.

The scenario should look like Figure 7-21.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

193

Figure 7-21. Insurance taken scenario

The only thing we need to add is another "Then" to specify the result. Since we've implemented the
rest of the scenario, we just need to focus on the following code:

 When I click on take insurance

The following code will go in the GamePlaySteps.cs file, as it is a step in the game:

 [When(@"I click on take insurance")]
 public void WhenIClickOnTakeInsurance()
 {
 GameDisplayPage.take_insurance();
 }

With the test scenario in place, you can add functionality to the GameDisplayPage class.

Joe: These scenarios are good, but what about when the dealer does not get blackjack and the player loses?

Tyler: Good point. That scenario wasn't specifically laid out in the acceptance criteria, but we do need to
account for it. [(See Figure 7-22.)]

CHAPTER 7  SPRINT 3: CHANGING THE GAME

194

Figure 7-22. Insurance taken, no dealer blackjack scenario

Tyler: I can't think of any other scenario. Can you think of any other scenario, Joe?

Joe: Well, we just wrote a scenario for the dealer not getting blackjack, but what about if the dealer does
get blackjack? I think we need to test for that scenario.

Tyler: True, didn't think of that one. That will be written very similar to the last one but with a couple
tweaks. [(See Figure 7-23)].

Figure 7-23. Insurance taken, dealer blackjack scenario

Joe: That looks good. Besides that scenario, I can't think of any other scenarios. I think we have it covered.

Tyler: Yes, I'd agree. Let's test-drive and implement these, and we should be done with this feature.

Joe: Great. Let's do it.

Download the latest code from www.apress.com to see all the implementation details.

http://www.apress.com

CHAPTER 7  SPRINT 3: CHANGING THE GAME

195

Day 10
As with all sprints, we continue to do the product demo and the retrospective to verify that we are on the
right track with the customer and to improve customer confidence.

Product Demo
Once again, it's time for the product demo, the show-and-tell for the customer that demonstrates the
features implemented throughout this past sprint. We do this after each sprint to maintain transparency
and accountability with the customer and to increase team moral because they should continue to be
proud of the work they've accomplished.

Since Joe joined the team during this sprint, he'll get his first exposure to a product demo. Tyler
volunteered to drive this demo.

Tyler: As we wrap up another sprint, we want to take this opportunity to demo the new features that we
added to the system. Let's recap the features that the team took on during this sprint. They were Game
Play: Dealer Rules, Game Play: Double Stake, Game Play: Insurance, and Saving Game State. The team
was able to finish up the first three stories, but as Sarah mentioned in stand-up, the Saving Game State
seemed to be more complex than we originally thought. I think we grossly underestimated it. I also think
the team was overly optimistic about what we could accomplish this sprint. Tim mentioned that bringing
on and mentoring another developer would decrease our velocity, but I don't think the team realized how
dramatically it would reduce our velocity. This is not a reflection of Joe, it's a reflection of the team and
our zealousness for velocity. Also, I was out a couple more days than planned due to illness. The other
potential jurors must have had some bad germs! But, it will be up to Simon and Bill to determine if we
need to continue working on this during the next sprint. Again, we did complete the Dealer Rules, the
Double Stake, and the Insurance user stories.

Simon: You said Sarah mentioned that the one user story was more complex than originally thought.
Why was it more complex than expected?

Sarah: Originally, I thought that it was little effort, but after digging into the code and learning
NHibernate—which is a good tool but there is a learning curve to deal with—it was taking more time than
I had thought. I think if we had to do it over again, we should have done a research spike so we could
learn and become familiar with NHibernate before committing to this story. It is true that with Tyler being
out, I also had less time to focus on this user story.

Simon: Research spike? What's that?

Tim: A spike is where we put in a time block on research and put it into the sprint planning session. The
goal is, like Sarah said, to become familiar with a new tool or process. The goal of the time block is to come
away with enough information to better estimate a user story that uses a new tool or process.

Simon: Okay, well, if it's not done, it's not done, but it is still a priority. Can we continue it during the next
sprint?

CHAPTER 7  SPRINT 3: CHANGING THE GAME

196

Tim: Sure, even though Sarah didn't get the user story done, I'm sure she came away with enough
information to come up with a better estimate during the next sprint. Would you say that's correct Sarah?

Sarah: Yes, unfortunately the time spent during this sprint was more or less learning the tool. I'm much
more familiar with the tool now and I believe we can get it done during the next sprint.

Simon: Okay. Tyler mentioned the team did finish some stories this sprint. I'm anxious to see them!

Tyler: Let's start with the Dealer Rules user story.

Tyler navigates to the application and demos the Dealer Rules user story. He plays a couple games
and is able to show how the system hits on a score below 17 and stands on a score above 17.

Simon: That looks pretty straightforward. Seventeen is the magic number, so this will come in very useful.

Tyler: Let's move onto the next user story, the Double Stake.

Again, Tyler navigates to the application and demos the Double Stake user story. While he needs to
play a few games to get the right configuration, he is able to demo the Double Stake feature and explain
how it works.

Simon: When you guys test this, you don't rely on chance to test it, do you? Seems like it would take a
while to test and get the result you want.

Tyler: Luckily, no! We have a testing strategy where we can pre-determine and set up the cards in a
certain way so that we can target specific test scenarios. When we demo it to you, we obviously want to
demo it from the perspective of the user. That's why there isn’t a way to pre-determine the cards dealt.

Simon: Oh, okay! Whew, good! This looks good and is what we had agreed to.

Tyler: We used this same testing framework for the next user story we'd like to demo, the Insurance user
story.

Tyler loads up the application and runs through a few games to demo the Insurance feature and

how the Insurance feature works.

Simon: What about when the player gets blackjack and the dealer loses? I didn't see that.

Tyler: We did account for that, but we may have to work through a few random games to get to that point.
We can either keep playing by chance, or I can show you the test we wrote to account for that scenario, or
you can take our word for it.

Simon: You guys have been doing good work. I'll take your word for it.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

197

Tyler: Okay, but if you ever want to dig in and look at the tests we've written, you're more than welcome
to.

Simon: Okay, thanks for the offer.

Tyler: That concludes the demo for this sprint. Thanks for your time, Simon.

Simon: Thank you guys, too. While we weren't able to get the Saving Game State feature completed, the
other user stories look like they are complete. Hopefully we'll be able to see the Saving Game State feature
at the end of the next sprint.

Tim: That's the plan. I think that wraps it up. Thanks for your time everyone.

Retrospective
As we want to continue to work on, refine, and make our team more efficient through process, it's time
for a retrospective. As we've done this for the past few sprints, hopefully the team is prepared for the
retrospective, ready to talk about key points on how to improve the next sprint.
Tim: Welcome to another retrospective, team. In order to keep things fresh and feedback valuable, we are
going to try a different game today called "The Soup." As before, we'll have three colors of Post-it notes: red
for things that went poorly, blue for things that were confusing, and green for things that went well. The
difference in this activity, however, is that instead of dividing the Post-its by category, we are going to split
them up into three new categories. [(See Figure 7-24.)]
Tim explains “The Soup” categories, as follows:

• Team Control: Post-it notes go in this circle if the item is under the direct control
of the team.

• Team Influences: Represents items that the team can influence, but not take total
ownership of. These include items in which your influence may affect others or
items that you can make suggestions on, but you are unable to directly make the
change.

• The Soup: These are suggestions items. Think of this as a company suggestion box
in which the team can make a suggestion, but cannot directly influence the
outcome.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

198

Figure 7-24. The Soup

There are many different ways to run a retrospective, but one thing to remain consistent on is that
we always want fresh feedback. To get stale defeats a retrospective's usefulness, so one way to remain
fresh is by doing different activities to gather the data needed to provide useful feedback and useful,
value-added action items Agile Retrospectives by Diana Larsen and Esther Derby is, again, a great
resource on ways to run a retrospective.

Tim: Teams sometime get stuck blaming others, but may not realize it. This exercise will show us how
much we can influence. This is a different way of organizing our thoughts, in order to get a different
perspective on things. As with the last sprint, we have three minutes to write down our feedback on the
appropriate Post-it notes. Does anyone have any questions?

Sarah: No, seems pretty straightforward. I like that we are doing something a bit different.

Tyler: None here.

Tim: Okay. Let's get started. The timer is set for three minutes. Go!

 Tick, tock...

Tim: Time's up. I'll come around and collect the Post-its and place them in the circles.
Tim places the Post-its notes in the appropriate circles. The result looks similar to Figure 7-25.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

199

Figure 7-25. Results of the retrospective

Tim: Let's talk about The Soup first.
Tim reads the following three items in this category:

• A green Post-it said “adding a new member”

• A red Post-it said “adding a new member affected our velocity”

• Another green Post-it said “the company's commitment to the agile process”

Tim: I'll time block us for ten minutes to discuss the topics in The Soup. Remember, the items in The Soup
are ones that you can make suggestions on, but not directly contribute to. The primary topic for The Soup
is adding a new team member. This topic fits in this category because the team didn't decide to bring in a
new team member nor had influence in making the decision. So, who would like to start?

Tyler: I used the red Post-it for adding a new member. While I like Joe and enjoyed pairing with him,
bringing on a new person to a fairly new team, I thought, affected our velocity poorly. No offense to Joe,
but because he didn’t know how this team or the agile process works, there was a lot of time spent
mentoring him and bringing him up to speed, and it impacted the amount of work done at the end of the
sprint.

Sarah I agree with Tyler that this affected our velocity, but I'm glad to have Joe on our team and it gives us
a chance to mentor and bring him up to speed on this new development process. Our velocity initially
decreased, but the hope is that once Joe is up to speed, he can contribute more and our velocity will go up.
I wrote the green Post-it about the company's commitment to the agile process. For me, it's encouraging to
see that there is support from upper-management to be committed to this process by investing another
resource in it. It shows that the company is serious in its agile approach.

CHAPTER 7  SPRINT 3: CHANGING THE GAME

200

Tim: Yes, Sarah, that was the thinking. We knew that this sprint's velocity may have ended up a bit lower
than normal by bringing in a new team member, however, we needed to bring on a new person for a
couple reasons: one, we wanted to bring him on to expose Joe to the agile process and to the agile way of
engineering software, but also, Joe is a seasoned developer, and we thought he could help us develop more
features faster after a couple of sprints.

Joe: I must admit, developing the "agile" way in terms of behavior-driven design and writing code from
the outside in, is a different mindset than I'm used to. It’s a struggle to develop this way, but the concept of
pairing and mentorship is helping me gain more experience and have the ability to catch on quicker.
Hopefully, there's more of that in the next sprint.

Tim: Sounds like an action item! While the team didn't have any influence or control over adding a new
team member, the team can now decide how it’s going to react. How about we pair Joe with Tyler more in
this next sprint since he spent a lot of time with Sarah last sprint. He’ll get different perspectives.

Sarah: Sounds good to me. Tyler, Joe, let me know if I can help out.

Joe: Thanks for your help, Sarah. Will do.

Tyler: You bet I'll tap your shoulder if we need help.

Tim: What's next? Let's look at Team Influence, which are items that are under our influence. Looks like
there is one blue Post-it that says the team didn't have any control of who the new team member was nor
were asked about having a new team member.

Tyler: I thought one advantage of this agile process was that the team is supposed to be self-managing and
have a "control your own destiny" philosophy. If that's the case, how come the team couldn't decide if and
when a new team member joined us?

Tim: That's a good point Tyler. Agile teams are meant to be self-organizing. Unfortunately, some things
still remain out of our control, so we work with what we have. Agile has built-in feedback loops in order to
remain transparent. It was transparent to upper management that our velocity would decrease during
this mentoring time. While we can and should remain transparent, this doesn't mean that we always get
our way. An advantage of being transparent is to shine the proverbial flashing light to alert of roadblocks
ahead, but it's not necessarily within our power to go around the roadblocks. Sometimes we will be slowed
down by things outside of our control, but communication and expectations are important that when
something unexpected happens, in our case adding a team member, a reasonable result is an initially
lowered velocity. As ScrumMaster, I will push back the next time this happens and fight for the team to
determine any decision about adding a new team member. While in the future we hope we can influence
this, this is not always under our direct control.

Tyler: Okay. Sometimes it's frustrating when we are told that the team owns its own destiny and then
something like this happens. Thanks for explaining and hopefully next time will be different.

Tim: The third and final category is Team Control. These are items that we directly have control of. Wow,
a lot of red Post-its!

Tim reads aloud the comments in the Team Control category:

• A red Post-it says “the team didn't complete what we committed to”

CHAPTER 7  SPRINT 3: CHANGING THE GAME

201

• A red Post-it says “the demo didn't go well since we didn't get everything done”

• A red Post-it says “Tyler unexpectedly being out for a couple more days”

• A red Post-it says “that poor estimation on the Saving Game State user story”

• A green Post-it says “mentoring Joe”

Sarah: I put one of those red notes up. I was frustrated that we didn't correctly estimate the amount of
effort for completing the Saving Game State user story. I personally didn't think it was much effort, but
between learning the tool and incorporating that into the application, it was more complex than I
thought.

Joe: I didn't have any experience in NHibernate to lend you some knowledge, or else I would have. How
can we better estimate the next time something like this happens?

Sarah: The next time we have a situation like this, specifically when we need to incorporate some new tool
or technology, we should do a spike. Tim, I was reading about agile and it mentioned something called a
spike. If I remember correctly, a spike is used as a time block to research a new tool or technology before
the team estimates and commits to a user story during a sprint. The purpose of the spike is to gain enough
knowledge to more accurately estimate the user story using the new tool or technology. Is that right?

Tim: That's right Sarah. Next time, I agree that, even if we think it's small, we should take a spike to
research that new tool before we commit to completing that user story for a particular sprint. That sounds
like another action item: before we try to incorporate a new tool or technology, create a spike to perform
research and plan it prior to the sprint. I'll assign that action item to me so I can be sure to ask the proper
questions to determine if we should have a spike.

Tyler: That sounds good. I, for one, didn't really enjoy going into that demo having not completed all the
work we committed to.

Sarah: Yes. That didn't make me proud to even show off what we did.

Joe: Since this is my first sprint, I'm guessing it isn't always like this?

Tyler: No, it isn't. Typically we get everything we committed to finished. We just had too much going on
this sprint. Unfortunately, I was out a couple more days than expected, but people get sick and sometimes
there's just nothing you can do about it.

Sarah: On the plus side, I enjoyed working with and mentoring Joe and bringing him up to speed.

Joe: Thanks Sarah, likewise. This agile thing is a mental shift from the way we used to do things, but I'm
starting to see the value in it. The quicker feedback loops definitely cuts down on wasted development
effort and we are much more confident that what we are working on is something of value and not just
"busy work." I highly value that. I enjoy delivering value, not busy work. Re-prioritizing every sprint and
the way that we develop code shows that we are delivering value and building a product that is meant to
last.

Tim: Joe, sounds like you've learned a lot over the course of the sprint. Tyler, I think you're right. In
retrospective, I think we just took on too much, but this is a lesson learned and can be applied in the
future. And, then with Tyler being out, unfortunately unforeseen things happen. With this retrospective
activity, we see a lot of red in the middle, which, on a positive note, is a good thing because we can directly

CHAPTER 7  SPRINT 3: CHANGING THE GAME

202

affect the outcome—it’s not out of our control. Let's work on things that we do have control over and make
this team an even better team! Does anyone have anything else?

Silence.

Tim: Okay, I think that wraps it up today. Let's review our action items.

Tim lists the action items, as follows:

• Use spikes for new tools/technology before estimating and committing to getting
a user story done. This is assigned to Tim.

• Tyler and Joe will pair more in the next sprint to give Joe a better understanding of
agile and to get a different perspective by pairing with another developer. This is
assigned to Joe.

• Push back when upper management wants to add a new team member and let the
team make this decision, rather than having it forced on them. This is assigned to
Tim if and when it comes up again.

Tim: Thanks for your time today, team! I believe with these lessons learned, the next sprint will be better!

Summary
This chapter, our third sprint, introduced the impact of adding a new team member. Joe was added to
the team to provide an opportunity for the team to teach a developer the agile methodology and
engineering practices. Adding a team member to a team mid-way through a project incurs risk because
the team needs to take the time to teach the new team member. The payoff is worth the risk, however,
because once a new team member like Joe has learned the agile framework and engineering practices of
BDD, he can teach someone else. As the organization makes this investment in team members, the agile
framework permeates throughout the organization.

This chapter implemented the following user stories of the Kojack blackjack game:

• Dealer Rules

• Double Stake

• Insurance

Although the team finished these three stories, this sprint demonstrated the result of over-
committing by not completing the Saving Game State story. In the retrospective, the team admitted that
they had taken on too much with training Joe, trying to conquer a new technology, and having Tyler out
for a few expected and unexpected days. The team learned that adding a team member and coaching
that team member with Scrum and XP practices was a bigger investment than originally thought.

Throughout the sprint, the team kept Tim, the ScrumMaster, and Simon, the product owner,
apprised of the situation so there were no surprises at the end when the team didn’t finish what it
committed to; Tim and Simon could plan appropriately. Obviously, having the team not complete its
commitments is not ideal, but it does happen at times. Whenever it is a possibility, communication is
important.

In the next chapter, we’ll continue developing new features to the Kojack game, and at the end of
that sprint, talk about the first release of the software.

C H A P T E R 8

203

Sprint 4: The Release

Over the last three sprints you have seen how a team goes about working on user stories for a customer.
While most real-world projects have more than four sprints, we've limited this case study to four to make
it manageable and readable. As we enter the last sprint, you will see how everything comes together to
produce a finished product that is released to the customer.

Sprint Planning Meeting
With the team gathered in the conference room, Simon and Tim enter with user stories for the team to
work on, discuss, and size.

Tim: Good morning, all. Welcome to the final sprint before our first release. In case you haven’t heard,

we are planning to take what we have completed for the blackjack application and release it to users at the
end of this sprint.

The Theme of the Sprint
Tim: The theme for Sprint 4 is going to be “The Release,” since we are releasing all that we have

completed at the end of this sprint. Once again I want to stress that a theme is a way to show a common
purpose in our stories for this sprint. If you find yourself working on something that doesn’t reflect this
theme, let either me or Simon know and we will do what we can to address it.

Determining Availability and Capacity
Tim: What about the availability for this sprint? Do any of you know that you are not going to be here

for an extended period of this sprint?

Sarah: I should be here the whole time. However, I may have something coming up towards the end of

the sprint. When I know more for sure, I will let you know.

Joe: I have no vacation coming up, so I will be here the entire sprint.

Tyler: I wouldn’t miss the release for anything. I will be here with bells on for the entire sprint!

Simon: I will be here the entire sprint. Will someone remind me to bring headphones in tomorrow so I

don’t have to listen to the bells?

CHAPTER 8  SPRINT 4: THE RELEASE

204

Tim: Let’s hope Tyler doesn’t actually do that. Anyway, it looks like we should be at full capacity for
most of the sprint. It's good to have the team back after absences in the last sprint! If no one has questions,
I would like to start Planning Poker.

Planning Poker
Simon: All right, guys and gals, I have the list of user stories I would like us to look at for this sprint. As

an update, we have one user story that did not get done in the last sprint. The user story is the Saving Game
State. I spoke with the customer to tell him that the story was placed back into the product backlog and
would need to be prioritized in relation to everything else currently in the backlog. The customer decided
that the Saving Game State user story is the top priority of this sprint and placed it at the top of the product
backlog. So, let’s go ahead and discuss this user story again. [(See Figure 8-1.)] When we originally started
talking about Saving Game State, we said that we wanted to give the user the ability to pick up where she
left off in her game in the event she lost her internet connection for any reason. We originally sized this
story as a 3 and the T-shirt size for it was an L. Just to clarify, the 3 and the L are not compatible with each
other. These are estimates that were derived from two different planning meetings. The L is a high-level
estimate, whereas the 3 is a lower-level estimate determined after we discussed more of the details.

Figure 8-1. User story: Saving Game State

Simon: Now where do we stand on this?

Sarah: Yeah, I wasn't able to get this done last sprint. Since I spent the time I had on this card learning

NHibernate, I'm much more comfortable estimating this now. After looking into NHibernate and looking
at how we'll need to integrate it into our current code base, I believe this user story is more complex than
we originally anticipated. I think we underestimated it.

Tim: All right, everyone give me a number on the amount of work it will take to complete this card.

Sarah: I would give it a 5.

Joe: I looked over what Sarah was researching and I think it will be easier than that. I would vote 3.

Tyler: I don't think it is as easy as Joe says. I am more comfortable betting a 5 than a 3.

Tim: Joe, it looks like the majority of the team wants the user story to be a 5. Is this something you are

comfortable with? If not, please explain to use why you feel strongly that it is a 3.

CHAPTER 8  SPRINT 4: THE RELEASE

205

Joe: I am comfortable with calling it a 5.

Tim: All right then. We have decided the Saving Game State user story is a 5. Simon, what is next?

Simon: The next user story was added by the customer after our last product demo. This user story is

Paying Out. [(See Figure 8-2.)] This user story gives the player the ability to actually receive his winnings
at the end of a hand. This user story will take whatever amount of money the player has won in the hand
and move it to his gambling pot, so the player can actually receive his winnings.

Figure 8-2. User story: Paying Out

Tyler: This seems pretty straightforward.

Sarah: Yes, this one seems pretty simple. Most of the groundwork for this user story is done by

culmination of finishing other user stories, so we just need to tie it all together with this one.

Tim: Let’s vote.

The Team: Three.

Tim: A 3 it is then. Next.

Simon: Certainly. The next user story is Member Registration. [(See Figure 8-3.)] This user story gives

the player the ability to register as a member on the site. The goal is to require users to enter membership
registration information only once so they don’t have the bother of repeatedly entering it every time they
come to the web site to play. In the initial product backlog, this was an S.

CHAPTER 8  SPRINT 4: THE RELEASE

206

Figure 8-3. User story: Member Registration

Tyler: What are the acceptance criteria for this? How far down this rabbit hole to we need to go?

Simon: Well, users will need the ability to sign into the site with a username and password. Once on

the site, they need the option to save information like name and address on the site so that they do not
have to re-enter it the next time they sign in.

Sarah: So what you are saying is that you are asking for a simple way to store this information?

Simon: That is correct. For now, we just need to keep it simple.

Tim: If there are no additional questions, we will go ahead and vote.

Joe: Three.

Tyler: Three.

Sarah: Three.

Tim: A 3 it is. Next!

Simon: I have one more card, but before I present it, I want to know if the team is confident that they

can take on another user story for this sprint?

Tim: Looking at the numbers, we currently have three user stories that we estimate for a total of 11

points. As a comparison, our last sprint’s velocity was 11 points.

Sarah: Given the numbers and that the entire team expects to be available for most of the sprint, I feel

pretty confident that we have some spare capacity in this sprint. I am comfortable taking on another one.

Joe: I’m getting more up to speed each and every day. I’m comfortable that we can take on an

additional user story this sprint.

Tyler: I have some hesitations. I know that our history shows that we can take on the additional user

story, but I am concerned that we might be taking on too much this sprint.

CHAPTER 8  SPRINT 4: THE RELEASE

207

Sarah: Good point, Tyler. I guess I have a reservation or two, as well. I have an idea, what if we made it
a stretch goal?

Simon: Stretch goal? I haven’t heard of that. What is that?

Sarah: A stretch goal is like a fallback user story. We discuss it and size it, but we only work on it if we

have finished the other user stories in the sprint. The team does not commit to getting this done, so the
expectation from a customer perspective is that it could possibly get done, but the feature is secondary in
this sprint. You can think of it as a prioritized backlog. The high-priority user stories are the ones that the
team commits to, whereas the “stretch goal” user stories are ones we work on when the top priority ones are
completed.

Simon: How do we account for this user story in the velocity and capacity for this sprint?

Tim: If we work on the user story, it will be counted towards our velocity of the sprint. Since we did not

commit to the user story here, it will not be counted towards our capacity. If we finish everything this
sprint, it will show that we completed more user stories that we committed to. Simon, is this all right with
you?

Simon: Yes, I think so. I really need this user story this sprint, however, it is not more important than

the other ones we have discussed so far. So, let’s give this a try. This next user story is Cashing In. [(See
Figure 8-4.)] The purpose of this user story is to give the user the ability to deposit money into the system so
that he has chips for the game. The user can select a way to supply the money to the system, whether
through PayPal or credit card. He will also have the ability to specify how much he wants to deposit. In the
initial product backlog, this user story was rated an XL.

Figure 8-4. User Story: Cashing In

Tyler: This sounds like something that’s going to be involved. Do we have expertise with using the
PayPal system?

Simon: The customer has used PayPal on numerous other projects, so there are some references that

we can tap into when working on that piece.

Joe: On a previous project, I worked with handling credit card transactions, so I have some technical

knowledge. Plus, I have some contacts that I can hit up with any questions that we have.

CHAPTER 8  SPRINT 4: THE RELEASE

208

Tim: Are we ready to size this? If so, please give me some numbers.

Tyler: I vote an 8.

Sarah: I vote a 3.

Joe: I vote a 3.

Tim: All right. Tyler, would you care to discuss why you voted an 8 on this user story?

Tyler: I voted an 8 due to the amount of work that is involved with handling credit card transactions. I

feel there is a lot of work involved in working with encryption and things like that.

Tim: Okay. Sarah, please discuss why you voted a 3.

Sarah: I voted a 3 because we had Joe join our team since we originally put a T-shirt size on this user

story. Joe has experience in this area, whereas beforehand, we didn't have someone with experience. I
know some of this stuff is covered in other aspects of the system. Besides, we now seem to have the
resources, whether it is Joe and/or the code samples, at our disposal if we run into any issues.

Tim: Okay, let’s vote again.

Joe: Three.

Sarah: Three.

Tyler: Five.

Tim: Tyler, would you be satisfied with a 3?

Tyler: Yes, that's fine. While my experience would say that it's higher, I have confidence in Joe and

Sarah since they have much more direct experience than I do.

Tim: Okay, 3 it is. Simon, am I safe in saying that this is all for this sprint?

Simon: Yes.

Tim: I guess that wraps up the planning meeting for this sprint. I will see you all at our stand-ups.

Sprint 4’s Backlog
For Sprint 4, the team committed to user stories with a total of 11 points (as shown in Table 8-1), which
is their capacity for this sprint. The team selected the Cashing In user story as a stretch goal for this
sprint, with an initial size of 3 points. This means is that the team could have maximum velocity of 14
points for this sprint.

CHAPTER 8  SPRINT 4: THE RELEASE

209

Table 8-1. Sprint 4 Sized Backlog

User Story Name Initial Size

Saving Game State 5

Paying Out 3

Member Registration 3

Day 1
As we enter Day 1 of the sprint, we begin with the daily stand-up. By now these meetings are routine so
the team should be able to go through them quickly.

Daily Stand-up
Tim: All right, ladies and gents, it is time for the stand-up. Joe, would you care to do the honors?

Joe: No problem. Let’s see, yesterday I attended the planning meeting for the sprint and helped sized

the workload for this sprint. Today, I plan on pairing with Sarah and finishing up the Saving Game State
user story.

Tim: Thank you, Joe. Tyler, you’re up.

Tyler: Yesterday, I was in the planning meeting for the sprint. Today, I plan on working on the

Member Registration user story.

Simon: Yesterday, like all of you, I attended the planning meeting for the sprint. Today I plan on

working with the customer on getting everything ready for the release. I will also be available for any
questions you all may have.

Sarah: I was in the planning meeting with everyone else. Today, I plan on pairing with Joe and we

hope to finish the Saving Game State user story.

Tim: Great. Thanks all. If there is nothing else, then I say that is all for now.

Day 4
Mid-sprint, we will be developing the next user story and attending the stand-up. Again, if there are any
issues or concerns, the team needs to bring it up in the stand-up.

Daily Stand-up
Sarah: Since Tim seems to be running late, Tyler, can you start us off?

CHAPTER 8  SPRINT 4: THE RELEASE

210

Tyler: Sure. Let’s see, I have been working on the Member Registration user story and I will have it
completed and ready for acceptance testing today. After that, I plan on pairing with Sarah on the next user
story. I have no blocks.

Tim: Sorry, that I’m late. I’m glad that you all started without me.

Sarah: No problem. I have been working with Joe on the Saving Game State user story. I think we have

it about done. I will let Joe talk about the specifics. Today I plan on pairing with Tyler on the next user
story. I have no blocks.

Simon: I have been working with the customer about the upcoming release and I will continue to do

so throughout the sprint. I will also be available for questions or clarifications if the need arises. I have no
blocks.

Joe: I was working with Sarah on the Saving Game State user story. It is about finished. I am writing a

few more tests and refactoring the implementation. Today, I’m planning on finishing the refactoring and
completing the Saving Game State user story.

Tim: Great! Talk to you all later.

Developing a Feature: Paying Out
Sarah: Let’s tackle the Paying Out feature. What do you say?

Tyler: Yes, good idea. Let’s tackle it.

Tyler selects the Paying Out user story card, shown in Figure 8-5, on the task board and moves it into

the In Process swim lane.

Figure 8-5. User story: Paying Out

Sarah: Let's review the acceptance criteria.

Tyler: This one is simple. The only acceptance criteria is if the player wins a hand, then the winnings

from the hand should be added to the player’s pot. In other words, the player’s pot should increase in
amount equal to the amount of the winnings.

Sarah: That seems simple enough. Let’s get started. We need to come up with scenarios that handle the

different possibilities. Do you have any ideas?

CHAPTER 8  SPRINT 4: THE RELEASE

211

Tyler: I have a couple. First, we have a scenario for a player winning. [(See Figure 8-6.)]

Figure 8-6. Player winning scenario

Tyler: Then, there is a scenario for a tie or push. [(See Figure 8-7.)]

Figure 8-7. Player push scenario

Tyler: A scenario for losing without insurance. [(See Figure 8-8.)]

CHAPTER 8  SPRINT 4: THE RELEASE

212

Figure 8-8. Player loses, no insurance scenario

Tyler: And a scenario for losing with insurance. [(See Figure 8-9.)]

Figure 8-9. Player loses, has insurance scenario

Tyler: And finally, a scenario for winning after doubling down. [(See Figure 8-10.)]

CHAPTER 8  SPRINT 4: THE RELEASE

213

Figure 8-10. Player wins by double down scenario

Sarah: What about scenarios that cover the winning variants when the player has split?

Tyler: Ah yes, good point. We didn’t take that into consideration when we wrote these because we

hadn’t started working on the Split feature. Let’s get those acceptance criteria down before we start to
work.

Tyler adds all the variants to cover checking the pot amounts when winning, losing, and drawing

with a split pair.

Refactoring and Technical Debt
Sarah: Great. I think we have all the bases covered.

Tyler: Well, all the bases that we can think of at the moment.

Sarah: Good point. Okay, let’s move on with the first feature…

Download the source code and you'll find a feature in the Features folder of the Acceptance.Tests

project named 014-PayingOut.feature. You'll see the feature file matches the feature shown in
Figure 8-11.

CHAPTER 8  SPRINT 4: THE RELEASE

214

Figure 8-11. The first scenario for the Paying Out feature

Sarah: We already have all the steps defined for this scenario, so we can go ahead and run the
acceptance tests straight off the bat.

Tyler: Rather unsurprisingly, the acceptance tests fail. Why do we need to bother?

Sarah: Ah, young Padawan. What would have happened if they had passed? Remember, red, green,

refactor. We need to start with a failing scenario so you know the state of the code base before you develop.

Tyler: Fair enough. Okay, then, I suppose we drop into the code and discover what objects are going to

be responsible for paying out any winning chips to the player?

Sarah: You got it.

This scenario deals with the scenario of a player getting blackjack from the deal, so we should take a

look at the DealCardsIn class to see where the paying out behavior should fit in. The unit test was made
to handle the context of a player achieving blackjack from the deal in, so let’s add another assertion to
check that some kind of chip allocator will be used in the event of a player achieving blackjack.

Sarah updates the specification as shown in the following code with the extra assertion highlighted
in bold.

using Machine.Specifications;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests
 .Domain_Specs.DealerAction_Specs.DealCardsIn
{
 [Subject(typeof(Domain.GamePlay.Model.Dealer.Actions.DealCardsIn),

CHAPTER 8  SPRINT 4: THE RELEASE

215

 "Dealer")]
 public class when_dealing_in_the_hands_and_one_achieves_blackjack :
 with_a_deal_in_cards_action
 {
 private Establish context = () =>
 {
 positions.Stub(x => x.player_has_blackjack()).Return(true);
 };

 Because of = () => SUT.perform_on(positions, card_shoe, player);

 It should_check_if_a_hand_has_blackjack =
 () => positions.AssertWasCalled(x => x.player_has_blackjack());

 It should_determine_the_winning_hands =
 () => playing_hands_end_game_status_decider
 .AssertWasCalled(x =>
 x.decide_end_game_status_for_hands_in(positions));

 It should_pay_out_any_winnings_to_the_player =
 () => chip_allocator.AssertWasCalled(
 x => x.allocate_chips_to_winnings_hands_in(positions));
 }
}

Now we need to set up the dependency in the with_a_deal_in_cards_action base class. Take a look
at the base class, which is displayed in the following listing.

…

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs.DealCardsIn
{
 public abstract class with_a_deal_in_cards_action
 {
 protected static Domain.GamePlay.Model.Dealer.Actions.DealCardsIn
 SUT;
 protected static IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider;
 protected static IHandStatusFactory hand_status_factory;

 protected static IPlayingPositions positions;
 protected static IPlayersHand players_hand;
 protected static IDealersHand dealers_hand;
 protected static List<IHand> hands;
 protected static IHand hand;
 protected static ICardShoe card_shoe;
 protected static ICanDoubleDown double_down_spec;
 protected static ICanSplit split_spec;
 protected static ICanTakeInsurance insurance_spec;

CHAPTER 8  SPRINT 4: THE RELEASE

216

 public with_a_deal_in_cards_action()

 {
 double_down_spec = MockRepository.GenerateStub<ICanDoubleDown>();
 split_spec = MockRepository.GenerateStub<ICanSplit>();
 insurance_spec =
 MockRepository.GenerateStub<ICanTakeInsurance>();

 card_shoe = MockRepository.GenerateStub<ICardShoe>();
 positions = MockRepository.GenerateStub<IPlayingPositions>();

 players_hand = MockRepository.GenerateStub<IPlayersHand>();
 positions.Stub(x => x.players_active_hand).Return(players_hand);
 dealers_hand = MockRepository.GenerateStub<IDealersHand>();
 positions.Stub(x => x.dealers_hand).Return(dealers_hand);

 hand = MockRepository.GenerateStub<IHand>();
 hands = new List<IHand>() { hand };
 positions.Stub(x => x.all_hands).Return(hands);

 hand_status_factory = MockRepository
 .GenerateStub<IHandStatusFactory>();
 playing_hands_end_game_status_decider = MockRepository
 .GenerateStub<IPlayingHandsEndGameStatusDecider>();

 SUT = new Domain.GamePlay.Model.Dealer
 .Actions.DealCardsIn(hand_status_factory,
 playing_hands_end_game_status_decider,
 double_down_spec,
 split_spec,
 insurance_spec);
 }
 }
}

There seems to be a lot of dependencies. Let’s take a quick look at the DealCardsIn class before we
start adding to it to see if we can’t clear things up a little.

using KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;
using KojackGames.Blackjack.Domain.GamePlay.Model
 .PlayingPosition.Hands.Status;
using KojackGames.Blackjack.Domain.Membership.Model;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public class DealCardsIn : IDealerAction
 {
 private readonly IHandStatusFactory _hand_status_factory;
 private readonly IPlayingHandsEndGameStatusDecider
 _playing_hands_end_game_status_decider;
 private readonly ICanDoubleDown _double_down_spec;

CHAPTER 8  SPRINT 4: THE RELEASE

217

 private readonly ICanSplit _split_spec;
 private readonly ICanTakeInsurance _insurance_spec;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider,
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 _hand_status_factory = hand_status_factory;
 _playing_hands_end_game_status_decider =
 playing_hands_end_game_status_decider;
 _double_down_spec = double_down_spec;
 _split_spec = split_spec;
 _insurance_spec = insurance_spec;
 }

 private void deal_two_cards_to_each_hand_in(IPlayingPositions hands,
 ICardShoe card_shoe)
 {
 int no_of_cards_to_deal = 2;

 while (no_of_cards_to_deal > 0)
 {
 hands.players_active_hand.add(card_shoe.take_card());
 hands.dealers_hand.add(card_shoe.take_card());

 no_of_cards_to_deal--;
 };
 }

 public void perform_on(IPlayingPositions playing_positions,
 ICardShoe card_shoe, IPlayer player)
 {

 raise_illegal_move_if_action_cannot_be_made_on(playing_positions);

 deal_two_cards_to_each_hand_in(playing_positions, card_shoe);

 update_the_status_of_each_hand_in(playing_positions);

 if (playing_positions.player_has_blackjack())
 {
 _playing_hands_end_game_status_decider
 .decide_end_game_status_for_hands_in(playing_positions);
 }
 else
 {
 check_if_player_can_double_down(playing_positions);

CHAPTER 8  SPRINT 4: THE RELEASE

218

 check_if_player_can_split(playing_positions);

 check_if_player_can_take_insurance(playing_positions);
 }

 playing_positions.mark_cards_as_dealt();

 playing_positions.update_active_hand();
 }

 private void check_if_player_can_take_insurance(
 IPlayingPositions playing_positions)
 {
 if (_insurance_spec.is_satisfied_by(
 playing_positions.dealers_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_take_insurance();
 }

 public void raise_illegal_move_if_action_cannot_be_made_on(
 IPlayingPositions playing_positions)
 {
 if (playing_positions.have_cards_been_dealt())
 throw new IllegalMoveException(
 "Cannot stick hand as your turn has ended.");
 }

 private void check_if_player_can_split(
 IPlayingPositions playing_positions)
 {
 if (_split_spec.is_satisfied_by(
 playing_positions.players_active_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_split();
 }

 private void check_if_player_can_double_down(
 IPlayingPositions playing_positions)
 {
 if (_double_down_spec.is_satisfied_by(
 playing_positions.players_active_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_double_down();
 }

 protected void update_the_status_of_each_hand_in(
 IPlayingPositions playing_positions)
 {
 foreach (var hand in playing_positions.all_hands)
 _hand_status_factory.set_status_for(hand);
 }

CHAPTER 8  SPRINT 4: THE RELEASE

219

 }
}

The DealCardIn class is breaking the Single Responsibility Principle and is doing far more than it
ought.

Tyler: Okay, so how do we sort out the responsibility explosion?

Sarah: Refactor, dear boy, refactor.

When faced with a large refactoring, it is helpful to make a sketch of all of the objects in the class and

their relationships to each other. Michael Feathers’ Working Effectively with Legacy Code (Prentice Hall,
2004) is a good book to read more on this.

The three specification classes can be logically grouped together under options available to the
player. The status update method can be moved onto the HandStatusFactory and we can also extract the
code that actually deals cards to better align the level of abstraction in the class. It's fine to break the
Single Responsibility Principle initially because we have tests wrapped around this piece of code. Since
we have tests wrapped around it, we can safely refactor. If we refactor incorrectly, the tests that will fail
as a result of our refactoring will tell us that something is wrong and we need to correct it. The tests
serve as a safety net for refactoring. Also, Visual Studio 2010 has some neat built-in refactoring
capabilities that we can utilize to ease the burden.

Tyler: Okay, let’s refactor the code before we continue with adding the new feature for allocating

chips. I will comment out the new assertion for the time being.

[Subject(typeof(Domain.GamePlay.Model.Dealer.Actions.DealCardsIn), "Dealer")]
public class when_dealing_in_the_hands_and_one_achieves_blackjack :
with_a_deal_in_cards_action
{
 private Establish context = () =>
 {
 positions.Stub(x => x.player_has_blackjack()).Return(true);
 };

 Because of = () => SUT.perform_on(positions, card_shoe, player);

 It should_check_if_a_hand_has_blackjack =
 () => positions.AssertWasCalled(x => x.player_has_blackjack());

 It should_determine_the_winning_hands =
 () => playing_hands_end_game_status_decider.AssertWasCalled(
 x => x.decide_end_game_status_for_hands_in(positions));

 //It should_pay_out_any_winnings_to_the_player =
 // () => chip_allocator.AssertWasCalled(x =>
 // x.allocate_chips_to_winnings_hands_in(positions));
}

Tyler: Let’s start to clean up this mess. We can perform an extract class refactor to start to move the
options that are available to a player after the initial deal into a class of its own.

CHAPTER 8  SPRINT 4: THE RELEASE

220

Sarah: Hand me the keyboard.

Sarah creates the OptionsAvailableToPlayerAfterDealing class, as follows:

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations
{
 public class OptionsAvailableToPlayerAfterDealing
 {
 public void set_for_hands_in(IPlayingPositions playing_positions)
 {

 }
 }
}

Now we need to create an instance of the OptionsAvailableToPlayerAfterDealing class within the
DealCardsIn class and call the method to set the options for the player’s hands.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public class DealCardsIn : IDealerAction
 {
 ...
 private readonly OptionsAvailableToPlayerAfterDealing
 _options_available_to_player_after_dealing;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider,
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 ...

 _options_available_to_player_after_dealing = new
 OptionsAvailableToPlayerAfterDealing();

 }

 ...

 public void perform_on(IPlayingPositions playing_positions,
 ICardShoe card_shoe, IPlayer player)
 {

 raise_illegal_move_if_action_cannot_be_made_on(playing_positions);

 deal_two_cards_to_each_hand_in(playing_positions, card_shoe);

 update_the_status_of_each_hand_in(playing_positions);

 if (playing_positions.player_has_blackjack())

CHAPTER 8  SPRINT 4: THE RELEASE

221

 {
 _playing_hands_end_game_status_decider
 .decide_end_game_status_for_hands_in(playing_positions);
 }
 else
 {
 _options_available_to_player_after_dealing
 .set_for_hands_in(playing_positions);

 check_if_player_can_double_down(playing_positions);

 check_if_player_can_split(playing_positions);

 check_if_player_can_take_insurance(playing_positions);
 }

 playing_positions.mark_cards_as_dealt();

 playing_positions.update_active_hand();
 }

 ...
 }
}

Sarah: Let’s just run the tests to see if we have broken anything… Nope, good stuff.

Now we can perform a move method refactor to move the double down check from the DealCardsIn
class to the OptionsAvailableToPlayerAfterDealing class.

public class OptionsAvailableToPlayerAfterDealing
{
 private readonly ICanDoubleDown _double_down_spec;

 public OptionsAvailableToPlayerAfterDealing(
 ICanDoubleDown double_down_spec)
 {
 _double_down_spec = double_down_spec;
 }

 public void set_for_hands_in(IPlayingPositions playing_positions)
 {
 if (_double_down_spec.is_satisfied_by(
 playing_positions.players_active_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_double_down();
 }
}

Now remove the call to the check_if_player_can_double_down method from within the DealCardsIn.

CHAPTER 8  SPRINT 4: THE RELEASE

222

Sarah: Okay, let’s run the tests again before we make any more modifications to ensure we haven’t
changed any behavior.

Tyler: Ah, we broke a test.

The when_a_players_hand_meets_the_criteria_to_double_after_dealing test broke because it

assumes that a call will be made to the CanDoubleDown specification class from within the DealCardsIn
class. Tyler points out that they have changed the behavior, so now it occurs within the
OptionsAvailableToPlayerAfterDealing class.

Sarah: Okay, let’s update that class so that the test is performing against the new class.

using KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Dealer;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition.Hands.Player;
using Machine.Specifications;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs
 .DealCardsIn
{
 [Subject(typeof(OptionsAvailableToPlayerAfterDealing))]
 public class when_a_players_hand_meets_the_criteria_to_double_after_dealing :
 with_OptionsAvailableToPlayerAfterDealing
 {
 private Establish context = () =>
 {
 playing_positions = MockRepository.GenerateStub<IPlayingPositions>();
 playing_hand = MockRepository.GenerateStub<IPlayersHand>();
 playing_positions.Stub(
 x => x.players_active_hand).Return(playing_hand);

 double_down_spec.Stub(
 x => x.is_satisfied_by(playing_hand)).Return(true);
 };

 private Because of = () => SUT.set_for_hands_in(playing_positions);

 It should_check_the_players_hand_for_a_double = () =>
 {
 double_down_spec.AssertWasCalled(
 x => x.is_satisfied_by(playing_hand));
 };

 It should_mark_the_players_hand_as_being_able_to_double_down = () =>
 {
 playing_hand.AssertWasCalled(x => x.mark_as_able_to_double_down());
 };

 private static IPlayingPositions playing_positions;
 private static IPlayersHand playing_hand;

CHAPTER 8  SPRINT 4: THE RELEASE

223

 }
}

The base class will set up the OptionsAvailableToPlayerAfterDealing class with all of its
dependencies, as we will be adding the insurance and split specifications to this later.

using KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Observations;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.DealerAction_Specs
 .DealCardsIn
{
 public abstract class with_OptionsAvailableToPlayerAfterDealing
 {
 protected static ICanDoubleDown double_down_spec;
 protected static ICanSplit split_spec;
 protected static ICanTakeInsurance insurance_spec;
 protected static OptionsAvailableToPlayerAfterDealing SUT;

 public with_OptionsAvailableToPlayerAfterDealing()
 {
 double_down_spec = MockRepository.GenerateStub<ICanDoubleDown>();

 SUT = new OptionsAvailableToPlayerAfterDealing(double_down_spec);
 }
 }
}

Sarah: Now that test was updated, we should be able to run all of our unit tests to prove that we have
not changed the behavior of the system.

Tyler: Brilliant. All tests are passing. Now let’s perform the move methods refactors and updates to the

existing test for the split and insurance checks.

Tyler and Sarah repeat the steps made for moving the CanDoubleDown specification, and make the

CanSplit and CanTakeInsurance checks, resulting in the update to the
OptionsAvailableToPlayerAfterDealing class, as shown in the following listing:

public class OptionsAvailableToPlayerAfterDealing
{
 private readonly ICanDoubleDown _double_down_spec;
 private readonly ICanSplit _split_spec;
 private readonly ICanTakeInsurance _insurance_spec;

 public OptionsAvailableToPlayerAfterDealing(
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 _double_down_spec = double_down_spec;
 _insurance_spec = insurance_spec;
 _split_spec = split_spec;

CHAPTER 8  SPRINT 4: THE RELEASE

224

 }

 public void set_for_hands_in(IPlayingPositions playing_positions)
 {
 if (_double_down_spec.is_satisfied_by(
 playing_positions.players_active_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_double_down();

 if (_split_spec.is_satisfied_by(
 playing_positions.players_active_hand))
 playing_positions.players_active_hand.mark_as_able_to_split();

 if (_insurance_spec.is_satisfied_by(playing_positions.dealers_hand))
 playing_positions.players_active_hand
 .mark_as_able_to_take_insurance();
 }
}

The DealCardsIn class is also updated to remove all calls to the internal method in favor of
delegating to the OptionsAvailableToPlayerAfterDealing class, as shown in the following listing:

public class DealCardsIn : IDealerAction
{
 private readonly IHandStatusFactory _hand_status_factory;
 private readonly IPlayingHandsEndGameStatusDecider
 _playing_hands_end_game_status_decider;
 private readonly OptionsAvailableToPlayerAfterDealing
 _options_available_to_player_after_dealing;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider,
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 _hand_status_factory = hand_status_factory;
 _playing_hands_end_game_status_decider =
 playing_hands_end_game_status_decider;
 _options_available_to_player_after_dealing =
 new OptionsAvailableToPlayerAfterDealing(double_down_spec,
 split_spec,
 insurance_spec);

 }

 private void deal_two_cards_to_each_hand_in(
 IPlayingPositions hands, ICardShoe card_shoe)
 {
 int no_of_cards_to_deal = 2;

CHAPTER 8  SPRINT 4: THE RELEASE

225

 while (no_of_cards_to_deal > 0)
 {
 hands.players_active_hand.add(card_shoe.take_card());
 hands.dealers_hand.add(card_shoe.take_card());

 no_of_cards_to_deal--;
 };
 }

 public void perform_on(IPlayingPositions playing_positions,
 ICardShoe card_shoe, IPlayer player)
 {
 raise_illegal_move_if_action_cannot_be_made_on(playing_positions);

 deal_two_cards_to_each_hand_in(playing_positions, card_shoe);

 update_the_status_of_each_hand_in(playing_positions);

 if (playing_positions.player_has_blackjack())
 {
 _playing_hands_end_game_status_decider
 .decide_end_game_status_for_hands_in(playing_positions);
 }
 else
 _options_available_to_player_after_dealing
 .set_for_hands_in(playing_positions);

 playing_positions.mark_cards_as_dealt();

 playing_positions.update_active_hand();
 }

 public void raise_illegal_move_if_action_cannot_be_made_on(
 IPlayingPositions playing_positions)
 {
 if (playing_positions.have_cards_been_dealt())
 throw new IllegalMoveException(
 "Cannot stick hand as your turn has ended.");
 }

 protected void update_the_status_of_each_hand_in(
 IPlayingPositions playing_positions)
 {
 foreach (var hand in playing_positions.all_hands)
 _hand_status_factory.set_status_for(hand);
 }
}

We have removed one of the four responsibilities. Now let’s take a look at the
update_the_status_of_each_hand_in method. This really belongs on the HandStatusFactory class. Let’s
perform a move method refactor to replace it.

CHAPTER 8  SPRINT 4: THE RELEASE

226

namespace KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Status
{
 public class HandStatusFactory : IHandStatusFactory
 {
 private readonly IHasBlackjackSpecification _has_blackjack_spec;
 private readonly IHasBustedSpecification _has_bust_spec;
 private readonly IHasSoftBlackJackSpecification
 _has_soft_blackjack_spec;

 public HandStatusFactory(
 IHasBlackjackSpecification has_blackjack_spec,
 IHasBustedSpecification has_bust_spec,
 IHasSoftBlackJackSpecification
 has_soft_blackjack_spec)
 {
 _has_blackjack_spec = has_blackjack_spec;
 _has_soft_blackjack_spec = has_soft_blackjack_spec;
 _has_bust_spec = has_bust_spec;
 }

 public void set_status_for(IHand hand)
 {
 if (_has_blackjack_spec.is_satisfied_by(hand))
 hand.change_state_to(HandStatus.blackjack);

 if (_has_bust_spec.is_satisfied_by(hand))
 hand.change_state_to(HandStatus.bust);

 if (_has_soft_blackjack_spec.is_satisfied_by(hand))
 hand.change_state_to(HandStatus.soft_blackjack);
 }

 public void update_the_status_of_each_hand_in(
 IPlayingPositions playing_positions)
 {
 foreach (var hand in playing_positions.all_hands)
 set_status_for(hand);
 }
 }
}

We'll also need to push the method up onto the IHandStatusFactory interface.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Status
{
 public interface IHandStatusFactory
 {
 void set_status_for(IHand hand);
 void update_the_status_of_each_hand_in(
 IPlayingPositions playing_positions);

CHAPTER 8  SPRINT 4: THE RELEASE

227

 }
}

Tyler: Great let’s run the tests and see where we are at.

Sarah: All passing!

Let’s take a look at the DealCardsIn class now that we removed the extra method and deleted to the

IHandStatusFactory.

public class DealCardsIn : IDealerAction
{
 private readonly IHandStatusFactory _hand_status_factory;
 private readonly IPlayingHandsEndGameStatusDecider
 _playing_hands_end_game_status_decider;
 private readonly OptionsAvailableToPlayerAfterDealing
 _options_available_to_player_after_dealing;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider,
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 _hand_status_factory = hand_status_factory;
 _playing_hands_end_game_status_decider =
 playing_hands_end_game_status_decider;
 _options_available_to_player_after_dealing =
 new OptionsAvailableToPlayerAfterDealing(double_down_spec,
 split_spec,
 insurance_spec);

 }

 private void deal_two_cards_to_each_hand_in(IPlayingPositions hands,
 ICardShoe card_shoe)
 {
 int no_of_cards_to_deal = 2;

 while (no_of_cards_to_deal > 0)
 {
 hands.players_active_hand.add(card_shoe.take_card());
 hands.dealers_hand.add(card_shoe.take_card());

 no_of_cards_to_deal--;
 };
 }

 public void perform_on(IPlayingPositions playing_positions,
 ICardShoe card_shoe, IPlayer player)
 {

CHAPTER 8  SPRINT 4: THE RELEASE

228

 raise_illegal_move_if_action_cannot_be_made_on(playing_positions);

 deal_two_cards_to_each_hand_in(playing_positions, card_shoe);

 _hand_status_factory
 .update_the_status_of_each_hand_in(playing_positions);

 if (playing_positions.player_has_blackjack())
 {
 _playing_hands_end_game_status_decider
 .decide_end_game_status_for_hands_in(playing_positions);
 }
 else
 _options_available_to_player_after_dealing
 .set_for_hands_in(playing_positions);

 playing_positions.mark_cards_as_dealt();

 playing_positions.update_active_hand();
 }

 public void raise_illegal_move_if_action_cannot_be_made_on(
 IPlayingPositions playing_positions)
 {
 if (playing_positions.have_cards_been_dealt())
 throw new IllegalMoveException(
 "Cannot stick hand as your turn has ended.");
 }
}

We are left with two methods that are aimed at two different levels of abstraction. The perform_on
method coordinates the logic of the dealing in and the deal_two_cards_to_each_hand_in actually does
the work of dealing the cards. This is another extract class refactor. Let’s create a CardDealer class to be
responsible for the actual dealing out of the cards.

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public class CardDealer
 {
 public void deal_two_cards_to_each_hand_in(IPlayingPositions hands,
 ICardShoe card_shoe)
 {
 int no_of_cards_to_deal = 2;

 while (no_of_cards_to_deal > 0)
 {
 hands.players_active_hand.add(card_shoe.take_card());
 hands.dealers_hand.add(card_shoe.take_card());

 no_of_cards_to_deal--;

CHAPTER 8  SPRINT 4: THE RELEASE

229

 };
 }
 }
}

Now we can remove the method from the DealCardsIn class and simply delegate.

public class DealCardsIn : IDealerAction
{
 private readonly IHandStatusFactory _hand_status_factory;
 private readonly IPlayingHandsEndGameStatusDecider
 _playing_hands_end_game_status_decider;
 private readonly OptionsAvailableToPlayerAfterDealing
 _options_available_to_player_after_dealing;
 private CardDealer _card_dealer;

 public DealCardsIn(IHandStatusFactory hand_status_factory,
 IPlayingHandsEndGameStatusDecider
 playing_hands_end_game_status_decider,
 ICanDoubleDown double_down_spec,
 ICanSplit split_spec,
 ICanTakeInsurance insurance_spec)
 {
 _hand_status_factory = hand_status_factory;
 _playing_hands_end_game_status_decider =
 playing_hands_end_game_status_decider;
 _options_available_to_player_after_dealing =
 new OptionsAvailableToPlayerAfterDealing(double_down_spec,
 split_spec,
 insurance_spec);
 _card_dealer = new CardDealer();

 }

 public void perform_on(IPlayingPositions playing_positions,
 ICardShoe card_shoe, IPlayer player)
 {
 raise_illegal_move_if_action_cannot_be_made_on(playing_positions);

 _card_dealer
 .deal_two_cards_to_each_hand_in(playing_positions, card_shoe);

 _hand_status_factory
 .update_the_status_of_each_hand_in(playing_positions);

 if (playing_positions.player_has_blackjack())
 _playing_hands_end_game_status_decider
 .decide_end_game_status_for_hands_in(playing_positions);
 else
 _options_available_to_player_after_dealing
 .set_for_hands_in(playing_positions);

 playing_positions.mark_cards_as_dealt();

CHAPTER 8  SPRINT 4: THE RELEASE

230

 playing_positions.update_active_hand();
 }

 public void raise_illegal_move_if_action_cannot_be_made_on(
 IPlayingPositions playing_positions)
 {
 if (playing_positions.have_cards_been_dealt())
 throw new IllegalMoveException(
 "Cannot stick hand as your turn has ended.");
 }
}

The DealCardsIn class is now much cleaner, more cohesive, and better adheres to a single
responsibility.

Tyler: Yes, the tests pass!

Sarah: Awesome. Now let’s move on to developing the payout feature.

Developing the Payout Feature
First, we can uncomment the assertion we created in the
when_dealing_in_the_hands_and_the_player_achieves_blackjack class.

[Subject(typeof(Domain.GamePlay.Model.Dealer.Actions.DealCardsIn), "Dealer")]
public class when_dealing_in_the_hands_and_the_player_achieves_blackjack :
 with_a_deal_in_cards_action
{
 private Establish context = () =>
 {
 positions.Stub(x => x.player_has_blackjack()).Return(true);
 };

 Because of = () => SUT.perform_on(positions, card_shoe, player);

 It should_check_if_a_hand_has_blackjack =
 () => positions.AssertWasCalled(x => x.player_has_blackjack());

 It should_determine_the_winning_hands =
 () => playing_hands_end_game_status_decider.AssertWasCalled(
 x => x.decide_end_game_status_for_hands_in(positions));

 It should_pay_out_any_winnings_to_the_player =
 () => chip_allocator.AssertWasCalled(
 x => x.allocate_chips_to_winnings_hands_in(positions));
}

Then we should update the with_a_deal_in_cards_action base class to expect the new collaborator.

public abstract class with_a_deal_in_cards_action
{

CHAPTER 8  SPRINT 4: THE RELEASE

231

 ...
 protected static IChipAllocator chip_allocator;

 public with_a_deal_in_cards_action()
 {
 ...
 chip_allocator = MockRepository.GenerateStub<IChipAllocator>();

 SUT = new Domain.GamePlay.Model.Dealer.Actions
 .DealCardsIn(hand_status_factory,
 playing_hands_end_game_status_decider,
 after_dealing_options,
 chip_allocator);
 }
}

Tyler: Better add the contract for the chip allocator as well to stop the complier complaining.

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public interface IChipAllocator
 {
 void allocate_chips_to_winnings_hands_in(
 IPlayingPositions positions);
 }
}

Sarah: With the compiler much happier, let’s run the new unit test.

Tyler: Sweet. It’s passing. [(See Figure 8-12.)]

Figure 8-12. Verifying test passed

Now we need to add some tests to drive the design of the ChipAllocator itself. We want to check that
a player who wins, gets winnings of 2 to 3 plus his original stake. So an initial bet of $5.00 would result in
the player getting $7.50 in winnings, plus his original stake of $5.00, making the total $12.50.

CHAPTER 8  SPRINT 4: THE RELEASE

232

using System.Collections.Generic;
using KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Player;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Status;
using KojackGames.Blackjack.Domain.Membership.Model;
using Machine.Specifications;
using Rhino.Mocks;

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs
 .DealerAction_Specs.PayingOut
{
 [Subject(typeof(ChipAllocator))]
 public class when_paying_a_winning_hand_with_a_bet_of_5_dollars
 {
 private Establish context = () =>
 {
 chips_that_the_player_should_win = new Chips(12.50m);
 var chips_bet = new Chips(5m);

 SUT = new ChipAllocator();
 playing_positions =
 MockRepository.GenerateStub<IPlayingPositions>();
 var players_hands = new List<IPlayersHand>();
 var playing_hand = MockRepository.GenerateStub<IPlayersHand>();
 playing_hand.Stub(
 x => x.has_status_of(HandStatus.won)).Return(true);
 playing_hand.Stub(x => x.wager).Return(chips_bet);
 players_hands.Add(playing_hand);
 playing_positions.Stub(
 x => x.players_hands()).Return(players_hands);

 player = MockRepository.GenerateStub<IPlayer>();
 };

 private Because of = () =>
 SUT.allocate_chips_to_player_for_winnings_hands_in(
 playing_positions, player);

 private It should_increase_players_pot_by_12_dollars_and_50_cents =
 () => player.AssertWasCalled(x => x.increase_pot_by(
 Arg<Chips>.Is.Equal(chips_that_the_player_should_win)));

 private static ChipAllocator SUT;
 private static IPlayingPositions playing_positions;
 private static IPlayer player;
 private static Chips chips_that_the_player_should_win;
 }
}

CHAPTER 8  SPRINT 4: THE RELEASE

233

Now let’s create the ChipAllocator class.

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Player;
using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Status;
using KojackGames.Blackjack.Domain.Membership.Model;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealer.Actions
{
 public class ChipAllocator : IChipAllocator
 {
 public void allocate_chips_to_player_for_winnings_hands_in(
 IPlayingPositions positions, IPlayer player)
 {
 foreach(var players_hand in positions.players_hands())
 {
 var chips_to_give_to_player = new Chips(0m);

 if (players_hand.has_status_of(HandStatus.won))
 {
 chips_to_give_to_player = chips_to_give_to_player.add(
 players_hand.wager.multiple_by_odds_of(3, 2)
 .add(players_hand.wager));
 player.increase_pot_by(chips_to_give_to_player);
 }
 }
 }
 }
}

Although this is how we want the class to work, the compiler is complaining about the lack of a
multiple_by_odds_of method on the Chips class. We need to comment out the call to the non-existent
method of the Chips class and then create a test.

using KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Player;
using Machine.Specifications;
using NUnit.Framework;

namespace KojackGames.Blackjack.Core.Tests.Domain_Specs.Chip_Specs
{
 [Subject(typeof(Chips))]
 public class
 when_calculating_a_players_winnings_of_3_to_2_on_a_5_dollar_wager
 {
 private Establish context = () =>
 {
 SUT = new Chips(5m);
 };

CHAPTER 8  SPRINT 4: THE RELEASE

234

 private Because of = () => result = SUT.multiple_by_odds_of(3, 2);

 private It should_create_chips_with_a_value_of_7_dollars_and_50_cents
 = () =>
 {
 Assert.That(result.value, Is.EqualTo(7.50m));
 };

 private static Chips SUT;
 private static Chips result;
 }
}

Now we can create the new method on the Chips class.

using System;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.PlayingPosition
 .Hands.Player
{
 public class Chips
 {
 public Chips(decimal amount)
 {
 value = amount;
 }

 private Chips()
 { }

 public decimal value { get; private set; }

 public Chips halved()
 {
 return new Chips(value/2);
 }

 public override string ToString()
 {
 return string.Format("${0:0.00}", value);
 }

 public Chips multiple_by_odds_of(int you_receive_back,
 int for_every_dollar_bet)
 {
 var result = (value/for_every_dollar_bet)*you_receive_back;

 return new Chips(result);
 }

 public Chips add(Chips wager)

CHAPTER 8  SPRINT 4: THE RELEASE

235

 {
 return new Chips(wager.value + value);
 }

 public Chips double_stake()
 {
 return new Chips(value * 2);
 }

 public bool contains_chips()
 {
 return this.value > 0;
 }

 public bool Equals(Chips other)
 {
 if (ReferenceEquals(null, other)) return false;
 if (ReferenceEquals(this, other)) return true;
 return other.value == value;
 }

 public override bool Equals(object obj)
 {
 if (ReferenceEquals(null, obj)) return false;
 if (ReferenceEquals(this, obj)) return true;
 if (obj.GetType() != typeof (Chips)) return false;
 return Equals((Chips) obj);
 }

 public override int GetHashCode()
 {
 return value.GetHashCode();
 }
 }
}

Uncomment the call to the ChipAllocator and run the test.

Tyler: Passing. Brilliant! Let’s run the acceptance test to see if we have completed the scenario.

Sarah: Cool. All passing. On to the next scenario.

Day 6
As we enter the last part of the current sprint, we find the team completing the three user stories that
they committed to. Now they will look at the Cashing In user story in the stretch goals for work to do.

Daily Stand-up
Tim: Who’s up?

CHAPTER 8  SPRINT 4: THE RELEASE

236

Simon: I will start. I have been working with the customer on the upcoming release and it looks like
we have everything in place. As a side note, I just wanted to let you all know that the customer is really
excited about the release.

Tim: That is great to hear! With their feedback throughout this process, they should be getting exactly

what they want, within reason. [Tim winks.] Next.

Joe: I will go. I finished up the implementation of the Saving Game State user story. Today, I plan on

pairing with Tyler on Cashing In, the user story we have in the stretch goal area. I have no blocks.

Tyler: I have been working with Sarah on the Paying Out user story and we are nearly complete.

Today I plan on switching up and working with Joe on the stretch goal user story. I have no blocks.

Sarah: I have been working with Tyler on the Paying Out user story. At this point I am finishing up the

user story. Today I plan on finishing up this user story . When I have this done, since we have tests around
everything, I plan on tackling some technical debt that we have. Joe, just as a heads up, technical debt is
anything that we can improve on specifically in the source code. For example, this can be refactoring an
existing module in order to gain better test coverage or cleaning up some code that is no longer needed.

Tim: That’s great, anytime we can take the time to improve our quality of code is a good thing. Well,

that’s all for now.

Day 10
Today is the last day of the sprint. As with all sprints, we continue to do the product demo and the
retrospective to verify that we are on the right track with the customer and to improve customer
confidence.

Product Demo
Once again, it’s time for the product demo to show the customer the features implemented throughout
this past sprint in order to maintain transparency and accountability, and to increase team morale.

Since Joe joined the team during the last sprint and has seen how a demo works, Joe will lead this
demo and show off what the team has done.

Joe: As we wrap up another sprint, we want to take this opportunity to demo the new features we've added
to the system. Let’s recap the features that the team took on during this sprint. They were Saving Game
State, Paying Out, Member Registration, and Cashing In. The team was able to finish up the Saving Game
State story that was, unfortunately, left over from the last sprint because it was such a large undertaking.
Since Simon said it is still a high priority with the customer, the team committed to getting this story
finished during this sprint. We also worked on the Paying Out user story—which hopefully doesn't happen
very often for Kojack—and we were able to accomplish the Member Registration and the Cashing In user
stories.

Sarah: Joe, let's show the Member Registration feature first.

Joe navigates to the application and demos the Member Registration to Simon. In the upper-right
corner of the screen, there’s a link to register. Joe shows Simon how the system now collects three pieces
of user login information—name, e-mail address, and password—and clicks the Register button.

CHAPTER 8  SPRINT 4: THE RELEASE

237

Joe: What do you think, Simon? Do you agree that this meets all the acceptance criteria laid out in the
sprint planning session?

Simon: It does. Good work! I was wondering, could we add a birthday field to the user registration so that
we can send users a promotional e-mail on their birthdays?

Joe: Uh, I suppose so. That wasn't discussed in this user story.

Simon: It shouldn't be a lot of work, would it? Just adding that one field?

Sarah: We can add the field, but since it wasn't a part of this story, we can create another user story and
put it in the backlog to be sized and implemented appropriately.

Joe: That's right. We can do that, it just wasn't a part of the requirements for this story.

Simon: Okay, that's fine. I agree that it wasn't a part of this user story, but I thought if it didn't take too
much time, we could just slip it in there.

Tim: I'm guessing it wouldn't take a long time to implement, but Sarah's right. We need to create another
user story and implement this feature.

Simon: I like this agile process, but it seems that there's a lot of overhead to implement one field. You
mean, I have to create another user story for this one field?

Tim: Yes. We only do this for transparency to you and the customer. We always want to make sure we are
providing the highest value and if we just slip one thing in here or there, that time adds up and that time
needs to be spent on delivering high-value to the customer. If you and the customer deem this a high
enough priority, we can certainly put it in the backlog and implement that feature.

Simon: Okay, I understand. I must agree that having gone through this process so far, things have gone
relatively smoothly and the communication is much better than in other projects I have been apart of. I'll
talk with the customer and see if it's a high priority or if something else can be swapped for this
functionality. If it can, we'll swap it and if it can't, then it must not be that high of a priority and can be
implemented once other items are out of the way. The Member Registration looks fine, the UI looks very
intuitive, and we can collect the agreed-upon information. I'd agree that it's done. What's next?

Joe: Thanks! The next one we want to demo is the Saving Game State. This one was a bit trickier than
originally expected and we underestimated it, but we were able to get it done during this sprint. This one
is a little harder to demo, but we'll demo it by unplugging the network cable and plugging it back in to
simulate a loss of network connectivity.

Joe navigates to the application, logs in, and while playing a game, unplugs the network cable, waits

a few seconds, and plugs it back in. The system wants him to log in again, but then the game can be
picked up where it was left off.

CHAPTER 8  SPRINT 4: THE RELEASE

238

Simon: So, a player can continue his game play if he loses internet connectivity?

Joe: Yep. That way he doesn't have to restart the game—and hopefully he loses so you don't have to pay
out.

Simon: Hah, true. Good work. What's next?

Joe: The last user story we want to demo is the Paying Out feature. Sarah and Tyler primarily worked on
this feature and it looks as if they've done a great job.

Joe navigates to the application, logs in as the user that he demoed during the Member Registration

user story, and quickly plays a game to demonstrate that the player has her winnings added to the pot
when she wins a game.

Simon: I like how the team implemented that feature. It captures the acceptance criteria that we laid out
at the beginning. Good work!
Joe: That's all we have for this sprint. What did you think overall?

Simon: I think the team is doing a great job. Thanks, Joe, for leading the demo this sprint.

Joe: You bet! Glad to do it. Thanks to Sarah, too, for helping me out for the first time.

Sarah: You bet!

Tim: Thanks everyone for your time!

Retrospective
We want to continue to work on, refine, and make our team more efficient through process, so it’s time
for a retrospective. We are doing this one differently, too, because we want the retrospectives to remain
fresh in order to best go over ideas and issues. Instead of having a three-minute time block to write
thoughts on Post-its, we'll vocally capture the feedback.

Tim: Welcome to another retrospective team. During this retrospective we are going to gather our
feedback in a different way. Instead of filling out Post-it notes within a private time box, we are going to
share our feedback in a more public way. Throughout these last four sprints, I think we've grown together
and have gained courage as a team to the point where we can comfortably give constructive criticism to
each other and openly discuss issues. I'm going to set the timer for ten minutes. During these ten minutes,
let's openly discuss things that went well during the sprint as well as the things that we need to change.

Tim tells the team that the discussion will be based on the chart shown in Figure 8-13.

CHAPTER 8  SPRINT 4: THE RELEASE

239

Figure 8-13. Sprint retrospective

Tim: The timer is set. Go!

Sarah: I think the demo seemed to go well. I'm glad that as a team we have matured and have grown to
have enough courage to push back with Simon to say that even little items that weren't originally
considered still need to go through the process so that we continue to implement the greatest value for the
customer.

Simon: Yes, Sarah, I agree. Sometimes as customers or product owners we get excited when we actually
see what developers have produced, and then we hope to "'sneak in" additional features because we think
they're small. Thanks for pushing back on the birthday feature. I'll check with the customer to see if it’s of
value relative to the other stories we have on our plate.

Joe: Yeah, as a new guy leading the demo, your request was a bit awkward for me, but it was a good
conversation to have there rather than later. Simon, thanks for your understanding.

Simon: No problem!

Tyler: One thing I wanted to bring up was that I noticed that Joe broke the build a number of times this
sprint and had to go back and fix code. Is there a particular reason that was consistent?

Joe: Since I'm new to this agile thing and new to writing test-first code, I keep falling back into the "old"
way of thinking, where I just want to jump in and develop code. I learned that that doesn't work because
there are numerous tests that run to ensure we have a solid code base. Be patient with me, I'm learning.
Would it be possible for me to pair more with you or Sarah to keep me focused? I know we paired some
during this sprint, but I'd like to pair more so I can develop this new way of thinking with this test-first
mentality.

CHAPTER 8  SPRINT 4: THE RELEASE

240

Sarah: That's a great idea, just swing on over, I'll pair with you any time. We want to make sure that the
code base stays solid and easy to maintain, that's why we spend so much time testing and developing from
tests. I was like you and wanted to just jump right in, but eventually learned that test-first is more efficient
because it has saved me numerous times when I've changed code and it inadvertently affected something
that I didn't expect—but the test caught it. This way I could fix it before it went into the QA process. The
more bugs we can find and fix, the less costly it is and the better the team looks because we are developing
dependable code.

Tyler: Yeah, I'm with Sarah. Don't be afraid to tell us when you don't know something or need help with
something. If you need to pair, roll your chair over and tell me. I have no problems with that. We're a
team, we're here to develop a quality product, but also to raise each other up so when we see that you
consistently break builds. We don't want to shake a blaming finger at you, we want to figure out the root
issue and mentor you. Next time, swing by, we'll take care of it with you.

Joe: Thanks! I really like this team spirit and teamwork. I used to develop in a vacuum, so it’s a bit of a
cultural shift to ask for help from other developers. I'll be sure to swing by next time and make sure I get
the latest code and run the tests locally before I check in, to ensure I don't break the build.

Tim: Sounds like we have an action item. Joe needs to pair more with either Tyler or Sarah. We'll assign
this action to Joe because he's responsible for reaching out for help, but Tyler, Sarah, you know you need to
work on mentoring him.

Sarah: Sounds good. I'm in!

Tyler: Me too!

Joe: Thanks guys!

Tim: We have a few minutes left. Anything else to discuss?

Sarah: Since we've finished up the last sprint in our release, we did have some issues releasing the code
into the production environment.

Tyler: I agree. This was the first time we sent out the code in a releasable state. We packaged up
everything and deployed it to the production server, but the site wasn't running as expected. We were
getting different types of errors. After a bit of research, we discovered that the server didn't have the right
version of IIS. We installed the correct version of IIS and it worked. Once we had the right version of IIS,
we deployed our packaged code and it worked without a hitch! It was just environment issues. I'm glad
that we did that initial work when setting up the CI server. Since the CI server compiles the DLLs, it's nice
to know that we have very few dependencies there and we can package up the code fairly quickly and
deploy the code easily.

Sarah: Yep, we'll know for next time!

Tim: Sounds like a learning experience! Glad you guys got that resolved. Anything else?

Bzzzz! The timer buzzes time’s up...

Tim: That's all the time we have. Joe, you have an action item to pair with Sarah and/or Tyler for at least
four hours every day during the next sprint to build up your test-first skills. Thanks for your time today,
team!

CHAPTER 8  SPRINT 4: THE RELEASE

241

Summary
We have now completed our fourth sprint and released our first version of the app. This release was the
culmination of four sprints’ worth of work. A final point to remember from this sprint is that when you
get a team to buy into the agile methodology, you begin to see the team take ownership of their process.
In Sprint 4, you saw a daily stand-up start without the ScrumMaster present. The team understood the
importance of keeping the daily stand-up meeting in tact whether the ScrumMaster was there or not.

From the product demo and the retrospective, we learned valuable lessons from the following
situations:

• Joe’s admitting his natural reaction to go back to “the old way” of just cranking out
code. This is a common reaction. It's human nature to fight change. Oftentimes
we want to return to the “safe” way of doing things. The team needs to hold each
other accountable and raise each other up. In our example, we did this by having
Joe spend more time pair programming with Sarah and Tyler. This will allow
Sarah and Tyler to mentor Joe rather than tear him down by complaining that he
doesn’t get it. Building up fellow team members is crucial to a successful team.

• The team pushing back with Simon when he wanted to add just one, little field to
the Member Registration. The team explained that they could add the feature, but
that a user story would first need to be written. This user story will still need to go
through the process (prioritized, estimated, and put in a sprint). The reason for
this time and effort is to deliver the highest value to the customer. Don’t struggle
between delivering the highest value and scope creep. Scope creep will win every
time. The goal is to stop that slippery slope before it ever occurs.

C H A P T E R 9

243

Code Review

This chapter acts as a code review for the work achieved in the case study project. We recommend that
you download the complete application from www.apress.com as you read through the review.

In order to give you a better understanding of the Kojack Games Blackjack application, you will
learn how all the projects in the solution fit together to satisfy the features included in the case study. It’s
a good idea to have a copy of the source code open while you read this chapter so that you can flip
between the code and the text.

Code snippets that we feel demonstrate an important concept in the application have been
included in this chapter. It would have been ideal to list the application's source code in its entirety, but
that would have made for a very large book. Instead, we felt it better to not scrimp on the code and to
deliver you an application that you can study in conjunction with the book in order to give you the most
realistic view of how an agile process can deliver a fully-working application.

Solution Overview
Before we dig deeper into the architecture, let's review the implementation model we'll follow. Then
we'll look at the Visual Studio Solution file and a high-level purpose of each project within the solution.

The implementation model chosen for this project is the Command and Query Responsibility
Segregation (CQRS) implementation. The term command query separation was coined by Bertrand
Meyer in his book Object-Oriented Software Construction, Second Edition (Prentice Hall, 2000).
Fundamentally, CQRS divides an object's methods into two categories, as follows:

• Queries that return a result and do not change the observable state of the system.
In other words, queries free from side effects.

• Commands that change the state of the system, but do not return a value.

Next, let’s take a look at the Visual Studio Solution and discuss each of the following six projects at a
high level:

• Infrastructure Project: This project contains all of the supporting framework for
the domain model and CQRS implementation.

• Domain Project: This is the heart of the application, featuring all of the behaviors
of the blackjack game. The project is split into the following sections: command
handlers, commands, domain views, and the model.

• Acceptance Tests: This project contains all of our code to run our automated, front-
end, web test suite to perform end-to-end testing.

http://www.apress.com

CHAPTER 9  CODE REVIEW

244

• Core Tests: This project is our automated, unit testing suite that tests code directly
beneath the UI.

• NHibernate Infrastructure Project: This project implements a generic repository
class and serves as the implementation of the IQueryService, which forms the
query side of the CQRS architecture.

• Web Project: This is the UI piece of the application that is implemented as a web
application using the Model View Controller (MVC) pattern.

As you've seen, each project serves a primary purpose and acts as separate pieces to a larger puzzle.
We intentionally did not put the entire application into one project. Splitting projects out has its
advantages. For example, the NHibernate project focuses on implementing the repository logic and
database persistence. If, in the future, there was a requirement to change our ORM layer to another
ORM tool like ADO.NET Entity Framework (EF) for example, we have the ability to do that more easily
because of this isolated structure than if it were compiled all in the same assembly within one project.
Look at the domain project. This project contains the meat of the application, the core functionality.
Because this contains the primary business logic, we could reuse this project and potentially implement
a UI other than a web interface—perhaps a WPF or Silverlight application.

Splitting out testing projects is advantageous for scalability reasons. There exists a logical
separation between your core tests and your acceptance tests that you can take advantage of. When you
first start out, you will run both sets of tests on every check in. As you continue to add more and more
tests to both projects, you will see that acceptance tests are going to run slower than your core tests. This
is because the core tests test individual methods and the acceptance tests test vertical slices through the
application. Dividing these into two test projects will allow the flexibility of running the core tests more
frequent than the acceptance tests. It cuts down the build times on your CI server and gets the feedback
needed to the developers that much sooner. This is a simple thing to do as long as there is forethought
in splitting out the test projects.

Infrastructure Project
The infrastructure project contains all of the supporting framework for the domain model and the CQRS
implementation. Let’s take a look at the implementation for the ICommandBus that you created earlier in
the book.

The class that follows is the implementation of the ICommandBus, which depends on a
ICommandHandlerRegistry to find a handler for a given command.

namespace KojackGames.Blackjack.Infrastructure.Cqrs.Command
{
 public class InProcessCommandBus : ICommandBus
 {
 private readonly ICommandHandlerRegistry _command_handler_registry;

 public InProcessCommandBus(ICommandHandlerRegistry
 command_handler_registry)
 {
 _command_handler_registry = command_handler_registry;
 }

 public void send<TCommand>(TCommand command)
 where TCommand : ICommand
 {

CHAPTER 9  CODE REVIEW

245

 _command_handler_registry
 .find_handler_for(command).handle(command);
 }
 }
}

Later in this chapter, you'll see an example of an ICommandHandler.
Another class of note is the StructureMapCommandHandlerRegistry, which is an implementation of

the ICommandHandlerRegistry. StructureMap is an Inversion of Control container.

using StructureMap;

namespace KojackGames.Blackjack.Infrastructure.Cqrs.Command
{
 public class StructureMapCommandHandlerRegistry : ICommandHandlerRegistry
 {
 public ICommandHandler<TCommand> find_handler_for<TCommand>
 (TCommand command) where TCommand : ICommand
 {
 return ObjectFactory.TryGetInstance<ICommandHandler<TCommand>>();
 }
 }
}

Yet another class of note is the DomainBase class, which acts as a supertype to all of the entities
contained in the domain project. All of the entities have an identifier and are compared on their type
and identity. This base class provides this default behavior for all of the entity classes.

using System;

namespace KojackGames.Blackjack.Infrastructure.Domain
{
 public abstract class DomainBase<TEntityType> where TEntityType : IEntity
 {
 public Guid id
 {
 get; protected set;
 }

 public int version_id { get; private set; }

 public bool Equals(TEntityType other)
 {
 if (ReferenceEquals(null, other)) return false;
 if (ReferenceEquals(this, other)) return true;
 return other.id.Equals(id);
 }

 public override bool Equals(object obj)
 {
 if (ReferenceEquals(null, obj)) return false;
 if (ReferenceEquals(this, obj)) return true;
 if (obj.GetType() != typeof(TEntityType)) return false;

CHAPTER 9  CODE REVIEW

246

 return Equals((TEntityType)obj);
 }

 public override int GetHashCode()
 {
 return id.GetHashCode();
 }
 }
}

This Domain class allows base functionality from inherited classes and lets us check for equality.
This wraps up the discussion of the infrastructure project. Let's turn our attention to the domain

project.

Domain Project
The domain project contains the heart of the application, featuring all of the behaviors of the blackjack
game. The project is split into the following sections:

• Command Handlers: This section of the GamePlay domain contains all of the
handlers that perform the actions described by the commands.

• Commands: The commands folder contains the data transfer objects that
represent actions performed in the context of a game.

• Domain Views: The domain views folder contains flat views of the domain. It is
used to present a contextual view of the domain for presentation purposes.

• Model: The model contains the behavior of the system and is used to perform the
state transitions based on the exposed commands. The model follows a domain-
driven design approach in order to capture the rich logic of the blackjack card
game.

We will explore each of these sections in more detail.

Commands and Command Handlers
All of the commands of the application implement the ICommand interface. Take a look at the following
code listing for the DealCommand. It contains a single property that is used to identify the player

using System;
using KojackGames.Blackjack.Infrastructure.Cqrs.Command;

namespace KojackGames.Blackjack.Domain.GamePlay.Commands
{
 public class DealCommand : ICommand
 {
 public Guid player_token { get; set; }
 }

CHAPTER 9  CODE REVIEW

247

}

A matching DealHandler exists to handle the DealAction when it is sent via the bus. The DealHandler
simply pulls the blackjack table game from the repository and calls the deal_in_hands_by_asking
method, passing a Dealer object that represents a blackjack game dealer. The Dealer object is stateless
and is used to inject behavior into the system that fits naturally on any other entity.

using System;
using KojackGames.Blackjack.Domain.GamePlay.Commands;
using KojackGames.Blackjack.Domain.GamePlay.Model;
using KojackGames.Blackjack.Domain.GamePlay.Model.Dealing;
using KojackGames.Blackjack.Infrastructure;
using KojackGames.Blackjack.Infrastructure.Cqrs.Command;
using KojackGames.Blackjack.Infrastructure.Domain;

namespace KojackGames.Blackjack.Domain.GamePlay.CommandHandlers
{
 public class DealHandler : ICommandHandler<DealCommand>
 {
 private readonly IUnitOfWorkFactory _unit_of_work_factory;
 private readonly IDealer _dealer;
 private readonly IRepository<IBlackJackTable> _table_repository;

 public DealHandler(IUnitOfWorkFactory unit_of_work_factory,
 IDealer dealer,
 IRepository<IBlackJackTable> table_repository)
 {
 _unit_of_work_factory = unit_of_work_factory;
 _dealer = dealer;
 _table_repository = table_repository;
 }

 public void handle(DealCommand controlling_hand_command)
 {
 using (_unit_of_work_factory.create())
 {
 var table = _table_repository
 .query_for_single(x =>
 x.player == controlling_hand_command.player_token);

 if (table != null)
 {
 table.deal_in_hands_by_asking(_dealer);
 _table_repository.save(table);
 }
 }
 }
 }
}

A full list of command and command handler classes can be seen in Figure 9-1.

CHAPTER 9  CODE REVIEW

248

Figure 9-1. Commands and handlers for the game

Model
The domain model is a conceptual model of the GamePlay context of the application. The model contains
relationships, entities, and objects that represent concerns in the game of blackjack.

The BlackJackTable entity, as shown in Figure 9-2, acts as the root to the aggregate of objects that
represents the blackjack game play. All interaction with the game, which comes in the form of command
handlers, is performed through the BlackJackTable entity. Accessing only through the aggregate root
ensures consistency and a consistently valid state.

The BlackJackTable entity contains an ICardShoe and an IHandCollection. The ICardShoe instance
represents the card shoe in the game of blackjack and this holds the state of the deck of cards. The
IHandCollection represents all hands in play during the game—that is the players’ and the dealer’s
hands. As you can see from Figure 9-2, both the dealers’ and players’ hands inherit from a Hand base
class that exposes the common behavior of a hand.

CHAPTER 9  CODE REVIEW

249

Figure 9-2. Class diagram for the blackjack game play

Both the BlackJackTable and the Hand leverage the state pattern in the form of a TableStatus and
HandStatus respectively, which can be seen in Figures 9-3 and 9-4. These objects encapsulate the state
of each entity and enable the classes to focus on behavior only.

CHAPTER 9  CODE REVIEW

250

Figure 9-3. Class diagram showing the state pattern for the Hand class

CHAPTER 9  CODE REVIEW

251

Figure 9-4. Class diagram showing the state pattern for the BlackJackTable class

The only other interface of note is that of the IDealer, which follows the Domain Service pattern in
that it has no state but instead represents a concern and behavior that doesn’t naturally fit anywhere
else within the domain model. The BlackJackTable entity uses the double dispatch pattern to take an
instance of the IDealer to act upon the entity, rather than exposing any of its internal collections.

Let’s take a look at the workflow that is used to deal in the cards for the players. This section of code
follows on from the DealHandler class that you saw in the last section.

The following code snippet is taken from the BlackJackTable class. The method shown is called
directly from the DealHandler. First the status is checked to see if the deal action can take place; if so, a
hand is created for the dealer and the collection of hands and the card shoe are passed to the dealer.
After the cards have been dealt, the status of the table is changed to hands_dealt and a check is made to
see if the game has finished. The check is made due to the fact that either the player or the dealer can
achieve blackjack with the first two cards.

namespace KojackGames.Blackjack.Domain.GamePlay.Model
{
 public class BlackJackTable : DomainBase<BlackJackTable>, IBlackJackTable
 {

CHAPTER 9  CODE REVIEW

252

 public void deal_in_hands_by_asking(IDealer dealer)
 {
 if (status.can_deal)
 {
 _hand_collection.create_dealers_hand_for(this);

 dealer.deal_in(_hand_collection, _card_shoe);

 change_state_to(TableStatus.hands_dealt);

 check_if_game_finished();
 }
 }
 ...
 }
}

The Dealer class used in the previous code snippet can be seen in the following code snippet. Here
the dealer delegates the act of dealing to a specific dealing action. After the cards are dealt, a check is
made to see if any of the hands have achieved blackjack; if so, then the winner calculator determines the
winner.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealing
{
 public class Dealer : IDealer
 {

 public void deal_in(IHandCollection hands, ICardShoe card_shoe)
 {
 _dealing_in_action.deal_cards_in(hands, card_shoe);

 if (hands.contain_a_hand_with_blackjack())
 _winner_calculator.determine_winner_from(hands);
 }

 ...
}

If we take a look at the DealingInAction itself, we can see again that it is a very simple class that gives
each hand two cards and then updates the status of the hand.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealing.Actions
{
 public class DealingInAction : BaseAction, IDealingInAction
 {
 ...

 public void deal_cards_in(IHandCollection hands, ICardShoe card_shoe)
 {
 deal_two_cards_to_each_hand_in(hands, card_shoe);

 update_the_status_of_each_hand_in(hands);

CHAPTER 9  CODE REVIEW

253

 }

 private void deal_two_cards_to_each_hand_in(IHandCollection hands,
 ICardShoe card_shoe)
 {
 int no_of_cards_to_deal = 2;

 while (no_of_cards_to_deal > 0)
 {
 foreach(var hand in hands.get_all_hands())
 hand.add(card_shoe.take_card());

 no_of_cards_to_deal--;
 };
 }
 }
}

The method to update the status of each hand comes from the BaseAction class, which acts as a
supertype for all of the dealer’s actions and can be seen in the following code snippet.

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Dealing.Actions
{
 public abstract class BaseAction
 {
 private readonly IHandStatusFactory _hand_status_factory;

 public BaseAction(IHandStatusFactory hand_status_factory)
 {
 _hand_status_factory = hand_status_factory;
 }

 protected void update_the_status_of_each_hand_in(
 IHandCollection hands)
 {
 foreach(var hand in hands.get_all_hands())
 {
 hand.change_state_to(
 _hand_status_factory.get_status_for(hand));
 }
 }

 ...
 }
}

The overriding theme within the domain project is of lots of small and concise classes working
together to form the behavior of the application. The single responsibility principle has been adhered to
in order to ensure that methods and classes have only one responsibility and one reason to change.

The rest of the domain project is made up of supporting classes that represents small units of
behavior in the game play, as shown in Figure 9-5.

CHAPTER 9  CODE REVIEW

254

Figure 9-5. The BlackJackTable section of the domain project

Much of the logic is captured as specification objects; as an example, take a look at the following
code snippet that shows the HasBlackJack class.

using KojackGames.Blackjack.Domain.GamePlay.Model.Dealing;

namespace KojackGames.Blackjack.Domain.GamePlay.Model.Hands.Status
{
 public class HasBlackJack : IHasBlackjackSpecification
 {
 private int blackjack_total = 21;
 private readonly IHandScorer _hand_scorer;

 public HasBlackJack(IHandScorer hand_scorer)
 {
 _hand_scorer = hand_scorer;
 }

 public bool is_satisfied_by(IHand hand)
 {
 bool has_blackjack = false;

 if (hand.number_of_cards == 2)
 {
 has_blackjack = (_hand_scorer.calculate_score_for(hand)
 == blackjack_total);

CHAPTER 9  CODE REVIEW

255

 }

 return has_blackjack;
 }
 }
}

Here the logic to determine a score of blackjack is kept out of the hand class, and instead, the hand,
be it a dealer’s or a player’s, is passed in to see if it satisfies the criteria for reaching blackjack.

Also in the domain project are sections for the Cards in a blackjack game (Figure 9-6), The Dealing
of a blackjack game (Figure 9-7), and a section on the Hands in the blackjack game (Figure 9-8).

Figure 9-6. The Cards section of the domain project

CHAPTER 9  CODE REVIEW

256

Figure 9-7. The Dealing section of the domain project

CHAPTER 9  CODE REVIEW

257

Figure 9-8. The Hands section of the domain project

Domain Views
The domain views folder contains all of the flat views of the application and is used to present the state
of the game. The objects themselves are very simple data transfer objects. The full list of domain views
can be seen in Figure 9-9.

CHAPTER 9  CODE REVIEW

258

Figure 9-9. The Domain Views section of the domain project

The supporting data model to hold the state of the game can be seen in Figure 9-10. The data model is
used both by the query service (the query side of the CQRS architecture) and to hold the state of the
domain (the command side of the CQRS architecture). This data could be split up and stored separately,
but that would increase the complexity of the application at this stage and would not return any benefit.
As you can see from Figure 9-10, the data tables map clearly to the main entities in the domain model.

CHAPTER 9  CODE REVIEW

259

Figure 9-10. The data model to store the game state

Acceptance Test Project
The acceptance test project builds upon the exercise you completed earlier in this chapter. As you can
see from Figure 9-11, the Features folder contains a SpecFlow feature file for each of the user stories. You
will also note that within the Utilities folder there are some NHibernate mapping files. These mapping
files, along with the GameBuilder class, is the framework for a fluent interface that allows the tests to set
up state in the database prior to running an acceptance testing scenario.

CHAPTER 9  CODE REVIEW

260

Figure 9-11. The acceptance testing project

CHAPTER 9  CODE REVIEW

261

Fluent Game State Builder
The GameBuilder class is a fluent interface that allows the acceptance tests to set up the state of a game.
Figure 9-12 shows the SpecFlow acceptance test scenario around the feature of the player winning a
game when the dealer busts.

Figure 9-12. WinGame feature scenario

You can see in the scenario that the state of the player’s hand, the dealer’s hand, and the deck are
set up in a given context so that when an action occurs, the outcome can be predicted. This is all
achieved by setting up the state of the game directly in the database.

Take a look at the step definitions for the scenario in the following code listing.

[Binding]
public class GameSetUpSteps
{
 [Given(@"the deck contains the following cards:")]
 public void GivenTheDeckContainsTheFollowingCards(Table table)
 {
 var game_builder = new GameBuilder()
 .find_game_by_player_id(PlayerToken.player_id);

CHAPTER 9  CODE REVIEW

262

 foreach(var row in table.Rows)
 game_builder
 .add_to_deck(TableObjectMapper.create_deck_row_from(row));

 var game = game_builder.build();

 DataBaseHelper.save(game);
 }

 [Given(@"I have started a new game and bet ""(.*)""")]
 public void GivenIHaveStartedANewGameAndBet(decimal bet_amount)
 {
 var game = new GameBuilder()
 .create_for(PlayerToken.player_id)
 .add_hand_with_bet_of(bet_amount)
 .with_status_of(HandStatus.in_play)
 .set_as_active()
 .build()
 .set_number_of_playing_positions_as(1)
 .set_game_state_to(TableStatus.full_table)
 .build();

 DataBaseHelper.add(game);
 }

 [Given(@"my hand contains the following cards:")]
 public void GivenMyHandContainsTheFollowingCards(Table table)
 {
 var game_builder = new GameBuilder()
 .find_game_by_player_id(PlayerToken.player_id);

 var cards = new List<CardInHandRow>();
 foreach(var row in table.Rows)
 cards.Add(TableObjectMapper.create_card_in_hand_row_from(row));

 game_builder.for_players_hand()
 .add_cards(cards);

 var game = game_builder.build();

 DataBaseHelper.save(game);
 }

 [Given(@"the dealers hand contains the following cards:")]
 public void GivenTheDealersHandContainsTheFollowingCards(Table table)
 {
 var game_builder = new GameBuilder()
 .find_game_by_player_id(PlayerToken.player_id);

CHAPTER 9  CODE REVIEW

263

 var cards = new List<CardInHandRow>();

 foreach (var row in table.Rows)
 cards.Add(TableObjectMapper.create_card_in_hand_row_from(row));

 game_builder.add_cards_to_dealers_hand(cards);

 var game = game_builder.build();

 DataBaseHelper.save(game);
 }

 …
}

You can see from the code snippet that the GameBuilder class is used to create the state of the game
using a fluent builder and then given to the database helper, which in turn uses NHibernate to persist the
game state.

The GameBuilder class, part of which is shown in the following code snippet, is very simple in that it
returns a reference to itself after each method call so that methods can be chained together. The only
exception to this is the Build method, which returns a BlackJackTableRow that maps directly to the data
relational model.

 public class GameBuilder
 {
 private BlackJackTableRow _blackjacktablerow;

 public GameBuilder create_for(Guid player_id)
 {
 _blackjacktablerow = new BlackJackTableRow();
 _blackjacktablerow.id = Guid.NewGuid();
 _blackjacktablerow.hand_rows = new List<HandTableRow>();
 _blackjacktablerow.deck_rows = new List<DeckRow>();
 _blackjacktablerow.player_token = player_id;

 return this;
 }

 public BlackJackTableRow build()
 {
 return _blackjacktablerow;
 }

 public GameBuilder find_game_by_player_id(Guid player_id)
 {
 using (var session = SessionFactory.GetNewSession())
 {
 _blackjacktablerow = session
 .Query<BlackJackTableRow>()
 .Where(x => x.player_token == player_id)
 .SingleOrDefault();
 }

CHAPTER 9  CODE REVIEW

264

 return this;
 }

 public GameBuilder add_to_deck(DeckRow card)
 {
 card.blackjacktable_id = _blackjacktablerow.id;
 _blackjacktablerow.deck_rows.Add(card);

 return this;
 }

 public GameBuilder set_game_state_to(TableStatus table_status)
 {
 _blackjacktablerow.can_accept_bet = table_status.can_accept_bet;
 _blackjacktablerow.can_deal = table_status.can_deal;
 _blackjacktablerow.state_id = table_status.id;
 _blackjacktablerow.state_name = table_status.name;

 return this;
 }

 …
 }
}

Core Test Project
As with the Acceptance.Tests project, the Core.Tests project follows on from the exercise that you
completed earlier in the chapter. Figure 9-13 shows the breadth of features that the tests cover. The
whole application was built in a test-first manner and with an inside-out method that allowed the
underlying objects to be discovered by driving the design of the system from the acceptance tests.

CHAPTER 9  CODE REVIEW

265

Figure 9-13. The core unit test project

NHibernate Infrastructure Project
For the database relationship between the application and the database, we chose to use NHibernate, an
open source object-relational mapping (ORM) tool that is widely used in the industry. Another ORM tool
option is Entity Framework (EF).

The NHibernate project, as shown in Figure 9-14, is a fairly standard setup with separate mappings
for the view and domain model classes. Both mappings map to the same tables, but the views only take a
specific context view of the domain and map directly to the domain views, as can be seen in the domain
project.

CHAPTER 9  CODE REVIEW

266

Figure 9-14. The NHibernate project

The NHibernate project has a generic repository class, as shown in the following code listing, which
satisfies the needs of persisting the BlackJackTable entity.

namespace KojackGames.Blackjack.Infrastructure.Nhibernate
{
 public class NhRepository<T> : IRepository<T> where T : IEntity
 {
 private readonly ISession _session;

CHAPTER 9  CODE REVIEW

267

 public NhRepository(ISession session)
 {
 _session = session;
 }

 public T find_by(Guid id)
 {
 return _session.Get<T>(id);
 }

 public IEnumerable<T> find_all()
 {
 return new List<T>();
 }

 public void save(T entity)
 {
 _session.SaveOrUpdate(entity);
 }

 public T query_for_single(Func<T, bool> func)
 {
 return _session.Query<T>().Where(func).SingleOrDefault();
 }

 public void remove(T entity)
 {
 _session.Delete(entity);
 }
 }
}

The only other real class of note is the NhQueryService, an implementation of the IQueryService,
which forms the query side of the CQRS architecture and can be seen in the following code listing.

namespace KojackGames.Blackjack.Infrastructure.Nhibernate
{
 public class NhQueryService : IQueryService
 {
 public T query_for_single<T>(Func<T, bool> query)
 {
 using (var session = SessionFactory.GetNewSession())
 {
 return session.Query<T>().Where(query).FirstOrDefault();
 }
 }
 }
}

Web Project
The final project in the application is the web project, shown in full in Figure 9-15.

CHAPTER 9  CODE REVIEW

268

All of the controllers work in the same way shown in the exercise earlier in the chapter. They are
created per UI task or concern to keep them thin. Controllers that deal with displaying the state of the
game utilize the IQueryService as can be seen in the BlackJackTableGameViewController controller,
shown in the following code listing.

namespace KojackGames.Blackjack.UI.Web.Controllers
{
 public class BlackJackTableGameViewController : Controller
 {
 private readonly IPlayerAuthenticator _player_authenticator;
 private readonly IQueryService _query_service;

 public BlackJackTableGameViewController(
 IPlayerAuthenticator player_authenticator,
 IQueryService query_service)
 {
 _player_authenticator = player_authenticator;
 _query_service = query_service;
 }

 public ActionResult display()
 {
 var game_summary =
 _query_service.query_for_single<BlackJackTableView>(
 x => x.player_token ==
 _player_authenticator.get_player_token());

 return View(game_summary);
 }
 }
}

CHAPTER 9  CODE REVIEW

269

Figure 9-15. KojackGames.Blackjack.UI.Web project

StructureMap
StructureMap is used to tie all of the dependencies together and build a collection of ICommandMapper and
ICommandHandlers, as seen in the BootStrapper class.

namespace KojackGames.Blackjack.UI.Web
{
 public class BootStrapper
 {
 public static void ConfigureDependencies()
 {

CHAPTER 9  CODE REVIEW

270

 ObjectFactory.Initialize(x =>
 {
 x.AddRegistry<ControllerRegistry>();
 x.AddRegistry<CommandHandlerRegistry>();
 x.AddRegistry<CommandMappersRegistry>();
 });
 }

 public class CommandMappersRegistry : Registry
 {
 public CommandMappersRegistry()
 {
 Scan(s =>
 {
 s.TheCallingAssembly();
 s.ConnectImplementationsToTypesClosing(
 typeof(ICommandMapper<,>));
 });
 }
 }

 public class CommandHandlerRegistry : Registry
 {
 public CommandHandlerRegistry()
 {
 Scan(s =>
 {
 s.Assembly("KojackGames.Blackjack.Domain");
 s.ConnectImplementationsToTypesClosing(
 typeof(ICommandHandler<>));
 });
 }
 }

 public class ControllerRegistry : Registry
 {
 public ControllerRegistry()
 {
 For<IDealer>().Use<Dealer>();
 For<IHandScorer>().Use<HandScorer>();
 For<IDealingInAction>().Use<DealingInAction>();
 For<IPlayDealersHandAction>().Use<PlayDealersHandAction>();
 For<IHandStatusFactory>().Use<HandStatusFactory>();
 …
 }
 }
 }
}

This wraps up the key points and projects in the Kojack Games Blackjack application and the
architecture that was built to build the features.

CHAPTER 9  CODE REVIEW

271

Summary
This chapter walked you through a code review and a review of the architecture that the
Kojack.Blackjack solution implements. For the sake of brevity, all the code is not printed in the book, so
we encourage you to download the code located at www.apress.com and study the code in conjunction
with the book. In this chapter, we covered the following topics:

• Discussed the solution architecture of the Kojack.Blackjack solution and the CQS
pattern that was implemented

• Broke out the way projects were laid out and the reason for the logical breaking of
projects

• Reviewed the third-party tools that were used, including StructureMap for
Dependency Inversion and NHibernate as our ORM

Throughout the chapter, class diagrams were represented to show the plan and review the code in
the solution. As we walked through the architecture, there tended to be at least one more layer needed
to get the application up to that domain in the domain-driven design. This helps to improve
communication with the business.

In the next chapter, we'll take a look at how the release went in the review session and cover what
we've learned throughout the case study.

http://www.apress.com

C H A P T E R 10

273

What’s Ahead for You and Scrum?

You made it!
You read about the drawbacks of plan-driven development, also known as the “waterfall”

development method. With plan-driven development, we were not providing value to our customers or
being transparent with our customers about what we were doing and what they needed. We needed to
improve our way of developing software. We needed to get away from 400-page design documents as the
solution to a problem. We needed to put our customer back into the forefront of our efforts.

You read about value-driven development and its champion, Agile. You learned what Scrum is all
about and what defines eXtreme Programming. You saw an example of how agile can be used in the real
world. You learned how to take the idea of agile from paper and apply it to your team. You may be asking
yourself, where do we go from here? Well, first, let’s look at where we have been.

Scrum
Scrum's framework is a healthy framework, both from a cultural and software development standpoint,
to use for guiding a development team. Scrum is about the accountability and transparency of a team.
Scrum identifies problems earlier in the process; however, it will not fix the problems. Scrum does not
teach you what frameworks to use or which source control to use or how to develop. It doesn’t show you
how to do your job; it provides you ways to better do your job. Scrum holds true to the values of the Agile
Manifesto, which are as follows:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Throughout this case study, our process and, hopefully, we as individuals, have evolved. We started
with understandable criticism. Why do we use all these Post-it notes? What are the swim lanes on the
Kanban board for? Why are we having a meeting every, single, work day? Why do we have to write user
stories in a certain format? And, for Pete’s sake, why are we spending so much time on creating
automated tests? I just want to crank out code! We’re software developers and we are managing items
with Post-it notes and a board? How could this ever be efficient? It seems as if we’ve taken a step back in
time!

Yet over time, we came to appreciate that the Post-it notes and the swim lanes serve as great ways to
capture manageable, measurable pieces of work that keep everyone updated on the team’s progress.
These tools allow us to create big, visible charts (BVCs), such as burn-down charts, to allow both team
members and people outside the team a quick overview of how the project is progressing. We write user

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

274

stories in a certain way to help capture what the business tells us it needs; and this consistency also
helps to form and translate these requirements into interactive features.

Automated testing is important because developers can work with the business and with testers to
determine the clear definition of requirements by writing our tests first and then writing the code to get
those tests to pass; as opposed to writing code first from a piece of paper. Although this guarantees that
the code does what it was written to do, it may not correspond to what the users want. This is where
regular communication with the customer comes in. Automated testing also aids in producing robust
and shippable code to verify that the tests work and that the code is what the business wants.

Scrum is a big advocate of a quick feedback loop for improving our process. As the team from the
case study went through multiple sprints, they came to value this quick feedback loop. Feedback loops
come in a few different varieties. From a “people” point-of-view, there are daily stand-ups, product
demos, and retrospectives. From the code perspective, there is the continuous integration (CI) server.

The daily stand-ups are quick, simple, and effective. With everyone announcing what they did
yesterday, what they are doing today, and what roadblocks they are experiencing, they are being
transparent about their progress to the rest of the team. No one is able to hide from the team. No one
can stay in his cube without anyone knowing what he is doing. Everyday everyone must stand up with
their peers and tell what they did. This is one time where peer pressure is good.

It’s important to note what we have not seen. In traditional methodologies, project managers or
bosses would often come up to a developer and ask for a status update. At the extreme, these happen
several times a day. Unfortunately, this wrecks a developer’s train of thought when he is focused on
getting something done. Context switching is a very costly exercise and it happens often in a
“traditional” environment. With the daily stand-up, the project managers, the bosses, or any individuals
that “need to know” come to this meeting to get information. Because the daily stand-up is quick and at
a consistent time, it’s easy to become a daily routine.

Product Demos
Product demos are key to improving customer confidence and transparency. Through the sprint
planning, the team commits to accomplishing a certain number of features for the sprint. When the
product demos occur at the end of the sprint, the team shows the customer everything accomplished for
that sprint. It provides transparency and confidence for the customer, and a sense of satisfaction for the
team. Sitting with your customer to show them what you’ve done and listen to their comments about it
is very valuable. It gives back to the customer in a way that was never done before. Developers are no
longer allowed to go into a black hole while the customers pray that they get what they want at the end of
three to six months. As shown in the case study, every two weeks the development team meets with the
customer to show what the team is working on—and everyone is glad that they met.

Creating software is just that, creating software. In agile, it’s the primary measure of progress as a
team. It's creating something that oftentimes people have not seen before. When the team does a
“show-and-tell” for the customer, that piece is already built and there's something concrete that the
team and the customer can discuss. As with our case study, often the product demos will spark
inspiration for new ideas from the team or the customer. This innovation and inspiration is a fruitful
result of the collaboration between the team and the customer. While this innovation and inspiration is
highly encouraged, the team and the customer need to understand that the definition of “done” that
they decided beforehand is still in effect. Any new ideas need to be groomed and their priority
determined before working on them. A great idea one day may become lowest-priority idea another
day.

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

275

Retrospectives
The sprint retrospectives have proved very efficient throughout this case study. At the end of each
sprint, the team discusses what went right and wrong and decides how to improve these items for the
next sprint. Having the team own its own process within a framework is ideal because each team
member is a part of something and is not forced to do anything unwillingly.

Creating a safe, trustworthy environment for team members to speak is crucial. You may notice that
certain people will want to constantly speak on things and others will simply blend into the background.
To create a trustworthy environment, the ScrumMaster or team members need to notice when someone
is taking control of a meeting and halt it so that others can speak. As for those who prefer to blend in the
background, it is up to the team to encourage them to speak. Be an advocate for them to speak their
minds. You may notice that the quiet ones have profound views on things.

Retrospectives are worthless if team members don't feel as if they can speak up or they don't have
confidence that things will change as roadblocks are uncovered. Good, safe, clear communication is key
to evolving a team and evolving any process. There needs to be good facilitation skills present to help
with this. Normally, you can find these skills in the ScrumMaster or Agile coach, but it does not have to
be limited to them. Team members can also bring these skills to the table. Retrospectives are a fantastic
way to have the team own and improve their own process.

There were milestone action items that came from retrospectives, including the importance of pair
programming and the importance of having an available customer and/or product owner. Be sure to
occasionally change your activities on how to conduct a retrospective. You saw that the team started
doing the retrospective one way and then switched to the retrospective game “The Soup” to get a better
understanding of the issues the team was dealing with. As with anything, repeatedly doing the same
thing gets dull and you may not see a problem unless it’s presented from a different angle. If
retrospectives get dull, they are no longer useful and you may as well discontinue having them because
they become a waste of time. While not advised, teams have skipped a retrospective because they didn't
think it was useful. Some times it may be more fruitful to not have a retrospective, as long as the team
has an effective retrospective at the end of the following sprint.

Be prepared, have a variety of different activities to gather what went well and what didn't go so well
during the sprint. You don’t have to change how you run retrospectives at every sprint, but try
something new and give it time to work. If it doesn’t, then throw it out and try something else. If you are
a ScrumMaster on a team, check out books or blogs on retrospectives. For example, the book Agile
Retrospectives by Esther Derby and Diana Larsen (Pragmatic Bookshelf, 2006) is a great resource for
discovering different ways of running a retrospective. These sources can yield a plethora of ideas on how
to run your retrospectives. This keeps the team members alert and alert team members are more willing
to give constructive feedback. That's what we want!

Also, make sure that the action items that come out of the retrospective get acted upon and resolved
quickly. If the same painful action items appear week after week, there's nothing more damaging to a
team's morale than to see that nothing is being done to update or resolve these matters. Have each
action item assigned to one person on the team, even if the action item concerns the entire team. It's
that person’s responsibility to follow up and make sure the action item is getting handled.

If an action item gets carried over from sprint to sprint, throw it out. It obviously wasn’t important
enough to work on or it would have been completed. A truly important item will come back again.

By completing action items, the team gets a sense of accomplishment and confidence in the
process. Presenting ways to improve a process and seeing nothing come of it is death to a team.
Eventually team members become disconnected from the entire process. Without the team working
together, you might as well go back to the old way of doing things. Remember, agile is excellent at
bringing the weaknesses to the forefront, but solving them is your job—make sure you solve problems
quickly to build team moral!

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

276

Continuous Integration
A continuous integration (CI) server is the feedback loop from the code's perspective. This feedback is
crucial to the whole team and, yes, the code does speak. It says things like the following:

• I can't build because there are build errors or reference issues.

• My automated tests are failing.

• Tests are taking a while to complete, better start organizing these tests into
different groups that run at different times; some after every build and some at
certain times of the day.

The CI server aids in development by saving developers time. Instead of the "old school" way of
everyone checking in code after days or weeks of development, and dealing with merge conflicts, and
having no way of knowing if changes broke an existing piece of functionality, how about allowing
everyone to work off one branch of the code base, set up a CI server to run after every check in, and deal
with any merge conflicts on a much smaller level. The CI server can also verify that the new functionality
did not break existing functionality by running a set of automated tests against the code. Quickly
providing this feedback to the developers instills confidence—and you will start seeing these developers
checking in multiple times per day. Because the feedback loop is tighter, a lot of the merge conflicts
disappear because everyone is working in and checking into the same code base at more frequent
intervals.

By running the automated tests after every check in, you get the added benefit of having a stable
environment that has already been smoke-tested. The code is ready for the team members that are
testing to begin without first having to do regression testing to make sure the new functionality did not
break the existing functionality.

Plan-Do-Study-Act
Throughout the case study, we followed the Deming Cycle, which is the widely-recognized, four-step
process for continual improvement, also known as PDSA or Plan-Do-Study-Act.

• Plan: With each sprint, there was a planning session on what the team wanted to
accomplish. User stories were written and estimated; and acceptance criteria was
written so the team and the customer knew the rules to determine if a feature was
done.

• Do: This is the sprint. During the sprint, the features were developed.

• Study: At the conclusion of every sprint, the team conducted a retrospective to
study what it just did and derive ways to improve the process. The team asked
themselves, how can we improve, how can we become more efficient, and how
can we improve our process? As a result of this study, action items were noted and
assigned to be handled.

• Act: These were the action items that came from the retrospective. The team had
great influence on the process. Taking the action items from the retrospective, the
team acted to improve the process.

This cycle repeats for every sprint and even on a daily basis as the team evolves. The team proves it
can handle greater tasks as its process evolves. The team becomes more efficient, and knowing that, they
decide their own destiny.

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

277

eXtreme Programming
While Scrum is the project management and process side of a project, eXtreme Programming (XP) is the
process or methodology for developing features and is a tool for doing the work. Let's look at XP's five
values and discuss how they were played out among the case study.

• Communication: The success or failure of a team largely depends on communication. As
was determined early in the case study, Sarah became a bottleneck in the process due to
her domain knowledge. This was communicated by Tyler since he spoke up and informed
the group he couldn't finish a story due to waiting on Sarah. This proved to be constructive
criticism as they needed to share domain knowledge. The spreading of domain knowledge
across the team was accomplished through pair programming.

The daily stand-ups also served to bridge this communication gap between the team. By
facilitating the flow of communication among and outside the team, they could determine
issues and roadblocks early, move them out of the way, and continue on the path of
developing value-added software to the customer.

• Simplicity: Since both Sarah and Tyler, and even Joe later on, were good software
developers, they were able to communicate and brainstorm together; the outcome resulted
in a simple solution. Good solutions evolve and are typically not the result of the first
thought. With pair programming, programmers can consult each other instantaneously to
quickly produce a simpler solution. Simplicity makes a product more maintainable in the
future. You noticed that code was written only when it was needed. The team started with
a framework architecture (MVC, NHibernate, etc.) that the team decided upon based on
the known, high-level requirements. The first few features were spent proving and building
confidence that the architecture the team built worked. Over time, the architecture
emerged from the team to become an architecture that was used when needed, not a
“plan” for something that didn’t even happen. The Agile Manifesto says "Simplicity—the
art of maximizing the amount of work not done—is essential.”

• Feedback: Feedback came from the time and effort the developers spent writing tests so as
not to break anything. The feedback loop from a code perspective using a CI server can
save countless hours by providing you quick feedback as opposed to trying to fix a build a
week after five developers checked different things in over the course of time.

• Courage: The team needed courage to communicate that some of the customer’s ideas on
features that were out of scope. Instead of quietly going back and developing these features
or gold-plating some functionality, the team had the courage to communicate to the
customer that the new ideas were fantastic, but needed to be worked in because they were
not part of the story. This proved the importance of determining the definition of “done”
before a feature is written, so that everyone has the same expectation.

• Respect: While respect can come in many different ways, one example comes from team
members breaking the build. Tyler had an issue with that early on; and while the team did
not yell at him, they did bring it to his attention. Tyler began to pay closer attention, broke
fewer builds, and became more respectful of the team. This openness and willingness to
accept constructive criticism lead to a respectful team that could focus on work and not
drama.

We started the case study with Sarah and Tyler in silos, each developing on their own. We soon
discovered through daily stand-ups and retrospectives that this was not a sustainable path to continue;
their different domain knowledge became roadblocks. But, through XP, two great minds came together

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

278

and worked through the fear of using new tools and newly spelled-out features. This ended the self-
made silos and the team began to work more efficiently. Sarah and Tyler worked with other team
members to implement features and write scenarios. XP served to improve both their skill sets as they
learned new tools, and also created a greater sense of team camaraderie and trust, which ultimately
contributed to a more solid and efficient team.

XP also encourages automated testing. As this case study has shown, with behavior-driven
development (BDD) there is a large amount of work that can be done through automated tests.
Developing from the outside-in aligns the developers more closely with the business. BDD aids in
bridging the communication gap between developers and the business by using SpecFlow; in this case, a
business person could read the feature and the scenarios and understand what that feature is doing.
That's what we want! We want to develop a code base that will stand the test of business time and not
the test of code-smell/code-rot time. We can ensure this by bringing the language closer to the business,
as we have through BDD and SpecFlow and, from this create automated tests so we know that when we
change something, it doesn't break something else. Simplicity and reliability are attributes of code
maintainability. We know that with pair programming, our process evolves to a simpler state than with
a single developer. Code is more reliable due to automated tests. The cost of later adding a feature is
dramatically reduced because the next developer can be confident that when he changes an existing
feature or adds a new feature, he won’t break existing functionality.

Where to Go from Here
As you move forward and onto your next agile project, the following are things to remember:

Agile is iterative. Don’t try to do it all at once. Rome was not built in a day and
changing a team to becoming more agile is not very different. People change
and changing the habits of people takes time and sensitivity. Do small chunks
over and over as a way to build the confidence of the team. You can build off
these small successes, which lead to greater rewards.

You won’t get it right the first time. You are going underestimate a user story.
You are going to select a tool that does not solve the problem. You are going to
fail; however, don’t be afraid to fail. Don’t be afraid to try something and have it
not work. When that happens, throw it out and try something else. Something
will work eventually; you just need to find it. Work to set up an environment
where failure is okay. Success comes from knowledge and knowledge comes
from failure. As Sir Winston Churchill said, “To improve is to change; to be
perfect is to change often.”

When you find something that doesn’t fail, don’t be afraid to improve it. Don’t
become stagnant. Always strive to improve the process and yourself. Seek out
new ways of doing things.

No matter what you hear, there is no cookie-cutter approach to agile. What tools
work for this team may not work for that team, and that is okay. Agile is a
framework that exposes our problems, but won’t fix them. It is up to us to
decide what we do with them. We just can’t hide from them anymore. Each
situation you encounter is different. Strive to find the tool that works for your
team, not the hottest new tool out there. Don’t be afraid to learn from the
experience of others. Although you often have to do that kind of learning, you
can’t start from scratch every time or discover everything yourself.

CHAPTER 10  WHAT’S AHEAD FOR YOU AND SCRUM?

279

There are going to be tough times for you and your team. See it through. Hell,
you might even have a team member interrupt a meeting so they can point a
finger and place blame on someone. Work through it. Communication is the
key. No matter what, keep the lines of communication open among the team.
Share your frustrations, have your “Kumbaya” moments, but talk about the
frustrations that the team is having. More importantly work on ways, with your
team, to improve the problem and relieve some stress. When that happens, you
can laugh about that ridiculous time the team member interrupted a meeting to
point a finger at another team member to blame him for something trivial.
Trust us; we know. If you find it hard to work through these frustrations,
consider inviting someone onto your team who already has experience and
success of delivering at least one agile project.

Testing is key. Without testing you are doing yourself and your customer a
serious injustice.

Treat your test code the same way you treat your production code. The code smell
that comes from production code can just as easily come from the test code.
You may not ship the test code to customers, but it is vital to the longevity of the
application. Regularly re-factor and clean up your tests. It lends itself to making
it that much easier to extend functionality in the application.

 Always seek out the smarter way to do things. Use, engage, and never be afraid
to ask your fellow developers questions. The team owns its destiny, be sure to
build a team where you're excited to come to work every day to solve complex
problems and create awesome software!

As software developers, we encourage you to make your mark on this infant industry. It is your duty
as a software craftsman (or craftswoman) to engage and help evolve and mature our industry. Write or
blog about your passions in software development. Talk about it with your peers. Find out what they
know. We as a community need you to be passionate about this. Get out there and be vocal.

Finally, have fun!

A P P E N D I X A



281

TDD Primer with NUnit

What tools do you use for testing in .NET? This is a question many new developers who come to the land
of TDD have for experienced developers. New developers are often not sure which testing framework is
the best one to use.

NUnit is a testing framework that has become the standard for testing in .NET. NUnit is a member
of the XUnit family of testing languages, and as such is an open-source tool. There are other testing
frameworks out there; however, none have had the level adoption that NUnit has. We plan on showing
you how to install NUnit, either through the NUnit web site or through NuGet. We will finish this with a
TDD primer to whet your appetite for using NUnit in the case-study chapters.

Installation
NUnit can be installed in two ways: through the NUnit web site and through NuGet.

Web Page Installation
To install NUnit you will need the following:

• Visual Studio (any version)

• The latest version of NUnit located at www.nunit.org/index.php?p=download

• Please note that in order to get the NUnit client to run, you need to have
.NET Framework 2.0 installed. It won’t matter if you are using a different
version of the framework for your development.

You will need to go the NUnit web site and download the latest version of the tool from the
download tab, as shown in Figure A-1.

http://www.nunit.org/index.php?p=download

APPENDIX A  TDD PRIMER WITH NUNIT

282

Figure A-1. The download page at nunit.org

Clicking the downloaded .msi file will launch the usual install wizard. We recommend that you
select the Complete setup type, as shown in Figure A-2.

APPENDIX A  TDD PRIMER WITH NUNIT

283

Figure A-2. Selecting setup type while installing NUnit from .msi file

As part of the installation, the NUnit client will also be installed on your system. We will show you
how to use this tool in a moment. Once the installation is complete, the NUnit DLL is registered on your
machine and available to be used in your testing projects.

NuGet Installation
Another and more convenient option for installing NUnit is through the NuGet Package Manager. NuGet
is an open-source development tool that integrates into Visual Studio and gives you a simpler way of
adding libraries into your project. If you are a Ruby developer or familiar with the Ruby language, you
can think of NuGet as the .NET equivalent to Ruby Gems.

Installing NuGet is very simple. NuGet is available through the Extension Manager that is a part of
Visual Studio, as shown in Figure A-3. If you do not see it listed, you have the option to search for it in the
search bar in the upper-right corner of the window. Simply click the Download button, and when the
download is complete, restart Visual Studio. You are done.

APPENDIX A  TDD PRIMER WITH NUNIT

284

Figure A-3. The Extension Manager window in Visual Studio

Once NuGet is installed, you can access the Package Manager Console; this is where you will
interact with NuGet. To get to the Package Manager Console, navigate to View  Other Windows 
Package Manager Console, as shown in Figure A-4.

APPENDIX A  TDD PRIMER WITH NUNIT

285

Figure A-4. Navigating to the Package Manager console

To install the NUnit package, first you need to have a solution open. For the TDD aspects of this, we
created a solution called TDDWithNunit. We will talk more about this solution and the projects that make
up the solution in a moment. From inside the Package Management Console window, run the following
command:

PM> Install-Package NUnit

What this command does is go to the web and pull the latest version of NUnit that NuGet knows of
and installs it in the project that is listed in the Default Project drop-down. NuGet will not install NUnit
on the system. As part of installing NUnit into the project, NuGet will add references to NUnit to the
project. To verify that the install was successful, run the following command to see which packages are
installed on a project, as shown in Figure A-5.

PM> Get-Package

APPENDIX A  TDD PRIMER WITH NUNIT

286

Figure A-5. Checking that NUnit was successfully installed through NuGet

 Note If you install NUnit through NuGet, you do not get the NUnit client installed. There are multiple tools that
you can use to run NUnit tests, including TestDriven.NET and ReSharper. If you want to use the NUnit client to run
your tests, then install NUnit through the .msi file on the NUnit web site.

TDD Walk-through
Now that you have NUnit installed, you can begin to write code using test-driven development (TDD).
This is a software development practice in which the developer writes tests before code. Once the tests
are written, the developer will write just enough code to get the tests to pass. Once the tests pass, the
developer can be certain that the code does what the customer wanted it to do because the tests are
based on acceptance criteria provided by the customer.

A common pattern in TDD is red-green-refactor. You start off with failed tests (red). You then write
enough code to get them to pass (green). Then you refactor the code so that it is more manageable
before moving on to the next step (refactor).

 Note NuGet may not always have the latest version of a DLL, but you can update the DLL that you have for your
project through NuGet. As of this writing, for example, the latest version of NUnit from its web site is 2.5.10.11092.
NuGet, however, installs version 2.5.9.10348.

In this walk-through, we are going to write a simple math class that will handle multiplying two
numbers. We will use TDD to write our tests and then write the code in the math class that will get the

APPENDIX A  TDD PRIMER WITH NUNIT

287

tests to pass. First, create a new console application and call it TDDWithNUnit. Once the solution is
created, we need to do the following to write the first test:

1. Add a new class library project to the solution. This new project should have
the following naming convention ProjectUnderTest.Tests, where
ProjectUnderTest is the name of the project that contains the methods you will
be writing the tests against. For our walk-through, you will see that Figure A-6
contains a project called TDDWithNunit that contains the math class that we will
be testing and a project called TDDWithNunit_Tests that will contain the tests.

2. If you installed NUnit from the .msi file instead of through NuGet, you will
need to add a reference to the NUnit DLL (nunit.framework) to the test project,
as shown in Figure A-7. If you used NuGet to install NUnit, then you should
already have the reference.

3. Add a reference to TDDWithNunit to the test project TDDWithNunit_Tests.

Figure A-6. Folder structure

APPENDIX A  TDD PRIMER WITH NUNIT

288

Figure A-7. Adding NUnit DLL to the test project

Once NUnit is set up, we can write our first tests. Create a class under the TDDWithNunit.Tests
project called tddMathSpec.cs. You can go ahead and delete the file called Class1.cs but it is not
mandatory. To be able to use the NUnit framework as well as access the tddMath class that contains our
production code (we will talk about this file later), we need to add the following using statements to the
tddMathSpec class:

using NUnit.Framework;
using TDDWithNunit;

Now we need to let NUnit know that this class contains tests that need to be run. To do this we mark
the class tddMathSpec with the attribute TestFixture.

using NUnit.Framework;
using TDDWithNunit;

namespace TDDWithNUnit_Tests
{
 [TestFixture]
 public class tddMathSpec
 {

APPENDIX A  TDD PRIMER WITH NUNIT

289

 }
}

Now, let’s add the test method AddTwoNumbers_returns_3_when_given_1_and_2. (we always like to
name our test methods this way so that we know what method they are testing, as well as what the
expected inputs and outputs are). Once we add this method, we need to add the attribute Test to it so
that NUnit knows that this is a test to be run.

[Test]
public void Add_returns_3_when_given_1_and_2()
{
}

 Note All test methods should be void methods.

To test the method, we need to set up the object to get it to a state that we can test the method in
question. Next, add a new method to the class called Setup() and place the attribute Setup above this.
What this attribute does is tell NUnit to run this method before each test that is run in the class. We use
this method to set up everything we need to test the method. All that’s left is to call the method with our
two inputs and assert that the result from the method is what we expect.

using NUnit.Framework;
using NUnitTutorial;

namespace TDDWithNUnit_Tests
{
 [TestFixture]
 public class tddMathSpec
 {
 tddMath tMath;
 decimal expected = 3;

 [SetUp]
 public void setup()
 {
 tMath = new tddMath();
 }

 [Test]
 public void Add_returns_3_when_given_1_and_2()
 {
 Assert.That(tMath.Add(1, 2) == expected);
 }
 }
}

What this test simply does is call the Add method on the tddMath class, giving it a 1 and a 2, and
asserts that result given back is a 3. When you try to build the solution, you will get compile errors saying

APPENDIX A  TDD PRIMER WITH NUNIT

290

that tddMath does not exist. We need to fix each compile error before we can get the tests to pass. To fix
the compiler errors, you need to do the following:

• Add a new class called tddMath.cs to the TDDWithNunit project. Make sure it is
marked as public.

• Add a new method to the tddMath class called Add. This method will take two
decimal parameters and return a decimal, as well.

Now remember, at this point our goal is just to get the code to compile. We are not trying to get any
tests to pass. We need them to first fail before we can pass them. Once the bulleted items are done, the
tddMath class should look like the following:

namespace TDDWithNunit
{
 public class tddMath
 {
 public decimal Add(decimal num1, decimal num2)
 {
 return decimal.MinValue;
 }
 }
}

Running NUnit
There are two ways that you can run the NUnit tests. Through the NUnit client or through a Visual
Studio plugin like TestDriven.Net that allows you to run the tests from inside Visual Studio. If you had
installed NUnit from NuGet, you will need to download and install a test runner like TestDriven.Net
(www.testdriven.net/). If you did not install from NuGet, you should have the NUnit client already
installed on your machine. Feel free to use whichever runner you prefer, but for this primer, we will stick
with the NUnit client.

Start up the NUnit client by going to Program Files  NUnit2.5.9.10348  NUnit. Once it is up and
running, click File  Open Project and navigate to where the DLLs generated from the test project are
located, as shown in Figure A-8. You want to load the test project DLL into NUnit. Once the DLL is
loaded, it will show you the tests that are in that DLL, as shown in Figure A-9. From here all you need to
do is click the Run button and NUnit will run your tests and output the results, as shown in Figure A-10.

http://www.testdriven.net/

APPENDIX A  TDD PRIMER WITH NUNIT

291

Figure A-8. NUnit client open project dialog

Figure A-9. NUnit client

APPENDIX A  TDD PRIMER WITH NUNIT

292

Figure A-10. Tests failing

Now that we have a failing test, we need to add code to the tddMath class and in particular the Add
method to get this test to pass. To do this, let’s look at the Add method.

public decimal Add(decimal num1, decimal num2)
{
 return decimal.MinValue;
}

What we see is that the method simply returns the decimal MinValue. Let’s write this method so that
it will take the two parameters and add them together and return that result. When finished, the method
should look like the following:

public decimal Add(decimal num1, decimal num2)
{
 return num1 + num2;
}

With this change, we can build the solution and run the test again from the NUnit client. What we
see now is that the tests pass, as shown in Figure A-11. With a passing test, we are finished with this piece
and can move on to the next test.

APPENDIX A  TDD PRIMER WITH NUNIT

293

Figure A-11. Tests passing

Adding Another Test
Let’s move on to the next test, which will test that when given three numbers, the result coming back is
correct. The following shows what the new test looks like:

[Test]
public void Add_returns_6_when_given_1_2_and_3()
{
 Assert.That(tMath.Add(1, 2, 3) == 6);
}

Now when we try to compile the solution, we get a compile error because the Add method we wrote
does not take in three parameters. To get the compiler errors to go away, we need to refactor the existing
Add method to accept three parameters. In fact, we should probably go ahead and set up the method so
that it can take any number of parameters. Since we already have a test wrapped around this method, we
can do this refactoring and feel confident that we are not breaking existing functionality. To save us
some time, we will post what the method looks like when finished with this refactoring.

public decimal Add(params decimal[] numbers)
{
 return numbers.Sum();
}

When you run the NUnit client, your two tests should run and pass, as shown in Figure A-12.

APPENDIX A  TDD PRIMER WITH NUNIT

294

Figure A-12. Multiple tests passing

 Note It is never a good idea to refactor a method that does not have any tests around it. The tests are your
safety net in case you make a change that breaks existing functionality. If you need to refactor a method and it
does not have any tests, write tests before you touch the method. These tests can be on anything, just create that
safety net before you get on the high wire.

Summary
This appendix provided a glimpse into TDD using the NUnit framework. We learned the following:

• How to install NUnit using either the .msi file from the nunit.org web site or
NuGet.

• How to create a project that contains a test class.

• How to set up that test class to use the NUnit framework.

• How to write a test.

• After we write a test, we need to fix all the compiler errors before we can fail the
test.

• Once we get the test failing (red), we add just enough code to the method that is
being tested to get that test to pass (green).

APPENDIX A  TDD PRIMER WITH NUNIT

295

• Once we get a passing test, we can move on to the next test. This next test may
require us to refactor the existing method to get it to pass (refactor).

With this new-found knowledge, head back to the case-study section of this book to see how we use
TDD and NUnit to write our blackjack application.

A P P E N D I X B

297

BDD Primer with SpecFlow

When you start using test-driven development (TDD) in your work, you will feel empowered and
secured in your development. After a while, however, the newness will wear off and you will want more
out of your tests.

Behavior-driven development (BDD) is the next step in TDD. If you are not familiar with TDD, we
suggest that you read Appendix A. BDD is centered on the behavior of a system. Where TDD was
centered on the inner working of a system, BDD is concerned about the overall picture. BDD seeks a
clearer understanding of the system by talking with the stakeholders of the system and understanding
their desired behavior.

The test cases for BDD are written in a natural language. This allows the stakeholders and other
non-developers to be a part of the system’s development. The key to BDD is with its implementation of
outside-in software development.

Outside-In Software Development
Outside-in development focuses on the acceptance criteria as defined by the stakeholder. From the
features and criteria defined by the stakeholders, you drive the design of your system and discover
objects, as opposed to doing upfront design in which you are trying to design what the stakeholder
might want. The goal of outside-in development is to produce software for the stakeholder that they
want and need.

Figure B-1 shows the process of outside-in development, starting from selecting a user story to
discovering low level classes via TDD.

APPENDIX B  BDD PRIMER WITH SPECFLOW

298

Figure B-1. The outside-in development workflow

The general flow of outside-in development is to start with a scenario (the outside part of outside-in
development) and write a test for that. Once the test is written and fails, you step in one level deeper and
write failing unit tests there. You keep going down a level at a time until you have reached the basic core
method of the scenario. This core method usually is a simple method that takes basic inputs and returns
a result. You then work yourself back up to the scenario by writing code that will make the tests pass in
every level. Once you are done, you have a working behavior that is what the stakeholder expected. This
suite of tests is also less brittle than just a set of unit tests.

SpecFlow
The problem with BDD is that it is very hard, if not impossible, to turn the conversation with the
stakeholders of a system into specific, detailed, code-level tests that the developer can use to create the
story. In other words, how do we turn “meaningful” user requests into running code? This is where
SpecFlow comes in.

SpecFlow is an open-source tool that allows a non-developer to define features or behaviors of the
system in their own natural language (English, Russian, Chinese, etc.). A developer can then take those
features and use SpecFlow to generate the scenarios for that feature. In essence, tests! A scenario is a
unit test generated by SpecFlow from the feature. You can use any number of test runners to run these
tests, for an example of this, refer to Appendix A.

The features are written in a format called the Gherkin language. The Gherkin language is a tool that
was developed as an adjunct to Cucumber and works by placing the features in the format of
Given/When/Then. Given refers to the setup of a test; When is the action performed by the test; and
Then corresponds to the assertions that validate the test.

APPENDIX B  BDD PRIMER WITH SPECFLOW

299

To install SpecFlow, navigate to http://specflow.org/downloads/installer.aspx, as shown in
Figure B-2. Click the link and you will download an MSI installer file. Clicking the installation file will
launch a typical installation wizard. Once this is installed, you will see SpecFlow templates that you can
use in your application.

Figure B-2. SpecFlow download page

Another option is to use NuGet to download SpecFlow and add it to your project. As part of the
walk-through in the next section, we will show you how to do this type of installation.

BDD Walk-through
Now that you have been introduced to BDD and SpecFlow, you can begin writing code. In this walk-
through we will show you a very simple example of using SpecFlow and BDD on an ASP.NET MVC
solution. This is not a comprehensive walk-through, but we hope it will help you to see the benefit of
using BDD in your projects, and how wonderful it is to have your customers and your developers
speaking the same language.

The walk-through will consist of a feature with scenarios that pertain to a math-based web site. The
feature will contain two scenarios and we will use BDD and TDD with NUnit (see Appendix A) to create
the code needed to successfully implement this feature.

The first thing we need to do is create a new solution called MathSample. Once we have the empty
solution, we need to start adding projects to it. The first thing we will do is add an ASP.NET MVC project
to the solution called MathSample. This project will contain the web site in this example. Next, we will add
a class library to the solution called MathSample.Specs. This project will contain all of our BDD and TDD
tests. Now, on larger or more complicated projects, it is normal to split up the BDD and TDD aspects
into their own projects in the solution with the BDD project labeled with .Specs and the TDD project

http://specflow.org/downloads/installer.aspx

APPENDIX B  BDD PRIMER WITH SPECFLOW

300

labeled with .Tests, however, for simplicity in this appendix, we will combine the two into one project.
We add the .Specs to the end of the project to remind us that we are writing specifications for the input
the customer gave us in the way of features. When you are done, your solution should resemble the
layout in Figure B-3.

Figure B-3. Your initial solution and projects

Finally, we need to add references to SpecFlow and NUnit so we can write our tests. Using NuGet,
this is a cinch. Begin by opening the Package Manager Console located under View Other Windows
Package Manager Console, as shown in Figure B-4.

APPENDIX B  BDD PRIMER WITH SPECFLOW

301

Figure B-4. Location of Package Manager console

With the console open, set the Default Project to MathSample.Specs. Type the following command to
download SpecFlow and add a reference to it to the Specs project, as shown in Figure B-5.

PM> Install-Package SpecFlow

Now type the following command to download NUnit and add a reference to the Specs project as
you see in Figure B-5.

PM> Install-Package NUnit

APPENDIX B  BDD PRIMER WITH SPECFLOW

302

Figure B-5. Using NuGet to install SpecFlow and NUnit

Writing Your Feature
With our solution structure set up, we can finally start to code. The feature we want to work on is giving
the user the ability to add two numbers and see a result. To start, let’s add a new folder to the
MathSample.Specs project named Features. As you can guess, this folder will contain all the features that
the customer gave us. Right-click on the newly created Features folder and add a new item. From the
dialog box that appears, select the SpecFlow Feature File item as seen in Figure B-6.

Figure B-6. The SpecFlow templates in Visual Studio

Name the feature Addition.feature. Visual Studio will now create the feature and show a default
template with a single scenario. Now that we have our feature file created, let’s update the file to look
like Figure B-7.

APPENDIX B  BDD PRIMER WITH SPECFLOW

303

 Note For now, just add the first scenario (Navigation to MathPage) to the file. We will add the second scenario
to the file later in the appendix.

Figure B-7. SpecFlow feature file

If you take a closer look at the feature, you will see that it contains two scenarios. Another thing you
will notice is that the wording is very conversational. It’s like you are sitting down and actually talking to
the customer. With the wording like this, you don’t have to be a developer to understand what the
system is doing.

Scenario 1: Navigation to MathPage
Now that we have the feature file completed, compile the MathSample.Specs project. Once it is compiled,
open up the NUnit client. If you have a question about how to run this client tool, see Appendix A. Once
it is built, open up the NUnit client and load the DLL from the MathSample.Specs project. When you
execute the test from the client, click on the Text Output tab and you will notice something strange, like
that seen in Figure B-8.

APPENDIX B  BDD PRIMER WITH SPECFLOW

304

Figure B-8. Step definition creation

What you will notice is that the client said that the scenario test was inconclusive. It was
inconclusive because there were no step definitions with this test, so it did not know how to run the test.
The nice thing about the NUnit client tool is that it will actually generate the step definitions for you like
you see in Figure B-8. What you see is that, based on the feature and the scenario we are testing, the
system needs two steps to test it.

We need to copy these step definitions, so go to the MathSample.Spec project, right-click on it, and
create a new folder called Steps. Once the new folder is created, right-click on it, and add a new class file
to the folder called AdditionSteps.cs.

Copy the step definitions (do not include the classes) from the NUnit client tool and paste in the file
created. You will need to remove the following line of code from each step:

ScenarioContext.Current.Pending();

We can continue by adding the necessary code to each of the steps. This code includes performing
the action of going to the math page and asserting we are actually at the right page.

Next, add code to each method to test the app. You will also need to add a reference the MathSample
project to the MathSample.Specs project so you can access the necessary controllers and views. When you
are finished, your file should look like the following:

using System.Web.Mvc;
using MathSample.Controllers;
using MathSample.Models;
using NUnit.Framework;
using TechTalk.SpecFlow;

namespace MathSample.Specs.Steps

{

APPENDIX B  BDD PRIMER WITH SPECFLOW

305

 [Binding]

 public class AdditionSteps

 {

 ActionResult result;

 MathPageController mpController;

 [When(@"the user navigates to mathSample")]

 public void WhenTheUserNavigatesToMathSample()

 {

 mpController = new MathPageController();

 result = mpController.MathPage();

 }

 [Then(@"the mathSample page should be displayed")]

 public void ThenTheMathSamplePageShouldBeDisplayed()

 {

 Assert.IsInstanceOf<ViewResult>(result);

 Assert.AreEqual("Math Page", mpController.ViewData["Title"],

 "At the wrong page. Expected to be at the Math Page");

 }

 }

}

There is one thing to note before we move on. The Binding attribute you see above the class is a
SpecFlow attribute that allows SpecFlow to bind a step to the necessary methods. When you try to build
the MathSample.Specs class, you will get numerous compile errors because the MathPageController and
view are not created yet. Create the necessary file and objects to get the solution to compile.

Once you are able to compile the solution, run the NUnit client tool again and you will notice that
there is no longer an inconclusive test, but a failed test, as shown in Figure B-9.

APPENDIX B  BDD PRIMER WITH SPECFLOW

306

Figure B-9. Step definition test failure

Now write the necessary code to get the test to pass, just like in TDD. To get the test to pass you
need to do the following:

• Modify the method called MathPage() so that the method sets the title of the view
before it returns the view

• Create a new view file located under Views MathPage MathPage.aspx

When this done, rerun the tests from the NUnit client and you will see that it passed, as shown in
Figure B-10. Now, on to the next scenario!

APPENDIX B  BDD PRIMER WITH SPECFLOW

307

Figure B-10. Step definition test success

Scenario 2: Add Two Numbers
We will handle this scenario just like the previous one. Go ahead and add this new scenario to the
Addition.feature file, as shown in Figure B-11. Once the scenario is added to the feature file, rerun
NUnit client and you will find that you have one test passed and one test inconclusive. You will also see
the step definitions for the inconclusive test. Copy the step definitions and paste them into the
AdditionSteps.cs file in the AdditionSteps class from the previous scenario.

Figure B-11. Add two numbers scenario

The following is a list of the code that was added to the AdditionSteps class for this scenario. We will
talk about the model use in a minute.

 MathPageModel mathPageModel = new MathPageModel();

 [Given(@"I have entered 10 into the page")]
 public void GivenIHaveEntered10IntoThePage()
 {
 mathPageModel.FirstValue = 10;
 }

 [Given(@"I have entered 15 into the page")]

APPENDIX B  BDD PRIMER WITH SPECFLOW

308

 public void GivenIHaveEntered15IntoThePage()
 {
 mathPageModel.SecondValue = 15;
 }

 [When(@"I press add")]
 public void WhenIPressAdd()
 {
 mpController = new MathPageController();
 result = mpController.MathPage(mathPageModel);
 }

 [Then(@"the result should be 25 on the screen")]
 public void ThenTheResultShouldBe25OnTheScreen()
 {
 var resultView = result as ViewResult;
 var model = (MathPageModel)resultView.ViewData.Model;

 Assert.IsNotNull(resultView, "View was Null");
 Assert.AreEqual(25, model.AdditionResult, "Addition was a failure");
 }

Here is the code for the MathPageController that relates to this scenario.

[HttpPost]
 public ActionResult MathPage(MathPageModel model)
 {
 return ModelState.IsValid ? View(mathPageModel) : View();
 }

One thing you will note is that we are using a Model in this test scenario. The data model is located
under the Models folder and contains all the data that is to be bound to the view by the controller.

public class MathPageModel
 {
 [DisplayName("Number 1")]
 public decimal FirstValue { get; set; }

 [DisplayName("Number 2")]
 public decimal SecondValue { get; set; }

 [DisplayName("Result")]
 public decimal AdditionResult { get { return FirstValue + SecondValue; } }
 }

This code will take a model of the data and calculate the result and return the model to the view.
From there we can test the model to make sure the controller handled it properly.

Summary
This is a simple example, but it shows you the potential of what SpecFlow can do. If you are interested
and would like to further you research of BDD and SpecFlow in particular, you can check out the
following web sites:

APPENDIX B  BDD PRIMER WITH SPECFLOW

309

• Introduction to BDD: http://behaviour-driven.org/

• Getting started with SpecFlow: http://www.specflow.org/specflow/getting-
started.aspx

In this appendix we learned the following:

• BDD is the next step of TDD.

• The idea of outside-in software development is a key piece of BDD.

• How to install SpecFlow using either the installer from the web site or through
NuGet.

• How to create a Specs project that contains the BDD tests.

• How to write a feature with multiple scenarios.

• How to create the step definitions needed to test each scenario with the NUnit
client tool.

http://behaviour-driven.org/
http://www.specflow.org/specflow/getting-started.aspx
http://www.specflow.org/specflow/getting-started.aspx
http://www.specflow.org/specflow/getting-started.aspx

A P P E N D I X C

311

Mocking with Moq

Moq (pronounced "Mock-you" or just "Mock"): what is it good for? With the evolution of automated
testing, new challenges arise and mocking frameworks are one of these new challenges.

While other mocking frameworks exist—such as RhinoMocks (the framework we used in our case
study) or TypeMock, to name a couple —Moq is the only mocking library for .NET to take full advantage
of the .NET 3.0 and 3.5 Frameworks. Moq relies heavily on LINQ and lambda expressions, and its API is
designed for developers new to mocking frameworks. While Moq relies on the .NET 3.0 and 3.5 language
features, Moq does require .NET Framework 3.5 or higher.

We will explain why mocking is important and how it can save a developer time. We will also show
you how to install Moq by either downloading the files or installing it through NuGet, and go through
some practical examples to get you started.

Why Mocking
There are a number of reasons to use mocking. It allows you to test the behavior of production code
through automated tests. It also helps you to create one architecture layer before another; for example,
you could write the business logic layer of an application before moving on to the data access layer.

Mocking is a valuable weapon to have in your arsenal when you want to create automated tests in
which there are a number of dependencies. Rather than creating all the dependencies by hand, you want
to "mock them out" to test a small piece of functionality. Mocking helps with this. Instead of
implementing countless interfaces for the sole purpose of providing test functionality, use a mocking
framework. We'll explain this in more detail later.

Another reason to use a mocking framework is if you’re developing an application and want to focus
on a particular module, such as the business logic, but you're not ready to implement the data layer yet.
Mocking can be used to "mock out" the database using an interface, or even after having a working data
layer, remove dependencies to interact with the database for testing purposes only. This is also useful if
you have multiple developers developing on the same application. Instead of waiting for the data layer
to get done, have the developers agree on an interface, and then the developers can use mocking to "fake
out" data from the data layer and work independently from each other. This method eliminates a
development dependency between having to first write the data layer, and allows quicker beginning
parallel development.

Now that you have a better understanding of why you might want to use mocking, let's begin!

Installation
Moq can be installed in two ways: through the web site and through NuGet.

APPENDIX C  MOCKING WITH MOQ

312

Web Page Installation
To install Moq you'll need to have .NET Framework 3.5 or higher with Visual Studio installed. The Moq
project is hosted by code.google.com and can be downloaded from
http://code.google.com/p/moq/downloads/list.

The latest version as of this writing is Moq.4.0.10827.Final.zip. After downloading, extract the file
to the location of your choice. Once complete, copy the Moq.dll into the "Lib" folder of your project and
reference this dll.

It really is that simple. Download the file, unzip it, add a reference to Moq.dll—and you are ready to
start mocking!

NuGet Installation
Another, more convenient option for installing Moq is through the NuGet Package Manager. NuGet is an
open source development tool that integrates into Visual Studio and gives developers a simpler way of
adding libraries into their projects. Think of NuGet as the Ruby Gems for .NET.

Installing NuGet is very simple. NuGet is available through the Extension Manager that is a part of
Visual Studio (see Figure C-1). Simply search for "NuGet Package Manager" and click on the Download
button; when it’s finished, restart Visual Studio and you are done.

Figure C-1. The Extension Manager window in Visual Studio

http://code.google.com/p/moq/downloads/list

APPENDIX C  MOCKING WITH MOQ

313

Once NuGet is installed, we can access the Package Manager Console. This is where you will interact
with NuGet. To get to the Package Manager Console, navigate to View Other Windows Package
Manager Console (see Figure C-2).

Figure C-2. Navigating to the Package Manager Console

To install the Moq package, first you need to have a solution open. We created a solution called
MockingWithMoq, and inside that solution, a project called MoqExamples. We will talk more about this
solution and the projects that make up the solution in a moment. From inside the Package Management
Console window, run the following command:

PM> Install-Package Moq

This command goes to the web and pulls the latest version of Moq that NuGet knows of and installs
it in the project. A "packages" folder will be created at the same level as your solution containing the
package. NuGet will then add Moq references to the project that we specify in the Default Project
dropdown. To verify that the install was successful and see what packages are installed on a project (as
shown in Figure C-3), run the following command:

PM> Get-Package

APPENDIX C  MOCKING WITH MOQ

314

Figure C-3. Installing Moq through NuGet and verifying it was successfully installed

Moq Walk-through
Now that you have Moq installed, you can begin mocking objects! In this walk-through we are going to
build a very simple Product class and show examples of how we can use mocking techniques with it.

The Product Class
For our Moq examples, we've set up a solution called MockingWithMoq. In that solution, we've created
two different class library projects, one containing the application code called SampleApp, and one
containing the test code called MoqExamples. We have also set a project reference in the MoqExamples
project to the SampleApp project. In the MoqExamples project, validate that a reference exists to both
the Moq.dll and the nunit.framework.dll, since we'll be illustrating Moq through unit testing.

APPENDIX C  MOCKING WITH MOQ

315

 Note If you need to install NUnit, refer to Appendix A.

Once the references are in place, add a class called Product.cs. The first thing we want to do is
create a Product class that should look like the following:

 public class Product
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public decimal GetPriceWithExtendedWarranty (IWarrantyCalculator calculator)
 {
 return calculator.GetWarrantyPrice(Price) + Price;
 }
 }

Notice that we've added a GetPriceWithExtendedWarranty property that is dependent upon the
IWarrantyCalculator interface. We want IWarrantyCalculator to be an interface because we do not want
to create a dependency and because it is irrelevant what implements this interface. This property could
get its data from anywhere: the database, a configuration file—where it gets the data from is irrelevant.
The IWarrantyCalculator will look as follows:

 public interface IWarrantyCalculator
 {
 decimal GetWarrantyPrice(decimal price);
 }

Now that we have an object and an interface to work with, let's unit test the
GetPriceWithExtendedWarranty property using Moq.

Let's create a new test method and call it verify_WarrantyCalculator_Equals_15.

[Test]
public void verify_WarrantyCalculator_Equals_15()
{
}

Inside this method, we want to create a Product object to test. We'll call it prod and the syntax is as
follows:

Product prod = new Product {Id = 1, Name = "Product Name 1", Price = 10};

Next, we want to mock out the IWarrantyCalculator interface. With Moq, it's as simple as the
following:

Mock<IWarrantyCalculator> fakeWarrantyCalculator = new Mock<IWarrantyCalculator>();

APPENDIX C  MOCKING WITH MOQ

316

When you specify a Moq type you place the type you want to create within brackets and instantiate
it. Even though we have created a mock instance, this of itself is not worth much. We need to configure
this mock object. With our fakeWarrantyCalculator in place, we can setup fakeWarrantyCalculator as
follows:

fakeWarrantyCalculator.Setup(warranty => warranty.GetWarrantyPrice(prod.Price)).Returns(5);

This is basically setting up the GetWarrantyPrice. We're passing the required prod.Price into the
GetWarrantyPrice, which in our case is 10, and we set the property to return 5. Basically it's saying when
we call this function, it will always return 5. We do have the option to configure this as a different value if
we need to have different return values based on different input values, but currently it is configured to
always return 5.

Now that we have the fakeWarrantyCalculator, we can tie that up to our prod object to get the
prod.GetPriceWithExtendedWarranty and we pass in the fakeWarrantyCalculator object as follows:

decimal calculatedWarranty = prod.GetPriceWithExtendedWarranty(fakeWarrantyCalculator.Object);

With more complex mocking, such as having logic in the called class that may call different methods
in the mocked interface, we may need to determine that the appropriate methods are being called. For
situations such as this, Moq has a way to verify that the actual interface method was called, as follows:

fakeWarrantyCalculator.Verify(warranty => warranty.GetWarrantyPrice(prod.Price));

Now that we know we have mocked out the objects and verified that the method we expected was
called, we are ready to write a unit test. The code thus far will get us the calculatedWarranty result,
which should be 15 since we know that the price of the product is 10, the price of the extended warranty
is 5, and the prod.GetPriceWithExtendedWarranty will just add those two together. With NUnit we can
assert (verify) that this is the case, as follows:

Assert.AreEqual(calculatedWarranty, 15);

That's it! If you have TestDriven.Net installed, as explained in Appendix A, right-click in the test
itself and click Run Test(s), and you should see the test pass.

Notice what you didn't have to do. You didn't have to hand-create a Moq interface, implement the
GetWarrantyPrice method, and have it return fake data. Let Moq do all the hard lifting so that you can
focus on testing the specific code you need to test.

Congratulations, you've written your first unit test with Moq!

Summary
This was a small glimpse into using Moq and NUnit for mocking objects. The reason we mock is to
eliminate having to write useless dependency code in order to create automated tests. We can save time
and code by mocking-out dependencies and spending the time where we want: creating an automated
test suite that tests code. We can also use mocking to build an architectural layer of an application
before we move onto another.

In this appendix you learned the following:

• Why mocking is useful and the advantages of Moq.

APPENDIX C  MOCKING WITH MOQ

317

• How to install Moq either from the web or from NuGet.

• How to mock-out a dependency with Moq and wrap unit tests around it.

A P P E N D I X D

319

Manage a Product Backlog
with Pivotal Tracker

One key component of agile is to be able to track manageable work items. In order to track these work
items, we put information on Post-its and stick them on a board so that they are big and visible. It's an
easy, low-tech way to manage a project, there's no overhead of a system to administer, it's visual, and it's
simple.

However, there are times when we need to track this work electronically instead of exclusively using
Post-its. For example, when we have remote workers who are not in the office, and thus, not able to see
the board; when we need to capture more requirements than a single Post-it note will allow; or when we
need to generate reports from user stories.

There are a variety of reasons to track work electronically and not just via Post-it notes. There are
tools out there to aid in electronically managing user stories, swim lanes, and your overall agile
workflow. In larger enterprise environments, you'd most likely see TFS (Visual Studio Team Foundation
Server) from Microsoft, which also offers a Scrum Template to help manage workflow. TFS also has
built-in integration between its tracking system and source code repository, which provides an added
benefit than having individual products. It is a large, tightly-integrated system that can provide a lot of
value in an enterprise environment.

This appendix will discuss an online agile management tool called Pivotal Tracker. While there are
pricing plans available if you want to have Pivotal Tracker host private projects, public projects are
hosted for the right price—free. Public projects allow others to see your user stories and, while publicly
available to everyone, you can give rights to those you want to edit or join your project.

Public project hosting is intended for open-source projects that do not contain sensitive data. In
order to use this product for a commercial use or a use that contains sensitive data, you need to register
and pay as a private project.

We'll introduce you to Pivotal Tracker, create a public project, and show some of Pivotal Tracker’s
benefits and how you can use them to manage your agile project.

Sign Up
To begin, go to Pivotal Tracker at www.pivotaltracker.com and sign up. You can also register using your
Google account.

http://www.pivotaltracker.com

APPENDIX D  MANAGE A PRODUCT BACKLOG WITH PIVOTAL TRACKER

320

Figure D-1. The Pivotal Tracker homepage

Create a Project
Once you've signed up, it's easy to create a project: just log in and you'll be presented with a dashboard
that allows you to click on a Create Project button.

Figure D-2. Creating a new project

For the purpose of this appendix, we created a sample project called My Sample Project. After you
create your project, you will see the dashboard shown in Figure D-3. The sample project contains
sample data that helps you visualize how the data you input will be shown. It provides a clearer picture
of a work-in-progress project, rather than an empty project. To have an empty project, go back to the
previous step and create your own project name rather than the sample project.

APPENDIX D  MANAGE A PRODUCT BACKLOG WITH PIVOTAL TRACKER

321

Figure D-3. The initial dashboard

The dashboard is your primary “home base.” The default view lists the following panels:

• Current: The Current panel gives a quick glance of the status of things that are
currently being worked on in the sprint. The status includes Start, Finish, Deliver,
and once the demo is given, Accept/Reject.

• Backlog: This is an area for user stories that have already been prioritized and
possibly sized, but the work is not yet in a sprint. The backlog is useful for the
Release Planning items that we know we want in the product, but can't yet
commit to the current sprint.

• IceBox: This is a term that Pivotal Tracker uses. Basically, these are user stories that
are “on ice,” meaning that they have not been prioritized, and most likely have not
been sized. At this stage, these stories are nothing more than ideas.

This view is very flexible, as shown in Figure D-4. Pivotal Tracker has a number of different panels.
You can turn panels on/off easily and display other ones.

APPENDIX D  MANAGE A PRODUCT BACKLOG WITH PIVOTAL TRACKER

322

Figure D-4. Releases, My Work, and Charts panels

Some of the additional panels, which exist in the menu bar directly underneath the “My Sample
Project” title, include the following:

• Releases: In this panel you can outline, at a high level, the goal or theme of each
release. In this example there are three different releases, each with a theme. The
Releases panel allows you to drag a story from another panel into a particular
release on the panel.

• My Work: This panel shows the work that is currently assigned to you in the sprint.
It will also display the status the work is in and you can click on the Reveal button
to expand the ticker into more detail.

• Charts: There are different chart types that the team can view, including the
following:

• Velocity: This chart allows you to view the current velocity (the number of
points the team is completing).

• Release Burn-Down: This is a graphic of the number of points planned for
the current release. It “burns down” the points that the team gets completed
and calculates the completion date.

APPENDIX D  MANAGE A PRODUCT BACKLOG WITH PIVOTAL TRACKER

323

• Current Iteration Burn-Up: This report shows a “burn-up” chart based on
the points that the team committed to for the sprint. The chart shows the
expected and actual lines so that you can quickly assess where the team is in
the sprint. The chart starts with 0 and increases upward as points are
completed. (As a side note, iteration and sprint are interchangeable terms.
Sprint comes from the Scrum methodology while the term iteration
originated in the XP world.)

• Story Type Breakdown: This shows a list of the user stories to be
implemented, whether that story is a feature, a chore, or a bug. This graphic
helps reveal the new development or features being performed versus the
number of bugs that need to be fixed.

These features are very useful in an agile environment.

Keeping Things in Sync
While managing an agile project electronically is strongly encouraged, there's often a perception that it's
doubling the work. Some of it may seem as “double work,” but transparency is key not only within the
team, but also for interested outside parties, that should have confidence that the team is accomplishing
work.

Keep in mind that while the team needs to know the progress they are achieving, there are other
interested parties, including the customer and management, who want to be apprised of the team's
progress. In reality, it's different levels of work that need to be tracked. The low-tech way—the Post-its
and the board—serves as a quick glance for members of your team, but more importantly, invested
individuals outside the team, such as management and the customer, should also see the progress the
team is making.

In the environments we've been in, we typically use both the low-tech way and the high-tech way.
We mark the ticket number, or some ID that is associated with the system, with a brief description on the
Post-it and walk the Post-it through the swim lanes as we complete the ticket. As we move the Post-its to
different swim lanes, we also update the status in the system. While it's everyone's responsibility to keep
the board up-to-date, the ScrumMaster serves as the key point of contact for questions, and resolves any
outstanding syncing issues if the board and the system get out of sync.

At the beginning of our sprint retrospective, we go over the status of the board and the status in the
system to verify that they reconcile. This doesn't take long and by doing it with each sprint, we discover
that they are never very much out of sync.

Summary
While Post-it notes and boards have their place and are useful in a collaborative environment, often the
project needs to be managed electronically. In environments we've been in, typically the Post-it note
provides the ticket number and a brief description of the ticket to be developed, and then we go into the
system to get more details. Often you'll need to get further clarification, so you'll want to add that
clarification to the system so that everyone is consistently on the same page.

This appendix provided a small glimpse of Pivotal Tracker, one tool that can manage a project via an
agile methodology. While there are many tools out there, we hope this example generated ideas about
electronically managing an agile project.

In this appendix you learned the following:

APPENDIX D  MANAGE A PRODUCT BACKLOG WITH PIVOTAL TRACKER

324

• Scenarios in which you may want to use a tool to electronically manage an agile
project.

• The simplicity of signing up for a free public project using Pivotal Tracker.

• How to set up a project and how to view different panels from within Pivotal
Tracker to see how the team is progressing from a user story point-of-view.

• Ways to keep items in sync between the low-tech and the high-tech way to track
work progress.

A P P E N D I X E

325

Web Testing with WatiN

With the evolution of web application development and automated testing, a testing framework called
WatiN (pronounced as What-in) exists to get rid of the boring repetitive tasks of web testing. Web
testing's purpose is to test the system from a user perspective. While these types of automated UI tests
are slower and often a bit more cumbersome than unit tests, their importance exists to ensure the
quality for an “end-to-end” perspective. With unit testing, we are testing smaller, individual blocks of
code whereas with UI testing we are testing end-to-end functionality.

WatiN has become a standard for automated web testing in the .NET space. WatiN was patterned
on Watir, a family of Ruby libraries that automate web browsers for testing, and is developed in C#. It
focuses on automating your web tests using Internet Explorer or Firefox and the .NET language of your
choice. This appendix shows you how to install WatiN, either through a web download or through
NuGet. We will finish with a couple of simple WatiN tests to whet your appetite and show you how
powerful this tool can be.

Installation
WatiN can be installed in two ways: through the web site or through NuGet.

Web Page Installation
To install WatiN you will need the following:

• Visual Studio 2005 or above. The installation contains binaries for .NET 2.0, 3.5,
and 4.0 for the environment you are working in. For our example, we will assume
that Visual Studio 2010 is installed.

• The latest version of WatiN located at http://watin.org.

• Please note that in order to get started with WatiN, you need to have, at a
minimum, .NET Framework 2.0 installed. It won’t matter if you are using a
different version of the framework for your development.

You will need to go the WatiN web site and download the latest version using the Download button.
At the time of this writing the latest release is WatiN 2.1 and is approximately 19.7MB.

After the .zip file downloads, extract the files to C:\WatiN then copy the “bin” content into your libs
folder and reference WatiN.Care.dll in your project.

http://watin.org

APPENDIX E  WEB TESTING WITH WATIN

326

NuGet Installation
A more convenient option for installing WatiN is through the NuGet Package Manager. NuGet is an open
source development tool that integrates into Visual Studio and gives the developer a simpler way of
adding libraries into their project. Think of NuGet as the Ruby Gems for .NET.

Installing NuGet is very simple. NuGet is available through the Extension Manager that is a part of
Visual Studio (see Figure E-1). Simply click on the Download button and when it’s finished, restart Visual
Studio and you are done.

Figure E-1. The Extension Manager window in Visual Studio

Once NuGet is installed, we can access the Package Manager Console; this is where you will interact
with NuGet. To get to the Package Manager Console navigate to View Other Windows Package
Manager Console (see Figure E-2).

APPENDIX E  WEB TESTING WITH WATIN

327

Figure E-2. Navigating to the Package Manager console

To install the WatiN package, first you need to have a solution open. We created a solution called
“WebTestingWithWatiN,” and inside that solution, a project called “WatiN_Tests.” We will talk more
about this solution and the projects that make up the solution in a moment. From inside the Package
Management Console window, run the following command:

PM> Install-Package WatiN

This command goes to the web and pulls the latest version of WatiN that NuGet knows of and
installs it in the project. NuGet will then add references to WatiN to the project that we specify in the
Default Project dropdown. To verify that the install was successful, run the following command to see
what packages are installed on a project (see Figure E-3).

PM> Get-Package

APPENDIX E  WEB TESTING WITH WATIN

328

Figure E-3. Installing WatiN through NuGet, as well as verifying to see that WatiN was installed

successfully

 Note WatiN is approximately 19.7MB. While installing WatiN, Visual Studio may become unresponsive. Be
patient while it's downloading the files. Once it's completed, it'll say "Successfully installed," as Figure E-3
shows.

WatiN Test Walk-through
Now that you have WatiN installed, you can begin to create automated web tests. Automated web
testing allows developers to write test code that ensures the web application operates as expected. This
dramatically reduces the amount of manual testing involved and can free up QA professionals to focus
on other kinds of testing, automated or otherwise, including load, performance, and/or exploratory
testing rather than performing the same, old, repetitive web tests.

In this walk-through, we are going to build a very simple test using a good .NET blog aggregator web
site called DotNetKicks (www.dotnetkicks.com). We'll walk through a few “configuration gotchas” and
validate that a simple test on a remote site can be run. We'll then expand that knowledge and create our
own simple web application called “HelloWebApp,” which takes an input parameter and displays that
same parameter. Using this simple web application, we can test this with WatiN.

Remote WatiN Test
In the WatiN_Tests project, validate that a reference exists to both the WatiN.Core.dll and the
nunit.framework.dll.

 Note If you need to install NUnit, refer to Appendix A.

http://www.dotnetkicks.com

APPENDIX E  WEB TESTING WITH WATIN

329

Once the references are in place, add a class called RemoteWebSiteTest.cs. This class should look
like the following:

using NUnit.Framework;
using WatiN.Core;

namespace WatiN_Tests
{
 public class RemoteWebSiteTest
 {
 [Test]
 public void verify_DotNetKicksWebSite_Title_Says_DotNetKicks()
 {
 using (var ie = new IE("http://www.dotnetkicks.com", true))
 {
 Assert.IsTrue(ie.Title.Contains("DotNetKicks"));
 }

 }
 }
}

Notice we've set up a class and there exists one test named
verify_DotNetKicksWebSite_Title_Says_DotNetKicks. It's a good idea to give the test a meaningful
name, typically in the format of <action>_<Test>_<ExpectedResult>. Giving tests meaningful names
saves time to note what exactly you're looking for in a test when it fails and a starting point on how to
fix it.

The code is mostly self-documenting. There is one primary tidbit, which is the IE object. We pass in
the URL but we always want to run the test in a new process, which is why we pass in true. After the test
has finished, we want to close out of IE, which is why we wrap the ie variable in a using block.

Since we've got the class set up, before we run the tests, there are two configuration notes to be
aware of that need to occur on any type of WatiN test project:

1. Copy the Interop.SHDocVw.dll file that came with WatiN to the debug
directory. Not doing this results in a “FileNotFound” exception when running
the tests. If NuGet was used to install WatiN, then this is already done for us.

2. If using Internet Explorer as your browser to test, add an app.config file to the
test project with the following configurations:

<configSections>
 <sectionGroup name="NUnit">
 <section name="TestRunner" type="System.Configuration.NameValueSectionHandler"/>
 </sectionGroup>
 </configSections>
 <NUnit>
 <TestRunner>
 <!-- WatiN can only host IE in STA mode -->
 <add key="ApartmentState" value="STA"/>
 </TestRunner>
 </Nunit>

http://www.dotnetkicks.com

APPENDIX E  WEB TESTING WITH WATIN

330

This configuration is needed because IE needs to run in single-threaded apartment (STA) mode
because Internet Explorer is not thread-safe. This is also true if testing in Firefox 3. When running
WatiN tests, verify that Visual Studio is running as Administrator. Running as Administrator is also
necessary if running WatiN tests from an external test runner like the NUnit test runner.

Now that we have the class creating, our configuration is now correct, we are now ready to run the
test. We'll use the free TestDriven.Net Visual Studio plugin (see Figure E-4) to run the test. You can
download TestDrive.Net from (http://testdriven.net).

Figure E-4. TestDriven.Net

Once TestDriven.NET is installed, place your cursor in the body of the test function and in your
right-click context menu, there will be a Run Test(s) button. Once you click this, the test will run. Figure
E-5 shows what you should see as a result of running that test.

Figure E-5. Test output

This is how simple it is to get started with WatiN for automated web testing. What we’ve done is
created an instance of Internet Explorer and pointed that instance to a specific URL. Once on the URL,
we assert (test) that the title of the browser window contains the text DotNetKicks. While this is a
simpler test, it demonstrates what a framework like WatiN has to offer and how to set it up for a remote
web site. Next, we'll cover automated testing for local web applications.

http://testdriven.net

APPENDIX E  WEB TESTING WITH WATIN

331

Testing WatiN for Local Web Applications
It's common to use WatiN and tie that in with your Continuous Integration (CI) server to run automated
tests. The advantage is that after a build, the automated tests will run with no human interaction and
the CI server will produce a report showing you the number of tests that passed/failed. In this section,
we'll create a simple ASP.NET MVC web application and then create tests in our WatiN_Tests project
that tests the application we just created without having to manually run the project.

First, let's add an ASP.NET MVC 2 Application to our WatiN_Tests solution and call it
“HelloWebApp.” As shown in Figure E-6, the HelloWebApp is a simple web application where some text
is entered into a text box; there's a submit button that displays the input that was in the textbox.

Figure E-6. HelloWebApp screenshot

Notice that we have an application that has a virtual path of “Hello.” We can type a string in the
textbox, click the Display Name! button, and the application will display “Hello + name.” We want our
automated test to do the following seven things:

1. Start up a web server

2. Instantiate an instance of the browser and navigate to the Hello view

3. Type "Matthew" in the text box

4. Click the Display Name! button

5. Assert that the page contains the string “Hello Matthew”

6. Close the browser

7. Shut down the web server

CassiniDev
In this example, we'll use CassiniDev, which is a web server that can be used independently of IIS and
can run ASP.NET web applications. You can download Cassini from CodePlex
(http://cassinidev.codeplex.com/). At the time of this writing, the version we'll be using is Cassini
3.5/4.0 Developers Edition.

First, download the CassiniDev project and extract to a location of your choice. Copy the
CassiniDev-lib into the “libs” folder of your solution and set a reference in your test project. Now we are
ready to create the SetUp and TearDown portions of the test.

http://cassinidev.codeplex.com/

APPENDIX E  WEB TESTING WITH WATIN

332

The test SetUp portion should look like the following code snippet:

using WatiN.Core;
using NUnit.Framework;
using CassiniDev;

[TestFixture]
public class Hello_Tests
{
 private CassiniDevServer _hostServer;

 #region Setup
 [TestFixtureSetUp]
 public void TestFixtureSetUp()
 {
 _hostServer = new CassiniDevServer();

 // assuming your test project and web project or site are in the same parent directory
 const string applicationPath = @"..\..\..\HelloWebApp\";

 // Will start specified application as "localhost" on loopback and first available
 port in the range 8000-10000 with vpath "/"
 _hostServer.StartServer(applicationPath);
 }

 #endregion
}

We create a _hostServer variable that will hold our CassiniDevServer object and then we assume
that the test site is in the same parent directory. In the TestFixtureSetup we need to only start the
server, which is accomplished using the _hostServer.StartServer(applicationPath); command.

Now that we have the server started, we want to write a TearDown procedure that shuts the server
down when we are either done with the tests or the tests have failed. The TearDown procedure looks
like the following:

 [TestFixtureTearDown]
 public void TestFixtureTearDown()
 {
 _hostServer.StopServer();
 }

This code should be self-explanatory; we are just stopping the server.
Now that we have the SetUp and TearDown methods, let's focus on creating our test. In our test, we

want to do the following five things:

1. Navigate to the Hello page

2. Type “Matthew” in the text box

3. Click on the Display Name! button

4. Assert that the browser contains the following text: “Hello Matthew”

APPENDIX E  WEB TESTING WITH WATIN

333

5. Close the browser

First, let's create a name for our test. Let's follow the <action>_<Test>_<ExpectedResult> format.
We want to verify that when entering a name and clicking the Display Name! button we expect certain
text. So let's name this function verify_EnterNameAndClickingButton_Contains_HelloName.

This function should look like the following code:

 [Test]
 public void Verify_EnterNameAndClickingButton_Contains_HelloName()
 {
 string url = _hostServer.NormalizeUrl("Hello/");
 string name = "World";

 using (var ie = new IE(url, true))
 {
 ie.TextField(Find.ByName("Name")).TypeText(name);
 ie.Button(Find.ByName("btnDisplayName")).Click();

 Assert.IsTrue(ie.ContainsText("Hello " + name));
 }

 }

For the most part, the code should be self-explanatory. Here we've introduce a couple new methods
off of the ie object: the TextField method and the Button Method. The TextField method you want to
use when dealing with a TextField or TextBox control. This statement finds the textbox by name and
proceeds to enter the value of the name variable. Likewise with the Button method, we have the ability to
search for a button name, in this instance called btnDisplayName, and click on that button.

Run the test and the output window should look like Figure E-7—showing that the test passed!

Figure E-7. Showing the test passed

Congratulations on writing your first test that can be run fully automated from a DLL. Using the
CassiniDev web server and pointing to a web site or web application, this framework could easily be
hooked up to the CI Server and your automated web test suite could be run at the click of a button—or
even scheduled!

APPENDIX E  WEB TESTING WITH WATIN

334

Summary
This was a small glimpse into using WatiN and NUnit for automated web testing. In this appendix we
learned the following:

• How to install WatiN using either the .zip file from the WatiN.org web site or
NuGet.

• How to create a simple test using WatiN on an existing remote web site.

• How to create an isolated, automated environment to test a local web application
using CassiniDev.

With this new found knowledge, head back to the case study section of the book to see how we use
WatiN to test our BlackJack application.

APPENDIX F

335

Source Control with SVN

A source control system (SCS) is a storage and revision repository for all of the source code, tools,
libraries, tests, and documents that are required to build, run, test, and document your application. You
can think of SCS as a way to see the history of your application and go back in time to any point in that
history and examine the code as it was. Any SCS worth its salt will allow you to create branches of your
source code. It will also let you go back to any previous configuration or build and fix bugs in it, or create
a tangent branch and try and solve a problem in a different manner without having to undo a lot of code.

Apache Subversion (SVN) is an SCS that has evolved originally from Concurrent Versions System
(CVS) and is now one of the most popular open-source SCS on the market. In this appendix, we show
you how to set up and use your own SVN repository so you never have to lose precious code again. We
also introduce a couple of online SVN hosting sites that handle the hassle of managing your SVN
repository.

Distributed Systems vs. Centralized Systems
When talking about SCS, you need to know that there are two main types of systems: distributed control
systems and centralized control systems. A distributed system works under the premise that each
developer has his own repository and there is no one central repository for everyone to pull from. You
can think of a distributed system as a peer-to-peer system. Distributed control systems are typically used
by open-source projects due to the fact that a typical open-source project may have developers scattered
all over the world and one centralized repository does not make sense in that environment. Some
popular source control systems of this type are Git and Mercurial. You can find more information about
them at http://git-scm.com/ and http://mercurial.selenic.com/ respectively.

The tool we will use in the book, SVN, is a centralized SCS. A centralized system works under the
premise that there is one central master repository on a server somewhere and each developer will pull
down a working copy of that repository, from which they can work from. When they are done making
changes, they can push those changes back to the central master repository. Think of a centralized
system as a client server system. In addition to SVN, other popular centralized systems include CVS and
proprietary offerings such as Microsoft Visual SourceSafe, Microsoft Team Foundation Server (TFS), and
SourceGear Vault.

The reason for using SVN as opposed to other centralized systems or even distributed systems was
purely author preference. You can use any SCS that you like to house and maintain your source code.

Installation
When setting up SVN, there are two things you need to install: the server that houses your source control
repository and a client that you will use to make check ins and check outs against that repository.

http://git-scm.com/
http://mercurial.selenic.com/

APPENDIX F  SOURCE CONTROL WITH SVN

336

Server Installation
VisualSVN is a software package that contains both a client and a server component. The client
component is purchased software, but the server component is a free download. For this, we are going
to install the VisualSVN Server.

To install VisualSVN Server, you will need to get the installation program from
www.visualsvn.com/server/, shown in Figure F-1, where you can get the latest version of the tool.

Figure F-1. VisualSVN Server download page

Clicking on the downloaded .msi file will launch a typical installation wizard. One thing to note is
that when you are installing the server, select VisualSVN Server and Management Console when the
wizard gets to the Select Components step in the installation, as shown in Figure F-2.

http://www.visualsvn.com/server/

APPENDIX F  SOURCE CONTROL WITH SVN

337

Figure F-2. VisualSVN Server installation

For everything else in the installation, you can select the default options. One thing to note is that
source control is not about the security of your code. You don’t set up a SCS because you want to limit
who can access your code. It is about keeping a history of your code. Having said this, there are ways to
lock down repositories to certain developers. We will talk about this briefly in a moment. Once the
installation has finished, the Management Console will launch as shown in Figure F-3.

APPENDIX F  SOURCE CONTROL WITH SVN

338

Figure F-3. VisualSVN Server management console running

From within the Management Console, right-click on the Repositories icon and select Create New
Repository. When selected, you will see the Create New Repository window, as shown in Figure F-4. For
this demo, we will call ours ApressAgile, but of course you can call yours whatever you want. You may
want to give it a more specific name, based on how you plan on setting up your projects.

Figure F-4. Creating a new repository

APPENDIX F  SOURCE CONTROL WITH SVN

339

If this is your first repository, check the “Create default structure” checkbox. This will create a new
repository with the default structure. The default structure would be for three subfolders under the
following repository names: trunk, tags, and branches. The tags folder would contain your software
releases, where trunk would house the current development of your software. The branches folder is the
area where you would store branches of your software from trunk. Once this is done, the server part of
the process is complete. Now to install the client.

By default, everyone has access to this repository, meaning that anybody can commit changes to the
repository. This is probably not such a great idea, so to resolve this, right-click on the newly-created
ApressAgile repository and select Properties. A security dialog will pop up with the security tab selected;
from here you can set the permissions for the repository. Select the “everyone” group and select “no
access” as the permission. Now add yourself as a user, either through Windows Authentication or a
separate VirtualSVN Server account, and give yourself read/write privileges.

This completes setting up the server part of SVN. As a rule of thumb, you need to balance out the
difference of who can access the repository with the ability to have everything in the repository. You
don’t want to hinder the productivity of a development team because of the fact that they did not have
access to the repositories that they needed to do their job.

Client Installation
You can interact with the SVN server in a number of ways. The most basic way is via the command line,
but there are tools out there that can make the interaction easier if you are not accustomed to working
with the command line. There is a tool called TortoiseSVN that integrates very nicely with Windows
Explorer. In this example, however, we want to talk about the client tools that integrate into Visual
Studio. There are a couple of tools that offer the Visual Studio integration—some free and some not free.
We are going to show you how to install AnkhSVN, one of the free tools.

You can install AnkhSVN from inside Visual Studio by using the Extensions Manager. Simply open
the Extensions Manager and do a search inside the Online Gallery for AnkhSVN, as shown in Figure F-5.
From there, simply click on the provider and install. Clicking Install will open a web site from CollabNet,
which asks you to register for openCollabNet; this is not required to install AnkhSVN. Simply click the
“Skip registration and download the software” link.

APPENDIX F  SOURCE CONTROL WITH SVN

340

Figure F-5. Installing AnkhSVN through the Extensions Manager

Clicking the .msi file will launch a typical installation wizard. AnkhSVN supports Visual Studio
2005/2008/2010, so the default options will work just fine. You can change which versions of Visual
Studio that it will integrate by clicking on the Advance button and going through a custom installation.

Once the installation is complete, you will need to restart Visual Studio for the changes to take
effect. With that, you have installed the client. Now you need to set up the client to talk to the server.

Communicating from Client to Server
With both the client and the server installed, you are half way to using a SCS to protect your source code.
Now, you need to set up the client software so that it can communicate with the server.

Once Visual Studio has been restarted to handle the installation of the client, you will have a couple
new menu options available. One of these menu options is called the Repository Explorer that is located
under the View menu option, as shown in Figure F-6.

APPENDIX F  SOURCE CONTROL WITH SVN

341

Figure F-6. Opening the Repository Explorer

The Repository Explorer is your connection to the SVN server. From this window you can connect to
multiple SVN servers, as well as add/edit/delete each repository. To start, we need to connect to a SVN
server.

Clicking on the globe with the plus-sign in the upper left of the window will open the Browse
Repository dialog. Here we need to enter in the URL of our SVN server and in particular the repository
that we created earlier, https://localhost/svn/ApressAgile/, as shown in Figure F-7. Once you click the
OK button, it will ask you for your SVN credentials. This is where you need to enter the credentials for
the SVN that you created on the SVN server earlier.

Figure F-7. Browsing to the repository

APPENDIX F  SOURCE CONTROL WITH SVN

342

Working Folder
You have the client installed and connected to the repository. Now is time to set up your working folder.
The working folder is your local copy of the source code. The working folder contains a copy of
everything that is in the repository; when you check out a file, the file will be pulled down to this location
from the repository.

To set up your working folder, click the repository name underneath your server name. With that
highlighted, click the Checkout from Subversion button, as shown in Figure F-8.

Figure F-8. Setting up the working folder

Clicking the button will pull up the Checkout from Subversion window, shown in Figure F-9. This
window will show you what repository you are pulling from, as well as what version of the code you are
getting. It will also show you where you are going to store these files locally. The path is where you can
set up your working folder.

Inside the path textbox, enter a location where you want to store your copy of the repository. If the
location where you want to store the repository is not already created, it will create the location as part of
pulling down the repository. When you are finished, click OK. This will pull down the latest version of
the repository that you created to the location that you specified. The first time you do this it may seem
confusing to checking out a repository that has no code in it. The reason you are doing this is to create
the repository structure in your working folder.

APPENDIX F  SOURCE CONTROL WITH SVN

343

Figure F-9. Checkout from SVN

Now whenever you create a new project in Visual Studio, you will be given the option to add that
project to SVN. When you click the checkbox to add it to SVN, an additional dialog window will appear,
allowing you to specify which repository to add the project to, as well as where in the repository to store
the project.

This is how you create a new project and store it into SVN. If you have an existing folder structure
that you want to add to SVN, however, you don’t want to re-create the entire thing—you want to import
it into the repository. Next, we will talk about using another SVN client tool, TortoiseSVN to handle the
importing.

Importing into SVN with TortoiseSVN
TortoiseSVN is a great client tool that integrates into Windows Explorer. With TortoiseSVN, you don’t
need to have an IDE like Visual Studio. In fact, with TortoiseSVN you can store files other than source
code into a repository.

To download TortoiseSVN, go the TortoiseSVN site located at http://tortoisesvn.tigris.org/, as
shown in Figure F-10. Once TortoiseSVN has downloaded the correct installation file (32-bit or 64-bit),
run the installation program and select the default installation options. TortoiseSVN works by
integrating tightly into Windows Explorer. When you install TortoiseSVN, you will need to restart your
computer for the installation to take effect.

http://tortoisesvn.tigris.org/

APPENDIX F  SOURCE CONTROL WITH SVN

344

Figure F-10. TortoiseSVN site

After you have restarted, navigate to your solution structure and right-click the root of the folder you
wish to import. You should now see the TortoiseSVN options presented within the context sensitive
menu. Select TortoiseSVN Import. What the import does is copy the folder structure that you specify
into the SVN repository that you specify.

The URL of your repository should be http://localhost/svn/nameOfRepository, in our case the
name of the repository is ApressAgile. Add a message in the import dialog box, as shown in Figure F-11,
as a way to let other people know what you checked in, and hit OK.

APPENDIX F  SOURCE CONTROL WITH SVN

345

Figure F-11. Importing a solution into SVN

You will be prompted to enter the SVN credentials that you created when you installed the SVN
server. Once past security, your initial folder structure will be committed to the repository as shown in
Figure F-12.

APPENDIX F  SOURCE CONTROL WITH SVN

346

Figure F-12. List of files imported to SVN

With your solution structure imported into SVN, you will need to check it out so that you can start
adding to it. Right-click your ApressAgile folder and select the SVN Checkout option from the context-
sensitive menu. The code check out form will appear, as shown in Figure F-13, and ask you which
repository you want to check out and where you want to check it out to. Confirm that the correct
repository is selected and hit OK.

APPENDIX F  SOURCE CONTROL WITH SVN

347

Figure F-13. TortoiseSVN code checkout dialog

A dialog box will warn you that the destination folder isn’t empty, but don’t worry about that
because this is a one-time process. Once you have checked out all of the items, you will find that the
icons for the folders change, as seen in Figure F-14. The green tick signifies that the item has not been
changed. As you start to work with the code base, you will see icons applied to signify that they are not
under source control or that they have been modified since you last checked out.

APPENDIX F  SOURCE CONTROL WITH SVN

348

Figure F-14. Items under source control

Online SVN Hosting
We have just shown you how to set up your own SVN server locally. There are online hosting options,
however, that handle the hassle of maintaining the hardware requirements for your SVN server. Sites
like CodeSpaces (www.codespaces.com) offer you SVN hosting, as well as project management and bug
tracking, for a fee. There are also free options available. One site in particular is CodePlex
(www.codeplex.com), which offers free SVN hosting for open-source projects only.

Setting up your own SVN server is relatively painless, but there are other options available if you
don’t want to maintain your own server.

Summary
This appendix was a general overview of SVN, in which you learned the following:

• The difference between distributed and centralized control systems

• How to install the VisualSVN Server

• How to install the AnkhSVN client that integrates into Visual Studio

• How to import an existing folder structure into SVN through TortoiseSVN

http://www.codespaces.com
http://www.codeplex.com

APPENDIX F  SOURCE CONTROL WITH SVN

349

• SVN hosting options

We can’t stress enough the priority of getting your code backed-up to a repository. You never know
when a piece of hardware will fail or if a software change will wreck your application; with this solution
in place, you won’t lose all the hard work you put into your code.

APPENDIX G

351

Continuous Integration with Cruise
Control.NET

Unless you are a team of one, you will have come across the situation of multiple developers frequently
checking code changes into a source repository. With all these developers checking in code, it can be
hard to maintain a working build of your product. To ensure you have that working build, you need a
tool that will verify, every time a developer checks in code to the source repository, that the latest
changes did not break the build and the product still compiles successfully. A continuous integration
(CI) server is that tool.

Continuous Integration
CI is a cornerstone of the agile process. Its focal point is the idea of continuously integrating code that
every developer creates into the main code base. On a project you will have developers constantly
checking in small changes. CI makes sure those changes do not break existing functionality in the
product. This verification is done by compiling and testing the code base each time changes are made.
This provides feedback to the team as early as possible to warn of any potential issues in the code base.
By getting this information earlier in the process, developers can fix small problems before they become
roadblocks. CI can also provide a level of confidence to developers that the code is working as expected,
especially when they are refactoring a portion of the code base.

CruiseControl .NET
A CI server coordinates continuous integration with the help of your source control repository and
builds manager. Every time a developer checks code into the source repository, the CI server catches this
check in. The server will then get the latest version of the code from the source repository and compile
and test the code. Another responsibility of a CI server is to provide feedback on the integration process.
Figure G-1 will refresh your memory on the job that the CI server does.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

352

Figure G-1. The continuous integration process

One thing to note is that deploying successful builds to a staging environment is not always an
automated task. This will vary based on the environment that you are working in.

In this scenario, we will be using CruiseControl.NET (CCNET) from ThoughtWorks. It is an open-
source piece of software that is configured via XML. Through the configuration, you can set up CCNET to
talk to a variety of source control repositories and use a number of testing frameworks to test the code.
You can also set up CCNET to notify people via e-mail when a build is broken.

Now before you worry, using the configuration file is not as bad as you may have heard. It is simply
laid out in XML. An added benefit to using a configuration file is that you can store the CCNET
configuration file under source control. Then you need never worry about permanently damaging
CCNET because you can always roll back to a good configuration setup. Let’s get started with how to
install CCNET.

Installation
To get started with CCNET, navigate to http://ccnet.thoughtworks.com and download the latest version,
as shown in Figure G-2. One thing to note before you start, the machine that you will install CCNET on
must have Microsoft’s web server Internet Information Services (IIS) installed on it. If IIS is not installed,
then that needs to be done before you continue with the CCNET installation.

http://ccnet.thoughtworks.com

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

353

 Note If you are installing IIS as a pre-requisite for CCNET, remember to install ASP.NET along with it. You can
do this through “Turn Windows features on or off” in the Control Panel applet Programs and Features. Once there,
navigate to Internet Information Services World Wide Web Services Application Development Features and click
the checkbox next to ASP.NET. Another way to install IIS is through the Web Platform Installer available from
Microsoft. Using the Platform Installer you can select IIS Recommended Configuration, which will install a good set
of the service. Trust us, this will save you hours.

Figure G-2. CruiseControl.NET homepage

Once CCNET is downloaded, you will be presented with a common installation wizard. The defaults
will suffice for most installations, but the following are some things that you need to make certain are
selected when installing:

• “Web Dashboard” is selected; it should be selected as the default

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

354

• CCNET is installed as a Windows service

• “Create Virtual Directory in IIS for Web Dashboard” is selected

Once the installation has completed, you are able to run CCNET as a Windows service or as a stand-
alone application.

Stand-Alone Application
The easiest way to start CCNET is to run it as a stand-alone application. During the installation process,
a shortcut is placed on the desktop by the installer. To get CCNET running, all you need to do is double-
click the shortcut. On double-click, a console window will open and show you what is happening with
CCNET, as demonstrated in Figure G-3.

Figure G-3. CCNET running as a stand-alone application

From this point on, CCNET will behave normally. There is only one difference between this mode
and running it as a service. If the machine happens to reboot for any reason, you need to log in and
restart CCNET manually.

Windows Service
Another way to run CCNET is as a Windows service. If you chose to install CCNET as a Windows service
during the installation process, then there will be a service on the machine for CCNET. At this time,
however, the service is not started. Open your services and look for the service named
CruiseControl.NET Server. Right-click on the entry and select Properties. You will see something like
Figure G-4.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

355

Figure G-4. Setting up CCNET to run as a Windows service

From this window, set the Startup Type to Automatic and click the Start button. What this will do is
start the service immediately and tell Windows to start the service every time the system is started in the
future.

On the Log On tab you may want to change the service’s account to an account with elevated
privileges if you intend CruiseControl.NET to change files on the server. For now, since we are not
setting up CruiseControl.NET to change files, we can keep it as is; but it’s something to keep in mind
when you get to the deployment stage of successful code.

The only difference between the two running modes is what happens when the system is rebooted.
Now that we have the application installed, let’s set it up.

CruiseControl.NET Web Dashboard
Now that you have CCNET installed and the service running, you will want to verify that the installation
was a success. To do that, navigate to http://localhost/ccnet with a web browser. If the default web
page appears, as shown in Figure G-5, CruiseControl.NET installed successfully.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

356

Figure G-5. CCNET installation was a success!

The next thing you may want to do is install some packages onto CCNET. Packages are small
applications that bolt onto CCNET and give it extra functionality. Since the packages are installed via the
web interface, the web interface must have permissions to move files within the web dashboard
directory. The app pool that is related will have to have at least the Modify permission in the web
dashboard directory.

To install the packages, navigate in a web browser to http://localhost/ccnet. Click the
Administrator Dashboard link. The first time you do this, you may see an error on the page, as shown in
Figure G-6. If so, you will need to set the administrator password.

Figure G-6. An administration password must be specified.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

357

To set the password, navigate to the folder where you installed CCNET. By default, it is installed into
the C:\Program Files\CruiseControl.NET\ (C:\Program Files(x86)\CruiseControl.NET\ if your system
is 64-bit) directory. From there, navigate to the web dashboard folder and open the dashboard.config
file. To edit this file you will need to do this as an administrator (i.e. run Notepad as an administrator).
By default, users do not have permissions to modify this file. Inside this config file you will find an XML
node like the following:

<administrationPlugin password="” />

This is where you set the password. Set the password to whatever you wish. Once that is done, save
and close the config file. One last thing you need to do is restart IIS after these changes have been made.
Open a command prompt and enter the following command:

C:\> iisreset

Once this is done, refreshing the page will allow you to enter the password you just set. Once the
password is entered, you will be taken to package screen, as shown in Figure G-7.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

358

Figure G-7. The list of packages you can install

To install a package, you simply need to click it. This will produce a popup window, as shown in
Figure G-8, where you can simply click the Install button. To verify that the package has installed
correctly, as shown in Figure G-9, click on the View Log button.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

359

Figure G-8. Installing a package

Figure G-9. The package install is complete.

There are numerous packages that you can install to CCNET, but the following is a list of some
packages that you may find useful:

• NUnit Results

• Project Statistics

• Server Log Display

• Project Configuration Display

While these packages are not technically required by CCNET, you will not be able to add projects or
do the work in the rest of this appendix without them. With these packages installed, it’s time to
configure CCNET to grab your source code and compile it.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

360

CruiseControl.NET Configuration and Setup
The configuration file for CCNET is located in the directory where the application was installed. By
default, it is located at C:\Program Files\CruiseControl.NET\server\. The file is also available through
the Start Menu in Windows through Program Files CruiseControl.NET. Once there, open the
ccnet.config file. This contains all the setup needed for CCNET to access your source control, pull down
the latest code, compile, and test it.

Adding a Project
Open the ccnet.config file through a text editor. The group of related config settings in this file is called
a project.

 Caution When opening the config file in a text editor, be sure to run the editor as an administrator.

The following is an example of a project in the config file that will go to the designated source
control, pull down all the code, and then compile and test it. This way, the customer can have access to
the results.

<cruisecontrol xmlns:cb="urn:ccnet.config.builder">
 <project name="Math Cards" webURL="http://localhost/ccnet">
 <sourcecontrol type="svn">
 <trunkUrl>svn://svn.servername.com/MathCards/trunk</trunkUrl>
 <workingDirectory>c:\dev\ccnet</workingDirectory>
 </sourcecontrol>
 <tasks>
 <devenv solutionfile="c:\dev\MathCards\MathCards.sln" configuration="debug" />
 <nunit path="C:\Program Files\NUnit 2.2\bin\nunit-console.exe">
 <assemblies>
 <assembly>c:\dev\MathCards\bin\Debug\MathCards.Specs.exe</assembly>
 </assemblies>
 </nunit>
 </tasks>
 <publishers>
 <xmllogger logDir="log" />
 </publishers>
 </project>
</cruisecontrol>

Now that you have added a project to CCNET, click the dashboard link in the upper-left and it will
take you back to the main page. The first time you add a project to CCNET, you will always see the
projects laid out this way, as in Figure G-10.

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

361

Figure G-10. You have successfully added a project to CCNET.

Further details are beyond the scope of this appendix, but the CCNET documentation should
answer any questions you have. At the time of writing, it can be found at
http://confluence.public.thoughtworks.org/display/CCNET/Documentation. Feel free to experiment
with the different project settings and nodes.

Setting up CCTray
One way you can stay updated on the status of the build from CCNET is a small application called
CCTray that runs in your windows tray and gives you feedback at regular intervals. To download CCTray,
simply click on the Download CCTray link that is located on the main page of the web dashboard.

When you install the application, the default settings will be more than enough. Once installed, you
will be able to right-click the CCTray icon in your windows tray and select settings from the popup
menu.

To let CCTray know about your project, from the settings dialog window select the Build Projects
tab, then hit Add; a new project window will display. Hit Add Server from this window and you will be
shown the Build Server window as shown in Figure G-11. Keep the default “Connect directly using .NET
remoting option” selected, enter the URL of the CCNET server, and then hit OK. Your project is now set
up within CCTray and you are able to use this to force a build. You will also be alerted to the status of the
build.

http://confluence.public.thoughtworks.org/display/CCNET/Documentation

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

362

Figure G-11. Setting up the CruiseControl tray

Now, when a build is run by CruiseControl you will see CCTray alert you to the status of it, as shown
in Figure G-12.

Figure G-12. Alert display from the CruiseControl tray

Summary
In this appendix, you learned a few things about continuous integration and discovered a tool called
CruiseControl.NET, which can help you implement continuous integration. We also showed you the
following:

• How to install CCNET

• How to run CCNET as a stand-alone application

APPENDIX G  CONTINUOUS INTEGRATION WITH CRUISE CONTROL.NET

363

• How to run CCNET as a Windows service

• How to set up the web dashboard

• How to set up the administrator password for CCNET

• How to install packages to CCNET

• How to set up your first project in CCNET

• How to install CCTray

We just scratched the surface of all CCNET can do. We hope that you see that a CI server is a great
tool for allowing a team to be aware of the state of their code base at any time. It is one way developers
can get a quick feedback loop about the code they are writing. There are numerous places on the web
(beginning with the documentation) that you can find information about CCNET, so the fun does not
have to stop now.

Happy integrating!



365

Index

 A
Addition.feature file, 307
AdditionSteps class, 307
AdditionSteps.cs file, 307
ADO.NET Entity Framework, 244
Agile development, 1

Agile Manifesto, 5, 6
business value and ROI, 7
businesses and project stakeholders, 2
continuous improvement, business

learning, 7
Crystal group, 9
documentation, 8
DSDM, 10
embracing change, business needs, 7
FDD, 10
gated stages, 1, 3
incremental and iterative development,

continuous delivery, 7
iterative approach, 3, 4
Lean software development, 10, 11
plan-driven method, 2, 3
process lean, 8
proverbial silver bullet, 8
Scrum, 8
team effort, 8
value-driven development, 11
waterfall process, 1, 2
XP, 9

Agile Manifesto, 5, 6, 13, 29, 273
Agile process, 4
AnkhSVN, 339, 340
Apache subversion (SVN), 335

client installation, 339, 340
client to server communication, 340, 341
online hosting, 348
server installation

Create default structure checkbox, 339
Create New Repository window, 338
management console running, 338

.msi file download, 336
VisualSVN Server, 336
VisualSVN Server and Management

Console, 336, 337
TortoiseSVN

ApressAgile, 344, 346
code checkout dialog, 346, 347
import dialog box, 344, 345
imported files list, 345, 346
items under source control, 347, 348
select default installation options, 343
site, 343, 344

working folder, 342, 343
ApressAgile, 338, 339, 344, 346

 B
Backlog

Day 1, 209
Day 4

Member Registration user story, 210
mid-sprint, 209
Paying Out feature (see Paying Out

feature)
refactoring and technical debt (see

Refactoring and technical debt)
Saving Game State user story, 210

Day 6, 236, 237
Day 10

product demo, 237, 238, 239
retrospective, 239, 240, 241

Behavior-driven design (BDD), 50
BetController addition, 105
Core.Tests project, 104
lower-level objects, 107

BetCommand domain project, 113
bet_command_mapper field, 112
BetController, 107
BetController class modification, 116
BetController updation, 109
BetOnHandForm class, 109

 INDEX

366

Behavior-driven design (BDD), lower-level
objects (continued)

CQRS, 114
directives, 110
ICommandBus, 115
ICommandMapper set, 113
ICommand marker interface, 116
named authentication, 109
name specification, 108
when_betting_on_a_hand class, 111, 112
with_a_BetController, 110

MSpec and the MvcContrib library, 104
route mapping, 104
SpecFlow, 106
TDD/BDD process, 103
Ui.Web project, 105
view markup, 106

Behavior-driven development (BDD), 44, 278,
297
outside-in software development, 297, 298
SpecFlow (see SpecFlow)

Big, visible charts (BVCs), 273

 C
CanHitDealer object, 171
CodePlex, 348
Code review, 243

acceptance test project, 260
BlackJackTableRow, 263, 264
code listing, 261, 262
GameBuilder class, 259, 261, 263
NHibernate, 263
NHibernate mapping files, 259
SpecFlow acceptance test, 261
SpecFlow feature file, 259
WinGame feature scenario, 261

acceptance tests, 243
core test project, 244, 264
CQRS, 243
domain project, 243 (see also Domain

project)
infrastructure project, 243

DomainBase class, 245, 246
ICommandBus implementation, 244
ICommandHandlerRegistry, 244, 245
StructureMapCommandHandlerRegistr

y, 245
Kojack Games Blackjack application, 243

NHibernate infrastructure project, 244, 265,
267

ORM layer, 244
Visual Studio Solution file, 243
Web project, 244

BlackJackTableGameViewController
controller, 268

IQueryService, 268
KojackGames.Blackjack.UI.Web project,

267, 269
StructureMap, 269, 270

CodeSpaces, 348
Command Query Responsibility Segregation

(CQRS), 115, 243
Concurrent versions system (CVS), 335
Constant feedback loops, 4
Continuous integration (CI), 32, 43, 46, 47, 276,

331
CCNET (see CruiseControl.NET)
code base, 351
process, 351, 352
server, 241
source repository, 351

CruiseControl.NET (CCNET), 351
configuration and setup

adding a project, 360, 361
ccnet.config file, 360
CCTray, 361, 362

configuration file, 352
installation

homepage, 352, 353
IIS, 352, 353
stand-alone application, 354
verification, 355, 356
Virtual Directory, 354
Web Dashboard, 353
Windows service, 354, 355

Web dashboard
administration password, 356
Administrator Dashboard link, 356
dashboard.config file, 357
list of packages, 358
NUnit results, 359
package installation, 359
project configuration display, 359
project statistics, 359
server log display, 359

XML, 352
CruiseControl tray (CCTray), 361, 362

  INDEX

367

 D
Dealer Rules

acceptance test project, 170, 171
business rules, 163
CanHitDealer object, 171
daily stand-up, 168
scenario, 163, 168
SpecFlow feature, 169, 170

Deck of Cards, 91
acceptance criteria, 91
daily stand-up, 119
scenarios, 121, 124
SpecFlow feature, 121
updated task board, 120

DeckRow object, 129
Delivery team, 23, 27
Domain-driven design (DDD), 45
Domain-Driven Design: Tackling Complexity in

the Heart of Software, 7
Domain project

blackjack game, 246
commands and command handlers, 248

DealCommand, 246
DealHandler, 247
deal_in_hands_by_asking method, 247
ICommand interface, 246

domain views
data model, 258, 259
data transfer objects, 257
section, 257, 258

model
BaseAction class, 253
BlackJackTable entity, 248, 249
BlackJackTable section, 254
Cards section, 255
code snippet, 252, 253
Dealer class, 252
DealHandler, 251
DealingInAction, 252
Dealing section, 255, 256
Hands section, 255, 257
HandStatus, 249, 250
HasBlackJack class, 254
ICardShoe, 248
IDealer, 251
IHandCollection, 248
TableStatus, 249, 251

sections, 246
DotNetKicks, 328

Double Stake user story, 164, 172
acceptance criteria, 164, 173
Acceptance.Tests project, 174
BDD

CanDoubleDown specification, 182
Core.Tests project, 176
Domain project, 177, 182
DoubleDownSpecification, 181
expected behavior, 176
ICanDoubleDown specification, 177,

178
mark_as_able_to_double_down

method, 179
passing test, 180
PlayersHand updation, 179, 180
with_a_deal_in_cards_action class, 177

burn-down chart, 171
daily stand-up, 171
PlayersHand table

acceptance tests, 187
can_double_down column, 183
CQRS architecture, 185
Double button, 186
NHibernate mapping mark up, 184, 185
StructureMap registry, 185

SpecFlow feature, 174, 175
story feature, 173

Dynamic link libraries (DLLs), 241
Dynamic Systems Development Method

(DSDM), 10

 E
Epic stories, 36
Explorer, 330
Extreme programming (XP), 9, 27, 29

coding standards, 32, 47, 48
collective code ownership, 32, 43, 44
communication, 29
continuous integration, 32, 46, 47
courage, 30
environmenton-site customer, 42
feedback, 30
on-site customer, 31
pair programming, 32, 48, 49
planning game (see Planning game)
practices, 30, 31
refactoring and design improvement, 45, 46
respect, 29
simple design, 31, 44

 INDEX

368

Extreme programming (continued)
simplicity, 30
sit together, 42
small releases, 32
sustainable pace, 32, 43
system metaphor, 31, 45
team sitting together, 31
testing, 32

BDD, 50
TDD, 49, 50

 F, G
Feature-driven development (FDD), 10

 H
HelloWebApp, 331
Hit user story, 136

BDD, 144, 145
daily stand-up, 140, 146
guidelines, 136
roadblock, 146
scenarios, 141
SpecFlow feature, 142

Acceptance.Tests project, 143
has_hit_button, 143
step updation, 143

 I, J
Initial Bet user story, 88, 89, 96

daily stand-up, 95
implementation

behavior-driven design, 103
first SpecFlow feature, 96
page object pattern, 100
WatiN, 98

Insurance user story, 188
acceptance criteria, 189
daily stand-up, 188
scenarios

GameDisplaySteps, 192
insurance bet, 191
insurance taken scenario, 192, 193, 194
offer insurance bet, 191

SpecFlow feature, 190
updated task board, 188

Internet Explorer, 329, 330

Internet Information Services (IIS), 241, 352,
353

INVEST, 18

 K, L
Kojack blackjack game

Dealer Rules (see Dealer Rules)
Double Stake (see Double Stake user story)
insurance (see Insurance user story)

 M
Model View Controller (MVC) pattern, 244
Moq, 311

mocking, 311
.NET, 311
NuGet installation, 312, 313, 314
Product class

fakeWarrantyCalculator object, 316
GetPriceWithExtendedWarranty

property, 315
GetWarrantyPrice, 316
IWarrantyCalculator interface, 315
MoqExamples, 314
NUnit, 316
prod.GetPriceWithExtendedWarranty,

316
Product.cs, 315
SampleApp, 314
TestDriven.Net, 316

Web page installation, 312

 N, O
NuGet, 58
NUnit, 281

AddTwoNumbers_returns_3_when_given_1
_and_2 test method, 289

Class1.cs file, 288
folder structure, 287
new test, 293, 294
NuGet installation

.msi file, 286
open-source development tool, 283
Package Manager console, 284, 285
PM> Get-Package command, 285
PM> Install-Package NUnit command,

285
ReSharper, 286

 INDEX

369

TestDriven.NET, 286
verification, 285, 286
Visual Studio, 283, 284

ProjectUnderTest, 287
red-green-refactor, 286
reference addition, 287, 288
running NUnit

failing test, 292
MinValue decimal, 292
NUnit client, 290, 291
passing test, 292, 293
TestDriven, 290
Visual Studio, 290

Setup() method, 289
tddMath class, 289
tddMath.cs class, 290
tddMathSpec.cs class, 288
TDDWithNunit.Tests, 288
TDDWithNunit_Tests, 287
TestFixture attribute, 288
Web Page installation, 281, 282, 283

 P
Pair programming, 29, 42
Paying Out feature

ChipAllocator, 231, 233, 236
Chips class, 234, 235, 236
In Process swim lane, 210
losing with insurance scenario, 212
losing without insurance scenario, 211, 212
multiple_by_odds_of method, 234
player tie/push scenario, 211
player winning scenario, 211
Split feature, 213
when_dealing_in_the_hands_and_the_play

er_achieves_blackjack class, 230
winning after doubling down scenario, 212,

213
with_a_deal_in_cards_action base class, 230

Pivotal Tracker, product backlog, 319
homepage, 320
online agile management tool, 319
post-it notes, 319
project creation, 320

Backlog panel, 321
Charts panel, 322
Current panel, 321
customer and management, 323
dashboard, 321

IceBox panel, 321
My Sample Project, 320, 322
My Work panel, 322
Releases panel, 322
ScrumMaster, 323

sign up, 319
www.pivotaltracker.com, 319

Plan-Do-Study-Act (PDSA), 276
Planning game, 31

estimation, 35, 36
iteration planning

acceptance criteria, 38, 39
burn-down chart, 40, 41
context switching, 40
iteration task board, 39, 40
velocity, 40

release planning
feedback loop, 37
vs. iteration, 36, 37
refactor, 37

user stories
adding discount voucher to basket, 34
exploration phase and planning phase,

33
mnemonic INVEST, 34
relative complexity, 33
user acceptance criteria, story card, 35

Planning Poker, 24, 35, 36, 78
cashing in, 82
game play

dealer rules, 81
Deck of Cards, 80
double, 81
hit, 80
split, 82
stand, 80
start game, 78
win, 80

managing member accounts, 82
membership registration, 82

PlayDealersHand, 171
Product backlog, 27, 53

backlog sizing, 18, 19
constant prioritization, 17
features, 76
online blackjack gambling

mission statement, 54
team ground rules, 54
team member, roles and

responsibilities, 53
team name, 54

http://www.pivotaltracker.com

 INDEX

370

Product backlog (continued)
Planning Poker (see Planning Poker)
Sprint 1 backlog, 85
technical user stories, 55
updated product features, 83
user stories, 17, 18

Product owner, 22, 23, 27

 Q
Quality assurance (QA), 49, 240

 R
Red-green-refactor, 133
Refactoring, 29
Refactoring and technical debt

Acceptance.Tests project, 213
blackjack, 214
CanDoubleDown specification class, 222,

223
CanSplit and CanTakeInsurance checks,

223
CardDealer class, 228
check_if_player_can_double_down method,

221
DealCardsIn class, 214, 215, 216, 217, 218,

219, 224, 227, 229, 230
HandStatusFactory class, 219, 225, 226
IHandStatusFactory interface, 226, 227, 228
new assertion, 219
OptionsAvailableToPlayerAfterDealing

class, 220, 221, 223, 224, 225
014-PayingOut.feature, 213, 214
perform_on method, 228
update_the_status_of_each_hand_in

method, 225
Visual Studio 2010, 219
when_a_players_hand_meets_the_criteria_t

o_double_after_dealing test, 222
with_a_deal_in_cards_action base class,

215, 216
RemoteWebSiteTest.cs, 329
Repository Explorer, 340, 341
Return on investment (ROI), 7

 S
Scrum, 13, 29, 273

activities

daily stand-ups, 25, 27
sprint planning, 24, 27
sprint retrospectives, 25, 26, 27
sprint review, 25

Agile Manifesto, 26, 273
agile principles, 26
artifacts

acceptance criteria, 21
burn-down chart, 20, 21, 27
product backlog (see Product backlog)
sprint backlog, 19, 20, 27

BVCs, 273
context switching, 274
continuous integration, 276
development rhythm, 14
extreme programming, 273

BDD, 278
code, 278
communication, 277, 279
courage, 277
feedback, 277
respect, 277
simplicity, 277
SpecFlow, 278

fixed vs. variable factors, 16, 17
graphical representation, 13, 14
iterative agile, 278
Kanban board, 27
PDSA, 276
plan-driven development, 273
plan-driven method, 14, 15
Post-it notes, 273
product demos, 274
production code, 279
retrospectives, 275
roles

chicken roles, 23
committed and interested people, 21
pig roles, 22, 23

sprints, 13, 14, 15
team accountability and transparency, 273
test code, 279
value-driven development, 273
value-driven method, 15, 16

ScrumMaster, 13, 22, 26, 27
Self-organization, 42
single-threaded apartment (STA) mode, 330
Soup categories, 197
Source control system (SCS)

definition, 335

  INDEX

371

distributed systems vs. centralized systems,
335

SVN (see Apache subversion)
SpecFlow, 297

code-level tests, 298
Features folder, 302
Gherkin language, 298
MathPage navigation

AdditionSteps.cs class, 304
Binding attribute, 305
MathPageController, 305
MathSample.Specs project, 303, 304
step definition creation, 304
step definition test failure, 305, 306
step definition test success, 306, 307
Steps folder, 304

MathSample solution, 299
MathSample.Specs, 299, 301
MSI installer file, 299
NuGet, 302
Package Manager console, 300, 301
PM> Install-Package NUnit command, 301
PM> Install-Package SpecFlow commands,

301
SpecFlow download page, 299
SpecFlow feature file, 302, 303
templates in Visual Studio, 302
two numbers addition, 307, 308

Sprint
basic game play

availability and capacity, 88
backlog, 94
Deck of Cards (see Deck of Cards)
Initial Bet (see Initial Bet user story)
product demo, 132, 133
project management/feedback, 92, 93
sprint retrospective, 129, 130, 131, 132
Start Game (see Start Game user story)
theme, 87

game dynamics changes
availability and capacity, 162
backlog, 167
Dealer Rules (see Dealer Rules)
Double Stake (see Double Stake user

story)
Game State story saving, 202
insurance (see Insurance user story)
meeting plan, 161, 202
product demo, 195, 196
sprint retrospective, 197
theme, 162

game play
availability and capacity, 135
Backlog, 140
CCTray icon, 154
CruiseControl, 154
Hit user story (see Hit user story)
product demo, 151, 158, 159
Stand user story (see Stand user story)
testing and process, 155
Testing category, 156
theme, 135
win user story (see Win user story)

product backlog (see Product backlog)
Sprint 1, 87
Sprint 4, release, 203

availability and capacity, 203, 204
backlog (see Backlog)
blackjack application, 203
Planning Poker (see User story, Sprint 4)
theme, 203

Stand user story, 137
acceptance criteria, 138
SpecFlow feature, 147
updated task board, 146

Start Game user story, 90, 126, 137
daily stand-up, 126
Deal Cards feature

scenarios, 127
updation, 127

updated task board, 126

 T
TableObjectMapper, 129
Task prioritization, 3
TDD primer. See NUnit
Team Control category, 200
Technical user stories, 55. See also Product

backlog
acceptance tests project set up, 58
features, 60

acceptance criteria, split story, 68
acceptance criteria, start game story, 63
double-down feature, 67
notes on double-down story, 67
notes on win a game story, 65
playing rules of the dealer, 66
split feature, 68
start game, 62
story card, 62

 INDEX

372

Technical user stories, features (continued)
story card to capture hitting, 63
story card to capture the blackjack

winning condition, 64
story card to capture the player

standing, 64
game state saving, 75
member account stories, 73
open source libraries, NuGet, 58
playing for money

account creation, 69
betting history, 72
betting range, 71
cashing in feature, 70
managing user’s account, 70
member cashing out, 72
playing multiple hands, 71

reporting stories, 74
setting up for source control, 55
solution set up, 56

Test-driven development (TDD), 21, 29, 44, 49
Trunk, tags, and branches subfolders, 339

 U, V
Ubiquitous language, 7
User acceptance testing (UAT), 49
User story, Sprint 4

Cashing In, 207
credit card system, 207, 208
Member Registration, 205, 206
NHibernate, 204
Paying Out, 205
PayPal system, 207
Saving Game State, 204, 205
stretch goal, 207
username and password, 206

 W, X, Y, Z
Waterfall method, 14, 15
WatiN, Web testing

automated UI tests, 325
CassiniDev

ASP.NET web applications, 331
btnDisplayName, 333
CassiniDevServer object, 332
CI server, 333
_hostServer variable, 332
SetUp portion, 332
TearDown procedure, 332
test passed, 333
TextField method, 333
verify_EnterNameAndClickingButton_C

ontains_HelloName function, 333
DotNetKicks, 328
HelloWebApp, 328
local Web applications, 331
.NET, 325
NuGet installation, 326, 327, 328
remote WatiN test

app.config file, 329
DotNetKicks, 330
IE object, 329
Interop.SHDocVw.dll file, 329
NUnit, 328
nunit.framework.dll, 328
output, 330
STA mode, 330
TestDriven.Net, 330
Visual Studio, 330
WatiN.Core.dll, 328

Web page installation, 325
Win user story, 138, 139

daily stand-up, 149
SpecFlow feature, 150, 151, 153
updated task board, 149

Pro Agile .NET
Development with Scrum

  

Jerrel Blankenship
Matthew Bussa
Scott Millett

Pro Agile .NET Development with Scrum

Copyright © 2011 by Jerrel Blankenship, Matthew Bussa, and Scott Millett

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3533-0

ISBN-13 (electronic): 978-1-4302-3534-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Russ Lewis and Damien Foggon
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: Kim Burton-Weisman
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

To my wife, Stacy, my son, Tyler, and my family

–Jerrel

To my wife, Rebakah, and my family

–Matthew

v

Contents

 About the Authors... xv

 About the Technical Reviewers ... xvi

 Acknowledgments .. xvii

 Introduction ... xviii

 Chapter 1: The Art of Agile Development..1

Why the Need for Agile? ..1
It’s What I Asked for But Not What I Need .. 1
Iterative Change ... 3

Defining Agile ..5
The Agile Manifesto.. 5
Key Features of Agile.. 7

The Flavors of Agile ...8
Scrum ... 8
eXtreme Programming (XP) .. 9
Crystal .. 9
Dynamic Systems Development Method (DSDM) ... 10
Feature-Driven Development (FDD).. 10
Lean Software Development .. 10

Summary ...11

 Chapter 2: Managing Agile Projects with Scrum..13

What Is Scrum? ...13

 CONTENTS

vi

Plan-Driven vs. Value-Driven Methods ..14
Waterfall Method (Plan Driven)... 14
Scrum Method (Value Driven)... 15
Fixed vs. Variable Factors... 16

Scrum Artifacts..17
Product Backlog ... 17
Sprint Backlog .. 19
Burn-down chart .. 20
Acceptance Criteria .. 21

Scrum Roles ..21
Pig Roles... 22
Chicken Roles... 23

Scrum Activities...23
Sprint Planning ... 24
Daily Stand-Ups (Scrums)... 25
Sprint Review ... 25
Sprint Retrospectives ... 25

Summary ...26

 Chapter 3: eXtreme Programming ..29

XP Values ...29

XP Practices and Principles ...30
Planning.. 33
Environment ... 41
Self-Organization.. 42
Shared Understanding.. 44
Commitment to Development Excellence... 46
Quality Assurance... 49

 CONTENTS

vii

Summary ...51

 Chapter 4: Sprint 0: Generating the Product Backlog..53

The Project: Online Blackjack Gambling..53
Mission Statement.. 54
Team Name .. 54
Team Ground Rules .. 54

Technical User Stories...55
Walking the Development Skeleton.. 55

Capturing Features with User Stories..60
Playing Blackjack Stories ... 60
Playing for Money Stories... 68
Member Account Stories .. 73
Reporting Stories.. 73
Technical Stories .. 74

Initial Product Backlog...76

Planning Poker...78
Game Play: Initial Play .. 78
Game Play: Start Game... 78
Game Play: Deck of Cards .. 80
Game Play: Hit .. 80
Game Play: Stand ... 80
Game Play: Win... 80
Game Play: Dealer Rules .. 81
Game Play: Double.. 81
Game Play: Split ... 82
Member Registration .. 82
Managing Member Accounts.. 82
Cashing In... 82

 CONTENTS

viii

Prioritizing the Backlog..83

Committing to the First Sprint ...85

Summary ...86

 Chapter 5: Sprint 1: Starting a Game..87

Sprint Planning Meeting ..87
The Theme of the Sprint 87
Determining Availability and Capacity . .. 88
Planning Poker 88
Project Management/Feedback Progress . .. 92

Sprint 1’s Backlog..94
Day 1..95

Daily Stand-Up. .. 95
Developing the First Story: The Initial Bet Feature ..96

Implementing the First Story . .. 96
Day 4..119

Daily Stand-Up. .. 119
Working on the Next User Story: Deck of Cards ..120

Adding the SpecFlow Feature. ... 121
Adding Scenarios. .. 121
Implementing the “Check for 52 Different Cards” Scenario. ... 124

Day 6..126
Daily Stand-Up. .. 126

Final User Story of the Sprint: Start Game...126
Adding the SpecFlow Feature. ... 127
Adding Scenarios. .. 127

Day 10..129
Sprint 1 Retrospective . .. 129

 CONTENTS

ix

Product Demo... 132
Summary ...133

 Chapter 6: Sprint 2: Playing a Basic Game ...135

Sprint Planning Meeting ..135
The Theme of the Sprint ... 135
Determining Availability and Capacity .. 135
Planning Poker ... 136

Sprint 2’s Backlog..140
Day 1..140

Daily Stand-Up.. 140
Developing the User Story: Hit ...140

Adding the SpecFlow Feature... 142
Using BDD to Drive the Feature Development .. 144

Day 4..145
Daily Stand-Up.. 146

Working on the User Story: Stand..146
Adding the SpecFlow Feature... 147
Add Scenario .. 147

Day 6..149
Daily Stand-Up.. 149

Final User Story of the Sprint: Win...149
Adding the SpecFlow Feature... 150
Adding Scenarios.. 151

Day 10..154
Sprint 2 Retrospective .. 154
Product Demo... 158

Summary ...159

 CONTENTS

x

 Chapter 7: Sprint 3: Changing the Game...161

Sprint Planning Meeting ..161
The Theme of the Sprint ... 162
Determining Availability and Capacity .. 162
Planning Poker ... 162

Sprint 3’s Backlog..167
Day 1..168

Daily Stand-Up.. 168
Developing the User Story: Dealer Rules ...168

Adding the SpecFlow Feature... 169
Day 4..171

Daily Stand-Up.. 171
Working on the User Story: Double Stake..172

Adding the Double Stake SpecFlow Feature .. 174
Using BDD to Drive the Feature Development .. 175
Wiring Up and Getting the Scenario to Pass... 183

Day 6..188
Daily Stand-Up.. 188

User Story: Game Play Insurance ..188
Adding the SpecFlow Feature... 190
Adding Scenarios.. 191

Day 10..195
Product Demo... 195
Retrospective.. 197

Summary ...202

 Chapter 8: Sprint 4: The Release ..203

Sprint Planning Meeting ..203

 CONTENTS

xi

The Theme of the Sprint ... 203
Determining Availability and Capacity .. 203
Planning Poker ... 204

Sprint 4’s Backlog..208

Day 1..209
Daily Stand-up.. 209

Day 4..209
Daily Stand-up.. 209
Developing a Feature: Paying Out .. 210

Day 6..235
Daily Stand-up.. 235

Day 10..236
Product Demo... 236
Retrospective.. 238

Summary ...241

 Chapter 9: Code Review..243

Solution Overview..243
Infrastructure Project ... 244
Domain Project ... 246
Acceptance Test Project... 259
Core Test Project .. 264
NHibernate Infrastructure Project... 265
Web Project .. 267
StructureMap.. 269

Summary ...271

 Chapter 10: What’s Ahead for You and Scrum?..273

Scrum ..273

 CONTENTS

xii

Product Demos ... 274
Retrospectives.. 275
Continuous Integration ... 276
Plan-Do-Study-Act.. 276

eXtreme Programming...277
Where to Go from Here ..278

 Appendix A: TDD Primer with NUnit..281

Installation ...281
Web Page Installation ... 281
NuGet Installation ... 283

TDD Walk-through ...286
Running NUnit... 290
Adding Another Test ... 293

Summary ...294

 Appendix B: BDD Primer with SpecFlow...297

Outside-In Software Development...297
SpecFlow ...298

BDD Walk-through ...299
Writing Your Feature... 302
Scenario 1: Navigation to MathPage .. 303
Scenario 2: Add Two Numbers ... 307

Summary ...309

 Appendix C: Mocking with Moq ..311

Why Mocking ...311

Installation ...311
Web Page Installation ... 312
NuGet Installation ... 312

 CONTENTS

xiii

Moq Walk-through ...314
The Product Class... 314

Summary ...316

 Appendix D: Manage a Product Backlog with Pivotal Tracker319

Sign Up ..319

Create a Project ...320
Keeping Things in Sync ...323

Summary ...323

 Appendix E: Web Testing with WatiN ..325

Installation ...325
Web Page Installation ... 325
NuGet Installation ... 326

WatiN Test Walk-through...328
Remote WatiN Test ... 328
Testing WatiN for Local Web Applications.. 331
CassiniDev .. 331

Summary ...334

 Appendix F: Source Control with SVN...335

Distributed Systems vs. Centralized Systems ...335
Installation ...335

Server Installation... 336
Client Installation.. 339

Communicating from Client to Server..340

Working Folder ..342
Importing into SVN with TortoiseSVN ..343

Online SVN Hosting..348

 CONTENTS

xiv

Summary ...348

 Appendix G: Continuous Integration with Cruise Control.NET351

Continuous Integration...351

CruiseControl .NET...351
Installation ...352

Stand-Alone Application ... 354
Windows Service .. 354

CruiseControl.NET Web Dashboard..355
CruiseControl.NET Configuration and Setup ..360

Adding a Project ... 360
Setting up CCTray... 361

Summary ...362

 Index ...365

xv

About the Authors

 Jerrel Blankenship, software craftsman, specializes in Microsoft technologies.
He has been an application developer on the .NET platform for more than six
years. He is a Certified ScrumMaster and a Microsoft Certified Professional.

During his career, Jerrel has developed a number of .NET-based software
projects that run on desktop, web, and mobile environments. He enjoys working
with impassioned developers and sharing the knowledge of agile and Scrum to
teams that want to build software more effectively.

Jerrel is passionate about many things, including his family, fishing,
chess, Cleveland-based sports teams, and gaming. He currently resides in
Columbus, Ohio, with his wonderful wife, Stacy, and son Tyler. You can read

Jerrel’s ramblings at www.jerrelblankenship.com and he can be reached via e-mail at
jerrel@jerrelBlankenship.com.

  Matthew Bussa is software craftsman specializing in Microsoft technologies. A
Certified ScrumMaster and a Microsoft Certified Technology Specialist, Matthew has
developed .NET-based solutions for both the web and the desktop. He enjoys helping
transform agile teams through working together more effectively—so that they can
build awesome software!

Matthew currently resides in Columbus, Ohio, with his wife, Rebakah.
He maintains a blog at www.matthewbussa.com and can be reached via e-mail at
matthew@matthewbussa.com.

http://www.jerrelblankenship.com
mailto:jerrel@jerrelBlankenship.com
http://www.matthewbussa.com
mailto:matthew@matthewbussa.com

xvi

About the Technical Reviewers

 Russ Lewis has been helping organizations build better software since the late 80s. An engineer by
training, and entrepreneurial by background, he places the highest value in identifying and satisfying
customer requirements. Agile principles and solid architecture have long driven his projects, even before
the terms “Agile” and “Architecture” became fashionable.

He was one of the first to recognize the business benefits of service-orientation, developing
training courses for Microsoft and Learning Tree International on Web Services and COM+.

Lately, he has been consulting with some of the world’s leading organizations including
Randstad, Toyota, Transport for London, and the Government of Angola, as software architect and agile
lead.

 Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies and has
contributed to more than 50 books on .NET, C#, Visual Basic and ASP.NET. He is the co-founder of the
Newcastle based user-group NEBytes (online at http://www.nebytes.net), is a multiple MCPD in .NET
2.0 and .NET 3.5 and can be found online at http://blog.fasm.co.uk.

http://www.nebytes.net
http://blog.fasm.co.uk

xvii

Acknowledgments

The thought of trying to put to paper all who have helped me get to where I am is nearly impossible. I
have been fortunate in my life to have met wonderful people who have each helped me both personally
and professionally. I may forget some of you and for that I am sorry. Please remember that without all of
you I would not have gotten where I am.

First and foremost, I want to thank my wife, Stacy, for her love, encouragement, and
understanding through everything I have been through. She is my rock, my companion, and my friend. I
want to thank my son, Tyler, for always bringing a smile to my face whenever he enters a room. I want to
thank my parents and family for their love, encouragement, and support.

I want to thank Tom Maier for giving me my first shot at showing the world what I can do and
guiding me through the early stages of my career. I want thank Jared Conway for giving me insight and
showing me what a great developer and friend can do.

I want to give a tremendous thanks to Jared Richardson, Tim Wingfield, and Michael Kramer for
showing me the wonderful world that is agile. They were all mentors to me and helped shaped my
career. Without these guys, my involvement with this book would have been non-existent. Thank you
guys!

I thank my co-authors, Matthew Bussa and Scott Millet, who helped make this book awesome. I
wish to thank everyone at Apress who gave me a way to share my voice and love of development with the
world, especially Jessica Belanger, Jonathan Hassell, and Tom Welsh.

—Jerrel Blankenship

I’m not going to lie to you. The Acknowledgments section of the book is a scary proposition for me. The
notion that I (or anyone) could quantify, or prioritize, the contributions (direct and indirect) by which
this book was made possible is fantasy. I’ll do my best, but it’s entirely possible I’ll forget somebody, and
for that, I apologize in advance.

I foremost thank my wife, Rebakah, for her love, eternal patience, indulgence, support, and
encouragingly witty comments. She is my love, my companion, and my best friend. I want to thank
Michael Hoffer for his friendship and for Fridays. I thank my parents, sister, and my in-laws for their
influences, grace, support, and love.

I want to thank Jared Richardson, Tim Wingfield, and Michael Kramer for first introducing me
to the practices of Scrum and the Agile Manifesto, and teaching me the importance of building a great
team and that software can remain soft with good engineering practices. Their mentorship made a
difference and also made this book possible.

I thank my co-authors, Jerrel Blankenship and Scott Millett, who helped make this the most
exciting book I’ve ever worked on! I also want to say thanks to the people at Apress who helped ensure
the highest standards in quality every step of the way.

—Matthew Bussa

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Conventions
	Prerequisites
	Downloading the Code
	Contacting the Authors

	The Art of Agile Development
	Why the Need for Agile?
	It’s What I Asked for But Not What I Need
	Iterative Change

	Defining Agile
	The Agile Manifesto
	Key Features of Agile

	The Flavors of Agile
	Scrum
	eXtreme Programming (XP)
	Crystal
	Dynamic Systems Development Method (DSDM)
	Feature-Driven Development (FDD)
	Lean Software Development

	Summary

	Managing Agile Projects with Scrum
	What Is Scrum?
	Plan-Driven vs. Value-Driven Methods
	Waterfall Method (Plan Driven)
	Scrum Method (Value Driven)
	Fixed vs. Variable Factors
	Product Backlog
	Sprint Backlog
	Burn-down chart
	Acceptance Criteria
	Pig Roles
	Chicken Roles
	Sprint Planning
	Daily Stand-Ups (Scrums)
	Sprint Review
	Sprint Retrospectives

	eXtreme Programming
	XP Values
	XP Practices and Principles
	Planning
	Environment
	Self-Organization
	Shared Understanding
	Commitment to Development Excellence
	Quality Assurance

	Summary

	Sprint 0: Generating the Product Backlog
	The Project: Online Blackjack Gambling
	Mission Statement
	Team Name
	Team Ground Rules

	Technical User Stories
	Walking the Development Skeleton

	Capturing Features with User Stories
	Playing Blackjack Stories
	Playing for Money Stories
	Member Account Stories
	Reporting Stories
	Technical Stories

	Initial Product Backlog
	Planning Poker
	Game Play: Initial Play
	Game Play: Start Game
	Game Play: Deck of Cards
	Game Play: Hit
	Game Play: Stand
	Game Play: Win
	Game Play: Dealer Rules
	Game Play: Double
	Game Play: Split
	Member Registration
	Managing Member Accounts
	Cashing In

	Prioritizing the Backlog
	Committing to the First Sprint
	Summary

	Sprint 1: Starting a Game
	Sprint 1’s Backlog
	Day 1
	Daily Stand-Up

	Developing the First Story: The Initial Bet Feature
	Implementing the First Story

	Day 4
	Daily Stand-Up

	Working on the Next User Story: Deck of Cards
	Adding the SpecFlow Feature
	Adding Scenarios
	Implementing the “Check for 52 Different Cards” Scenario

	Day 6
	Daily Stand-Up

	Final User Story of the Sprint: Start Game
	Adding the SpecFlow Feature
	Adding Scenarios

	Day 10
	Sprint 1 Retrospective
	Product Demo

	Summary

	The Theme of the Sprint
	Determining Availability and Capacity
	Planning Poker
	Project Management/Feedback Progress
	Sprint 2: Playing a Basic Game
	Sprint Planning Meeting
	The Theme of the Sprint
	Determining Availability and Capacity
	Planning Poker

	Sprint 2’s Backlog
	Day 1
	Daily Stand-Up

	Developing the User Story: Hit
	Adding the SpecFlow Feature
	Using BDD to Drive the Feature Development

	Day 4
	Daily Stand-Up

	Working on the User Story: Stand
	Adding the SpecFlow Feature
	Add Scenario

	Day 6
	Daily Stand-Up

	Final User Story of the Sprint: Win
	Adding the SpecFlow Feature
	Adding Scenarios

	Day 10
	Sprint 2 Retrospective
	Product Demo

	Summary

	Sprint 3: Changing the Game
	Sprint Planning Meeting
	The Theme of the Sprint
	Determining Availability and Capacity
	Planning Poker

	Sprint 3’s Backlog
	Day 1
	Daily Stand-Up

	Developing the User Story: Dealer Rules
	Adding the SpecFlow Feature

	Day 4
	Daily Stand-Up

	Working on the User Story: Double Stake
	Adding the Double Stake SpecFlow Feature
	Using BDD to Drive the Feature Development
	Wiring Up and Getting the Scenario to Pass

	Day 6
	Daily Stand-Up

	User Story: Game Play Insurance
	Adding the SpecFlow Feature
	Adding Scenarios

	Day 10
	Product Demo
	Retrospective

	Summary

	Sprint 4: The Release
	Sprint Planning Meeting
	The Theme of the Sprint
	Determining Availability and Capacity
	Planning Poker

	Sprint 4’s Backlog
	Day 1
	Daily Stand-up

	Day 4
	Daily Stand-up
	Developing a Feature: Paying Out

	Day 6
	Daily Stand-up

	Day 10
	Product Demo
	Retrospective

	Summary

	Code Review
	Solution Overview
	Infrastructure Project
	Domain Project
	Acceptance Test Project
	Core Test Project
	NHibernate Infrastructure Project
	Web Project
	StructureMap

	Summary

	What’s Ahead for You and Scrum?
	Scrum
	Product Demos
	Retrospectives
	Continuous Integration
	Plan-Do-Study-Act

	eXtreme Programming
	Where to Go from Here

	TDD Primer with NUnit
	Installation
	Web Page Installation
	NuGet Installation

	TDD Walk-through
	Running NUnit
	Adding Another Test

	Summary

	BDD Primer with SpecFlow
	Outside-In Software Development
	SpecFlow
	BDD Walk-through
	Writing Your Feature
	Scenario 1: Navigation to MathPage
	Scenario 2: Add Two Numbers

	Summary

	Mocking with Moq
	Why Mocking
	Installation
	Web Page Installation
	NuGet Installation

	Moq Walk-through
	The Product Class

	Summary

	Manage a Product Backlog with Pivotal Tracker
	Sign Up
	Create a Project
	Keeping Things in Sync
	Summary

	Web Testing with WatiN
	Installation
	Web Page Installation
	NuGet Installation

	WatiN Test Walk-through
	Remote WatiN Test
	Testing WatiN for Local Web Applications
	CassiniDev

	Summary

	Source Control with SVN
	Distributed Systems vs. Centralized Systems
	Installation
	Server Installation
	Client Installation

	Communicating from Client to Server
	Working Folder
	Importing into SVN with TortoiseSVN
	Online SVN Hosting
	Summary

	Continuous Integration with Cruise Control.NET
	Continuous Integration
	CruiseControl .NET
	Installation
	Stand-Alone Application
	Windows Service

	CruiseControl.NET Web Dashboard
	CruiseControl.NET Configuration and Setup
	Adding a Project
	Setting up CCTray

	Summary

	Index
	A
	B
	C
	D
	E
	F, G
	H
	I, J
	K, L
	M
	N, O
	P
	Q
	R
	S
	T
	U, V
	W, X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

