
Robbie Vanbrabant

Google

Guice
Agile Lightweight Dependency
Injection Framework

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

Google Guice: Agile Lightweight
Dependency Injection Framework
Dear Reader,

This book welcomes you to the world of Google Guice (pronounced “juice”), the latest
and greatest dependency injection framework that fully exploits all modern Java™
features. One step at a time, this book will help turn any XML-spitting programmer
into a true Guice master, or a “Bob,” as I like to say.

I’m particularly proud of this book’s coverage. To make sure that nobody gets left
behind, I start out with an introduction to dependency injection concepts. From
there, you will learn how Guice makes your life easier, and you’ll gradually become a
Guice expert. Beyond that, I also devoted two chapters to web application development
with Struts 2 and Wicket, including content on how to organize your application and
how to use Warp Persist, a popular Guice extension, to access your data using the Java
Persistence API and Hibernate.

Writing this book was not an easy task, so in addition to Apress, I’d like to thank
some people in particular. First, I would like to thank Dhanji R. Prasanna for referring me
to Apress to write this book. He has also done a fantastic job as my technical reviewer.
I’d also like to thank Bob Lee, the inventor of Guice, who kindly answered all of my
questions and inspired much of the content in Chapter 8. Finally, a big thank you goes
out to my friends, my parents, my brother, and anyone who believes in me; you are
the people who put the smile on my face.

Now, put on your Batman or Catwoman costume; open up a bottle of wine; pick up
this book; and put your feet up. Be a Java hero, and may Guice help you on your way.
Just don’t forget to send me a picture of you in that getup.

Robbie Vanbrabant
http://garbagecollected.org Vanbrabant

Google Guice

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.408" 192 page count

User level:
Intermediate

www.apress.com
java.apress.com

SOURCE CODE ONLINE

180
pages

Available as a
PDF Electronic Book
or Print On Demand

About firstPress
Apress's firstPress series is your source for understanding cutting-edge technology. Short,
highly focused, and written by experts, Apress's firstPress books save you time and effort. They
contain the information you could get based on intensive research yourself or if you were to
attend a conference every other week—if only you had the time. They cover the concepts and
techniques that will keep you ahead of the technology curve. Apress's firstPress books are real
books, in your choice of electronic or print-on-demand format, with no rough edges even when
the technology itself is still rough. You can't afford to be without them.

Google Guice: Agile Lightweight
Dependency Injection Framework

Dear Reader,

This book welcomes you to the world of Google Guice (pronounced “juice”), the latest and
greatest dependency injection framework that fully exploits all modern Java™ features. One
step at a time, this book will help turn any XML-spitting programmer into a true Guice master,
or a “Bob,” as I like to say.
I’m particularly proud of this book’s coverage. To make sure that nobody gets left behind, I
start out with an introduction to dependency injection concepts. From there, you will learn how
Guice makes your life easier, and you’ll gradually become a Guice expert. Beyond that, I also
devoted two chapters to web application development with Struts 2 and Wicket, including
content on how to organize your application and how to use Warp Persist, a popular Guice
extension, to access your data using the Java Persistence API and Hibernate.

Writing this book was not an easy task, so in addition to Apress, I’d like to thank some people
in particular. First, I would like to thank Dhanji R. Prasanna for referring me to Apress to write
this book. He has also done a fantastic job as my technical reviewer. I’d also like to thank Bob
Lee, the inventor of Guice, who kindly answered all of my questions and inspired much of the
content in Chapter 8. Finally, a big thank you goes out to my friends, my parents, my brother,
and anyone who believes in me; you are the people who put the smile on my face.

Now, put on your Batman or Catwoman costume; open up a bottle of wine; pick up this book;
and put your feet up. Be a Java hero, and may Guice help you on your way. Just don’t forget to
send me a picture of you in that getup.

Robbie Vanbrabant

http://garbagecollected.org

http://garbagecollected.org

 Google Guice: Agile Lightweight Dependency Injection Framework i

Contents

Chapter 1: Setting the Stage ... 1
The Problem... 1
A Fortunate Example .. 3
Dependency Injection.. 5
DI, Guice Style .. 8
Summary .. 10

Chapter 2: Enter Guice .. 11
Getting Guice ... 11
Preparing the Code .. 12
Specifying an Implementation .. 15
Bootstrapping... 15
Choosing Between Implementations.. 17
Implicit Bindings ... 21
Scoping... 22
Debunking Myths .. 23
Summary .. 27

Chapter 3: From Journeyman to Bob ... 29
Providers .. 29
@Named .. 32
Binding Constants ... 34
Binding Generic Types ... 38
Properties ... 42
Static Injection ... 44

ii Google Guice: Agile Lightweight Dependency Injection Framework

Custom Scopes .. 45
Web Scopes.. 49
Organizing Modules .. 51
The Binding EDSL .. 53
How Guice Resolves Dependencies... 56
Summary .. 57

Chapter 4: Aspect-Oriented Programming ... 59
AOP for Mere Mortals .. 60
How Guice AOP Works.. 60
Method Interception .. 61
Phoning Home ... 64
Summary .. 69

Chapter 5: Integrating with the Web... 71
The Integration Challenge... 71
Bootstrapping... 72
Inviting Servlets to the Club ... 73
Configuration Discovery ... 74
Struts 2 ... 76
Wicket .. 78
Where Are the Web Scopes? .. 85
Warp Servlet .. 86
Summary .. 92

Chapter 6: Practical Guice... 93
Requirements ... 93
The Big Picture .. 95
Project Structure .. 99
Setting Up Struts 2 ..103
Getting Guiced ...104

76a2626bcfb21763948a3d635f6fe985

 Google Guice: Agile Lightweight Dependency Injection Framework iii

Defining the Model ...105
Database Access with Warp Persist ...109
Implementing the Data Access Layer ..111
The Home Screen ..118
The Create and Edit Screens ...121
Unit Testing ...123
Summary ..125

Chapter 7: Guice Recipes ... 127
Sharing Singletons...127
Binding Collections ...129
Designing Libraries and Limiting Visibility..136
Viral Annotations ..138
Mixing Scopes ...139
Integrating Spring ..142
Logging ..145
Integrating JNDI ..146
Using JMX ...147
Summary ..150

Chapter 8: The Future .. 153
The Grand Plan ..153
Growing an Extensible Platform ..154
Better Up-Front Checking...155
Keeping Guice Simple and Making It Simpler ...156
Improved Tooling Support..158
Addressing DI Shortcomings..160
Standardization ..164
Summary ..166

iv Google Guice: Agile Lightweight Dependency Injection Framework

Appendix: Assorted Sweets ... 167
Binder Syntax Explained ..167
Hello Servlet Guice ...169
Hello Wicket Guice ...172
Hello Warp Servlet ..174
SessionPerRequestInterceptor ..177

 Google Guice: Agile Lightweight Dependency Injection Framework v

Google Guice: Agile Lightweight
Dependency Injection Framework

by Robbie Vanbrabant

Foreword by Bob Lee, Guice Lead

I created Guice in the midst of one of the biggest projects of my career. When
you have hundreds of engineers touching millions of lines of code, you come to
appreciate the benefits of static type checking. Static types aren’t just about
compiler errors. In fact, I rarely see Java compiler errors nowadays. Thanks to
all that great, formalized Java type information, my IDE helps me write correct
code in the first place.
Writing your application in a nearly 100 percent type safe manner, like Guice
enables and Robbie advocates in this book, opens the door to a new level of
maintainability. You can effortlessly navigate unfamiliar code, jumping from
interfaces to their implementation and from methods to their callers. As you
master your Java tools, you realize that deceptively simple atomic refactorings
combine to form molecular tools, which you can reliably apply to companywide
swaths of code, accomplishing refactorings you’d never even consider trying by
hand. In the long run, it’s much cheaper to ward off bit rot through heavy reuse
and constant refactoring than by nuking the world with a rewrite every couple
years.
Having experienced Guice’s benefits on a number of projects, we at Google
knew we couldn’t keep it to ourselves and decided to make it open source.
Readying Guice for the outside world felt like it took an order of magnitude more
work than writing that first internal version, but community contributors like
Robbie who fuel the forums, help polish rough edges, and generate excellent
documentation like this book pay back that effort tenfold. You’ll find that
Robbie’s brevity and conversational tone suit Guice well. I like my books like I
like my APIs: with high power-to-weight ratios.

vi Google Guice: Agile Lightweight Dependency Injection Framework

 Google Guice: Agile Lightweight Dependency Injection Framework 1

Chapter 1: Setting the Stage
You’ve probably heard about dependency injection (DI), and if so, you’re in for
a real treat: Guice (pronounced “juice”) is, in my opinion, by far the most
innovative framework in the problem space. Created by Google employees
“Crazy” Bob Lee (http://crazybob.org) and Kevin Bourrillion
(http://smallwig.blogspot.com), this lightweight, open source DI framework is
designed to bring true ease of development to the world of DI. Taking advantage
of Java 5 features like no other application has before, Guice is the XML-free
cure to hard-to-maintain code.
Before I start talking about using frameworks, DI, and whatnot, I think it’s best
to step back and take a look why initiatives like Guice exist in the first place.
Obviously, Guice is not the only DI framework out there. As with model-view-
controller (MVC) web frameworks, there are lots of frameworks to choose from
in the DI world, and everyone probably has their personal favorite. Whether or
not you use Guice after reading this book will depend on your needs, but once
you have a good grasp of the concepts described here, your code will never look
the same again—whether you use Spring, PicoContainer, Guice, or no
framework at all.
If this is the first time you’ve heard about DI, don’t worry; this first chapter will
explain, from the ground up, the problem at hand, and how Guice helps unravel
the mystery of maintainable code. And who knows? This chapter might be a
good refresher for experienced DI users.

The Problem
If you’re in the business of creating software, you ultimately want to have
maintainable software. You’ll certainly agree with me that you spend more time
maintaining software than writing software—and that the maintainability you
need doesn’t come for free. It requires careful design and a well defined process
for testing and validating the application.

http://crazybob.org
http://crazybob.org
http://smallwig.blogspot.com
http://smallwig.blogspot.com

2 Google Guice: Agile Lightweight Dependency Injection Framework

In your professional life, or even as a hobbyist, you’ve probably picked up the
concept of unit testing. Basically, it’s about testing little units of source code for
validity. Being able to tell with one look at a bar (green or red) whether your
code has the right side effects is valuable and will save you time. Unit testing is a
no-brainer. In this book, unit test examples will use JUnit 4
(http://www.junit.org).
I strongly believe that automated testing, like unit testing, is the best way to
achieve software maintainability. With the right amount of test coverage, you can
rest assured that, when you’re making changes to the code, you won’t break code
somewhere else in the code base. You can simply write your tests, make your
change, run the collected set of tests, and feel confident. Poorly designed
applications are usually hard to test, which means well tested applications
probably aren’t too bad. You can write great software without automated
testing—you can also win the lottery, but don’t count on it.
So there you have it: unit testing helps achieve maintainability. And what else
can help you achieve that? Writing less code, of course! The less code you need
to accomplish what you’re trying to do, the less code you’ll need to maintain.
Obviously, you can’t just randomly delete blocks of code, but in some cases,
code doesn’t really mean anything; it’s just boilerplate to get you from point A to
point B. Wouldn’t it be nice if you could get rid of all that noise and focus on the
stuff that matters? For lack of a better term, I call this the maintainability mission
statement. This is not a complete list, but, among other things, maintainable code
needs to be
 Easy to test (modular)
 Meaningful (as little noise as possible)

You probably already see where I’m going, but before we dive into Guice, let me
illustrate how to accomplish these goals in a typical situation. When we’re done
with that, we’ll throw Guice into the mix and dance on the ceiling.

http://www.junit.org
http://www.junit.org

 Google Guice: Agile Lightweight Dependency Injection Framework 3

A Fortunate Example
Let’s say that the local Chinese restaurant has a new chef who insists on giving
out fortune cookies with all the meals—you know, the ones that hold great
advice or predictions. Now, the chef doesn’t want to waste time in writing all
these fortunes that could be spent preparing some delicious meals. That’s where
the fortune service comes in—the restaurant subscribes to a service that gives
access to a rich database of fortunes. Listing 1-1 shows this fortune service’s
implementation.
Listing 1-1. FortuneService that Gives Out Fortunes

public interface FortuneService {
 String randomFortune();
}

public class FortuneServiceImpl implements FortuneService {
 private static final List<String> MESSAGES =
 Arrays.asList(
 "Today you will have some refreshing juice.",
 "Larry just bought your company."
);

 public String randomFortune() {
 return MESSAGES.get(new Random().nextInt(MESSAGES.size()));
 }
}

For the chef, we’re going to use the classic Gang of Four (GoF)1 Factory pattern
to create and retrieve the FortuneServiceImpl service. That way, we can easily
swap in another FortuneService if we want. Listing 1-2 demonstrates this
approach.

1 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addison-Wesley Professional, 1995) is widely known as the Gang of
Four (GoF) book.

4 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 1-2. The Chef Uses a Factory (Hooray!)

public class Chef {
 private FortuneService fortuneService;

 public Chef() {
 this.fortuneService = FortuneServiceFactory.getFortuneService();
 }

 public void makeFortuneCookie() {
 new FortuneCookie(fortuneService.randomFortune());
 }
}

public class FortuneServiceFactory {
 private FortuneServiceFactory() {}

 private static FortuneService fortuneService = new FortuneServiceImpl();

 public static FortuneService getFortuneService() {
 return fortuneService;
 }

 public static void setFortuneService(FortuneService mockFortuneService) {
 fortuneService = mockFortuneService;
 }
}

We can use the setter on the factory to swap in another implementation whenever
we want. For example, we can change it to a mock implementation when testing
the Chef class (see Listing 1-3). Note that as a side effect of this factory’s
implementation, the entire application now reuses the same FortuneService
instance as long as nobody sets a different value for the service. It’s a poor man’s
singleton (GoF Singleton pattern), if you will.

Tip: To learn more about mock objects, check out Martin Fowler’s article at
http://martinfowler.com/articles/mocksArentStubs.html.

http://martinfowler.com/articles/mocksArentStubs.html

 Google Guice: Agile Lightweight Dependency Injection Framework 5

Listing 1-3. Unit Test for the Chef Class

public class ChefTest {
 @Test
 public void makeFortuneCookie() {
 final FortuneService original =
 FortuneServiceFactory.getFortuneService();
 try {
 FortuneServiceMock mock = new FortuneServiceMock();
 FortuneServiceFactory.setFortuneService(mock);
 Chef chef = new Chef();
 chef.makeFortuneCookie();
 assertTrue(mock.calledOnce());
 } finally {
 FortuneServiceFactory.setFortuneService(original);
 }

 }

 class FortuneServiceMock implements FortuneService {
 private int invocationCount;

 public String randomFortune() {
 invocationCount++;
 return "MOCK";
 }

 public boolean calledOnce() {
 return invocationCount == 1;
 }
 }
}

Although this works, you’ve probably seen better looking code. We have to be
careful to clean up the factory when we’re done using the finally block. If we
don’t, other tests in the same suite might receive the value we put in for our test
and fail, because they depend on a different value. Let’s see how DI tackles this
kind of problem.

Dependency Injection
In the last five years, there’s been a lot of buzz around inversion of control (IoC)
and DI. Looking past all the silly terminology, using DI frequently means that,
instead of pulling your dependencies in, you opt to receive them from someplace,

6 Google Guice: Agile Lightweight Dependency Injection Framework

and you don’t care where they come from. People often explain it as the
Hollywood principle—don’t call us; we’ll call you. So, for the example given,
the Chef class could receive the FortuneService as a constructor parameter. This
has several advantages:
 Your dependencies are immediately visible by looking at the class structure.
 It’s easy to use multiple FortuneService implementations within the same

application now.
 You get rid of a static method invocation on a factory, which is always a

good thing. Static method calls are hard to test, because you can’t change the
actual behavior as you can with interfaces. It didn’t matter all that much for
this example, but it always feels good to eliminate a static method.

 Test cases are simpler to write, as you’ll see in this section.

Note: As you’ll see, you don’t need to have a framework to make use of
the DI idiom. For more information on these concepts, again, Martin Fowler
has a great article on his web site describing the ins and outs:
http://martinfowler.com/articles/injection.html. Buy the man’s books;
they’re all classics. It might also be worth noting that all the things we are
discussing (factories and DI) are basically workarounds to problems in the
Java programming language itself. Gilad Bracha, former Sun employee and
coauthor of the Java Language Specification, explains why in his blog posts
“Constructors Considered Harmful” (http://gbracha.blogspot.com/2007/06/
constructors-considered-harmful.html) and “Lethal Injection”
(http://gbracha.blogspot.com/2007/12/some-months-ago-i-wrote-couple-of-
posts.html).

Listing 1-4 contains the Chef class, modified to use DI.
Listing 1-4. Chef Goes DI

public class Chef {
 private final FortuneService fortuneService;

 public Chef(FortuneService fortuneService) {

http://martinfowler.com/articles/injection.html
http://gbracha.blogspot.com/2007/06/constructors-considered-harmful.html
http://gbracha.blogspot.com/2007/06/constructors-considered-harmful.html
http://gbracha.blogspot.com/2007/12/some-months-ago-i-wrote-couple-of-posts.html
http://gbracha.blogspot.com/2007/12/some-months-ago-i-wrote-couple-of-posts.html
http://gbracha.blogspot.com/2007/12/some-months-ago-i-wrote-couple-of-posts.html

 Google Guice: Agile Lightweight Dependency Injection Framework 7

 this.fortuneService = fortuneService;
 }

 public void makeFortuneCookie() {
 new FortuneCookie(fortuneService.randomFortune());
 }
}

Because I am now able to get rid of the factory, the unit test code also looks a lot
simpler (see Listing 1-5). Josh Bloch, Effective Java author (Prentice Hall, 2001),
would probably say: “Code should read like prose.” High five, Josh; we’re on
our way!
Listing 1-5. Unit Testing Chef, DI style

public class ChefTest {
 @Test
 public void makeFortuneCookie() {
 FortuneServiceMock mock = new FortuneServiceMock();
 Chef chef = new Chef(mock);
 chef.makeFortuneCookie();
 assertTrue(mock.calledOnce());
 }
}

One thing that doesn’t immediately surface with a small example like this is that
we didn’t solve the factory problem. Although our test case now looks much
simpler, eventually you’re going to have to write a factory for the Chef class to
provide its FortuneService dependency, so we’ve only moved the factory problem
higher up the stack (see Listing 1-6).
Listing 1-6. The Revenge of the Chef

public class ChefFactory {
 public Chef newChef() {
 return new Chef(FortuneServiceFactory.getFortuneService());
 }
}

Now, how can we get rid of those factories, Batman? On to the latest and greatest
option—drum roll—Google Guice!

8 Google Guice: Agile Lightweight Dependency Injection Framework

DI, Guice Style
With Guice, instead of writing factories to wire up things, you write a small
amount of configuration that’s reusable across the entire application. By handing
off all object wiring responsibilities to Guice, you’ll effectively have DI without
the factories.
First, you put the Guice @Inject annotation at the injection point, as shown in
Listing 1-7. It’s like saying, “Here’s where I want your help!”
Listing 1-7. Guicy Chef

public class Chef {
 private final FortuneService fortuneService;

 @Inject
 public Chef(FortuneService fortuneService) {
 this.fortuneService = fortuneService;
 }

 public void makeFortuneCookie() {
 new FortuneCookie(fortuneService.randomFortune());
 }
}

Our unit test, shown in Listing 1-8, stays exactly the same:
Listing 1-8. Unit Testing Chef, Guice Style (No Changes!)

public class ChefTest {
 @Test
 public void makeFortuneCookie() {
 FortuneServiceMock mock = new FortuneServiceMock();
 Chef chef = new Chef(mock);
 chef.makeFortuneCookie();
 assertTrue(mock.calledOnce());
 }
}

The only thing left is to tell Guice which implementation to use for
FortuneService. You do this by defining a module. I’ll go into the details in the
next chapter, but for now, Listing 1-9 shows you one possible approach.
Listing 1-9. Guice Module for the Chef Class’s Dependency

public class ChefModule implements Module {

 Google Guice: Agile Lightweight Dependency Injection Framework 9

 public void configure(Binder binder) {
 binder.bind(FortuneService.class)
 .to(FortuneServiceImpl.class)
 .in(Scopes.SINGLETON);
 }
}

Easy, huh? You implement a single-method interface and get a Binder object to
play with. This Binder uses a special syntax designed to make your configuration
easy to read. If you read from left to right, you get “bind FortuneService to
FortuneServiceImpl in singleton scope.” Guice will figure out how to do the rest.
Compared to manual DI, using a framework like Guice has several advantages:
 You can take advantage of automated object lifetimes (singleton scope, in this

example). Remember the manual singleton when using the factory? (See
Listing 1-2.)

 Because you don’t express object-wiring code directly in your code, you can
easily reuse or replace it across the application and beyond.

 You’re able to catch missing or wrong dependency mistakes early.
 Once objects are in the club, meaning the framework controls their creation

and lifetime, you can do all sorts of things with them, like apply aspect-
oriented programming (AOP) advice (http://www.ibm.com/developerworks/
java/library/j-aspectj/). Guice’s lightweight AOP will be introduced in
Chapter 4, “Aspect-Oriented Programming.”

 You write less code.
 A carefully crafted framework will help you fall into the “pit of success.”

Let me quote Rico Mariani, Microsoft performance guru, to explain this last
statement.

In stark contrast to a summit, peak, or a journey across a desert to find victory
through many trials and surprises, we want our customers to simply fall into
winning practices by using our platform and frameworks. To the extent that we
make it easy to get into trouble we fail.

—Framework Design Guidelines (Addison-Wesley Professional, 2005)

http://www.ibm.com/developerworks/java/library/j-aspectj
http://www.ibm.com/developerworks/java/library/j-aspectj
http://www.ibm.com/developerworks/java/library/j-aspectj

10 Google Guice: Agile Lightweight Dependency Injection Framework

Much like in Rico Mariani’s statement, the Guice authors went out of their way
to make sure that they designed the framework in such a way that it’s easy to do
the right thing and much harder to shoot yourself in the foot. They killed a whole
class of bugs for you.

Tip: Use tools like FindBugs to hunt down the remaining bugs
(http://findbugs.sf.net).

Last but not least, unlike other DI frameworks, Guice gives you all of those listed
advantaged while you’re using pure, elegant Java. To see how that looks, let’s
move on to Chapter 2.

Summary
We live in an age where writing software to a given set of requirements is no
longer enough. We need to write maintainable software that is easy to test and
easy to read. These days, we spend a lot more time reading, changing, and
reusing existing code than writing new code.
Testable code allows us to swap in different implementations of expensive
services or dependencies currently not under test. Traditionally, we’ve been
using the GoF Factory pattern to abstract object creation, but having to write all
that factory code is tedious. On the other hand, using dependency injection (DI)
makes your code easier to test but still doesn’t let you get rid of all the boilerplate
factory code. This is where frameworks like Guice come in: using an
applicationwide configuration, you describe how your DI-style code is wired
together.
The rest of this book will explain the core Guice concepts using small and not-
so-small examples.

http://findbugs.sf.net

 Google Guice: Agile Lightweight Dependency Injection Framework 11

Chapter 2: Enter Guice
Now that I’ve told you why this book exists, let’s talk about the actual Guice
technology. The goal of this chapter is to give you a basic understanding of what
you need to do to use Guice in your projects. You’ll want to set up your
development environment so that you can try these examples as we go through
them, so I’ll briefly cover that in the first section. Once you’re past that, I’ll help
you think your way through your first Guice adventure.

Getting Guice
Like most open source software, Guice is freely downloadable on the Internet.
However, before you download Guice, make sure that you have the following
installed:
 Java Development Kit (JDK) for Java 5 or above

(http://www.java.com/getjava)
 Eclipse (http://www.eclipse.org) or your Java IDE of choice

Once you have that, you’re finally ready to slurp up some Guice.
1. Go to http://code.google.com/p/google-guice.
2. Click the Downloads tab.
3. Download the file named guice-1.0.zip.
4. Unzip the archive to a directory of your choice.
Inside the archive, you’ll find the Guice API documentation and, as shown in
Table 2-1, several JAR files. Now, we only need guice-1.0.jar, which holds the
core framework. The other ones are either dependencies or extensions.

http://www.java.com/getjava
http://www.java.com/getjava
http://www.eclipse.org
http://www.eclipse.org
http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

12 Google Guice: Agile Lightweight Dependency Injection Framework

Table 2-1. Guice 1.0 Download Contents

FILE DESCRIPTION

guice-1.0.jar The core Guice framework

guice-spring-1.0.jar Spring Framework integration
functionality (bind Spring beans)

guice-servlet-1.0.jar Web-related scope additions

guice-struts2-plugin-1.0.jar Plug-in to use Guice as the DI engine
for Struts 2

aopalliance.jar AOP Alliance API, needed to use
Guice AOP

To follow along with the code examples in this chapter, create a new Java project
in your IDE, and add guice-1.0.jar to the class path. Note that because some
code listings only show the code relevant to the given section, some examples
will not run as they are, but trying out the examples will definitely give you a
good feel for how Guice works.

Preparing the Code
Let’s revisit the example we used in the first chapter. Remember how I tagged
the Chef constructor with @Inject? Take a look at Listing 2-1 for a refresher.
Listing 2-1. Chef, Tagged with @Inject

public class Chef {
 private final FortuneService fortuneService;

 @Inject
 public Chef(FortuneService fortuneService) {
 this.fortuneService = fortuneService;
 }

 public void makeFortuneCookie() {
 new FortuneCookie(fortuneService.randomFortune());
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 13

Tagging a constructor with @Inject is essentially telling Guice where you want a
dependency to be provided for you. Not only does this work for constructors but
you can also apply @Inject to fields or methods.
Which style you choose depends on the class’s requirements and arguably your
personal taste. Table 2-2 sums up your choices.
Table 2-2. Guice Injection Styles

LOCATION
INJECTION

ORDER
MOTIVATION COMMENT

Constructor First Class immutability1
Mandatory dependencies

Only one allowed
with @Inject.

Field Second
Quick prototyping
Code that doesn’t need
testing

Injection order is
random.

Setter Third
Dealing with legacy
classes
Optional dependencies2

Injection order is
random.

1. Remember that immutability also means thread safety.

2. The @Inject annotation has an optional property, which is set to false by default but can be set to
true, which tells Guice to ignore values for which there are no bindings available. This applies to the
entire injection point though. so or you make all setter parameters optional, or you can isolate optional
dependencies using a different setter method for each parameter. Depending on the situation, you could
also favor injecting an empty dummy object, also known as using the Null Object design pattern. In that
case there is no need to set the optional property to true. That said, this optional property also
works when using field injection, but obviously not when injecting constructors.

By “injection order is random,” I mean that you should not rely on the order of
injection. For example, if your class had two setters tagged with @Inject, you will
never be sure which one will get called first by Guice. Guice often appears to use
the order in which the methods were declared, but injection order can vary
depending on the JVM you use, so assume the order is random.
Setter injection is a concept that is often misunderstood. If you’re used
accustomed to using Spring, you’ve been probably using what it calls setter
injection—effectively, injection of JavaBean-style setters, which mean the

14 Google Guice: Agile Lightweight Dependency Injection Framework

methods you want to inject should be named setXXX, where XXX is the name of the
single property that needs mutating. Guice, however, does not depend on this
naming convention and can handle multiple parameters. The reasoning behind
this is that it’s also valid to want to inject methods that don’t mutate a property
but, for example, execute some kind of initialization logic right after object
creation. But know that, as with Spring’s setter injection, methods marked for
injection get called with the appropriate values right after Guice creates the
object for you. Once the object is fully initialized, Guice gets out of the way, and
no more magic happens. So when you call the method yourself later, Guice does
not magically provide some value for you.
What does work when it comes to injection is inheritance. If you subclass a class
that features @Inject annotations, injection works as expected. First, the
superclass gets injected, then the subclass. This only works for concrete classes
though; you can’t tag an implemented interface’s members with @Inject and
cross your fingers. Well you can, but it’s not going to work.
It’s also possible to inject static members or even members on objects that Guice
didn’t construct, but there’s more on that in the next chapter.
One final interesting point to note is that whichever type of injection you use, the
target’s visibility does not matter. Guice will inject anything tagged with @Inject
whether it’s private, package private, protected, or public.

Caution: Guice’s ability to inject regardless of visibility can come in handy,
but remember that injecting into private members is usually not needed
and probably a bad idea. Unless you’re injecting a public member, always
think twice, “Is there a public member by which I can achieve the same?”
Or in the case of private members, “Is it fine to cripple this class’s
testability?” Field injection especially is a frequent offender, because fields
are typically private. If your class is important enough to need testing, it
should be possible to change its state without resorting to nasty reflection
tricks for bypassing its visibility. Don’t depend on Guice being there; in fact,
unit tests shouldn’t need Guice at all.

 Google Guice: Agile Lightweight Dependency Injection Framework 15

Next up, I need to tell Guice that the chef wants a FortuneServiceImpl object
when a FortuneService is requested.

Specifying an Implementation
Using the Module subclass I made previously, I can tell Guice which
implementation to use for the Chef class’s FortuneService, as illustrated in Listing
2-2.
Listing 2-2. Telling Guice Which FortuneService Service to Use

public class ChefModule implements Module {
 public void configure(Binder binder) {
 binder.bind(FortuneService.class)
 .to(FortuneServiceImpl.class);
 }
}

You can also subclass the AbstractModule abstract class instead of implementing
Module. This abstract class implements Module itself and exposes a no-argument
configure() method. To purists, using AbstractModule probably looks a bit scarier
than implementing the actual interface, but it’s more concise.
Listing 2-3. AbstractModule Saves You Some Keystrokes

public class ChefModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class).to(FortuneServiceImpl.class);
 }
}

I’ll explain more about the binder syntax and modules in Chapter 3, “From
Journeyman to Bob.”

Bootstrapping
To start using Guice, you create an instance of Injector . This central Guice type
takes a collected set of Module implementations and injects our beloved Chef
class. To create the Injector, I use one of the factory methods on the Guice class,
which is a simple static class, to serve as a starting point for creating injectors.
This method, createInjector(...), takes a varargs argument, which means you

16 Google Guice: Agile Lightweight Dependency Injection Framework

can specify zero or more modules, separated by a comma. For Chef, I only need
one. I’ll have one cookie, please. Listing 2-4 to the rescue!
Listing 2-4. Bootstrapping Guice and Creating Chef

public class FortuneApplication {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new ChefModule());
 Chef chef = i.getInstance(Chef.class);
 chef.makeFortuneCookie();
 }
}

FortuneServiceImpl doesn’t have any dependencies itself, but if it did, Guice
would have resolved its dependencies too. This recursive behavior allows you to
use the Injector somewhere high up the stack in your application; Guice will
then create the entire graph of dependencies below a requested object
recursively.
The core Guice team has been reluctant to call this class a container, as you
would probably expect it to be named. Naming it Container would make you
think that your objects sit somewhere in a container being managed, having a life
cycle, and what not, which is not the way Guice does DI. The Injector injects
your objects, and from then on, you’re in control.

Note: You will want to minimize the dependency on the Injector to avoid
having a direct dependency on Guice. This is usually not very hard to do, as
I’ll show in Chapter 5.

If you look around a bit, you’ll see that createInjector(...) also has an overload
that takes a Stage enumeration as the first parameter. The Stage of the Injector
defines the mode of operation.
Using Stage.DEVELOPMENT means you’ll have a faster start-up time and better error
reporting at the cost of run-time performance and some up-front error checking.
Stage.DEVELOPMENT is also the default. Using Stage.PRODUCTION on the other hand
(shown in Listing 2-5), catches errors as early as possible and takes the full
performance hit at start-up. But don’t worry; Guice’s overall performance is

 Google Guice: Agile Lightweight Dependency Injection Framework 17

surprisingly good anyway. Just don’t forget to switch on Stage.PRODUCTION for
production code.
Listing 2-5. Specifying a Stage for the Injector

Injector i = Guice.createInjector(Stage.PRODUCTION, new ChefModule());

Choosing Between Implementations
The chef was obviously not pleased to figure out that the FortuneServiceImpl only
had two fortunes to offer. To get some more variation in the messages, our chef
subscribes to a second service, the MegaFortuneService, shown in Listing 2-6.
Because the original subscription doesn’t end until the end of the year, some way
to choose between the two is necessary.
Listing 2-6. MegaFortuneService

public class MegaFortuneService implements FortuneService {
 private static final List<FortuneService> SERVICES =
 Arrays.<FortuneService>asList(
 new FunnyFortuneService(),
 new QuoteFortuneService()
);

 public String randomFortune() {
 int index = new Random().nextInt(SERVICES.size());
 return SERVICES.get(index).randomFortune();
 }
}

Previously, the Guice knew which FortuneService to inject for Chef, because we
had a binding in a Module implementation (see Listing 2-2). Common sense tells
me to just add another binding for MegaFortuneService. Listing 2-7 shows what I
came up with.
Listing 2-7. Adding Another Binding: Does This Work?

public class CommonSenseModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class).to(FortuneServiceImpl.class);
 bind(FortuneService.class).to(MegaFortuneService.class);
 }
}

18 Google Guice: Agile Lightweight Dependency Injection Framework

You can easily modify the code in Listing 2-4 to create the Injector with the
Module from Listing 2-7. However, when you do, you’ll notice that Guice blows
up at start-up. You’d see something like Listing 2-8.
Listing 2-8. Oops, I Did It Again

Exception in thread "main" com.google.inject.CreationException:
Guice configuration errors:
1) Error at chapter2.CommonSenseModule.configure(CommonSenseModule.java:12):
A binding to chapter1.FortuneService was already configured at
 chapter2.CommonSenseModule.configure(CommonSenseModule.java:11).

Oh man, Guice doesn’t like that. What did I forget? If you take a second look at
the Chef constructor, shown in Listing 2-9, you’ll see.

Note: Guice’s exceptions comprise a feature on their own. They go the
extra mile and present you a human readable message and line numbers
from your configuration code where appropriate. You’ll be pleasantly
surprised.

Listing 2-9. The Chef Constructor

 @Inject
 public Chef(FortuneService fortuneService) {
 this.fortuneService = fortuneService;
 }

Of course! Guice can’t tell which FortuneService we need for Chef! So even if
Guice would allow our CommonSenseModule bindings, using them would have never
worked, because Guice has two FortuneService instances to choose from. I need
some way to tell Guice, “Give me the MegaFortuneService!” without having to use
the concrete implementations directly.
Instead of letting you write more configuration, Guice solves this problem
elegantly using binding annotations. Listing 2-10 provides an example.

 Google Guice: Agile Lightweight Dependency Injection Framework 19

Listing 2-10. The Chef Constructor with a Binding Annotation

 @Inject
 public Chef(@Mega FortuneService fortuneService) {
 this.fortuneService = fortuneService;
 }

Now I can tell Guice which service is which in a module, as shown in
Listing 2-11.
Listing 2-11. A Module Using Binding Annotations

public class BindingAnnotationModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class).to(FortuneServiceImpl.class);
 bind(FortuneService.class)
 .annotatedWith(Mega.class)
 .to(MegaFortuneService.class);
 }
}

Again, my configuration remains highly readable, “Bind all requests for
FortuneService annotated with @Mega to MegaFortuneService.”
One might hope that Guice provides these binding annotations for you. Alas, that
wouldn’t work for the same reason actors shouldn’t go into politics: sometimes,
you just have absolutely no idea what you’re talking about. Similarly, Guice
can’t possibly know how to name your binding annotations, what their visibility
should be, or where you would want to place them (in a constructor, method, or
so on). That’s why you need to create them yourself, much like in the @Mega
example in Listing 2-12. Most binding annotations look very similar, so don’t
feel bad copying and pasting the boilerplate code. In fact, I even recommend
doing so, because that means you’re less likely to forget something.
Listing 2-12. @Mega Binding Annotation

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.PARAMETER})
@BindingAnnotation
public @interface Mega {}

Scary stuff. Table 2-3 explains what all that gibberish means.

20 Google Guice: Agile Lightweight Dependency Injection Framework

Table 2-3. Binding Annotation, Line by Line

CODE EXPLANATION

@Retention(RetentionPolicy.RUNTIME) The annotation should be
discoverable at run time.

@Target({ElementType.Field,
 ElementType.PARAMETER})

This is where the annotation can
appear.

@BindingAnnotation This tells Guice that this is a binding
annotation.

public @interface Mega {} The actual annotation is declared.

To support this binding annotation functionality, Guice internally identifies all
bindings with an instance of the Key class. A Key instance is a combination of a
type (FortuneService) and an optional annotation type (@Mega). If you played
around with the Injector a bit in the previous section, you probably noticed that
the getInstance(...) method has an overload that takes a Key object instead of a
Class one. There’s only one Chef, but if you would like to get a
MegaFortuneService directly, you would do so as in Listing 2-13.
Listing 2-13. Getting an Instance by its Key

injector.getInstance(Key.get(FortuneService.class, Mega.class));

If you call getInstance(...) with a Class, for example, Chef.class, Guice actually
delegates to getInstance(Key) internally. So the two lines in Listing 2-14 are
essentially the same.
Listing 2-14. Get by Class or by Key

injector.getInstance(Chef.class);
injector.getInstance(Key.get(Chef.class));

Understanding that every single binding is internally represented by a Key object,
including simple class bindings like Chef, will save you lots of time. Especially
when you start using Guice’s object lifetime support (scopes). I can’t emphasize
this enough, so repeat it after me: Every binding is represented by a Key, the
whole Key and nothing but the Key, so help me Bob.

 Google Guice: Agile Lightweight Dependency Injection Framework 21

Implicit Bindings
In the fortunes example, you’ve probably noticed that I never made an explicit
binding for Chef. This is because bindings don’t always have to be explicit. As a
rule of thumb, if there is no ambiguity, Guice will figure it out for you. This
applies to concrete classes. As shown in Listing 2-15, I could have configured an
explicit binding to Chef. This is kind of redundant, so I usually don’t bind
concrete classes explicitly.
Listing 2-15. Explicit Binding for Chef

public class ExplicitChefModule extends AbstractModule {
 protected void configure() {
 // no to(…) because you can't bind to the same class
 bind(Chef.class);
 }
}

Next to these implicit bindings, provided by Guice, you can also reduce
configuration yourself when working with interfaces. Guice comes with an
@ImplementedBy annotation that lets you specify which concrete class
implementation to use for an interface. For example, Listing 2-16 shows the
same FortuneService interface from Listing 2-2, now changed to use
@ImplementedBy.
Listing 2-16. Using @ImplementedBy

@ImplementedBy(FortuneServiceImpl.class)
public interface FortuneService {
 String randomFortune();
}

By using @ImplementedBy, you can get rid of modules altogether. Whether that’s a
good idea or not, I’ll leave up to you to decide. I usually stick to modules,
because they allow you to change your application’s configuration in a single
line of code, by including or excluding certain modules when creating the
Injector. However, you can use @ImplementedBy to specify a default
implementation, and then override it in a Module implementation. That way, when
creating an Injector without any modules, you’ll always get a default
implementation.

22 Google Guice: Agile Lightweight Dependency Injection Framework

Note: Module configuration always takes precedence over annotation
configuration.

Scoping
Guice’s default behavior is to create a new instance of an object each time that
object gets requested or injected. Scopes allow you to customize an object’s
lifetime. The canonical example is the built-in singleton scope, which makes sure
only one instance of an object exists for a given Injector and internal Key. This is
much, much better than using singletons manually, because this does not involve
using static factory methods (or writing any code at all). But, as with any
singleton, you’ll have to make sure that your class is thread safe if you’re going
to access it from multiple threads.
To apply a scope to our FortuneService bindings, we specify either a scope
annotation or an instance of the Scope class. For a singleton, these are
Singleton.class and Scopes.SINGLETON respectively. In Listing 2-17, I mix both of
these styles (not recommended).
Listing 2-17. Using Two Styles to Apply a Scope

public class ScopedModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class)
 .to(FortuneServiceImpl.class)
 .in(Singleton.class);
 bind(FortuneService.class)
 .annotatedWith(Mega.class)
 .to(MegaFortuneService.class)
 .in(Scopes.SINGLETON);
 }
}

In the next chapter, I’ll show you that it’s almost always better to bind to the
annotation instead of binding to the Scope instance directly.
You can also apply a scope by directly tagging your class with the @Singleton
annotation, but as with @ImplementedBy, bindings in modules always take
precedence.

 Google Guice: Agile Lightweight Dependency Injection Framework 23

The question that now is, “Do singletons load lazily or eagerly?” The short
answer is that this will depend on the Injector’s Stage, as I mentioned earlier. If
you want to make sure that your singleton is created at application start-up
(loaded eagerly), regardless of the Injector’s Stage or the binding’s usage, you
can specify that as in Listing 2-18.

Tip: Stage.PRODUCTION loads singletons eagerly; Stage.DEVELOPMENT does not.

Listing 2-18. Eager Singleton Loading

public class EagerSingletonModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class)
 .to(FortuneServiceImpl.class)
 .asEagerSingleton();
 bind(FortuneService.class)
 .annotatedWith(Mega.class)
 .to(MegaFortuneService.class)
 .asEagerSingleton();
 }
}

Loading singletons eagerly might be useful to execute initialization logic for
your application. You can even create dependencies between them in such a way
that you’re sure they’ll come up in the right order.
I’ve only talked about the singleton scope for now, because it’s the only scope
that ships with core Guice (guice-1.0.jar). The 1.0 distribution also comes with a
guice-servlet-1.0.jar archive containing the web-specific (servlet-specific)
scopes: request and session. I’ll talk about those in the next chapter; I promise.

Debunking Myths
Before finishing up in this chapter, let’s investigate a couple of common myths
that haunt Guice. Some people who’ve seen the core Guice concepts, like you
have now, are not entirely comfortable with them. It seems like a pretty good
framework, but it still seems to leave a weird taste in the mouth. In my
experience, the reason is often twofold. Take a look at the following statements:

24 Google Guice: Agile Lightweight Dependency Injection Framework

 Annotations seem to be intrusive and introduce tight coupling.
 The Spring Framework has done what Guice does for years.

The first statement is simply not true. There’s an interesting discussion on this on
Bob Lee’s blog (http://crazybob.org/2007/06/lies-damned-lies-and-xml.html)
that describes why. I’ll summarize it for you here. Let’s start off with Kevin
Bourrillion’s words on annotations from
http://smallwig.blogspot.com/2007/06/coupling.html: “They do absolutely
nothing to impede you from testing your code, or from using the classes with
Spring.”
Bob Lee goes on to add that you can easily create a separate Guice integration
package for your application if you don’t want a compile-time dependency on
Guice. Though SpringSource’s Colin Sampaleanu argued that you’d still need
the Guice JAR on your classpath when migrating to another framework because
you’re using Guice annotations in your code, in reality, this is a nonissue. Here’s
why:
 Annotations don’t do anything; they’re just metadata. Is JavaDoc intrusive if

you mention Guice in it? As Kevin also points out in the blog post I quoted
above, tight coupling would mean that “one cannot function without the
other”. Annotations do not introduce this kind of coupling.

 Technically speaking, you can get rid of the annotations in your application’s
compiled .class files. Just provide your own versions of the Guice
annotations that don’t have Retention.RUNTIME set.

http://crazybob.org/2007/06/lies-damned-lies-and-xml.html
http://crazybob.org/2007/06/lies-damned-lies-and-xml.html
http://smallwig.blogspot.com/2007/06/coupling.html:
http://smallwig.blogspot.com/2007/06/coupling.html:

 Google Guice: Agile Lightweight Dependency Injection Framework 25

Note: At this point, people often argue that Guice should make it possible
for users to configure their own annotation, instead of @Inject. This appears
to be a good idea, but it wouldn’t buy you anything. Even if you were using
your own annotations, you would still have them in your code, because you
want to use Guice. I don’t see how that’s any different to using Guice’s
@Inject. On the other hand, that feature would enable Guice to make use of
EJB 3’s @Resource annotations, for example. That’s a valid use case, but as
you’ll see in the last chapter, there will be a more general way to enable
this kind flexibility in a future Guice release.

I think the conclusion is simple. Some people hate it when JavaDoc pollutes their
code; others don’t. The annotations debate is, in my opinion, a matter of taste and
nothing more. There is no solid technical argument against the use of
annotations.
Let’s move on to the second statement, which asserts that the Spring Framework
has done what Guice does for years. That’s true, as long as you’re talking about
the DI idiom in general. But there are some differences that you should be aware
of.
First, the Spring Framework still heavily depends on XML configuration. Your
configuration, containing object wiring as well as other properties, is externalized
by default when using the framework. In more recent versions of the framework,
notably version 2.5, Spring has added support for annotation-driven object
wiring. Unfortunately, you will probably still end up defining your beans in
XML. You can get away with a single line of XML if you really want to, but that
mode of operation requires you to put your bean configuration directly on the
beans themselves, which is not as flexible as, say, using Guice modules.
Alternatively, you can also use the JavaConfig option, but that feels like writing
XML in Java. Anyway, my advice is to stay away from Spring’s annotation-
driven configuration options altogether. If you’re going to use Spring, use the
XML. It’s the best documented option, and tools like Spring IDE are good
enough to compensate for a lot of the annoyances.

26 Google Guice: Agile Lightweight Dependency Injection Framework

With Guice your configuration will be done in Java by default, with externalized
properties as an option (see Chapter 3). Externalized object wiring configuration
is highly overrated and often not worth the added complexity and tooling
dependencies. When was the last time you really changed your object wiring
after deployment?

Note: I should mention that you can and probably should solve your Guice
dynamic object wiring needs, if any, by loading modules dynamically and
not by fully externalizing configuration in a custom file format or scripting
language (like Ruby). Chapter 5 discusses this option in the “Configuration
Discovery” section.

Second, because Guice uses Java as its primary configuration option, its modules
also get some things for free:
 There’s no need to use tooling other than a Java IDE.
 Java’s type safety means that the compiler catches a lot of your mistakes

early.
 You get Java’s documentation standard, JavaDoc.
 You also get Java’s test frameworks, like JUnit.

As Bob Lee likes to put it, types are the natural currency of Java since version 5
of the platform.
Third, Guice is much smaller, is easier to learn and use, and has a much better
power to complexity ratio than Spring. For an example of Guice’s simplicity, I
urge you to take a look at Guice AOP (explained in Chapter 4). The Spring
Framework, however, definitely has its value, including full-featured integration
with lots of open source and commercial products and various Java Enterprise
Edition (Java EE) standards. I’ve used Spring in the past and will probably
continue to use it. Guice is not the new Spring and doesn’t try to be. In fact, as
I’ll demonstrate in Chapter 7, there’s no reason why both can’t coexist.

 Google Guice: Agile Lightweight Dependency Injection Framework 27

Last but not least, let me emphasize that Guice is a DI framework, not a full-
stack application framework like Spring. Comparing them in terms of feature set
is like comparing apples and oranges. Use the frameworks that fit your needs.

Summary
I’ve given you lots to think about in this chapter. Now that you have most of the
basic building blocks, you’re ready to stop eating fortune cookies and dive into
the advanced functionality. Let me recap what you’ve seen so far.
To use Guice, besides using a DI style of programming, you generally do the
following:
 Tag your classes with @Inject and an optional binding annotation wherever

you want Guice to provide a dependency for you.
 Tell Guice which implementation you want as a dependency. If it’s not an

implicit binding (a concrete class or through annotation configuration),
specify those bindings in an implementation of Module.

 Make sure that your bindings are scoped correctly. Scopes define the
binding’s instances lifetimes.

 Create the Injector with the modules you’ve created, and get an instance of
any class Guice knows about.

You also learned that
 Annotations are not evil.
 Both the Spring and Guice frameworks have their strengths.

And remember: every binding is represented by a Key, the whole Key and nothing
but the Key, so help me Bob.

28 Google Guice: Agile Lightweight Dependency Injection Framework

 Google Guice: Agile Lightweight Dependency Injection Framework 29

Chapter 3: From Journeyman to Bob
Now that you’re familiar with the Guice basics, you’re ready to go become a
Guice master: scope like no one has scoped before; the world is at your Injector;
the annotations lay at your feet, and so on—unless, of course, you skipped the
previous chapter, you rascal.
Seriously, although you have a good understanding of what Guice is about, you
still need that little bit of extra know-how to get going. Not everything you code
against will implement an interface or will have a DI-style design, and you need
to be prepared to deal with that. Also, Guice has some handy shortcuts when it
comes to, for example, handling constant values or injecting configuration from a
properties file. In this chapter, I’ll stick all that in a giant blender with some best
practices and, heaven forbid, some more theory and serve it to you, ice cold.

Providers
When you request an object from Guice, it looks for a suitable constructor and
executes it. However, sometimes this simple construction mechanism doesn’t cut
it:
 You want to delay new object construction until some point in time in your

code execution, instead of using a direct dependency. For example, client
code gets to decide which database to use, and you don’t want to connect to
all of them right away.

 You need multiple instances of a class. For example, a GumballMachine class
would give out multiple instances of the same Gum type.

 You want to give out your own managed instance of a class. Often the same
result can be achieved using scopes (more on scopes later in this chapter), but
there are cases where using a Provider feels more natural.

 You need an instance of a type that is expensive to create or has a fair chance
of throwing an exception during creation. To isolate this risk, more control
over object creation can be desirable.

30 Google Guice: Agile Lightweight Dependency Injection Framework

 You’re using a third-party API that you can’t modify directly (can’t add
@Inject).

 You’re working with legacy code that, for example, depends on a factory
class or method for object construction.

To overcome these problems, Guice has the concept of a Provider. Instead of
binding to an implementation, you bind to an implementation of the single
method interface shown in Listing 3-1.
Listing 3-1. The Provider Interface

public interface Provider<T> {
 T get();
}

A Provider implementation is basically a small factory class that Guice will
invoke whenever it needs an instance of the given type.
Let’s configure a provider for the GumballMachine scenario described previously;
see Listing 3-2.
Listing 3-2. Provider-Backed Gum

public class Gum {}

public class GumballMachine {
 @Inject
 private Provider<Gum> gumProvider;

 public Gum dispense() {
 return gumProvider.get();
 }
}

public class GumProvider implements Provider<Gum> {
 public Gum get() {
 return new Gum();
 }
}

public class GumModule extends AbstractModule {
 protected void configure() {
 bind(Gum.class).toProvider(GumProvider.class);
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 31

public class GumballExample {
 public static void main(String[] args) {
 Injector injector = Guice.createInjector(new GumModule());
 GumballMachine m = injector.getInstance(GumballMachine.class);
 System.out.println(m.dispense());
 System.out.println(m.dispense());
 }
}

Running the GumballExample class will show you that it returns two distinct
instances, for example:
Gum@10f11b8
Gum@544ec1

Because Guice implicitly makes a Provider instance available for all bindings
(including implicit bindings), I could have dropped the use of the GumModule
altogether (thus not using GumProvider):
public class GumballExample {
 public static void main(String[] args) {
 Injector injector = Guice.createInjector();
 GumballMachine m = injector.getInstance(GumballMachine.class);
 System.out.println(m.dispense());
 System.out.println(m.dispense());
 }
}

Now, what if Gum itself needs some dependency? Well, you can inject into
providers like any other class. But you’ll need to define one provider explicitly,
like I did earlier. For example, you could apply a color to a Gum (if there’s a
binding for color, at least) as shown in Listing 3-3.
Listing 3-3. Injecting into a Provider

public class BlueGumProvider implements Provider<Gum> {
 @Inject Color color;
 public Gum get() {
 return new Gum(color);
 }
}

Notice that I’m using field injection in these examples. Usually, you shouldn’t
feel guilty about using field injection in providers; they don’t need testing

32 Google Guice: Agile Lightweight Dependency Injection Framework

anyway. Reconsider, however, when the Provider will be hit by multiple threads
concurrently. In such cases, using constructor injection combined with final
fields is a much more robust option. The same goes for all your other objects,
actually. If you want to learn about safe publication or concurrency in general, I
highly recommend Java Concurrency in Practice by Brian Goetz, Tim Peierls,
Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea (Addison-Wesley
Professional, 2006). If your providers or other objects are not thread safe, make
sure that’s on purpose.

Tip: If you’re ever dying to pass in a parameter to one of your Provider
instances, you should probably consider rolling your own intermediate class
(using the GoF’s Builder pattern) or take a look at AssistedInject
(http://publicobject.com/2007/06/assistedinject-easier-way-to-help-
guice.html). The latter will probably make its way into Guice 2.0 in some
form. Also, when working with lots of legacy classes, take a look this post
on Tim Peierls’s blog: http://tembrel.blogspot.com/2007/04/guice-utility-for-
binding-to-legacy.html.

Before we move on to the next section, consider a final quick fact: much like
@ImplementedBy, there’s also an @ProvidedBy annotation that let’s you slap a
Provider directly on a type. Because both concepts are so similar, I’m not going
to present an example here, but know the capability is there and that it’s there for
a similar purpose—defaulting.
For more examples on Provider usage, see Chapters 6 and 7.

@Named
Unlike rain, binding annotations don’t coming falling out of the sky. But besides
crafting your own custom binding annotations, there’s also the option of reusing
a single annotation called @Named. This annotation uses a string identifier to
differentiate among different bindings. While using @Named comes at the cost of
less type safety, it sometimes makes sense to avoid writing a bunch of

http://publicobject.com/2007/06/assistedinject-easier-way-to-help-guice.html
http://publicobject.com/2007/06/assistedinject-easier-way-to-help-guice.html
http://publicobject.com/2007/06/assistedinject-easier-way-to-help-guice.html
http://tembrel.blogspot.com/2007/04/guice-utility-for-binding-to-legacy.html
http://tembrel.blogspot.com/2007/04/guice-utility-for-binding-to-legacy.html
http://tembrel.blogspot.com/2007/04/guice-utility-for-binding-to-legacy.html

 Google Guice: Agile Lightweight Dependency Injection Framework 33

annotations to get things going, which you’ll find particularly useful when
prototyping a piece of code or creating a large number of bindings automatically.
To use @Named, simply tag your injection point and specify a string identifier, as
shown in Listing 3-4.
Listing 3-4. Using @Named

public class ActionMovie {
 @Inject @Named("stallone")
 private Actor actor;
}

There’s something notable about how you would bind this—the code in Listing
3-5 appears to work but is not correct.
Listing 3-5. Binding @Named, the Wrong Way

bind(Actor.class).annotatedWith(Named.class).to(...);

Besides matching the Actor for our ActionMovie, the line in Listing 3-5 would
match every Actor in the universe who has been tagged with @Named! Imagine all
the actors looking like Sly. Seriously, you need some way to specify the name of
the actor in the binding. To do that, you bind to an annotation generated by
Guice’s named(...) utility method on the Names class.
Listing 3-6. Binding @Named, the Right Way

bind(Actor.class).annotatedWith(Names.named("stallone")).to(...);

Note: The named(...) method generates a subclass of the @Named annotation
on which Guice can match internally, because you can’t create an instance
of an annotation directly—clever stuff to think about.

There you have it. Remember to use @Named sparingly; there’s nothing protecting
you from typos in string identifiers, but it is da bomb for examples or quick
prototyping code.

34 Google Guice: Agile Lightweight Dependency Injection Framework

Binding Constants
Guice also features a shorthand syntax for binding constant values, which is
presented in Listing 3-7.
Listing 3-7. Binding Constants

bindConstant().annotatedWith(…).to(…);

Did I forget to specify a type or what? It’s kind of hard to explain; you can see
the constants you bind as Guice’s last hope. If it can’t find an exact binding for
an injection point that specifies both a type and an annotation, it will start
looking to see if it can use or convert a constant bound to the same annotation to
the desired type. That’s why you don’t specify a type and why the annotation is
mandatory.
The to(...) method takes either a primitive value (e.g., char), a String, an Enum or
a Class. Guice provides automated conversion for some of these values. Table 3-
1 sums up the conversions that are present in Guice 1.0.
Table 3-1. Constant Conversions Performed by Guice

BINDING DESTINATION

Primitive (e.g., int) Corresponding primitive wrapper
(e.g., Integer)

Primitive wrapper Corresponding primitive

String Primitive

String Primitive wrapper
String Class

String Enum

Note that, although all the type conversions in Table 3-1 are for immutable types,
nothing in Guice forces you to make your injected constants final. So, technically
speaking, this feature has little to do with binding constants. By the way, String
obviously has no corresponding primitive type, so remember that you can’t bind
an int value and inject it into a String field.

 Google Guice: Agile Lightweight Dependency Injection Framework 35

Note: Currently (in Guice 1.0), it is not possible to provide your own
conversion logic.

Now, let’s take a look at some examples. Consider the ConcertHall class in
Listing 3-8.
Listing 3-8. ConcertHall

public class ConcertHall {
 @Inject @Named("capacity")
 private int capacity;

 public String toString() {
 return String.format("%s[capacity=%s]",
 getClass().getName(), capacity);
 }
}

I’ll now use bindConstant() to bind a capacity. Let’s start off by using an int
value, as shown in Listing 3-9.
Listing 3-9. Running the ConcertHall Example with capacity Bound
to an int

public class ConcertModule extends AbstractModule {
 protected void configure() {
 bindConstant()
 .annotatedWith(Names.named("capacity"))
 .to(322);
 }
}

public class ConcertExample {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new ConcertModule());
 ConcertHall hall = i.getInstance(ConcertHall.class);
 System.out.println(hall);
 }
}

Running this example prints chapter3.constants.ConcertHall[capacity=322] on
the console. At this point, no conversion was needed, because we used an int
value for both locations. Let’s try its wrapper type, Integer, in Listing 3-10.

36 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 3-10. ConcertHall with Integer capacity

public class ConcertHall {
 @Inject @Named("capacity")
 private Integer capacity;

 public String toString() {
 return String.format("%s[capacity=%s]",
 getClass().getName(), capacity);
 }
}

If you run this example, you’ll see that it still prints out the same value:
chapter3.constants.ConcertHall[capacity=322]. Not surprisingly, you could turn
the current binding to injection point int-to-Integer conversion around to be an
Integer-to-int conversion.

Note: Primitive wrapper types (e.g., Integer) are supported using Java’s
autoboxing feature. When Java doesn’t find a to(...) overload that takes an
Integer or a superclass thereof, it will search for an overload that takes the
primitive equivalent, int, and will convert the Integer object to an int value
automatically. So technically, this conversion is provided by Java, not by
Guice.

You could also bind to a String value, as shown in Listing 3-12.
Listing 3-12. ConcertExample Modified to Use String

bindConstant()
 .annotatedWith(Names.named("capacity"))
 .to("322");

Again, the same result can be seen on the console:
chapter3.constants.ConcertHall[capacity=322].
Binding classes and enums is also an interesting option. So let’s add some
properties to ConcertHall in Listing 3-13.

 Google Guice: Agile Lightweight Dependency Injection Framework 37

Listing 3-13. ConcertHall Additions

public enum Setting {
 INDOOR, OUTDOOR
}

public class BigStage {}

public class ConcertHall {
 @Inject @Named("capacity")
 private int capacity;

 @Inject @Named("stage")
 private Class<?> stageType;

 @Inject @Named("setting")
 private Setting setting;

 public String toString() {
 return String.format("%s[capacity=%s, stageType=%s, setting=%s]",
 getClass().getName(), capacity, stageType, setting);
 }
}

To run the newly modified ConcertHall class, I modify my code to look like
Listing 3-14.
Listing 3-14. Full-Featured ConcertModule

public class ConcertModule extends AbstractModule {
 protected void configure() {
 bindConstant()
 .annotatedWith(Names.named("capacity"))
 .to("322");
 bindConstant()
 .annotatedWith(Names.named("stage"))
 .to("chapter3.constants.BigStage");
 bindConstant()
 .annotatedWith(Names.named("setting"))
 .to("INDOOR");
 }
}

38 Google Guice: Agile Lightweight Dependency Injection Framework

public class ConcertExample {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new ConcertModule());
 ConcertHall hall = i.getInstance(ConcertHall.class);
 System.out.println(hall);
 }
}

On the console, you’ll now see chapter3.constants.ConcertHall[capacity=322,
stageType=class chapter3.constants.BigStage, setting=INDOOR].

Note: Constant bindings to an Enum or a Class don’t require you to specify
them as a String. I just want to show off the conversion capabilities.

Binding Generic Types
Because of the way Java implements its generics feature, using type erasure,
Guice is not able to bind to a generic class directly. Type erasure basically means
that only the Java compiler knows about generic types. Once compiled, all that
information is gone—erased, if you will. For example, you can’t say
List<String>.class, because there is no such class at run time. The obvious
drawback of this is that Guice cannot know the correct type parameter for a type
at run time; you can’t refer to a generified class in your bindings.

Tip: To learn more about generics and type erasure, see Angelika Langer’s
“Generics FAQ” at http://www.angelikalanger.com/GenericsFAQ/
JavaGenericsFAQ.html.

http://www.angelikalanger.com/GenericsFAQ

 Google Guice: Agile Lightweight Dependency Injection Framework 39

CONSTANT BINDING PITFALL
Be on your guard when using Guice’s constant bindings. If, for
example, you want to inject a long value, but you’ve specified an int
in your binding, your code will not work. Take a look at the following
example:

public class LongHolder {
 @Inject @Named("long")
 private Long theLong;
}

public class LongModule extends AbstractModule {
 protected void configure() {
 bindConstant()
 .annotatedWith(Names.named("long"))
 .to(123);
 }
}

public class LongHolderExample {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new LongModule());
 i.getInstance(LongHolder.class);
 }
}

Running this code will result in a ConfigurationException, telling you
that a binding for the LongHolder class’s Long value couldn’t be found.
What’s wrong? Well, I forgot to put an “L” after the value, to tell Java
this is a long value, not an int value:

bindConstant()
 .annotatedWith(Names.named("long"))
 .to(123L);

Now the code works as it should. To avoid this nasty problem
altogether, I recommend (where possible) the usage of an explicit
binding using Guice’s toInstance(...) support, which lets you bind to
an instance directly. Using this approach, the compiler simply won’t
let you provide an int.

40 Google Guice: Agile Lightweight Dependency Injection Framework

bind(Long.class)
 .annotatedWith(Names.named("long"))
 .toInstance(123L);

As you would expect, there’s a workaround to this language limitation: using a
special wrapper class you save the generic type information so that Guice can do
its magic. This type wrapper class’s functionality, TypeLiteral, is explained in
Neal Gafter’s blog entry “Super Type Tokens” (http://gafter.blogspot.com/
2006/12/super-type-tokens.html), albeit under a different name. To use
TypeLiteral, you need to subclass it on the spot.
Listing 3-15 provides an example of how to bind a generic type using
TypeLiteral.
Listing 3-15. Injecting Generic Types

public class ListUser {
 @Inject @Named("list") List<String> strings;
 @Inject @Named("list") List<Integer> integers;

 public String toString() {
 return String.format("%s[strings=%s, integers=%s]",
 getClass().getName(),
 System.identityHashCode(strings),
 System.identityHashCode(integers));
 }
}

public class TypeLiteralModule extends AbstractModule {
 protected void configure() {
 bind(new TypeLiteral<List<String>>(){})
 .annotatedWith(Names.named("list"))
 .to(new TypeLiteral<ArrayList<String>>(){});
 bind(new TypeLiteral<List<Integer>>(){})
 .annotatedWith(Names.named("list"))
 .to(new TypeLiteral<ArrayList<Integer>>(){});
 }
}

http://gafter.blogspot.com/2006/12/super-type-tokens.html
http://gafter.blogspot.com/2006/12/super-type-tokens.html
http://gafter.blogspot.com/2006/12/super-type-tokens.html

 Google Guice: Agile Lightweight Dependency Injection Framework 41

public class TypeLiteralExample {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new TypeLiteralModule());
 System.out.println(i.getInstance(ListUser.class));
 }
}

Running this example prints something like the following:
chapter3.typeliteral.ListUser[strings=24807938, integers=33208902]

You’ll definitely agree with me that using TypeLiterals makes your code look
like the programmer who wrote it just got run over by a tractor. To improve the
situation, I recommend that you use factory methods to simplify your code
(thanks to Brian Slesinsky for coming up with this idea). As an example, the
configuration code in Listing 3-16 is already much more readable—besides the
actual factory methods, that is. But you need to write that code only once.
Listing 3-16. Using Factory Methods for More Readable Code

public class TypeLiteralModule extends AbstractModule {
 protected void configure() {
 bind(listOf(String.class))
 .annotatedWith(Names.named("list"))
 .to(arrayListOf(String.class));
 bind(listOf(Integer.class))
 .annotatedWith(Names.named("list"))
 .to(arrayListOf(Integer.class));
 }

 @SuppressWarnings("unchecked")
 static <T> TypeLiteral<List<T>> listOf(final Class<T> parameterType) {
 return (TypeLiteral<List<T>>) TypeLiteral.get(new ParameterizedType() {
 public Type[] getActualTypeArguments(){return new Type[]
{parameterType};}
 public Type getRawType() { return List.class; }
 public Type getOwnerType() { return null; }
 });
 }

 @SuppressWarnings("unchecked")
 static <T> TypeLiteral<ArrayList<T>> arrayListOf(final Class<T> parameterType) {
 return (TypeLiteral<ArrayList<T>>) TypeLiteral.get(new ParameterizedType() {
 public Type[] getActualTypeArguments(){return new Type[]
{parameterType};}
 public Type getRawType() { return ArrayList.class; }

42 Google Guice: Agile Lightweight Dependency Injection Framework

 public Type getOwnerType() { return null; }
 });
 }
}

By the way, you don’t need to understand why this works. Create methods for
your commonly used types, and off you go. Also, take a look at the example
implementation scheduled for inclusion in the upcoming Guice version’s issue
tracker: http://code.google.com/p/google-guice/issues/detail?id=123.

Tip: In the contrary to generic types, arrays are baked into the Java
platform, so you can bind arrays like any other type. For example, if you
have a Provider<String[]> implementation called MyProvider, you could do
the following: bind(String[].class).toProvider(MyProvider.class).

Properties
It’s not always appropriate to have configuration in compiled Java. For example,
database connection information is something you’ll usually want to externalize.
To accommodate this use case, Guice can automatically generate bindings from a
Properties object.
On the same class you use to bind to @Named annotations, Names, there’s a method
called bindProperties(...) to which you pass the Guice binder and an in-memory
properties file. Take the file in Listing 3-17 as an example.
Listing 3-17. db.properties

db.url = jdbc:mysql://localhost/test
db.driver = com.mysql.jdbc.Driver
db.user = test
db.password = test

Using the Names.bindProperties(...) method, you can let Guice create @Named
bindings to the key of the given set of properties. You do need to write your own
I/O code, which I think should have been in core Guice. Until then, it’s not too
hard to write it yourself, like I did for Listing 3-18.

http://code.google.com/p/google-guice/issues/detail?id=123
http://code.google.com/p/google-guice/issues/detail?id=123
mysql://localhost/test

 Google Guice: Agile Lightweight Dependency Injection Framework 43

Listing 3-18. Loading and Using db.properties

public class PropertiesModule extends AbstractModule {
 protected void configure() {
 try {
 Properties databaseProperties = loadProperties("db.properties");
 Names.bindProperties(binder(), databaseProperties);
 } catch (RuntimeException e) {
 addError("Could not configure database properties", e);
 }
 }

 private static Properties loadProperties(String name) {
 Properties properties = new Properties();
 InputStream is = new Object(){}
 .getClass()
 .getEnclosingClass()
 .getResourceAsStream(name);
 try {
 properties.load(is);
 } catch(IOException e) {
 throw new RuntimeException(e);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException dontCare) {}
 }
 }
 return properties;
 }
}

public class PropertiesExample {
 @Inject
 public void databaseURL(@Named("db.url") String url) {
 System.out.println(url);
 }

 public static void main(String[] args) {
 Injector i = Guice.createInjector(new PropertiesModule());
 i.getInstance(PropertiesExample.class);
 }
}

Running this example prints jdbc:mysql://localhost/test.

mysql://localhost/test
mysql://localhost/test

44 Google Guice: Agile Lightweight Dependency Injection Framework

Tip: If you should encounter an error in your module configuration, for
example, if a properties file could not be found, use binder.addError(...) to
record the exception. Not throwing exceptions directly lets Guice collect
other possible configuration errors so that it can present you with a
complete set of errors instead of only the first one.

Static Injection
Although Guice encourages you to minimize the use of static methods or fields
through its dependency injection capabilities; sometimes, there’s the need to
inject them. Listing 3-19 shows how you can make use of static methods while
still taking advantage of Guice.
Listing 3-19. Using Static Injection

public class StaticModule extends AbstractModule {
 protected void configure() {
 bindConstant().annotatedWith(Names.named("s")).to("D'OH!");
 requestStaticInjection(StaticInjection.class);
 }
}

public class StaticInjection {
 @Inject
 public static void staticMethod(@Named("s") String str) {
 System.out.println(str);
 }

 public static void main(String[] args) {
 Guice.createInjector(new StaticModule());
 }
}

Guice injects the classes marked for static injection right before the Injector
instance returns from creation, so there’s no need to call getInstance(...) on
Injector. As you would expect, running this example prints D'OH! on the console.

 Google Guice: Agile Lightweight Dependency Injection Framework 45

Tip: You can usually avoid the use of static methods and fields by scoping
your objects correctly.

Custom Scopes
In the previous chapter, I demonstrated the singleton scope. To explain how
scopes work, I’m going to create an implementation of the default scope, which,
in essence, is not a scope because it just creates one new instance per injection
request. To implement a scope, you need to implement the Scope interface, which
is, in Guice tradition, a simple single-method interface (see Listing 3-20).
Listing 3-20. The Scope Interface

public interface Scope {
 <T> Provider<T> scope(Key<T> key, Provider<T> unscoped);
 String toString();
}

No wait—Listing 3-20 doesn’t only define a single method; it defines toString()
too. The Guice authors would really like you to define toString() on your custom
scopes, so they put it in so that they could define that contract in the JavaDoc.
Anyway, the scope(...) method is of most interest to us, so let’s see what it’s
supposed to do.
Looking at the JavaDoc, you see that the Key argument is the key of the instance
being provided, and the Provider is an unscoped provider for that Key that gives
out instances from an existing implicit or explicit binding. Guice will call your
scope(...) method implementation, so it’s up to you how to process that. As a
return value, you should return a Provider instance that gives out scoped objects.
A typical usage would be to store the actual scoped instances by Key and, if an
instance is not already in the store (a Map, persistent storage, and so on), to create
an instance using the Provider Guice gave you. You can take a look at the
existing Scopes.SINGLETON implementation that ships with Guice if you want to
see a realistic example. For now, I’m going with the simplest possible example;
the default scope shown in Listing 3-21.

46 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 3-21. Default Scope

public class CustomScopes {
 public static final Scope DEFAULT = new Scope() {
 public <T> Provider<T> scope(Key<T> key, Provider<T> creator) {
 System.out.println("Scoping "+key);
 return creator;
 }
 public String toString() {
 return CustomScopes.class.getSimpleName()+".DEFAULT";
 }
 };
}

To use it, you can bind directly to the instance. In Listing 3-22, I’ll use it to scope
instances of the Person class. As we all know, every person is unique.
Listing 3-22. Binding to the Scope Instance Directly

public class Person {
 public Person() {
 System.out.printf("Hi, I'm a Person. With hashCode '%s', I'm unique!%n",
 super.hashCode());
 }
}

public class CustomScopeModule extends AbstractModule {
 protected void configure() {
 bind(Person.class).in(CustomScopes.DEFAULT);
 }
}

public class UseCustomScope {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new CustomScopeModule());
 i.getInstance(Person.class);
 i.getInstance(Person.class);
 }
}

This prints something like the following, proving that it actually returns two
distinct instances:
Scoping Key[type=chapter3.scopes.Person, annotation=[none]]
Hi, I'm a Person. With hashCode '7841785', I'm unique!
Hi, I'm a Person. With hashCode '13141056', I'm unique!

 Google Guice: Agile Lightweight Dependency Injection Framework 47

Binding directly to the Scope instance works, but there’s another option that’s
actually more flexible. It’s also possible to bind to a scope annotation. This
means that you’d create an annotation to go with the scope and then tell Guice,
“Wherever bindings are made to this scope annotation, use the Scope instance I
provide here.” This extra abstraction has the advantage that you can easily switch
entire modules to use another scope by simply changing the implementation to
which the scope annotation points. As an extra, you can also tag classes with the
scope annotation and get rid of scoping code in your module altogether. But as
with @ImplementedBy, you’d probably use that functionality to provide a default
scope if none was configured in a module.

Caution: You currently can’t use a scope annotation next to @ImplementedBy
or @ProvidedBy. In such a case, use the scope annotation on the targeted
class. Guice will not—repeat, not—produce an error if you get this wrong.

Anyway, first I need a scope annotation. To make it stand out of the annotation
crowd, Guice prescribes me to annotate it with the @ScopeAnnotation annotation,
as shown in Listing 3-23.
Listing 3-23. @DefaultScoped

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@ScopeAnnotation
public @interface DefaultScoped {}

To start using the scope annotation, I now need to link it to the actual Scope
implementation, which can be done using the bindScope(...) binder method:
bindScope(DefaultScoped.class, CustomScopes.DEFAULT);

Now, I can bind to the annotation directly. Note that the order matters: first bind
the scope annotation, and only after that, bind objects that use it.
bind(Person.class).in(DefaultScoped.class);

Listing 3-24 contains the revised example.

48 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 3-24. Binding to a Scope Annotation

public class CustomScopeByAnnotationModule extends AbstractModule {
 protected void configure() {
 bindScope(DefaultScoped.class, CustomScopes.DEFAULT);
 bind(Person.class).in(DefaultScoped.class);
 }
}

public class UseCustomScopeByAnnotation {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new CustomScopeByAnnotationModule());
 i.getInstance(Person.class);
 i.getInstance(Person.class);
 }
}

For a confidence boost, I run it again:
Scoping Key[type=chapter3.scopes.Person, annotation=[none]]
Hi, I'm a Person. With hashCode '11665455', I'm unique!
Hi, I'm a Person. With hashCode '14800362', I'm unique!

Excellent! If I now wanted to use the annotation-driven style, that would be as
simple as slapping the annotation on Person. And not unimportantly, a line of
configuration can also be deleted, as shown in Listing 3-25.
Listing 3-25. Annotation-Driven Scoping

public class CustomScopeByAnnotationModule extends AbstractModule {
 protected void configure() {
 bindScope(DefaultScoped.class, CustomScopes.DEFAULT);
 // yay, less configuration!
 }
}

@DefaultScoped
public class Person {
 public Person() {
 System.out.printf("Hi, I'm a Person. With hashCode '%s', I'm unique!%n",
 super.hashCode());
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 49

Knowing how scopes work and understanding the differences between the
instance and annotation styles will make your Guice configuration better and
more flexible.
Tempting as it may be, you will rarely need to implement your own scope. If you
need caching, use a cache. If you need a custom Scope, take a look at the existing
ones again. The web scopes, for example, often come in handy.

Note: Why not use Scope for caching? Well, it’s not that much of a
mismatch, but I think there are better options. For example, using AOP to
implement caching is much more flexible, powerful, and feels more natural
than using a scope. The next chapter explains about AOP and what Guice
does in that area.

Web Scopes
Besides the built-in singleton scope (which is not used by default, remember), the
Guice 1.0 distribution also comes with a couple of web-related scopes: HTTP
request and HTTP session. When you use these, your scoped objects will live as
long as the HttpServletRequest or the HttpSession, respectively. These scopes
obviously make use of the Servlet API and need a web container that implements
the Servlet 2.3 specification or above. For all web examples in this book, I will
use Jetty, which you can download from the http://www.mortbay.org web site.
The actual bits for the web scopes are inside the guice-servlet-1.0.jar file from
the Guice 1.0 distribution, so first, don’t forget to add it to the classpath when
trying out these scopes. Once you have that, you need to do two things before
you can get started:
 Install the ServletModule Module for the Injector you will create.
 Configure the GuiceFilter servlet Filter in your web.xml file to intercept all

requests.
ServletModule will install both scopes and create bindings for a number of HTTP-
related objects:

http://www.mortbay.org

50 Google Guice: Agile Lightweight Dependency Injection Framework

 HttpServletRequest

 HttpServletResponse

 HttpSession

 A Map<String, String[]> type annotated with the @RequestParameters binding
annotation, containing HttpServletRequest ParameterMap.

To configure GuiceFilter, add something like this to your web.xml file:
<filter>
 <filter-name>GuiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>GuiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Next, you can scope your classes by using or binding to the @RequestScoped or
@SessionScoped scope annotations, or take a look at the ServletScopes class if you
wish to bind to the Scope instances directly.

Caution: Be careful when mixing scopes. If a singleton-scoped object keeps
a reference to a session-scoped one, you’ll end up with strange bugs for
sure. As a rule of thumb, never keep a reference in an object that points to
an object in a narrower scope. And if you really, really need to do it
anyway, you could inject the Provider instance instead and call get() on it
only when you’re absolutely sure that the requested object is currently in
scope. More on this in Chapter 7.

This short introduction actually concludes the raw servlet functionality in Guice
1.0. The next version of Guice will offer better integration with the Web, like
infrastructure to manage Injector creation or to inject into servlets. More
important is integration with web frameworks, for example, the Struts 2
integration that ships with version 1.0. There will be more on that in Chapter 5.

 Google Guice: Agile Lightweight Dependency Injection Framework 51

Organizing Modules
In the “Custom Scopes” section, I showed you how binding to a scope annotation
instead of a Scope implementation will add to your Guice application’s flexibility.
To fully enjoy what that gives you, there are better ways to organize your
configuration than putting it all in a single Module implementation. To go back to
the same example, you can create two modules so that the Scope registration is
easy to reuse. Listing 3-26 shows an example.
Listing 3-26. Scope Registration in a Separate Module

public class DefaultScopeModule extends AbstractModule {
 protected void configure() {
 bindScope(DefaultScoped.class, CustomScopes.DEFAULT);
 }
}

public class BindingsModule extends AbstractModule {
 protected void configure() {
 bind(Person.class).in(DefaultScoped.class);
 }
}

public class UseCustomScopeInModules {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(
 new DefaultScopeModule(),
 new BindingsModule()
);
 i.getInstance(Person.class);
 i.getInstance(Person.class);
 }
}

The code in Listing 3-26 works, but you need to be careful that you register the
scope module before you register any modules that use it—not to mention that
you need to remember to register it. A better option is to define an explicit
dependency on the DefaultScopeModule. To do that, use the install method on
Binder (or for AstractModule, the delegating method).

52 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 3-27. Using Binder.install(...)

public class BindingsModule extends AbstractModule {
 protected void configure() {
 install(new DefaultScopeModule());
 bind(Person.class).in(DefaultScoped.class);
 }
}

public class UseCustomScopeInModules {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new BindingsModule());
 i.getInstance(Person.class);
 i.getInstance(Person.class);
 }
}

To make the latter strategy, shown in Listing 3-27, even more flexible, you can
choose to create a top-level application Module that does nothing but install other
modules. It might sound ridiculous for this small example, but rest assured that
this will save you from a whole lot of frowning when working on a larger
project. Creating these groups of modules is what makes them such a joy to use.
Whatever code you will want to be able to test in isolation, put it in a different
module so that it can be swapped out easily. Listing 3-28 shows how this might
look for the example at hand.
Listing 3-28. Module Panacea

public class ApplicationModule extends AbstractModule {
 protected void configure() {
 install(new DefaultScopeModule());
 install(new BindingsModule());
 }
}

public class UseCustomScopeWithApplicationModule {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new ApplicationModule());
 i.getInstance(Person.class);
 i.getInstance(Person.class);
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 53

Besides using “testable in isolation” or logical software layers as Module
boundaries (service layer, data layer, and so on), you can also choose to use
packages as a boundary. A module-per-package strategy will allow you to make
all concrete implementation classes package private, which means that users of
the API must program against the interfaces. Just know that this ties you to
Guice. If only Guice can reach the implementation, your code is useless without
the framework, or at least without any DI framework. Anyway, I’ll talk more
about these visibility possibilities in Chapter 7.

The Binding EDSL
You’ve seen that Guice uses a special syntax for its modules that reads as if it
were an English sentence. To allow you to participate in a buzzword discussion,
here’s some of the theory behind it. This “human readable” concept is what you
could call an Embedded Domain Specific Language (EDSL). Simply put, it’s a
small language about DI within the Java language. Bob and company used a
concept called Fluent Interfaces (http://martinfowler.com/bliki/
FluentInterface.html) to implement this, which is a fluent method chaining style
of API to keep your configuration simple, readable, and maintainable. For this
book’s Appendix, I prepared a simplified example of how you would implement
this yourself, in case you’re interested.
Now, this section is really about a final review of what the Binding EDSL can
do. I’ll do this by example; to save some trees, I’ll use the AbstractModule syntax,
thus omitting binder. at the start of each example. Take it away!
bind(Implementation.class);

This explicitly binds the Implementation class to itself. Because Guice already
knows how to handle simple concrete classes, it’s not needed to define bindings
that look like the preceding example. It’s more likely that you’ll use something
like the following:
bind(Interface.class).to(Implementation.class);

Using this, you specify that all requests, be they injection requests or explicit
requests using the Injector, will return an Implementation class wherever an
object of the Interface type is requested. Remember that bindings in modules

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

54 Google Guice: Agile Lightweight Dependency Injection Framework

always take precedence: this will override annotation-style configuration like
@ImplementedBy or @ProvidedBy.
bind(Interface.class).toProvider(InterfaceProvider.class);

Much like the previous example, this one also defines what will be returned for
each Interface request, but this time, we’re using a binding to a
Provider<Interface> implementation. Guice will inject the return value of the
InterfaceProvider.get() method wherever an Interface instance is requested.
Providers don’t need to return a new instance each time, but it’s a good idea for
them to do so. If you want to control instance lifetime, use scopes instead:
bind(Interface.class).annotatedWith(Guicy.class).to(Implementation.class);

The preceding example is very similar to the second example, but here, I also
specify an annotation to bind to. Remember that Guice internally identifies
bindings by Key, which is a combination of a type (Interface.class) and an
optional annotation type (Guicy.class). This binding will match all the
combinations of Interface and Guicy, including occurrences in which Guicy holds
a value. It matches on both types and nothing else. If you would like to match on
more than the annotation type, consider using @Named or implement similar
functionality using your own annotation type:
bind(Implementation.class).in(Singleton.class);
// or, alternatively:
bind(Implementation.class).in(Scopes.SINGLETON);

Both of the preceding bindings bind the Implementation type in the singleton
scope: on the first line by binding to the binding annotation and on the second
line by binding to the Scope instance directly. This means that Guice will only
create one instance of Implementation per Injector and per Key. You are defining
singleton scope only for this binding, and thus only this Key. Other bindings to
Implementation that define a binding annotation will not be singleton scoped
unless you define them as such. And if you do, Guide will create two different
instances. Again, this binding overrides any scope annotations on the classes
themselves. To make sure a singleton loads eagerly no matter what the Injector’s
Stage is, use bind(Implementation.class).asEagerSingleton():
bind(new TypeLiteral<Interface<String>>(){}).to(StringImplementation.class);

 Google Guice: Agile Lightweight Dependency Injection Framework 55

This awful-looking code is the only way to bind a parameterized type. For all
Interface<String> requests, a StringImplementation will be returned. If you forget
to use TypeLiteral, the binding would match all the Interface requests, not only
the Interface<String> ones:
bind(Interface.class).toInstance(new Implementation());

In this example, you instantly provide an instance in your Module configuration,
thus you don’t allow Guice to construct Implementation or to inject into the
constructor. Guice will, however, perform field and setter injection on the
instance when the Injector is first created.

Tip: Using toInstance(...) is usually a bad idea, the exception being
constant bindings. First, it locks in the scope of the binding, because you
provide an instance directly. Second, you would be mixing application logic
with configuration. Third, you can’t use constructor injection, which makes
it harder to ensure that instances are immutable and thread safe. Avoid the
temptation, and consider using an eager singleton instead.

By the way, it is possible to inject into objects yourself, after they have been
constructed. To perform such after-the-fact injection on fields and setters, use the
Injector’s injectMembers(Object) method:
injector.injectMembers(someObject);

Anyway, let’s go back to the Binding EDSL for a final example.
bindConstant().annotatedWith(Names.named("one")).to("1");

The preceding line sets up a constant binding. Constant bindings don’t have a
type defined, and therefore, the binding annotation is mandatory. These bindings
are Guice’s last hope. When no binding to a given type and annotation is found,
Guice will start looking at the constant bindings with the same binding
annotation type and will, for a limited set of types, try to convert a matching
constant binding’s type to the desired one if needed.

56 Google Guice: Agile Lightweight Dependency Injection Framework

Because a lot of its examples can be combined, this section doesn’t cover all of
the Binding EDSL’s possibilities. You don’t need to know it all by heart anyway;
most IDEs have decent code completion to assist you while defining your
bindings.
One last interesting thing to note is that the Injector has several bindings
configured by default. The resulting instances are injectable, even in Providers
(but not in Scope instances, which are not managed). So yes, you can inject the
Injector—if you’re sure that you don’t just need one or more providers, that is.
When you’re done frowning, here’s the rundown of the default bindings:
 The Injector
 A Provider<T> instance for all types, even for the ones not bound to a Provider
 The JDK Logger instance for the class being injected
 The Stage constant defining the stage in which the Injector was created

How Guice Resolves Dependencies
You may never need to know this, but when you’re debugging a Guice problem,
you can come back to this section to make sure that your understanding about the
injection flow is correct. Perhaps it’s not a Guice problem; you never know.
Roughly the following events will happen when trying to fulfill an injection
request transitively:
1. Arrive at an injection point, and get the type of the injection point and its

binding annotation, if present. Next, for this key, try to find a binding. If there
is one, use it to create an instance, either directly or using a bound
Provider<T> or instance.

2. If no exact binding is available, go over the constant bindings to see if a
conversion is possible for constant bindings to the same annotation type.

3. If the injection point used an annotation type or value, produce an error now.
4. Otherwise, examine the type: look for @ImplementedBy or @ProvidedBy, and if

present, use it to locate an instance.
5. Try to create the type itself.

 Google Guice: Agile Lightweight Dependency Injection Framework 57

6. There are no options left; Guice can’t get the instance and will produce an
error.

Tip: Guice supports circular dependencies for all bindings that bind to an
interface.

Summary
If your Guice knowledge were like a movie, you’d now be horribly close to
looking at hundreds of police cars while Bruce Willis kisses some girl. But
before you move on to the last topic there is to know about core Guice, AOP,
here’s a quick summary of what you put yourself through in this chapter. You’ve
now learned that
 Providers help you deal with legacy code, third-party APIs, the multiple

instances problem, and delayed construction.
 @Named helps you get started quickly without having to create binding

annotations.
 Constant bindings are shorthand for defining simple values; they perform

magical conversions, and they are Guice’s last hope for annotated injection
points.

 Binding to generic types requires you to use an awkward syntax involving the
TypeLiteral class.

 Guice can create @Named bindings for you from a set of properties.
 It’s possible to inject static members.
 Scopes are a simple but powerful concept.
 There are web scopes for HTTP session and HTTP request.
 Organizing modules can be real fun if you do it right.
 The Binding EDSL is expensive talk for something that’s dead simple.

58 Google Guice: Agile Lightweight Dependency Injection Framework

 You don’t need to care much about how dependency resolution happens.
 You still don’t seem to need any XML.

 Google Guice: Agile Lightweight Dependency Injection Framework 59

Chapter 4: Aspect-Oriented Programming
Aspect-Oriented Programming, commonly abbreviated as AOP, is a concept that
will save you from copying and pasting the same lines of (boilerplate) code over
and over again. Follow me in my reasoning:
 Transaction handling code is everywhere in the code.
 Because transaction handling code is everywhere, there is more code.
 Because there is more code, there are more bugs.
 You miss the deadline, because there are too many bugs.
 You need to work overtime at the office, because you missed the deadline.
 Your firstborn said her first words while you were at the office.

Even if you’re not familiar with AOP, you know what I mean. Object-oriented
languages like Java have concepts to micromanage modularization. You have
been using classes, methods, and packages for years, but these concepts don’t
solve all problems: they can’t always help you organize your code so that it
contains as little duplication as possible. You want to be able to add to, change,
or remove program behavior globally. Examples of these cross-cutting concerns
are transaction handling, logging, security, and exception handling. Wherever
you see similar code scattered throughout the code base that does not contribute
to the actual business logic, that code is a possible target for AOP. Likewise,
when you want to manipulate existing program functionality in a programwide
fashion, AOP may help you out. For example, you sometimes want to make the
following statements a reality: “Access to all the service classes needs to be
logged.” Or, “All DAO methods need to be transactional.” You can do things like
that with Guice AOP, as you’ll see in this chapter.

Note: This chapter is written for people new to Guice AOP and AOP in
general.

60 Google Guice: Agile Lightweight Dependency Injection Framework

AOP for Mere Mortals
As you would expect, Guice AOP stands on the shoulders of giants. The most
notable project in the area is probably AspectJ (http://eclipse.org/aspectj) from
the Eclipse Foundation; it has pioneered many AOP concepts we know today and
is one of the most feature-complete AOP implementations in existence. Also
notable is the Spring Framework (http://www.springframework.org), which has
brought DI and AOP into the mainstream. Last but not least, it’s comforting to
know that Bob Lee, Guice’s creator, is quite the AOP expert himself. He created
some of the early AOP implementations for Java like JAdvise and Dynaop
(https://dynaop.dev.java.net/), and cofounded the AOP Alliance project, which
produces a standard AOP API on which Spring and, unsurprisingly, Guice build.
That said, though AOP solves a good number of problems, there still are issues—
the most important being that most current implementations are too difficult to
use. There’s a whole set of terminology and even a minilanguage to learn, and
often, you need to change your build process to include an extra compile step so
that the AOP functionality can do its work.
Guice is different in that it acknowledges that you use 20 percent of AOP
features 80 percent of the time. By implementing only the most important set of
functionality and dropping a lot of the expensive terminology, Guice’s AOP is
elegant, easy to use, and powerful, and it has zero impact on your development
process. It’s what I like to call “AOP for mere mortals.” You don’t need a PhD to
use it.

How Guice AOP Works
AOP is usually about doing work before or after (or both) a piece of code
executes in your application. To be able to do that without modifying your code,
Guice AOP generates proxies (impersonators, if you will) for your targeted
objects. For example, let’s say you want to print every method that gets called on
YourObject to the console. To achieve this, Guice impersonates YourObject with a
proxy instance and first routes all incoming method invocations to YourObject
through code that, in this example, prints them to the console. These layers of

http://eclipse.org/aspectj
http://eclipse.org/aspectj
http://www.springframework.org
http://www.springframework.org
https://dynaop.dev.java.net
https://dynaop.dev.java.net

 Google Guice: Agile Lightweight Dependency Injection Framework 61

code between the impersonator and the actual instance are called interceptors.
Figure 4-1 illustrates this concept.
Figure 4-1. A conceptual view of Guice AOP

Although some AOP frameworks do even more magic involving special-purpose
compilers and code rewriting, Guice AOP is all about intercepting method calls,
using the simple mechanism described in Figure 4-1. So enough talk about
Guice’s code, let’s take a look at how your code will look.

Caution: Because Guice AOP, or any other AOP framework for that matter,
impersonates objects by using proxy instances, you should watch out when
using reference equality checks (==) in your code. When you compare a real
instance with a proxy instance, you will see incorrect results!

Method Interception
As you would expect, Guice AOP makes use of the same configuration concepts
I introduced earlier in the book. In addition to all the other bindXXX methods that
you have already used in your module configuration, there’s also the one shown
in Listing 4-1.

62 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 4-1. Guice AOP in Three Lines of Code

void bindInterceptor(Matcher<? super Class<?>> classMatcher,
 Matcher<? super Method> methodMatcher,
 MethodInterceptor... interceptors) {…}

First, you pass in two Matcher objects: one to match on classes and one to match
on those classes’ methods. For that combination, you can specify zero or more
method interceptors of the MethodInterceptor type, not that specifying zero
interceptors makes any sense.
This MethodInterceptor interface, shown in Listing 4-2, is the thing Guice will
call whenever a matching method is invoked. It’s just a simple interface that you
need to implement.
Listing 4-2. MethodInterceptor

public interface MethodInterceptor extends Interceptor {
 Object invoke(MethodInvocation invocation) throws Throwable;
}

Tip: Always use matchers to match classes and methods; avoid doing your
own filtering in your MethodInterceptor. Doing your own filtering will affect
performance, because matchers run only once at startup, while interceptors
get invoked every time they intercept a method call.

Guice will call the invoke method with an appropriate MethodInvocation object for
all intercepted method invocations. This MethodInvocation instance is the object
that puts you in the driver’s seat; by executing invocation.proceed(), you’ll call
the original intercepted method, and you’ll get the return value if there is one.
This mechanism allows you to do several things, depending on the method:
 Execute code before the intercepted method executes.
 Call the intercepted method with slightly or entirely different parameters.
 Execute code after the intercepted method executes.

 Google Guice: Agile Lightweight Dependency Injection Framework 63

 Postprocess the return value or return anything of your liking.
 Don’t call the method at all, or call a different method.

The original caller will get the return value that you return from the invoke
method, so make sure to return either invocation.proceed() or the value you
prefer.

Note: Next to scopes, method interceptors are the only important Guice
artifact that you can’t inject into in Guice 1.0. Workarounds are possible
though; for more information, see http://tembrel.blogspot.com/2007/09/
injecting-method-interceptors-in-guice.html.

As for the Matcher instances, most Matcher classes that you’ll ever need ship with
Guice and can be found in the Matchers class. Table 4-1 explains the Matchers
methods in Guice 1.0.
Table 4-1. Methods on the Matchers Class in Guice 1.0

MATCHER DESCRIPTION APPLICABILITY

any() Match anything. Classes and methods

not(...) Invert another Matcher. Classes and methods

annotatedWith(...) Match an annotation. Classes and methods

subclassesOf(...) Match the given class and
its subclasses. Classes

only(...) Match on equality using
equals. Classes and methods

identicalTo(...) Match on reference
equality (==). Classes and methods

inPackage(...) Match all classes in the
given package. Classes

returns(...) Match method return type. Methods

http://tembrel.blogspot.com/2007/09

64 Google Guice: Agile Lightweight Dependency Injection Framework

Note: You can not match on private or final methods due to technical
limitations in Java.

Before I move on to the code, let me mention a few facts you should be aware of.
Using the matchers shown in Table 4-1, Guice AOP can match only objects
created by Guice. So yes, this rules out Guice AOP when using after-the-fact
injection like toInstance(...), injectMembers(...) or
requestStaticInjection(...). However, Guice does match on the following:
 Concrete classes that were specified in the to(...) method of your bindings.
 Concrete classes made available by an implicit binding.

This means that although you can match all the objects that Guice creates, you
can not match on abstract classes, interfaces, or any of their methods. At least not
directly you can’t; for example, subclassesOf(...) does work.
Theory aside, Guice AOP will become clear once you’ve seen an example.
Throw aopalliance.jar in the classpath, and off we go.

Tip: The aopalliance.jar API is not specific to Guice. For example, the
Spring Framework makes use of the same AOP API, which makes it trivial
to, for example, reuse Spring’s transaction interceptor. Cool!

Phoning Home
Did you ever wonder if someone is tapping your phone? You know, maybe the
FBI guys staking out the front of your house—too bad they’re in an ice cream
truck and it’s snowing outside. That’s what happens when all the senior guys get
desk jobs.
So, it’s a beautiful Sunday, and you feel like calling Aunt Jane. First, you need a
phone, and you need Jane to receive your call on the other end. Listing 4-3 shows
what the calling process could look like.

 Google Guice: Agile Lightweight Dependency Injection Framework 65

Listing 4-3. Phone Call Prerequisites

public class Phone {
 private static final Map<Number, Receiver> RECEIVERS =
 new HashMap<Number, Receiver>();

 static {
 RECEIVERS.put(123456789, new Receiver("Aunt Jane"));
 }

 public Receiver call(Number number) {
 return RECEIVERS.get(number);
 }
}

public class Receiver {
 private final String name;
 public Receiver(String name) {
 this.name = name;
 }
 public String toString() {
 return String.format("%s[name=%s]", getClass().getName(), name);
 }
}

When the phone company person came at your house and installed your phone
(see Listing 4-4), little did you know that the technician was actually from the
FBI!
Listing 4-4. The Phone Company’s Installation

import static com.google.inject.matcher.Matchers.*;

public class PhoneModule extends AbstractModule {
 protected void configure() {
 bindInterceptor(
 subclassesOf(Phone.class),
 returns(only(Receiver.class)),
 new PhoneLoggerInterceptor()
);
 }
}

66 Google Guice: Agile Lightweight Dependency Injection Framework

public class MakePhoneCall {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new PhoneModule());
 }
}

Son of a gun—the technician installed a phone call logger! By the way, notice
that import static was used on the Matchers class; that’s why you don’t see it
anywhere. The FBI’s coders know Java 5; you have to give them that. Anyway,
in plain English, it matches code with the following characteristics: “Phone or
something like Phone where the method(s) return Receiver.” That finds a match in
the call method in Phone:
public Receiver call(Number number) {
 return RECEIVERS.get(number);
}

It looks like switching your Phone is not going to help, as long as you’re using
something like a Phone with methods that return a Receiver. Those are definitely
not your average ice cream truck operators. Listing 4-5 shows how their logging
system works.
Listing 4-5. The Phone Call Logger

public class PhoneLoggerInterceptor implements MethodInterceptor {
 public Object invoke(MethodInvocation invocation) throws Throwable {
 for (Object arg : invocation.getArguments())
 if (arg instanceof Number)
 System.out.println("CALL: "+arg);

 return invocation.proceed();
 }
}

They iterate over all the method arguments, and if one of them is Number, they log
it. Next, they simply let the phone call proceed. Let’s see what happens if you
call Aunt Jane (see Listing 4-6).

 Google Guice: Agile Lightweight Dependency Injection Framework 67

Listing 4-6. Calling Aunt Jane

public class MakePhoneCall {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new PhoneModule());
 Phone phone = i.getInstance(Phone.class);
 Receiver auntJane = phone.call(123456789);
 }
}

That looks like a regular phone call to me. But if you run this, it prints CALL:
123456789. Yep, the FBI agents suck up all the numbers you call. Listing 4-7
shows what else they could have done.
Listing 4-7. Phone Call Redirection

public class PhoneRedirectInterceptor implements MethodInterceptor {
 public Object invoke(MethodInvocation invocation) throws Throwable {
 return new Receiver("Alberto's Pizza Place");
 }
}

Now, install this interceptor as shown in Listing 4-8, and see what happens.
Listing 4-8. Adding PhoneCallRedirect

public class PhoneModule extends AbstractModule {
 protected void configure() {
 bindInterceptor(
 subclassesOf(Phone.class),
 returns(only(Receiver.class)),
 new PhoneLoggerInterceptor(),
 new PhoneRedirectInterceptor()
);
 }
}

If you now call Aunt Jane again, some woman asks if you, “Wanta bigga pizza?”
Just when you thought Aunt Jane was on a diet!
Listing 4-9. Calling Aunt Jane Again?

public class MakePhoneCall {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new PhoneModule());
 Phone phone = i.getInstance(Phone.class);
 Receiver auntJane = phone.call(123456789);

68 Google Guice: Agile Lightweight Dependency Injection Framework

 System.out.println(auntJane);
 }
}

If you run the code in Listing 4-9, it prints the following:
CALL: 123456789
chapter4.Receiver[name=Alberto's Pizza Place]

You see that the logger is still in place, but now, the Receiver is Alberto’s Pizza
Place.
By the way, did you notice how easy it is to reuse and apply method
interceptors? That’s an interesting reuse case. The FBI agents only need to write
the method interceptor once, and then it can be applied to all the phones in the
world—the powah!

Tip: As you can see in the phone call example, the interceptors were
applied in the order in which they appeared in the module. This is
something you can safely depend on. The execution order is determined by
the order in which modules appear at Injector creation, by the
bindInterceptor(...) call order, and by the bindInterceptor(...) argument
order. However, if you’re seriously depending on the order in which your
interceptors are applied, it’s best to define them in the same module to
make that clear.

 Google Guice: Agile Lightweight Dependency Injection Framework 69

Summary
Knowing and using AOP will make you feel like a secret agent. By limiting itself
to method interception, Guice AOP shines in its simplicity. It’s child’s play to
install and use a MethodInterceptor, and it will save you from typing the same
code over and over again. To successfully return from an AOP mission, here’s
what you need to do:
 Use the Matchers class to match specific classes or methods.
 Use binder.bindInterceptor in a Module to point MethodInterceptor instances

to all the matches.
 Remember that Guice AOP only works for objects Guice creates!

That is all, special agent Duke. This chapter will self-destruct in 5 seconds.

70 Google Guice: Agile Lightweight Dependency Injection Framework

 Google Guice: Agile Lightweight Dependency Injection Framework 71

Chapter 5: Integrating with the Web
All the code examples in the previous chapters had to be run from a main method
or a test case. However, it would be foolish to assume that most people write
applications that are that simple. Most applications that I, and probably you,
write are ultimately web applications, whether you work on the front end or not.
On the Java platform, that usually means directly using servlet technology
(http://java.sun.com/products/servlet/) or using it indirectly through an MVC
framework like Struts (http://struts.apache.org). In this chapter, I will discuss
both options from the ground up.

The Integration Challenge
As you probably know, a web container like Tomcat or Jetty has what you could
call a managed environment. By using the Servlet API and delivering your
application in a certain format (e.g., as a WAR file), you get some things for free,
like HTTP abstraction, life cycle callbacks, filters, simple state management, and
threading.
Because you’ll want to minimize the dependency on an actual DI framework,
you’ll want to start injection at the highest possible level, which is the servlet
layer in this case. But the servlet layer’s managed nature brings some challenges
to the table:
 Bootstrapping: The container handles application start-up; you need some

way to bootstrap the DI framework early in execution, before you get any
user requests.

 Servlets are not in the club: HttpServlet objects, or Filter objects for that
matter, get created by the web container, which rules out constructor
injection, AOP, and scoping.

While Guice 1.0 ships with servlet scopes, it does not ship with any direct DI
integration for the Web (besides the Struts 2 plug-in, which I’ll discuss later).
The upcoming sections are largely based on the solution that will probably make
it into the next Guice release.

http://java.sun.com/products/servlet
http://java.sun.com/products/servlet
http://struts.apache.org
http://struts.apache.org

72 Google Guice: Agile Lightweight Dependency Injection Framework

Bootstrapping
Hooking into application start-up is the first issue that needs solving. People
starting out with Guice often run into this problem. After looking at the simplest
of code examples, which all run from a main method, they’re lost when they want
to use Guice in an environment with no main available. The servlet environment
is a good example of this.
Luckily, since the Servlet 2.3 specification, a listener mechanism is in place. By
implementing an API interface and adding the resulting listener class to web.xml,
the container will notify your code of application events like session creation or
application start-up, depending on which interfaces you chose to implement.
Because we’re obviously interested in application start-up, we’ll need to use the
interface shown in Listing 5-1, called ServletContextListener, which is able to
receive application start-up and shutdown events.
Listing 5-1. The javax.servlet.ServletContextListener Interface

public interface ServletContextListener
 void contextDestroyed(ServletContextEvent sce);
 void contextInitialized(ServletContextEvent sce);
}

The ServletContextListener mechanism is as high up the stack as we’ll ever get
to create the Injector. To make it available in the application, the obvious choice
is to store it in the ServletContext, which holds the applicationwide state for a
web application. You can see an example implementation of this concept in
Listing 5-2.
Listing 5-2. A Guice ServletContextListener Approach

public class GuiceServletContextListener implements ServletContextListener {
 public static final String KEY = Injector.class.getName();

 public void contextInitialized(ServletContextEvent sce) {
 sce.getServletContext().setAttribute(KEY, getInjector());
 }

 public void contextDestroyed(ServletContextEvent sce) {
 sce.getServletContext().removeAttribute(KEY);
 }

 Google Guice: Agile Lightweight Dependency Injection Framework 73

 private Injector getInjector() {
 // return the application's injector
 }
}

Having the Injector available at start-up is one thing, but how do servlets get
injected now? Let’s see about that next.

Inviting Servlets to the Club
The easiest way to inject a servlet is to override its init(...) method and use
Injector.injectMembers(Object). This init(...) method will get called right after
the instance is created by the container. After that, Guice’s injectMembers(...)
feature comes in handy; it can inject the servlet’s fields and methods marked
with @Inject. Listing 5-3 shows how that looks.
Listing 5-3. Injecting javax.servlet.http.HttpServlet

public class SomeServlet extends HttpServlet {
 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 ServletContext servletContext = config.getServletContext();
 Injector injector =
 (Injector) servletContext.getAttribute(GuiceServletContextListener.KEY);
 injector.injectMembers(this);
 }

 // override other methods like doGet, doPost
}

For better reuse, you’ll want to create a base HttpServlet class so that you don’t
have to write the same init(...) code over and over again.

Tip: In the current Guice Subversion repository, you’ll find reference
implementations for both classes I discussed, called
GuiceServletContextListener and InjectedHttpServlet respectively. If you’re
using Guice 1.0 and need raw servlet functionality, I suggest you download
them there. Just go to http://code.google.com/p/google-guice/source, and
search for the class names.

http://code.google.com/p/google-guice/source

74 Google Guice: Agile Lightweight Dependency Injection Framework

You’ll find a full Hello Servlet Guice example demonstrating servlet injection in
the appendix of this book.

Configuration Discovery
A question that often comes up is how you should dynamically discover Module
implementations, instead of hard-coding them in a ServletContextListener or
something similar. Because this means different things to different people, I’m
going to break up the whole question into three categories. Then, I’ll give you
my recommendations on how to handle them.
 Integration test independence: You don’t have the module you need at

compile time, because you want to test only one application layer in isolation.
 Automated discovery: You want to be able to drop in a JAR file and pick up

its modules automatically at application start-up.
 Everything more advanced: You need to perform tasks that don’t fall into the

previous two categories, like reloading a graph of objects at runtime if
configuration changes.

In the first case, you probably need to rethink how you build applications using
modules. This doesn’t even have much to do with dynamic discovery—you
should simply consider creating the Injector with a different set of Modules
altogether. For example, if you have a DatabaseLayerModule class, you might want
to create the injector with a MockDatabaseLayerModule module when integration
testing other parts of the application.
The second category is a different story. First, it’s worth noting that JDK 6 does
have an out-of-the-box solution: java.util.ServiceLoader. I highly recommend
that you read the JavaDoc for that class. In this second category, I would also put
simplest of templating approaches, where you want to specify a root Module name
but don’t want have it available at compile time. You can easily solve this by
using, for example, a <context-param> with the root Module class name for your
application and then get an instance of that Module using reflection when creating
the Injector. This is not rocket science and might fit your needs if you’re not on
JDK 6. Listing 5-4 shows an example implementation.

 Google Guice: Agile Lightweight Dependency Injection Framework 75

Listing 5-4. Quick and Dirty Templating Example

<!-- web.xml -->
<web-app>
 ...
 <context-param>
 <param-name>module</param-name>
 <param-value>discovery.HelloGuiceModule</param-value>
 <description>Guice Module to load on startup</description>
 </context-param>
 ...
</web-app>

// GuiceServletContextListener class
public class GuiceServletContextListener implements ServletContextListener {
 public static final String KEY = Injector.class.getName();

 public void contextInitialized(ServletContextEvent sce) {
 sce.getServletContext()
 .setAttribute(KEY, getInjector(sce.getServletContext()));
 }

 public void contextDestroyed(ServletContextEvent sce) {
 sce.getServletContext().removeAttribute(KEY);
 }

 private Injector getInjector(ServletContext ctx) {
 String fqClassName = ctx.getInitParameter("module");
 try {
 @SuppressWarnings("unchecked")
 Class<? extends Module> module =
 (Class<? extends Module>) Class.forName(fqClassName);
 return Guice.createInjector(module.getConstructor().newInstance());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
}

As for the third and last category, consider using an advanced component model
like OSGi (http://www.osgi.org). There’s a project called Peaberry available that
is working on OSGi integration for Guice; it can be found at
http://code.google.com/p/peaberry/. This integration is still at a very early stage,
so it probably makes more sense to use the Spring Framework if you have a hard

http://www.osgi.org
http://www.osgi.org
http://code.google.com/p/peaberry
http://code.google.com/p/peaberry

76 Google Guice: Agile Lightweight Dependency Injection Framework

dependency on this kind of functionality. It has the best OSGi integration I’ve
seen so far.
Now, all this grunt work aside, you’re probably better off opting for an MVC
framework that offers Guice integration. Solid framework integration allows you
to forget most of the things I just talked about.

Struts 2
As I briefly mentioned in Chapter 2, Guice 1.0 ships with a plug-in for Struts 2
(http://struts.apache.org), the successor to the very popular Struts MVC
framework. That said, don’t use the plug-in version that ships with Guice 1.0; it
is horribly broken. Go to the Guice project web site and get version 1.0.1 (guice-
struts2-plugin-1.0.1.jar), which is available as a separate download.
Using the Struts 2 plug-in, you can inject your Struts actions, interceptors, and
any other classes you use. Scopes currently work everywhere except with
interceptors. What’s interesting about Struts 2 is that the framework was
designed with DI in mind from the beginning. If its designers hadn’t done that,
they would have ended up with something like the basic servlet integration I
mentioned earlier, where you can only use after-the-fact injection like
injectMembers(...) for your web artifacts, simply because you don’t control
object creation. This means that only the objects lower down the stack, starting at
the ones that get injected using injectMembers(...), can benefit from some key
DI advantages: constructor injection, scopes, and AOP. When using Struts 2, you
don’t have that problem: Guice can control the full object life cycle.

Note: Technically speaking, Struts 2 is DI friendly because of its use of the
XWork 2 framework (http://www.opensymphony.com/xwork/), which,
interestingly enough, uses an early version of Guice internally. Take a look
at the com.opensymphony.xwork2.inject package in the XWork API, and notice
the similarities.

To use Guice with Struts 2, you generally need to do the following:

http://struts.apache.org
http://struts.apache.org
http://www.opensymphony.com/xwork

 Google Guice: Agile Lightweight Dependency Injection Framework 77

1. Set up Struts 2 (http://struts.apache.org/2.x/docs/bootstrap.html).
2. Make the Guice plug-in (and Guice) available in WEB-INF/lib of your

application.
3. Configure your struts.xml file to use Guice’s ObjectFactory; apparently, you

don’t always need this, but better safe than sorry: <constant
name="struts.objectFactory" value="guice" />

4. Optionally (you could also use annotations only), specify the root module in
struts.xml: <constant name="guice.module" value="helloguice.HelloModule"/>.

By default, the plug-in will create the Injector in the default Stage,
Stage.DEVELOPMENT. This is unfortunate and should be fixed in the upcoming
version of the plug-in. Mapping the Stage one-to-one to the already existing
Struts property struts.devMode would have made more sense.

Caution: You can’t use Struts’s custom type converter functionality in the
current version of the plug-in (1.0.1). Until the next version ships, there’s a
fix available on the Guice mailing list. See http://groups.google.com/group/
google-guice/browse_thread/thread/5069bb48c3e0f156.

This is all the time I’m going to spend on Struts 2 now. In the next chapter, I will
discuss an example web application that uses this framework. If you just want a
quick example, there’s one in the Guice source distribution, which you can
download from the Guice project web site.

Caution: The current version of the Struts 2 plug-in (1.0.1) installs Guice’s
ServletModule by default. You can’t turn that off, but you are usually going to
use it anyway. Just remember not to install it in your own modules. You’ll
still need to configure the GuiceFilter for the web scopes to work, though.

http://struts.apache.org/2.x/docs/bootstrap.html
http://struts.apache.org/2.x/docs/bootstrap.html
http://groups.google.com/group

78 Google Guice: Agile Lightweight Dependency Injection Framework

Wicket
Wicket (http://wicket.apache.org) is another MVC framework that now has
native Guice support. Since version 1.3.0, the framework comes with a plug-in
for Guice 1.0 that allows you to use Guice throughout your Wicket application.
Unfortunately, the framework hasn’t been designed with DI from the ground up
like Struts 2; you only get the injectMembers(...) level of control for your
Wicket WebPage implementations or other web artifacts. That’s not horrible, but it
does mean that you don’t get to use constructor injection, scopes, and AOP in the
web layer.
However, unlike the Struts plug-in, the Wicket plug-in handles the Injector’s
Stage correctly. When you set your Wicket application’s configuration type to
“deployment”, Stage.PRODUCTION will be used. By default, or by setting the
configuration type to “development”, Stage.DEVELOPMENT will be used. For more
information on configuring you application’s configuration type, see the Wicket
FAQ at http://cwiki.apache.org/WICKET/faqs.html.

Caution: At the time of this writing, Wicket is at 1.3.0-rc2, which still has a
nasty bug described here: http://cwiki.apache.org/WICKET/guice-integration-
pitfall.html. Basically, if you do bind not to an interface but to a concrete
class, your concrete class must have a no-argument constructor. This bug is
so ugly that I can’t possibly recommend the Wicket Guice plug-in until it’s
fixed.

Here’s what you need to do to set up Wicket with Guice.
1. Download the Wicket 1.3.0 distribution from http://wicket.apache.org.
2. Drop the wicket-guice jar along with all the dependencies in the WEB-INF/lib

directory of your web application. See Table 5-1 for a complete listing of the
library’s dependencies. A list of dependencies can also be found in the README
file that comes with the distribution.

http://wicket.apache.org
http://wicket.apache.org
http://cwiki.apache.org/WICKET/faqs.html
http://cwiki.apache.org/WICKET/guice-integration-pitfall.html
http://cwiki.apache.org/WICKET/guice-integration-pitfall.html
http://cwiki.apache.org/WICKET/guice-integration-pitfall.html
http://wicket.apache.org
http://wicket.apache.org

 Google Guice: Agile Lightweight Dependency Injection Framework 79

3. Configure a WicketFilter in your web.xml file
(http://cwiki.apache.org/WICKET/migrate-13.html). There, you need to set
your root Guice Module, as I describe next.

Table 5-1. Example WEB-INF/lib Contents for Using Wicket with
Guice

FRAMEWORK JAR FILES COMMENT

Guice
guice-1.0.jar
aopalliance.jar
guice-servlet-1.0.jar

Only guice-1.0.jar is necessary if
you don’t use AOP or web scopes.
The examples in this chapter will use
only core Guice, but I’m including
the other ones anyway.

Wicket

wicket-1.3.0.jar
slf4j-api-1.4.3.jar
slf4j-jdk14-1.4.3.jar
wicket-ioc-1.3.0.jar
asm-1.5.3.jar
cglib-nodep-2.1_3.jar
wicket-guice-1.3.0.jar

You can choose any Simple
Logging Facade for Java (SLF4J)
implementation
(http://www.slf4j.org).

Jetty

jetty-6.1.6.jar
jetty-util-6.1.6.jar
servlet-api-2.5-
6.1.6.jar

servlet-api-2.5.6.1.6.jar is
entirely optional, but you do need
servlet-api to compile, and I use
Jetty as the web container
(http://www.mortbay.org).

To set up the Guice configuration for your Wicket application, there are currently
three options, two of which involve configuring the WicketFilter and I’ll discuss
these first. The easiest way to go is probably to configure a single root Module to
use for the application. This can be seen in the Listing 5-5.
Listing 5-5. Wicket web.xml File that Configures a Guice Root
Module

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

http://cwiki.apache.org/WICKET/migrate-13.html
http://cwiki.apache.org/WICKET/migrate-13.html
http://www.slf4j.org
http://www.slf4j.org
http://www.mortbay.org
http://www.mortbay.org
http://java.sun.com/dtd/web-app_2_3.dtd

80 Google Guice: Agile Lightweight Dependency Injection Framework

 <display-name>Wicket Guice</display-name>
 <filter>
 <filter-name>WicketFilter</filter-name>
 <filter-class>
 org.apache.wicket.protocol.http.WicketFilter
 </filter-class>
 <init-param>
 <param-name>applicationFactoryClassName</param-name>
 <param-value>
 org.apache.wicket.guice.GuiceWebApplicationFactory
 </param-value>
 </init-param>
 <init-param>
 <param-name>module</param-name>
 <param-value>
 hellowicket.WicketModule
 </param-value>
 </init-param>
 <init-param>
 <param-name>configuration</param-name>
 <!-- deployment or development -->
 <param-value>deployment</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WicketFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

In this module, hellowicket.WicketModule in this example, you need to bind
WebApplication.class to your application’s implementation. Also don’t forget to
install any other modules that you were planning on using. Listing 5-6 shows an
example that goes with the configuration in Listing 5-5.
Listing 5-6. The WicketModule Used in web.xml

public class WicketModule extends AbstractModule {
 protected void configure() {
 // mandatory!
 bind(WebApplication.class).to(HelloGuiceApplication.class);
 // other bindings you want to use
 install(new HelloGuiceModule());
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 81

The second option you have for configuring Wicket so that it uses Guice is to set
Wicket to get the Injector from the ServletContext (to represent the
applicationwide state). Coincidentally, this was exactly the strategy I used in the
“Bootstrapping” section in this chapter, when I was talking about integrating
with raw servlet-type applications. Later, in the “Dynamic Configuration”
section, I extended the GuiceServletContextListener to be able to pick up a root
Module from web.xml. It turns out that I can reuse that exact code with Wicket. So
first, take a look at Listing 5-4 and then look at the web.xml file in Listing 5-7.
Listing 5-7. Configuring Wicket to Get the Injector from
ServletContext

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Wicket Guice</display-name>

 <!-- This one is needed in the GuiceServletContextListener -->
 <context-param>
 <param-name>module</param-name>
 <!-- has WebApplication.class bound -->
 <param-value>hellowicket.WicketModule</param-value>
 <description>Guice Module to load on startup</description>
 </context-param>

 <filter>
 <filter-name>WicketFilter</filter-name>
 <filter-class>
 org.apache.wicket.protocol.http.WicketFilter
 </filter-class>
 <init-param>
 <param-name>applicationFactoryClassName</param-name>
 <param-value>
 org.apache.wicket.guice.GuiceWebApplicationFactory
 </param-value>
 </init-param>
 <init-param>
 <param-name>injectorContextAttribute</param-name>
 <!-- The name of the ServletContext attribute
 used in GuiceServletContextListener -->
 <param-value>com.google.inject.Injector</param-value>

http://java.sun.com/dtd/web-app_2_3.dtd

82 Google Guice: Agile Lightweight Dependency Injection Framework

 </init-param>
 <init-param>
 <param-name>configuration</param-name>
 <!-- deployment or development -->
 <param-value>deployment</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WicketFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>
 discovery.GuiceServletContextListener
 </listener-class>
 </listener>
</web-app>

The Wicket plug-in will look at the attribute in the ServletContext, which has the
name you specify as an <init-param> to the WicketFilter. In my
GuiceServletContextListener found in Listing 5-4, the key is chosen as follows:
public static final String KEY = Injector.class.getName();

At runtime, KEY has the value of com.google.inject.Injector, which is, therefore,
the value I needed to specify at injectorContextAttribute <init-param> for the
WicketFilter. Here’s what happens when the application starts:
1. The web container (Jetty in my case) will fire the contextInitialized event on

the GuiceServletContextListener.
2. GuiceServletContextListener will get the module <context-param> and create

the Injector with an instance of the Module with the Class name that was
specified.

3. GuiceServletContextListener stores the Injector in the ServletContext with
key com.google.inject.Injector.

4. WicketFilter is initialized, looks up the value for its injectorContextAttribute
<init-param> (com.google.inject.Injector), and gets the Injector from the
ServletContext using that value as the key

 Google Guice: Agile Lightweight Dependency Injection Framework 83

This is an example of the flexibility that you have when you are able to create the
Injector yourself. Often, creating the Injector yourself might not make that
much sense, but I was able to reuse code that I made earlier, when Wicket wasn’t
in the picture at all. Know that it’s possible, but also know that the first approach
is a lot simpler if you don’t need the extra flexibility.
The third option is to hard-code Guice support into your WebApplication derivate,
by registering an instance of the GuiceComponentInjector class (see Listing 5-8).
Listing 5-8. Hard-Coding Guice Support with Wicket

public class HelloGuiceApplication extends WebApplication {
 @Override
 protected void init() {
 addComponentInstantiationListener(
 new GuiceComponentInjector(this, new HelloGuiceModule()));
 }

 @Override
 public Class<?> getHomePage() {
 return Welcome.class;
 }
}

Using this option, your WicketFilter configuration is a lot simpler, but you’ve
also hard-coded a dependency on Guice. You also don’t register the
WebApplication class in a Module now; you configure it directly in the web.xml file,
as shown in Listing 5-9.
Listing 5-9. Simplest WicketFilter Configuration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Wicket Example</display-name>
 <filter>
 <filter-name>WicketFilter</filter-name>
 <filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
 <init-param>
 <param-name>applicationClassName</param-name>
 <param-value>hellowicket.HelloGuiceApplication</param-value>

http://java.sun.com/dtd/web-app_2_3.dtd

84 Google Guice: Agile Lightweight Dependency Injection Framework

 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WicketFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

If you want to see the fully working example, take a look at the Hello Wicket
Guice example in the appendix of this book. Alternatively, there’s also a small
Wicket-Guice example on the Wicket project web site.

GUICE SUPPORT FOR YOUR FAVORITE FRAMEWORK
This book mainly discusses Wicket and Struts 2 as web frameworks,
because those frameworks’ Guice plug-ins are part of an official effort
and have the most traction in the community. You might be
disappointed if your favorite web framework isn’t one of those, but
seriously, don’t let that bring you down. First, creating a plug-in for a
web framework is not as hard as you would think. For example, there
are many more frameworks that currently support the Spring
Framework. In many ways, integrating Guice will be similar, so
there’s no reason you couldn’t learn from those existing plug-ins and
implement support for it.

That said, there are some other unofficial efforts for web frameworks
that I’m not going to talk much about. I have a couple of links handy,
so I might as well share them with you; maybe you will find them
useful. I have to say that I didn’t try out all of these integration
efforts, but if you Google your favorite framework, something might
show up.

JSF: http://notdennisbyrne.blogspot.com/2007/10/integrating-guice-and-
jsf-part-2.html

Stripes: http://article.gmane.org/gmane.comp.java.stripes.user/3418

GWT: http://radialmind.blogspot.com/2007/03/guice-in-gwt.html

http://notdennisbyrne.blogspot.com/2007/10/integrating-guice-and-jsf-part-2.html
http://notdennisbyrne.blogspot.com/2007/10/integrating-guice-and-jsf-part-2.html
http://notdennisbyrne.blogspot.com/2007/10/integrating-guice-and-jsf-part-2.html
http://article.gmane.org/gmane.comp.java.stripes.user/3418
http://radialmind.blogspot.com/2007/03/guice-in-gwt.html

 Google Guice: Agile Lightweight Dependency Injection Framework 85

Where Are the Web Scopes?
All this web integration stuff raises interesting questions: How do you integrate
the Guice web scopes with all this framework code? More importantly, when you
configure all these filters in the web.xml file, which one goes first? This is
important, because web requests go through the filters in the order that they
appear in web.xml. To make sure that the Guice scopes work as expected, register
the GuiceFilter before any other framework filter. Listing 5-10 provides an
example, taken directly from Guice’s Struts 2 example.
Listing 5-10. Using the Guice Scope Filter in Conjunction with the
Struts 2 Filter

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <filter>
 <filter-name>guice</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 </filter>

 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>guice</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

http://java.sun.com/dtd/web-app_2_3.dtd

86 Google Guice: Agile Lightweight Dependency Injection Framework

Warp Servlet
There’s a whole ecosystem of open source Guice extensions over at
http://www.wideplay.com:
 Warp Persist: Hibernate and JPA integration (including annotation-driven

transactions)
 Dynamic Finders: Extension to Warp Persist for DAO-less persistence
 Warp MVC: A RESTful, component-based, event-driven web framework
 Warp Servlet: Advanced Guice web integration

Note: Most of the extensions at http://www.wideplay.com were written by
Dhanji R. Prasanna, technical reviewer for this book—smart guy, smart
code.

I will discuss and use the first two extensions from the preceding list in the next
chapter. The Warp MVC framework is a bit early in its development to dedicate
a section to it, but make sure to take a look at it because it looks very promising.
Warp Servlet is a project that takes Guice Servlet API integration to the next
level. The solutions to the challenge I described at the beginning of this chapter
look half-baked compared to the ones that can be found in this project. Unlike
Warp MVC, Warp Servlet is not an MVC framework; it is a drop-in replacement
for Guice’s current and future Guice servlet integration and currently includes
the following features:
 Guice-managed servlets and filters
 Mapping servlets and filters to URIs using regular expressions
 Request, session, and flash scope, that is, two consecutive requests, (see

http://www.theserverside.com/patterns/thread.tss?thread_id=20936 for more
information)

http://www.wideplay.com:
http://www.wideplay.com:
http://www.wideplay.com
http://www.theserverside.com/patterns/thread.tss?thread_id=20936

 Google Guice: Agile Lightweight Dependency Injection Framework 87

Users of JBoss’ Seam framework (http://www.jboss.com/products/seam) will be
happy to hear that the project will include a conversation Scope in the near future.
This is a scope that keeps state for an arbitrary number of requests and is often
used for implementing wizard-type functionality. People historically tend to use
the session scope for this type of workflow but often forget to clean up when the
user operation finishes. Nobody likes memory leaks, so handing off this kind of
risk to this conversation scope sounds like a solid plan.
I know what you were probably thinking just now, “This guy just told me that
Guice can’t create HttpServlet or Filter objects because the web container does,
and now he’s telling me that there’s a project that does exactly that?” Well, I
admit that this sounds confusing. The simplest possible explanation for this is
that Warp Servlet only appears to be using “real” servlets and filters. In a classic
web application, HTTP requests arrive, pass through the configured filters that
match on the URI, and eventually end up at the Servlet match for that URI.
Conceptually, this could look like Figure 5-1.

http://www.jboss.com/products/seam
http://www.jboss.com/products/seam

88 Google Guice: Agile Lightweight Dependency Injection Framework

Figure 5-1. Classic servlet architecture

With Warp Servlet, you configure a Filter class that gets to handle all requests
first. Using that filter, Warp Servlet is able to bypass the classic web container
functionality and maintain its own Filter pipeline and set of servlets, using the
same Servlet API classes. With some imagination, that configuration could look
something like Figure 5-2.

 Google Guice: Agile Lightweight Dependency Injection Framework 89

Figure 5-2. How Warp Servlet’s WebFilter changes the architecture

For Warp Servlet to be able to manage these Filter and Servlet instances, it
needs you to configure them using Warp Servlet’s API. That means that you
don’t put entries in the web.xml file like you’re used to; instead, you use a builder-
style API that feels natural to Guice. Fortunately, Warp Servlet makes sure that
Servlet or Filter life cycle events like init(...) and destroy(...) get called just
as the container would. You won’t notice the difference between the Warp
Servlet ones and the real deal.
What you do put in web.xml are the WebFilter and your subclass of
WarpServletContextListener that creates your Injector. Let’s take a look at an
example in Listing 5-11.

90 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 5-11. An Example Warp Servlet web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Hello Warp Servlet</display-name>
 <filter>
 <filter-name>WebFilter</filter-name>
 <filter-class>com.wideplay.warp.servlet.WebFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>WebFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <listener>
 <listener-class>
 warpservlet.HelloGuiceServletContextListener
 </listener-class>
 </listener>
</web-app>

The HelloGuiceServletContextListener class in this example is my
WarpServletContextListener subclass. Notice that I didn’t configure any servlets
(or filters) at this point. If you want Warp Servlet to manage them, you need to
configure them in the listener, like in Listing 5-12.
Listing 5-12. WarpServletContextListener Subclass

package warpservlet;

import helloguice.HelloGuiceModule;

import com.google.inject.Guice;
import com.google.inject.Injector;
import com.wideplay.warp.servlet.Servlets;
import com.wideplay.warp.servlet.WarpServletContextListener;

http://java.sun.com/dtd/web-app_2_3.dtd

 Google Guice: Agile Lightweight Dependency Injection Framework 91

public class HelloGuiceServletContextListener extends WarpServletContextListener {
 @Override
 protected Injector getInjector() {
 return Guice.createInjector(
 new HelloGuiceModule(), // application bindings
 Servlets.configure()
 .filters()
 .servlets().serve("/*").with(HelloServlet.class)
 .buildModule());
 }
}

Unlike in the “Inviting Servlets to the Club” section, you no longer need to
override your Servlet’s init(...) method, as shown in Listing 5-13.
Listing 5-13. Guice Just Works for HelloServlet

public class HelloServlet extends HttpServlet {
 private final String appName;

 @Inject
 public HelloServlet(@Named("app.name") String appName) {
 // app.name configured in the HelloGuiceModule
 this.appName = appName;
 }

 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 PrintWriter writer = resp.getWriter();
 writer.printf("<h1>Welcome to the %s application!</h1>%n", appName);
 resp.setStatus(HttpServletResponse.SC_OK);
 }
}

More information on Warp Servlet or one of the other Warp projects can be
found on the Wideplay web site (http://www.wideplay.com). And remember, Warp
Servlet offers a superset of the functionality Guice Servlet offers. Don’t use both.

http://www.wideplay.com
http://www.wideplay.com

92 Google Guice: Agile Lightweight Dependency Injection Framework

Summary
Guice 1.0 does not ship with any raw web integration code. Although it’s not that
hard to roll your own servlet integration, you’re better off using an MVC
framework, like Struts 2 or Wicket 1.3.0, that can support Guice natively through
a plug-in. I had to be honest in this chapter; some of the plug-ins don’t offer the
quality you’ve come to expect from high-profile open source projects. But Struts
2 especially is a natural fit for DI and the plug-in’s minor issues can easily be
fixed, so let’s hope that Bob and the Guice team release an update soon.
An alternative to the raw guice-servlet support is Warp Servlet. It offers the best
possible Guice integration for raw servlets and filters and supports some Guice
scopes out of the box, like request, session, and flash. This simplifies the
configuration that needs to happen on your side. Warp Servlet is definitely worth
considering in addition to an MVC framework’s Guice integration or when
you’re not using an MVC framework at all.

 Google Guice: Agile Lightweight Dependency Injection Framework 93

Chapter 6: Practical Guice
Like any other cool new technology, Guice will be a viable solution only if it
helps you solve real-life problems, like connecting to a database or interacting
with the user through a web interface. By now, you can probably imagine how
that would work in the Guice world, so let’s take a look at how all the pieces fit
together.

Requirements
In this chapter, we’re going to discuss the Shopping List sample application. The
goal of the application is to be able to manage daily or weekly shopping lists.
The user thinks of something to buy on shopping day (like coffee or an iPod) and
logs on to the application to add the item to one of the shopping lists. Here’s the
short list of requirements:
 The user can log on to the secured area of the application.
 On the welcome screen, the user sees a summary of shopping lists.
 The user can create a shopping list containing one or more products and give

it a name.
 The user can view the contents of a shopping list.
 The user can update an existing shopping list.
 An existing shopping list can be deleted from the system.

Because the point of this chapter is to learn from an application that resembles
something you would build in real life, and because this is a book on Guice, I’d
also like to add the following nonfunctional requirements.
 The application has to be Guice powered.
 The application has to use a database and an ORM framework. I’m going

with Hibernate, through the Java Persistence API (JPA).
 The application has to use an MVC web framework. I’m going with Struts 2.

94 Google Guice: Agile Lightweight Dependency Injection Framework

On the other hand, the application will completely ignore some parts that are not
important to the discussion:
 Allowed users will be hard-coded.
 Authentication will be lightweight (but fully functional).
 The product list will be fixed.
 No caching strategy will be used.
 The application will not use any templating technology like Tiles

(http://tiles.apache.org).
 We’ll assume the graphical designer got fired early in the process (my eyes!).

I think it is also important to know that I will focus on very specific areas of the
application for this chapter. This will not be a tutorial in which you can just copy
everything verbatim and expect the code to work. I will use the application I
implemented for you as a starting point for discussing how you can integrate
with Guice. Here is what I will discuss to help you get started:
 An overview of the application’s Struts 2 architecture
 A quick look into the project structure of the application I built

After that, things really get interesting. I will focus on the following specific
technical elements:
 Setting up Struts 2 and Guice
 Developing a domain model
 Setting up database access
 Coding the data access layer
 Getting the Struts actions to work with the data

http://tiles.apache.org
http://tiles.apache.org

 Google Guice: Agile Lightweight Dependency Injection Framework 95

Other functionality, like basic security, will be implemented in the eventual
application but will not be discussed in detail. To try out the fully working
application, including security and the like, I suggest that you download the
source code from the Apress web site (http://www.apres.com). Feel free to contact
me if you have any problems understanding the code.

Tip: To learn about Struts 2, I recommend that you read a book like Struts
2 In Action Struts 2 In Action by Don Brown, Chad Davis, and Scott Stanlick
(Manning, 2008).

The Big Picture
In Figure 6-1, you can see the Struts 2 architecture I came up with for this
application. As you’ll notice, there are three action classes:
 ShoppingListsAction (top left): This is the gateway to the home screen, and it

handles that screen’s operations. This action is also the entry point for the
application after authentication.

 ShoppingListAction (bottom left): This handles the creation or updating of
individual shopping lists.

 ProductListAction (middle right): This is a special action; it gets called by the
createSL and editSL views to get a list of available products, instead of being
in the driver’s seat itself.

Keep this figure in mind as you read the rest of this chapter; whenever you feel
lost, revisit it.

http://www.apres.com
http://www.apres.com

96 Google Guice: Agile Lightweight Dependency Injection Framework

Figure 6-1. A conceptual overview of the Shopping List application

These action classes alone don’t do much without actual view pages, so let me
guide you through the application’s screens in a visual fashion, using
screenshots. This will help you understand all the code later on in the chapter.
First, there is the all-important home screen that displays the logged-in user’s
current shopping lists, as depicted in Figure 6-2.

 Google Guice: Agile Lightweight Dependency Injection Framework 97

Figure 6-2. The home screen

If you click the View button next to the “Friday’s list” shopping list, you’ll see
something like Figure 6-3.
Figure 6-3 Viewing a shopping list screen

Next to the View button in Figure 6-2, there was also an Edit button. Clicking
that one will result in Figure 6-4. As you can see, all available products have
already been selected. The Remove button, the third one next to “Friday’s list”,
simply removes the shopping list and returns to the home screen.

98 Google Guice: Agile Lightweight Dependency Injection Framework

Figure 6-4. The screen to edit a shopping list

There’s also the create screen shown in Figure 6-5, which is practically identical
to the edit screen. To create a new shopping list using this page, you would use
the Create text link shown in Figure 6-2.

 Google Guice: Agile Lightweight Dependency Injection Framework 99

Figure 6-5. The shopping list creation screen

Now that you have a feel for what the Shopping List application is about, let’s
take a look at how I set up the project structure and at which files go where.

Project Structure
Figure 6-6 shows how my Eclipse project setup looks for the Shopping List
application. Don’t worry about what everything means at this point, but I will use
this figure as a reference later on in the chapter. To run the application, I use a
simple class to start Jetty on the project structure that resembles an exploded
WAR file. To make that work, I set my Eclipse compilation output directory to
/WEB-INF/classes (which is also why it doesn’t show up in the figure).

100 Google Guice: Agile Lightweight Dependency Injection Framework

Figure 6-6. The Shopping List project’s exploded WAR structure

The most important things to note here are the action classes, shown in the
shoppinglist.web.secured package, the various configuration files like the Struts
configuration files (struts.xml, unsecured.xml, secured.xml), the persistence
configuration (persistence.xml) and the obvious presence of a web.xml file.
Now, before I get into that, let’s take a look at the JAR dependencies. Table 6-1
gives an overview of the JAR files I’m putting in WEB-INF/lib and where you can
download them. This will be useful when you start developing your own
applications and want to know what you need to get up and running.

 Google Guice: Agile Lightweight Dependency Injection Framework 101

Table 6-1. Shopping List Dependencies

PROJECTS AND LOCATIONS DESCRIPTION FILES TO INCLUDE

Jetty 6.1.6
http://www.mortbay.org Web container

jasper-compiler-5.5.15.jar,
jasper-compiler-jdt-
5.5.15.jar, jasper-runtime-
5.5.15.jar, ant-1.6.5.jar,
commons-collections-
2.1.1.jar, commons-el-
1.0.jar, xmlParserAPIs-
2.6.2.jar, jetty-6.1.6.jar,
jetty-util-6.1.6.jar, jsp-
api-2.0.jar, servlet-api-2.5-
6.1.6.jar, and xercesImpl-
2.6.2.jar

Guice 1.0
http://code.google.com/p/go
ogle-guice/

Guice
(seriously ...)

guice-1.0.jar, guice-servlet-
1.0.jar, guice-struts2-
plugin-1.0.1.jar, and
aopalliance.jar

Hibernate Core 3.2.5
Hibernate Annotations 3.3.0
Hibernate EntityManager
3.3.1
http://www.hibernate.org

ORM
framework

hibernate3.jar, hibernate-
annotations.jar, hibernate-
commons-annotations.jar,
hibernate-entitymanager.jar,
hibernate-validator.jar, asm-
attrs.jar, asm.jar, cglib-
2.1.3.jar, javassist.jar,
jboss-archive-browsing.jar,
dom4j-1.6.1.jar, ejb3-
persistence.jar, jta.jar,
commons-logging-1.0.4.jar
(also for Struts 2), and
antlr-2.7.6.jar, log4j-
1.2.11.jar (optional)

http://www.mortbay.org
http://code.google.com/p/go
http://www.hibernate.org

102 Google Guice: Agile Lightweight Dependency Injection Framework

Table 6-1. Shopping List Dependencies (continued)

PROJECTS AND LOCATIONS DESCRIPTION FILES TO INCLUDE

Struts 2.0.11
http://struts.apache.org MVC framework

xwork-2.0.4.jar, struts2-
core-2.0.11.jar, ognl-
2.6.11.jar, commons-logging-
1.0.4.jar, and freemarker-
2.3.8.jar

MySQL Connector/J 5.0.8
http://www.mysql.org Database driver

mysql-connector-java-5.0.8-
bin.jar

Warp Persist 1.0
http://www.wideplay.com

Persistence for
Guice

warp-persist-1.0.jar

Besides the sheer volume of dependencies, I would like to call out two things
from Table 6-1. First, Struts 2 has a hard dependency on guice-servlet, like I
mentioned in the previous chapter. Second, I also added Warp Persist. I also
talked briefly about Warp Persist in the previous chapter, so you probably
already know that it’s about providing Hibernate and JPA support to Guice. I’m
going to use Warp Persist to interact with the database.
Talking about the database, you probably noticed that I included the MySQL
driver. I’m going to use MySQL as the database for the sample application. I also
installed MySQL GUI Tools, which allows you to manage your MySQL instance
with a nice-looking UI. Both can be downloaded from the MySQL web site at
http://www.mysql.org. Using the GUI tools, I created the sample application’s
database schema: shopping_list. I’m not going to bother with database security
or table creation; that, I’ll leave up to Hibernate.
Now, let’s get going with the first item on the list: setting up Struts 2.

http://struts.apache.org
http://www.mysql.org
http://www.wideplay.com
http://www.mysql.org
http://www.mysql.org

 Google Guice: Agile Lightweight Dependency Injection Framework 103

Setting Up Struts 2
The first step is to configure Struts’s FilterDispatcher in the web.xml file. As the
name suggests, this class will filter all incoming web requests and dispatch them
as it sees fit. This is the class that makes Struts tick. Second, I need to configure
the Guice web scopes, for reasons I already mentioned previously. Listing 6-1
shows web.xml, correctly configured to use both. Remember, the order matters.
Listing 6-1 Shopping List’s web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee ➥
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Shopping List</display-name>

 <filter>
 <filter-name>guice</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 </filter>

 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>guice</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 …
</web-app>

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee%E2%9E%A5java.sun.com/xml/ns/j2ee/web-app_2_4.xsd%00

104 Google Guice: Agile Lightweight Dependency Injection Framework

I’m not going to overwhelm you with tons of Struts 2 configuration, so let’s go
right to the part that matters: setting up Guice. By the way, to see where all the
files I talk about end up, keep one eye on Figure 6-6.

Tip: Buy two copies of this book to keep one eye on Figure 6-6. Just
kidding!

Getting Guiced
To configure Guice, all I need to do is visit the struts.xml file and add two lines
of configuration. Listing 6-2 highlights the needed additions.
Listing 6-2. Guice-Enabled struts.xml

<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">
<struts>
 <constant name="struts.objectFactory" value="guice" />
 <constant name="guice.module" value="shoppinglist.ShoppingListModule" />
 …
</struts>

Notice that I chose shoppinglist.ShoppingListModule as the root module. I’ve
been using AbstractModule throughout the book, so I’ll implement the Module
interface directly for a change. Listing 6-3 shows the empty ShoppingListModule.
Listing 6-3. Empty ShoppingListModule

public class ShoppingListModule implements Module {
 public void configure(Binder binder) {
 // Do not need ServletModule
 // because the Struts plugin 1.0.1 installs it.
 }
}

That’s all for the Guice side of things. That’s also the last piece of Struts
configuration you’ll see in this chapter, so throw those hands up! When the party
settles, move on to the next section, in which I will explain the domain model for
the application.

http://struts.apache.org/dtds/struts-2.0.dtd

 Google Guice: Agile Lightweight Dependency Injection Framework 105

Defining the Model
Before I can use and persist the Shopping List application’s data using JPA and
Hibernate, I first need to develop a model. Luckily, the Shopping List model is
pretty simple. Looking back at the “Requirements” section, you can see that the
primary artifacts to deal with here are shopping lists and the products that go on
those shopping lists. I’m immediately going to map these artifacts to the
shoppinglist and product database tables respectively, using the shopping_list
schema I already created in my MySQL database (see the “Project Structure”
section). Listing 6-4 shows my Product class, mapped to the product table using
JPA annotations.
Listing 6-4. Product

package shoppinglist.model;
… // imports

@Entity
public class Product {
 private Long id;
 private String name;

 @GeneratedValue @Id
 public Long getId() {
 return id;
 }

 // other getters/setters
 // equals, hashCode, toString
}

Note that I don’t need to provide a mapping for the name property; if there’s a
column in the database with the same name, Hibernate, my JPA implementation
of choice, will figure out how to convert that value from and to the database. In
fact, it does that for all non-transient fields.
The second model class is ShoppingList. Similar to Product, it will also have id
and name properties. What’s different here is that it’s also linked to a given user’s
login name (e.g., Robbie), and it obviously contains a list of products. To get this
relationship in the database, I’m going to map that list of products to a link table
using both the shopping list ID and the product ID. This is a many-to-many

106 Google Guice: Agile Lightweight Dependency Injection Framework

relationship, but I’m only going to provide a mapping on the ShoppingList side.
Listing 6-5 shows the ShoppingList class.
Listing 6-5. ShoppingList

package shoppinglist.model;
… // imports

@Entity
public class ShoppingList {
 private Long id;
 private String name;
 private String login;

 private List<Product> products;

 @GeneratedValue @Id
 public Long getId() {
 return id;
 }

 @ManyToMany(targetEntity=Product.class,
 cascade={CascadeType.PERSIST, CascadeType.MERGE})
 @JoinTable(name="shoppinglist_product",
 joinColumns={@JoinColumn(name="shoppinglist_id")},
 inverseJoinColumns={@JoinColumn(name="product_id")})
 public List<Product> getProducts() {
 return products;
 }

 // other getters/setters
 // equals, hashCode, toString
}

These mappings alone don’t do much, so I still need to configure JPA to use
Hibernate, and set the correct properties so that Hibernate can connect to the
database. To do so, I created a META-INF directory in my source folder and added
the JPA persistence.xml file shown in Listing 6-6. Putting that file in a META-INF
directory in the classpath is a JPA requirement. You can see in Figure 6-6 where
this file goes in the global picture.

 Google Guice: Agile Lightweight Dependency Injection Framework 107

Listing 6-6. /src/META-INF/persistence.xml

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <!-- Local transactions. -->
 <persistence-unit name="shoppinglistJpaUnit"
 transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <class>shoppinglist.model.ShoppingList</class>
 <class>shoppinglist.model.Product</class>
 <properties>
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.format_sql" value="true" />
 <property name="hibernate.connection.driver_class"
 value="com.mysql.jdbc.Driver" />
 <property name="hibernate.connection.url"
 value="jdbc:mysql://localhost/shopping_list" />
 <property name="hibernate.connection.username" value="root" />
 <property name="hibernate.connection.password" value="root" />
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.MySQL5Dialect" />
 <property name="hibernate.connection.autocommit" value="false"/>
 <!-- Let Hibernate create and manage the tables. -->
 <property name="hibernate.hbm2ddl.auto" value="update" />
 </properties>
 </persistence-unit>
</persistence>

The persistence.xml file shown in Listing 6-6 looks pretty standard, but let me
point out two things here:
 I’m going to use local transactions.
 I’m going to let Hibernate create the database tables. It will generate the Data

Definition Language (DDL) statements using the mapped ShoppingList and
Product classes.

Now, JPA by itself is a great idea (partly because it looks so much like
Hibernate), but sometimes, it requires you to do a lot of manual labor. For
example, you’ll often need to do things like this:

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_1_0.xsd
mysql://localhost/shopping_list

108 Google Guice: Agile Lightweight Dependency Injection Framework

1. Start the persistence service.
2. Create an EntityManagerFactory instance.
3. Get an EntityManager instance.
4. Open up a transaction.
5. Do some work.
6. Commit or roll back the transaction.
7. Close the EntityManager instance.
8. Shut down the EntityManagerFactory instance.
In Enterprise JavaBeans (EJB) 3, of which JPA is a part, limited DI concepts
were introduced that can help you with all this work. For example, you can have
a fresh EntityManager instance injected whenever a method gets called on a
session bean. Unfortunately, this injection is only possible inside an EJB 3
container and doesn’t allow you to access lazily loaded collection properties on
your entities outside of a session bean. There are ways to work around that, using
patterns like Open Session In View, but that level of integration is not specified
by the JPA.

Note: To learn about Open Session In View, take a look at
http://www.hibernate.org/43.html. It’s also worth mentioning that both Spring
and JBoss Seam solve these problems in their own ways; the JBoss Seam
documentation especially is an entertaining read:
http://docs.jboss.com/seam/latest/reference/en/html/persistence.html.

As you can probably already guess, ease of use for JPA and providing DI
functionality are areas where Guice could really shine. That’s what Dhanji R.
Prasanna must have thought when he created the Warp Persist project—a project
that offers Guice integration for JPA and Hibernate and includes declarative
transaction management through its use of Guice AOP.

http://www.hibernate.org/43.html
http://docs.jboss.com/seam/latest/reference/en/html/persistence.html

 Google Guice: Agile Lightweight Dependency Injection Framework 109

Database Access with Warp Persist
As you can read at the Wideplay web site (http://www.wideplay.com), setting up
Warp Persist is easy. Usually, you follow these steps:
1. Decide what you want to use: JPA with Hibernate, JPA with Toplink,

Hibernate, and so on.
2. Choose a deployment strategy (e.g., session-per-transaction or session-per-

request).
3. Create the needed framework configuration files (e.g., persistence.xml).
4. Annotate your methods with @Transactional where appropriate.
5. Build a Warp Persist module (e.g., specify a unit of work based on the

deployment strategy) and include it when creating the injector.
For web applications, it’s nearly always best to go for the session-per-request
strategy, which is similar to the Open Session In View pattern I mentioned
earlier.
If you try to set things up as described on the Wideplay web site, you’ll notice
that you run into errors pretty quickly when you try to use their
SessionPerRequestFilter class. This has nothing to do with the quality of their
documentation but is a problem specific to Struts 2 and the Guice plug-in. For
Struts to be able to make use of SessionPerRequestFilter, you need to configure it
to go before the Struts FilterDispatcher entry in the web.xml file. This ensures
that a JPA EntityManager instance or Hibernate Session instance is available when
a request hits Struts. Unfortunately, there are no guarantees that Guice has been
started at that point because of how the current Guice plug-in is designed. Warp
Persist’s SessionPerRequestFilter needs information from Guice, but Guice
hasn’t been started yet when the first request arrives.
Unless the Guice folks change the design of the Struts 2 plug-in, you’ll need a
solution specific to Struts. Fortunately, Struts 2 already had a built-in concept
similar to servlet filters: interceptors. This is stuff you shouldn’t have to think
about, so feel free to use the interceptor I built for you in this book’s Appendix
section titled “SessionPerRequestInterceptor.”

http://www.wideplay.com
http://www.wideplay.com

110 Google Guice: Agile Lightweight Dependency Injection Framework

Once you have the SessionPerRequestInterceptor configured as described in the
Appendix, you need to add the Guice configuration to configure Warp Persist.
Listing 6-7 shows the module that I will include at Injector creation.
Listing 6-7. RepositoryModule

package shoppinglist.repository;
… // imports
public class RepositoryModule extends AbstractModule {
 @Override
 protected void configure() {
 // Warp Persist
 // "shoppingListJpaUnit" matches the name in the persistence.xml
 bindConstant().annotatedWith(JpaUnit.class).to("shoppinglistJpaUnit");
 install(PersistenceService.usingJpa()
 // EntityManager spans HTTP Request
 .across(UnitOfWork.REQUEST)
 .transactedWith(TransactionStrategy.LOCAL)
 .buildModule());
 }
}

To start using this RepositoryModule, I install it in the ShoppingListModule, which
is the module I configured in the struts.xml to create the Injector with. Listing
6-8 shows my modified ShoppingListModule.
Listing 6-8. Persistence-Enabled ShoppingListModule

public class ShoppingListModule implements Module {
 public void configure(Binder binder) {
 // Do not need ServletModule
 // because the Struts plugin 1.0.1 installs it.

 binder.install(new RepositoryModule());
 }
}

Installing RepositoryModule concludes the steps you need to take to get JPA and
Hibernate up and running. Now, let’s take a look at how I’m going to use JPA
and Hibernate, by implementing the data access layer.

 Google Guice: Agile Lightweight Dependency Injection Framework 111

Implementing the Data Access Layer
The first thing I’m going to implement is the ShoppingListRepository class, which
as the name suggests, will provide the necessary CRUD operations for use with
the ShoppingList model class. In Listing 6-9, you can see the interface I came up
with.
Listing 6-9. ShoppingListRepository

package shoppinglist.repository;
// imports…
public interface ShoppingListRepository {
 void create(ShoppingList shoppingList);
 void update(ShoppingList shoppingList);
 void delete(ShoppingList shoppingList);
 List<ShoppingList> findShoppingLists(String login);
}

Now, I need to create an implementation of this interface that talks to the
database. And when you start doing data access, you need to start thinking about
transactions. Luckily, Warp Persist supports declarative transaction management,
so all I need to do to make the repository methods transactional is annotate them
with the @Transactional annotation.
To get hold of a JPA EntityManager instance that will handle all the database
work, I can simply inject an instance that Warp Persist automatically configures.
You need to be careful though; inject Provider<EntityManager> or scope
ShoppingListRepository to match the Warp Persist UnitOfWork configured earlier
in RepositoryModule. This makes sure you don’t perform a scope-widening
injection, which is what would happen if you would inject the EntityManager
directly into a singleton.
Take a look at my ShoppingListRepository implementation, called
JpaShoppingListRepository, in Listing 6-10.

Note: Scope widening will be discussed in the next chapter.

112 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 6-10. JpaShoppingListRepository

package shoppinglist.repository;

import java.util.List;

import javax.persistence.EntityManager;

import shoppinglist.model.ShoppingList;

import com.google.inject.Inject;
import com.google.inject.Provider;
import com.google.inject.name.Named;
import com.wideplay.warp.persist.Transactional;

public class JpaShoppingListRepository implements ShoppingListRepository {
 // Use a Provider, or scope this class to match the WP UnitOfWork
 private final Provider<EntityManager> em;

 @Inject
 public JpaShoppingListRepository(Provider<EntityManager> em) {
 this.em = em;
 }

 @SuppressWarnings("unchecked")
 @Transactional
 public List<ShoppingList> findShoppingLists(String login) {
 return (List<ShoppingList>)em.get()
 .createQuery("SELECT sl FROM ShoppingList sl " +
 "WHERE sl.login = :login ORDER BY sl.name ASC")
 .setParameter("login", login)
 .getResultList();
 }

 @Transactional
 public void create(ShoppingList shoppingList) {
 em.get().persist(shoppingList);
 }

 @Transactional
 public void update(ShoppingList shoppingList) {
 em.get().merge(shoppingList);
 }

 Google Guice: Agile Lightweight Dependency Injection Framework 113

 @Transactional
 public void delete(ShoppingList shoppingList) {
 em.get().remove(shoppingList);
 }
}

You can see that using Warp Persist makes the whole thing look rather simple.
The only method that looks a little bit ugly is findShoppingLists(...), with
@SuppressWarnings and all.
Besides the fact that I should use a named query instead of hard coding the query
code, there’s another improvement possible. Warp Persist has a feature called
dynamic finders, which enables you to get rid of all the boilerplate code for
queries. In fact, you can get rid of all the code besides the actual query. Here’s
how:
 @Finder(query="SELECT sl FROM ShoppingList sl " +
 "WHERE sl.login = :login ORDER BY sl.name ASC")
 @Transactional
 public List<ShoppingList> findShoppingLists(@Named("login") String login) {
 return null;
 }

This findShoppingLists(...) method now returns null, or at least, so it seems.
Using Guice AOP, Warp Persist will intercept this method, and it will generate
an implementation for you. Warp Persist never even calls the actual method, so
you could return whatever you want; the code will never execute.
Now, let’s put a named query on ShoppingList. That way, Hibernate can validate
that query at startup, and I can more easily reuse it. Listing 6-11 highlights the
changes needed to the ShoppingList class.

Tip: Usually, you should put @Transactional not on data access methods
directly but on service classes or even controllers. Because this application
doesn’t have a service layer and doesn’t need more coarse-grained
transactions, I’m simply configuring my repositories to be transactional.

114 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 6-11. Named Query Added to ShoppingList

@Entity
@NamedQuery(name=ShoppingList.Q_SHOPPING_LIST_FOR_LOGIN,
 query="SELECT sl FROM ShoppingList sl " +
 "WHERE sl.login = :login ORDER BY sl.name ASC")
public class ShoppingList {
 public static final String Q_SHOPPING_LIST_FOR_LOGIN = "shoppingListsForLogin";

 … // fields, getters, setters, …
}

Now, I can change the findShoppingLists(...) method to use the named query:
 @Finder(namedQuery=ShoppingList.Q_SHOPPING_LIST_FOR_LOGIN)
 @Transactional
 public List<ShoppingList> findShoppingLists(@Named("login") String login) {
 return null;
 }

WARP PERSIST ANNOTATION SEMANTICS
You can also apply @Finder to methods on interfaces or abstract
classes—but keep in mind that @Transactional doesn’t work on those
finders, because Warp Persist does its own proxying for interfaces
and abstract methods to make dynamic finders work. This means
that Guice AOP, which powers @Transactional, will not work on those
finders. To use @Transactional in such a case, you’ll need to apply
transactions in a logical software layer above the data access layer,
which is probably a good idea anyway.

Another interesting fact about Warp Persist is that you can limit the
number of classes that Warp Persist proxies. You do this by
manipulating its Guice AOP configuration. Here’s an example:

install(PersistenceService.usingJpa()
 .across(UnitOfWork.REQUEST)
 .transactedWith(TransactionStrategy.LOCAL)
 // Transactions for any class, methods annotated with CustomAnnotation
 .forAll(any(), annotatedWith(CustomAnnotation.class))
 .buildModule());

 Google Guice: Agile Lightweight Dependency Injection Framework 115

One final thing you need to do is add a binding for JpaShoppingListRepository, as
shown in Listing 6-12. I’m binding it in the singleton scope, because it makes
sense to reuse the same instance over and over again.
Listing 6-12. ShoppingListRepository Binding

public class RepositoryModule extends AbstractModule {
 @Override
 protected void configure() {
 // Warp Persist
 // "shoppingListJpaUnit" matches the name in the persistence.xml
 bindConstant().annotatedWith(JpaUnit.class).to("shoppinglistJpaUnit");
 install(PersistenceService.usingJpa()
 // EntityManager spans HTTP Request
 .across(UnitOfWork.REQUEST)
 .transactedWith(TransactionStrategy.LOCAL)
 .buildModule());

 bind(ShoppingListRepository.class)
 .to(JpaShoppingListRepository.class)
 .in(Singleton.class);
 }
}

This is it for the ShoppingListRepository implementation. Now, I need to create
something similar for the Product model class.

Tip: The code I just wrote for JpaShoppingListRepository is often nearly
exactly the same for other model objects. Therefore, to get rid of this layer
altogether and using the Generic DAO pattern often makes sense, as
described in http://www-128.ibm.com/developerworks/java/library/j-
genericdao.html and http://hibernate.org/328.html. That’s right; the days of
the DAO are numbered.

Not surprisingly, the repository for Product is called ProductRepository. Take a
peek at the interface in Listing 6-13.

http://www-128.ibm.com/developerworks/java/library/j-genericdao.html
http://www-128.ibm.com/developerworks/java/library/j-genericdao.html
http://www-128.ibm.com/developerworks/java/library/j-genericdao.html
http://hibernate.org/328.html

116 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 6-13. ProductRepository Interface

package shoppinglist.repository;

import java.util.List;

import shoppinglist.model.Product;

public interface ProductRepository {
 List<Product> getProducts();
 List<Product> getProductsById(List<Long> ids);
 List<Product> getProductsComplementOf(List<Product> products);
}

The implementation, again, will be done using Warp Persist. This time there are
no write operations, so I’m going to use @Finder methods for all the queries. I
could have put them on the interface directly, but then I wouldn’t be able to put
@Transactional on them (or doing so wouldn’t help, at least). Listing 6-14 shows
the implementation, JpaProductRepository.

Note: Since the most recent version of Warp Persist, 1.0, you can also put
@Transactional at the class level to serve as a metaconfiguration for that
class. But you can achieve the same results if you configure its Guice AOP
settings as described earlier in the sidebar.

Listing 6-14. JpaProductRepository

public class JpaProductRepository implements ProductRepository {
 @Finder(namedQuery=Product.Q_ALL_PRODUCTS)
 @Transactional
 public List<Product> getProducts() {
 return null;
 }

 @Finder(namedQuery=Product.Q_PRODUCTS_WITH_IDS)
 @Transactional
 public List<Product> getProductsById(@Named("ids") List<Long> ids) {
 return null;
 }

 Google Guice: Agile Lightweight Dependency Injection Framework 117

@Finder(namedQuery=Product.Q_PRODUCTS_COMPLEMENT)
 @Transactional
 public List<Product> getProductsComplementOf(
 @Named("products") List<Product> products) {
 return null;
 }
}

Like JpaShoppingListRepository, JpaProductRepository uses named queries, so I
need to define those in the Product class! Listing 6-15 shows their definitions.
Listing 6-15. Named Queries Added to Product

@Entity
@NamedQueries({
 @NamedQuery(name=Product.Q_PRODUCTS_COMPLEMENT,
 query="SELECT p FROM Product p WHERE p NOT IN(:products)"),
 @NamedQuery(name=Product.Q_PRODUCTS_WITH_IDS,
 query="SELECT p FROM Product p WHERE p.id IN(:ids)"),
 @NamedQuery(name=Product.Q_ALL_PRODUCTS, query="SELECT p FROM Product p")
})
public class Product {
 public static final String Q_PRODUCTS_COMPLEMENT = "productsComplement";
 public static final String Q_PRODUCTS_WITH_IDS = "productsWithIds";
 public static final String Q_ALL_PRODUCTS = "allProducts";

 … // fields, getters, setters, …
}

Then, only the Guice configuration is left, so I add a binding to RepositoryModule
as shown in listing 6-16.

118 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 6-16. RepositoryModule with JpaProductRepository
Configured

public class RepositoryModule extends AbstractModule {
 @Override
 protected void configure() {
 // The other bindings
 …

 bind(ProductRepository.class)
 .to(JpaProductRepository.class)
 .in(Singleton.class);
 }
}

That is all: I’ve now implemented the data access layer. I added some repository
implementations using Warp Persist, added bindings to the RepositoryModule, and
installed that module in the ShoppingListModule, which is the module Guice will
use, as configured in the struts.xml. Next, let’s take a look at all three actions
shown in Figure 6-1 starting with the ShoppingListsAction that drives the home
screen.

The Home Screen
After logging in, the user should get to see a list of all her shopping lists. Also,
from that page, it should be possible to view, edit, or remove a shopping list or to
create a new one. This navigation from and to the home screen is what the
ShoppingListsAction will handle. In case you can’t remember, this is the action at
the top left in Figure 6-1.
Without going into every detail: The home screen view iterates over a collection
of ShoppingList items for the current user; this is a value that ShoppingListsAction
will need to provide. Listing 6-17 shows the action.
Listing 6-17. ShoppingListsAction

/**
 * Actions related to collections of {@link ShoppingList} instances.
 */
public class ShoppingListsAction extends ActionSupport {
 // Data sources
 private final ShoppingListRepository shoppingListRepo;

 Google Guice: Agile Lightweight Dependency Injection Framework 119

 private final Provider<UserToken> userToken;

 // UI
 private Map<String, String> view = newHashMap();
 private Map<String, String> edit = newHashMap();
 private Map<String, String> remove = newHashMap();

 // State
 private List<ShoppingList> shoppingLists;
 private ShoppingList shoppingList;

 @Inject
 public ShoppingListsAction(ShoppingListRepository shoppingListRepo,
 Provider<UserToken> userToken) {
 this.shoppingListRepo = shoppingListRepo;
 this.userToken = userToken;
 }

 //---
 // Action methods
 //---

 public String execute() {
 this.shoppingLists = shoppingListRepo.
 findShoppingLists(userToken.get().getLogin());
 if (view.size() > 0) return view();
 if (edit.size() > 0) return edit();
 if (remove.size() > 0) return remove();
 return SUCCESS;
 }

 private String view() {
 shoppingList = currentShoppingList(view);
 return "viewSL";
 }

 private String edit() {
 shoppingList = currentShoppingList(edit);
 return "editSL";
 }

 private String remove() {
 // delete the source data
 shoppingListRepo.delete(currentShoppingList(remove));
 // update the in-memory list
 shoppingLists.remove(currentShoppingListIndex(remove));

120 Google Guice: Agile Lightweight Dependency Injection Framework

 return SUCCESS;
 }

 public String create() {
 return "createSL";
 }

 // other Struts 2 code
}

You probably noticed that the constructor gets injected by Guice, through my use
of the Guice @Inject annotation. The constructor takes two parameters: one
ShoppingListingRepository and a Provider<Usertoken> instance, which is a Guice
Provider that returns an instance of the UserToken class. I already configured
ShoppingListRepository, so let’s take a look at what this UserToken is about.
The UserToken class identifies a user session. When a user successfully logs in, I
put a UserToken instance in the session containing the user’s login name. This
UserToken instance goes in HttpSession, which is equivalent to the session scope
in Guice. Now, to shorten the work I need to do in actions, I created
Provider<UserToken> to remove a layer of indirection for me. Instead of
manipulating the session directly, the Provider<UserToken> instance does the
manipulation, and as a result, my action code is much cleaner. So, take a look at
my WebModule shown in Listing 6-18, which I’ll also install in ShoppingListModule.
WebModule is the module that contains all web related dependencies.

Tip: You could use a similar provider mechanism for transcending scopes.
But that’s not what I need here.

Listing 6-18. Removing Indirection with a Provider

package shoppinglist.web;
… // imports

public class WebModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(UserToken.class).toProvider(new Provider<UserToken>() {
 @Inject private HttpSession session;

 Google Guice: Agile Lightweight Dependency Injection Framework 121

 public UserToken get() {
 // Struts 2 synchronizes on the same object
 synchronized (session) {
 return (UserToken) session.getAttribute(UserToken.KEY);
 }
 }
 }); // no scope!
 }
}

package shoppinglist;
… // imports
public class ShoppingListModule implements Module {
 public void configure(Binder binder) {
 // Do not need ServletModule
 // because the Struts plugin 1.0.1 installs it.

 binder.install(new RepositoryModule());
 binder.install(new WebModule());
 }
}

One action down, two to go—on to the create and edit screens!

The Create and Edit Screens
If you look closely at Figure 6-1, you’ll see that both the editSL and the createSL
view pages call ProductListAction to get a list of available products. In the JSPs,
this looks something like the following:
<%-- Call another action to get the productList --%>
<s:action name="ProductList" id="productList">
 <%-- Don't load all products for selection when editing --%>
 <s:param name="selectedProducts" value="shoppingList.products"/>
</s:action>

The preceding code gets either all of the products stored in the database or, in the
case of an edit, all of the products but the ones that are already selected. Listing
6-19 shows the ProductListAction action that handles those requests.

122 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 6-19. ProductListAction

public class ProductListAction {
 private final ProductRepository productRepo;
 private List<Product> productList;
 private List<Product> selectedProducts;

 @Inject
 public ProductListAction(ProductRepository productRepo) {
 this.productRepo = productRepo;
 }

 public String execute() {
 if (this.selectedProducts == null)
 this.productList = productRepo.getProducts();
 else
 this.productList = productRepo
 .getProductsComplementOf(this.selectedProducts);
 return Action.SUCCESS;
 }

 public List<Product> getProductList() {
 return productList;
 }

 public void setSelectedProducts(List<Product> selectedProducts) {
 this.selectedProducts = selectedProducts;
 }
}

Notice the dependency on ProductRepository, which I already configured.
Besides that, this action has no dependencies, so I’m all done here. I’ll have more
of that, please.
Listing 6-20 shows the ShoppingListAction, which is the action that processes
shopping list submissions from the createSL or editSL views. Again, this class
uses the repositories created earlier, so no real work here. My prayers have been
answered!

 Google Guice: Agile Lightweight Dependency Injection Framework 123

Listing 6-20. ShoppingListAction

/**
 * Actions related to a single {@link ShoppingList}.
 */
public class ShoppingListAction extends ActionSupport {
 private ShoppingList shoppingList;
 private Long[] selectedProducts;

 private final ShoppingListRepository shoppingListRepository;
 private final ProductRepository productRepo;

 @Inject
 public ShoppingListAction(ShoppingListRepository repository,
 ProductRepository productRepo) {
 this.shoppingListRepository = repository;
 this.productRepo = productRepo;
 }

 //---
 // Data manipulation
 //---

 public String createSubmit() {
 shoppingList.setProducts(
 productRepo.getProductsById(Arrays.asList(getSelectedProducts())));
 shoppingListRepository.create(shoppingList);
 return SUCCESS;
 }

 public String editSubmit() {
 shoppingList.setProducts(
 productRepo.getProductsById(Arrays.asList(getSelectedProducts())));
 shoppingListRepository.update(shoppingList);
 return SUCCESS;
 }

 // getters, setters …
}

Unit Testing
Now, how should you go about unit testing this Guice application? Simple: you
don’t need to use Guice. Because of your DI-style (inversion of control) design,
you can easily create mock dependencies to test classes in isolation. Listing 6-21

124 Google Guice: Agile Lightweight Dependency Injection Framework

shows an example test for ProductListAction. In real life, you will also want to
consider the use of a mocking framework like EasyMock
(http://www.easymock.org).

Tip: There’s a testing framework with Guice support out there. Check out
AtUnit (http://code.google.com/p/atunit/).

Listing 6-21. ProductListActionTest

public class ProductListActionTest {
 @Test
 public void returnsAllProducts() {
 ProductRepository mockRepo = new ProductRepository() {
 public List<Product> getProducts() {
 return productList();
 }
 public List<Product> getProductsById(List<Long> ids) {
 return null; // never used
 }
 public List<Product> getProductsComplementOf(List<Product> products) {
 return null; // never used
 }
 };
 ProductListAction pa = new ProductListAction(mockRepo);
 pa.execute();
 assertEquals(productList(), pa.getProductList());
 }

 private List<Product> productList() {
 Product p1 = newProduct(1L, "name1");
 Product p2 = newProduct(2L, "name2");
 return Arrays.asList(p1, p2);
 }

 private Product newProduct(Long id, String name) {
 Product p = new Product(); p.setId(id); p.setName(name);
 return p;
 }
}

http://www.easymock.org
http://www.easymock.org
http://code.google.com/p/atunit

 Google Guice: Agile Lightweight Dependency Injection Framework 125

Note: I’m a fan of test-driven development, but I deliberately did not take
that road for this chapter to keep the content easily digestible.

Summary
In this chapter, I tried to give you a better idea of what it takes to build a Guice-
powered application. I think the most important thing to take away here is that it
is dead simple. Other than that, I think I also delivered proof of the following:
 Warp Persist makes data access a breeze.
 Using modules will make your application layers more visible.
 You can use providers to remove levels of indirection.
 You don’t need Guice when you write unit tests.

You can download the full source code to the Shopping List application from the
Apress web site at http://www.apress.com.

http://www.apress.com
http://www.apress.com

126 Google Guice: Agile Lightweight Dependency Injection Framework

 Google Guice: Agile Lightweight Dependency Injection Framework 127

Chapter 7: Guice Recipes
When you learn any new framework or programming language, picking up the
basics usually doesn’t take you very long. People tend to learn by reference—
once you know how a for loop works in C, understanding similar concepts in
other programming languages becomes incredibly easy. Similarly but more in the
context of this book, if you already have experience with DI frameworks like the
Spring Framework or PicoContainer, you probably didn’t have much trouble
understanding how Guice works.
Some knowledge, however, can only come from experience with the framework
and by discussing ideas with the community. This chapter aims to give you a
head start and discusses various best practices and commonly asked questions
I’ve collected over the past year or so, as well as some of Guice’s smaller
features like integration with the Spring Framework or JNDI.

Sharing Singletons
While a singleton is a fairly simple concept, there is one mistake that beginning
Guice users often make. Take a look at Listing 7-1. What does it print?
Listing 7-1. Drinkable Carbonated Water

interface Drinkable {}
interface Carbonated {}
class Water implements Drinkable, Carbonated {}

public class SharingSingletons {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 bind(Drinkable.class).to(Water.class).in(Singleton.class);
 bind(Carbonated.class).to(Water.class).in(Singleton.class);
 }
 });
 Drinkable drinkable = i.getInstance(Drinkable.class);
 Carbonated carbonated = i.getInstance(Carbonated.class);
 System.out.println(drinkable == carbonated);
 }
}

128 Google Guice: Agile Lightweight Dependency Injection Framework

When you run this example, you’ll see that it prints false. Looking at the
configuration, however, this might seem strange at first.
For the most part, I think confusion sets in because Guice comes with a scope
that’s named “singleton” that doesn’t produce real singletons in the classic
design pattern sense. Think about it: when you ask Guice for a singleton, what do
you really want?
 One instance per JVM and per type?
 One instance per Injector and per type?
 One instance per Injector and per Key (i.e., per binding)?

If you go back to Guice’s singleton scope description in Chapter 2,”Enter
Guice,” you’ll realize that Guice’s singleton scope implements the third option:
you’ll get one instance per Injector and per Key.
That said, the reason why Listing 7-1 prints false is twofold:
 Scopes always work per Key; bindings to different type and binding

annotation combinations will always spawn different instances no matter
what the scope.

 The element specified in the to(...) method actually refers to another
binding. The ability to bind to a Class instance directly is merely a
convenience: Guice always binds to a Key internally. This means that a scope
never applies to the to(...) element of a binding; it already has a scope of its
own.

Caution: Bindings to different keys will always spawn different instances no
matter what the scope, unless the scope implementation at hand purposely
discards some of that information, for example, the annotation. Currently,
this is not the case for any existing Guice scope; they all use Key to identify
bindings just like Guice itself does.

In this example case, there is no explicit binding for Water, but as you know,
Guice always has an implicit binding (in “no scope”) ready for concrete classes.

 Google Guice: Agile Lightweight Dependency Injection Framework 129

Both of the bindings shown in Listing 7-1 receive a distinct “no scope” Water
instance. To make the example in Listing 7-1 return true, you simply replace
Guice’s implicit binding to Water with your own explicit binding that binds Water
in the singleton scope. Both the bindings in the previous listing can then bind to
your explicit Water binding and thus receive that singleton instance. After that,
because the target Water instance already is a singleton, the Drinkable and
Carbonated bindings also no longer need to have the singleton scope applied.
Listing 7-2 shows the configuration that returns true.
Listing 7-2. A Manual Per-Injector and Per-Type Instance

bind(Water.class).in(Singleton.class);
bind(Drinkable.class).to(Water.class);
bind(Carbonated.class).to(Water.class);

If you now wanted to have one type instance per JVM, I suggest that you roll
your own Scope implementation. Try to stay away from manual singletons: they
are error prone and make testing your code harder.

Binding Collections
A question that often comes up is, “How can I bind a set of objects in a
collection?” Guice’s Binding EDSL makes it easy to bind isolated objects, but
it’s also easy to get lost when you want to start binding collections of objects,
like lists or maps. How should one approach this issue? Well, as you’ve probably
heard your local consultant say, it depends. I think you can split this problem up
into three types of collection content:
 Objects that are not managed by Guice (or don’t need to be)
 Objects that are managed by Guice
 Objects that will exist in the future and make use of a future Guice version

Let’s take a look at these one at a time. For the first type of content, let’s revisit
the fortune cookie example from Chapter 1. Listing 7-3 shows the FortuneService
that gives out random fortunes.

130 Google Guice: Agile Lightweight Dependency Injection Framework

Listing 7-3. Not Very Guicy FortuneServiceImpl

public interface FortuneService { String randomFortune(); }

public class FortuneServiceImpl implements FortuneService {
 private static final List<String> MESSAGES =
 Arrays.asList(
 "Today you will have some refreshing juice.",
 "Larry just bought your company."
);

 public String randomFortune() {
 return MESSAGES.get(new Random().nextInt(MESSAGES.size()));
 }
}

As you can see, the list of fortunes currently gets created in a static variable.
Using Guice, you can do better. Listing 7-4 displays a Guicier approach.
Listing 7-4. Guicy FortuneServiceImpl

public class FortuneServiceImpl implements FortuneService {
 private final List<String> messages;

 @Inject
 public FortuneServiceImpl(List<String> messages) {
 this.messages = messages;
 }

 public String randomFortune() {
 return messages.get(new Random().nextInt(messages.size()));
 }
}

Because the fortunes in the list are just strings, they don’t need to be managed by
Guice. For a list containing only unmanaged objects, which is what the first type
of collection content is all about, you should consider using a provider. Listing 7-
5 shows an example.

 Google Guice: Agile Lightweight Dependency Injection Framework 131

Listing 7-5. A Fortune Provider

public class FortuneListProvider implements Provider<List<String>> {
 public List<String> get() {
 return Arrays.asList(
 "Today you will have some refreshing juice.",
 "Larry just bought your company."
);
 }
}

Note: You could use toInstance(...) to achieve the same result as Listing 7-
5, but I advise against it. Although it’s not horrible to make use of it in this
case (this example looks like a constant binding), you should develop the
habit of not using it. Otherwise, chances are that you’ll start using it to
bootstrap more expensive services that have a higher risk of failing, like
database connections. Starting up Guice should be fast and predictable—
move the risk to your code.

Using this provider, you can now bind the fortune list. Listing 7-6 shows you
how the pieces fit together.
Listing 7-6. Collection Binding for Unmanaged Objects

public class Main {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 bind(new TypeLiteral<List<String>>(){})
 .toProvider(new FortuneListProvider())
 .in(Singleton.class);

 bind(FortuneService.class).to(FortuneServiceImpl.class);
 }
 });
 FortuneService fortuneService = i.getInstance(FortuneService.class);
 System.out.println(fortuneService.randomFortune());
 }
}

132 Google Guice: Agile Lightweight Dependency Injection Framework

As you would expect, the example shown in Listing 7-6 prints a random fortune
on the console: Larry just bought your company.
The second type of collection contents are managed objects, objects that are in
the club. Let’s go back to the same fortunes example. Recall MegaFortuneService
from Chapter 2? If not, use Listing 7-7 to refresh your memory.
Listing 7-7. MegaFortuneService

public class MegaFortuneService implements FortuneService {
 private static final List<FortuneService> SERVICES =
 Arrays.<FortuneService>asList(
 new FunnyFortuneService(),
 new QuoteFortuneService()
);

 public String randomFortune() {
 …
 }
}

Just like the FortuneServiceImpl in Listing 7-3, this class also holds a list of
objects in a static variable. Again, let’s convert this class to a “don’t call us, we’ll
call you” design, as shown in Listing 7-8.
Listing 7-8. Guicy MegaFortuneService

public class MegaFortuneService implements FortuneService {
 private final List<FortuneService> services;

 @Inject
 public MegaFortuneService(List<FortuneService> services) {
 this.services = services;
 }

 public String randomFortune() {
 …
 }
}

This time, the list contains not dumb String objects but fortune services. It’s not
too hard to imagine that these services themselves want to have dependencies
injected. If so, such a collection of managed objects changes the binding game.

 Google Guice: Agile Lightweight Dependency Injection Framework 133

First, take a look at Listing 7-9 to see how the module configuration looks before
I bind the collection.
Listing 7-9. All MegaFortuneService Dependency Bindings Without
List<FortuneService>

public class MegaModule extends AbstractModule {
 protected void configure() {
 bind(FortuneService.class)
 .annotatedWith(Funny.class)
 .to(FunnyFortuneService.class);

 bind(FortuneService.class)
 .annotatedWith(Quote.class)
 .to(QuoteFortuneService.class);

 // MegaFortuneService that contains a list of the other two.
 bind(FortuneService.class)
 .annotatedWith(Mega.class)
 .to(MegaFortuneService.class);
 }
}

The most obvious option now would be to bind List<FortuneService> to a
Provider instance. Listing 7-10 illustrates this approach.
Listing 7-10. FortuneServiceListProvider

public class FortuneServiceListProvider implements Provider<List<FortuneService>> {
 @Inject @Quote FortuneService quoteService;
 @Inject @Funny FortuneService funnyService;
 public List<FortuneService> get() {
 return Arrays.asList(quoteService, funnyService);
 }
}

public class MegaModule extends AbstractModule {
 protected void configure() {
 … // the other bindings

 bind(new TypeLiteral<List<FortuneService>>(){})
 .toProvider(new FortuneServiceListProvider())
 .in(Singleton.class);
 }
}

134 Google Guice: Agile Lightweight Dependency Injection Framework

Tip: Use the TypeLiteral factory methods I discussed in Chapter 3 to make
TypeLiteral configuration more readable. I’m not using them in Listing 7-11
to keep the examples small.

The drawback of this provider approach is that you have to inject all the possible
fortune services into the FortuneServiceListProvider manually. This can be a
major pain if your lists are very large or have varying elements depending on the
modules you use. For example, if the FunnyFortuneService and
QuoteFortuneService bindings would reside in two different modules, you always
need to include them both at Injector-creation time, unless you start using
@Inject(optional=true) in the provider and start checking for null references
when you create the actual list. This explosion of configuration code is what you
should try to avoid.
To do so, I suggest that you consider using a more object-oriented approach. To
achieve the maximum amount of flexibility, you could let the services add
themselves to the list, instead of adding them to the list manually in a provider.
Listing 7-11 shows this approach; note that you need to bind the services as eager
singletons to make sure that they’ve registered themselves at application start-up.
Listing 7-11. A Registry/Visitor Style of Design

public class FunnyFortuneService implements FortuneService {
 @Inject
 public void register(List<FortuneService> services) {
 services.add(this);
 }
 …
}

public class QuoteFortuneService implements FortuneService {
 @Inject
 public void register(List<FortuneService> services) {
 services.add(this);
 }
 …
}

public class MegaModule extends AbstractModule {

 Google Guice: Agile Lightweight Dependency Injection Framework 135

 protected void configure() {
 //bind(FortuneService.class)
 // .annotatedWith(Funny.class)
 // .to(FunnyFortuneService.class);
 //bind(FortuneService.class)
 // .annotatedWith(Quote.class)
 // .to(QuoteFortuneService.class);

 // Binding services is simpler now, but you need asEagerSingleton()
 bind(FunnyFortuneService.class).asEagerSingleton();
 bind(QuoteFortuneService.class).asEagerSingleton();

 // MegaFortuneService that contains a list of the other two.
 bind(FortuneService.class)
 .annotatedWith(Mega.class)
 .to(MegaFortuneService.class);

 // No longer bind to Provider
 //bind(new TypeLiteral<List<FortuneService>>(){})
 // .toProvider(new FortuneServiceListProvider())
 // .in(Singleton.class);

 // Bind the List<FortuneService> to an empty ArrayList
 bind(new TypeLiteral<List<FortuneService>>(){})
 .to(new TypeLiteral<ArrayList<FortuneService>>(){})
 .in(Singleton.class);
 }
}

Note: You don’t really need to bind the collection elements as eager
singletons when using the approach in Listing 7-11. For example, you could
set up the dependencies in such a way that the collection elements would
always come up first.

As you can see in Listing 7-11, this approach requires you to factor collection
bindings into your application’s design. This is not horrible, but I think this is a
problem Guice could (and probably will) address. That’s why I included the third
category about future Guice implementations. To track the current progress on
this issue, which the Guice folks call multibindings, take a look at issue number

136 Google Guice: Agile Lightweight Dependency Injection Framework

37 in the Guice issue tracker: http://code.google.com/p/google-
guice/issues/detail?id=37.

Tip: Guice currently does not feature life cycle event support, but you could
use this last design to achieve something like it. For example, you could
collect all classes that implement a ShutdownListener interface and iterate
over the resulting collection in GuiceServletContextListener.

Designing Libraries and Limiting Visibility
You’ve undoubtedly heard of the “limit visibility” mantra. Reducing the
conceptual surface of an API has several advantages, including these:
 Users have less to learn.
 Getting into trouble is harder for users.
 You don’t have to write as much JavaDoc documentation.
 The API will be easier to get right.

In Java, you get both the tools (private, protected, etc.) and the building blocks
(classes, fields, etc.) to achieve this goal. With Guice in the picture, you get some
new building blocks to put in your API: modules and binding annotations. It’s
important that you think about how this changes the API design game. When you
do, you’ll realize that there are two new practices at your disposal:
 Hiding implementation classes: By making your implementation classes

package private (the default access) and having at least one public module per
package, you can avoid leaking implementation details and prevent your
users from tightly coupling with the API. This will help ensure that your users
fall into the pit of success.

 Hiding individual bindings: By making certain binding annotations package
private, you can prevent them from being used externally, even if they are
defined in a publicly available module. Doing this makes sense only in
combination with the first practice, though.

http://code.google.com/p/google-guice/issues/detail?id=37
http://code.google.com/p/google-guice/issues/detail?id=37
http://code.google.com/p/google-guice/issues/detail?id=37
http://code.google.com/p/google-guice/issues/detail?id=37

 Google Guice: Agile Lightweight Dependency Injection Framework 137

Note: Bob Lee points out that you could still access hidden individual
bindings using Injector.getBindings(). But seriously, that’s like the Guice
equivalent to bypassing class member visibility using reflection.

That said, a related question that often pops up in the Guice community is, “How
can I go about designing libraries that use Guice?” For example, you might want
to create a library that uses Guice internally and make that library available to
other developers, so you’d need to
 Provide a solid API that has one well-defined programming model
 Bootstrap Guice

The first problem can be solved using the two new practices I just listed. The
second one, however, seems to be a big hurdle for a lot of people.
In the ideal world, you and your users would be using Guice. In such a case, the
solution is simple: you don’t bootstrap Guice. You just provide the modules,
using the practices I described earlier in this section, and let your users consume
them. When they create their Injector instances, they can specify (or import, if
you will), the modules that go with the packages they want to use. Alternatively,
you could also provide one root module that installs all the other modules for the
library at once.

Tip: In that ideal world in which both you and your users are using Guice,
you will probably want to consider dynamically loading modules, depending
on which JARs are in the classpath. See the “Configuration Discovery”
section in Chapter 5 to learn about some of your options there.

138 Google Guice: Agile Lightweight Dependency Injection Framework

Now, if your users don’t use Guice, you’re in trouble; you basically have three
choices:
 Make them use Guice directly.
 Make them use Guice indirectly.
 Don’t enforce the use of Guice.

I already discussed how you would approach the first option, so let’s move right
on to the second one. If your users can’t (or don’t want to) use Guice, you could
consider creating some kind of façade class that they will have to use as a
starting point for any work they want to do with your library. Under the hood,
that class would then manage an Injector instance and give out Guice-managed
objects. This scenario is kind of awkward and getting the scoping right will be
tricky, but it can work if you set your mind to it. All in all, I don’t recommend
this option.
The third option is not to enforce the use of Guice. You could configure the
library for use with Guice, for example, to annotate injection points, create
binding annotations, and provide modules. Then, you could leave it up to your
users to decide whether they want to use Guice or use your library with Spring or
another DI framework. Shipping a Guice-enabled API is an interesting option but
also limits what you can do in terms of modern design. For example, you won’t
be able to make all implementation classes package private.

Note: In my opinion, this section alone proves that Guice, or something like
Guice, should be in Java SE. Imagine a world in which all libraries include
the necessary annotations for DI use. The power! The simplicity!

Viral Annotations
Binding annotations are one of Guice’s most innovative features. However,
people new to Guice often seem to be a bit skeptical. For example, let’s say you
use @Fast Computer everywhere in your code. Then, at some point in the future,
you would like to switch to the @VeryFast Computer. This poses an interesting

 Google Guice: Agile Lightweight Dependency Injection Framework 139

challenge, because making the switch would require you to change your code all
over the place. Do binding annotations spread like a virus?
Yes and no. I think this is a problem that, in essence, will always exist: if there
are multiple implementations that you want to use next to each other, you will
need to be specific. This is no different when using factories or other DI
frameworks. Usually, you can work around the problem, though, and it turns out
that using an all-Java framework like Guice helps a lot in some cases. Here are
some tips to help you on your quest for maintainable code:
 Only be specific if you have to be. If there is only one implementation, don’t

use a binding annotation.
 Don’t be too specific when choosing the annotation name. For example,

@Performant Computer might describe the component well enough.
 Design your application with care. If you have the same dependency in half

of the classes in your application, that’s a sign you need to refactor. Usually,
you can also confine certain dependencies to a logical layer; for example, you
would only use a Hibernate Session in the data access layer.

 Use your IDE’s refactoring tools. For example, if you’re no longer going to
use @Fast, just rename @Fast to @VeryFast, and let the IDE do all the work for
you. This is when Guice is really the captain of the football team. With Guice
on the team, all the other players (e.g., the IDE) play the game of their lives.

 Avoid using @Named as much as possible. String identifiers can be harder to
refactor.

Mixing Scopes
You’ll definitely agree with me that scopes are a very useful Guice feature. If
you want an object to be request scoped, all you have to say is, “Tag! You’re a
request-scoped object!” Having this power available with so little effort is
probably a good thing, but as the saying goes, with great power comes great
responsibility.
When you mix and match two class instances in your application, there are three
scoping options:

140 Google Guice: Agile Lightweight Dependency Injection Framework

 The scope of class A is wider than the scope of class B.
 The scope of class A is equal to the scope of class B.
 The scope of class A is narrower than the scope of class B.

The caveat is in the first option. If you want an instance of class A to work
properly until the application exits or until it is no longer needed, you need to
make sure that all its dependencies (e.g., B) stay in place until the very end. If one
of the dependencies fails to live as long as the instance itself, it’s almost
guaranteed that you will get into trouble. This is what is called a scope widening
injection: by injecting a dependency of a narrower scope, you artificially widen
its lifetime to match the lifetime of the target object (the one that’s injected).
Because class A holds references to all its dependencies, they can not be garbage
collected until the class A instance itself dies. So it is very possible that the scope
where the dependency objects live has died a long time ago, but the garbage
collector simply doesn’t get the chance to clean up the waste because the A
instance still holds references to zombie objects.
Let me give you a realistic example (shown in Figure 7-1). Say you have a
singleton A instance and an HTTP-request-scoped B instance. If A loads eagerly,
you get lucky, and Guice will tell you right away (with OutOfScopeException) that
there is a problem when it tries to inject B. When the HTTP request scope is not
active, you will not be able to create your singleton object. However, Guice is
not always able to help you out (at least not in version 1.0).
Let’s say A does not load eagerly and instead loads when the first HTTP request
comes in. In that case, the HTTP request scope is active, and A will be created
successfully. All subsequent requests will then reuse the same A instance (since
it’s a singleton), and that A instance holds a reference to a B dependency that was
in scope during the first request, and only the first request. This is obviously
dangerous and might result incorrect program behavior, crashes, or you getting
fired.

 Google Guice: Agile Lightweight Dependency Injection Framework 141

Figure 7-1. Scope widening: creating a singleton A instance with a
request-scoped B instance dependency

That said, there are two ways (that I know of) to approach this scope widening
pitfall:
 Pay attention so that you do not to perform a scope widening injection

anywhere in your application.
 Inject Provider into A, and only access B when you are sure it is in currently

in scope.
This is all the advice I can give you at this point. Perhaps, in a future version of
Guice, there will be some way to specify interscope dependencies, so that you
can say, “Singleton scope is wider than session scope, and session scope is wider
than request scope.” With that information, Guice could then throw an exception
when an injection goes from right to left in the scope relationship (when it
widens) instead of from left to right.

142 Google Guice: Agile Lightweight Dependency Injection Framework

Integrating Spring
Through the guice-spring-1.0.jar file that comes with the Guice 1.0 distribution,
Guice offers limited integration with the Spring Framework. More specifically, it
enables you to bind existing Spring beans as Guice objects.
The plug-in supports the following two binding scenarios:
 You bind all the Spring beans from a given BeanFactory or ApplicationContext

as Guice objects that match the following injection point: @Named("beanName")
BeanType.

 You bind the Spring BeanFactory or ApplicationContext directly and have the
ability to generate providers for your own bindings. These providers will look
up the Spring beans that have the name and type you supply.

Caution: The Guice integration for Spring respects the Spring prototype
and singleton scopes, but disregards other scopes. If your Spring beans use
another scope, I advise against the use of this extension until support for
other scopes (request, session, etc.) is added.

Let’s take a look at a small example. Imagine you configure the class shown in
Listing 7-12 using Spring.
Listing 7-12. MySpringBean

package chapter7.spring;

public class MySpringBean {
 private String message;

 public void sayHello() {
 System.out.print("Hello"+this.message);
 }

 public void setMessageUsingSpring(String message) {
 this.message = message;
 }
}

 Google Guice: Agile Lightweight Dependency Injection Framework 143

MySpringBean’s configuration could look like the XML shown in Listing 7-13.
Listing 7-13. MySpringBean Spring Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="mySpringBean" class="chapter7.spring.MySpringBean">
 <property name="messageUsingSpring" value=" world!"/>
 </bean>

</beans>

First, let’s take a look at the simplest approach: letting Guice bind all available
Spring beans (one in this case) to @Named("beanName") BeanType. For this example,
that would be @Named("mySpringBean") MySpringBean. Listing 7-14 shows this
approach.
Listing 7-14. Letting Guice Generate Bindings for All Spring Beans

import static com.google.inject.spring.SpringIntegration.bindAll;

public class SpringToGuice {
 private static ClassPathXmlApplicationContext springContext() {
 ...
 }

 public static void main(String[] args) {
 Injector i = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 bindAll(binder(), springContext());
 }
 });
 i.getInstance(NeedsSpringDependency.class);
 }
}

public class NeedsSpringDependency {
 @Inject
 NeedsSpringDependency(@Named("mySpringBean") MySpringBean springBean) {
 springBean.sayHello();
 }
}

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-2.5.xsd

144 Google Guice: Agile Lightweight Dependency Injection Framework

This example prints “Hello world!” and proves that the Guice dependency
injected in the NeedsSpringDependency class originally was a Spring bean, because
I configured Spring to set the “world!” part of the output (see Listing 7-13) .
The second approach is to simply bind the BeanFactory type to your BeanFactory
or ApplicationContext instance and let Guice generate individual providers for
you, for a given type and Spring bean name. This allows you to choose the
binding annotation yourself (if you choose to use one) instead of having to use
the default @Named("mySpringBean"). Listing 7-15 demonstrates this approach,
using the same example as the previous approach.
Listing 7-15. Binding Spring Beans Using Generated Providers

import static com.google.inject.spring.SpringIntegration.fromSpring;
import static com.google.inject.name.Names.named;

public class SpringToGuice {
 private static ClassPathXmlApplicationContext springContext() {
 ...
 }

 public static void main(String[] args) {
 Injector i = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 // I know, I know, toInstance…
 bind(BeanFactory.class).toInstance(springContext());

 bind(MySpringBean.class)
 .annotatedWith(named("annotationOfMyChoice"))
 .toProvider(fromSpring(MySpringBean.class, "mySpringBean"));
 }
 });
 i.getInstance(NeedsSpringDependency.class);
 }
}

public class NeedsSpringDependency {
 @Inject
 NeedsSpringDependency(@Named("annotationOfMyChoice") MySpringBean springBean) {
 springBean.sayHello();
 }
}

Like the previous example, this example also prints “Hello world!”

 Google Guice: Agile Lightweight Dependency Injection Framework 145

Logging
Guice logs some (performance-related) information to its JDK logger. If you are
not accustomed to using the logging system that comes with the JDK, take a look
at Listing 7-16. This listing shows a simple utility class that I made with which
you can enable Guice logging output on the console.
Listing 7-16. GuiceDebug

public class GuiceDebug {
 private static final Handler HANDLER = new ConsoleHandler() {{
 setLevel(Level.ALL); setFormatter(new Formatter() {
 public String format(LogRecord r) {
 return String.format("[Guice] %s%n", r.getMessage());
 }
 });
 }};

 private GuiceDebug() {}

 public static void enable() {
 Logger guiceLogger = Logger.getLogger("com.google.inject");
 guiceLogger.addHandler(GuiceDebug.HANDLER);
 guiceLogger.setLevel(Level.ALL);
 }
}

If you execute GuiceDebug.enable() before you start Guice, you should see
something like the following on the console:

[Guice] Configuration: 59ms
[Guice] Binding creation: 48ms
[Guice] Binding indexing: 0ms
[Guice] Validation: 0ms
[Guice] Static validation: 1ms
[Guice] Static member injection: 1ms
[Guice] Instance injection: 1ms
[Guice] Preloading: 1ms

Now, chances are that you are not using JDK logging in your application. To
unify JDK logging with Log4J, Commons Logging, and whatnot, you can use
SLF4J (http://www.slf4j.org). You will want to use their JDK logging handler,

http://www.slf4j.org
http://www.slf4j.org

146 Google Guice: Agile Lightweight Dependency Injection Framework

which can be found at http://bugzilla.slf4j.org/attachment.cgi?id=15; it allows
you to route the Guice logs to your favorite logging system.

Integrating JNDI
As a testimony of the flexibility of providers, Guice 1.0 ships with very simple
but effective JNDI integration. It allows you to get a value from JNDI without all
the exception handling hassle and without the use of a service locator. Take a
look at Listing 7-17.
Listing 7-17. Guice JNDI Integration

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.google.inject.AbstractModule;
import static com.google.inject.jndi.JndiIntegration.*;

public class JndiModule extends AbstractModule {
 @Override
 protected void configure() {
 // Bind a Context, the default InitialContext for example.
 bind(Context.class).to(InitialContext.class);

 // fromJndi generates a Provider.
 bind(DataSource.class)
 .toProvider(fromJndi(DataSource.class, "java:comp/env/jdbc/MyDS"));
 }
}

First, you need to bind a JNDI Context object. Typically, using a default
InitialContext instance is sufficient, so I’m going with that. Next, using the
JndiIntegration class, you can generate a Provider instance for a given type and
JNDI location. When that Provider instance is invoked when running the
application, it will simply return the object at the specified JNDI location. It’s
that simple!

http://bugzilla.slf4j.org/attachment.cgi?id=15
http://bugzilla.slf4j.org/attachment.cgi?id=15

 Google Guice: Agile Lightweight Dependency Injection Framework 147

Tip: Did you know that Eclipse’s Content Assist (Ctrl+Space bar) feature
can suggest static imports in the more recent versions? All you need to do
is specify your commonly used classes in Window → Preferences → Java →
Editor → Content Assist → Favorites.

Using JMX
Guice has built-in support to inspect an Injector’s bindings at runtime using the
Java Management Extensions (JMX); see http://java.sun.com/docs/books/
tutorial/jmx/). JMX is a technology that was added in Java SE 5, which Guice
obviously requires, that enables you to inspect a running application and interact
with objects called MBeans. These MBeans are nothing more than regular Java
objects that follow a certain coding convention.
With little effort, Guice will create a series of MBeans for you from an
Injector’s bindings. Guice will not expose all your Guice objects as MBeans; it
exposes only the objects’ binding information. It’s not exceptionally hard to add
a Guice-managed object as an MBean though, so let me demonstrate the Guice
JMX support while configuring a Guice-managed object as an MBean. First, let’s
take a look at a simple MBean and its implementation, in Listings 7-18 and 7-19.
Listing 7-18. HelloMBean

package chapter7.jmx;

public interface HelloMBean {
 void sayHello();
}

http://java.sun.com/docs/books

148 Google Guice: Agile Lightweight Dependency Injection Framework

 Listing 7-19. HelloMBean Implementation

package chapter7.jmx;

import javax.management.JMException;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import com.google.inject.Inject;

public class Hello implements HelloMBean {
 public void sayHello() {
 System.out.println("Hello JMX!");
 }

 @Inject
 public void registerThisBean(MBeanServer server) {
 try {
 server.registerMBean(
 this, new ObjectName("Guice Powered MBeans:type=Hello"));
 } catch (JMException e) {
 throw new RuntimeException(e);
 }
 }
}

Much like the collection registry code in the “Binding Collections” section, the
MBean implementation in Listing 7-19 registers itself with the MBeanServer
instance. Again, this has nothing to do with the Guice JMX integration; it is just
code to register my own Guice-powered MBean.
When configuring the Injector, I bind MBeanServer so that HelloMBean can register
itself. Next, I bind the HelloMBean as an eager singleton so that it registers itself at
start-up. Listing 7-20 shows this code and the code that enables the Guice JMX
support.
Listing 7-20. Guice with JMX

…
import com.google.inject.tools.jmx.Manager;
…
public class RunJMX {
 public static void main(String[] args) throws Exception {
 Injector injector = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 // The MBeanServer you can use to register your own MBeans,

 Google Guice: Agile Lightweight Dependency Injection Framework 149

 // bound using toInstance for the sake of the example.
 // This is *not* needed for the Guice Manager.
 bind(MBeanServer.class)
 .toInstance(ManagementFactory.getPlatformMBeanServer());

 // Your own MBean
 bind(HelloMBean.class)
 .to(Hello.class)
 .asEagerSingleton();
 }
 });

 // Register Guice binding information as MBeans
 Manager.manage("Guice Binding Information", injector);

 // wait forever, so you can run jconsole
 Thread.sleep(Long.MAX_VALUE);
 }
}

The highlighted code in Listing 7-20 is all there is to say about the Guice JMX
integration. That single command will register all the Injector’s bindings as
MBeans.
To test the JMX code, I put the application to sleep on the last line of the
example, so that you have the time to open up the Java Monitoring and
Management Console (jconsole), which is a JMX client that comes with Java SE.
If you run that program while the code in Listing 7-20 is still running, you should
be able to connect to it and see something like the results shown in Figure 7-2.

150 Google Guice: Agile Lightweight Dependency Injection Framework

Figure 7-2. JMX in the Java Monitoring and Management Console

To quickly test this code in Eclipse, I ran the example code with the following
JVM parameters, which allowed me to connect jconsole to the localhost:4321
location:
-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=4321
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Summary
Some of your Guice knowledge can only come from experience with the
framework. To give you a head start, this chapter presented you with several
edge cases you might encounter when using Guice:
 Understanding Guice’s singleton scope and how it differs from the classic

singleton pattern

 Google Guice: Agile Lightweight Dependency Injection Framework 151

 Binding collections
 Designing libraries and limiting visibility
 Designing with large numbers of binding annotations
 Mixing scopes and scope widening

In addition to those topics, I also discussed various small extras that you can take
advantage of when using Guice 1.0:
 Integrating with the Spring Framework
 Logging information that Guice produces
 Using JNDI with Guice
 Using JMX and inspecting bindings using JMX

This chapter concludes your Guice learning experience. As dessert, the next and
final chapter will discuss what Guice’s future currently looks like. If you’re
having a problem that I did not explain, maybe you’ll see a solution in the next
Guice release?

152 Google Guice: Agile Lightweight Dependency Injection Framework

 Google Guice: Agile Lightweight Dependency Injection Framework 153

Chapter 8: The Future
Let’s take a quick look at what the future has in store for Guice, in terms of
feature sets as well general direction. This chapter presents information from a
variety of sources like the Guice issue tracker and mailing list, online
presentations, interviews, and Bob Lee himself.
None of this is set in stone, so don’t come knocking on my door if I make any
false predictions.

The Grand Plan
Now that Guice 1.0 has been out the door for a year or so and people have built
great applications with it, the question is, “What should the Guice team do next?”
Well, if you take a look at the Guice issue tracker on the project’s web site,
you’ll see that there are plenty of ideas to choose from. But instead of going
feature crazy, the Guice team tries to back each feature request with at least three
use cases. As you can read on the project web site, when in doubt, they leave it
out.
Most of the features currently under consideration can probably go in one the
following six categories. Think of the first category as the overall theme.
 Growing an extensible platform
 Improving up-front checking
 Keeping Guice simple and making it simpler
 Improving tooling support
 Addressing DI shortcomings
 Maintaining top-notch performance

Let’s talk about the first five categories in more detail and take a look at the
planned improvements in those areas. There’s nothing specific going on in the
last category; I just put it in because Guice is designed with performance in
mind. Who knows? Maybe we’ll see Guice in a Java ME environment one day.

154 Google Guice: Agile Lightweight Dependency Injection Framework

Note: Talking about ME, in the interview Bob Lee gave at Javapolis 2007
(http://parleys.com), he mentioned the possibility of generating (byte)code
at compile time that would do what the Injector would normally do at
runtime. In constrained environments like mobile platforms, this kind of
precompilation is definitely an intriguing approach and takes the “up-front
checking” mantra to the extreme.

Growing an Extensible Platform
Growing an extensible platform is the first and probably most important theme in
the future of Guice. Instead of trying to be all things to all people, Guice aims to
be first and foremost a platform that can be built on.
Bear with me for a moment, and try to see Guice as an abstraction over the DI
concept. Then, I think there are two types of frameworks: the first type moves the
level of abstraction up and the second type adds extra layers of abstraction. Let
me illustrate with an example.
As soon as you’re talking about a DI framework these days, people start asking
for EJB support. That’s valid, because, for example, as EJB has specified a
simple DI mechanism since version 3.0. Comparable to Guice’s @Inject
annotation, EJB has an @Resource annotation that allows you to mark
dependencies for injection. Now, if Guice was the first type of framework, it
would just implement support for EJB’s annotations and present that support to
the outside world, no questions asked. This would be akin to driving the level of
abstraction up.
But, as you can probably guess from this section’s title, the Guice team prefers to
add the primitives that allow users to solve this problem and all similar problems
in one hit. These primitives or added layers of abstraction are what make Guice
the second type of framework and thus a more extensible platform. In fact, it’s
likely that implementing something like EJB on top of Guice will become
possible in the future, as I’ll briefly explain next.

http://parleys.com

 Google Guice: Agile Lightweight Dependency Injection Framework 155

Note: I’m a huge fan of the design principle that says “simple things should
be simple; complex things should be possible.” And it seems to me that the
Guice team is on the same page.

Among the interesting features that are on the table for addition to Guice are
class and/or constructor listeners. It’s not yet certain what form these will take,
but you can compare these listeners to constructor interceptors, analogous to the
method interceptors you saw in Chapter 4. You would, for example, register
interceptors that get fired right before or after Guice creates a matching object
(I’m guessing after). That would then allow you to do a whole range of things to
the current object. For example, you could use reflection to get a list of fields and
inject the ones that have the @Resource annotation on them. Seriously, this would
be so powerful that Superman himself would wish he took classes in Java.

Note: Construction listeners would also enable application life cycle events
like EJB’s @PreDestroy or @PostConstruct functionality.

Better Up-Front Checking
With this second theme, I mean improvements to the extent that Guice can help
you detect errors at start-up, or perhaps even at compile time, by moving as much
risk as possible to the Java compiler. In case you’re not sure what the latter
means, Guice already helps you quite a bit with its Binding EDSL. For example,
the compiler will not allow you to bind an interface to an incompatible class.
There’s a lot more thought behind this than you might think.
Looking at the previous section, you’ll understand that the Guice team wants to
make it easier for people to extend the core Guice platform. One area of
improvement that they’re currently looking at is configuration. For example, let’s
say you want to externalize Guice configuration in an XML file. This would
involve generating a set of bindings and object interdependencies at runtime,
probably using providers and Injector injection. Because these

156 Google Guice: Agile Lightweight Dependency Injection Framework

interdependencies would only get resolved at runtime, things might blow up
rather late in the game. This is not ideal.
That’s why the next version of Guice will allow you to get providers for a given
type or key at configuration time (getProvider(...) methods inside modules).
This will allow Guice to do better up-front checks, like discovering whether a
dependency can be resolved when Guice starts. Instead of having your
application blow up at runtime, Guice will tell you right away if you make an
error.
As an interesting side effect, this will also allow you to pass in providers to any
MethodInterceptor instances or Scope instances you create at configuration time.
You’d still have to be careful though, especially in the case of interceptors, not to
use a provider of a type that the interceptor itself intercepts, because that could
lead to some nasty recursion. But hey, perhaps Guice could detect that, right?

Keeping Guice Simple and Making It Simpler
This category is where all the candy is. There are a number of exciting features
on the table for the upcoming release, including these three likely candidates:
 Provider methods
 Finer grained optional dependencies, obtained by annotating an injection

point with @Nullable
 Binding custom constant type converters

I’m particularly exited about the first feature, provider methods. Currently, to
specify a provider, you need to create a subclass of the Provider instance and
feed that to Guice. For simple cases, this introduces a lot of boilerplate code. I
noticed this firsthand when I was building Guice integration for a third-party
product; it depended a lot on factories for object creation, so I had to write a
large number of providers.
The provider methods feature, on the other hand, doesn’t require you to
implement the Provider interface. Instead, it lets you specify provider code using
regular Java methods on an arbitrary class or object. Let’s take a look at an
example in Listing 8-1; it might look familiar.

 Google Guice: Agile Lightweight Dependency Injection Framework 157

Listing 8-1. WebModule, Used in Chapter 6

public class WebModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(UserToken.class).toProvider(new Provider<UserToken>() {
 @Inject private HttpSession session;
 public UserToken get() {
 // Struts 2 synchronizes on the same object
 synchronized (session) {
 return (UserToken) session.getAttribute(UserToken.KEY);
 }
 }
 }); // no scope!
 }
}

As you can see, having to write the Provider implementation introduces a
considerable amount of boilerplate code. Using provider methods, you would
implement this as shown in Listing 8-2.
Listing 8-2. WebModule Using Provider Methods

public class WebModule extends AbstractModule {
 @Override
 protected void configure() {
 bindProviderMethods(this);
 }

 @Provides
 UserToken provideUserToken(HttpSession session) {
 return (UserToken) session.getAttribute(UserToken.KEY);
 }
}

Note that I made up the bindProviderMethods method, but what eventually makes
it into Guice will look similar. Also specifying a class instead of an object will
probably be possible.
In any case, Guice will look for methods annotated with @Provides on the class or
object you specify and then generate the appropriate binding based on the return
type of the method and, optionally, its scope annotation or binding annotation.

158 Google Guice: Agile Lightweight Dependency Injection Framework

Applying scope annotations or binding annotations is as easy as you would
expect. Listing 8-3 shows a more complete example.
Listing 8-3. Provide Grouchy Smurf with a White Cap

@Provides
@Singleton
@Grouchy
Smurf provideGrouchySmurf(@White Cap cap) {
 return new GrouchySmurf(cap);
}

Listing 8-3 would be equivalent to this Guice 1.0–style binding:
bind(Smurf.class)
 .annotatedWith(Grouchy.class)
 .toProvider(...)
 .in(Singleton.class);

Improved Tooling Support
Although you don’t really need any tools to get productive with Guice, there are
still some things that regular Java IDEs can’t help you with. For example, you
might want to inspect which bindings an Injector has configured and how the
dependency graph looks. This is exactly what Guice’s Service Provider Interface
(SPI) will enable. In case you’re not sure what an SPI is, it’s like an API but for
tools and larger platforms built on Guice. The SPI that will be in the next release
is scheduled to contain the following two elements:
 An introspection SPI allowing you to inspect what Guice did at configuration

time.
 A new Injector stage called Stage.TOOL that allows you to run Guice in a kind

of superfast, simulation mode. This is ideal for tools that want to run Guice in
the background and use the introspection SPI to determine what would
happen if you ran Guice yourself.

Let me briefly introduce the introspection API. The central type in this SPI is
BindingVisitor, which is an interface you need to implement to be able to inspect
Guice’s bindings after Injector creation. Listing 8-4 shows this interface in its
current form.

 Google Guice: Agile Lightweight Dependency Injection Framework 159

Listing 8-4. BindingVisitor in the Current Guice Trunk

package com.google.inject.spi;

/**
 * Visits bindings. Pass an implementation of {@code BindingVisitor} to
 * {@link com.google.inject.Binding#accept(BindingVisitor)} and the binding
 * will call back to the appropriate visitor method for its type.
 *
 * @author crazybob@google.com (Bob Lee)
 */
public interface BindingVisitor<T> {
 void visit(LinkedBinding<? extends T> binding);
 void visit(InstanceBinding<? extends T> binding);
 void visit(ProviderInstanceBinding<? extends T> binding);
 void visit(LinkedProviderBinding<? extends T> binding);
 void visit(ProviderBinding<?> binding);
 void visit(ClassBinding<? extends T> binding);
 void visit(ConstantBinding<? extends T> binding);
 void visit(ConvertedConstantBinding<? extends T> binding);
}

To use this BindingVisitor, you pass it to the accept(...) method of a Binding.
Listing 8-5 shows a small example of how you would visit all the explicit
bindings in the current Injector.
Listing 8-5. Using BindingVisitor

Injector i = Guice.createInjector(new MyModule());
for (Binding<?> b : i.getBindings().values()) {
 b.accept(new DetectCircularDependenciesBindingVisitor());
}

A Guice IDE project is on its way that is directly related to the introspection SPI.
As the name suggests, the project aims to deliver a Guice plug-in for popular
IDEs like JetBrains’s IntelliJ IDEA and Eclipse. It’s still at a very early stage, but
here are some of the key features:
 Finding bindings to a class
 Running an Injector in the background and detecting mistakes early
 Quick fix suggestions for Guice errors (planned)
 Guice refactorings (planned)

mailto:crazybob@google.com

160 Google Guice: Agile Lightweight Dependency Injection Framework

 Dependency graph visualization (planned)
To learn about this project’s current progress, take a look at its web site at
http://code.google.com/p/guice-plugin/.

Addressing DI Shortcomings
After reading this book, you’ll definitely agree with me that DI is a godsend for
Java and other languages in the C family. However, there are some shortcomings
that most of the current approaches, including Guice’s, don’t address, two of
which Guice will probably solve (and to some degree already solves):
 Mixing Guice-provided dependencies with dependencies provided at runtime
 The robot legs problem, that is, using two very similar object graphs with the

same Injector
I already briefly mentioned the first problem in Chapter 3, “From Journeyman to
Bob,” in the “Providers” section. Currently, there are four solutions or
workarounds, if you will, to this problem:
 Making your class mutable
 Using the Builder pattern
 Creating a factory
 Generating a factory using the AssistedInject Guice extension

Let’s take a quick look at each one of these possible current solutions by means
of an example. Take a look at Listing 8-6. Say you have a dog and want to take
that dog for a walk.

http://code.google.com/p/guice-plugin
http://code.google.com/p/guice-plugin

 Google Guice: Agile Lightweight Dependency Injection Framework 161

Listing 8-6. Taking a Dog for a Walk

public class Dog {}

public class Walk {
 private final Dog dog;
 private final boolean leash;

 @Inject
 public Walk(Dog dog, boolean leash) {
 this.dog = dog;
 this.leash = leash;
 }

 public void go() {}
}

Now, let’s say that you want to decide whether you put the dog on a leash at the
given moment when you start the walk, at runtime. That wouldn’t work, because
Guice creates the Dog object for you. You can’t kinda create a Walk: either Guice
creates a Walk or it doesn’t.
The simplest solution would be to get the leash out of the constructor and add it
as a setter, as shown in Listing 8-7.
Listing 8-7. Mutable Walk

public class Walk {
 private final Dog dog;
 private boolean leash;

 @Inject
 public Walk(Dog dog) {
 this.dog = dog;
 }

 public void setLeash(boolean leash) {

 this.leash = leash;
 }

 public void go() {}
}

However, this is not ideal. Chances are that you’re only going to set that value
once and then no longer look at it. It’s kind of a shame to make an object

162 Google Guice: Agile Lightweight Dependency Injection Framework

mutable, and deal with the possible threading issues and all, just because of this
DI restriction you have.
The second option is to use the Builder pattern. By creating an intermediate
object, you build up all the variables you need to construct a Walk and then create
an immutable object in one go. This allows you to use Guice to set one part of
the dependencies on the builder object and set the part that you don’t know at
runtime. Listing 8-8 shows an example Builder object, called WalkBuilder.
Listing 8-8. WalkBuilder

public class WalkBuilder {
 private final Dog dog;
 private boolean leash;

 @Inject
 public WalkBuilder(Dog dog) {
 this.dog = dog;
 }

 public WalkBuilder setLeash(boolean leash) {
 this.leash = leash;
 return this;
 }

 public Walk build() {
 // return immutable instance
 return new Walk(dog, leash);
 }
}

Note: If you look closely, you’ll notice that the Builder pattern is what Guice
uses for its Binding EDSL.

Given an Injector i, you can use this WalkBuilder class to create an immutable
Walk object as follows:
Walk walk = i.getInstance(WalkBuilder.class).setLeash(true).build();

 Google Guice: Agile Lightweight Dependency Injection Framework 163

The third option is to use an intermediate factory class. Much like the builder
approach, this requires you to create an intermediate object to put the Guice-
provided dependencies in. Listing 8-9 shows this approach.
Listing 8-9. Intermediate Factory

public interface WalkFactory {
 Walk create(boolean leash);
}

public class GuiceWalkFactory implements WalkFactory {
 private final Provider<Dog> dog;

 @Inject
 public GuiceWalkFactory(Provider<Dog> dog) {
 this.dog = dog;
 }

 public Walk create(boolean leash) {
 return new Walk(dog.get(), leash);
 }
}

Jesse Wilson and Jerome Mourits at Google elaborated on this last idea and
created a Guice extension called AssistedInject. AssistedInject takes away some
of the boilerplate code you have to write to solve this problem. All you have to
do is annotate the assisted parameters on your constructor and then feed
AssistedInject your factory interface. For example, take a look at Listing 8-10.
Listing 8-10. AssistedInject in Action

public class Walk {
 private final Dog dog;
 private final boolean leash;

 @AssistedInject
 public Walk(Dog dog, @Assisted boolean leash) {
 this.dog = dog;
 this.leash = leash;
 }

 public void go() {}
}

164 Google Guice: Agile Lightweight Dependency Injection Framework

public class AssistedMain {
 public static void main(String[] args) {
 Injector i = Guice.createInjector(new AbstractModule() {
 protected void configure() {
 bind(WalkFactory.class)
 .toProvider(FactoryProvider.newFactory(
 WalkFactory.class, Walk.class));
 }
 });
 Walk walk = i.getInstance(WalkFactory.class).create(true);
 }
}

Although very useful, none of these solutions are ideal. A future version of Guice
will likely include a solution based on the ideas of the AssistedInject extension,
though what exactly that solution will be is uncertain yet. Perhaps there is even a
way to further automate this by, for example, generating code.

Note: If you want to take a look at AssistedInject, it’s in the Guice trunk:
http://google-guice.googlecode.com/svn/trunk/extensions/assistedinject/. It’s
probably best to take a look at the JavaDoc as well:
http://publicobject.com/publicobject/assistedinject/javadocs/index.html.

The second DI shortcoming, the robot legs problem, currently needs to be solved
by using two separate injectors. In the future, however, Guice will probably
support hierarchical injectors. This means that you will have child injectors,
much like you have child class loaders, each with a different variation of the
dependency graph. The Binding EDSL will then be extended to hide the details
of juggling multiple injectors, and you will be able to compose a dependency
graph by combining different injectors. The details are a bit sketchy at this point,
but they’ve got my vote.

Standardization
Guice, being purely Java based, shows what can really be done with DI in Java.
It’s hard to imagine that you will still write factory-driven applications after
reading this book. Guice’s influence is already showing up in Spring (version

http://google-guice.googlecode.com/svn/trunk/extensions/assistedinject
http://publicobject.com/publicobject/assistedinject/javadocs/index.html

 Google Guice: Agile Lightweight Dependency Injection Framework 165

2.5) and also in JSR 299, also known as Web Beans (http://jcp.org/en/jsr/
detail?id=299). Web Beans is an interesting JSR that aims to provide glue
between JSF and EJB and is heavily inspired by JBoss Seam and Guice. It’s hard
to say where this JSR will end up, but a lot of people have been pushing the Web
Beans expert group to move the whole thing over to Java SE instead of just
targeting Java EE. Other people oppose this, however. In any case, Gavin King
(the expert group lead) has said that they aren’t looking at including Web Beans
in Java SE at this point, but it may well be a possibility later.
To take this Java SE inclusion idea even further, Bob Lee, who’s also part of the
Web Beans expert group, said he is currently working with some people on a
JSR that will propose the addition of low-level DI plumbing to Java. As an
analogy to class loaders (Java’s ClassLoader), you could imagine having
something like ObjectLoader that loads and injects objects. Such a system could
then support higher level abstractions like Web Beans, Guice, and the Spring
Framework. I can only imagine the possibilities: perhaps you could even
annotate all of Java’s libraries to support DI out of the box? Wouldn’t it be nice
if all the libraries in the Java space shipped fully annotated for use with your
favorite DI framework?
I think the major theme here is that it’s time to get DI into Java SE. Everyone
keeps reinventing the same concept over and over again. EJB has a lightweight
container; JSF has a lightweight container; then there’s Spring, Seam, Web
Beans, PicoContainer, Guice, and so on. It would be great if there were a lower
level DI layer on which all these projects built, instead of constantly reinventing
the wheel and making Java’s learning curve ever steeper. Because, seriously, if
you compare Java’s learning curve to, for example, .NET’s, it’s just ridiculous
what beginning programmers have to go through before they can get stuff done.

Note: Some people go even as far as calling @Inject the new import. I’m
not one of those people, but it’s still an interesting idea to think about.
Check out Brian Slesinsky’s blog post at http://slesinsky.org/brian/code/
inject_is_the_new_import.html.

http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://slesinsky.org/brian/code

166 Google Guice: Agile Lightweight Dependency Injection Framework

Summary
Guice is not only fun to use but aims to be an extensible platform. Most of the
work going into the next release(s) can go into one of these categories:
 Growing an extensible platform
 Improving up-front checking
 Keeping Guice simple and making it simpler
 Improving tooling support
 Addressing DI shortcomings
 Maintaining top-notch performance

Looking further in the future, it will be interesting to see if Guice, or something
like Guice, makes it into Java SE. I’m convinced it’s time to take DI to the next
level and unify all existing DI systems into a single extensible platform.

 Google Guice: Agile Lightweight Dependency Injection Framework 167

Appendix: Assorted Sweets
You’re probably looking at this page right now because I referred you to it earlier
in this book. While writing, I had to decide which examples fit in this book and
which don’t. This appendix captures the examples that I wanted to share with
you even though they didn’t fit into the flow of the book.
The first section briefly explains how you can roll your own API that captures
Guice’s Binding EDSL programming model.
The next three sections lay out source code that you can use to start building your
own web applications using pure Guice, Wicket, or Warp Servlet. Again, I had to
make a choice for the example chapter and went with Struts 2 in the end. If
you’re not a fan of Struts 2, these examples will satisfy your hunger.
Finally, the last section describes the interceptor you need to configure to use
Warp Persist and Struts 2 with the session-per-request mode of operation. I use
this interceptor in the Chapter 6 example, and I thought it would be a good idea
to give you the details of the implementation.

Binder Syntax Explained
Although the style Guice uses for its configuration might look a bit magical, it’s
actually not that hard to reproduce. Consider this example:
 binder.bind(FortuneService.class)
 .to(FortuneServiceImpl.class)
 .in(Scopes.SINGLETON);

Behind the scenes, the preceding code returns a builder object (of the GoF
Builder pattern) between method calls that records the arguments given to the
previous method calls. Using generics, the bind(...) method takes care of the
type safety by passing the needed type information on to the builder object it
returns. This ensures that the user will only be able to specify a compatible type
in the to(...) method. Here’s a simplified Binder implementation for the
previous example:

168 Google Guice: Agile Lightweight Dependency Injection Framework

public class Binder {
 private final List<BindingBuilder<?>> bindings =
 new ArrayList<BindingBuilder<?>>();

 public <T> BindingBuilder<T> bind(Class<T> clazz) {
 BindingBuilder<T> builder = new BindingBuilder<T>(clazz);
 bindings.add(builder);
 return builder;
 }

 // example usage
 public static void main(String[] args) {
 new Binder()
 .bind(FortuneService.class)
 .to(FortuneServiceImpl.class)
 .in(Scopes.SINGLETON);
 }
}

The BindingBuilder class is responsible for recording the to(...) and in(...)
calls. At the end of the to(...) method, I return the current BindingBuilder object
a second time (the first time is in Binder.bind(...)) so that I get the method
chaining behavior I want.
public class BindingBuilder<T> {
 private Class<T> clazz;
 private Class<? extends T> impl;
 private Scope scope;

 public BindingBuilder(Class<T> clazz) {
 this.clazz = clazz;
 }

 public BindingBuilder<T> to(Class<? extends T> impl) {
 this.impl = impl;
 return this;
 }

 public void in(Scope scope) {
 this.scope = scope;

 Google Guice: Agile Lightweight Dependency Injection Framework 169

 }

 public Class<T> getClazz() {
 return clazz;
 }
 public Class<? extends T> getImpl() {
 return impl;
 }
 public Scope getScope() {
 return scope;
 }
}

Perhaps I could even throw an exception if the to(...) method gets called a
second time. But hey, it’s just an example; feel free to expand it to fit your needs.

Hello Servlet Guice
As I explained in Chapter 5, it’s not that hard to integrate Guice with the raw
servlets. This section gives to the source code to a simple “Hello, World!”
example that you can use to get your projects off the ground quickly:
 Listing A-1 sets up a Guice Module.
 Listing A-2 configures how Guice starts up.
 Listing A-3 creates an example servlet.
 Listing A-4 wires it all together in the web.xml file.

Listing A-1. HelloGuiceModule

package helloguice;
import com.google.inject.AbstractModule;
import com.google.inject.name.Names;

public class HelloGuiceModule extends AbstractModule {
 @Override
 protected void configure() {
 bindConstant().annotatedWith(Names.named("app.name"))
 .to("Hello Servlet Guice");
 }
}

170 Google Guice: Agile Lightweight Dependency Injection Framework

Listing A-2. GuiceServletContextListener

package helloguice;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

import com.google.inject.Guice;
import com.google.inject.Injector;

public class GuiceServletContextListener implements ServletContextListener {
 public static final String KEY = Injector.class.getName();

 public void contextInitialized(ServletContextEvent sce) {
 sce.getServletContext().setAttribute(KEY, getInjector());
 }

 public void contextDestroyed(ServletContextEvent sce) {
 sce.getServletContext().removeAttribute(KEY);
 }

 private Injector getInjector() {
 return Guice.createInjector(new HelloGuiceModule());
 }
}

Listing A-3. HelloServlet

package helloguice;
import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.google.inject.Inject;
import com.google.inject.Injector;
import com.google.inject.name.Named;

 Google Guice: Agile Lightweight Dependency Injection Framework 171

public class HelloServlet extends HttpServlet {
 @Inject
 @Named("app.name")
 private String appName;

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 ServletContext sc = config.getServletContext();
 Injector injector =
 (Injector) sc.getAttribute(GuiceServletContextListener.KEY);
 injector.injectMembers(this);
 }

 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 PrintWriter writer = resp.getWriter();
 writer.printf("<h1>Welcome to the %s application!</h1>%n", appName);
 resp.setStatus(HttpServletResponse.SC_OK);
 }
}

Listing A-4. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="helloguice"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>Hello Guice</display-name>
 <listener>
 <listener-class>
 helloguice.GuiceServletContextListener
 </listener-class>
 </listener>

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2eejava.sun.com/xml/ns/j2ee/web-app_2_4.xsd

172 Google Guice: Agile Lightweight Dependency Injection Framework

 <servlet>
 <servlet-name>welcome</servlet-name>
 <servlet-class>helloguice.HelloServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>welcome</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Hello Wicket Guice
Much like the previous “Hello Servlet Guice” example, this example shows you
how to build a simple “Hello, World!” application but this time using the Apache
Wicket (http://wicket.apache.org) framework. You can reuse this example,
shown in Listings A-5 to A-9, to start building your own Guice-enabled Wicket
application.
Listing A-5. HelloGuiceApplication

package hellowicket;

import helloguice.HelloGuiceModule;

import org.apache.wicket.guice.GuiceComponentInjector;
import org.apache.wicket.protocol.http.WebApplication;

public class HelloGuiceApplication extends WebApplication {
 @Override
 public Class<?> getHomePage() {
 return Welcome.class;
 }
}

Listing A-6. A Welcome Page

package hellowicket;

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.markup.html.basic.Label;

import com.google.inject.Inject;
import com.google.inject.name.Named;

http://wicket.apache.org
http://wicket.apache.org

 Google Guice: Agile Lightweight Dependency Injection Framework 173

public class Welcome extends WebPage {
 @Inject @Named("app.name") private String appName;

 public Welcome() {
 add(new Label("welcome",
 String.format("Welcome to the %s application!", appName)));
 }
}

Listing A-7. WicketModule

package hellowicket;

import helloguice.HelloGuiceModule;
import org.apache.wicket.protocol.http.WebApplication;
import com.google.inject.AbstractModule;

public class WicketModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(WebApplication.class).to(HelloGuiceApplication.class);
 install(new HelloGuiceModule());
 }
}

Listing A-8. HellogGuiceModule

package helloguice;
import com.google.inject.AbstractModule;
import com.google.inject.name.Names;

public class HelloGuiceModule extends AbstractModule {
 @Override
 protected void configure() {
 bindConstant().annotatedWith(Names.named("app.name"))
 .to("Hello Wicket Guice");
 }
}

Listing A-9. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="hellowicket"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2eejava.sun.com/xml/ns/j2ee/web-app_2_4.xsd

174 Google Guice: Agile Lightweight Dependency Injection Framework

 <display-name>Wicket Guice</display-name>
 <filter>
 <filter-name>WicketFilter</filter-name>
 <filter-class>
 org.apache.wicket.protocol.http.WicketFilter
 </filter-class>
 <init-param>
 <param-name>applicationFactoryClassName</param-name>
 <param-value>
 org.apache.wicket.guice.GuiceWebApplicationFactory
 </param-value>
 </init-param>
 <init-param>
 <param-name>module</param-name>
 <param-value>
 hellowicket.WicketModule
 </param-value>
 </init-param>
 <init-param>
 <param-name>configuration</param-name>
 <!-- deployment or development -->
 <param-value>deployment</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WicketFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

Hello Warp Servlet
This section presents you with a code example that uses the advanced counterpart
of Guice’s raw servlet support. Warp Servlet, cousin to Warp Persist and the
other projects over at http://www.wideplay.com, allows you to inject into servlets
and filters as if they were regular classes. Listings A-10 to A-13 show you how
you can use Warp Servlet to configure and inject a simple “Hello, World!”
servlet.

http://www.wideplay.com
http://www.wideplay.com

 Google Guice: Agile Lightweight Dependency Injection Framework 175

Listing A-10. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="hellowarp"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Hello Warp Servlet</display-name>
 <filter>
 <filter-name>WebFilter</filter-name>
 <filter-class>com.wideplay.warp.servlet.WebFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>WebFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <listener>
 <listener-class>
 warpservlet.HelloGuiceServletContextListener
 </listener-class>
 </listener>
</web-app>

Listing A-11. HelloGuiceModule

package helloguice;

import com.google.inject.AbstractModule;
import com.google.inject.name.Names;

public class HelloGuiceModule extends AbstractModule {
 @Override
 protected void configure() {
 bindConstant().annotatedWith(Names.named("app.name"))
 .to("Hello Warp Servlet");
 }
}

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2eejava.sun.com/xml/ns/j2ee/web-app_2_4.xsd

176 Google Guice: Agile Lightweight Dependency Injection Framework

Listing A-12. HelloGuiceServletContextListener

package warpservlet;

import helloguice.HelloGuiceModule;

import com.google.inject.Guice;
import com.google.inject.Injector;
import com.wideplay.warp.servlet.Servlets;
import com.wideplay.warp.servlet.WarpServletContextListener;

public class HelloGuiceServletContextListener extends WarpServletContextListener {
 @Override
 protected Injector getInjector() {
 return Guice.createInjector(
 new HelloGuiceModule(),
 Servlets.configure()
 .filters()
 .servlets().serve("/*").with(HelloServlet.class)
 .buildModule());
 }
}

Listing A-13. HelloServlet

package warpservlet;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.google.inject.Inject;
import com.google.inject.name.Named;

 Google Guice: Agile Lightweight Dependency Injection Framework 177

public class HelloServlet extends HttpServlet {
 private final String appName;
 @Inject
 public HelloServlet(@Named("app.name") String appName) {
 this.appName = appName;
 }

 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 PrintWriter writer = resp.getWriter();
 writer.printf("<h1>Welcome to the %s application!</h1>%n", appName);
 resp.setStatus(HttpServletResponse.SC_OK);
 }
}

SessionPerRequestInterceptor
As discussed in Chapter 6, “Practical Guice,” Warp Persist’s
SessionPerRequestFilter class doesn’t work with Struts 2 and the current Guice
plug-in. To overcome that problem, you need to use the
SessionPerRequestInterceptor class in Listing A-14. Note that the package
location matters, because the interceptor uses package private resources from
Warp Persist.
Listing A-14. SessionPerRequestInterceptor

package com.wideplay.warp.jpa;

import javax.persistence.EntityManagerFactory;

import com.google.inject.Inject;
import com.google.inject.Provider;
import com.opensymphony.xwork2.ActionInvocation;
import com.opensymphony.xwork2.interceptor.Interceptor;
import com.wideplay.warp.persist.PersistenceService;

/**
 * For use with Warp-Persist. Needed because Guice's current
 * Struts 2 plugin creates the Guice Injector internally, thus is
 * not available to other filters before the Struts filter executes.
 * http://groups.google.com/group/warp-core/browse_thread/thread/738a8ce3c7275602/.
 * <p>
 * After serialization this class will currently fail to close down the JPA

http://groups.google.com/group/warp-core/browse_thread/thread/738a8ce3c7275602

178 Google Guice: Agile Lightweight Dependency Injection Framework

 * {@link EntityManagerFactory} properly.
 *
 * @author Robbie Vanbrabant
 */
public class SessionPerRequestInterceptor implements Interceptor {
 private static final long serialVersionUID = -3463189373921935923L;
 // not Serializable
 private transient Provider<EntityManagerFactory> emfProvider;

 @Inject
 public SessionPerRequestInterceptor(Provider<EntityManagerFactory> emfp) {
 // only use after the PersistenceService starts
 this.emfProvider = emfp;
 }

 public String intercept(ActionInvocation ai) throws Exception {
 EntityManagerFactoryHolder.getCurrentEntityManager();
 try {
 return ai.invoke();
 } finally {
 EntityManagerFactoryHolder.closeCurrentEntityManager();
 }
 }

 /**
 * @see com.opensymphony.xwork2.interceptor.Interceptor#init()
 */
 public void init() {}

 /**
 * @see com.opensymphony.xwork2.interceptor.Interceptor#destroy()
 */
 public void destroy() {
 if (emfProvider != null) {
 EntityManagerFactory emf = emfProvider.get();
 synchronized(emf) {
 if (emf.isOpen()) emf.close();
 }
 }
 }

 Google Guice: Agile Lightweight Dependency Injection Framework 179

 // This could use optional=true by requiring a binding annotation;
 // then users could choose whether the interceptor starts the
 // PersistenceService or not.
 @Inject
 public void start(PersistenceService service) {
 // this is a good place to start the persistence service
 // for this to work, but you need to make sure that you only
 // have 1 (one) interceptor-ref to this interceptor. You can do this
 // by creating an interceptor-stack with this interceptor, and then
 // reference it through that single-interceptor stack.
 // Struts 2 creates one interceptor instance per interceptor-ref,
 // and the Guice plugin currently does not support scoping them.
 service.start();
 }
}

Caution: When you use SessionPerRequestInterceptor you must not include
Warp Persist’s SessionPerRequestFilter in the web.xml file.

As you can read in the comments for the start(...) method in Listing A-14, you
need to make sure only one instance of the Interceptor exists. Struts 2
interceptors appear to be singletons (as in single instance per application), but in
reality, there is one instance per <interceptor-ref> tag in your configuration. To
work around that, you can create an interceptor stack with only
SessionPerRequestInterceptor in it and reference that stack from then on. First,
you’ll need to configure something like Listing A-15.
Listing A-15. A Single-Interceptor Interceptor Stack

 <interceptors>
 <interceptor name="sessionPerRequestInterceptor"
 class="com.wideplay.warp.jpa.SessionPerRequestInterceptor"/>
 <!-- Stack with single interceptor because we only want one instance -->
 <!-- Interceptors = one instance per interceptor-ref -->
 <interceptor-stack name="spriStack">
 <interceptor-ref name="sessionPerRequestInterceptor" />
 </interceptor-stack>
 </interceptors>

180 Google Guice: Agile Lightweight Dependency Injection Framework

Note: Why not use Guice to scope the Interceptor? As I mentioned in
Chapter 5, the Struts 2 Guice plug-in is currently not able to scope Struts
interceptors. By now, you probably understand why.

Once you’ve created your custom stack, you can simply use it as shown in
Listing A-16. This is the actual code from the Shopping List example application
discussed in Chapter 6.
Listing A-16. Using the spriStack

<interceptor-stack name="securedStack">
 <interceptor-ref name="spriStack" />
 <interceptor-ref name="authenticationInterceptor" />
 <interceptor-ref name="defaultStack" />
</interceptor-stack>

Copyright
Google Guice: Agile Lightweight Dependency Injection Framework

© 2008 by Robbie Vanbrabant

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (electronic): 978-1-4302-0863-1

ISBN-13 (pbk): 978-1-59059-997-6

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc., In the United States and Other countries. Apress, Inc., is not affiliated
with Sun Microsystems, Inc., and this book was written without endorsement from Sun
Microsystems, Inc.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the United
States: fax +49 6221 345229, e-mail orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail
info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this
work.

mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
http://www.springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
mailto:orders@springer.de
http://www.springer.de
http://www.springer.de
mailto:info@apress.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

	Google Guice
	Contents
	Chapter 1: Setting the Stage
	The Problem
	A Fortunate Example
	Listing 1-1. FortuneService that Gives Out Fortunes
	Listing 1-2. The Chef Uses a Factory (Hooray!)
	Listing 1-3. Unit Test for the Chef Class

	Dependency Injection
	Listing 1-4. Chef Goes DI
	Listing 1-5. Unit Testing Chef, DI style
	Listing 1-6. The Revenge of the Chef

	DI, Guice Style
	Listing 1-7. Guicy Chef
	Listing 1-8. Unit Testing Chef, Guice Style (No Changes!)
	Listing 1-9. Guice Module for the Chef Class’s Dependency

	Summary

	Chapter 2: Enter Guice
	Getting Guice
	Table 2-1. Guice 1.0 Download Contents

	Preparing the Code
	Listing 2-1. Chef, Tagged with @Inject
	Table 2-2. Guice Injection Styles

	Specifying an Implementation
	Listing 2-2. Telling Guice Which FortuneService Service to Use
	Listing 2-3. AbstractModule Saves You Some Keystrokes

	Bootstrapping
	Listing 2-4. Bootstrapping Guice and Creating Chef
	Listing 2-5. Specifying a Stage for the Injector

	Choosing Between Implementations
	Listing 2-6. MegaFortuneService
	Listing 2-7. Adding Another Binding: Does This Work?
	Listing 2-8. Oops, I Did It Again
	Listing 2-9. The Chef Constructor
	Listing 2-10. The Chef Constructor with a Binding Annotation
	Listing 2-11. A Module Using Binding Annotations
	Listing 2-12. @Mega Binding Annotation
	Table 2-3. Binding Annotation, Line by Line
	Listing 2-13. Getting an Instance by its Key
	Listing 2-14. Get by Class or by Key

	Implicit Bindings
	Listing 2-15. Explicit Binding for Chef
	Listing 2-16. Using @ImplementedBy

	Scoping
	Listing 2-17. Using Two Styles to Apply a Scope
	Listing 2-18. Eager Singleton Loading

	Debunking Myths
	Summary

	Chapter 3: From Journeyman to Bob
	Providers
	Listing 3-1. The Provider Interface
	Listing 3-2. Provider-Backed Gum
	Listing 3-3. Injecting into a Provider

	@Named
	Listing 3-4. Using @Named
	Listing 3-5. Binding @Named, the Wrong Way
	Listing 3-6. Binding @Named, the Right Way

	Binding Constants
	Listing 3-7. Binding Constants
	Table 3-1. Constant Conversions Performed by Guice
	Listing 3-8. ConcertHall
	Listing 3-9. Running the ConcertHall Example with capacity Bound to an int
	Listing 3-10. ConcertHall with Integer capacity
	Listing 3-12. ConcertExample Modified to Use String
	Listing 3-13. ConcertHall Additions
	Listing 3-14. Full-Featured ConcertModule

	Binding Generic Types
	Listing 3-15. Injecting Generic Types
	Listing 3-16. Using Factory Methods for More Readable Code

	Properties
	Listing 3-17. db.properties
	Listing 3-18. Loading and Using db.properties

	Static Injection
	Listing 3-19. Using Static Injection

	Custom Scopes
	Listing 3-20. The Scope Interface
	Listing 3-21. Default Scope
	Listing 3-22. Binding to the Scope Instance Directly
	Listing 3-23. @DefaultScoped
	Listing 3-24. Binding to a Scope Annotation
	Listing 3-25. Annotation-Driven Scoping

	Web Scopes
	Organizing Modules
	Listing 3-26. Scope Registration in a Separate Module
	Listing 3-27. Using Binder.install(...)
	Listing 3-28. Module Panacea

	The Binding EDSL
	How Guice Resolves Dependencies
	Summary

	Chapter 4: Aspect-Oriented Programming
	AOP for Mere Mortals
	How Guice AOP Works
	Figure 4-1. A conceptual view of Guice AOP

	Method Interception
	Listing 4-1. Guice AOP in Three Lines of Code
	Listing 4-2. MethodInterceptor
	Table 4-1. Methods on the Matchers Class in Guice 1.0

	Phoning Home
	Listing 4-3. Phone Call Prerequisites
	Listing 4-4. The Phone Company’s Installation
	Listing 4-5. The Phone Call Logger
	Listing 4-6. Calling Aunt Jane
	Listing 4-7. Phone Call Redirection
	Listing 4-8. Adding PhoneCallRedirect
	Listing 4-9. Calling Aunt Jane Again?

	Summary

	Chapter 5: Integrating with the Web
	The Integration Challenge
	Bootstrapping
	Listing 5-1. The javax.servlet.ServletContextListener Interface
	Listing 5-2. A Guice ServletContextListener Approach

	Inviting Servlets to the Club
	Listing 5-3. Injecting javax.servlet.http.HttpServlet

	Configuration Discovery
	Listing 5-4. Quick and Dirty Templating Example

	Struts 2
	Wicket
	Table 5-1. Example WEB-INF/lib Contents for Using Wicket with Guice
	Listing 5-5. Wicket web.xml File that Configures a Guice Root Module
	Listing 5-6. The WicketModule Used in web.xml
	Listing 5-7. Configuring Wicket to Get the Injector from ServletContext
	Listing 5-8. Hard-Coding Guice Support with Wicket
	Listing 5-9. Simplest WicketFilter Configuration

	Where Are the Web Scopes?
	Listing 5-10. Using the Guice Scope Filter in Conjunction with the Struts 2 Filter

	Warp Servlet
	Figure 5-1. Classic servlet architecture
	Figure 5-2. How Warp Servlet’s WebFilter changes the architecture
	Listing 5-11. An Example Warp Servlet web.xml
	Listing 5-12. WarpServletContextListener Subclass
	Listing 5-13. Guice Just Works for HelloServlet

	Summary

	Chapter 6: Practical Guice
	Requirements
	The Big Picture
	Figure 6-1. A conceptual overview of the Shopping List application
	Figure 6-2. The home screen
	Figure 6-3 Viewing a shopping list screen
	Figure 6-4. The screen to edit a shopping list
	Figure 6-5. The shopping list creation screen

	Project Structure
	Figure 6-6. The Shopping List project’s exploded WAR structure
	Table 6-1. Shopping List Dependencies
	Table 6-1. Shopping List Dependencies (continued)

	Setting Up Struts 2
	Listing 6-1 Shopping List’s web.xml

	Getting Guiced
	Listing 6-2. Guice-Enabled struts.xml
	Listing 6-3. Empty ShoppingListModule

	Defining the Model
	Listing 6-4. Product
	Listing 6-5. ShoppingList
	Listing 6-6. /src/META-INF/persistence.xml

	Database Access with Warp Persist
	Listing 6-7. RepositoryModule
	Listing 6-8. Persistence-Enabled ShoppingListModule

	Implementing the Data Access Layer
	Listing 6-9. ShoppingListRepository
	Listing 6-10. JpaShoppingListRepository
	Listing 6-11. Named Query Added to ShoppingList
	Listing 6-12. ShoppingListRepository Binding
	Listing 6-13. ProductRepository Interface
	Listing 6-14. JpaProductRepository
	Listing 6-15. Named Queries Added to Product
	Listing 6-16. RepositoryModule with JpaProductRepository Configured

	The Home Screen
	Listing 6-17. ShoppingListsAction
	Listing 6-18. Removing Indirection with a Provider

	The Create and Edit Screens
	Listing 6-19. ProductListAction
	Listing 6-20. ShoppingListAction

	Unit Testing
	Listing 6-21. ProductListActionTest

	Summary

	Chapter 7: Guice Recipes
	Sharing Singletons
	Listing 7-1. Drinkable Carbonated Water
	Listing 7-2. A Manual Per-Injector and Per-Type Instance

	Binding Collections
	Listing 7-3. Not Very Guicy FortuneServiceImpl
	Listing 7-4. Guicy FortuneServiceImpl
	Listing 7-5. A Fortune Provider
	Listing 7-6. Collection Binding for Unmanaged Objects
	Listing 7-7. MegaFortuneService
	Listing 7-8. Guicy MegaFortuneService
	Listing 7-9. All MegaFortuneService Dependency Bindings Without List<FortuneService>
	Listing 7-10. FortuneServiceListProvider
	Listing 7-11. A Registry/Visitor Style of Design

	Designing Libraries and Limiting Visibility
	Viral Annotations
	Mixing Scopes
	Figure 7-1. Scope widening: creating a singleton
	instance with a request-scoped
	instance dependency

	Integrating Spring
	Listing 7-12. MySpringBean
	Listing 7-13. MySpringBean Spring Configuration
	Listing 7-14. Letting Guice Generate Bindings for All Spring Beans
	Listing 7-15. Binding Spring Beans Using Generated Providers

	Logging
	Listing 7-16. GuiceDebug

	Integrating JNDI
	Listing 7-17. Guice JNDI Integration

	Using JMX
	Listing 7-18. HelloMBean
	Listing 7-19. HelloMBean Implementation
	Listing 7-20. Guice with JMX
	Figure 7-2. JMX in the Java Monitoring and Management Console

	Summary

	Chapter 8: The Future
	The Grand Plan
	Growing an Extensible Platform
	Better Up-Front Checking
	Keeping Guice Simple and Making It Simpler
	Listing 8-1. WebModule, Used in Chapter 6
	Listing 8-2. WebModule Using Provider Methods
	Listing 8-3. Provide Grouchy Smurf with a White Cap

	Improved Tooling Support
	Listing 8-4. BindingVisitor in the Current Guice Trunk
	Listing 8-5. Using BindingVisitor

	Addressing DI Shortcomings
	Listing 8-6. Taking a Dog for a Walk
	Listing 8-7. Mutable Walk
	Listing 8-8. WalkBuilder
	Listing 8-9. Intermediate Factory
	Listing 8-10. AssistedInject in Action

	Standardization
	Summary

	Appendix: Assorted Sweets
	Binder Syntax Explained
	Hello Servlet Guice
	Listing A-1. HelloGuiceModule
	Listing A-2. GuiceServletContextListener
	Listing A-3. HelloServlet
	Listing A-4. web.xml

	Hello Wicket Guice
	Listing A-5. HelloGuiceApplication
	Listing A-6. A Welcome Page
	Listing A-7. WicketModule
	Listing A-8. HellogGuiceModule
	Listing A-9. web.xml

	Hello Warp Servlet
	Listing A-10. web.xml
	Listing A-11. HelloGuiceModule
	Listing A-12. HelloGuiceServletContextListener
	Listing A-13. HelloServlet

	SessionPerRequestInterceptor
	Listing A-14. SessionPerRequestInterceptor
	Listing A-15. A Single-Interceptor Interceptor Stack
	Listing A-16. Using the spriStack

	Copyright

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

