
Better Software Development
for Agile Teams

Will Stott
James Newkirk

Visual Studio
Team System

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Stott, Will.
Visual studio team system : better software development for agile teams / Will Stott, James Newkirk.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-41850-0 (pbk. : alk. paper)

1. Microsoft Visual studio. 2. Computer software—Development. 3. eXtreme programming. I. Newkirk,
James. II. Title.

QA76.76.D47S775 2007
005.3—dc22

2007008442

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 13: 978-0-321-41850-0
ISBN 10: 0-321-41850-6
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, May 2007

Contents at a Glance

Preface xxvii
Acknowledgments xxxv
About the Authors xxxvii

Introduction: Broken Process 1
Section 1: Apply Sharp Tools and Values 9
1 Introduction to Visual Studio Team System 13
2 Agile Values 33

Review of Section 1: Sharp Tools and Values 45
Section 2: Introduce Agile Development 49
3 Overview of Agile Development 53
4 Forming an Agile Team 65
5 Team Foundation Process Frameworks 81
6 Improving Your Process Framework 107

Review of Section 2: Introduce Agile Development 119
Section 3: Use Version Control 123
7 Managing Change 127
8 Setting Up TFS Version Control 149
9 Using TFVC in Your Project 173
10 Policing Your Project with TFVC 191

Review of Section 3: Use Version Control 205
Section 4: Build and Integrate Often 209
11 Building and Integrating Software 213
12 Working with Team Foundation Build 229

Review of Section 4: Build and Integrate Often 255
Section 5: Practice Test-Driven Development 261
13 Introduction to TDD 265
14 Developing Your First Tests 283

vii

15 Learning to Refactor 303
16 Code Coverage and Performance 325
17 Integrating TFP Code with a User Interface 339

Review of Section 5: Practice Test-Driven Development 351
Section 6: Explore by Modeling 357
18 Modeling with Agility 361
19 Creating Models 375
20 Using Models in an Agile Project 395
21 Modeling Solutions with Patterns 415

Review of Section 6: Explore by Modeling 433
Section 7: Implement Customer Testing 439
22 Involving Customers in Testing 443
23 Creating FIT Fixtures 459
24 Running FIT with Team Foundation Build 481

Review of Section 7: Implement Customer Testing 501
Section 8: Estimate, Prioritize, and Plan 507
25 Estimating and Prioritizing Stories 511
26 Agile Planning 527
27 Managing Agile Projects 545

Review of Section 8: Estimate, Prioritize, and Plan 571
Section 9: Practice for Deployment 577
28 Moving into Production 581
29 Developing Installation Programs 597
30 Deployment of Distributed Systems 625

Review of Section 9: Practice for Deployment 661
Section 10: Provide and Reveal Value 665
31 Producing Technical Reports 669
32 Generating Business Value 683

Review of Section 10: Provide and Reveal Value 693
Retrospective: Fixing the Process 697
Section 11: Appendixes 713
A Setting Up VSTS for the Exercises 715
B Software Project Environment for a Small Team 729
C Agile Workspace 753

List of Exercises 763
List of Extreme Programming Practices 771
Glossary 773
Bibliography 789
Resources 797
Index 805

Contents at a Glanceviii

Contents

Preface xxvii
Acknowledgments xxxv
About the Authors xxxvii

Introduction: Broken Process 1
Welcome to the OSPACS Team 1

Team Background 1

Current Organizational Structure and Personas 2

The Team’s Road Map for Fixing Its Process 6

Section 1: Apply Sharp Tools and Values 9
Story from the Trenches 10

1 Introduction to Visual Studio Team System 13
The Purpose and Structure of VSTS 13

Elevator Pitch 14

Typical Organization of VSTS for a Small Team 14

Functional Components of VSTS 16

Client Parts of VSTS 17
Differentiation of VSTS Products 17

Visual Studio Professional 18

Team Explorer 20

VSTS Tools 22

ix

Server Parts of VSTS 27
Team Foundation Server (TFS) 27

Project Portal and Report Sites 27

Team Foundation Build 29

Extending VSTS 30
Visual Studio Industry Partner Program 30

Visual Studio SDK 30

2 Agile Values 33
Tools and Values 33

Buy or Build? 34

Software Values and Traditions 35

The Agile Alliance 36
Extreme Programming (XP) 37

Communication 39

Feedback 40

Courage 41

Simplicity 42

Respect 43

Review of Section 1: Sharp Tools and Values 45
The Team’s Impressions 45
Agile Values 46

Section 2: Introduce Agile Development 49
Story from the Trenches 50

3 Overview of Agile Development 53
What Is Different about an Agile Project? 53

No Separate Development Phases 54

Specifying Requirements with Customer Stories 55

Introduction to Extreme Programming 57
Software Project Life Cycle 58

Iterative and Incremental 58

Iteration and Release Cycles 59

Contentsx

Iterations Deliver Production-Quality Code 60

Project Closure 61

Isn’t XP Just Hacking? 62
Why XP Doesn’t Encourage Hacking 63

4 Forming an Agile Team 65
The Nature of Agile Teams 65

Working As a Design Team 66

Self-Organizing Teams 68

Team Size 68

Work That Doesn’t Suit Agile Teams 69

Agile Team Structure 70
Customer Roles 70

Developer Roles 72

Associated Roles 75

Reorganizing the OSPACS Team 76
Identifying Customers and Developers 76

Rearranging the Office Space 78

5 Team Foundation Process Frameworks 81
Team Projects and Process Frameworks 81

Artifacts Generated When a Team Project Is Created 82

Creating an MSF for Agile Software Development Team Project 85

Deleting a Team Project 87

Giving Users Membership of Your Team Project Groups 88

Gaining Access to Your Team Project Services 89

Administering Your Team Project Security Settings 91

Administering Your TFS Security Settings 92

Connecting to a Team Project 93

Microsoft Solutions Framework (MSF) 4.0 95
Work Item 96

Role 97

Activity 97

Work Stream 97

Tracks and Governance Checkpoints 98

Contents xi

Frameworks for Specific Processes 100
MSF for CMMI Process Improvement 100

MSF for Agile Software Development 102

MSF for XP 102

Process Framework Comparison 103

6 Improving Your Process Framework 107
Providing a New Metric for an Existing Process Framework 107

Adding a New Work Item Type 108

Adding a New Query 109

Improving Your Process 110
Process Template Structure 111

Importing and Exporting Process Templates 112

Changing Your Process Template 115

Review of Section 2: Introduce Agile Development 119
The Team’s Impressions 120
Agile Values 121

Section 3: Use Version Control 123
Story from the Trenches 124

7 Managing Change 127
Sharing Information among Your Team 127

Why You Shouldn’t Keep Source Files in Shared Folders 128

Keeping Source Files in a Repository 129

Using a Version Control System 133
Security 133

Frequent Integration 134

Atomic Check-in 134

Rolling Back Versions 134

Storing Deltas 135

Locking and Merging 136

Labeling and Branching 138

Software Configuration Management 142

Contentsxii

VSTS Support for Version Control Tools 144
Integration with Visual Studio 144

TFVC Features 145

TFS Support for Eclipse and Other Types of IDEs 147

8 Setting Up TFS Version Control 149
Structuring Your Team Project 149

Production and Spike Folders 149

Organization of Visual Studio Solutions, Projects, and Directories 151

Deciding What to Put into Version Control 154

Version Control for Team Documents 156

Archiving Third-Party Libraries 158

Establishing the Initial Baseline for Your Project 160
Adding Files and Directories to Version Control 160

Check In and Label the Baseline 164

Other Set-Up Tasks 166
Importing Source Files 166

Team Project Version Control Options 167

Visual Studio Source Control Options 168

Setting Up Security 169

Backup and Restore 170

9 Using TFVC in Your Project 173
Using TFVC When Coding 173

Sample Programming Episode: Version Control 174

Common Version Control Tasks 177
Using Workspaces 177

Merging Changes 180

Rolling Back to a Previous Version 183

Creating a Branch 185

Creating a Shelve 187

10 Policing Your Project with TFVC 191
Protecting Your Source Code 191

Controlling Access to Individual Files and Folders 192

Setting Check-in Constraints 193

Contents xiii

Establishing Policies for Source Code 195
Coding Standards 195

Static Code Analysis 196

Setting Static Code Analysis As a Check-in Policy 198

Implementing New Coding Standards 200

Updating Static Code Analysis Rules 201

Overriding Check-in Policies 201

Review of Section 3: Use Version Control 205
The Team’s Impressions 206
Agile Values 207

Section 4: Build and Integrate Often 209
Story from the Trenches 210

11 Building and Integrating Software 213
Software Construction 213

Building and Integrating As a Team 214

Automated Build Lab 214

Software Integration and Test Environment 216

Automated Software Testing 217
Smoke Tests 219

Functional Tests 219

Structural (Unit) Tests 220

Quality of Service Tests 220

Integration Testing 221

Build and Test Cycles 222
Local Build 222

Integration Build 225

Daily Build 227

12 Working with Team Foundation Build 229
Welcome to Team Foundation Build 229

Setting Up Team Foundation Build 230

How Team Foundation Build Works 230

The Role of MSBuild 231

Making a Build Validation Test 233

Contentsxiv

Setting Team Build Permissions 235

Creating Team Build Types 237

Scheduling a Daily Build 239

Sample Programming Episode: Integration Build 240

Deleting Build Products 243

Build Management 245
Process Technician Role 245

Build Notification 246

Build Identification 247

Build Reports 248

Scaling Up Team Integration Builds 249
Incremental Builds 250

Optimizing Package Dependencies for Building 251

Review of Section 4: Build and Integrate Often 255
The Team’s Impressions 256
Agile Values 258

Section 5: Practice Test-Driven Development 261
Story from the Trenches 262

13 Introduction to TDD 265
The Nature of Test-Driven Development 265

Settling into the Rhythm of Test-First Programming 265

Top Down versus Bottom Up 268

Simple Test-First Programming Exercises 269
Define the List of Tests 269

Set Up a Basic Test Harness 269

TFP Cycle for the First Test 271

TFP Cycle for the Second Test 273

Review of the Exercises 276

Getting Started with Test-First Programming 277
Applying TFP on Your Team 277

Creating a List of Tests 278

Finding Additional Tests 278

Refactoring 280

Contents xv

14 Developing Your First Tests 283
Creating Visual Studio Projects for TFP 283

How VSTS Supports Unit Testing 283

Setting Up Visual Studio Projects for Unit Testing 285

The Story behind the Tests 287
About the “Image Favorites” Story 288

Dividing the Story into Tasks 288

Create a Test List 289
Finding Your Initial Tests 289

Record the Test List 291

Organization of Your Test List Code 293

Shelving Your Test List Code 293

Implementing the Tests 294
Start with the Easiest Test 294

Fix a Failing Test and Refactor 296

Comments about the Refactoring 299

Do the Next Three Tests Yourself 300

15 Learning to Refactor 303
Doing Small Refactorings 303

Implement a Collection 304

Refactor the Test 306

Refactor the Production Code 308

Safely Changing Code Implementation 309

Comments about the Refactoring 312

Refactor As You Go 313
Implementing More of the Requirement 313

Refactoring Opportunities 316

Doing a Big Refactoring 318
Remove the Middle Man 318

Changing the Type of a Collection 319

Take a Break 322

16 Code Coverage and Performance 325
Code Coverage 325

How to Generate Code Coverage Information 326

Contentsxvi

Performance Analysis 331
Sampling 332

Instrumentation 332

Example Performance Profiling Session 332

Improving Your Library Code’s Performance 335

Improving System Performance 337

17 Integrating TFP Code with a User Interface 339
Implementing the User Interface 339

Define the User Interface 340

Create a Task List 341

Implement the Windows Forms Application 342

Aim to Create a Thin User Interface Layer 344

Simple Design 346
Code Criteria for Simple Design 347

Avoiding Big Design Up Front 348

Review of Section 5: Practice Test-Driven Development 351
The Team’s Impressions 352
Agile Values 354
Reinforcement of Agile Practices 355

Pair Programming 356

Shared Code 356

Single Code Base 356

Ten Minute Build 356

Continuous Integration 356

Section 6: Explore by Modeling 357
Story from the Trenches 358

18 Modeling with Agility 361
Introduction to Modeling 361

Models and Process 362

Values, Principles, and Practices of Agile Modeling 363
Values 363

Principles 363

Practices 364

Contents xvii

Agile Modeling in Use 366
Group Modeling 367

Modeling in Pairs 370

Agile Model-Driven Development 372

19 Creating Models 375
Free-form Diagrams 375
UML Diagrams 377

Class Diagram Notation 377

Sequence Diagram Notation 382

Using Modeling Tools 385
Class Designer 385

Visio for Enterprise Architects 389

Top Ten Tips for Drawing Diagrams 391

20 Using Models in an Agile Project 395
Requirement Models 395

Domain Models and CRC Cards 396

User Interface Models 401

Use Case Models 403

Customer Stories 404

Architectural Models 405
The Architect’s Role on an Agile Team 406

Creating a Skeletal Architectural Model 406

Evolving Your Architectural Model 408

System Metaphor 411

Implementation Models 411
Structural Models 412

Dynamic Models 413

21 Modeling Solutions with Patterns 415
What Is a Pattern? 415

Pattern Languages 416

Example: The Façade Pattern 417

Sources of Patterns 419

Contentsxviii

Using Patterns in an Agile Project 421
Example: Evolving Legacy Code with the Façade Pattern 422

Implementation of Patterns and Models 424
Design Patterns versus Components 425

Reusable Components 425

Emergence of Domain-Specific Languages 426
Use of DSL in Horizontal Market Applications 427

The Language Workbench 427

Software Factories 429

Review of Section 6: Explore by Modeling 433
The Team’s Impressions 434
Agile Values 436

Section 7: Implement Customer Testing 439
Story from the Trenches 440

22 Involving Customers in Testing 443
Agile Customer Testing 443

Testing throughout the Project 444

FIT: Framework for Integrated Test 445
Overview 445

Installing and Running FIT 447

Test Organization 453

Storytest-Driven Development 454
Costs and Benefits of STDD 455

Role of Testers in STDD 457

Relationship of Customer Testing to Your Release Process 457

23 Creating FIT Fixtures 459
Standard FIT Fixtures 459

Column Fixtures: Testing Decisions in the Business Layer 460

Row Fixtures: Testing Lists in the Data Layer 465

Action Fixtures: Testing Workflow in the User Interface Layer 470

Custom FIT Fixtures 476
Example of a Custom Fixture 476

Contents xix

24 Running FIT with Team Foundation Build 481
Performing Customer Tests in Your Build Lab 482

Wrapping FIT in a Generic Test 482

Running a Generic Test in Your Build Lab 485

Automated Customer Testing 487
Running Customer Tests in Team Foundation Build 487

Allowing Your Customers to Edit and Run Tests from Their PCs 489

Introducing Your Team to Customer Testing 491
Discussions around a Whiteboard 492

Putting the Information into a Table 493

Implementing the Fixtures for the Story 495

Using Sequences of Tables in Customer Tests 496

Top Ten Tips for Test Design 498

Review of Section 7: Implement Customer Testing 501
The Team’s Impressions 502
Agile Values 504

Section 8: Estimate, Prioritize, and Plan 507
Story from the Trenches 508

25 Estimating and Prioritizing Stories 511
Working with Customer Stories 511

Overview 512

Generating Stories 514

Estimating 516
Sizing Stories 516

Absolute Values versus Relative Values for Estimation 517

Relative Estimate Scales 519

Task Points and Story Cost Estimation 519

Budgeting 521

Prioritizing 521
Value 522

Business Risk 522

Technical Risk 523

Removing Dependencies 524

Contentsxx

26 Agile Planning 527
The Nature of Plans 527

Plans for Repeated Execution versus One-Time Plans 528

Agile Planning 528

Using Velocity to Measure Rate of Progress 529

Planning at Every Time Scale 530
Task Plan 531

Iteration Plan 534

Release Plan 536

Controlling Plans 538
Levers of Control 539

Story Life Cycle 541

27 Managing Agile Projects 545
Using Visual Studio Team System for Project Management 545

Project Structure 546

Work Item Types and Queries 547

Documents 551

Reports 554

Example Agile Planning Life Cycle 556
Start of Iteration 556

Sample Programming Episode: Task Planning 560

Between Programming Episodes 561

Planning Customer Tests 562

Completing a Story 563

Completing a Bug Fix 563

Daily Meetings 564

End of the Iteration 565

Release Planning 566

Top Ten Tips for Managing Agile Projects 567

Review of Section 8: Estimate, Prioritize, and Plan 571
The Team’s Impressions 572
Agile Values 574

Contents xxi

Section 9: Practice for Deployment 577
Story from the Trenches 578

28 Moving into Production 581
Managing Deployment 581

The Release Process 582

Removing Bottlenecks 585

Handing Over the Release to a Deployment Team 586

Preparing for Deployment 587
The Installation Program 588

Deploying the First Iteration 589

Stubs and Scaffolding 591

Data Deployment 591

Monitoring the Production Environment 592
Logging 593

Creating a Support Web Site 594

29 Developing Installation Programs 597
Introduction to Windows Installer 597

Basic Concepts 598

Principles of Operation 600

Security 602

Creating an Installation Project with InstallShield 604
Using InstallShield with Visual Studio 604

Using the InstallShield IDE 605

Developing Installation Programs on an Agile Team 613
InstallShield Collaboration 614

Automating the Creation of Your Installation Program 619

ClickOnce Technology 620
Suitable Applications 620

Basic Concepts 621

Publishing and Deploying 622

Contentsxxii

30 Deployment of Distributed Systems 625
Distributed System Architecture 625

Distributed Components 626

Service-Oriented Architecture (SOA) 626

System Definition Model (SDM) 627

VSTS Distributed System Designers 628

Logical Datacenter Designer 629
Creating a Logical Model of a Datacenter 629

Endpoints and Servers in Your Toolbox 633

Properties, Settings, and Constraints 634

Importing Settings from Your Existing IIS 636

Application of LDD Models 637

Application Designer 638
Creating an AD Diagram 638

Defining Settings and Constraints 648

Application of AD Models 648

System Designer 649
Creating SD Diagrams 649

Defining Settings and Constraints 652

Application of SD Models 652

Deployment Designer 653
Creating a DD Diagram 653

Deployment Properties 655

Validating Deployment 656

Creating a Deployment Report 657

Application of DD Models 658

Review of Section 9: Practice for Deployment 661
The Team’s Impressions 662
Agile Values 664

Contents xxiii

Section 10: Provide and Reveal Value 665
Story from the Trenches 666

31 Producing Technical Reports 669
Revealing Valuable Information 669

Standard Queries and Reports 670

Gathering and Presenting Information 672

Big Visible Charts 673

Extracting Data from Team Foundation Server 674
Introduction to the TFS Data Warehouse 675

Accessing Data in the TFS Relational Database 676

Creating a Custom Report from the TFS OLAP Database 677

32 Generating Business Value 683
Lean Thinking 683

Specifying Value 684

Identifying the Value Stream 684

Making Value Flow 685

Allowing the Customer to Pull Value 686

Seeking Perfection 686

Changing the Economics of Software Development 688
Value Generated by an Agile Project 689

Value Generated by a Waterfall Project 689

Linking Agile to Other Process Improvement Initiatives 690
Agile Development in the Context of Design for Six Sigma 691

Review of Section 10: Provide and Reveal Value 693
The Team’s Impressions 693
Agile Values 695

Retrospective: Fixing the Process 697
About Retrospectives 697

Preparation 698

Creating a Plan 699

Contentsxxiv

The OSPACS Team’s Retrospective 700
Developing a Timeline 700

Other Exercises 704

Analysis of the Project Timeline 705
Structure of the Project 705

Things They Discovered 706

Has the OSPACS Team Fixed Its Process? 708

Is the OSPACS Team Extreme? 709
How the OSPACS Team Became Agile 710

Personal Agility 710

Appendixes 713

A Setting Up VSTS for the Exercises 715
Set Up a Single Evaluation Server 717

Setting Up Team System VPC 717

Setting Up TFS Trial Edition 719

Set Up TFS and Team Suite on a Network 720
Hardware Overview 720

Team Foundation Server for Workgroups 720

Setting Up a Software Project Environment 721

Actions for All Set-Up Options 721
Software Installation 722

System Settings 723

Setting Up User Accounts and Security Groups 724

Identification of Machines and Users Named in the Exercises 726

B Software Project Environment for a Small Team 729
Hardware Requirements 729

Computers 730

Other Equipment 732

Software Requirements 733
Software Tools to Buy and Install on the OSPACS Developer PCs 733

Software Products to Buy and Install on Server PCs 735

Software Supplied with Other Products 736

Open Source or Freely Available Software 738

Contents xxv

Licensing Issues for a Five-Person Team 739
Primary Domain Controller 739

TFS (DevServer) 740

Developer PCs 743

Architect PC 745

Tester PC 746

BuildLab PC 747

Standby TFS 748

Multiprocessor PCs and Multicore Processors 749

Increasing Your Team beyond Five People 749

C Agile Workspace 753
Basic Office Layout 753

Software Development Area 754

Kitchen Area 756

Hot-Desk Area 756

Library Area 758

Conference Room 758

Supplies and Equipment 759
Imposing the Team’s Individuality 760

List of Exercises 763
List of Extreme Programming Practices 771
Glossary 773
Bibliography 789
Resources 797
Index 805

Contentsxxvi

Preface

SC I E N C E I S F O U N D E D on the principle of creating experiments that give
the same results each time they are performed. Unfortunately, a software
development project isn’t like a scientific experiment because the outcome
is always different. Even teams that use the same tools and process will still
produce different solutions to the same task, each unique in terms of code
set, bugs, performance, and so forth. This variability arises because the
results of software development depend upon individuals and their inter-
actions as much as the process and tools they employ.

The idea that the outcome of a software project is largely dependent
upon people and the way they work together caused Kent Beck to observe
the habits of successful teams and then put them into a framework of val-
ues and practices, which he called Extreme Programming (XP). This pro-
vided an alternative to the decades-old notion that the only way to impose
order upon software development was to apply expensive tools and a well-
prescribed process. XP joined a number of similar lightweight approaches
to software development, collectively known as Agile, which shared the
common aim of satisfying customers through the early and continuous
delivery of valuable software. Over the past five years, this Agile move-
ment has grown to become a significant driver of change in our industry.

Agile seems to have successfully captured the middle ground of soft-
ware development methodologies. Teams with too little process to guide
them have found that embracing Agile allows them to make significant
improvements in the outcome of their projects, without creating the sort of

xxvii

bloated bureaucracy they fear. Teams with too much process have found
that adopting an Agile approach has made them much more productive
and responsive, but without their projects descending into the sort of
chaotic hacking they fear. Thousands of projects have been run along Agile
lines. They haven’t all succeeded, but this is to be expected because any
worthwhile software project involves a degree of risk. However, plenty of
these projects have produced spectacular results, and once people have
tried Agile, they seldom want to return to their old ways of doing things.
We suspect this is simply because most people find it, as we do, to be a more
pleasurable and rewarding way to develop software.

Who Should Read This Book?

This is a book for people on real teams who are transitioning to Microsoft’s
Visual Studio Team System (VSTS), but who might not yet be ready to fully
embrace a process such as MSF for Agile Software Development. It is writ-
ten for people who want an easy way to gain value from the tools and at the
same time lay the foundations for future process improvement. We envi-
sion our readers to include the following:

• People new to software development—Teaches you how to use
VSTS and gives you the core skills you need in order to work effec-
tively on an Agile team. There are few assumptions about your

Prefacexxviii

NOTE

This book is primarily based on the values and practices of Extreme
Programming as described in Kent Beck’s book, Extreme Programming
Explained.1 We apply them in the context of a five-developer team
using Microsoft’s Visual Studio 2005 Team System.

1. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

technical background, but some knowledge of using Visual Studio
will help when completing the exercises.

• Experienced developers—Puts what you already know into the con-
text of an Agile project and explains how to make good use of the
new tools provided by VSTS. People who are encountering
Microsoft technology for the first time should find the exercises and
glossary particularly useful.

• Architects—Explains the new VSTS tools for software architects, but
its real value lies in helping you to adapt your skills so that you can
add value to an Agile team.

• Testers—Helps you understand the expanded role of testers on an
Agile team and explains how to use the basic VSTS tools needed to
test software in this new Software Project Environment.

• Business analysts and customers—Explains how an Agile approach
can give your business a better return on investment. You’ll also
learn how an Agile team works to make sure you get the software
you want, when you need it.

• Project managers—Describes how to transition your people onto a
small Agile team so that they can deliver better-quality software, in
less time and for less cost. In addition, you’ll discover how VSTS
gathers information about a project into one place to make the run-
ning of the project more transparent.

• Software entrepreneurs—Provides you with a road map for setting
up a small, top-performing software team. It reveals the key techni-
cal and people issues you need to address through a series of anec-
dotes and comments gleaned from the decades we’ve spent working
in the industry.

This book is not about process improvement applied from the top of an
organization downward, it’s about empowering teams to change things for
themselves from the bottom up.

Preface xxix

Tools Needed

In order to follow the exercises in this book, you will need access to an exist-
ing installation of VSTS or have the ability to install Visual Studio Team
Suite in one of the following environments:

• Desktop PC able to host the Microsoft Virtual PC

• Single-server PC running Windows Server 2003 (SP2 or R2)

• Network comprising a server and several desktop PCs

You will be glad to hear that Visual Studio Team Suite is freely available
from Microsoft’s technical Web site2 as a trial edition (full functionality, but
expires after 180 days) as well as for purchase from your usual Microsoft
reseller. In addition, MSDN subscribers can obtain Team System VPC,
which is a “ready to run” virtual machine image of VSTS for use with the
freely available Microsoft Virtual PC. Appendix A covers how to set up
VSTS in all of these environments.

Structure of the Book

The book’s Introduction contains a story about a fictional software team
called OSPACS that has a broken process; the team always delivers late, has
high staff turnover, and is surprised to discover that its software is full of

Prefacexxx

NOTE

Framework for Integrated Test (FIT) is required for Section 7, but it is
freely available from the C2 Web site.3 InstallShield and Installation
Collaboration are needed for the exercises in Chapter 29, but free eval-
uation editions are available on the Macrovison Web site.4

2. Microsoft’s Web site for Visual Studio Team System (http://msdn.microsoft.com/
teamsystem).

3. Ward Cunningham’s C2 Web site for FIT (http://fit.c2.com).
4. Macrovision’s Web site for InstallShield (www.macrovision.com/downloads).

bugs and has gone three times over budget. The rest of the book is about
how the team fixed these problems, but along the way we aim to give you
insight into the use of VSTS and the meaning of better software develop-
ment for a small Agile team.

The main body of the book is divided into ten sections, each concerned
with a specific aspect of software development as practiced by Agile
teams. These sections are ordered into a sequence that helps build up a
team’s proficiency in a step-by-step manner. For example, we don’t pres-
ent information about project planning until we’ve covered material such
as testing and Team Build because clearly your team’s plans will not be
very reliable until you can dependably deliver quality software. How-
ever, with that said, each section is largely self-contained, so you can read
them in any order that makes sense to you. Indeed, we expect this to hap-
pen as each reader will have different priorities for things they want to
learn about.

Each section starts with a short story and ends with a review describing
how the OSPACS team put the ideas into practice, the team’s impressions
about the material, and its relationship to a set of Agile values. In this way,
we provide you with some light relief from the technical stuff while pre-
senting another perspective on the subject matter that might help you
apply it on your own team. Within each section, the chapters usually start
by explaining some basic concepts and then put them in a practical context
by giving you a series of exercises to follow using the tools provided by
VSTS. You will also find sidebars in various chapters that summarize par-
ticular XP practices relevant to what is being discussed. In this way, theory
and practice are put together into something that is hopefully reasonably
entertaining and interesting to read.

Preface xxxi

NOTE

At the back of the book is information about relevant resources, a glos-
sary, a bibliography, and a number of appendixes, as well as a list of
the XP practices and a complete list of all the exercises.

Conventions

The XP practices listed on the inside cover are described in appropriate
places throughout the book as sidebars which are given a different font and
layout to distinguish them from the main body of the text. In addition to
normal printing conventions, the following special conventions are also
used in the book:

[XPE2] Reference to an item in the bibliography.

File | New | Team Project Shorthand for “select the menu item
New from the File menu and then select
its Team Project submenu item.”

Right-click | Delete Shorthand for “choose Delete from the
selected item’s context menu.”

… the Agile team Words that are capitalized are used in a
specific sense, so here we mean a team
that shares the values of the Agile soft-
ware movement.

Prefacexxxii

WARNING

Issue that requires particular care or consideration.

NOTE

Item of particular interest.

TIP

Best practice or suggestion.

About the Book’s Web Site

We have created a Web site for this book that contains most of the code cre-
ated for the exercises, information about any errors in the text found after
publication, and other supplementary material which we feel might be use-
ful to readers:

www.BetterSoftwareDevelopment.org

We strongly encourage people to visit this site for the latest information
about both VSTS and Agile software development. We would be delighted
to receive feedback from readers and will try to respond to you as promptly
as our other work commitments allow.

Preface xxxiii

NOTE

James Newkirk and Will Stott collaborated in the production of this
book, but as Will did most of the writing, it’s his voice you hear when
you read something such as “I did so and so” or “We did this and that.”

Acknowledgments

TH E I D E A F O R T H I S B O O K came from Sam Guckenheimer after Will Stott
met him at a conference in Germany at the end of 2004. He has been hugely
supportive of this project and we couldn’t have done it without him. In
addition, Joan Murray at Addison-Wesley has been a constant source of
encouragement to us and handled a lot of administrative work so that we
could get on with the writing. There are also many behind-the-scenes peo-
ple at Addison-Wesley, including Audrey Doyle and Lara Wysong, whose
professionalism and hard work in terms of getting the book from Word files
to bookstore shelves need to be acknowledged, so thank you all.

The process of reviewing a manuscript is an essential part of the pub-
lishing process and adds considerably to the quality of the final work. Our
formal reviewers have done an outstanding job of pointing out our mis-
takes and suggesting improvements, as well as telling us what needed to be
pruned from the text. Therefore, we gratefully acknowledge the help of
Scott Ambler, Raimond Brookman, Peter Himschoot, Jason Schmitt, and
David Yak. In addition, we received many useful comments about the man-
uscript’s first draft from George Bullock, Stuart Celarier, and Matt Ranlett.
We also want to express our appreciation to Linda Rising for her comments
about the Retrospective, as well as to Chris Page, Corey Ferengul, and Bob
Corrigan at Macrovision for their input about InstallShield in Chapter 29.
Though many people at Microsoft have helped us in various ways over the
past two years, we must especially thank Bill Essary and Ajay Sudan for
their comments about the licensing issues in Appendix B.

xxxv

Will Stott would like to express his gratitude to James Newkirk, as well
as to the people at Exoftware who encouraged him to write this book, espe-
cially Sean Hanly. He is also indebted to the many people he met through
the London Extreme Tuesday group for their assistance and insights into
the then-emerging field of Extreme Programming, particularly Tim Bacon,
Peter Brown, Rachael Davies, Peter Lappo, Duncan Pierce, David Putman,
and Karl Scotland. In addition, he thanks Chris Jones and Andy Ryan of
University College London for providing the idea for the OSPACS project.
Will also thanks his family and friends for their love and support, as well as
the many other people he has met who have helped him in ways both large
and small over the years. In particular he remembers the great inspiration
provided by his physics teacher, the late Mr. Brown of Rossall School, and
the practical help given during the writing of this book by Mark Brearley,
Liz Hooper, Simon and Ann Battensby, Damain and Marnie Hopkins, and
Lee Hyde and Anna Acland.

James Newkirk would like to thank Will Stott for his dedication to the
project. The book simply would not have happened without Will. I would
also like to acknowledge the support of my wife, Beth. Over the years, she
has supported me through my various career moves and side projects.
Thank you.

Acknowledgmentsxxxvi

NOTE

We owe a huge debt to Kent Beck and others in the Agile community
for promoting Extreme Programming, which forms the solid and well-
proven foundation of our book.

About the Authors

Will Stott is a freelance consultant originally from the United Kingdom
who now lives in Switzerland. He is an associate of Exoftware, a European
company helping organizations to become more Agile in their software
development practices. Will has worked with Microsoft technologies since
the early days of MS-DOS and now specializes in C++ and C# development
using Visual Studio. He has published a number of articles about Agile
development and has spoken at various conferences in the United King-
dom and Europe.

James Newkirk is the product unit manager for CodePlex, Microsoft’s
community open source project hosting site. In this role, he is responsible
for the site’s strategic direction and product development. He is the coau-
thor of Test Driven Development in Microsoft .NET (Microsoft Press, 2004).
Prior to joining Microsoft he coauthored “Enterprise Solution Patterns in
.NET” (Microsoft patterns & practices) and Extreme Programming in Prac-
tice (Addison-Wesley, 2001). In between writing books and consulting on
software projects, James led the development of NUnit V2.

xxxvii

Introduction
Broken Process

I F Y O U R P R O C E S S isn’t broken, don’t fix it! That is to say, if nobody wants
to leave your team and it reliably delivers the best possible value to the

business in the required time without any unexpected quality or cost issues,
think carefully about adopting Visual Studio Team System (VSTS) or
becoming an Agile team. This book is not written for people who already
have a sound software development process, but rather for those who want
to change their process because it is broken in some way.

Welcome to the OSPACS Team

The OSPACS team is entirely fictional and none of its members are intended
to represent actual people. However, the team’s problems are typical of
those we’ve actually encountered over the past couple of decades while
working for numerous organizations, and the characters are woven together
from some of the individuals we’ve met during this time. Therefore, we
have no reservations about treating the OSPACS team as though it were real.

Team Background
The OSPACS team is part of a small IT company in the healthcare business.
Eighteen months ago it entered into a joint venture agreement with the Old
Sainsbury (OS) Hospital for the development of a new Picture Archiving
and Communication System1 (PACS) intended to capture, store, and dis-
play digital images such as X-rays and ultrasound scans. The team released

1

1. Find out more about PACS at the AuntMinnie Web site (www.auntminnie.com).

the first version of this system to the hospital three months ago. However,
it was not a great success, as the team had gone three times over its budget,
delivered the product six months late, and then spent another two and a
half months fixing its bugs.

The team’s morale reached a low point a month ago, mainly because
everyone was so exhausted after working weekends and late into the night
to get the system into production. They then lost two key programmers to
a competitor and rumors started circulating that more people were ready to
follow them. However, we join the team as its outlook is starting to look a bit
brighter, because it has been more than two weeks since the last serious bug
was found and the system has finally gone “live” in the hospital’s radiol-
ogy department. Therefore, people are no longer working overtime and can
start considering the next phase of the project, which is the development of
a generic version of the system for deployment into other hospitals. Mike
Hancock (CEO) recently showed his support for this new work by hiring a
new senior programmer (Peter Powell) as well as agreeing that the team
could upgrade its MSDN subscriptions to get Visual Studio Team Suite.

Current Organizational Structure and Personas
The OSPACS team is organized into a typical hierarchy so that its three pro-
grammers report to the project manager, who then reports to the CEO. The
business analyst and test manager also report directly to the CEO, which
effectively creates three separate departments: programming, test, and
product development.

CEO: Mike Hancock

Mike is a serial entrepreneur who set up the company
after selling his previous business to a large multina-
tional. He spends most of his time driving the sales
force and doesn’t really understand why he can’t man-
age the software team in the same way. However,
Mike realizes that software people are very different
from his salespeople, so he has learned to keep his dis-

tance from the OSPACS team.

Introduction: Broken Process2

“The team gives me a project plan that schedules its every task for the
next three months, but a week later it’s already out-of-date.”

“These software people cost me a fortune, and I haven’t a clue what they
do all day.”

Business Analyst/Sales: Sally Thompson

Sally worked as a business analyst for a major med-
ical equipment manufacturer before she joined the
company three years ago. The extensive knowledge
she has about the business, combined with her skill at
handling customers, means she has a joint business
analyst and sales role reporting directly to Mike.

“If 80 percent of the value lies in 20 percent of the
features, why do we bother developing 80 percent of our software?”

“Our project manager seems to spend most of the day hiding in his
office, producing reports that nobody reads.”

“The opportunities that arise have usually gone by the time we’ve
developed the software.”

Test Manager: Maggie Smith

Maggie was one of the original employees of the
company and is good friends with its most senior
programmer, Sarah Brown. However, this doesn’t
stop her from being very critical about the poor qual-
ity of the software landing on her desk from the
development department.

“Sometimes when writing my tests, I just have to
guess what the program is supposed to do. Sally needs to spend time help-
ing me understand the customer requirement.”

“Programmers don’t seem to think that testing is part of their job
description. There must be a better way of doing things.”

“There’s a cultural chasm between the development department and the
test department.”

Welcome to the OSPACS Team 3

Project Manager/Architect: Tom Stanton

Tom is the intellectual powerhouse of the company
and knows a lot about different types of software engi-
neering methodologies. However, so far this knowl-
edge hasn’t helped him create a successful team.

“People are very dissatisfied with their jobs, and
poor tools don’t help. I need to fix this problem fast, as
we can’t afford to lose anymore people.”

“Rebuilding all the components takes us days, and then getting them to
work together takes weeks of effort.”

“I don’t know why Sally produces all these long functional specifica-
tions, because none of the programmers reads them.”

Senior Programmer: Sarah Brown

Sarah is the only programmer left from the original
group that started OSPACS. Her software develop-
ment skills are largely self-taught and she prefers writ-
ing code to producing elegant documents and Unified
Modeling Language (UML) drawings. Without Sarah,
there would be no system and no OSPACS team, so
she is highly regarded by everyone, particularly Mike.

“Everyone works on his own separate components because people lock
files out of SourceSafe for weeks at a time. The team just doesn’t share a
common code base.”

“We always talk about restructuring the code for the next release, but
when the time comes, there’s always something else that takes priority.”

“Deploying software into our client’s environment is always a night-
mare because we ship so infrequently that each time it feels like we’ve
never done it before.”

“The gap between us releasing each batch of code to testing just keeps
on getting longer.”

Introduction: Broken Process4

Senior Programmer: Peter Powell

Peter joined the team a couple of weeks ago. Before
that, he spent five years working as a contractor for a
variety of blue-chip companies. He has already estab-
lished a reputation for being a bit of a geek who
spends most of his time plugged into an iPod, writing
code that no one else understands. Peter knows a bit
about Extreme Programming (XP), though he has not

yet put it into practice in a real project.
“The team needs to feel ownership of the process rather than feeling

owned by it.”
“When I look at the existing OSPACS code it’s full of stuff that doesn’t

seem to have any real purpose. I’m not sure what’s working code and
what’s still under construction.”

“It seems to me that Visual Studio Team System, put into the wrong
hands, could stop a project dead in its tracks.”

Junior Programmer: Luke Harrison

Luke joined the company straight after graduating
from college, where he earned a computer science
degree. Initially he found it very difficult to relate his
studies to what was happening in the company, but he
has since come to realize that there’s a difference
between what happens in textbooks and what hap-
pens on a real team.

“Our installation program always works fine on my PC, but it often fails
when we run it on our customer’s machines.”

“We spent months creating UML models for the first version of the
product and then threw them away a week into coding. Our design work
simply doesn’t survive into implementation.”

“We haven’t really got a process—certainly not one that works.”

Welcome to the OSPACS Team 5

The Team’s Road Map for Fixing Its Process
Tom had first read about XP in the April 2004 edition of MSDN Magazine,2

but at the time he put off introducing these ideas to the team because he
was too busy. However, he now realizes that some drastic action is
required, so transitioning the team to Agile development is now at the top
of his agenda.

Last week Tom contacted some people from his local Agile community
and persuaded them to explain their philosophy to the team during a few
lunchtime sessions. The OSPACS team liked what it heard about Agile.
However, the team decided to tackle its problems by taking a series of
small evolutionary steps, because as well as developing the new generic
version of its system, it also has to support the one installed in the Old
Sainsbury Hospital. Therefore, following the advice given by one of the
Agile experts it had met, the team identified its main problems as shown
in Table I-1 and agreed to address these issues by undertaking the corre-
sponding activities over the next six to nine months. In this way, the team
hoped to build up its expertise and at the same time reinvent itself as an
Agile team.

Introduction: Broken Process6

TIP

Contact your nearest Agile user group3 to find people who might help
your team make its transition to Agile. These groups usually attract
people who are using some form of Agile process in their work and
want to share this experience with others.

2. MSDN Magazine Web site (http://msdn.microsoft.com/msdnmag).
3. The Agile Alliance Web site lists user groups under Resources (www.agilealliance.com).

Table I-1: The OSPACS Team’s Road Map

Team Building

Apply Sharp Tools
and Values

Introduce Agile
Development

Achieving a Consistent Level of Quality

• “The team just doesn’t share a common code base.” Use Version
Control

Build and
Integrate Often

Practice
Test-Driven
Development

Explore by
Modeling

Satisfying Customer Requirements

Implement
Customer Testing

• “When writing my tests I just have to guess what the
program is supposed to do.”

• “I don’t know why Sally produces all these long
functional specifications, because none of the
programmers reads them.”

• “Our design work simply doesn’t survive into imple-
mentation.”

• “Programmers don’t seem to think that testing is part
of their job description.”

• “Full of code that doesn’t seem to have any real
purpose.”

• “Rebuilding all the components takes us days, and
then getting them to work together takes weeks of
effort.”

• “The gap between us releasing each batch of code to
testing just keeps on getting longer.”

“We haven’t really got a process—certainly not one that
works.”

“The team needs to feel ownership of the process rather
than feeling owned by it.”

“People are very dissatisfied with their jobs, and poor
tools don’t help.”

“There’s a cultural chasm between the development and
the test departments.”

Welcome to the OSPACS Team 7

Continues

Introduction: Broken Process8

Releasing Software on Time and on Budget

Estimate, Prior-
itize, and Plan

Practice for
Deployment

Delivering Business Value

Provide and
Reveal Value

• “If 80 percent of the value lies in 20 percent of the
features, why do we bother developing 80 percent of
our software?”

• “The opportunities that arise have usually gone by the
time we’ve developed the software.”

• “We ship so infrequently that each time it feels like
we’ve never done it before.”

• “Our installation program always works fine on my
PC, but it often fails when run on our customer’s
machines.”

• “The team gives me a project plan that schedules its
every task for the next three months, but a week later
it’s already out-of-date.”

WARNING

Do not expect any instant results from adopting Agile practices and
tools such as Visual Studio Team System. It often takes a year (or even
longer) for a team to get into the sweet spot of Agile development,
though some of the benefits usually show up much sooner.

Table I-1: Continued

Section 1
Apply Sharp Tools and Values

T H E F I R S T C H A P T E R in this section introduces Visual Studio Team
System (VSTS) and briefly reviews the tools it provides. However, it is

important for you to realize that having a set of shiny new tools doesn’t
always lead to the development of better software. Therefore, the second
chapter of this section presents some Agile values that may help you make
good use of this product.

9

Photograph by Peter Buckley (Copyright Peter Buckley 2005).

A good craftsman doesn’t blame his tools, because he selects them
carefully, keeps them well maintained, and uses them properly. The
people on your team also need to invest time acquiring good tools
and learning how best to apply them.

Story from the Trenches

My first real job was working as a junior field engineer for an oil service
company. It involved lowering instruments on the end of a cable 30,000 feet
or so down a bore hole, to determine the exact depth of the well’s oil bear-
ing zones. Once this had been done, some high explosives were detonated
at these depths to get oil to flow into the bore hole and thereby validate our
measurements. The company was paid a huge amount of money to per-
form this service, and I was under a lot of pressure to come up with accu-
rate answers in the shortest possible time.

I had a small team of people to help me, so I didn’t have to do much
manual work, but one of the tasks I was not allowed to delegate was con-
necting up the explosives. This involved attaching a detonator to the end of
some primer cord that ran to the shaped charges in the gun. In order to get
an efficient transfer of the detonator’s explosive power, it was necessary to
make a clean cut at the end of the primer cord so that it could be pushed
into the detonator and sit flat against the fuse.

I had successfully fired hundreds of these perforating guns, until one
day when I failed to make the cleanest of cuts through the primer cord
because the blade of my knife was blunt. The problem only became appar-
ent an hour later, after the shaped charges failed to detonate. It cost me
three hours of rig time to retrieve the gun, make a repair, and then lower it
down the bore hole again. This was not the first time my old knife had let
me down, so I hurled it into the well-site mud in disgust, resolving to buy
a new one as soon as I got back to town.

During the long journey back from the well site, I started to think about
buying the new knife, and this made me consider the sort of tool my friend,
Mark Barfield, used to cut primer cord. He was someone who always
seemed to do things right. Mark wouldn’t just buy a new tool; he would
also learn how to use and maintain it properly. Then I started to realize that
the root cause of my problems lay with me and my values rather than with
the knife. The reason Mark succeeded more often than I did was not
because he had better tools, but because his values were superior to mine.
He put quality at the center of everything he did. I didn’t need a new knife

Section 1: Apply Sharp Tools and Values10

as much as a better set of values in my life, and this is something I’m still
struggling to put into practice 25 years later.

Visual Studio Team System cannot help a team develop better software if its real
problems are rooted in its values. For this reason, this book is as much about peo-
ple as it is about technology.

Story from the Trenches 11

1
Introduction to Visual Studio
Team System

V ISUAL STUDIO TEAM SYSTEM (VSTS) is a huge product and we could
fill this book simply explaining all its features and describing everything

it contains. However, our intention is to show you how a small Agile team
might use VSTS to help it develop better software, so we will concentrate on
covering those parts of the product that help achieve this objective. We will
not make any assumptions about your architecture or about what you’re
developing—Web site, stand-alone application, or whatever. Nevertheless,
after reading this chapter, you should know enough about VSTS to discover
the areas of the product that might help your team, and you should know
whether those areas are covered in this book or elsewhere.

The Purpose and Structure of VSTS

The Microsoft technical Web site1 contains a lot of information about VSTS,
but for the benefit of anyone who hasn’t already visited this site, we start
with a quick review of the product, a look at the way a small team might
use it, and a description of its main functional components.

13

1. MSDN: Microsoft Developer Network (http://msdn.microsoft.com).

Elevator Pitch
Geoffrey Moore2 describes producing a vision about a product that can be
recited to a prospective customer in the time taken for an elevator ride, so
such a pitch about VSTS from a Microsoft staffer might go as follows:

Visual Studio Team System is for all the people working on a team develop-
ing Windows software; developers, testers, architects, and project managers.
It provides them with a complete Software Project Environment so that their
development process flows smoothly.

In the past, whenever a team started a project it had to assemble an
assortment of different tools and then get them to work together: Visual Stu-
dio, NUnit, NANT, SourceSafe, and so on. VSTS now integrates every-
thing a team needs into a common extensible environment that collects all
project information in one place. It supports the entire software development
life cycle, from analyzing requirements, through design, coding, build, and
test, to actual deployment of your software products. Also, a process-
enabling framework is built into VSTS, so you can start a wizard, select a
process template, and then let VSTS set up everything you need to start
your project: process guidance, source control, project management, report-
ing, bug tracking, project Web site, and so forth. Setting up a project in this
way takes maybe an hour, and when you’re done, you’ve got all the tools and
infrastructure you need in order to work like a top-performing team.

That’s the end of the sales talk. From now on we’ll look at VSTS from the
perspective of someone who needs to produce some commercial software
in a working environment such as that shown in Figure 1-1. In fact, you
could look at this book as a story about how the OSPACS team set up and
operated this kind of Software Project Environment in order to reinvent
itself as a small Agile team.

Typical Organization of VSTS for a Small Team
To help you put VSTS into some sort of physical context, Figure 1-1 illus-
trates the main components of VSTS as they might be set up in the OSPACS
Software Project Environment.

Chapter 1: Introduction to Visual Studio Team System14

2. Moore, Geoffrey. Crossing the Chasm (Harper Collins, 2002).

Although our book focuses on the scenario of a small team employing
an Agile process such as Extreme Programming (XP), you should appreci-
ate that VSTS is also capable of supporting large teams using a variety of
Agile and formal methodologies, including MSF for Agile Software Devel-
opment, MSF for CMMI Process Improvement, the Rational Unified
Process (RUP), and Scrum. Indeed, the single-server configuration of VSTS
shown in Figure 1-1 is likely to prove adequate for most teams unless they
have many hundreds of users or are dispersed at multiple sites in different
geographical locations.

NOTE

Appendix A describes the setup you need for the purposes of follow-
ing the exercises in this book, and Appendix B specifies the typical
hardware, software, and license requirements for a five-person team.

Figure 1-1: Structure of VSTS in a small-team Software Project Environment

Development Environment

DevServer
TFS Application and Data Tier

SQL Server, IIS, SharePoint

Build Lab Environment

Test
Machines

BuildLabPC
Team Foundation Build

Visual Studio Team Suite
HTML Help Workshop

InstallShield Standalone
.NET SDK

Peter

DeveloperPC2DeveloperPC2
Visual Studio Team SuiteVisual Studio Team Suite

with Team Explorerwith Team Explorer

Wider Organization

ExecutivePC
Project Portal and Report Site
displayed by Internet Explorer

MaggieTom

DeveloperPC3DeveloperPC3

Sarah

DeveloperPCDeveloperPC
Visual Studio Team SuiteVisual Studio Team Suite

Luke

TesterPC
Visual Studio Team Suite

with Team Explorer
InstallShield, RoboHelp

ArchitectPC
Visual Studio Team Suite

with Team Explorer
MS SQL Server Client

DeveloperPC3
Visual Studio Team Suite

with Team Explorer

DeveloperPC
Visual Studio Team Suite

with Team Explorer

DeveloperPC2
Visual Studio Team Suite

with Team Explorer

The Purpose and Structure of VSTS 15

Functional Components of VSTS
The collaborative environment that VSTS provides for your project is com-
posed of client and server parts which can be functionally categorized as
follows:

• Visual Studio Professional with Team Explorer—The Team Foun-
dation Server (TFS) Client Tier is fully integrated with the Visual
Studio Integrated Development Environment (IDE) and is installed
on each team member’s PC; see the Development Environment in
Figure 1-1.

• Team Foundation Server—The TFS Data Tier provides various data
stores for things such as your team’s source code files, and the TFS
Application Tier provides the services you need to access them. Typ-
ically, both of these tiers are installed together on the same server;
see the DevServer in Figure 1-1.

• Project Portal and Report Sites—These TFS-hosted Web sites are
accessed by team members from VSTS Team Explorer or from their
browser. People outside the immediate team can also monitor the
status and progress of the project from their browser, though
licenses are required, as mentioned in Appendix B.

• Team Foundation Build—Components in the TFS Application Tier
work in conjunction with Team Build to automatically build the
team’s software products from their shared source code stored on
the TFS Data Tier. Normally you would install Team Build on a dedi-
cated machine; see the BuildLabPC in Figure 1-1.

Chapter 1: Introduction to Visual Studio Team System16

3. TFS Installation Guide (http://go.microsoft.com/fwlink/?LinkId=40042).

NOTE

The TFS Installation Guide3 explains how to set up the Data and Appli-
cation Tiers on different servers and then further distribute the Data
Tier among a cluster of servers. It also describes how to cache the TFS
on a proxy server so that teams can operate in remote locations.

Client Parts of VSTS

The client parts of VSTS are provided by Visual Studio Professional and
Team Explorer, as well as by the various tools supplied with the particular
product installed on your PC. However, before looking at these parts in
detail, let’s review the way Microsoft has divided VSTS into a set of prod-
ucts that can be sold to different sorts of people on a development team.

Differentiation of VSTS Products
In some cases, teams (such as OSPACS) will swallow the expense and install
VSTS on all their PCs so that everyone gets Visual Studio Professional with
Team Explorer, as well access to the complete set of VSTS tools. However,
in other cases, teams will want to save money by just installing various com-
binations of the specific editions of VSTS on their PCs. In this way, each per-
son gets Visual Studio Professional with Team Explorer as well as the
following subset of VSTS tools according to their role on the team:

• Visual Studio Team Edition for Developers—Contains the common
tools listed in Table 1-1, as well as the specific developer tools listed
in Table 1-2. It is aimed at people who write code as well as struc-
tural (unit) tests.

• Visual Studio Team Edition for Testers—Contains the common
tools listed in Table 1-1, as well as the specific tester tools listed in
Table 1-3. It is aimed at people who write functional, Web, and load
tests as well as people who manage the team’s test suites.

• Visual Studio Team Edition for Architects—Contains the common
tools listed in Table 1-1, as well as the specific developer tools listed
in Table 1-4. It is aimed at people who want to model the deploy-
ment of a distributed Web-services-based system into a variety of
different datacenters.

• Visual Studio Team Edition for Database Professionals—Contains
tools useful to database developers. However, we decided against
covering it in this book so that we could focus on the more general
issues of software development.

Client Parts of VSTS 17

Visual Studio Professional
Visual Studio Professional provides an IDE that allows you to edit files and
create programs using the .NET language compilers and other tools sup-
plied with the freely available .NET Software Development Kit (SDK).4 This
book’s bibliography lists a number of excellent books covering the use of
Visual Studio, so rather than describe it in detail here we’ll just look at some
of the principal window types you need to know about to follow the exer-
cises in this book:

• Main window—Typically used to work with the file you have
opened or created. Depending upon the type of file selected, differ-
ent types of editing functions may be available to you.

• Solution Explorer window—A dockable window that displays your
team’s Visual Studio Solutions, Projects, and files in a treeview. Typi-
cally, a team would create one Visual Studio Solution for the product
it is developing and then have separate Visual Studio Projects for
each different assembly (.exe, .dll) it wants to build.

• Class View—A dockable window that displays the classes associ-
ated with each Visual Studio Project in your Visual Studio Solution.
These classes are listed in a hierarchy to show their complete inheri-
tance relationships. Selecting a particular class displays its proper-
ties, methods, and so on.

When Visual Studio 2005 with Team Explorer is put on your PC, a num-
ber of additional windows become available to you. The purpose of these

Chapter 1: Introduction to Visual Studio Team System18

NOTE

We recommend that Agile teams install Visual Studio Team Suite, if
their budgets allow. Appendix B explains the licensing limitations
faced by teams that decide to install just the different subsets of the
Team System tools on their PCs.

4. Microsoft’s Web site for the .NET Framework (http://msdn.microsoft.com/netframework).

windows will become apparent as you complete the exercises, but the most
important ones you need to know about are the following:

• Team Explorer window—This window is concerned with your
Team Project (which you should not confuse with a Visual Studio
Project) and contains information such as work items, documents,
reports, and build results. We describe this window in more detail
in the following section.

• Source Control Explorer window—This window lists the source
files belonging to your team that have been added to TFS version
control. We discuss this window further in Chapter 8.

• Test View—This window lists all the tests created for your team’s
project and allows you to execute one or more of them; see
Exercise 14-3 in Chapter 14.

• Test Manager window—This window allows you to organize collec-
tions of tests into a hierarchy of test suites which can be executed to
validate your Team Builds; see Exercise 12-1 in Chapter 12. How-
ever, this window is available only to people with Team Suite (or
Team Edition for Testers).

Figure 1-2: The Visual Studio IDE with Team Explorer

Main Window

Pending Changes

Toolbox

Properties

Team Explorer

Client Parts of VSTS 19

Team Explorer
Visual Studio’s Team Explorer window provides the main user interface of
your TFS Client Tier and is composed of a treeview whose root item con-
tains the name of the TFS to which you are connected, and whose first-level
items correspond to the collection of Team Projects on this TFS to which you
have membership rights. Looking at the Team View window in Figure 1-3
you get some idea of the sorts of things a Team Project is concerned with:

• Work items—You can break down the work necessary to complete
your project into various items of work categorized into different
types. You can then assign these individual work items (such as
tasks and bugs) to people, schedule them, and track them to help
control the project; see Chapter 27.

• Documents—You can store important project documents on the
Project Portal (project Web site) to help disseminate information
among the team and beyond.

• Reports—You can create standard reports for your project to help
communicate issues and status among the team; see Chapter 31. You
can run these reports directly from your Team Explorer or from the
Report Site.

• Team Builds—The team can automate the building of its software
products in different ways and on different build machines. Team
members can initiate these builds from Team Explorer and then
obtain the results from the corresponding Build Reports stored by
TFS; see Chapter 12.

• Source Control—The team’s source files can be stored in a version
control system so that different team members can alter the same file
in different ways without causing a conflict; see Chapter 7.

Chapter 1: Introduction to Visual Studio Team System20

NOTE

You can pin dockable windows to a particular edge of the main win-
dow or detach and place them anywhere on your desktop. For exam-
ple, in Figure 1-2, the Team Explorer window is pinned to the top right
and other windows are pinned to the left and bottom.

Most of the actual information about your team and its project is stored
in a SQL Server database on the TFS Data Tier. The benefit of bringing all
this data together in a single integrated system such as VSTS is that it
allows you to automate many of the dull and laborious jobs associated
with gathering management information and distributing it among the
team. Therefore, rather than having to use separate spreadsheets, paper
forms, and so forth, you can gather and distribute information directly
from Visual Studio, often with no more than a click of your mouse button.
This means teams can spend less time running a bureaucracy and more
time analyzing and learning from the real-time information their project
is generating.

Figure 1-3: Team Explorer window (View | Team Explorer)

Client Parts of VSTS 21

NOTE

You create a Team Project to help organize a group of people who are
developing software together, whereas you create a Visual Studio Pro-
ject to organize a group of files for the purposes of building some form
of executable (.exe, .dll, etc.).

Although most of the time your Team Explorer window will be con-
nected to your team’s TFS, you can also continue working with Visual Stu-
dio while disconnected. For example, you might work at home for a few
days and then reestablish your Team Explorer connection when you return
to the office so that your PC is resynchronized with the work the rest of the
team did while you were away. However, as you might expect, when dis-
connected from your TFS, the Team Explorer window will be empty and
certain items in Visual Studio’s Main menu will no longer appear.

VSTS Tools
Tables 1-1 through 1-4 describe the VSTS tools provided with the various
Team Editions as of the end of 2006. However, you should confirm that this
information is up-to-date by looking at the “Team System Editions Com-
parison” document available from the Production Information area of
Microsoft’s technical Web site for VSTS.5

Tools Provided with All VSTS Editions

Anyone who has any of the VSTS products installed on his PC will have
access to the tools in Table 1-1.

Tools Provided with Visual Studio Developer Edition

People who have just installed Visual Studio Team Edition for Developers
on their PCs will find the tools listed in Table 1-2 integrated with their
Visual Studio IDE.

Chapter 1: Introduction to Visual Studio Team System22

5. Microsoft’s Web site for Visual Studio Team System (http://msdn.microsoft.com/teamsystem).

NOTE

People who have installed Team Suite will gain access to all the tools
in Tables 1-1 through 1-4, as well as the tools provided by Team Edition
for Database Professionals, which, as previously mentioned, we do not
cover in this book.

Table 1-1: Tools Available in All VSTS Editions

Table 1-2: VSTS Tools for Developers

Tool Description References

Chapter 10Select rules that you can apply to
your source code (or assemblies) to
produce a report about its confor-
mance to project standards and good
coding practice guidelines. Under the
covers, this tool is actually FxCop for
managed code and PREfast for
unmanaged code (C/C++).

Static Code
Analysis

Client Parts of VSTS 23

Tool Description References

Chapters 5, 6

Class Designer Chapter 19

Chapter 19Microsoft Office Visio for Enterprise
Architects lets teams create a variety
of technical diagrams for use cases,
classes, database entity relationships,
and so forth. It can also be used to
perform round-trip engineering, gen-
erating code from Unified Modeling
Language (UML) diagrams, and
vice versa.

Visio and UML
Modeling

Class Designer permits people to
design and discuss the structure of
programs using standard graphical
representations.

The content of your Team Explorer
window provides a framework for
your team’s process that is deter-
mined by the template selected when
the Team Project is created. People
can also access a Web site that is
created at the same time as their
Team Project to obtain guidance
about the software development
process they are following.

Process Framework
and Guidance

Continues

Table 1-2: Continued

Tool Description References

Chapter 16

Unit Test Chapters 14, 15

Code Coverage Chapter 16

Tools Provided with Visual Studio Tester Edition

People who have just installed Visual Studio Team Edition for Testers on their
PCs will find the tools listed in Table 1-3 integrated with their Visual Studio IDE.

Allows you to see which statements
have and have not been executed
during a test or debugging session.

Allows you to test the methods (and
other parts) belonging to your classes
with assertlike statements to check that
they produce the expected results. It
provides an alternative to the popular
open source unit testing tool, NUnit.6

You can sample or instrument your
code to provide runtime information
about thread states, call stacks, memory
allocation, function execution times,
and so on.

Dynamic Code
Analyzer
(Performance
Profiler)

Chapter 1: Introduction to Visual Studio Team System24

6. NUnit Web site (www.nunit.org).

NOTE

You can still use NUnit with VSTS, and utilities exist for converting
NUnit tests into VSTS unit tests. For further details, see Microsoft’s
Web site for Visual Studio Team System and the NUnit Web site.

NOTE

Agile teams should try to combine the role of tester (and architect)
with that of developer. However, a team that has opted to install the
separate Team Editions rather than the Team Suite will find that its
licenses restrict this sort of role assimilation; see Appendix B.

Table 1-3: VSTS Tools for Testers

Tool Description References

Chapters 14, 15

Chapter 12

Chapter 24

Load Testing (not covered)

Web Test (not covered)

Manual Testing (not covered)

(not covered)Normally test cases are independent,
so you can execute them in any order.
However, certain test cases may be
order-dependent, so this adapter allows
you to specify the order of test cases in
a test suite.

Ordered Test
Adapter

Provides a mechanism for incorporating
a manual script based on a Word
document in a test and recording its
results. This is used when it is imprac-
tical to create an automated test.

Tests a Web application either by
recording a user session or by creating a
coded Web test using C# or Visual Basic.
It is often used in conjunction with the
Load Testing tool.

Simulates users accessing a server
during the execution of a test suite to
measure its response under a variety
of load conditions. Run the Team Test
Load Agent on multiple PCs if you need
to simulate a load that is beyond the
limits of a single machine.

Allows you to wrap a third-party test
program so that it can be run like a
native Visual Studio test.

Generic Test
Adapter

Lets you organize individual tests by
dragging them from the Test View
window into a hierarchy of test suites
(lists) displayed in a treeview. In this
way, you can execute a set of related
tests simply by running the required
test suite.

Test Case
Management

The same tools provided to software
developers; refer to Table 1-2.

Unit Test and
Code Coverage

Client Parts of VSTS 25

Tools Provided with Visual Studio Architect Edition

People who have just installed Visual Studio Team Edition for Architects on
their PCs will find the tools listed in Table 1-4 integrated with their Visual
Studio IDE.

Table 1-4: VSTS Tools for Architects

Tool Description References

Chapter 30

Chapter 30

Chapter 30

Chapter 30An architect uses the DD tool to model
the deployment of a given set of compo-
nents as defined by an SD model into a
particular datacenter as defined by an
LDD model. This DD model is first vali-
dated against the constraints in the SD
(AD) model as well as those defined in
the LDD model. It is then used to create a
report that specifies the deployment
requirements.

Deployment
Designer (DD)

An architect uses the SD tool to model
systems as units of deployment by aggre-
gating the sort of applications defined in
an AD model or by combining existing
SD models. Therefore, armed with a
collection of AD and SD models, an
architect might satisfy a new business
requirement simply by recombining
existing applications into some form of
new system.

System
Designer (SD)

An architect works with the developers on
the team to create a model of the compo-
nents they are developing using the AD
tool. This model defines the constraints
and interfaces for components which
provide as well as consume Web services.

Application
Designer (AD)

An architect works with operations staff to
create a logical model of their datacenter
using the LDD tool. This model captures
the resources available in the datacenter
as logical entities (rather than as physical
devices) and includes security parameters,
available ports, and datacenter policies
relevant to deployment.

Logical
Datacenter
Designer (LDD)

Chapter 1: Introduction to Visual Studio Team System26

Server Parts of VSTS

The server parts of VSTS are provided by TFS. However, from a functional
perspective, they can be subdivided into core data storage and application
services, Web site services, and services that support the automated build-
ing of the team’s software products.

Team Foundation Server (TFS)
TFS, as we have already discussed, is primarily concerned with storing data
about your project and then providing this data as a service to the people
and machines that need it. To connect Visual Studio to a particular Team
Project you just specify the network address of the host TFS and then select
the project from a list presented to you. The various TFS tiers then work
together to manage all the connections, rights, and permissions as well as
synchronizing the team’s shared data to provide you with a view of the
project on your PC that is consistent with the one provided to your fellow
team members on their PCs. The exercises in Chapter 5 take you through
the process of creating Team Projects and connecting to them.

Project Portal and Report Sites
The Project Portal is a Web site for your project, and anyone with the ap-
propriate access rights (and license) can access it from anywhere, using

Ser ver Parts of VSTS 27

NOTE

The tools that come with the Architect Edition really are useful only for
teams that are developing Web services for deployment in distributed
systems.

NOTE

In many cases, an organization will have just one TFS hosting all its
Team Projects. However, people working on an Agile team would not
normally belong to more than one actual Team Project at a time.

nothing more than a browser. However, the Project Portal is primarily used
by team members as a communication tool that provides them with a sin-
gle place to find all the important information about their project. For exam-
ple, in Figure 1-4, the OSPACS team’s Project Portal has links to its latest
build information and bug rates, as well as various announcements.

Figure 1-4: The OSPACS team’s Project Portal (Team | Show Project Portal)

Chapter 1: Introduction to Visual Studio Team System28

NOTE

The Project Portal is provided by SharePoint Services on the Application
Tier of your project’s TFS. Therefore, we suggest that you familiarize
yourself with the basic operation of a SharePoint Web site by reading a
book such as Teach Yourself Microsoft SharePoint 2003 in 10 Minutes.7

7. [TYSP] Spence, Noel. Teach Yourself Microsoft SharePoint 2003 in 10 Minutes (SAMS, 2004).

Your team’s Report Site, like its Project Portal, is accessed using a
browser, so it can be used to communicate information to team members
as well as to people who are outside the team. It provides a collection of
standard reports about your Team Project from data held in the SQL Server
database on your TFS Data Tier. However, because this Report Site is actu-
ally provided by SQL Server Reporting Services, you can also use its Report
Designer to create your own custom reports, as described in Chapter 31.

Team Foundation Build
Best practice suggests that teams sharing a common set of source files
should regularly rebuild their programs on a separate build machine, such
as the BuildLab PC in Figure 1-1. This separation of the development and
build environments helps to ensure that a team’s software can be built reli-
ably and in a defined way, something we explore more thoroughly in
Chapter 11.

Your team can build its software on a build machine in a number of dif-
ferent ways by defining different “Team Build types.” So, for example, you
might have one that just rebuilds any assemblies that depend on the source
files that have changed, and another that rebuilds all assemblies and then
runs a comprehensive set of tests to validate them. These Team Build types
are listed in your Team Explorer window (refer to Figure 1-3), though they
are actually XML files which are typically created by a wizard, as described
in Exercise 12-3 in Chapter 12.

Under the covers, VSTS uses the same tools and source files to build the
team’s software on the build machine as it does on a developer’s PCs. How-
ever, instead of the process being run locally by Visual Studio, it is run
remotely by TFS, which stores the resultant build report in its Data Tier and
puts the build products (.dll, .exe, etc.) into a specified “drop folder” on
your network. The instructions that the build machine requires to rebuild
your product are given to it by a part of the TFS called the Team Build Ser-
vice, which in turn gets its instruction from the Team Build type definition
created by your team. Collectively, the parts of VSTS concerned with exe-
cuting this sort of team build are known as Team Foundation Build, and we
explain their operation fully in Chapter 12.

Ser ver Parts of VSTS 29

Extending VSTS

Although VSTS provides you with an array of built-in tools, it is also read-
ily extendable, allowing you to add your own or third-party tools. Indeed,
the development team at Microsoft has taken considerable care to provide
interfaces and publish information with the aim of encouraging external
organizations to integrate their products into VSTS, as well as allowing
teams to customize VSTS for their own purposes.

Visual Studio Industry Partner Program
The Visual Studio Industry Partner (VSIP) program has signed up hun-
dreds of companies to engage in this work, and the book’s Web site pro-
vides details about some of the fruits of such partnerships. You can obtain
details about VSIP and order a free DVD from the Visual Studio Extensi-
bility Center area of the Microsoft technical Web site.8

Visual Studio SDK
The Visual Studio SDK allows you to extend many aspects of Visual Studio
as well as TFS. It is freely available from the Visual Studio Extensibility

Chapter 1: Introduction to Visual Studio Team System30

NOTE

Your team can run multiple Team Builds at the same time and can have
multiple build machines. In this way, people on your team can run
Team Builds as often as they want, which is a key requirement for suc-
cessful Agile development.

NOTE

Far from reducing your choice of tools, it seems likely that VSTS will
result in many more specialized tools becoming available to all mem-
bers of the project team.

8. Microsoft’s Web site for Visual Studio (http://msdn.microsoft.com/vstudio).

Center area of the Microsoft technical Web site and contains tools, docu-
mentation, and plenty of sample code. Also, various open source utilities
created for VSTS use this SDK on sites such as www.codeproject.com.

CONCLUSION

Now that we have presented the main components of VSTS, it’s possible to
describe them in terms of the main features they provide for a Software Pro-
ject Environment; see Table 1-5. However, as we discuss in the next chapter,
great tools on their own do not lead to better software development, for it
is the values and practices of the people who use them that really matter.

Table 1-5: Feature Summary of VSTS

Area Feature Implemented by TFS + References

Chapter 15

Chapter 27

Chapter 19

Table 1-1

Section 5

Table 1-2

Automated build Section 4

• Testing Sections 5, 7

Table 1-3

Visual Studio Tester
Edition tools

Test management, unit
testing, code coverage,
load testing, manual
testing, generic testing,
Web site testing,
ordered testing

Team Foundation
Build

• Building

Visual Studio
Developer Edition
tools

IDE, unit testing, code
coverage, code quality,
and performance
analysis

• Coding

Visio, Class DesignerUML modeling,
round-trip engineering

• Design

Visual Studio Team
Explorer

Word

Creation of Scenario
and Quality of Service
(QoS) work item types

• Requirement
gathering

Internet Information
Services (IIS)

Process GuidanceLife cycle
support

Conclusion 31

Continues

Table 1-5: Continued

Area Feature Implemented by TFS + References

• Deployment Chapter 30

Table 1-4

Chapter 27

Chapter 27

Source control Section 3

SharePoint Services (not
covered)

Security Chapter 5

Chapter 31Visual Studio Team
Explorer

SharePoint Services,
IIS, SQL Server
Reporting Services

Project Web site,
reports, and queries

Communication
and feedback

Visual Studio Team
Explorer

Setting check-in policy
and team access rights
and security

Document versioning
and review

Document
control

Visual Studio Team
Explorer

Change
management

Visual Studio Team
Explorer

Bug tracking, metric
tracking

Quality
assurance

Visual Studio Team
Explorer

Excel and MS Project

Iteration definition,
work item tracking/
scheduling/
prioritization

Project
planning

Visual Studio
Architect Edition
tools

Architecting
distributed systems
for deployment using
application, system,
datacenter, and
deployment modeling

Chapter 1: Introduction to Visual Studio Team System32

NOTE

Scenario and QoS are work item types defined by MSF for Agile Soft-
ware Development; see Chapter 5. They relate to the work needed to
implement, respectively, functional and nonfunctional requirements.

2
Agile Values

O U R VA L U E S H E L P establish the way we view the world and influence
the principles we adopt when carrying out our actions. This chapter

starts by looking at the relationship between people’s tools and their val-
ues. It then presents the Agile Manifesto, which is a set of principles
important to Agile teams. However, the bulk of the material is concerned
with describing the core values of Extreme Programming (XP): communi-
cation, feedback, courage, simplicity, and respect. After reading this chap-
ter, you should appreciate that although Visual Studio Team System
(VSTS) can help your team tackle some of its technical issues, it is the way
an Agile team addresses its people issues that really results in it deliver-
ing better software.

Tools and Values

Clearly, good tools are necessary for a team to do good work, but how
does a team acquire its tools? In the next few pages, we investigate the dif-
ferences between buying and building tools, which leads us to the issue
of how the values and traditions of software developers might help them
not only select the best tools, but also encourage better software devel-
opment.

33

Buy or Build?
The business of finding good tools is basically a matter of buy or build. Buy-
ing means you are expecting someone else to develop and maintain the
tool, and in this respect it is the total cost of ownership that really matters.
For example, a free tool that takes everyone on a ten-person team six hours
to assimilate can start to look expensive when compared with a $2,000 com-
mercial tool that takes each team member only an hour to learn. However,
you should also bear in mind that the most expensive tool in the shop isn’t
necessarily the best.

Building a tool means you take on the development and maintenance
work yourself, which may be your only option for something innovative or
particular to your project. However, you must think carefully before tak-
ing such a step, for those simple utilities that you aim to build in an after-
noon sometimes end up occupying most of your spare time for months.
You also need to be wary of creating an inferior copy of a tool which you
could have bought and adapted for a fraction of the cost, particularly when
you factor in ongoing maintenance.

Selecting tools, whether bought or built, is an activity on which every
team needs to spend time. In the classic essay “Sharp Tools,”1 Frederick
Brooks suggests that each team should have a toolmaker responsible for
keeping the team’s tools sharp and communicating their use and value to
the rest of the team. However, on an Agile team, it is usually more appro-
priate to share the role of toolmaker among the developers so that they all
contribute to the identification, acquisition, development, and maintenance
of their programming tools, whether bought or built.

Chapter 2: Agile Values34

1. [MMM] Brooks, Frederick P. The Mythical Man-Month (Addison-Wesley, 1975).

NOTE

Although some discoveries about tools might require detailed expla-
nation and formal training, most can be communicated among the team
simply by virtue of people working together closely, such as when they
practice pair programming, as described later in this chapter.

Software Values and Traditions
Acquiring the right tools is just part of the picture, for the thing about
tools is that they are effective only when kept sharp. Keeping a tool sharp
involves learning how to use and maintain it. A good carpenter, for exam-
ple, develops the skills needed to use, clean, and sharpen a chisel before
ever attempting to cut a mortise into a block of wood. He spends time
mastering these practices because having a sharp chisel allows him to
produce sound joints. A good developer, likewise, needs to spend time
learning to use and maintain the tools that allow him to produce great
software. However, the willingness of people to undertake such efforts
normally reflects their values. For example, why would someone who
always used a hammer and nails to join wood bother to keep a chisel
sharp, as clearly he has no regard for quality? Therefore, to develop bet-
ter software we need to look further than just our tools; we must also con-
sider our values and principles as well as the practices necessary to
support them.

Unfortunately, today’s software developers seem to have little in com-
mon with each other by way of common values and practices. Therefore,
we often find ourselves working on teams full of tension caused by people
with different values being forced to share tools and practices that they
don’t really care about. Not surprisingly, these sorts of teams seldom pro-
duce great work. For this reason, the Agile community is trying to promote
new traditions for software development—sets of values and principles
supported with sharp tools and backed up by certain practices.

Tools and Values 35

NOTE

Ancient craftsmen collaborating on grand projects were bound
together by common values and practices, passed from master to
apprentice over many generations. Without such traditions, they never
could have produced their engineering masterpieces.

The Agile Alliance

We can trace many of the principles that underpin Agile software devel-
opment back to the ideas behind Lean Thinking as originally described
in Toyota Production System.2 These principles are stated in the “Manifesto
for Agile Software Development,”3 which was drafted at the formation
of the Agile Alliance4 in early 2001. We interpret them, in essence, as
follows:

• Customer collaboration—Applying resources to finding out what
customers really want and then devoting the entire project to meet-
ing the needs and desires of these customers.

• Working software—The customer defines some tests, developers cre-
ate software that can be measured against these tests, and analysis of
the test results determines progress so that improvement can be made
by generating new tests and better software. Control is provided by
allowing the team to learn from each delivery of software.

• Individuals and interactions—Small groups of people with cross-
functional skills work together to produce a piece of software that
can be delivered to the business to give demonstrable value. The
team is self-organizing, taking responsibility for things such as set-
ting priorities and scheduling work.

• Responding to change—Waste and rework arising from changes in
requirements or business priorities are minimized by delivering soft-
ware through a succession of short iterations, each of which pro-
vides working software ready to pull into production should the
business decide it provides sufficient value.

Chapter 2: Agile Values36

2. [TPS] Ohno, Taiichi. Toyota Production System (Productivity Press, 1988).
3. Agile Manifesto Web site (www.agilemanifesto.org).
4. Agile Alliance Web site (www.agilealliance.org).

The Agile Alliance is a nonprofit organization supporting people who
want to take an Agile approach to software development. These approaches6

include Agile Modeling, Scrum, Crystal, DSDM, and XP. Although each
one subscribes to the same basic Agile principles, their specific values and
practices differ, so you should select the Agile approach that seems most
compatible with your team and the sort of work you do. However, in this
book, you will find that the process of the OSPACS team corresponds most
closely to XP.

Extreme Programming (XP)

XP is simply a collection of practices and values that Kent Beck7 observed at
work on good software development teams, but taken to their extremes and
used in a coordinated way. One of these practices, Pair Programming, is
described in the following sidebar. This takes the established practice of peer-
reviewing work to the extreme by requiring that all your production code be
reviewed continuously as you write it. We similarly will introduce the other
practices to you chapter by chapter so as to present them in the context of the
steps that you and your team are taking toward better software development.

Extreme Programming (XP) 37

NOTE

Other people in your organization may find that these Agile principles
closely correspond to what they are promoting in terms of Design for
Six Sigma (DFSS),5 an issue we discuss further at the end of Chapter 32.

5. [DF6S] Chowdhury, Subir. Design for Six Sigma (Prentice Hall, 2003).
6. Roadmap to Agility (www.agilealliance.org/resources).
7. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition

(Addison-Wesley, 2005).

NOTE

Kent Beck originated Extreme Programming in the late 1990s, but he
acknowledges contributions from people such as Ward Cunningham,
Ron Jeffries, Martin Fowler, and Erich Gamma.

Pair Programming Practice
Pair programming (pairing) is a buddy system requiring that all production

code be written by two people sitting together at the same computer, shar-

ing a single mouse, keyboard, and monitor. At any time, one person is

focused on typing in the detail while the other is considering what his part-

ner is doing in terms of the bigger picture, asking questions such as, Is this

what the requirement means? Are we keeping to coding standards and

team practices? Is there a simpler implementation? Partners change roles

often, which helps keep the dialog going; sometimes you ask questions

and sometimes you provide answers, either verbally or by just typing away.

People learn much faster when they work together and tend to develop

better solutions, for as we know, two minds are often better than one. It is

also harder for mistakes to persist when two people are constantly check-

ing each other’s work. What’s more, the interaction of two people typically

produces code that is easier to understand and maintain. Collaboration

confers a clear advantage in these key areas of software development, so

why do programmers still work alone? Usually it’s simply a matter of per-

sonal habit or having mistaken beliefs about cost-effectiveness.

In order to implement pairing, you need enough people to rotate so that

each developer can work with someone different at least a couple of times

a day. This not only ensures that the “dialog” remains fresh and informa-

tive, but also that the knowledge becomes diffused throughout the team.

Frequent swapping ensures that people get to know the entire code base

rather than specializing in a particular part. It also means that tips and

tricks get passed on quickly. Pairing doesn’t mean you can never work

alone to figure out some difficult problem or develop a quick prototype

(spike), but it does mean that the information it generates can’t just be

pasted into production code; it must be added through a genuine pairing

session.

Pair programming is demanding because you constantly have to focus on

the task at hand and think hard to justify yourself to your partner; it’s diffi-

cult to slack off or become distracted. You should expect to be as tired after

Chapter 2: Agile Values38

six hours of pairing as you might be after 12 hours of working on your own.

However, the economic advantages of pair programming are not realized

just through the lines of code you both write. The real savings come over the

entire software development life cycle, from the code you didn’t write, the

bugs you didn’t insert, and the maintenance nightmares you avoided.

It is important to understand that XP is not just a list of practices from
which you can pick and choose. The power of XP comes from all its prac-
tices being applied together in harmony, as all the practices are in some way
related; not just to each other, but also to the supporting values of commu-
nication, feedback, courage, simplicity, and respect.

Communication
Many people involved in the development of software don’t really value
communication. In this book’s Introduction, you encountered Peter Powell,
a developer who spends most of his life sitting at a desk, plugged into an
iPod and writing code that nobody else can understand. We also introduced
you to Sally Thompson, a business analyst who occupies her time writing
documents that nobody reads. In addition, you met Tom Stanton, a project
manager who hides in his office producing reports packed with meaningless
information. Perhaps these imaginary characters are larger than life, but you
probably know people who share at least some of these traits. In order to
collaborate, these sorts of people often replace real communication with a

Extreme Programming (XP) 39

NOTE

Laurie Williams8 (and others) describe how pair programming was
adopted as a key Extreme Programming practice after Larry Constan-
tine first observed it in 1995.

8. Williams, Laurie, et al. “Strengthening the Case for Pair Programming” (IEEE Software,
July/Aug. 2000).

bureaucracy based upon strict rules and process with the aim of making
sure there’s always someone else to blame when things go wrong.

Agile project teams value communication because they are more con-
cerned with catching mistakes before they happen than they are appor-
tioning blame after the event. It is better that developers engage in an
ongoing dialog with their customer so that they deliver what is really
needed rather than spending months negotiating a contract whose sole aim
is to support some future litigation. The success of an Agile team depends
not upon winning lawsuits, but upon satisfying the customer through early
and continuous delivery of valuable software. The team recognizes that
these objectives are better realized through individuals and their interac-
tions than the application of process and tools, so it pays particular atten-
tion to the clear, timely, and correct transfer of information.

Feedback
Software development usually occurs in a rapidly changing world. The fea-
tures that seemed so important to the business at the start of the project
might be redundant six months later, the window of opportunity having
closed. The technology that appears good today will doubtless be super-
seded next year by something even better. Agile teams embrace such
change by applying feedback, periodic small adjustments to direction
made on the basis of timely and accurate information about progress in a
dynamic environment.

An Agile team values feedback because feedback permits the team to
respond to change rather than having to follow some fixed plan. It helps the

Chapter 2: Agile Values40

9. Ambler, Scott. “Communication on Agile Software Projects” (www.agilemodeling.com/
essays/communication.htm).

NOTE

Communication takes many different forms,9 but it underpins every-
thing the team does. Indeed, most XP practices are concerned with
encouraging good communication in one way or another.

team keep its promise to deliver valuable software when it’s needed. Agile
teams can use feedback effectively because they have working software
and tests available from the earliest stages of the project; the effects of
change are quickly and accurately relayed to them. The other values and
practices of an Agile team moderate this feedback so that the project doesn’t
descend into chaos as a consequence of the team trying to apply too many
changes too quickly.

Feedback works on an Agile team not just at a macroscopic level in
terms of controlling the project, but also at a microscopic level in relation
to day-to-day activities. Therefore, it is as important for the team to gain
feedback about a release as it is for a pair of developers to give each other
feedback about a particular line of code.

Courage
Tom Demarco wrote “Projects with no real risks are losers. They are almost
always devoid of benefit; that’s why they weren’t done years ago.”10 Few
software projects have no risks, and for this reason, all the people involved
need to show a degree of courage.

An Agile team values courage because courage shows that the team is
taking the sort of technical and business risks that lead to worthwhile new
software. However, such teams do not undertake these risks in a foolhardy
fashion. The team will attempt to mitigate risks as far as possible. It might
mitigate the risk of attempting to use a new technology, for example, by
performing a mini project of fixed duration that investigates its feasibility
(a spike). Other Agile values and practices also provide support when tak-
ing these necessary risks, so you share the burden (and the glory) as a team
rather than as an individual.

Teams lacking courage tend to hesitate and lose the initiative, often
deferring action until the opportunity has passed. Courageous teams bal-
ance the risks against the potential rewards, wait until the moment is right,
and then commit themselves to a particular course of action with complete
confidence in their ability to finish what they have set out to do.

Extreme Programming (XP) 41

10. [WWB] DeMarco, Tom, and Timothy Lister. Waltzing with Bears (Dorset House, 2003).

Simplicity
There is a danger of software teams using their advanced tools and tech-
nology to seek ever more complex solutions to a problem. From the outset,
they are thinking in terms of a complex solution, so not surprisingly, that’s
what they produce. Valuing simplicity doesn’t mean you can’t take advan-
tage of the latest tools and technology, but it does mean you must aim to
move toward a simple solution and not away from it. This means continu-
ing to improve the solution by making it simpler until you reach the point
at which any further simplification degrades its functionality.

Simplicity is often an attribute of great designs, ones that are enduring
and difficult to improve upon. A Lego brick, for example, has remained
essentially unchanged for more than fifty years because no one has figured
out a simpler design for building blocks that children can join together and
pull apart (see Figure 2-1). Many other products share this same simplic-
ity: paper clips, screw-top bottles, key rings. People have failed to improve
these designs because they cannot be made simpler, and making them more
complex doesn’t make them any better.

Figure 2-1: Simplicity of classic Lego bricks

Chapter 2: Agile Values42

Agile teams value simplicity because it drives them to remove any
unnecessary complexity and deters them from making compromises for
some future need that might not materialize. They concentrate instead on
producing only what is necessary for the present; the simplest thing that
could possibly work. Thinking about simplicity helps an Agile team pro-
duce software that is immediately wanted, without wasted effort or mate-
rials. This is how the team gives its customers the best and most direct
return on their investment.

Respect
Respect is about recognizing the contribution an individual can make in
terms of his skills and talents. Without respect, it is difficult for us to col-
laborate. Why would we want to work with someone who offered no real
value to us? However, we must be careful not to allow prejudice to influ-
ence this sense of value. Respect means recognizing the difference between
people and capitalizing upon this diversity by working to our respective
strengths and compensating for our various weaknesses. It isn’t just a
moral issue, for diversity also confers adaptability and many other bene-
fits to the team.

An Agile team values respect because it helps the team work together
more effectively in a changing environment. Practices such as Pair Pro-
gramming and Real Customer Involvement (see Chapter 22) encourage
respect to develop among members of the team by giving them the oppor-
tunity to work together. Respect requires a degree of trust and honesty
among people, as you need to be able to speak your mind when necessary,
without fear of reprisals. However, respect also means showing emotional
maturity in terms of things such as being sensitive to other people’s feelings
and taking criticism constructively.

In some ways, respect is a catchall for the touchy-feely things that arise
whenever people try to work together as a team. Although it can be embar-
rassing to discuss these issues because they include intensely personal
things such as manners and social skills, this does not mean we can ignore
them. A lack of respect, particularly self-respect, is often the root cause of
team dysfunction.

Extreme Programming (XP) 43

CONCLUSION

Agile approaches to software development such as Extreme Programming
(XP) provide a new tradition for people working together in teams; a set of
values backed up by good tools and practices. The XP values of communi-
cation, feedback, courage, simplicity, and respect support each of its prac-
tices, which are all used in a coordinated way to achieve the aim of making
valuable software available, economically, as it is needed.

Chapter 2: Agile Values44

NOTE

We selected Extreme Programming as a basis for the OSPACS team’s
process because it’s popular, so information about it is plentiful. How-
ever, you easily could adapt the material in this book for use with a dif-
ferent Agile approach, if that is what you want to do.

Review of Section 1
Sharp Tools and Values

TH E OSPACS T E A M installed Team Foundation Server (TFS) on its
new server machine and then updated each of its PCs by installing

Visual Studio Team Suite. In addition to setting up its tools, the team also
conducted a few training days to give team members a better understand-
ing of Agile software development and to explore its values before creat-
ing its Team Project.

The Team’s Impressions

The OSPACS team members responded favorably to the basic ideas of
Agility, and some of the comments they made during their group discus-
sion are given in the following sections. However, the consensus was that
the introduction of Agile development was a good thing and would help
them make better use of VSTS.

Project Manager/Architect: Tom
“The team members seem to appreciate the investment we are making in
them in terms of the Agile training they’re getting and the new tools we’ve
bought. It’s good to see some happy faces again.”

45

TIP

Teams usually achieve their intended objectives much quicker when
they employ an experienced person (coach) to ensure that the various
Agile values and practices are correctly interpreted and applied in a
way which is appropriate to their own circumstances.

Senior Programmer: Sarah
“VSTS is an impressive set of tools. I particularly like the way they are all
integrated together and seem to generate a lot of information about the
project automatically. I’m sure it’s going to help us take a much more pro-
fessional approach to our work.”

Senior Programmer: Peter
“The emphasis on VSTS seems to be focused toward analyzing information
rather than gathering it. I just hope we manage to put the analysis to good
use in terms of actually improving the things we do.”

“Everyone’s fired up about Agile now. I just wonder whether it will be
the same in six months.”

Test Manager: Maggie
“I’m pleased the development department is taking such an interest in
tools for testing. Perhaps this will help us to cooperate with each other a bit
better.”

Junior Programmer: Luke
“I hope VSTS means that I’ll spend more time developing software and less
time working as a clerk for Tom.”

“I certainly agree that we need to improve our communication, as peo-
ple seldom bother to tell me what’s happening.”

Agile Values

To clarify the way the terms values, principles, and practices are used, the
OSPACS team members put the following quote on their wall:

I’m a firm believer in simplicity and this value led me to the princi-
ple of minimalism which provides a basis for many of my actions,
like the practice of keeping my office uncluttered. Simplicity also led
me to the principle of taking small, baby steps which is why I fol-
low the practice of Test-First Programming. [Anon]

Review of Section 1: Sharp Tools and Values46

Advances made in the field of software development are primarily con-
cerned with making us more productive by introducing better practices,
enhancing our tools, and improving the languages we use. Accordingly,
change usually happens in a gradual and piecemeal fashion as people need
time to assimilate ideas and learn new skills. For this reason, you can’t
expect a team to become Agile in a matter of weeks, or even months.

Agile Values 47

NOTE

Great software is created by good people. However, people become
good at software development because of the time and effort they put
into their work. It’s mostly a matter of nurture, not nature.

Section 2
Introduce Agile Development

A F T E R C O M P L E T I N G T H I S S E C T I O N, you will be able to reorganize
your team so that it can work in a more Agile way. You will have also

set up the basic infrastructure you need to develop your software using
Visual Studio Team System (VSTS).

We start this section by giving you an overview of Agile development
with particular emphasis on Extreme Programming (XP), and we follow
this with a chapter about the nature and structure of an Agile team. In
Chapter 5, we review the standard process-enabling frameworks that come
with VSTS and explain how they might be set up to support a software

49

Copyright Pro-Sport UK Ltd. 2006.

A rugby player’s ability to exploit an opportunity quickly usually
proves more important than his strength and size. Your team can
likewise outperform much bigger and better-funded competitors
simply by taking an Agile approach.

project. However, we recognize that these standard frameworks don’t meet
everyone’s needs, so in Chapter 6, we describe how you can create a sim-
ple Agile process framework for your own team.

Story from the Trenches

A few years ago, I worked for a financial services company that was trying
to jump on the Internet bandwagon by developing a cutting-edge Web site
to sell its services. However, it had already failed to deliver this important
product once, so it was now setting up a much bigger project to absolutely
guarantee the successful delivery of its site.

On my first day, I was given a thick manual that introduced the com-
pany’s methodology and was directed to a bookshelf containing the other
five volumes of this mighty opus. It mapped out the activities that had to be
performed by each type of worker on the team and then described in detail
how these activities combined into workflows to generate each type of fin-
ished work product required of the project—its documents, models, tests,
executable files, and so forth. Extensive checks and sign-offs were intended
to catch defective workmanship at each stage, as the whole process
depended upon everyone performing each task perfectly. After spending
a short time skimming this material, I joined the rest of the team to start
work on my prescribed activities.

The project team was organized into a strict hierarchy which pigeon-
holed everyone into a particular role. However, most people were man-
agers of one sort or another, so there were relatively few people like me
actually coding. I quickly discovered that the various people overseeing my
work were much more interested in things such as coding standards than
they were in seeing good code. Therefore, like my fellow programmers, I
became highly proficient in manipulating the metrics used to measure my
performance so that, on paper at least, it looked like we were doing a great
job. Unfortunately, all this time spent keeping our managers happy meant
that we had much less time to work on the product itself. Therefore, it took
us much longer than planned to release even a demonstration version of
the Web site.

Section 2: Introduce Agile Development50

Sadly, the business area funding our work didn’t like what we had pro-
duced and requested a large number of changes which put the launch date
back another six months. It soon became apparent that we were playing
catch-up with a competitor’s site, but clearly this was a game that we
couldn’t win, as our process was just too inflexible and the market was
changing much more quickly than we could hope to respond. This project
seemed doomed to fail for the same reason that the previous one failed—its
development team was working more like people who were mechanically
processing financial transactions than people who were creating innovative
new software.

An organization’s approach to software development often reflects the nature
of its core business. However, in this section, we look at how Agile development
confers significant advantages on teams that are prepared to break this mold.

Story from the Trenches 51

3
Overview of Agile Development

TH I S C H A P T E R E X P L A I N S why an Agile team doesn’t have explicit
phases of development, and how it delivers valuable software by

encouraging direct dialog between the customer and developers. These
ideas are then presented in terms of a software development life cycle that
summarizes the self-governing activities of an Agile team during an
Extreme Programming (XP) project. After completing the chapter, you
should understand the basic nature of Agile development and therefore
have a much better appreciation for the material presented in the rest of
this book.

What Is Different about an Agile Project?

The thing that most surprises people when they first encounter an Agile
project is the absence of traditional phases such as design-code-test. In a tra-
ditional project, these activities are performed separately over weeks or
months, but in an Agile project, they are repeated many times each hour as
part of test-driven development (TDD), as we will explain in Section 5.
Another thing that surprises people is the Agile approach to analysis, which
is done throughout the project by developing short stories rather than
attempting to capture all requirements upfront and then putting them in
large documents. In the next few pages, we’ll explain why Agile teams

53

approach software development in this way and perhaps encourage you
to adopt these ideas on your own team.

No Separate Development Phases
The trouble with phased development processes such as Waterfall1 is that
teams typically spend many months working exclusively on each phase so
that their feedback loops are too long. For example, only when the analy-
sis is complete do they proceed to design, and only when the design is done
do they move into the coding phase. Although exhaustive checks at the end
of each phase attempt to validate the work, it is only during the testing
phase that anyone actually knows whether the program meets its objec-
tives. Therefore, the only real feedback about your work comes many
months, even years, after it was completed. Waterfall treats software devel-
opment like a production line, requiring perfection at each stage of the
process. If there is any mistake or if the requirement changes during the
process, the resulting software will not be correct. This may work when
you’re maintaining or adapting a mature software product, but not when
you’re developing new products in the face of changing or unknown
requirements. In these sorts of circumstances, you need to increase the
amount of feedback by drastically reducing the time between code creation
and its validation.

Chapter 3: Over view of Agile Development54

1. Royce, Dr. Winston W. “Managing the Development of Large Software Systems” (IEEE
Proceedings, Aug. 1970).

2. [UDP] Jacobson, Ivar, et al. The Unified Software Development Process (Addison-Wesley, 1999).

NOTE

The Rational Unified Process (RUP) tries to improve feedback by
repeatedly cycling through its core workflows,2 but as these require-
ments, analysis, design, implementation, and test phases often last
months, you still don’t get enough feedback for Agile development.

The emphasis on perfecting a design before it is put into code results
from people’s fear that cost of change will rise steeply as the project pro-
gresses. In a traditional Waterfall project, this fear is justified because the
long feedback loop between design and test means that any mistakes will
result in a significant amount of rework. However, as Scott Ambler3 points
out, in an Agile project, the feedback loop between design and test is very
short, so mistakes can be corrected much more cheaply.

An Agile team eschews the whole idea of phases so that it can get valu-
able feedback continuously from the very start of the project by producing
the only thing that really counts: working code. Indeed, by the end of the
first week, many teams will have demonstrated running software to the
customer with some feature that has business value. The price paid for this
rapid delivery of working code is that the team doesn’t produce thick doc-
uments or detailed models of the system. Instead, it just concentrates on
writing the tests and code necessary to implement its customer’s stories, as
summarized on 6-by-4-inch index cards.

Specifying Requirements with Customer Stories
A customer story (also known as a user story4) defines a feature of the soft-
ware that has value to the business funding your project. It takes the form
of some executable acceptance tests and a written memo that aims to

What Is Different about an Agile Project? 55

3. Ambler, Scott. “Examining the Agile Cost of Change Curve” (www.agilemodeling.com/
essays/costOfChange.htm).

4. [USA] Cohn, Mike. User Stories Applied (Addison-Wesley, 2004).

NOTE

Agile teams still produce models and documents, but only when they
add value. Therefore, later in the book, you will find us describing the
sorts of models that may be useful to an Agile team (Section 6) and
documents that can contain customer tests (Section 7).

summarize the various discussions about the feature that are held between
a developer and someone representing the interests of the business—in
other words, the customer. In this way, a story provides a specification for
a particular requirement in terms of what Ron Jeffries5 calls card, conver-
sation, and confirmation:

• Card—The most important information about what a feature must
do is captured as bullet points on an index card; see Figure 3-1. The
intention is to remind people about the general issues rather than to
write some legally binding contract.

• Conversation—The customer and developer must talk to each other
if they are to really understand the requirement. The customer usu-
ally writes the card during this conversation.

• Confirmation—Executable acceptance tests are written as a formal
specification of the feature and define it when it has been success-
fully implemented. These tests contain the actual details of the
requirement; see Section 7.

Figure 3-1: Story from OSPACS project: front and reverse sides of 6-by-4-inch index card

Chapter 3: Over view of Agile Development56

5. Jeffries, Ron. “Essential XP: Card, Conversation, Confirmation” (www.xprogramming.com).

The customer owns the stories (what the software must do) and the
developer owns the tasks necessary to implement them (how the software
will work). At the beginning of the project, the customer will come up with
a few initial stories, the ones that seem at the time to give the most value.
More stories are generated as the project progresses. Sometimes stories
will also be discarded as a consequence of changes to the business envi-
ronment or due to the customer acquiring a better understanding of the
requirement. This flexibility is the source of the Agile team’s strength; it is
able to respond to change. There is no need to identify all the requirements
upfront, and the feedback given by working code allows the product to
evolve in a way that is driven by fitness for purpose within the confines
of a simple architecture.

In the next part of the chapter, you will see how customer stories are
used in an XP project. However, they can also be used in a similar way by
other types of Agile approaches, such as Scrum.

Introduction to Extreme Programming

Extreme Programming (XP) isn’t actually a software methodology in the
traditional sense because it avoids precisely defining the organization of a
development project. Instead, it promotes values and practices that help
people on a software team to do the right thing during the course of their
work. Therefore, over the next few pages, we introduce XP by explaining

Introduction to Extreme Programming 57

NOTE

Customer stories (or user stories) are not the same as the Use Cases
described by Ivar Jacobson.6 Although they both aim to do broadly
similar things, Use Cases are more concerned with formally defining
things, so they tend to encourage a more prescribed approach.

6. [UCA] Jacobson, Ivar, et al. Object-Oriented Software Engineering (Addison-Wesley, 1992).

how it is intended to help teams produce useful software over the life cycle
of their projects.

Software Project Life Cycle
Software products start with an idea, but usually there is some reason why
that idea can’t be acted upon immediately. Typically, this is because imple-
menting the idea would mean involving other people or otherwise spend-
ing money. However, if the idea is good enough and is sufficiently well
promoted, someone might eventually put together a formal proposal, which
is how a project starts in most organizations. Once the proposal has been
accepted, a budget will be allocated to the project so that the proposal can be
developed, and the work necessary to realize the idea begins. The project
will then continue until there is no more money or enthusiasm to develop
the idea further, at which point it ends; job done, product shipped, everyone
is happy. The activities people perform between the start and end of a proj-
ect are described in terms of a software development life cycle (SDLC).

Iterative and Incremental
An XP project is evolutionary; that is to say, it is iterative and incremental.
This means its software is developed in a series of cycles which each deliver
some working software (iteration) that builds upon what has gone before
(incremental). One of the key aspects of XP is the way software is improved
through small incremental changes made in short iterations that last weeks,
not months.

Chapter 3: Over view of Agile Development58

NOTE

The nonprescriptive nature of XP encourages teams to mold their
process around their project, for as Sam Guckenheimer7 points out, “No
one process fits all software projects, even within one organization.”

7. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft Visual
Studio Team System (Addison-Wesley, 2006).

The SDLC of an XP project starts with a small team being assembled to
implement a number of features which have some value to the people
investing their time or money in the venture; in other words, the business.
These features are described in terms of a collection of stories which are pri-
oritized by the customer so that the ones with the greatest business value
are done first, which is to say the development sequence is decided for busi-
ness rather than technical reasons. Stories are sized at a few days’ work, not
more. Each developer then undertakes to implement one or more of these
customer stories by splitting each one into its constituent tasks and esti-
mating the total time it will take him to complete the work. The develop-
ers continue to undertake stories (according to the customer’s priorities)
until they are fully committed in terms of the time they have available and
their estimates for the work they must do during an iteration.

Iteration and Release Cycles
Life cycle diagrams typically illustrate the separate phases of development
with a series of pictures, but as an Agile project doesn’t have such distinct
phases, it’s more appropriate to show its life cycle as a series of timelines;
see Figure 3-2.

The timeline at the bottom of the figure shows how an Agile team might
implement a collection of stories during a weekly iteration cycle such that
it releases some software to the business after the third week and then con-
tinues with its weekly cycle in subsequent weeks. Though we don’t actually
show the iterations after the fourth week, you can imagine that a release
cycle would be formed by further releases of software occurring at the end
of other iterations.

Introduction to Extreme Programming 59

NOTE

We defer describing the planning of an Agile project until later in the
book (Section 8), as we first want to tell you how your team can con-
sistently deliver valuable software to its customer.

Figure 3-2: Agile software development life cycle: tasks, stories, iterations, and releases

During a weekly iteration, the developers work with each other on the
coding tasks needed to implement their respective stories, as shown in
Figure 3-2’s middle timeline. Each task is completed in a “programming
episode” lasting an hour or two, during which test-driven development
(TDD; see Section 5) is performed so that dozens of structural (unit) test
cases are created; this is shown by the thin vertical bars at the top of the fig-
ure. In this way, a customer story is implemented by decomposing it into
a series of small tasks, each of which is divided into a series of small steps
(tests) which individually take only ten minutes or so to complete.

Iterations Deliver Production-Quality Code
Because the developers are writing production-quality code, even by the
end of the first iteration the customer has a working product that supplies
at least some of the features the business wants implemented. The customer

Hour

Week

Iteration 4
Week 4

Iteration 3
Week 3

Iteration 2
Week 2

Iteration 1

RELEASE 1

Week 1

Test Cases

Tasks

Stories

Stories

Iteration Plan

Release Plan

A C EB D

A B C D E

1 2 3 4

Chapter 3: Over view of Agile Development60

NOTE

In Figure 3-2, the implementation of story A depends upon one pair of
developers completing tasks 1 through 4. Therefore, other pairs may
need to be concurrently implementing story B, C, D, or E so that by the
end of the iteration, the team completes all five stories.

knows these features work because they pass his acceptance tests, which he
wrote during the iteration with the help of a developer; see Section 7.
Therefore, this software could be shipped straight into the production envi-
ronment and start giving some immediate payback, but it is more likely
that the customer will decide to wait for a few more iterations so that he has
something really useful before disrupting the business by giving it a new
release. Accordingly, the second iteration will start and be run in the same
way as the first, but new stories may be created and existing ones changed
or discarded because the customer, having actually used the product, is
now better aware of what is really needed. Slowly, iteration by iteration, the
list of valuable features grows until the business representative on the team
(customer) decides it is time to release the product into production. This is
shown happening at the end of iteration 3, in Figure 3-2.

Project Closure
The team continues with these iteration and release cycles until the supply
of stories dries up, which usually happens when the business decides that
it has received sufficient value from its investment. At this stage, the project
ends and the life cycle is complete. The developers will then write a short
document that will help anyone who might need to restart the project in the
future, and finally will mothball the project so that they can move on to
something more profitable.

Introduction to Extreme Programming 61

NOTE

On an Agile project, software is released into production much sooner
than it would be on other types of projects. Therefore, the developers get
better feedback from the business, which helps guide their future work.

WARNING

When mothballing the project, ensure that you keep copies of your
tools as well as the source code so that you can restore your complete
development environment, if required.

Isn’t XP Just Hacking?

When Extreme Programming first started to become popular, some people
claimed it encouraged hacking.8 We use the word hack here in its original
technological sense to describe an approach to software development that
is likely to cause problems, such as the following:

• Development starts without considering the business needs or test
requirements, so you start writing code without having a clear idea
of what value it has to the business or how it can be validated.
Nobody reads the specification document because it is too long, full
of vague language, and out-of-date; it simply doesn’t say what the
software must do.

• The architecture is inappropriate for the product you’re develop-
ing, or the design is flawed in some way, so you sit at the key-
board, writing code in the hope that if you write enough of it,
sooner or later you will create something that can be released to
the customer.

• Your code doesn’t have any tests to validate that it works properly
or that it correctly fulfills its purpose, so you spend days, weeks,
even months using the debugger to make your software work with-
out it mysteriously crashing or throwing up more defects.

Chapter 3: Over view of Agile Development62

8. [QXP] McBreen, Pete. Questioning Extreme Programming (Addison-Wesley, 2003).

WARNING

Hacking is particularly insidious when it’s wrapped up in a cloak of
bureaucracy that allows the team and the organization to continue liv-
ing in denial. You can often hear them say, “We can’t be hacking; we’ve
invested millions in our software process!”

Why XP Doesn’t Encourage Hacking
An XP team uses stories to make sure the developers understand what the
software must do. The story card is just a reminder, for the real detail of the
specification is contained in the executable customer tests (as well as the
sorts of Agile models discussed in Section 6). These tests act like a specifi-
cation language, except unlike formal methods, such as Z and SEDL, the
customer actually writes them. Development does not start until the team
has fully considered the business needs and test requirements.

The Agile team doesn’t spend time producing a rich and complex archi-
tecture at a time when people can only make assumptions about what is
needed; instead, it tries to defer applying such constraints until they are
absolutely necessary, by which time the team may have a better idea of
what is actually needed. For example, why decide to use SQL Server at the
start of the project when later on you might discover that you need only a
flat file? For this sort of reason, an Agile team doesn’t do Big Design Up
Front (BDUF9), and instead does the design continuously as the code devel-
ops using the practice of Test-Driven Development, guided by the sort of
Agile models we discuss in Section 6. The architecture is appropriate for the
product being developed and the code is backed up by tests that validate
that it works properly.

It is hard for us to accept that XP might lead to hacking when teams fully
apply its values and practices. XP is a very lightweight approach to soft-
ware development, but this doesn’t mean it isn’t highly disciplined. The
advantage of it being lightweight is that you can respond more quickly to
change, which is an essential requirement for many projects being under-
taken in today’s business environment. An Agile team expects changes; it
makes changes often and has the people, practices, and tools to do it effec-
tively. This is why such teams can start creating working code from the very
first iteration, without hacking.

Isn’t XP Just Hacking? 63

9. Agile Community wiki. “Big Design Up Front” (http://xp.c2.com/BigDesignUpFront.html).

CONCLUSION

The iterative and incremental XP software development life cycle supports
the delivery of valuable software by helping teams to

• Learn from the rapid feedback provided by their customers.

• Adopt a simple architecture before moving to a more complex one.

• Improve software through small incremental changes.

• Embrace change by becoming skilled at managing it.

XP is a lightweight process and therefore responds quickly to change,
but it is also one that requires its team to show considerable discipline,
because rather than relying on prescriptive procedures, the team must
become self-organizing. In the next chapter, we will look at what it means
to be self-organizing as well as how to form such teams.

Chapter 3: Over view of Agile Development64

NOTE

Although this book describes Extreme Programming as it might be
practiced by a five-developer team in a small organization, as Kent
Beck10 reports, XP has also been successfully adopted by much bigger
teams working for some of the world’s largest companies.

10. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

4
Forming an Agile Team

W E S TA RT B Y identifying why Agile teams are needed and then look
at the way they are organized in terms of the roles people play and

their structure. This chapter also introduces two important practices for
Agile teams: the Whole Team practice, which brings people together from
different departments to work in the same organizational structure; and the
Sit Together practice, which requires that the whole team work in a single
open space. After reading this chapter, you should understand how to reor-
ganize your team into an Agile team.

The Nature of Agile Teams

When people start developing software, they normally focus on learning a
programming language and its interface to the operating system (the API).
Within a few weeks, they will have produced their first useful program and
may question why software development is reputedly so difficult. Indeed,
software development isn’t so difficult when you are writing small inde-
pendent programs for your own use. However, the work starts to become
far more complex once you move into the realm of producing larger pro-
grams for use by others, or which integrate with other programs and sys-
tems. Handling this sort of complexity is what makes software development
so challenging, and it is why there are so many different ideas about the best
way to do such work.

65

Working As a Design Team
You shouldn’t look at developing software as a production activity, for the
work isn’t about following a set of plans that tell you how all the parts fit
together. Instead, you must think of software development as a design
activity which is concerned with creating the plans we need so that they can
be fed into a machine that does the production work for us, automatically
and with almost no cost. In other words, as Jim Reeves1 says, the hard work
of software development is concerned with producing designs expressed as
source code from which executable files can then be effortlessly generated,
copied, and distributed.

Design activities are about the effective generation of valuable informa-
tion, so, as Donald Reinertsen2 points out, the more people you have gen-
erating this information, the more time they need to spend interacting to
ensure that it is put to good use. For this reason, people who work on large
teams must spend a lot of their time simply interacting with each other, typ-
ically through e-mails, weekly meetings, and so forth. People who work on
small Agile teams value this interaction just as much, but they do it far more
efficiently because fewer people are involved, and being organized on a

Chapter 4: Forming an Agile Team66

1. Reeves, Jack. “What is Software Design?” (Publications, www.bleading-edge.com).

NOTE

The very teams we create to tackle software development that is too
big for us to complete on our own, do themselves add significantly to
the size and complexity of the work because of the need for people to
coordinate their activities and interact with each other.

NOTE

Innovations such as Domain-Specific Languages (DSLs; see Chapter
21) may make it possible for people to generate source code from
higher-level design documents, but they don’t change the fact that
software development is fundamentally about design, not production.

cross-functional basis (see the sidebar, Whole Team Practice) means less for-
mal communication is needed. Accordingly, they can spend more time
interacting in pairs to produce the sort of information that really matters:
working code.

Whole Team Practice
The Whole Team practice brings people with different expertise together so

that they can work as a cross-functional team. In other words, people on

the team don’t work for the Software Department or the Testing Depart-

ment or even the Marketing Department; everyone works for the project

and shares its objectives.

Organizing a project team on a cross-functional basis has two main

advantages. First, the team can respond to events quickly because deci-

sion making happens at the team level rather than being referred back to

different departmental management teams. Second, productivity is

improved due to flexible working practices, so people are expected to work

where they are needed and not just in their primary area of expertise, such

as testing or coding. However, cross-functional teams also have some

potential drawbacks, such as breaking up the centers of excellence in an

organization and making it harder for the same code to be reused in dif-

ferent projects.

Small organizations seldom have any difficulty adopting the Whole Team

practice, as it usually reflects the way they already work; the management

structure is usually very flat and everyone does whatever it takes to make

the project succeed. However, when you’re working in a large organization,

this practice can be more difficult to implement because it usually involves

dismantling hierarchies and changing people’s reporting lines. Therefore,

in the short term, at least, you might need to make certain compromises.

For example, if developers are required to work on more than one project

at once, insist that the Whole Team practice is applied to just one project

which is then given absolute priority over all other commitments.

The Nature of Agile Teams 67

2. [MTDF] Reinertsen, Donald. Managing the Design Factory (Simon and Schuster, 1997).

Continues

The need for people to work outside their primary area of expertise can

be challenging, but it can also be rewarding. For example, a tester and a

programmer can expand their areas of expertise considerably, simply by

pair programming together. This is not to say that you can’t bring an expert

onto the team to supply a particular skill. However, when you do so, the

expert must be required to pass on his skills and then leave. In this way, the

team becomes self-supporting and its staff turn into the sort of people

Scott Ambler3 describes as generalizing specialists.

Self-Organizing Teams
An Agile team needs to be self-organizing in the sense that it should make
most of the decisions about how the work will be done. Therefore, although
the team still needs advice from senior and more experienced people, it
does not need micromanaging in terms of day-to-day matters such as writ-
ing software, creating stories, or scheduling work. This means an Agile
team is relatively autonomous, which allows it to become more responsive
to changes in its own environment, or in the business it serves.

Team Size
Agile teams are small, which usually means they are composed of fewer
than 18 people. However, on teams with fewer than four developers, the
practice of Pair Programming (see Chapter 2) becomes difficult. Therefore,

Chapter 4: Forming an Agile Team68

3. Ambler, Scott. “Generalizing Specialists” (www.agilemodeling.com/essays).

NOTE

The rapid feedback that members of an Agile team obtain makes them
acutely aware of quality problems and areas of their process that are
causing them problems. For this reason, they should have responsibil-
ity for making their own process improvements.

our OSPACS team (see Introduction) is within the bounds of a normal
Agile team size and has plenty of room to expand, as its membership could
be doubled without too much difficulty. Indeed, James Atherton4 suggests
the optimum size for group interaction is between eight and 12 people, so
adding a few more developers would actually be beneficial in this case.
However, you should be aware that an Agile team would typically handle
any increases in the size and complexity of the software it is developing,
not by adding people to the team, but by limiting the scope of its work and
by finding ways to split it with other teams.

Work That Doesn’t Suit Agile Teams
It makes sense to set up a small, self-organizing team to undertake design
activities such as developing a new software product in the face of chang-
ing or unknown requirements. However, not every team faces such chal-
lenges, so there can be good technical reasons for organizing software
teams more like production lines with a suitably rigorous process. For
example:

• When the work is mechanical and involves making a series of small,
well-understood adaptations to existing code

• When the team is producing safety-critical software to control some-
thing such as a nuclear power station, and therefore needs to follow
a particular formal method

In addition to these technical reasons, there are also various sociologi-
cal grounds for teams not organizing themselves along Agile lines, but typ-

The Nature of Agile Teams 69

4. Atherton, James. “Group size” (www.dmu.ac.uk/~jamesa/teaching/group_size.htm).

TIP

Don’t divide a large team into a collection of subteams; instead, create
separate Agile teams which each work on different parts of the prod-
uct connected only by agreed interfaces.

ically they boil down to the simple matter of people’s unwillingness to
change. It is pointless trying to become Agile when most of the people on
your team are firmly against the idea. Likewise, attempting to become Agile
is futile when your manager or other powerful people in your organization
will not allow the changes needed for you to introduce Agile values into
your team, or implement its practices.

Agile Team Structure

There are two fixed functions on an Agile team: customer and developer.
The customer gets to say what the software must do, whereas the developer
says how it will work. This separation of responsibilities is essential when-
ever software is being developed for others. The person creating the soft-
ware knows all about the technicalities of building programs, but
ultimately doesn’t have to use it. The person commissioning the software
knows all about what is required, but doesn’t have to build it. In the next
few pages, we will examine how these two primary roles relate to the
plethora of roles you will find on a traditional team, as well as look at the
roles of people who are not actually full-time members of an Agile team,
but are involved with it from time to time.

Customer Roles
A customer is considered a full member of the project team and so should
be located in the same workspace; see the Sit Together practice sidebar. He
(or she) is the business representative on the team and so has responsibil-
ity for creating and validating software requirements (see Section 7), as well
as setting the order in which they should be implemented (see Section 8).

Chapter 4: Forming an Agile Team70

WARNING

Unless you are writing software for your own use, you should never
attempt to take on the customer role. Customers, likewise, should not
adopt the developer role unless they are writing their own programs.

The customer must be readily available to the developers for clarifying
what the software must do from the perspective of the following roles:

• Product manager—Concerned with the development of the long-
term product plan. His industry experience and client contact allow
him to observe and understand what the user needs rather than just
what she asks for.

• Business analyst—Understands the flow of information in the busi-
ness and how it relates to the various systems. The business analyst
has a very technical understanding of the requirement and what the
solution must provide.

• Purchaser—Wants to get features that add the most value to the end
user’s work for the least cost, but is also concerned about support
issues and the future plans for the product.

• End user—Interested in features that in the short term will enhance
and facilitate her own particular work. End users have detailed
knowledge of the business (or problem domain) and usually have
experience using similar products.

• Interaction designer—Concerned with meeting the goals of the var-
ious types of people who will use the product, and giving them a
pleasant and consistent user experience. Such a person knows the
psychology of human relationships with software and has personal
contact with the sorts of people who will be using the product.

• Support staff (installer, trainer, help desk)—Want to make the
product easy to support in the end user’s environment.

• Technical writer—Concerned with developing a product that is
properly described by its documentation; the user manuals, online
help, installation instructions, and sales and marketing material.
This person collates information from many sources, so he often
understands better than anyone what the product should do.

Although in some cases just one person may be seconded to the team as
“the customer,” it is usually difficult to find a single person with real-life

Agile Team Structure 71

experience in all of these functions who is also available to sit with the
team on a full-time basis. Therefore, you might consider having a collec-
tion of people who take turns at being the team’s customer. This gives each
stakeholder an opportunity to represent his views. However, when you
have a collection of customers you must take care to ensure that they inter-
act properly and speak with the same voice, therefore forming a proper
“customer group.”

Developer Roles
Developers typically work exclusively for the project and work as members
of a cross-functional team to perform whatever technical work is necessary
for implementing the customer’s requirements. They sit together and often
swap seamlessly among the following roles:

• Programmer—Responsible for writing the structural (unit) tests and
code needed to implement customer-requested features as well as
providing estimates for this work and breaking it down into tasks.

• Tester—Works for the team’s customer, helping with the creation of
functional tests to prove that the requested features have been prop-
erly implemented.

• Process technician—Ensures that the development infrastructure is
properly assembled and kept in good order. She implements source
control and arranges for the automation of tasks such as the project
build, system backups, and so forth.

• Architect—Evolves the system as it grows so as to provide better
support for the functionality it contains. This person is concerned

Chapter 4: Forming an Agile Team72

NOTE

Customers will usually need to perform work that is not related to
the project while sitting in the team’s workspace, so it is important
to ensure that their space requirements are met, as discussed in
Appendix C.

with maintaining the conceptual integrity of the system and
providing a suitable framework to support the software written by
programmers.

• Tracker—Records the information that the team needs to keep on
target and improve its process. He is responsible for gathering the
metrics that the team has decided are important and publishing this
information in an appropriate way.

• Mentor—Uses her experience to guide other team members, assist-
ing them with their professional development as well as helping
them to learn and improve their skills.

Sit Together Practice
The practice of sitting together means that the team works in an open

space that is large enough to accommodate everybody. The team is not sit-

ting together when people are working in their own offices or even when

some of their desks are separated by 5-foot-high partitions; everyone on

the team needs to be visible to everyone else.

Sitting together is about fostering the sort of good team communication

that underpins successful software development projects. This communi-

cation is not just about technical matters; it needs to work on a social level

as well. When you can see someone isn’t busy, you might invite her to join

you for coffee, whereas if you have to pop your head over her partition, you

Agile Team Structure 73

5. [SLAK] DeMarco, Tom. Slack (Broadway Books, 2002).

NOTE

The Whole Team practice requires developers to work on just one
project at a time. However, if you are forced to work on two projects
simultaneously, Tom DeMarco5 suggests you should allow at least six
hours per week for the time wasted switching between them.

Continues

might not bother; it could seem a bit intrusive. Drinking coffee with

someone is one of those activities that helps build the sort of personal net-

work which is crucial to getting things done in most organizations. It is also

an opportunity to find out about those small details that become so impor-

tant when you’re dealing with other people on the team. This sort of com-

munication just doesn’t happen when the team is sitting apart.

When the team sits together you get a better sense of what’s going on.

You can look around and immediately see who’s busy and who might be

available for a pairing session. You can also overhear snippets of informa-

tion, perhaps about problems with the latest Team Build or issues about

version control file conflicts. Most of the time people are barely conscious

of the volume of information they are absorbing just by sharing a common

space. This is information that would otherwise need to be explicitly com-

municated by reports, e-mail, formal meetings, video conferences, and so

forth. Sitting together is usually the simplest and cheapest way for a team

to communicate.

Persuading people to move out of their private spaces and into a common

space isn’t always easy. There may also be practical considerations to over-

come, such as gaining an official sanction to change the office floor plan;

see Appendix C. At first you might try holding a whole-team meeting early

each morning so that people can start to experience the benefit of a more

open style of communication. This might in turn encourage people to stay

after the meeting and work together for a short time in small groups. You

could also try moving a few of the partitions in the office on a trial basis to

open up the space. However, people will always need some form of per-

sonal area, so make sure this is provided. Once the team starts to accept

that sitting together is making them more successful, the technicalities

tend to be quickly resolved. Given the will, it is usually not difficult to find

a way to apply this practice.

Chapter 4: Forming an Agile Team74

Associated Roles
The team also needs support from people who are required for only short
periods during the project. Such people are not full members of the team,
but will work with them as the need arises to perform the following roles:

• Project manager—An Agile team is self-organizing, so rather than
managing the work, this person manages the people on the team;
facilitating communication, hiring people, resolving problems, and
so forth. The project manager is also responsible for maintaining
the formal reporting lines between the team and the rest of the
organization.

• Coach—Helps the team to follow Agile practices and, when neces-
sary, adapt them to the needs of the project. She takes a high-level
view of the team and seeks ways in which it can improve.

• Executive—The business sponsor of the project who provides the
budget and expects a good return on this investment. The executive
sustains the political will inside the organization to keep the project
going and helps remove obstacles in its way.

• Enterprise architect—Responsible for ensuring that the various
teams in an organization produce solutions that result in an overall
convergence of systems and technology.

• Applications, infrastructure architect—An applications architect
applies enterprise architecture in terms of creating application solu-
tions from components, services, and so forth. An infrastructure
architect, meanwhile, helps deploy such solutions to an organiza-
tion’s servers, services, and so on.

• Consultant, trainer—Provide short-term assistance to the project in
terms of skills or knowledge that can be transferred to people on the
team; see comments in the Whole Team practice sidebar earlier.

• Support role—People on the team who support employees in terms
of their human resources (HR), secretarial, and other similar needs.

Agile Team Structure 75

Reorganizing the OSPACS Team

In the book’s Introduction, you met some of the people who work for a
small company in the healthcare business run by CEO, Mike Hancock. The
company had set up the OSPACS team and organized it into the product
development department (Sally), the test department (Maggie), and the
programming department (Sarah, Peter, and Luke, who all reported to
Tom). In this section, we will explain the steps this team took to reorganize
itself along Agile lines so that you might appreciate how to do something
similar on your own team.

Identifying Customers and Developers
To reorganize themselves along Agile lines, the different departments were
merged together so that everyone became full members of the new Agile
OSPACS team, which was organized as follows:

• Customer—Sally becomes the team’s customer because she has a
good perspective of what the product must do due to her business
analyst skills and contact with the company’s clients at a business
level. Mike has agreed to cover for Sally when she is away from the
office.

• Developers—Tom and Maggie join Peter, Sarah, and Luke to
become the people who decide how the product must work. Tom
retains his architect role, but he agrees to undertake development
tasks. Maggie expands her testing remit to include helping Sally pro-
duce her customer tests (see Section 7) and will also attend a training
course in C# so that she can get involved in pair programming.

Chapter 4: Forming an Agile Team76

NOTE

People undertaking these associated roles would usually be expected
to perform several roles and possibly work on a number of different
teams.

• Project manager—Michael becomes responsible for managing the
people on the OSPACS team, so he helps them resolve high-level
issues and personnel matters. He will monitor their progress regu-
larly and provide input to them as their business sponsor, but other-
wise he is content to let them work with a minimum of management
interference.

It takes time and effort to build a group of people into an effective Agile
team, but it is these sorts of teams that have the potential to perform well
above other teams in an organization. Therefore, you should pay heed to
the Team Continuity practice, as the sum value of such teams is greater than
its individual parts.

Team Continuity Practice
Team continuity is the practice of keeping effective teams together rather

than splitting them apart at the end of a project. It is a case of recognizing

that good social interaction among people plays as much a part in the

team’s success as the knowledge and skills provided by the team’s indi-

vidual members.

Team continuity is important because it helps retain those traditions,

often not formally stated or even acknowledged, which are fundamental to

the group’s success. When too many people leave the team in a short

period, these traditions may be easily lost, for the team can just forget to

do the small things that help make its members productive and content.

It also takes time for trust and respect to be established among people, so

frequently moving them between projects doesn’t allow time for cohesive

groups to form; the teams simply never gel. Some degree of staff move-

ment is inevitable, indeed even healthy, as it helps to spread knowledge

and skills. However, excessive staff turnover is often a sign that the team’s

process is broken, so something needs to be fixed.

Team continuity is not difficult to apply when the team is successful, as

managers are usually reluctant to change a winning formula. It also helps

Reorganizing the OSPACS Team 77

Continues

Chapter 4: Forming an Agile Team78

when people are happy and therefore do not want to leave the team. How-

ever, when your team does change, you must ensure that newcomers are

properly introduced to its customs and practices and that the people who

leave are suitably thanked and remembered for the contributions they

have made. Such rituals foster team spirit, which ultimately is what the

Team Continuity practice is all about.

Rearranging the Office Space
The new OSPACS team structure was initiated by the need to implement
the Whole Team practice so that everyone worked for the project and
shared its objectives. However, like most Extreme Programming (XP) prac-
tices, applying one practice has limited value if it is not supported by oth-
ers. Therefore, we suggest that once you’ve introduced the Whole Team
practice to your team, you should exercise your power to self-organize by
rearranging the furniture to create a space large enough to implement the
Sit Together practice. In this way, you can start looking like an Agile team at
least in terms of your physical organization.

CONCLUSION

Typically an Agile team has fewer than 18 full members organized such that
one person (or customer group) has the customer role and the rest share the
various developer roles—programmer, tester, architect, and so on:

• Customer—Develops stories with developers, prioritizes them, and
then writes their functional tests. He also plans releases to pull soft-

NOTE

Appendix C shows the new layout of the OSPACS team’s workspace
which helped team members to implement the Whole Team and Sit
Together practices. You can discover what the OSPACS team thought
about this reorganization by reading the Section Review after Chapter 6.

ware into the production environment. Most of the customer’s time
is spent nailing down requirements by writing tests.

• Developer—Develops stories with the customer, estimates them,
and then takes responsibility for their delivery using test-driven
development (TDD); test, code, refactor. Most of a developer’s time
is spent doing TDD.

There is a clear division of responsibility on an Agile team between cus-
tomers who get to say what the software must do and developers who say
how it will work. Accordingly, power is balanced in a project according to
people’s respective areas of expertise, which helps build respect and trust
between the different factions and thus creates a more cohesive team.

Reorganizing the OSPACS Team 79

WARNING

Do not allow someone to become a customer unless he has direct rel-
evant experience working in one (or more) of the customer roles. Par-
ticularly avoid having someone with a software development
background as your customer.

5
Team Foundation Process
Frameworks

A F T E R R E A D I N G T H I S C H A P T E R, you will be able to create your own
Team Project using a process template and understand why you

might want to adapt it for your team, as described in the next chapter. We
also explain how the process-enabling framework provided by Visual Stu-
dio Team System (VSTS) allows your team to structure its work, and we
briefly review a number of different process templates that you might con-
sider using.

Team Projects and Process Frameworks

You can configure VSTS for use with a variety of software development
processes just by selecting an appropriate template during the creation of
your Team Project. In addition to the template for the two standard
methodologies shipped with VSTS, you can obtain others from third parties
or by adapting them from existing templates exported from Team Founda-
tion Server (TFS). In this way, TFS can support multiple Team Projects, each
set up for a different type of software development process.

81

Artifacts Generated When a Team Project Is Created
During the creation of a Team Project, various artifacts (files, database
records, etc.) are generated and stored in your TFS Data Tier, either by the
SQL Server database or by SharePoint Services. The types of artifacts cre-
ated for your Team Project depend upon the process template selected, but
they usually fall into a similar set of categories. In the following sections,
we describe the artifacts generated by an MSF for Agile Software Develop-
ment process template.

Project Structure

A single project area and a collection of three iterations are initially created
for your Team Project. However, you can add more iterations as your proj-
ect proceeds using the Visual Studio Areas and Iterations dialog box (Team
| Team Project Settings | Areas and Iterations); see Chapter 27. You can also
add more project areas if you have subteams that share the same develop-
ment timetable as the rest of the team, but we do not recommended you do
so because this conflicts with the idea of having autonomous Agile teams;
see Chapter 4.

Users, Groups, and Permissions

A number of Windows security groups are created for your Team Project,
such as Project Administrators, Contributors, Readers, and Build Services.
These groups are administered using the Visual Studio Project Security dia-
log box (Team | Team Project Settings | Security), as described later in this
chapter.

Chapter 5: Team Foundation Process Frameworks82

NOTE

An Agile team is an autonomous group of people who are collaborat-
ing on the development of some software and who share a common
schedule. Each team of this nature in your organization should have its
own Team Project.

Work Products

A set of documents are generated for your Team Project from the default
Word, Excel, and MS Project files contained in its process template. They
include things such as your team’s Project Vision and its Development Pro-
ject Plan. You can locate these documents in the Documents folder of your
Team Project, as displayed in Visual Studio’s Team Explorer window (View
| Team Explorer).

Work Items and Queries

An initial collection of tasks are generated which detail the work required
to complete the setup of your project. You can assign these tasks to mem-
bers of your team as well as to the iterations in your project structure. A set
of standard queries are also created in your Team Project’s Work Items
folder to provide information about these tasks as well as other types of
work items.

Reports and Report Site

Dozens of standard reports are created to provide people with information
about your Team Project from the data stored in its TFS; see Chapter 31.
Anyone with the necessary rights (and license) can access these reports
from the report Web site generated for your Team Project by SQL Server
Report Services (Team | Show Report Site). However, team members usu-
ally access them from the Reports folder in their Team Explorer window.

Source Control Folder

A root folder is created in the TFS version control system for your team’s
source code; see step 6 of Exercise 5-1. You can access this folder from the
Visual Studio Source Control Explorer window (View | Other Windows |
Source Control Explorer), as described in Chapter 8.

Project Portal

A Web site is generated for your Team Project from the static files in its
process template as well as from the live data in its TFS. This project Web

Team Projects and Process Frameworks 83

site is hosted by Internet Information Services (IIS), so anyone with the nec-
essary rights (and license) can obtain information about your project sim-
ply by entering the project’s URL into his browser. However, team
members usually open this site from the menu in their Visual Studio Inte-
grated Development Environment (IDE) (Team | Show Project Portal).

Process Guidance

Your team can get advice about how to follow the specific process that
applies to its Team Project from a Web site hosted by TFS; see Figure 5-1.
The team can access this Web site from the home page of its Project Portal,
or directly from Visual Studio (Help | Team Project Process Guidance).

Figure 5-1: The MSF for Agile Software Development Process Guidance site

Chapter 5: Team Foundation Process Frameworks84

Creating an MSF for Agile Software Development Team Project
Traditional teams often spend the first few days of a project doing little more
than setting up security groups and installing various tools so that people can
work together properly. VSTS helps your team get started much more quickly
by providing a wizard so that you can perform these sorts of administrative
tasks in a matter of minutes. Exercise 5-1 takes you through this process.

Exercise 5-1: Creating a Team Project

After completing the following exercise, you will have created the OSPACS
Team Project on the machine that hosts your TFS—for example, DevServer
in Figure 1-1 in Chapter 1.

1. Log on to the DeveloperPC as Tom (Team Foundation Administra-
tor) and start Visual Studio; see Appendix A for details about this PC
and Tom’s security groups.

2. Select File | New | Team Project to open the Team Project Wizard.
Connect to your TFS, if prompted, as described in step 2 of Exer-
cise 5-7.

3. Enter “OSPACS” as the name of your Team Project; click Next.

Team Projects and Process Frameworks 85

NOTE

You can access the Team Project’s Process Guidance from Visual Studio
(Help | Team Project Progress Guidance), from the home page of the
MSF Agile Project Portal, or directly from the Process Guidance folder
in Visual Studio’s Team Explorer window.

NOTE

“File | New | Team Project” is our way of saying “choose the New menu
item from Visual Studio’s File menu and then select its Team Project sub-
menu item.” We use this syntax in exercises throughout the book.

4. Select MSF for Agile Software Development as your process tem-
plate (see Figure 5-2); click Next.

5. Accept the suggested title for the Team Project Portal (make sure
you note its URL); click Next.

6. Select “Create an empty source control folder”; click Next.

7. Click Finish to create your Team Project. Wait several minutes for
this action to complete and then click Close to complete the wizard.

8. Check that this new OSPACS Team Project appears in your Team
Explorer window (View | Team Explorer) below the name of the
machine that hosts your TFS.

9. Finally, log off, as you have completed this exercise.

Figure 5-2: Using the Team Project Wizard to select a process
template (File | New | Team Project)

Chapter 5: Team Foundation Process Frameworks86

WARNING

Select your process template carefully when creating a Team Project
because you cannot change it later. You can, however, make minor
changes such as adding new work item types, queries, and reports, as
described in Chapter 6 and Chapter 31.

Deleting a Team Project
You would not normally delete a Team Project unless you wanted to clear
up some space on your TFS after you have backed up and closed the proj-
ect. However, you may want to delete some of the Team Projects you have
created while experimenting with different types of process templates, so
Exercise 5-2 explains how to do this using the tfsdeleteproject utility, which
you must execute from the command line.

Exercise 5-2: Deleting a Team Project

This exercise permanently deletes the OSPACS Team Project from the
DevServer TFS so that you lose all its data, including the source files in its
version control system. If you take this action, you should repeat Exer-
cise 5-1 afterward so that you can complete the other exercises in this book.

1. Log on to DevServer (TFS) as Tom (Team Foundation Administra-
tor); see Appendix A for details about this PC and Tom’s security
groups.

2. Search for the tfsdeleteproject.exe file and confirm that it is located
in a directory that is part of your PATH environmental variable (see
Appendix A).

3. Open a command prompt window and type the following:

TFSDELETEPROJECT /server:DevServer OSPACS

4. Close the command prompt and then log off.

Team Projects and Process Frameworks 87

TIP

Before deleting a Team Project, review the advice about backing up
and restoring TFS provided in its Administrators Guide.1

1. TFS Administrators Guide (http://go.microsoft.com/fwlink/?LinkID=52459).

Giving Users Membership of Your Team Project Groups
Before members of your team can access the Team Project you created in
Exercise 5-1, you need to make them members of the appropriate security
groups. A number of groups are automatically created for each Team Pro-
ject and members of your team should be given membership of the group
that is most appropriate for their needs. In the case of the OSPACS Team
Project, the following groups were created:

• [OSPACS]\Project Administrators—People who administer the
project; Tom

• [OSPACS]\Contributors—People who generate information for
the project; all

• [OSPACS]\Readers—People who just want to view project
information

Although you can make people’s domain user accounts members of
these groups using the various dialog boxes provided by Visual Studio
(Team | Team Foundation Project | Groups), it is often more convenient
to make them members of a particular Windows security group and then
add this security group to the appropriate project group using the
TFSSECURITY command-line tool, as described in Exercise 5-3.

Chapter 5: Team Foundation Process Frameworks88

NOTE

Before starting Exercise 5-3, you need to create the OSPACSDevs secu-
rity group and add to its list of members the domain user accounts of
the various developers on the OSPACS team (in other words, Tom,
Maggie, Sarah, Peter, and Luke).

Exercise 5-3: Making a User into a Team Project Contributor

In this exercise, you will add the OSPACSDevs Windows security groups to
the Contributors security group for the OSPACS Team Project. After you do
this, the members of OSPACSDevs will be able to connect to the OSPACS
Team Project; see Exercise 5-7.

1. Log on to DevServer (TFS) as Tom (OSPACS Project Administrator).

2. Open a command prompt window and type the following to list all
the groups associated with OSPACS:

TFSSECURITY /server:DevServer /g [OSPACS]

3. Type the following to make the OSPACSDevs security group in
the Signaustr domain a member of the [OSPACS]\Contributors
group:

TFSSECURITY /server:DevServer /g+ "[OSPACS]\Contributors" n:Signaustr\OSPACSDevs

4. Repeat the preceding step to grant the other Windows security
groups defined in Appendix A access to their corresponding groups
in the OSPACS Team Project.

5. Log off.

Gaining Access to Your Team Project Services
In addition to granting people membership of specific Team Project groups
(for example, Contributors), you must also grant them the necessary rights

Team Projects and Process Frameworks 89

TIP

It is good practice to grant rights to a security group rather than to
individual team members’ user accounts. In this way, when people
join or leave your project, you need to add (or remove) people from
just one security group, such as OSPACSDevs.

so that they can access the Windows SharePoint Service that runs their
Team Project’s Web site as well as the SQL Reporting Service that provides
their Team Project’s Report Site.

Exercise 5-4: Gaining Access to Your Team Project Portal and Report Site

At present, only Tom has access to the OSPACS Project Portal and its Report
Site because he created their associated Team Project. However, after com-
pleting the following exercise, all members of the OSPACSDevs Windows
security group will have access to these sites.

1. Log on to the DeveloperPC as Tom (OSPACS Project Administrator)
and start Visual Studio.

2. Connect to the OSPACS Team Project (see Exercise 5-7), open its
Project Portal (Team | Show Project Portal), and then add the
OSPACSDevs security group to the list of users who can access the
site, as follows:

a. Click Site Settings in the top menu bar of the site’s home page.

b. Click the Manage Users link in the Site Settings page, and from
this page, click the Add Users button to access a series of pages
that allow you to add users to the site.

c. Enter “OSPACSDevs” in the Users text box and select Contribu-
tor from the Site Groups list in the “step 1 and 2” page; click Next
to continue.

d. Enter the e-mail address assigned to OSPACSDevs (if any) in the
“Email address” text box and enter something into the Message
text box in the “step 3 and 4” page; click the Finish button to com-
plete the operation.

3. Close the Project Portal Web site.

Chapter 5: Team Foundation Process Frameworks90

4. Open the OSPACS Team Project’s Report Site (Team | Show Report
Site). Add the OSPACSDevs security group to the list of users who
can access the site, as follows:

a. Open the site’s home page; click the “home” item in the menu at
the top right of the page.

b. Click the Properties tab at the top of the home page and then click
the New Role Assignment button in the menu bar to open the
New Role Assignment page.

c. Type “\OSPACSDevs” (remember the forward slash) into the
“Group or user name” text box and select the rights you want
to grant: Browser, My Reports, Publisher, and Report Builder.
Click OK to close the page and grant OSPACSDevs access to
the site.

5. Close the Report Site and log off.

Administering Your Team Project Security Settings
The project administrator (or Team Foundation administrators) can fine-
tune the rights of particular security groups (or users) for a specific Team
Project. You might, for example, want to allow some of the people on your
team to administer a Team Build. Exercise 5-5 shows how you can grant
such permissions.

Team Projects and Process Frameworks 91

NOTE

In the initial version of VSTS, you need to repeat Exercise 5-4 each time
you create a new Team Project, but this may change in subsequent ver-
sions of the product.

Exercise 5-5: Granting Permission to Administer a Build

After completing the following exercise, all members of the OSPACS Con-
tributors group will have the rights they need to administer a Team Build.

1. Log on to the DeveloperPC as Tom (OSPACS Project Administrator),
start Visual Studio, and connect to the OSPACS Team Project as you
did in the preceding exercise.

2. Open the Project Security dialog box (Team | Team Project Settings
| Security) and select the OSPACS\Contributors security group
before adding a checkmark to the Administer a Build box in the list
at the bottom of the dialog box. Apply your changes by clicking OK.

3. Log off.

Administering Your TFS Security Settings
The Team Foundation administrators can fine-tune the rights of particular
security groups (or users) for all the Team Projects hosted by your TFS. You
might, for example, allow people to create new Team Projects; see Exer-
cise 5-6.

Exercise 5-6: Allowing All Valid Users to Create a Workspace

The following exercise grants the right to create a Workspace to all the peo-
ple who can access your TFS.

1. Log on to the DeveloperPC as Tom (OSPACS Project Administrator),
start Visual Studio, and connect to the OSPACS Team Project as you
did in the previous exercise.

Chapter 5: Team Foundation Process Frameworks92

NOTE

You can administer security group membership for the users in your
domain directly from Visual Studio (Team | Team Project Settings |
Group Membership), but it is often more convenient to use the TFS
command-line tools you used in Exercise 5-3.

Figure 5-3: Part of the Global Security dialog box (Team | Team
Foundation Server Settings | Security)

2. Open the Global Security dialog box (Team | Team Foundation
Server Settings | Security), select the SERVER\Team Foundation
Valid Users security group (at the top of the dialog box), and then
add a checkmark to the Create a Workspace box (see Figure 5-3).

3. Click OK to close the dialog box and apply your changes.

4. Log off.

Connecting to a Team Project
The person who creates a Team Project (Exercise 5-1) will usually send an
e-mail to the people he has added to its security groups (Exercise 5-3), invit-
ing them to connect their Visual Studio Team Explorer to it. It is a good idea
to include in such e-mail general information about the Team Project as well
as some basic instructions to get people started; see Exercise 5-7.

Team Projects and Process Frameworks 93

NOTE

Any user who is a member of the Team Foundation Administrators
security group for a particular TFS automatically has the right to con-
nect his Visual Studio Team Explorer to all of its Team Projects.

Exercise 5-7: Connecting to Your Team Project

This exercise shows how Luke, a member of the OSPACS team, starts work
by connecting his Visual Studio Team Explorer window to the OSPACS
Team Project. Anyone who is a member of the Windows security groups
defined in Appendix A can follow this exercise.

1. Log on to the DeveloperPC as Luke and start Visual Studio.

2. Specify the connection details for your TFS by opening the Connect
to Team Foundation Server dialog box (Tools | Connect to Team
Foundation Server):

a. Click the Servers button to open the Add/Remove Team Founda-
tion Server dialog box and then click its Add button to open the
Add Team Foundation Server dialog box.

b. Into the Add Team Foundation Server dialog box, enter
“DevServer” as the name of your server, “8080” as its port
number, and “HTTP” as its protocol. Appendix A specifies this
machine; your server may have different details.

c. Close both dialog boxes.

3. All the available Team Projects hosted by your TFS are now listed
in the Connect to Team Foundation Server dialog box. Select the
OSPACS Team Project and click OK. The OSPACS project will
now appear in your Team Explorer window; see Figure 1-3 in
Chapter 1.

4. Log off.

Visual Studio stores your TFS connection settings and Team Project
selection so that you do not need to repeat this exercise each time you start
work. However, remember to make sure the correct Team Project item is
selected in your Team Explorer window so that actions applied from the
Visual Studio menu bar can operate on it.

Chapter 5: Team Foundation Process Frameworks94

Microsoft Solutions Framework (MSF) 4.0

Microsoft Solutions Framework version 4.0 is a metamodel defined on the
Microsoft technical Web site2 that allows you to build software develop-
ment process models. MSF for Agile Software Development and MSF for
CMMI Process Improvement are just two of the process models that have
been built using MSF 4.0. In object terms, you can think of a Team Project as
having a process framework that is an instance of MSF 4.0 whose proper-
ties are set by the MSF for Agile Software Development process template.
Figure 5-4 shows this MSF 4.0 metamodel together with its main elements,
and although most of this material is not really relevant to an Agile team,
reading about it may help you understand how process templates relate to
the various functions and facilities of VSTS.

Figure 5-4: MSF 4.0 metamodel (diagram inspired by Richard Hundhausen
3
)

2. Microsoft Web site for MSF (www.microsoft.com/technet/itsolutions/msf).
3. [VSTS] Hundhausen, Richard. Working with Visual Studio 2005 Team System (Microsoft, 2005).

Role

Security Group

User

Iteration Activity

Work Item Reports

Work Product

Work StreamPerforms

Belongs
to

Gives Permissions
for

Schedules

Schedules

Tracks

Sequences

Generates

Owned
by

Key:

Physical
representation

Abstract
concept

Generates

Microsoft Solutions Framework (MSF) 4.0 95

Work Item
Work items are the record types in a Team Project that help you gather the
information you need to monitor its health as well as to discover who did
what, when, and why. This data is stored in the TFS database and provides
the basic metrics from which your team’s reports are generated.

Specific team members can schedule, track, and own work items. They
have certain general fields as well as ones that are specific to a certain type
of work item. For example, all work items have Title, Description, and
State fields, but only Bug work items have Priority, Found in Build, and
Resolved in Build fields. Work items may also have fields that are auto-
matically updated as a consequence of your actions. For example, the Cre-
ated By and Created Date fields are completed automatically when you
create a work item.

A Team Project created from the MSF for Agile Software Development
process framework has the following types of work items: Bug, Quality of
Service (QoS), Risk, Scenario, and Task. During the course of such a proj-
ect, you can add additional work item types, or edit existing ones (see
Chapter 6). However, you cannot delete one of these work item types (or
the corresponding work item records) because this may violate your

Chapter 5: Team Foundation Process Frameworks96

NOTE

Role, Work Stream, and Activity have no physical representation in
VSTS, so they cannot be associated with actual data in your TFS, like
work items can. Therefore, some process models include them, and
others do not.

NOTE

Some of the most important work item fields are the State, Iteration,
and Assigned To fields, for they indicate whether the item is still active,
when is it scheduled to be resolved, and who has responsibility for
resolving it.

auditing requirements and alter the meaning of some reports based on his-
torical data.

Role
Members of your team act in certain roles depending on the activities they
are performing. For example, when someone is performing a “writing
code for a development task” activity, he or she is acting in a developer
role. Team projects with different process frameworks may have a differ-
ent collection of roles and activities. However, there is no physical mani-
festation of a role in VSTS beyond what you can read on your Process
Guidance Web site.

Activity
An activity is something a team member does when acting in a particular
role. For example, one of the activities performed by a developer in a Team
Project with the MSF for Agile Software Development framework is “writ-
ing code for a development task.” However, different types of processes
usually have different types of activities.

Activities are defined in the Process Guidance in terms of work streams.
Activities create work products such as source code, project documents, and
so forth in the satisfaction of a particular work item assigned to a team mem-
ber (user). However, like roles, there is no physical manifestation of an activ-
ity in VSTS beyond what you can read on your Process Guidance Web site.

Work Stream
A work stream is a sequence of activities performed by a role for a given
software development process, and it typically involves processing some

Microsoft Solutions Framework (MSF) 4.0 97

NOTE

Thinking about someone’s roles helps you decide the permissions that
should be granted to him, as each role in a project has an associated
set of activities (see the Work Stream section, later in this chapter) that
each require particular rights and permissions.

form of work product. Work streams have entry (optional) and exit criteria
that define when they may be started and when they are complete. For
example, your Team Project may define the Capture Project Vision work
stream which has no entry criteria, but lists the activities someone in the
business analyst role must complete to achieve the exit criteria—in other
words, write a vision statement (such as the “elevator pitch” in Chapter 1)
and publish the user personas on the team’s Project Portal.

A work stream, again, has no physical manifestation in VSTS. It is no
more than a suggestion for the order of activities that need to be performed
in order to satisfy a work item assigned to someone acting in a particular
role. The Index page of the Process Guidance Web site lists the work
streams in your Team Project and the roles that should perform this type
of work.

Tracks and Governance Checkpoints
MSF 4.0 intends that during its various iterations, your project will progress
through a number of phases which it terms tracks. A checkpoint must be
satisfied before a track can be started; this provides a governance mecha-
nism to stop a project that will not ultimately deliver value before too much
time and money are spent on it. For example, if your Team Project has the
MSF for Agile Software Development process framework, you might
encounter the sorts of tracks and governance checkpoints that are shown in
Table 5-1.

Chapter 5: Team Foundation Process Frameworks98

NOTE

“Personas” are intended to help you visualize the sort of people who
might use the system your team is developing, so they serve a similar
purpose to the descriptions we gave about the OSPACS team members
in the Introduction.

Table 5-1: Tracks and Governance Checkpoints in an MSF for Agile Software Development

Process

Track Main Activities Checkpoints

Envision –Confirm that the project has
realistic goals and a viable
plan to achieve them.

–Create test and deployment
strategy.

–Development environment is
proven.

Plan –Documents are reviewed and
accepted.

–Key prototypes are demon-
strated.

Develop –Operational software is
delivered that satisfies the
functional specification.

Stabilize –Master copy of the product is
delivered with documentation
and installation program.

–Test results show product is
ready for deployment.

Deploy –Customer assesses the product
and signs for its acceptance.

–Training and support are
arranged.

The solution is moved into the
business environment and any
problems that might arise are
resolved with patches, and
so on.

The solution is fully tested, bugs
are removed, and it is prepared
for release.

The solution is built and the
infrastructure is developed to
support it. Test cases are
produced to validate the
solution.

Create the functional specifi-
cation, risk management plan,
and master project
plan/schedule. The work is
identified and estimated.

Form the team and create a
vision statement to provide the
team with a common vision of
the project’s scope and what it
will accomplish over a given
time scale. During this phase, the
team sets up the project and may
create some prototypes to inves-
tigate the technology.

Microsoft Solutions Framework (MSF) 4.0 99

NOTE

Table 5-1 provides just a summary of the activities and checkpoints
that you might expect to find on a team that had adopted the MSF for
Agile Software Development process.

Tracks and governance checkpoints, like many other elements of MSF,
have no physical representation in VSTS. They are just suggestions for giv-
ing a series of iterations some special focus in the hope that upon their com-
pletion, certain physical evidence (code, models, etc.) will be delivered
which helps the project pass a governance checkpoint, thereby gaining
management support for the team to continue into the next track. Clearly,
different types of software development processes will have different tracks
and checkpoints.

Frameworks for Specific Processes

So far, we have talked about MSF 4.0 in the context of MSF for Agile Soft-
ware Development. However, the real power of MSF 4.0 is that it allows
you to define a process framework for almost any type of modern software
development process. Therefore, let’s now review the process templates
supplied with VSTS, together with a template available from this book’s
Web site, to help you find a starting point for the sort of process framework
most suited to your project and team.

MSF for CMMI Process Improvement
MSF for CMMI Process Improvement (MSF for CMMI) is supplied with
VSTS, so you do not need to install this process template on your TFS; it’s
already there.

The Software Engineering Institute’s (SEI) Capability Maturity Model
Integration (CMMI4) provides five levels at which an organization’s

Chapter 5: Team Foundation Process Frameworks100

NOTE

Although this book is written for a small team following an Agile
process such as Extreme Programming (XP), much of the information
can also be applied to larger teams that are following other types of
software development processes.

4. Carnegie Mellon. “What is CMMI?” (www.sei.cmu.edu/cmmi/general/general.html).

process maturity can be measured, and it is often used to guide process
improvement across a project or an entire organization. CMMI was origi-
nally produced to allow the U.S. Department of Defense to assess its con-
tractors, but this certification is now highly regarded by many people (but
not by all) as a mark of excellence.

In theory, you can select MSF for CMMI when creating your Team Pro-
ject and then simply follow the Process Guidance to become ready for level
three certification while having a clear way to reach level five. However, in
practice, your team will have to do a lot more than just follow a set of
instructions in order to achieve CMMI certification and produce great soft-
ware. You can get some idea of the amount of work involved in using the
MSF for CMMI framework by reading its Process Guidance and looking at
the documents it creates in your Team Project’s document folder. This
development process, as you might imagine, is completely prescribed and
there is almost no scope for variation, which makes it an unattractive option
for a team that wants a design process; see the section Working As a Design
Team, in Chapter 4.

If you are working for a defense contractor or are involved with safety-
critical projects, your team may have no option but to obtain CMMI certi-
fication, in which case MSF for CMMI could be a good choice. However,
teams working on other types of projects might want to look for alterna-
tive frameworks. Given the amount of management expected for people
using the MSF for CMMI framework, it is difficult to see how its use could
be justified in a small or even medium-size team.

Frameworks for Specific Processes 101

NOTE

A prescriptive process seeks to identify the sequence of activities
required to transform a work product from one state into another and
then describe each activity in such detail that there is little possibility
for error or variation occurring.

MSF for Agile Software Development
MSF for Agile Software Development (MSF for Agile) is also supplied with
VSTS, so you do not need to install this process template on your TFS.

The development process for MSF for Agile is not as completely pre-
scribed as MSF for CMMI, but neither is it a completely elective process
such as MSF for XP. The approach that MSF for Agile takes to risk and proj-
ect management is explicit, as there are particular activities to be performed
which are comprehensively described in its Process Guidance. It also has a
dozen or so prescribed workflows and requires the representation of at
least five given roles on your team. However, such structure may be appro-
priate on some Agile teams, so you should give it serious consideration
when you are selecting a template for your Team Project.

MSF for XP
MSF for XP is available from this book’s Web site (or from www.msf4xp.org),
and instructions for importing its process template into your TFS are given
in Chapter 6. It is maintained as an open source project and operates under
a BSD license, so essentially you can freely use and modify it, but at your
own risk.

MSF for XP was produced for this book, so it is specifically aimed at very
small teams that want a process framework to support the values and prac-
tices of Extreme Programming. It is actually a cut-down version of MSF for
Agile and provides a suitable starting point for a team that wants to start
with a simple process framework to which it can then add complexity as it
discovers the need for it.

XP approaches software development as an elective process and pro-
vides little specific guidance about what you should do beyond proposing
some practices and values that the team should adopt. That is to say, it’s the
team that decides whether a particular practice should be adopted, though
some risk is always associated with not doing any XP practice. A team
doing XP is expected to be self-organizing, so its project management is
implicit; the team itself decides what needs to be done. Likewise, the cus-
tomer and developers are expected to know best how to handle the risks
associated with their project, so risk management is also implicit. In terms

Chapter 5: Team Foundation Process Frameworks102

of governance, the team reveals value to the business at the end of each iter-
ation, and when this stops flowing, the project is terminated. For this rea-
son, we do not provide explicit checkpoints for the business to decide
whether it is worth the team continuing its work.

MSF for XP is not very suitable for teams that require a formal manage-
ment structure. It also lacks the explicit traceability and audit capabilities
required for certain types of software projects, such as the development of
safety-critical systems. However, for small teams working on projects that
do not have such restrictions, MSF for XP may provide a highly effective
process framework that allows them to deliver valuable software, even
when the requirements are not fully known or understood at the start of the
project.

Process Framework Comparison
The selection of your team’s process framework is an important decision
because it cannot be changed after you have selected the corresponding tem-
plate during the creation of your Team Project; see step 4 of Exercise 5-1.
Therefore, we suggest you study Table 5-2 carefully to confirm that you have
made the most appropriate choice for your team and its project before cre-
ating a Team Project which you intend to use for real work.

Table 5-2: Process Comparison: MSF for CMMI, MSF for Agile, MSF for XP

MSF for CMMI MSF for Agile MSF for XP

Typical team size 50+ 12+ 4–18

Team type Managed Self-organizing

Project structure Iterative, no phasesIterative with
phases

Iterative with
phases

Managed or self-
organizing

Extreme
Programming,
Agile Model-Driven
Development

vRUP, MicrosoftRational Unified
Process (RUP) and
similar

Process compatibility

Frameworks for Specific Processes 103

Continues

Table 5-2: Continued

MSF for CMMI MSF for Agile MSF for XP

Governance Implicit

Mandatory roles Developer,
Customer

Response to change Fast; requirements
identified as the
project proceeds.
Customer
authorizes change.

Audit trial possible.

Handled during the
exploration of a
story by developer
and customer

Risk management Explicit Explicit Implicit

Project management Explicit Explicit Implicit

Mandatory Many Few None, but optional
documents Vision Statement,

Project Plan, and
Check List
documents

Bug, Task, Story

Reports Many Many Few

Process Guidance Conceptual and
elective

Detailed and may
be prescriptive

Highly detailed
and prescriptive

Scenario, QoS, Risk,
Bug, Task

Issue, Requirement,
Review, Change
Request, Risk, Bug,
Task

Work items
(metrics)

Security,
performance, and
user experience
issues are separately
identified.

Nonfunctional
requirements
specification
document

Nonfunctional
requirements
(QoS)

Medium; require-
ments mostly
identified at start of
project. Managers
authorize change.

Audit trail available.

Slow; requirements
fixed at start of
project, and altered
only by Change
Review Board.

Full audit trial.

Business Analyst,
Project Manager,
Architect,
Developer, Tester,
Release Manager

[Same roles as MSF
for Agile] + Auditor,
Sponsor, and
various managers
and specialists

Envision, Plan,
Build, Stabilize,
Deploy

Envision, Plan,
Build, Stabilize,
Deploy, Gover-
nance, Operational
Management

Chapter 5: Team Foundation Process Frameworks104

CONCLUSION

This chapter introduced the concept of VSTS having a process-enabling
framework that can be configured by the process template selected when
you create your Team Project. In this way, VSTS can support teams that are
following a wide variety of different software development processes,
including MSF and CMMI. However, it also opens up the possibly of a
team improving its process by exporting the process template from TFS at
the end of a project, modifying it, and then importing it back into TFS for
use with the next project; see Chapter 6. Therefore, with VSTS, you can
make the process fit the specific needs of your project and team, rather
than vice versa.

Frameworks for Specific Processes 105

NOTE

A team type that is “managed” has no responsibility for deciding how
or when its work should be done. Its activities are controlled by some-
one in a supervisory role, so by definition it cannot be self-organizing
in the way we discussed in the preceding chapter.

NOTE

VSTS Team Projects are organizational units for a group of people who
share the same source code files and have a common development
timetable. Visual Studio Projects (and Solutions) are organizational
units for the programs developed by such a team.

6
Improving Your Process
Framework

TH I S C H A P T E R P R E S E N T S two different ways in which you can
improve the TFS process framework your team uses. First, we describe

how you can add another work item type to an existing process framework
to provide a new metric. Then, we explain how to export your current
process framework to a process template so that it can be changed and then
imported back into Team Foundation Server (TFS), ready for the team’s
next project. After reading this chapter, you will know how to adapt a
process framework to fit better with your team and its work.

Providing a New Metric for an Existing Process
Framework

The improvements you can make to a process framework once you’ve used
it to create your Team Project are strictly limited. Indeed, the only thing you
can really do is define some additional metrics so that you can monitor
your progress in new ways. This is simply a matter of adding new work
item types and then providing corresponding queries (or reports) to dis-
play the information that has been gathered.

107

Adding a New Work Item Type
A team will often decide to gather information about some new metric
which suddenly seems important to the team. The OSPACS team, for exam-
ple, became aware that it was spending much of its time changing the user
interface, and it decided to add a new type of work item to help team mem-
bers discover exactly how much effort was going into this type of work.
Exercise 6-1 details the steps the team took to achieve this objective.

Exercise 6-1: Adding a New Work Item Type to a Team Project

The following exercise creates a new work item type called GuiTask for the
OSPACS Team Project which you created in Exercise 5-1 in Chapter 5.

1. Log on to DevServer as Tom (OSPACS Project Administrator); see
Appendix A for details about this PC and Tom’s security groups.

2. Open a command prompt window and enter the following com-
mand, where /f defines the output file to be created, /t is the name
of your TFS, /p is the name of your project, and /n is the name of the
work item type:

witexport /f c:\Tom\GuiTask.xml /t DevServer /p OSPACS /n "Bug"

3. Edit the GuiTask.xml file and create your new work item type by
changing the name attribute of WORKITEMTYPE from “Bug” to
“GuiTask”, and then perform a Find and Replace to replace “Bug”
with “GuiTask” in the rest of the file. Save your work.

Chapter 6: Improving Your Process Framework108

NOTE

Before starting the following exercises, check that the witexport.exe
and witimport.exe programs have been installed in a directory of
DevServer (TFS) that is included in its PATH environment variable; see
Appendix A.

4. At the command prompt, enter the following command, where /f
defines the input file containing the new work item type, /t is the
name of your TFS, and /p is the name of your project:

witimport /f c:\Tom\GuiTask.xml /t DevServer /p OSPACS

5. Log off.

Adding a New Query
There is not much point in gathering information about a new metric unless
you have the means to display it. Therefore, we explain in Exercise 6-2 how
you might create a new query to list all the new GuiTask work items that
the OSPACS team has generated on a form in Visual Studio’s main window.

Exercise 6-2: Adding a New Query to a Team Project

This exercise creates a query called All GuiTasks and then creates a GuiTask
work item so that you can run your new query to check that everything
works correctly.

1. Log on to the DeveloperPC as Tom, start Visual Studio, and then
connect to the OSPACS Team Project, as described in Exercise 5-7
in Chapter 5.

2. Add a GuiTask work item to the OSPACS project (Team | Add New
Work Item | GuiTask), and then enter as much information about it
as you feel is appropriate.

Providing a New Metric for an Existing Process Framework 109

NOTE

The book’s Web site contains information about Process Template
Editors that allow you to add new work item types and perform sim-
ilar template customization without having to edit the XML directly.

Figure 6-1: Editing a query (Right-click | View Query)

3. Open your Team Explorer window and locate the All Scenarios
query in your Team Queries folder. Open this query for editing
(Right-click | View Query) so that you can set the value of its Work
Item Type field to GuiTask; see Figure 6-1.

4. Save this adapted query as “All GuiTasks” (File | Save As) and use
the controls in the Save Query As dialog box to specify it as a Team
Query for the OSPACS Team Project.

5. Run the query (Right-click | View Results) and confirm that it dis-
plays the GuiTask work item created in step 2.

6. Log off.

Improving Your Process

Any substantial improvement to the team’s process framework is
expected to happen at the end of the project, when the experience is
reviewed and the lessons learned are carried forward to the next project.
This review often takes the form of a retrospective that typically com-
prises potentially days of discussions for the team (and managers) led by

Chapter 6: Improving Your Process Framework110

NOTE

You can only add new work item types to your Team Project because
editing or deleting existing work item types (or work item records) in
the middle of a project might change the meaning of certain historic
data used in your reports and queries.

an experienced moderator at an offsite location. The resulting changes to
your team’s process will probably require some alterations to the process
template it uses to create new Team Projects, which is what the rest of this
chapter is about.

Process Template Structure
The large collection of XML files and directories that are created when
you export a process framework to a process template can initially
appear intimidating. However, the key file you need to understand is
ProcessTemplate.xml, which you can find in the template’s root direc-
tory. This file is essentially a list of plug-ins, each with an identifier, a
description, and a reference to another XML file. The following plug-ins
are defined in the template belonging to MSF for Agile Software Devel-
opment (a.k.a. MSF for Agile):

• Classification—The Classification.xml file defines the Team Project
life cycle, which, in the case of MSF for Agile, is just a list of itera-
tions. You can add or remove life cycle items as the project proceeds
using the Areas and Iterations dialog box (Team | Team Project Set-
tings), so there is usually no need to alter this file.

• Groups—When a Team Project is created the TFS Project
Administrator group is created automatically. However, the
GroupsAndPermissions.xml file defines some additional TFS
groups, such as Reader and Contributor, together with their vari-
ous permissions. Again, there is usually no need to alter this file
because these groups and their associated permissions can be

Improving Your Process 111

NOTE

The various process templates available to your team are stored in the
TFS database. However, you can export this information as a set of
XML files which you can then modify before importing them back into
TFS in order to update the template.

administered from the Team menu after the project has been created;
see the section Administering Your Team Foundation Server Security
Settings, in Chapter 5.

• Reporting—The ReportsTasks.xml file defines the reports in the
Reports Site created for your Team Project. However, as you can add
additional reports to this site using SQL Server’s Report Designer
(see Exercise 31-2 in Chapter 31), there is no need to change this file.

• VersionControl—The source files, documents, and other items cre-
ated by your team. All this material is held securely on the TFS’s
version control database in a repository folder belonging to your
Team Project. The VersionControl.xml file contains the settings and
permissions necessary to access this repository, but as you can alter
most of these settings after the Team Project has been created (see
Section 3), there is seldom any reason to change this file.

• WorkItemTracking—All work that needs to be tracked in a project is
described by appropriate work items. The following work item types
are defined for MSF for Agile at the beginning of its WorkItems.xml
file: Bug, Task, Quality of Service (QoS), Scenario, and Risk. These
work items types are each defined by an additional XML file stored
in the TypeDefinitions folder. WorkItems.xml also contains a list of
queries appropriate to the types of work items in the project as well
as an initial list of tasks for the project.

• Portal—The Web site created to help the team run the project is
provided by Windows SharePoint Services (WSS) and contains the
initial list of document libraries, folders, and files defined by the
WssTasks.xml file. Most of this material is concerned with Process
Guidance.

Importing and Exporting Process Templates
You can export and import the process templates stored in your TFS data-
base from corresponding sets of directories and XML files on your hard
disk using the Process Template Manager shown in Figure 6-2.

Chapter 6: Improving Your Process Framework112

Exercise 6-3: Exporting a Process Template to Your Hard Disk As XML

After completing this exercise, you will have created on your local hard disk
the collection of XML files that define the MSF for Agile process template.

1. Log on to the DeveloperPC as Tom (Team Foundation Administrator),
start Visual Studio, and then connect to the OSPACS Team Project.

2. Open the Process Template Manager dialog box (Team | Team Foun-
dation Server Settings | Process Template Manager):

a. Select MSF for Agile Software Development from the list of
process templates.

b. Click Download to open a dialog box that allows you to select the
directory for storing your template files. Create the directory
C:\Tom\BSDAgile, and then select it.

c. Click Save to close this directory selection dialog box and export
the MSF for Agile process template as a collection of XML files
into c:\Tom\BSDAgile.

3. Close the Process Template Manager dialog box and log off.

Figure 6-2: Process Template Manager (Team | Team Foundation
Server Settings)

Improving Your Process 113

Exercise 6-4: Importing a Process Template from Your Hard Disk

In this exercise, you will alter the name of the process template exported in
the preceding exercise and then import its collection of XML files back into
your TFS before creating a new Team Project using this modified template.

1. Log on to the DeveloperPC as Tom (Team Foundation Administra-
tor), as described in the previous exercise.

2. Use a text editor (Notepad) to open the file ProcessTemplate.xml
within the directory containing the downloaded process template,
and then alter the “name” and “description” elements, which are in
the “metadata” section at the top of the file, so that they are unique
in respect to any other templates stored in your TFS.

3. Open the Process Template Manager dialog box (Team | Team Foun-
dation Server Settings | Process Template Manager):

a. Click the Upload button to open a dialog box that allows you to select
the folder containing your template’s ProcessTemplate.xml file.

b. Click the Upload button in this folder selection dialog box to copy
the template into your TFS database.

c. Close the dialog box.

4. Create a new Team Project (see Exercise 5-1 in Chapter 5), selecting
the template you have just imported. After you have finished, con-
firm that it appears in your Team Explorer window as expected.

5. Log off.

Chapter 6: Improving Your Process Framework114

TIP

It may seem strange to import a process template immediately after
exporting it. However, errors in the XML files that make up a process
template can be difficult to find, so make modifications in small steps
and check that your template still works after each modification.

Changing Your Process Template
In this section, we describe the general procedure for altering your process
template, but the nature of the changes will depend upon what you are
seeking to do. In this case, the OSPACS team is adapting the MSF for Agile
process template to make it more suitable for its use.

Exercise 6-5: Changing Work Item Types in Your Process Template

After completing the following exercise, you will have removed the QoS
and Risk work item types from the MSF for Agile process template and
renamed its Scenario work item type to “Story”. You will also have
removed the initial list of tasks created to help teams set up a Team Project
of this type.

1. Log on to the DeveloperPC containing the exported process tem-
plate directories and XML files created in Exercise 6-3.

2. Edit WorkItems.xml in the WorkItem Tracking directory so that
you can remove any unnecessary set-up tasks by deleting the cor-
responding WI sections in the WORKITEMS section. Tip: Search
for WI sections whose value for the field name System.Title begins
with “Setup:”.

3. Delete the QoS and Risk work item types in the WORKITEMTYPES
section at the top of the WorkItems.xml file.

Improving Your Process 115

NOTE

The fact that most changes to the process can only be applied when
you create a new Team Project limits your ability to make improve-
ments as the project progresses. Accordingly, teams that rely com-
pletely on VSTS for process management may find this restriction a
serious impediment to them working in a truly Agile way.

4. Add the new work item type, Story, by renaming the Scenario.xml
work item type to “Story.xml”, and then save your changes to
WorkItems.xml.

5. Rename the file TypeDefinitions\Scenario.xml to “Story.xml”, and
then edit this file so that you can replace all occurrences of “scenario”
with “story”. Save your changes.

6. Re-create the OSPACS Team Project from this modified process
template by deleting the existing Team Project (see Exercise 5-2 in
Chapter 5) and then repeating Exercise 6-4, as well as Exercises 5-1,
5-3, 5-4, and 5-5 in Chapter 5. You should also add the GuiTask work
item and query to your new OSPACS Team Project by repeating
Exercises 6-1 and 6-2.

7. Log off, as you have finished the exercises in this chapter.

CONCLUSION

Process improvement is the goal of any good software team, but in the case
of an Agile team, this usually results in less process, not more. You can see
this effect happening in Exercise 6-5, which shows how the OSPACS team
adapted the MSF for Agile process template to create the first version of the
MSF for XP template by removing various work items. In contrast, teams
that have a prescriptive process tend to add things to their process rather
than remove them, for every problem usually results in more process being
added to avoid its reoccurrence. This difference goes to the very heart of
what it means to be an Agile team, because by giving people responsibility

Chapter 6: Improving Your Process Framework116

TIP

Yet again, we emphasize the need to make changes to your process
template in a series of small steps. You should validate the template
after each change by importing it back into TFS and using it to create
a new Team Project.

for organizing their own work, you empower them to use their judgment
and expertise rather attempting to identify their actions for every possible
contingency.

Conclusion 117

TIP

Do not burden your team with unnecessary bureaucracy by adopting
a process that is too sophisticated for the work you are doing. Start
with a very simple process and then adapt it over the years with the
goal of making it simpler still.

Review of Section 2
Introduce Agile Development

TH E OSPACS T E A M undertook the following activities in an effort to
create a process that was suitable for itself and its work:

• Forming into an Agile team—The OSPACS team restructured
itself into a cross-functional OSPACS team that was located in the
same room.

• Learning about Agile—An expert Extreme Programming (XP) prac-
titioner helped the team understand what it means to have an Agile
approach to software development.

• Using the Visual Studio Team System (VSTS) process frame-
work—The team experimented by creating various types of process
frameworks and assessed its strengths and weaknesses.

• Creating its own process framework—The team adapted the MSF
for Agile template to fit better with the needs of the team and its
project.

Appendix C shows how the OSPACS team supported its new organiza-
tional structure by removing the old partitions which had separated the
offices of Sally, Tom, and Maggie from the area where the rest of the team
worked. In addition, the team put the poster shown in Table S2-1 on its
notice board in order to clarify its roles on this new Agile team.

119

Table S2-1: The OSPACS Team’s New Organizational Structure

Role Primary Responsibility People

Customer Sally

Developers Luke, Peter,
Sarah, Tom,
Maggie

Project Manager Mike

The Team’s Impressions

The team realized that its new process would not be perfect at the begin-
ning. However, the process framework the team had created would at least
allow the team members to make better use of VSTS during the next part
of their project.

Project Manager: Mike
“I agreed to take on the project manager role only when Tom assured me
that I would not need to spend hours gathering information and preparing
reports.”

Customer: Sally
“We should give this Agile idea a chance. I certainly like the idea of the
team working on the features that the business can sell rather than just the
stuff the techies want.”

Supports the project and provides its
interface with the rest of the organization

Say how the software will be imple-
mented, which means they must write
the code and prove it works

Says what the software must do and
verifies that these requirements are met
by creating suitable tests

Review of Section 2: Introduce Agile Development120

NOTE

People on Agile teams do not specialize in particular tasks or follow
the prescriptive procedures of a production line; they simply apply
themselves to whatever tasks are necessary for the delivery of valuable
software.

Developer: Maggie
“In the past, the time we took to create a release was determined by how
quickly I could complete my testing. Now that everyone can get involved
in this work, we should be able to eliminate this bottleneck.”

Developer: Tom
“I was really impressed by how little time it took me to create a Team Pro-
ject and set up all the team’s tools and infrastructure.”

Developer: Sarah
“Becoming self-organizing does mean proving ourselves worthy of being
allowed to take responsibility for organizing our own work. We need to
show that this results in a better job, done faster, and with fewer resources.”

Developer: Peter
“Adapting the MSF for Agile process template helped us feel that we actu-
ally owned the process. We just didn’t need a lot of the stuff it provided.”

Developer: Luke
“Anything is going to be better than the ‘no process’ situation we had
before.”

Agile Values

The work the team did in applying the Whole Team and Sitting Together
practices helped foster the following values.

Communication
Working together as a whole team promotes communication, as does the
practice of Sitting Together. This is necessary because a design team needs
to interact much more freely than other types of teams.

Feedback
Decision making now happens within the team, which shortens the feed-
back loop and therefore should make teams more responsive to change.

Agile Values 121

Courage
The cross-functional nature of an Agile team encourages people to work in
a spirit of mutual cooperation. This generates courage because people real-
ize they are not working alone and can share their responsibilities.

Simplicity
One of the strengths of an Agile team is the simple way in which it manages
its own work, so you must take care that introducing a tool such as VSTS
doesn’t compromise this virtue by introducing layers of needless bureau-
cracy. The fact that you can e-mail the whole team each time you alter some
code doesn’t mean that you should!

Respect
Making the customer a part of the team makes business and development
people work together, and this generates respect because they each gain an
understanding of their respective importance to the success of the project.

Review of Section 2: Introduce Agile Development122

Section 3
Use Version Control

V E R S I O N C O N T R O L I S a fundamental prerequisite for any sort of safe
development in a team-based environment. Chapter 7 introduces the

fundamental concepts of version control in terms of how it helps us man-
age changes to a shared code base. The next chapter explains how you
might set up version control for your project using the Team Foundation
Version Control (TFVC) tool, and this is followed by Chapter 9, which
explains how it is used. Finally, Chapter 10 suggests ways in which you can
police the use of version control, for without a few rules, your team cannot
hope to manage its code effectively.

123

Photograph by Darren McCollester (Copyright Getty Images, 2004).

Version control acts a bit like a traffic cop. It controls the way files
are moved in and out of the team’s repository.

Story from the Trenches

Unfortunately for the software industry, the millennium bug was a problem
that was all too easy for people to understand; after midnight December 31,
1999, the year would need to be represented by four digits, not just the
usual two. The required change seemed so trivial and the cost so huge that
questions were asked as to whether the millennium bug wasn’t masking a
more fundamental problem in the way computer systems were built and
maintained.

Early in 1998, I visited a well-known investment bank in London to dis-
cuss joining its millennium bug task force. The interview started with a
brief presentation from the senior manager who was heading up the task
force. He told me all about the bank’s proud history and the part its systems
played in the smooth running of the financial world. However, his initial
confidence evaporated as soon as we started to discuss the millennium bug
issue. I was given a printout showing the Y2K readiness of the bank’s var-
ious systems, and it was evident that it was in a mess. In order to fix the mil-
lennium bug, the bank would need to rebuild its systems, but the list
showed that some systems didn’t have any source code, while others had
source code versions that didn’t match the versions in production. This was
why the manager was so worried.

Many organizations around the world had the same problem; they were
simply unable to rebuild all of their production systems. Most of these sys-
tems hadn’t been touched for years because the need for them to change
had long since ceased to justify the cost of keeping their development teams
together. The project’s source code files were often on old tapes and floppy

Section 3: Use Version Control124

NOTE

Is it better to use term version control or source control? Clearly, the team
developing VSTS at Microsoft went through the same dilemma, as you
will find both terms used in the product. We decided to use the term
version control in this book because it reflects the fact that you can put
more things under version control than just your source files.

disks scattered around in cabinets and at the back of people’s desks.
Nobody really knew what versions of what files would actually re-create
the system. Typically, the code changes themselves were trivial. What took
the time was building a new version of the production code, and in many
cases, this proved impossible. Therefore, entirely new systems had to be
built which significantly increased the scope and cost of the work. In this
way, our industry learned the hard way that proper version control wasn’t
just about controlling changes to a file during its development; it was also
about safeguarding these valuable assets over their entire lifetime.

Most of what is written about version control relates to the way it allows a
single code base to be shared among a team. However, as the preceding story illus-
trates, version control has an equally important role in ensuring that you can
always rebuild your project from its source code.

Story from the Trenches 125

7
Managing Change

TH I S C H A P T E R E X P L A I N S the basic concept of version control and
introduces the essential terminology you must know when using tools

designed to help you manage and control a shared set of project files. There-
fore, all readers, regardless of their background, should be able to under-
stand the purpose of the features provided by the Team Foundation Version
Control (TFVC) system that are summarized at the end of the chapter. In
subsequent chapters, we will build upon this information to explain how
a small Agile team can make good use of the TFVC tool when implement-
ing version control for its project.

Sharing Information among Your Team

A software team generates lots of information, but only a small fraction
of it will eventually become part of the product it is developing. This is
because design is a process of discovery, and frequently you find out how
to do something only by generating information about how not to do it.1

Consequently, we often find ourselves refactoring code several times before
arriving at an acceptable solution; each time revising one or more code files.
And it isn’t just our source code files that change; bug reports, schedules,

127

1. [MTDF] Reinertsen, Donald. Managing the Design Factory (Simon & Schuster, 1997),
Chapter 4.

specifications, and all manner of other documents undergo a similar series
of revisions as the project progresses.

Why You Shouldn’t Keep Source Files in Shared Folders
Any software project involving more than just a few files maintained by one
person needs to consider change management, particularly in respect to the
project’s source code; otherwise, project files tend to end up in a shared net-
work folder (directory), which leads to the following sorts of problems:

• Fixing bugs—You spend all day changing a source file to fix a bug
and then copy it into the shared directory ready for the overnight
build. However, the next day your code changes don’t appear in the
product because someone else changed the same file and copied it
into the shared directory after you did.

• Controlling change—Anybody with access to the shared directory
can add new files, change existing ones, or even delete them; there’s
no record of who did what and why. One moment your project
builds without error, but the next it is broken and all you know is
that someone recently changed a few files.

• Distributing consistent changes to the team—A change in one file
often depends upon a change in another; for example, adding a text
box to MyForm changes both MyForm.cs and MyForm.resx. How-
ever, in a shared directory, there’s no mechanism to tie these changes
together, so a developer might not update both files; consequently,
the rest of the team gets only part of the change.

• Making backups—There is no point in backing up a set of source
files unless they are consistent and can be used to rebuild the soft-
ware without any errors: You need to create backups that work.
Unfortunately, in a shared directory, there’s no guarantee of this.

• Rolling back—When a bug is discovered you might want to return
the project to a working state by restoring the shared directory from
a backup, thus rolling back the changes that caused the problem.
However, if you have to roll back several days to find a backup that
works, you lose a lot of code.

Chapter 7: Managing Change128

In software development, version control is a big issue because you are
potentially managing changes made by many people across hundreds of
files, all of which are intrinsically interrelated. You cannot approach this
task in the same way you might share a Word document among a group of
reviewers. You need to have proper procedures supported by an appropri-
ate version control tool.

Keeping Source Files in a Repository
A version control tool provides your team with a central repository to keep
its project files safe and to manage the changes made to them. You can
think of a repository as being like a special sort of filesystem which can be
accessed using only your version control tool. For example, the Team Pro-
ject Wizard uses TFVC to make a root folder (see step 6 of Exercise 5-1, in
Chapter 5), and your team then uses the TFVC tools to fill this root folder
with the files and directories it wants to share. In small projects, your team
might have just one such directory and a few source files, but in large proj-
ects, there may be dozens of different directories and hundreds of files to
control.

The repository will normally reside on a server that is accessible to all
members of the project team. The version control tool’s “checkout” func-
tion copies all the project’s files from this repository to a directory on your
PC that becomes your workspace (also known as the working folder or
working copy). Subsequently, you use the version control tool’s “get lat-
est version” function to resynchronize this collection of files with the
repository, thereby keeping your workspace up-to-date with the changes

Sharing Information among Your Team 129

NOTE

Effective version control does not result from putting an expensive tool
on your team’s desktops. It results from the team understanding why
version control is important and then working in a way that makes
good use of such a tool.

that fellow team members made to the project files. Conversely, when you
want to make the changes in your workspace directory available to the rest
of the team, the tool’s “check-in” function will upload into the repository
your new (or changed) files and directories. You don’t have to remember
which files you’ve altered in your workspace directory because the version
control tool will typically track the changes you’ve made and apply them
to the repository as a single changeset to ensure their consistency; see Exer-
cise 8-3 in Chapter 8.

Although a version control tool often has a large number of other func-
tions, most of the time you will simply cycle through the following sequence
(see Luke’s actions in Figure 7-1):

• Update your workspace from the repository; get latest version.

• Edit, build, and test these files on your computer.

• Put the files back into the repository to share your work; check-in.

A version control tool allows you to add a set of files to a project folder
in your repository and then apply a sequence of changesets to them. Every
time a changeset is applied to the repository, the files it contains are
stamped with a unique number. In this way, the task of software develop-
ment becomes little more than applying a series of discrete changes to
progress the team’s shared code (and tests) from one version to another.

Chapter 7: Managing Change130

2. Subversion Web site (http://subversion.tigris.org).

NOTE

The preceding terminology applies to TFVC, but other version control
tools often have different names for these functions. For example, the
Subversion2 tool uses “Update” instead of “get latest version” and
“Commit” in place of “check-in”.

Figure 7-1: Version control tools helping a team of people to share a file

Shared Code Practice
Shared code means the system’s source code doesn’t belong to individu-

als; it belongs to the team. There are no off-limits areas in the code base,

so everyone is able, and indeed expected, to make improvements when-

ever the opportunity arises.

On a team using the Shared Code practice, there’s no finger-wagging

about who wrote a bad bit of code; it’s just quickly rewritten to make it bet-

ter. In this way, the quality of the entire code base is allowed to continu-

ously improve. It’s a case of tidying up as you go, rather than letting the

code base get into such a state that months need to be scheduled for doing

little else but working through a long list of essential renovations. The

Shared Code practice helps distribute knowledge about code throughout

TFS
Repository

Luke

Peter

Sarah

V99

Form1.cs

V99

Form1.cs

v99

Form1.csV100

V100

Form1.cs

Get Latest @ 9:10 a.m.

Get Latest @ 9:00 a.m.

Check-in @ 9:15 a.m.

Get Latest @ 9:20 a.m.

Edit, Build, Test

1.

2.

3.

4.

START 9:00 a.m.

END 9:20 a.m.

2.2.

2.3.

4.

2.1.

Sharing Information among Your Team 131

Continues

the team. It naturally widens the scope of what people have worked on and

so avoids black holes, areas of code that are the sole preserve of one or

two individuals. The Shared Code practice is about learning to play nicely.

It is a key differentiator between a group of individuals employed on a proj-

ect and a team working together.

A first step toward implementing the Shared Code practice is doing pair

programming, as all production code is then written by two people, not just

one, which helps break down the habit of people owning the code they

write. However, before extending the Shared Code practice to the point of

allowing anyone to change any code at any time, you need to put in place

various other practices and conventions:

• Put all source code files under proper version control because this pro-

vides the essential mechanism that allows team members to share a

common set of files and reverse any individual changes that later prove

problematic.

• Implement the Continuous Integration practice so that any conflicts

between the changes made by different people are quickly identified

and fixed; see Chapter 12.

• Use test-driven development (TDD) to help you safely make your

changes by providing a comprehensive set of tests to find any unex-

pected side effects which might break the program; see Section 5.

• Adopt a common set of coding standards to make the coding style con-

sistent. This avoids situations such as when two people repeatedly

change the same code because they can’t agree on the common place-

ment of curly brackets; see Scott Ambler’s essay, “Coding Guidelines.”3

You know when you’ve implemented the Shared Code practice properly

because there is a sense of collective responsibility for the team delivering

quality code that works.

Chapter 7: Managing Change132

3. Scott Ambler’s Coding Guidelines (www.ambysoft.com/essays/codingGuidelines.html).

Using a Version Control System

Many different types of version control systems are available to developers.
You may have already encountered products such as Microsoft’s Source-
Safe and open source projects such as CVS4 and Subversion. Most version
control systems have a common feature set and differ primarily in areas
such as price, reliability, and ease of use. Therefore, let’s review the ways
in which a version control system is commonly used before looking at the
specific features of TFS version control.

Security
The central repository is controlled so that only authorized users can access
the files it holds. Usually, each user’s access is limited to areas of the repos-
itory that contain the files related to their projects. For example, the Team
Project created in Exercise 5-1 in Chapter 5 made a folder called $/OSPACS
in the TFS version control repository, and only people who have been made
members of the OSPACS team can access it. All files in the OSPACS project
added to version control are put into this folder, or one of its subfolders.

Using a Version Control System 133

NOTE

Chapter 10 describes how the TFVC helps enforce a team’s coding
standards by requiring people to verify their source code files with
the VSTS Static Code Analysis tool before checking them into the
repository.

4. CVS documentation (http://sourceforge.net/docs/E04/).

NOTE

You can implement security using a security service provided by the
version control system itself or by using the security mechanisms of
the underlying operating system.

Frequent Integration
Efficient use of version control depends upon everyone agreeing that they
will check in only working code. This means you must always test the soft-
ware on your own PC before checking in your changes. When everyone fol-
lows this rule, anyone can check out the project files at any time and get a
collection of files on her PC that she can build into a working product.
Inevitably, though, someone will check in files that haven’t passed all the
tests, so the latest set of files in the repository will contain errors. Therefore,
it is good practice to have a central machine that automatically updates,
rebuilds, and tests the team’s software regularly throughout the day. This
allows you to quickly detect such errors and fix them before they propagate
to the working copies on everyone’s machine.

Atomic Check-in
When a changeset (a collection of files) is checked into the repository, it is
important that the operation is atomic; either all the files in the changeset
are checked into the repository or none of them is checked in. This is
because changes in one source file often depend on changes to another;
therefore, a collection of changes must be made consistently. Otherwise,
you might not be able to rebuild the products.

Rolling Back Versions
When a problem is detected in the contents of the repository, the version
control tool makes it very easy to restore the file collection to some previ-
ous working state. This is because the repository records each changeset

Chapter 7: Managing Change134

NOTE

Agile teams often perform continuous integration, which means that
a central build machine (BuildLab PC) rebuilds the team’s software
after each check-in. In this way, each developer’s changes are verified
almost as soon as they have been made; see Chapter 11.

that is applied so that you can undo the changes simply by rolling back
a sequence of changesets. Each time a changeset is applied, a new version
number (sometimes called a revision number) is created for the reposi-
tory; therefore, rolling back simply returns each file to its state at a previ-
ous version.

The repository never deletes a changeset, so the version control tool
allows you to roll back the workspace on your PC from, say, version 100
(with the error) to version 99 (without the error). You might then reim-
plement the feature correctly, test it, and check in the changes to create
version 101. In this way, anyone can subsequently investigate this error
simply by checking out these versions and comparing them. The error is
contained in the difference between the files at versions 100 and 101; see
Figure 7-2.

Storing Deltas
Although you can store any type of file in your project’s repository folder,
version control tools are usually optimized for handling standard text files.
This means that when you check in a source code file, the tool will find the
lines that have actually changed and then record them in what is known as
a delta. Conversely, when you check in an image file (JPEG) the entire file
must be recorded because the same tool is unable to determine the pixels
you have changed. It is clearly more efficient to store changes to source
files as deltas because seldom do you alter more than a few lines in your
code at a time. Storing changes in this way also allows you to use certain
special features of your version control tool, such as diff or merge, as we
will discuss next.

Using a Version Control System 135

NOTE

Deltas allow a changeset to become simply a list of files and the con-
tents of the lines that have changed in each of them. In this way, your
team can apply thousands of changesets without consuming huge
amounts of storage.

Figure 7-2: Version control tools rolling back a file to a working state

Locking and Merging
On a team, there is always the potential for conflict when more than one
person works on the same file at the same time. To help resolve such prob-
lems, locks are applied to the files held under version control to ensure that
write access to them is suitably controlled. There are basically two
approaches to locking files: single-checkout and multiple-checkout.

In the single-checkout approach (also known as strict locking), the lock
is applied when the file is checked out, so once you’ve altered a file in your
workspace, it effectively becomes a read-only file in everyone else’s work-
space. Different version control tools achieve this goal in different ways, but
the idea is the same: the first person to change the file applies a lock that is
released only when it is checked back into the repository. Single-checkout
can waste a lot of time when different people frequently change the same
file, because they will each have to wait for it to be checked in before they
can make their alterations.

The other approach to locking files under version control is the multiple-
checkout approach (also known as optimistic locking). It prevents you from
checking in a file when the version in the repository is later than the version

Version
100

4. Roll Back

Version
101

Version
99 3. Check In

Version
99 6. Check In

Form1.cs

Form1.cs Form1.cs

Form1.cs

Version
99

Form1.cs

1. Check Out

REPOSITORY

2. Edit: if (x = y)

5. Edit: if (x == y)

PC

Chapter 7: Managing Change136

last copied into your workspace—in other words, the version of the file that
you altered and are now attempting to check in. You can resolve this problem
simply by updating your workspace to get the latest changes to the file from
the repository, reimplementing your changes, and then again trying to check
in the file. Multiple-checkout means that many people can edit the same file at
the same time, and this can significantly speed up the pace of development.
However, it comes at the cost of having to merge your changes with those
made by anyone else who checked in the file before you. Fortunately, when
you update your workspace, the version control tool is smart enough to notice
whether you’ve changed a file that it is attempting to update, and rather than
just overwriting it with the latest version from the repository, it will prompt
you to merge the two files together (and even volunteer to do the job for you).

Multiple-checkout usually works well in practice because people tend to
work on their own tasks, so usually they need to change different parts of
the file. For example, if Luke and Sarah had updated their workspaces at the
same time and now both were editing version 99 of the file app.cs, Luke
might alter line 55 to fix a bug in the app.print method while Sarah might
change line 86 to correct a problem in the app.backup method. In such cir-
cumstances, the changes are totally independent, so after Luke checks in his
changes to create version 100, Sarah can update her workspace and then let
the version control tool automatically merge this new version of app.cs with
the one in her workspace. Effectively, this adds Luke’s changes at line 55 to
Sarah’s changes at line 86. After creating this merged app.cs, Sarah would
then build the software on her own PC and run the unit tests (see Section 5)
to assure herself that all was well before checking the file into the repository
to create version 101. If anyone wanted to know what Luke and Sarah had
done to fix these separate bugs, he could use a tool such as diff to compare
version 99 of app.cs with version 101; see Figure 7-3.

Using a Version Control System 137

TIP

Work on just one project at a time and keep all its files in a single work-
space directory on your PC. Regularly update this workspace and
promptly check your changes back into the repository to minimize file
conflicts with other team members.

Figure 7-3: Visual Studio version control diff tool (File | Source Control | Compare)

Multiple-checkout is very effective when you have a version control tool
with these diff and merge features for the types of files you’re attempting to
manage; usually text files containing version code. It is less effective when
you’re using files that are not supported by the tool’s diff and merge fea-
tures, such as image (JPEG) files, for example. For this reason, VSTS allows
you to select the type of locking used for each type of file in your project
(Team | Team Foundation Server Settings | Version Control File Types) as
well as select different types of merge and diff tools for them.

Labeling and Branching
Version numbers allow the version control tool to identify your changesets
so that, when necessary, you can roll back the changes made to your proj-
ect files and restore them to some previous state. However, sometimes the
collection of project files reaches a particularly noteworthy state, such as
when you can build them into a product which may be released to the busi-
ness. Although you might remember these significant version numbers, it
is better to use the version control tool to “label” the contents of the repos-
itory at such points in your project. You might, for example, label the lat-
est versions of all the files in your team’s repository as “Release 1.0.3”. This
would allow you to roll back to this state in the future by specifying the
label name rather than trying to recall the correct version number of
the individual files.

Chapter 7: Managing Change138

Most version control tools support a feature to allow the creation of sep-
arate lines of development called branches (see Figure 7-4). Essentially, this
allows you to make a separate copy of your repository so that you can
develop the code base in more than one direction at the same time. For exam-
ple, most of your team might be working with the “main” branch (trunk)
while a smaller group works with the “Release 1.0.3” branch to fix some bugs
in your last release. However, working with multiple branches of develop-
ment can be challenging, so we suggest that you consider the alternatives (see
the Single Code Base Practice sidebar) before creating a branch; often you
will find that creating a label is a simpler way to achieve the same objective.

Figure 7-4: Timeline showing the creation of labels and different code branches

Team A and Team B
reunite and merge their

code branches.

Combined team
releases some bug fixes.

Team A releases
some bug fixes.

Customer X Branch

r1.0.3 Branch

Trunk

rx1.0.2 Branch

Label: rx 1.0.2.1

Label: X 1.0.2

Label: Release 1.0.3

Label: v1.0.4

Label: v1.0.2

Label: v1.0.5

Label: v1.0.3.1 Label: v1.0.3.2

10 Jan 5 Mar 11 Mar 25 Mar 2 April

Split into Team A and
Team B, each with their

own code branch.

Team A creates general release
and another branch for its

bug fixes.

Combined team
releases some bug fixes.

Team B releases to Customer X
and creates another branch for

its bug fixes.

Using a Version Control System 139

TIP

Use the file AssemblyInfo.cs to link the version labels in your reposi-
tory to the executable files you deploy. This file is automatically gen-
erated when you create a Visual Studio Project, and it defines the
assembly’s file version number in a form such as “1.0.0.0.”

Single Code Base Practice
The Single Code Base practice means that VSTS version control manages

just one main line of development for your Team Project, so all shared code

(and test) files relate to a single representation of the system under devel-

opment. Therefore, you avoid creating different sets of files (i.e., branches)

for particular customers, special releases, and so forth.

Code duplication is an evil that most developers spend a considerable

amount of time trying to eradicate; refactoring (Chapter 15) is concerned

with eliminating duplication, and so are many design patterns. It seems

crazy, therefore, to undo all this good work by creating a parallel develop-

ment branch that duplicates your entire code base. Multiple lines of devel-

opment mean that once you’ve fixed a bug in one branch, you have to do

exactly the same work in another branch. Each branch will have its own

integration problems (Chapter 11), so one fix soon becomes many fixes.

The difficulties of keeping these multiple code branches synchronized are

exceeded only by the problems of merging them back together at some

point in the future. Most people who have ever worked for any significant

amount of time with multiple code branches will tell you the same thing:

Don’t do it; find another way!

Implementing the Single Code Base practice is a matter of seeking alter-

natives whenever you’re tempted to create a code branch. If you’ve inher-

ited a product with more than one code branch, you need to address the

reasons they arose so that you can find ways to reunite them; if necessary,

Chapter 7: Managing Change140

WARNING

The management of your team’s source code becomes more complex
once you start creating additional branches, so you need to take par-
ticular care to follow a consistent system of labeling; otherwise, it can
be difficult to keep it under proper control.

do this one branch at a time. Let’s look at some of the common reasons peo-

ple cite for creating a code branch and the alternatives they might have:

• Release branch—Development continues in the main branch while a

small team prepares the code in a release branch for customer deploy-

ment. Alternative: Make the product ready for release at the end of

each iteration (see Chapter 11).

• Branch for each customer—There are separate development branches

to customize the product for each customer. Alternative: Make code

execution depend upon certain configuration settings.

• New-product development—One team continues to maintain the exist-

ing product while another works on the next-generation product. Alter-

native: Split the code base according to certain well-defined interfaces

so that both teams can work on their own set of independent compo-

nents for both the new and the old product.

It’s not always a bad idea to make a code branch. For example, you might

want to create a temporary branch to try out an idea or to do some major

refactoring. This allows you to keep your work safe in the VSTS repository and

perhaps even make it available to a few other members of the team. However,

your temporary branch should not contain shared code in the sense of the

Shared Code practice; you might need to discard this code if the cost of its

maintenance becomes too high or if its reunion with the main code line seems

too difficult. There are other justifiable reasons for creating a separate code

branch, but you must always carefully consider the alternatives before tak-

ing such a step, particularly if the branch might have a long life.

Using a Version Control System 141

NOTE

The TFVC tool supports the idea of people creating temporary code
branches with its “shelve” feature, which we describe in Chapter 9.

Software Configuration Management
In order to properly establish and maintain the integrity of your project’s
software products throughout their development life cycle, you need to
look further than just managing your source code. You need to consider
everything that makes your software products what they are: the setup of
your development environment, the bug reports and feature requests (sto-
ries), the third-party libraries, and so forth. All these things play a part in
driving your project forward, so you need to include them in your change
management strategy.

One of the ways you can implement a change management strategy is
to introduce some form of Software Configuration Management (SCM).
Essentially, this involves establishing a baseline to define the current con-
figuration of your project and then managing all subsequent changes to this
baseline until you establish a new baseline, at which point you repeat the
process. In this way, the entire history of your project can be traced simply
by looking at a series of baselines and the changes that made them happen.
It is a matter of extending the concept of a changeset to include not just the
source code, but also all the things that cause your project to progress.

There is considerable interest in SCM because it gives people detailed
information about the progress of a project. This information helps the team
understand what is happening so that it can better control the project. A
report, for example, might show that the number of outstanding bug
reports increased significantly between one baseline and the next; infor-
mation that might prompt an investigation so that the underlying cause can
be identified and resolved. Some projects, particularly those with formal
auditing and traceability requirements, put you in the realm of sophisti-
cated SCM practices. However, for other types of projects, you might be

Chapter 7: Managing Change142

NOTE

Our story about the millennium bug at the beginning of this section
illustrated the cost of failing to manage the configuration of your soft-
ware properly.

able to implement SCM effectively enough for your needs just by taking the
following steps:

• Uniquely identify items—Establish the current configuration by
identifying all the things you need in order to make your software
products in some form of list that will form the baseline. Your source
code, for example, may be identified by a label, your tools and third-
party libraries can be identified by their product versions, and so
forth. A Word document (BuildNotes.doc) might be a good way to
keep such a list, and when the file is added to your repository, its
version number effectively defines the baseline.

• Review items before baselining—Set up a procedure so that items
are reviewed before they are baselined. You might require, for exam-
ple, that all source code files pass their unit tests before they are
checked into the repository. You might also require a colleague to
peer review your work before checking it into the repository; see the
Pair Programming practice in Chapter 2. Such reviews ensure the
quality of the software product at each baseline.

• Implement change control—Set up a mechanism so that all changes
to the project are made according to an agreed protocol. You can
achieve this simply by ensuring that everyone on the team uses the
version control tool to make her changes to the project. VSTS can
then be configured to police these procedures as well as the review
process; see Chapter 10. This may avoid the need for you to set up a
formal Change Review Board.

• Secure storage in a repository—The source code, tests, bug reports,
stories, build notes, project files, and so forth need to be kept safe
and secure. The repository provided by TFS version control has a
facility to audit and control user access, so it is ideal for this purpose.

Although SCM can bring significant benefits in terms of better control-
ling and understanding your project, also be aware that it can encourage
just the sort of heavy reliance on software process that an Agile project is
seeking to avoid. It is easy to get carried away and create a bloated bureau-
cracy of change requests, sign-offs, and endless documentation. Therefore,

Using a Version Control System 143

Agile teams should seek guidance from sources such as Berczuk and
Appleton5 and then focus on those aspects of SCM that actually help them
produce better software.

VSTS Support for Version Control Tools

Now that we have dealt with the basic concepts of version control, we can
sensibly describe the support that VSTS provides for version control in
terms of the way different tools can be integrated with your Integrated
Development Environment (IDE), the features of the new TFVC tool, and
support for teams that are not using Visual Studio. In this way, you should
get some idea of the options that are available to your team when manag-
ing and controlling the changes to its project files.

Integration with Visual Studio
The integration between your version control tool and Visual Studio is
achieved using various published interfaces.6 Therefore, vendors other than
Microsoft can provide version control tools that offer a high degree of inte-
gration with your IDE simply by developing a standard plug-in component.
Indeed, the TFVC tool is integrated with Visual Studio in exactly this way,
as is Microsoft’s original version control tool, SourceSafe.7 Therefore, it is

Chapter 7: Managing Change144

5. [SCM] Berczuk, Stephen P., with Brad Appleton. Software Configuration Management
Patterns (Addison-Wesley, 2003).

6. Microsoft publishes details of these SCCI and Visual Studio Industry Partner (VSIP)
interfaces to its technology partners.

7. Microsoft Web site for Visual SourceSafe 2005 (http://msdn.microsoft.com/vstudio/
products).

WARNING

It is almost impossible to retrospectively apply SCM. Therefore, talk
with your customer about change management at the start of every
project, decide on a suitable strategy, and then take expert advice as
needed.

quite feasible for your team to use a version control tool other than TFVC
with VSTS.

TFVC Features
Team Foundation Version Control is an entirely new version control system
that uses a SQL Server database as its file store rather than relying on the
specialized directory structures found in products such as Microsoft’s
SourceSafe and Subversion. TFVC also provides close integration not just
with the Visual Studio Client Tier, but also with the rest of VSTS by using
the Version Control Service in the TFS Application Tier; see Figure 12-1 in
Chapter 12.

TFVC is an enterprise-level product which Microsoft claims has been
successfully used on a number of large projects to support hundreds of
developers. However, we feel it will serve small Agile teams (or even one-
developer projects) as well. In terms of the material we have covered in this
chapter, the various TFVC features can be summarized as follows:

• Project Repository—A central place where valuable project infor-
mation can be deposited for safekeeping. TFVS implements atomic
check-in and can restrict access to this repository to particular peo-
ple. However, you must establish your own procedures for backing
up and restoring its data; see the TFS Administrators Guide.8

• Undo—Each time a file is altered and checked into the repository, a
new revision is created and its changes are stored away. This means
you can use the TFVC diff tool to review how the contents of a par-
ticular file have changed revision by revision. It also allows you to

VSTS Support for Version Control Tools 145

NOTE

The Visual Studio Options dialog box (Tools | Options) allows you to
select other types of Source Control plug-ins.

8. TFS Administrators Guide (http://go.microsoft.com/fwlink/?LinkID=52459).

undo these changes when required by rolling back to a specific revi-
sion; see Exercise 9-4 in Chapter 9.

• Lock and Merge—TFVS supports both single- and multiple-check-
out, so you can work efficiently with other members of the team and
manage any conflicts that arise when more than one developer
attempts to work on the same file; see Chapter 9.

• Version labeling—Apply a label to a snapshot of the project files
at their latest revision in order to associate them all with common
events, such as a specific Team Build. You can subsequently check
out this particular version of the project files, effectively allowing
you to roll back the state of the project, as described earlier. How-
ever, such labels are also not applied to other TFS information stores,
such as the Work Item database.

• Branching—TFVS allows you to create multiple branches of your
code base and gives you a tool to help merge them together again.
This book does not discuss branching in any great detail because it
conflicts with the Single Code Base practice.

• Shelving—You can put all the files in your current workspace onto
a virtual “shelve” in the Team Project’s repository folder so that
you can check out another file collection into your workspace and
work on something else for a while; see Chapter 9. Shelves support
those interruptions that inevitably occur during development by
providing a secure way to save work that has not yet been built
and integrated.

• Check-in policy/notes/links to work items and builds—These fea-
tures may allow you to implement SCM by ensuring that source
code is reviewed and tested before being checked into the repository
and then linked to a specific build. They also give your project facili-
ties for auditing and traceability so that you can discover who made
what changes, when, and why.

• Remote access—Teams that are geographically separated can
gain remote access to shared code stored in the TFVC repository
by installing a proxy server to make best use of their network
connections.

Chapter 7: Managing Change146

We hope this list helps you compare TFVC with any other version con-
trol tools you may be considering. However, before deciding to use some-
thing different, you should investigate the sort of integration the tool offers
with other parts of TFS, for it is the close integration of tools that really dif-
ferentiates Visual Studio Team System as a product.

TFS Support for Eclipse and Other Types of IDEs
Some teams may decide to use TFVC for their Team Project repository, but
they may not want to use Visual Studio to access it. TFVC makes it possi-
ble to develop such a client by providing the necessary interfaces. Indeed,
a number of vendors have already created such products. For example,
SourceGear9 has developed Teamprise, which is a suite of client applica-
tions that access the source control and item tracking features of TFS from
the Eclipse10 IDE as well as from platforms such as Linux and Mac OS X.

CONCLUSION

Over the years, we’ve encountered a frightening number of teams that are
developing software without any form of version control and an even
larger number of teams that are using it as just a backup and restore mech-
anism for their source files. Let us be clear about this: Until your team is
using version control properly, you simply cannot work in an Agile way.

VSTS Support for Version Control Tools 147

NOTE

The contents of your Team Project’s Documents folder are managed by
Windows SharePoint Services, which has an entirely separate version
control system, so any label applied to the contents of your TFVC
repository will not be applied to these files.

9. SourceGear: access to TFS from Eclipse (www.teamprise.com).
10. Eclipse: open source IDE supported by IBM (www.eclipse.org).

This is why we discuss version control so early in the book. It is the first step
your team needs to take toward better software development, for it allows
your team to control the changes made to a common set of source files as
well as to manage the configuration of its software. The following chapters
in this section of the book explain how the TFVC tool can help your team
safely take this step.

Chapter 7: Managing Change148

8
Setting Up TFS Version Control

TH I S C H A P T E R E X P L A I N S how to set up an initial collection of files and
directories for your Team Project to provide a consistent structure into

which subsequent Visual Studio Projects and Solutions can be stored. We
introduce the Code and Test practice so that you can understand which files
you need to store in this structure, and we discuss the various ways in
which you can handle the archiving of third-party libraries. The chapter
concludes with some advice about importing source files and backing up
your repository as well as administering its settings and security.

Structuring Your Team Project

The Team Foundation Version Control (TFVC) system is set up during the
installation of Team Foundation Server (TFS) and its associated tools are
installed on your desktop with Visual Studio Team Suite (or the separate
Editions). Therefore, most of the work involved in setting up version con-
trol for your project is concerned with organizing your TFVC repository so
that everyone on the team can find things easily.

Production and Spike Folders
In Visual Studio Team System (VSTS), all root folders in the TFVC reposi-
tory must belong to a Team Project that reflects the fact that the primary

149

level of organization for material in the repository is the project team.
Teams are free to organize their part of the repository as they see fit within
this root folder, but we suggest you start by creating a division between the
material your team intends to deliver to the business and any nonproduc-
tion code or tests that it might develop from time to time.

Exercise 8-1: Creating Folders in Your Repository

The following exercise creates two folders called Production and Spike
immediately below the $/OSPACS repository root folder.

1. Log on to DeveloperPC2 as Peter (OSPACS Contributor), start Visual
Studio, and then connect to the OSPACS Team Project, as described
in Exercise 5-7 in Chapter 5; see Appendix A for details about this
PC and Peter’s security groups.

2. Open the Source Control Explorer (View | Other Windows), select
the $/OSPACS root folder created in Exercise 5-1 in Chapter 5, and
choose Get Latest Version from its context menu.

3. The Browse for Folder dialog box opens because you have not yet
defined a workspace directory on DeveloperPC2. Therefore, create
the directories c:\Peter\OSPACS for the workspace with the Make
New Folder button and then click OK to close the dialog box and
complete the Get Latest Version operation.

4. Select the $/OSPACS root folder in your Source Control Explorer
and create two new folders for $/OSPACS, named “Production”

Chapter 8: Setting Up TFS Version Control150

TIP

Apply the simple rule that only code developed according to the
team’s production standards and practices goes in the Production
folder hierarchy; everything else goes in the Spike folder.

and “Spike”, by choosing New Folder from the Source Control menu
(File | Source Control | New Folder).

5. Synchronize the repository with your workspace by repeating
step 2 so that the Production and Spike directories are created in
c:\Peter\OSPACS.

Agile teams often use the term spike when describing the prototyping
work people do to explore some aspect of their project. Normally a devel-
oper would store such code in a personal shelveset (see Exercise 9-6 in
Chapter 9) until it was no longer required, at which point it would be dis-
carded. However, we suggest you create a standard repository folder called
Spike in the root folder of your Team Project in order to emphasize the fact
that no code found in this folder can be used for production purposes.
Defining this folder at the start of your project will help ensure that this pol-
icy is upheld.

Organization of Visual Studio Solutions, Projects, and Directories
A Team Project is typically concerned with the development of software in
one or more Visual Studio Solutions, each of which contains a separate col-
lection of Visual Studio Projects. Your team should agree on a standard
directory structure in which to store these Solutions and Projects, as this
encourages people to place files correctly which then makes it easier for oth-
ers to find them. For example, the OSPACS team has two Visual Studio Solu-
tions: one for its image management product osImageManager, and another

Structuring Your Team Project 151

WARNING

The software produced during a spike should never be simply pasted
into production code. Instead, it must be completely rewritten using
production standards and practices agreed on by your team (e.g., Pair
Programming, Test-First Programming, etc.).

for its Web site product ospacsWeb. Therefore, the team might decide to
arrange the files and directories it is going to create for the osImageManager
Solution into the following structure within the $/OSPACS/Production
folder in its repository:

• osImageManager—Contains the Visual Studio Solution files that the
team needs to share:
– Db—Contains database scripts to rebuild the product’s database,

run queries, and so forth
– Documents—Contains team documents such as Release Notes

that need to be added to TFVC version control rather than put
into a SharePoint Document Library

– Help—Contains the files needed to create the product’s help file
(*.chm)

– Install—Contains the files needed to create the application’s
installation program

– Libs—Contains third-party libraries used by the application
– Src—Root for the various Visual Studio Projects that belong to the

Solution and so may be built together (Build | Build Solution):
– osImageManagerApp—Windows Forms app; the startup

project that provides the graphical user interface
– osImageManagerLib—Class library containing most of the code
– osImageManagerUT—Test Project containing unit tests for

the osImageManagerLib class library (see Chapter 12 and
Section 5)

– osImageManagerCT—Test Project containing generic tests
for the osImageManagerFIT class library (see Chapter 24)

– osImageManagerFIT—Class library containing the Framework
for Integrated Test (FIT) acceptance tests for osImageManager
(see Chapter 22)

– Utils—Miscellaneous scripts, batch files, and information needed
for development

Chapter 8: Setting Up TFS Version Control152

Exercise 8-2: Adding a Visual Studio Solution into a Directory Structure

In this exercise, you will make some directories for Peter in DeveloperPC2
and then create a blank Visual Studio Solution called osImageManager in
such a way that its files become mapped between Peter’s workspace direc-
tory and a corresponding folder in the repository.

1. Use Windows Explorer (or something similar) to create the directo-
ries shown in Figure 8-1 in Peter’s directory in DeveloperPC2. In
each directory, create the file index.txt so that you can document the
directory’s purpose.

2. Create a blank Visual Studio Solution for the osImageManager
product:

a. Select File | New | Project from the menu bar to open the New
Project dialog box.

b. Select Visual Studio Solutions in the Other Project Types node,
and then select Blank Solution.

c. Name the Solution “osImageManager” and click the Browse but-
ton to select the c:\Peter\OSPACS\Production directory created
in step 4 of Exercise 8-1. Check the box labeled Add to Source
Control and then click OK.

d. When the Add Solution to Source Control dialog box appears,
select the Production folder you created in Exercise 8-1, but leave
osImageManager as the solution folder name. Click OK to add
your blank Visual Studio Solution to version control.

Structuring Your Team Project 153

TIP

Consider creating an additional Visual Studio Solution only if you
have more than one collection of Visual Studio Projects that you want
to build as a unit. Projects that will be built together belong in the same
Solution.

Figure 8-1: Mapping workspace directories to repository folders

Deciding What to Put into Version Control
Once you have added a Visual Studio Solution or Project to version control,
most of the decisions about what to store are handled for you. When you
create a new class, for example, Visual Studio will automatically add its
associated file to version control. However, files in your workspace that you
wouldn’t normally want to share with the rest of the team are automatically
excluded from this process; for example, your personal Integrated Devel-
opment Environment (IDE) settings file (.suo), executables (.exe, .dll), and
the various build by-products.

Chapter 8: Setting Up TFS Version Control154

WARNING

Remember to put into version control not just the source code files
used to build the software product, but also files needed to create its
associated utilities and tools, as well as scripts used for things such as
data migration and database definitions.

Deciding what to put into version control and what to leave out is a mat-
ter of some debate among developers. On the one hand, there is the argu-
ment often made on large teams that every file needed by the project,
including all the development tools, should be put in version control. On
the other hand, there is the Agile practice of the Code and Tests practice.

Code and Tests Practice
Agile project teams concentrate on generating the things that drive devel-

opment forward; in other words, the executable tests that say “what” must

be done and the source code that says “how” these requirements are satis-

fied. The Code and Tests practice treats such test and source code files as the

primary artifacts of your project and, when possible, uses them to generate

other files and documents automatically as they are needed. In this way, you

avoid unnecessary information cluttering up your repository; information

that serves only to confuse people and provide a potential source of error.

Development projects tend to generate paperwork; often, the bigger the

project, the more paper generated. The Code and Tests practice is an anti-

dote to the bureaucracy that often arises when you attempt to drive a proj-

ect with documents. The problem is that software development is a

process of discovery, so documents quickly become out-of-date as require-

ments change, models improve, plans change, and so on. Therefore, as

the project progresses, you spend more and more time maintaining

documents, leaving less time for important stuff such as producing code

and tests. The Code and Tests practice addresses this problem by reducing

the project’s dependence on documents that need to be maintained.

Structuring Your Team Project 155

TIP

Use the Add to Source Control dialog box (File | Source Control | Add
to Source Control) to change the types of files excluded from version
control. Effectively, this edits the “hint” files belonging to your Solu-
tion (.vssscc) or Project (.vspscc).

Continues

Implementing the Code and Tests practice requires you to look carefully

at everything your project generates in order to determine which of these

things actually adds value to the customer. Code and test files are clearly

important because without them, you couldn’t deliver the product to your

customer. But what about a Class diagram? Would the customer notice if

you didn’t have a Class diagram in your repository? What documents could

you remove from the repository because they are redundant once the asso-

ciated code and test files have been produced? What documents could be

removed because they can simply be reverse-engineered from your pri-

mary artifacts? Working in this way, little by little you remove the excess

baggage that slows down the flow of value to your customer and wastes

your resources by making you perform needless maintenance.

Version Control for Team Documents
The documents associated with your Team Project, such as its vision state-
ment, are typically located in your Project Portal; see the list in Team
Explorer’s Documents folder. In this way, people can produce, edit, and
review this sort of material from their browser using just Windows Share-
Point Services (WSS) and the Microsoft Office applications.

Chapter 8: Setting Up TFS Version Control156

NOTE

The Code and Tests practice does not stop you from creating docu-
ments and models when they are needed, but it does require you to
discard them after they have served their purpose.

TIP

Use WSS version control to help your team share the documents stored
in its Project Portal by selecting an individual document in a Docu-
ment Library page and then clicking Check Out (or Check In) from the
associated drop-down list box.

Unfortunately, the documents in WSS are not actually stored in the
TFVC repository, though this may change in some future release. Therefore,
using your Project Portal for the purpose of controlling changes to team
documents means you end up managing two completely independent ver-
sion control systems. Accordingly, you cannot baseline all your project arti-
facts simply by applying a label to the TFVC repository because it will not
be applied to the documents in your team’s WSS file store. In fact, WSS
doesn’t even support the concept of applying a label across the contents of
its file store, so you must perform such actions manually for each file (in
other words, check the file out and then give your label as a comment when
checking it in again). For these reasons, we suggest that you put project arti-
facts into a SharePoint Document Library only when they are needed by
people who do not have Team Explorer; you should put everything else
into the appropriate folders of your Visual Studio Solutions so that they can
be stored by TFVC under proper version control.

An Agile team should not create a large number of team documents, but
there are some documents that are deliverable parts of the product or oth-
erwise are integral to its construction. Therefore, you might consider put-
ting the following sorts of documents into your Visual Studio Solution’s
Documents folder:

• License—You should never distribute any software without defin-
ing some form of license that secures your intellectual property
rights and states your liabilities in respect to the work. The license
file is just as much a part of the deliverables as an executable file is.

• Release notes—When installing your software, people usually want
to know something about it; for example, its target environment,
limitations, new features, and so forth. It is good practice to put
release notes into a readme.txt file in the root of your program’s
install directory.

• Vision statement—This explains the purpose of your program,
what it comprises, who might use it, and the benefits that it brings.
It’s a good idea to provide an external link to this type of document

Structuring Your Team Project 157

from the product’s help system, installation program, or download
Web page.

• Build notes—You should keep an up-to-date list of the tools and set-
tings in your development environment, paying particular attention
to details such as version numbers and license terms; see the Soft-
ware Configuration Management section in Chapter 7. Putting such
a file into your TFVC repository allows you to apply a label that
links the documentation of your development environment to a spe-
cific version of the code.

Archiving Third-Party Libraries
Even the simplest .NET program needs the libraries that come with the
Common Language Runtime (CLR), and therefore the issue of managing
third-party libraries is something that every team needs to address.
Broadly, your options are as follows:

• Install the library separately from your product—Let the third
party manage the issue of installing its libraries in your various
software environments, as well as the tasks of development, build,
test, production, and so on. In this case, you simply need to add a
section to your build notes explaining where to obtain the third-
party library and its installation instructions. You also need to make
installing the library a prerequisite in your product’s release notes,
much like the operating system, and so on. It is usually better to

Chapter 8: Setting Up TFS Version Control158

TIP

You can link labels applied to TFVC to the documents stored in WSS
by creating a file in your Visual Studio Solution’s Documents folder
into which you can manually enter the names and version history of all
the files stored in your team’s Project Portal.

keep these types of third-party libraries on disks or network drives
rather than attempting to store them in your version control system.

• Install the library with your product—Add the library’s redistrib-
utables (.exe, .dll, .msi, .msm) to your product’s installation pro-
gram, but let the third-party vendor take responsibility for building
them. You should add a section to your build notes describing the
library; its provenance, version, names and locations of its redistrib-
utable files, and so on. You may also need to add a section to your
release notes describing its license terms, copyright notices, and so
forth. We advise adding these sorts of libraries to your version con-
trol system by putting them in the Solution’s lib directory. In this
way, you can always rebuild a particular version of your product
and be sure that the correct versions of the third-party libraries are
included in its installation program.

• Build the library separately from your product—You take responsi-
bility for building the third-party redistributables from their source
files, but this is done in a separate Team Project. You then add the
redistributables to your product’s installation program (as described
earlier). In effect, you’re taking on the role of the library developer
or passing on this work to another team in your organization. This
approach works well if the adaptation of the third-party library fol-
lows a different release cycle than that of your own Team Project.

• Integrate the library with your product—Put the source files of the
third-party library into a Visual Studio Project (or Solution) associ-
ated with your Team Project so that it has the same release cycle as
your other code. You should consider this approach only if you’re
going to make extensive adaptations to the third-party code through-
out your product’s life cycle, because managing third-party libraries
in this way often makes it difficult to resynchronize your version of
the library’s code with any periodic updates and patches supplied by
the vendor.

Structuring Your Team Project 159

Establishing the Initial Baseline for Your Project

At the start of a project, you should create the initial set of directories and
projects your team needs to begin its first iteration. In the case of the
OSPACS team, this involves making the standard set of directories dis-
cussed earlier and then adding into this structure a couple of new Visual
Studio Projects: one for the user interface code and another to act as the
main class library. After checking this work into the repository, the team
will apply a label to the repository in order to baseline the initial state of its
project.

Adding Files and Directories to Version Control
When you create a Visual Studio Solution (or Project) you can automatically
add the files and directories that are created to version control just by set-
ting a checkbox; see step 2c of Exercise 8-2. However, you can also manu-
ally add specific files and directories to the folders in your TFVC repository.

Exercise 8-3: Adding Existing Files and Directories to Version Control

This exercise adds the directories and files you created in Exercise 8-2 into
corresponding folders in your team repository. It also creates a Documents
folder in your Visual Studio Solution and populates it with the files in your
repository Documents folder so that you can access them from your IDE in
the same way as your team’s source files.

Chapter 8: Setting Up TFS Version Control160

NOTE

Using third-party libraries (.dll) in a Windows environment can be
challenging due to the difficulties of managing different versions of the
same library when they are shared by different applications; the noto-
rious DLL Hell described by Don Box.1

1. [ECOM] Box, Don. Essential COM (Addison-Wesley, 1998).

1. Open the Source Control Explorer (View | Other Windows) and
select the osImageManager folder, which you will find in the
$\OSPACS\Production folder; see Figure 8-1.

2. Open the Add to Source Control dialog box (File | Source Control
| Add to Source Control) and then add the Documents directory
(created in step 1 of Exercise 8-2) to your repository by taking the
following steps:

a. Click its Add Folder button to open another dialog box called
Browser for Folder so that you can find and select the Documents
directory. Close the Browser dialog box.

b. Click OK to close the Add to Source Control dialog box and add
the Documents directory as well as its contents (index.txt) to ver-
sion control.

3. Repeat the preceding step to add into the OSPACS repository the
other directories which you created in your workspace to define the
team’s standard directory structure; see Figure 8-2.

4. Create a Documents folder for your Visual Studio Solution by taking
the following steps:

a. Open your Solution Explorer window (View | Solution Explorer).

b. Select the root item in this window (osImageManager); right-click
to open its context menu and then select Add | New Solution
Folder (i.e., Right-click | Add | New Solution Folder).

5. Add the contents of your workspace Documents directory (created
in step 2) to the Documents folder for your Visual Studio Solution
(created in step 4) as follows:

a. Open the Add Existing Item dialog box by selecting the Docu-
ments folder and choosing Add | Existing Item from its context
menu (Right-click | Add | Existing Item).

b. Use this dialog box to select the file Index.txt in your workspace’s
Document directory, and then add it to the corresponding Visual
Studio folder by clicking OK.

Establishing the Initial Baseline for Your Project 161

Figure 8-2: Source Control Explorer (View | Other Windows)

When you create files and directories using Visual Studio, you do not
usually have to add them manually to your TFVC repository, because the
changes you make in your workspace are being monitored and a change-
set is created for you in your Pending Changes window; see Figure 8-3.
Exercise 8-4 shows how this works.

Chapter 8: Setting Up TFS Version Control162

WARNING

You cannot put an empty directory into the TFVC repository, so we
suggest you create the file index.txt in each folder in your project’s
directory structure to overcome this limitation. This file also serves to
document the purpose of each directory.

Figure 8-3: Pending Changes window (View | Other Windows)

Exercise 8-4: Adding a Visual Studio Project into a Directory Structure

This exercise continues from Exercise 8-3 and creates a Visual Studio Project
in your workspace, which results in a collection of files being added to the
Pending Changes window.

1. Create a new Visual C# Windows Application project by opening the
New Project dialog box (File | New | Project) after selecting the
appropriate template, so you can:

a. Name your new project “osImageManagerApp”.

b. Set its location as the Src directory in Peter’s workspace (created
in Exercise 8-2).

c. Select Add to Solution from the drop-down list so that it will be
added to your existing Visual Studio Solution. Click OK to com-
plete this task.

Establishing the Initial Baseline for Your Project 163

2. Repeat the preceding step, but this time, add a Visual C# class
library project called “osImageManagerLib” to the osImageManager
Solution so that you have somewhere to develop the classes that
will eventually implement the functionality for your product; see
Chapter 14.

3. Confirm that everything has been implemented correctly by build-
ing the osImageManager Solution (Build | Build Solution).

Check In and Label the Baseline
After you have created your project’s initial directory structure, it is a good
idea to check it into the repository and apply a label that identifies it as your
initial baseline. This procedure should then be repeated as the project
reaches each milestone or significant moment in its history. In particular,
you must ensure that your project is labeled in this way at the end of each
iteration.

Exercise 8-5: Checking In Pending Changes and Creating a Baseline Label

This exercise continues from Exercise 8-4 by checking in all the changes you
have made in this chapter and applying a suitable label.

1. Open the Pending Changes window (View | Other Windows) and
enter a suitable comment before clicking the Check In button to add
your new solution, its projects, and the directories you have created
into the repository within the $\OSPACS\Production folder.

Chapter 8: Setting Up TFS Version Control164

WARNING

Once you have checked in your changes, the files and directories in
your workspace will be copied into the TFVC repository and will
become available to other people on your team, so you must always
make sure your software works before clicking the Check In button.

2. Apply a label to this version of the OSPACS software by taking the
following steps:

a. Open the Choose Item Version dialog box by selecting $/OSPACS
in the Source Control Explorer and choosing Apply Label from its
context menu (Right-click | Apply Label).

b. Select OSPACS, “all files,” and “latest version” in this dialog
box before clicking OK to open the Apply Label dialog box; see
Figure 8-4.

c. Type a suitable label and comment into the Apply Label dialog
box before clicking OK to close it, and apply your label to reposi-
tory items you have selected.

3. Log off, as you have now finished all the exercises in this chapter.

Figure 8-4: Apply Label dialog box (File | Source Control | Label)

Establishing the Initial Baseline for Your Project 165

Other Set-Up Tasks

After your team has set up the initial Visual Studio Solutions, Project, and
directories it needs, there are usually a number of other issues to address
before work begins, such as importing existing software into the project,
setting up options and security, and defining a process to back up (and
restore) your Team Foundation Server.

Importing Source Files
The basic task of adding some existing files into your team’s version control
folders is not difficult; see Exercise 8-3. However, you need to take care that
all information relating to any previous version control system is removed
before adding the files to the TFVC repository. In some instances, this just
requires that you avoid selecting certain directories and files, but in other
cases, you might need to remove various elements from the Visual Studio
Solution and Project files (.sln, .csproj). Fortunately, when you are importing
source code from SourceSafe, a utility program automatically takes care of
this task for you; see the Microsoft technical Web site2 for more information.

Chapter 8: Setting Up TFS Version Control166

TIP

The OSPACS team labels always start with the version information
taken from the project’s AssemblyInfo.cs file, but with the periods
replaced with dashes. Establish a similar convention on your own
team so that its labels can be linked to executable file versions.

2. Search for “Migrating from Visual SourceSafe” at http://msdn.microsoft.com/teamsystem.

NOTE

Unbinding a Visual Studio Solution or Project from TFS version control
automatically removes any version control content from the files and
directories in your workspace (File | Source Control | Change Source
Control).

Team Project Version Control Options
The team’s collective version (source) control settings are concerned with
their check-in policies and the way certain types of files are handled in
terms of allowing multiple checkouts and associating them with particular
tools to facilitate the merging of changes made by different people to the
same file; see Exercise 9-3 in Chapter 9. These settings are defined from the
following dialog boxes:

• Source Control Settings—To open this dialog box, select Team Pro-
ject Settings | Source Control from the context menu of the selected
Team Project in your Team Explorer window. This allows you to
enable or disable multiple-checkout at a team level, but we suggest
you keep the default setting, which is enabled. In addition, you will
use this dialog box to set your team’s “check-in policies” (and notes),
as described in Chapter 10.

• Source Control File Types—To open this dialog box, select Team
Foundation Server Settings | Source Control File Types from the
context menu of the machine hosting your TFS in your Team
Explorer window. This allows you to enable or disable file-merging
and multiple-checkout for specified types of files in all the Team
Projects hosted by your TFS that have multiple-checkout enabled
at a team level.

Source file types, such as .cs, .cpp, .js, and .aspx, have multiple-checkout
and merging enabled by default, so the standard VSTS tools are used to
merge (or compare) them. However, you may define other tools to perform
these sorts of operations on other types of files. For example, your team
might create a utility that compares two files containing data in a special
binary representation developed for its project, and want to ensure that it is
used whenever someone attempts to compare files of this type from the
Source Control Explorer (Right-click | Compare). In such a case, you would
use the Source Control File Types dialog to enable file-merging and multi-
ple-checkout for these types of files and then set up your Visual Studio Con-
figure User Tools dialog (Tools | Options) so that the utility would be used
to compare files with this particular file extension; see Figure 8-5.

Other Set-Up Tasks 167

Figure 8-5: Specifying a custom utility to compare files of a special type (Tools | Options)

Visual Studio Source Control Options
Individual team members can control certain aspects of their version
(source) control system’s behavior by changing settings in the Source Con-
trol section of Visual Studio’s Options dialog box (Tools | Options). How-
ever, we recommend the following:

• Plug-in selection—Visual Studio Team Foundation Server

• Visual Studio Team Foundation Server:
– Use Proxy Server—Set when accessing your TFS remotely or

when scaling VSTS for hundreds of users

Toolbox

Chapter 8: Setting Up TFS Version Control168

NOTE

All the source code files in your Team Project are set for multiple-
checkout and merging by default because this promotes the Shared
Code practice and encourages people to improve the code they
encounter, as we describe when we cover refactoring in Chapter 15.

– Show Deleted Items in Source Control Explorer—No
– Configure User Tools—Set tools to use when merging or com-

paring specific types of files as explained earlier; see Figure 8-5

• Environment—Team Foundation:
– Get Everything when a Solution or Project is opened—No
– Check in Everything when a Solution or Project is closed—No
– Display silent checkout command in menus—No
– Keep items checked out when checking in—No
– Checked-in Items, Saving—Check out automatically
– Checked-in Items, Editing—Check out automatically
– Allow checked-in items to be edited—No

Setting Up Security
You can set the access permissions for a specific folder or file selected in the
Source Control Explorer window from the Securities page of its Properties
dialog box (Right-click | Properties). In this way, you can restrict operations
such as the check-out and labeling of certain folders and files to particular
Windows (Domain) users or security groups; see Figure 8-6. However, the
default settings do not usually need to be adjusted because they give the
members of your team appropriate rights to use the facilities of the TFVC
tools in respect to everything in the Team Project’s root folder and below.

For example, developers on the OSPACS team can check files in and out
of any folder in the $\OSPACS hierarchy because they are members of
[OSPACS]\Contributors, but only Tom can undo another user’s changes
because he is also a member of [OSPACS]\Project Administrators. We will
deal with other ways to safeguard the source code in your TFVC repository
when we describe how to police version control in Chapter 10.

Other Set-Up Tasks 169

TIP

Implement a common set of standards on your team for these Visual
Studio Environment Options in order to facilitate the sharing of PCs
during pair programming.

Figure 8-6: Security properties for a folder in your repository (Right-click | Properties)

Backup and Restore
One significant advantage of VSTS is that individual developers do not
need to be overly concerned with backing up their PCs, as all their work is
safely stored on the Team Foundation Server. If the hard disk fails on a PC,
getting back to work is just a matter of buying a new computer, reinstalling
Team Explorer and Visual Studio, and then connecting to the team’s Foun-
dation Server—a few hours of lost time at a maximum. However, if the hard
disk fails on the server hosting your team’s TFS, this may be more serious
because it means that the entire team may be affected. Therefore, an effec-
tive backup and restore policy for your TFS is clearly essential.

The backup and restore policy in larger organizations may be compli-
cated if it is decided that teams, Agile or otherwise, should have different
Team Projects but share the same TFS. This is because the current version
of TFS does not allow Team Projects to be backed up and restored inde-
pendently, so rolling TFS back to the last backup will lose not just one, but
many teams’ work. Teams working in this sort of environment should take

Chapter 8: Setting Up TFS Version Control170

NOTE

Appendix A describes how to make your team members of security
groups that will gain them access to the facilities of Visual Studio Team
System they need during the course of their work.

particular care to frequently apply labels to their folders in the TFVC
repository (see Exercise 8-5) so that they can roll back using version con-
trol, as rolling back the entire TFS by restoring its database is unlikely to be
an option. Indeed, even teams that have their own TFS should consider
“backup and restore” as a procedure that is only for emergency use.

CONCLUSION

A software product is usually generated from information held in many
different files, and its development advances as these files are changed.
Therefore, you can view software development as simply moving the proj-
ect between a series of states, each defined by the content in a set of files at
a particular moment in time. In this chapter, we examined the general com-
position of such snapshots by defining a standard directory structure in
which to store project artifacts such as source files and important team doc-
uments. We also explained how to populate this directory structure with
the sort of Visual Studio Solutions and Projects your team might need at the
beginning of a project, and we described various other set-up tasks that
should be undertaken at this time, such as selecting options to configure the
way your team uses TFVC, setting up security, as well as implementing a
backup and restore procedure.

Conclusion 171

WARNING

There no point in backing up your TFS unless you are also prepared
to check that it can be fully restored from its backup data. Ideally, you
should regularly perform this task on a spare computer, as we discuss
in Appendix B.

NOTE

In an Agile project, version control setup is usually performed during
a period termed Iteration Zero. During this time, the team tries to
ensure that its environment is properly prepared before starting the
real work of developing valuable software.

9
Using TFVC in Your Project

TH I S C H A P T E R E X P L A I N S how to perform some of the most common
version control tasks using Team Foundation Version Control (TFVC).

We start by taking you step by step through the use of TFVC during the sort
of programming episode most developers repeat over and over again
throughout a project. We then take you through a number of other tasks
you will probably need to perform at some stage during your project, such
as resolving the conflicts that arise when several developers make changes
to the same file and rolling back your source code to a previous version.
Therefore, by the time you have completed the exercises in this chapter, you
should be well on the road to being able to use TFVC in a real project.

Using TFVC When Coding

Whether it is your first day as a member of the team or your last, each time
you implement some code, you will find yourself repeating the same

173

TIP

Create a Visual Studio Solution containing a number of Projects in the
Spike folder of your team’s repository (see Chapter 8) so that people
can build up their skills and confidence with TFVC in an environment
where they can make mistakes without consequence.

sequence of steps. You need to update your workspace with the latest ver-
sion of the code from the Team Foundation Server (TFS) repository, make
a set of changes to this code, build and test the code on your own PC, and
then check in the changeset to create a new version of the software in the
TFS repository. In the next few pages, we will walk you through this
sequence and show how you might use the TFVC version control tool when
you are actually writing code.

Sample Programming Episode: Version Control
You should perform this sort of programming episode using test-driven
development (TDD) in conjunction with the team’s Build and Test envi-
ronment, as described in the next two sections of the book.

Exercise 9-1: Using Version Control to Share Code Changes among Your Team

The first part of this exercise creates a workspace for Luke on the
DeveloperPC and populates it with the latest versions of the Visual Studio
Solution, Projects, and directories created by Peter in Exercises 8-2 through
8-5 in Chapter 8.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for details
about this PC and Luke’s security groups.

2. If this is the first time you have performed this exercise, use Windows
Explorer (or something similar) to create the directory c:\Luke\OSPACS,
which will be used as Luke’s workspace on the DeveloperPC.

3. Open the Source Control Explorer (View | Other Windows), select
the $/OSPACS folder, and then choose Get Latest Version from its
context menu (Right-click | Get Latest Version).

4. If this is the first time you have performed this exercise, the Browse
for Folder dialog box opens automatically and prompts you to select
a local directory for the workspace that in the future will be mapped
to the $\OSPACS folder. In this case, select the directory you created
in step 2.

Chapter 9: Using TFVC in Your Project174

Now that the contents of the repository’s $\OSPACS folder have been
copied into Luke’s workspace in the DeveloperPC, you are ready for the
next stage of the exercise, which requires you to make some changes to
these files.

5. Load the osImageManager Solution into your Visual Studio Integrated
Development Environment (IDE) by using the Open Project dialog box
(File | Open | Project/Solution) to open the osImageManager.sln file
in Luke’s workspace. This populates your Solution Explorer window
(View | Solution Explorer).

6. Alter the title of the osImageManagerApp Project’s main form by
editing its Text property. The easiest way to make such a change is
by taking the following steps:

a. Open the main form of the osImageManagerApp Project in the
Designer Editor by doubling-clicking the file Form1.cs in your
Solution Explorer’s treeview; see Figure 9-1.

b. Use the Properties window (View | Properties Window) to change
the Text property of this form from Form1 to osImageManagerApp.
This alters the files Form1.cs, Form1.Designer.cs, and Form1.resx.

Figure 9-1: Changing the Text property of Form1.cs with Visual Studio

Using TFVC When Coding 175

You must now check that your changes do what they are intended to do
and have not somehow broken the program. Therefore, the next part of the
exercise rebuilds the Solution and runs a quick test.

7. Start the application from the Debug menu (Debug | Start without
Debugging) so that Visual Studio will automatically incorporate
your changes by rebuilding the program before executing it.

8. Check that you have successfully renamed the window title of
osImageManagerApp from “Form1” to “osImageManagerApp” by
looking at its main form, which is displayed on your desktop.

Finally, you are ready to share your changes (see step 6b) with the rest of
the team by checking them into the repository so that the final part of the
exercise creates this changeset.

9. Perform the following actions in the Pending Changes window
(View | Other Windows), which is shown at the bottom of
Figure 9-1:

a. Enter a suitable comment for your changeset.

b. Explore other ways in which you might describe this changeset
by selecting items in the Tool Strip attached to the Pending
Changes window.

c. Copy the changeset into the TFS repository by clicking the Check
In button.

10. You have now finished the exercise, so log off.

Chapter 9: Using TFVC in Your Project176

NOTE

Visual Studio detects any alterations you make to the files in your
workspace and lists them in the Pending Changes window. This list
ultimately forms the changeset that you will apply to the repository;
see step 9 of this exercise.

Common Version Control Tasks

In addition to your day-to-day use of version control during programming
episodes, you will sometimes need to perform other tasks, such as creating
a new workspace, merging the changes made by others with the changes
you have made to a file, rolling back a version, and creating a branch (or
shelve) from your team’s main code base. The rest of this chapter explains
how to carry out such tasks.

Using Workspaces
The Team Project files and folders in the repository are copied into your
workspace when you get the latest version of its files. This workspace maps
a set of directories on your own PC to a corresponding set of folders in the
TFVC repository; see Figure 8-1 in Chapter 8.

Typically, the root directory of your workspace is mapped to the root
folder of your Team Project in the repository, so when you select this root
folder and ask for the latest version, a complete copy of your team’s files and
folders is put in your workspace. However, you should be aware that if you
select a folder in the repository that is lower in the hierarchy, only its con-
tents are copied into your workspace; parent directories are created as
needed, but they are not populated. For example, if you map $\OSPACS to
the new workspace c:\work\OSPACS and ask for the latest version of the
osImageManager repository folder, the Production and osImageManager
directories will be created within this workspace and the osImageManager
directory will be populated, as will its various subdirectories. However,
your workspace will not contain any sibling repository folders, such as
ospacsWeb, nor will it contain any files or other folders present in
$\OSPACS (the parent folder).

Common Version Control Tasks 177

TIP

You’ll find it much easier to work with version control if you perform
your work by taking a series of small steps. This will allow you to reg-
ularly update your workspace and check in your changes as soon as
they pass your tests.

Most of the time you don’t need to worry about workspaces too much,
as you will be prompted to create one when there is not an existing map-
ping between a repository folder and a directory on your hard disk; see step
4 of Exercise 9-1. However, sometimes you may need to create more than
one workspace for the same person. For example, Luke might need to work
on two different branches at the same time, or want different workspaces
for different parts of the product (such as osImageManager and ospacs-
Web). In such cases, Exercise 9-2 explains how you might create additional
workspaces using the Add Workspace dialog box.

Exercise 9-2: Creating an Additional Workspace

This exercise creates an additional workspace for Luke so that he can sep-
arate his production and experimental (spikes) work into two separate
areas in the DeveloperPC.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project as you
did before.

2. Use Windows Explorer (or something similar) to create the
c:\Test\Spikes directory for the new workspace.

Chapter 9: Using TFVC in Your Project178

TIP

Avoid creating multiple workspaces by mapping the root of your
workspace to the root of your Team Project folder so that when differ-
ent parts of the code base are checked out, they automatically will be
put into an existing directory structure.

WARNING

In the case of multiple workspaces owned by the same person, differ-
ent directories on a PC cannot be mapped to the same folder in the
TFVC repository. Similarly, different folders in the repository cannot be
mapped to the same directory on the PC.

3. Open the Workspaces dialog box (File | Source Control | Workspaces)
and then click Add to open the Add Workspaces dialog box; see
Figure 9-2:

a. Enter “Spikes” as the name of the workspace and give it a suit-
able comment.

b. Click on the various columns in the bottom row of the “Working
folders” list to define your new workspace. You should set its
Status as Active, the Source Control Folder as $/OSPACS/Spikes,
and the Local Folder as c:\Test\Spikes.

c. Click OK to create this Spikes workspace.

4. Close the dialog box and log off.

Figure 9-2: Add Workspace dialog box (File | Source Control | Workspaces)

Common Version Control Tasks 179

NOTE

When adding or editing a workspace you can set the status of a Work-
ing Folder to “cloaked.” This means that the folder is invisible to cer-
tain TFVC tools, so, for example, the local folder will not be updated
when you apply the Get Latest command to its parent.

The workspaces that are available to you are displayed in a drop-down
list at the top of the Source Control window; see Figure 8-1 in Chapter 8.
This window actually displays the contents of the repository with the con-
tents of the selected workspace layered on top of it. Therefore, a folder in
the repository that is not mapped to a workspace is shown grayed, and
when selected, just its repository contents are displayed in the right pane.
But when a mapped repository folder is selected its repository contents are
overlaid with the contents of the workspace together with status informa-
tion, such as whether it is up-to-date with respect to the current contents
of the repository; latest is “yes.”

Merging Changes
When a file is set for multiple-checkout more than one person can change
it at the same time. However, after the first person checks the file back into
the repository, everyone else must merge their copy of the file with the lat-
est version from the repository before being allowed to check in their
changes. Let’s see how this works by repeating our programming episode,
but this time with two developers: Sarah, who sets the BackColor property
in the main form; and Luke, who alters its window title.

Exercise 9-3: Merging Changes Made by Two Developers to the Same File

In the first part of the exercise, Sarah gets the latest version of the
osImageManager Solution with the changes to the main form window title
made by Luke in step 6b of Exercise 9-1.

1. Log on to the DeveloperPC3 as Sarah (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as

Chapter 9: Using TFVC in Your Project180

NOTE

A team member’s workspace usually maps a repository folder to a
local directory on his own PC, therefore physically isolating it from
other people’s workspaces. However, even when people share the
same PC their workspaces should still be considered private.

described in Exercise 5-7 in Chapter 5; see Appendix A for details
about this PC and Sarah’s security groups.

2. Repeat steps 2, 3, and 4 of Exercise 9-1, but specify the workspace
so that the latest version of the osImageManager Solution is put in
c:\Sarah\OSPACS.

3. Log off from the DeveloperPC3.

The next part of the exercise sees Luke making some additional changes
to the main form of osImageManagerApp using the same version of files
that Sarah got from the repository, and then checking them back into the
repository to create another version of these files.

4. Log on to the DeveloperPC as Luke, start Visual Studio, and connect
to the OSPACS Team Project.

5. Repeat step 3 of Exercise 9-1 so that you have updated Luke’s
workspace with the latest version of the osImageManager Solution,
just to make sure it is the same version as what Sarah copied into
her workspace.

6. Open the osImageManager Visual Studio Solution in Luke’s work-
space and change the main form (Form1) title by editing its Text
property; see steps 5 and 6 of Exercise 9-1. This changes the Form1
files in Luke’s workspace.

7. Build and test the osImageManager Solution in Luke’s workspace
and then check in the changeset by clicking the Check In button in
the Pending Changes window; see steps 7, 8, and 9 of Exercise 9-1.

8. Log off from the DeveloperPC.

In the last part of the exercise, Sarah makes some changes to the files in
her workspace and then merges these changes with the latest version of the
files in the repository before checking them back into the repository to cre-
ate a new version containing both sets of alterations.

9. Log on to the Developer3 as Sarah, start Visual Studio, and once
more connect to the OSPACS Team Project.

10. Open the osImageManager Visual Studio Solution in Sarah’s
workspace and change the main form (Form1) title by editing its

Common Version Control Tasks 181

BackColor property in a similar way to step 6 of Exercise 9-1. This
changes the Form1 file in Sarah’s workspace.

11. Build and test the Solution in Sarah’s workspace and then check
in the changeset by clicking the Check In button in the Pending
Changes window. However, this time the check in will not succeed
and the Resolve Conflicts dialog appears.

12. The Resolve Conflicts dialog indicates that the copy of Form1.designer.cs
in Sarah’s workspace is older than the current version in the repository,
checked in by Luke in step 7. Take the following steps:

a. There is only one file conflict to resolve, so Form1.designer.cs is
the only item listed in the Resolve Conflicts dialog. Select this file
and click the Resolve button to open another dialog which sug-
gests some ways of resolving the conflict. Select “Merge changes
in merge tool” and then click OK to open the Merge tool.

b. The Merge tool displays the difference between the file in Sarah’s
workspace and the one stored in the repository; see Figure 9-3.
You decide what action to take by altering the code in the bottom
window. In this case, the two changes do no conflict, so click OK
to let the Merge tool combine them in the file located in Sarah’s
workspace and save the file changes.

c. The Resolve Conflicts dialog contains no additional conflicts, so
click Close.

13. You should now be able to check in the changeset in Sarah’s work-
space as its copy of Form1.designer.cs originates from the latest ver-
sion in the repository. Therefore, click the Check In button in the
Pending Changes window.

Chapter 9: Using TFVC in Your Project182

NOTE

The VSTS Merge tool handles check-in conflicts by default, but you can
specify a different tool to handle the merging of your files by changing
the Configure User Tools settings for Source Control; see Figure 8-5 in
Chapter 8.

Figure 9-3: Resolving conflicts with the VSTS Merge tool

14. Follow the same steps given in step 2 of Exercise 8-5, in Chapter 8,
to label this latest version of osImageManager in the repository as
“v1-0-0-0 Iter0 - Set title and background”.

15. You have now finished the exercise, so log off.

Rolling Back to a Previous Version
One of the big gains you get with implementing version control is the abil-
ity to go back and rebuild the product as it existed at any point in its devel-
opment history. Sometimes you just want to go back a few hours to return

Common Version Control Tasks 183

TIP

Graphics files are usually set for “strict locking” because it would be
difficult to merge the changes that arise when different people edit the
picture. Accordingly, restrict the check-out rights of such files to just
the people who will actually maintain them.

the code to its last working state. However, on other occasions you may
need to go back months to rebuild a version of the product for a particular
customer.

Exercise 9-4: Rolling Back to a Previous Version

After finishing this exercise, you will have returned the OSPACS Team Pro-
ject code to the state that existed when it was first labeled in Exercise 8-5 in
Chapter 8.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project.

2. Copy a specific version of the osImageManager Visual Studio Solu-
tion from the TFS repository into Luke’s workspace:

a. Select the osImageManager folder in the Source Control Explorer
and select the Get Specific Version context menu (Right-click |
Get Specific Version) to open the Get dialog box.

b. Select Label in the By drop-down list box and click the “…”
button to open the Find Label dialog box.

c. Click Find and select the label you created in Exercise 8-5, in
Chapter 8, for the initial baseline. Click Close to return to the Get
dialog box.

d. The Get dialog box’s label box now contains the initial baseline
label and the Get button is enabled. Select Get to close the dialog
and update Luke’s workspace.

3. Open the osImageManager Solution (File | Open | Project Solu-
tion) and rebuild it (Build | Build Solution) to check that you
have successfully re-created this initial baseline. When you run
osImageManagerApp, Form1 should appear as the window title of
its main form.

4. You have now finished the exercise, so log off.

Chapter 9: Using TFVC in Your Project184

Creating a Branch
Sometimes you may need to roll back to a previous version without chang-
ing the latest version of the source files in your repository. For example, you
might need to apply a quick bug fix to v1.2 of your product while the rest of
the team continues working on the release of v1.4. In such circumstances,
you don’t want to roll back the entire code base because this means the
team will then need to reimplement all its work from v1.2 to v.1.4. Some of
the options you might consider include the following:

• Creating a code branch for the bug fix and releasing it to the
customer—You create two separate code bases: the v1.2 branch and
the main (trunk) branch. You fix the bug in the v1.2 branch and then
generate a bug-fix release for the customer from this code base. This
is often your best tactical solution.

• Creating a local build and releasing it to the customer—You roll
back to v1.2 just in your own workspace, fix the bug, and then gen-
erate a bug-fix release for the customer from the files in your local
directory. However, you save these changes in the repository by cre-
ating a shelve called “1.2.1,” as described in Exercise 9-6.

• Fixing the problem for the next scheduled release to the customer—
You roll back to v1.2 in your own workspace just to identify the
problem, and then apply these changes to the latest version of the
code base so that it will be corrected in the next scheduled release.
This is the more Agile solution, as we explained in the Single Code
Base practice; see Chapter 7.

Common Version Control Tasks 185

NOTE

Labeling your Team Project at significant milestones makes it easier to
identify versions that you might want to subsequently restore. Make
sure you apply the label to the root folder ($/OSPACS) so that it
applies to everything in your Team Project.

The most appropriate option depends upon the nature of your Team
Project and the sort of bug you’re dealing with. If you’re developing custom
software for a business unit that’s losing thousands of dollars per hour
because of a simple bug in one line of code, it might not be appropriate to
go through the process of creating a code branch or asking your customer
to wait for the next scheduled release. However, releasing software to cus-
tomers that hasn’t been through an agreed build, test, and release process
might be an unacceptable practice for a team developing control software
for a nuclear power station. Ultimately, such decisions need to be driven
by business need.

Exercise 9-5: Creating a Code Branch

The following exercise creates the branch osImageManager-v1.2 from
osImageManager to give your team two entirely separate code bases for its
development work.

1. Log on as Luke (Team Foundation Contributor) to the DeveloperPC,
start Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Open the Source Control Explorer (View | Other Windows), select
the osImageManager folder in $/OSPACS/Production, and then
choose Branch from its context menu (Right-click | Branch) to open
the Branch dialog box; see Figure 9-4.

3. Replace “-branch” at the end of the proposed Target name with
“-v1.2” and click OK to create this branch in Luke’s workspace.

4. Edit the AssemblyInfo.cs files in each of the Solution’s Visual Studio
Projects so that the AssemblyVersion attribute is 1.2.0.0 in order to
link the version number of the executables to the version label in the
repository you set in step 3.

5. Check the branch into the repository by clicking the Check In button
in your Pending Changes window, though you may want to provide
a suitable comment before you do so. This creates a new folder in
the $/OSPACS/Production folder called osImageManager-v1.2.

Chapter 9: Using TFVC in Your Project186

Figure 9-4: Branch dialog box (File | Source Control | Branch)

6. Label this latest version of osImageManager in the repository as
“v1-2-0-0 Iter0 - Branched from trunk” by following the same steps
as those given in step 2 of Exercise 8-5.

7. You have now finished the exercise, so log off.

Creating a Shelve
You should consider creating a shelve whenever you want more than one
copy of the code base for your own personal use. It gives you a way of stor-
ing your work in the repository without it being integrated with the rest of
the team’s work, so it is ideal for those situations in which you need to save
the code in your workspace without following the team’s normal check-in
policies; see Chapter 10. This might happen, for example, after a telephone
call from a client who needs a bug fix so urgently that you don’t have
enough time to finish what you were working on. In this sort of situation,

Common Version Control Tasks 187

NOTE

Agile teams tend to avoid creating code branches unless they are
absolutely necessary. However, if you must create a branch, try to keep
its lifetime as short as possible to reduce the amount of work needed to
merge it back into the main branch.

you would simply save your current workspace as a “shelveset” and then
replace its contents with the version of the files you need in order to fix the
bug. Once you’ve fixed the bug, you can restore your shelveset and con-
tinue with your work.

Exercise 9-6: Saving and Restoring a Shelveset

In the first part of this exercise, you will update your workspace with the
latest version of the files in the repository and then change the window title
text to alter a few files before saving them as a shelveset.

1. Log on as Luke (Team Foundation Contributor) to the DeveloperPC,
start Visual Studio, and then connect to the OSPACS Team Project.

2. Open the Source Control Explorer (View | Other Windows), select
the $/OSPACS folder, and then choose Get Latest Version from its
context menu so that you can then load the osImageManager Visual
Studio Solution by opening the osImageManager.sln file in Luke’s
workspace (File | Open | Project/Solution).

3. Repeat step 6 in Exercise 9-1 to alter the window title text of the
osImageManagerApp main form to MyShelve, thereby causing a
few files to be added to your Pending Changes window.

4. Click the Shelve button in the Pending Changes window to open the
Shelve dialog box (see Figure 9-5). Enter a suitable name and com-
ment for your shelveset and remove the check from the “Preserve
pending changes locally” box before clicking the Shelve button to
create this shelveset for Luke in the repository.

5. Repeat step 2 to restore your workspace with the latest version in
the repository, and then repeat step 6 in Exercise 9-1 to alter the win-
dow title text of the osImageManagerApp main form to “Bug Fix”.

6. Test your changes by building and running the osImageManager-
App application (Debug | Start without Debugging) and then save
your changes to the repository by clicking the Check In button in the
Pending Changes window.

Chapter 9: Using TFVC in Your Project188

Figure 9-5: Shelve dialog box (File | Source Control | Shelve Pending Changes)

7. Restore your shelveset by clicking the Unshelve button in the Pend-
ing Changes window to open the Unshelve dialog box. Select the
shelve whose name you defined in step 4 and click the Unshelve
button to copy it back into your workspace. Confirm that the win-
dow title text of the osImageManagerApp main form is MyShelve.

8. Undo the changes that are now present in your workspace by select-
ing the files in your Pending Changes window and choosing Undo
from their context menu (Right-click | Undo). When prompted to
“undo checkout and discard changes,” click Yes.

9. Log off, as you have now finished the exercises in this chapter.

Common Version Control Tasks 189

WARNING

Shelvesets create the same sorts of problems as branches in terms of
generating duplicates of your code base and, therefore, should be used
with care; see the Single Code Base practice in Chapter 7.

In an ideal world, shelvesets would not be required because Agile devel-
opers should always finish a programming episode either by checking in
their code or discarding it. However, life is not always so clear-cut, and for
this reason, you might occasionally find that shelvesets provide a useful
way of saving work in the repository when you do not have time to comply
with the team’s check-in policies.

CONCLUSION

All developers need to become proficient in the use of their version control
system, and this needs practice as much as it does study. This chapter
should get you started with the Team Foundation Version Control system,
but to master it properly you will need to spend time experimenting, both
on your own and within your team.

Chapter 9: Using TFVC in Your Project190

WARNING

Do not allow your team to share a common set of source files until it
has mastered the basics of using version control; otherwise, your proj-
ect will almost certainly descend into total chaos.

10
Policing Your Project with TFVC

TH I S C H A P T E R D E S C R I B E S how Team Foundation Version Control
(TFVC) helps your team protect its source code by introducing policies

for things such as restricting access to particular files, allowing single- or
multiple-checkout, and enforcing the validation of a source code file against
project-defined coding standards before permitting it to be checked into the
repository. Our objective is to help you introduce sensible policies for polic-
ing your own project that will help your team members work together
more effectively.

Protecting Your Source Code

Source code is almost always the primary product of the design, and there-
fore it must be protected above all the other artifacts your team generates.
To help you implement this protection, let’s first see how TFVC allows you
to set the access rights for particular files and folders. We will then look at
the core material of this chapter, which is setting check-in policies so that
you can police your project’s coding standards.

191

Controlling Access to Individual Files and Folders
The Windows filesystem allows you to control access to a file or directory
by a set of domain users or security groups. Therefore, you can ensure that
Michael has full access to a file such as Salaries.xls, while Tom is only able
to read the file by selecting it with Windows Explorer and then setting the
appropriate security properties (Right-click | Properties | Security). TFVC
allows you to control access to the files and folders in your team’s reposi-
tory in much the same way, except that you use Source Control Explorer to
set their security properties, as described in Exercise 10-1.

Exercise 10-1: Making a File Check Out Only for Project Administrators

In this exercise, you will set the security permissions for a file stored in the
TFVC repository so that it can be read by any team member, but cannot be
checked out for editing by anyone except Tom, the project administrator.

1. Log on to the DeveloperPC as Tom (OSPACS Team Project Adminis-
trator), start Visual Studio, and then connect to the OSPACS Team
Project, as described in Exercise 5-7 in Chapter 5; see Appendix A for
details about this PC and Tom’s security groups.

2. Open the Source Control Explorer (Views | Other Windows | Source
Control Explorer) and repeat steps 2, 3, and 4 of Exercise 9-1, but
specify your workspace so that the latest version of $\OSPACS is put
into c:\Tom\OSPACS.

3. Create a bitmap file (File | New | File) and save it in your work-
space as Logo.bmp within osImageManager’s Documents directory.
Add this bitmap file to the corresponding Documents folder in your

Chapter 10: Policing Your Project with TFVC192

NOTE

Innovations such as Domain-Specific Languages (DSLs; see Chap-
ter 21) may change the role of source code files in the future, but at
present, most programs are generated from instructions written by
people in a general programming language, such as C# or Visual Basic.

repository by using the Add to Source Control dialog box, as
described in step 2 of Exercise 8-3, in Chapter 8, and then clicking
the Check In button in the Pending Changes window.

4. Use the Source Control Explorer window to select Logo.bmp and
open its Property dialog box (Right-click | Properties). Select the
Security tab and then set its permissions so that only OSPACS proj-
ect administrators are allowed to check out this file.

5. Close the Properties dialog box and log off, as you have finished this
exercise.

Setting Check-in Constraints
The Source Control Settings dialog box allows you to add constraints that
are applied whenever members of the team check in their code; see Fig-
ure 10-1. The simplest constraint to apply is Check-in Notes, which allows
you to define one or more categories of notes that must be completed before
you can check in your changeset. We recommend that you remove the
default categories and just add “Programming Pair Name” for the name of
the person with whom the developer produced the code.

The other type of constraint is Check-in Policy, which has three prede-
fined categories:

• Code analysis—Check-in is allowed only for changesets that pro-
duce a clean build which includes static code analysis. Therefore,
you may fail this policy if your changes don’t comply with the
team’s coding standards; see Exercise 10-3.

Protecting Your Source Code 193

TIP

Normally, you grant all developers read and write access to your pro-
ject’s source code files; see the Shared Code practice in Chapter 7.
However, it can make sense to restrict access to a file such as Logo.bmp
if it contains a graphic, such as a company logo, that must not be
altered.

• Testing policy—You must have successfully run the build product
resulting from your changeset against one or more tests, as defined
by a Visual Studio Tests Metadata file (*.vsmdi). This might mean
that failing to pass all unit tests would result in your failing this pol-
icy; see Sections 5 and 7.

• Work items—The changeset needs to be associated with one or more
work items. Essentially, this means that you must select at least one
of the work items listed in the Pending Changes window.

Team members can override these check-in policies, but when they do
so, they must give a reason. This means that you could, for example, check
in changes that didn’t comply with the team’s coding standards with respect
to globalization rules in order to release an urgent fix.

Figure 10-1: Setting code analysis check-in policy

Chapter 10: Policing Your Project with TFVC194

Establishing Policies for Source Code

In order to maintain a consistent level of quality, certain policies should be
applied whenever the developers on your team are producing code that is
intended for eventual use in the production (business) environment. Visual
Studio Team System (VSTS) allows you to enforce such policies by check-
ing that all source code files are compliant before checking them into the
repository.

Coding Standards
Working on a team that has adopted the Shared Code practice means that
everyone must agree about things, such as the placement of the opening
brace for a block of code. Should it be on a new line or at the end of the
preceding statement? Without such coding standards, your code base can
quickly become a confused mess of different coding styles. Scott Ambler1

gives some good advice for Agile teams about such issues in his essay,
“Coding Style Guidelines.”

Establishing Policies for Source Code 195

WARNING

Take care when setting a code analysis policy to generate an error
rather than a warning, because once this policy has been migrated to
your Visual Studio Solution, it cannot be reset upon subsequent migra-
tions; see the section Updating Static Code Analysis Rules later in this
chapter.

1. Ambler, Scott. “Coding Style Guidelines” (www.ambysoft.com/essays/
codingGuidelines.html).

TIP

Apply a common standard for code formatting by exporting your text
editor settings from Visual Studio into a file (Tools | Import and
Export Settings) which you put into the repository so that the rest of
your team can copy it into their workspaces and then import it.

Static Code Analysis
The effective implementation of coding standards depends upon reaching
a consensus about the need for the rules and then policing their application.
This is where the VSTS Static Code Analysis tool comes into play. It is actu-
ally a version of FxCop and is supplied with more than one hundred fifty
standard rules that Microsoft considers important in areas such as global-
ization, security, and so forth. You can add your own custom FxCop rules,
though this is not officially supported and does involve some program-
ming.2 In this way, when you enable Code Analysis for a Visual Studio Pro-
ject, your code is inspected against these rules each time you perform a
build, and the results are displayed in the Error List window (View | Error
List), as described in Exercise 10-2.

Exercise 10-2: Using Static Code Analysis on Your Own PC

This exercise applies static code analysis to the Visual Studio Project you
created in Exercise 8-4 in Chapter 8.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Update Luke’s workspace with the latest version of the files in the
repository and open the osImageManager Visual Studio Solution, as
described in steps 3 and 5 of Exercise 9-1, in Chapter 9.

Chapter 10: Policing Your Project with TFVC196

2. Robbins, John. “Bugslayer” (MSDN Magazine, Sept. 2004, http://msdn.microsoft.com/
msdnmag).

TIP

Before developing your own custom FxCop rules, check that the rules
you want are not already available on the Internet. However, remem-
ber to distribute any DLLs containing such rules to all the PCs on
which your team performs static code analysis.

3. Open the osImageManagerApp Project Properties window by
selecting osImageManagerApp in your Solution Explorer and
then selecting osImageManagerApp Properties from Visual Studio’s
Project menu (Project | Properties).

4. Select the Code Analysis tab in the Project Properties window and
then set the checkbox labeled Enable Code Analysis. Investigate the
rules that will be applied to your code by expanding the rule cate-
gories in the lower part of the page.

5. Rebuild the osImageManager Solution (Build | Build Solution) and
review the warnings that appear in your Error List window (View |
Error List); see Figure 10-2.

a. Obtain further information about a specific warning in your Error
List window by selecting it and then pressing F1.

b. Open the source code file at the statement that has caused a
warning by double-clicking the item in your Error List window.

Figure 10-2: Error List window (View | Error List)

Establishing Policies for Source Code 197

6. Fix the warnings listed in the Error List window or suppress them
(Right-click | Suppress Message) and then rebuild your Solution
(Build | Build Solution). Note that any suppressed warnings are
listed in the project file GlobalSuppressions.cs.

7. Check your changes into the repository using the Pending Changes
window (View | Other Windows), as described in step 9 of Exer-
cise 9-1; see the warning at the end of this exercise.

8. Log off, as you have completed this exercise.

Setting Static Code Analysis As a Check-in Policy
Setting static code analysis as a check-in policy helps ensure that all code
put into the TFS repository complies with the team’s coding standards and
can be built without error. Once you have decided which rules are needed
for your Team Project, such as naming classes according to some defined
standard, you must ensure that they are consistently applied whenever
anyone adds code to the TFS repository. You can do this easily by setting a
check-in policy in the Team Project’s Source Control settings.

Chapter 10: Policing Your Project with TFVC198

WARNING

The changes made to your Visual Studio Project Properties are stored
in files that are normally under version control. Therefore, after you
check your changes into the repository, they will be propagated to
other people’s PCs when they next do a “get latest version.”

TIP

Use the Static Code Analysis tool from the start of your project so that
the list of warnings does not get too long, and so that you can relate
them directly to the code changes you have made during your pro-
gramming episode.

Exercise 10-3: Setting a Static Code Analysis Check-in Policy

This exercise sets some static code analysis rules that people must test their
source code files against before checking them into the repository.

1. Log on to the DeveloperPC as Tom (OSPACS Team Project Adminis-
trator), start Visual Studio, and then connect to the OSPACS Team
Project, as described in Exercise 5-7 in Chapter 5.

2. Open the Source Control Settings dialog box for OSPACS (Team |
Team Project Settings | Source Control):

a. Select the Check-in Policy tab and click the Add button to open
the Add Check-in Policy dialog box.

b. Select Code Analysis and then click OK to open the Code
Analysis Policy Editor dialog box. Expand the list of Naming
Rules and then double-click in the Status column of code policy
CA1724 so that a violation of this rule generates an Error rather
than a Warning.

c. Click OK to close the dialog box and return to the Source Control
Settings dialog box.

3. Click OK to close the Source Control Settings dialog box. Your poli-
cies will be applied from now on when anyone adds code to the TFS
repository.

4. Update Tom’s workspace with the latest version of the files in the
repository and open the osImageManager Visual Studio Solution, as
described in steps 3 and 5 of Exercise 9-1, in Chapter 9.

5. Migrate the Team Project’s code analysis policy settings to all the proj-
ects in your Visual Studio Solution by selecting osImageManager as
the root item in the Solution Explorer window and applying Migrate
Code Analysis Policy Settings to Solution from its context menu. This
causes all your Visual Studio Project files to be checked out.

6. Rebuild your Visual Studio Solution (Build | Build Solution) and
correct any Code Analysis errors that are detected.

Establishing Policies for Source Code 199

7. Check your changes into the repository using the Pending Changes
window (View | Other Windows), as described in step 9 of Exer-
cise 9-1 in Chapter 9.

8. You have now finished this exercise, so log off.

After you have completed Exercise 10-3, any team member who subse-
quently updates his workspace will find that code analysis has been
enabled for each of his Visual Studio projects and that the team’s various
rules have been selected. This means that code analysis will be run each
time the team members rebuild the code on their PCs. Therefore, comply-
ing with the new check-in policy simply requires people to obtain a clean
build before checking in their code changes.

Implementing New Coding Standards
Applying coding standards retrospectively to a code base of any size can
involve a significant amount of reworking, and as Scott Ambler says, “It’s
generally a bad idea to change the rules partway through a project.” There-
fore, whenever possible, decide on the standards that will apply to the
team at the start of a project, before any code has been written. It’s a good
idea to hold a workshop before attempting to implement new coding stan-
dards so that your team can identify which of the standard code analysis
(FxCop) rules should apply to the project and discover whether any addi-
tional rules need to be developed. In particular, you should try to do the
following:

• Eliminate as many unnecessary rules as possible; for example, if
your product will never by used by non-English-speaking users, you
might want to ignore all the globalization rules.

• Use this opportunity to educate the team about the rationale of the
rules that it has selected and show some code examples of each
problem as well as its resolution.

Chapter 10: Policing Your Project with TFVC200

The objective is to achieve a consensus among the team about coding
standards so that people see them as being generally beneficial rather than
oppressive.

Updating Static Code Analysis Rules
You should be aware that the migration of the Team Project’s code analy-
sis policy settings to the Visual Studio Solution is an additive operation.
That is to say, if a particular rule has not previously been set for the Solu-
tion, it will be applied during any subsequent code analysis once you
migrate your Team Project Policy settings with the new rule selected. How-
ever, this rule will not be reset if someone later migrates his Team Project
Policy settings with it unselected. You should also bear in mind that the
rules for the check-in policy are uniformly applied to all code being
checked into the repository, so you cannot apply different check-in policies
to different Visual Studio Projects or Solutions. This is a limitation that may
be lifted in some future release of VSTS.

Overriding Check-in Policies
Once your team has decided to implement a static code analysis check-in
policy, you should perform static code analysis on the contents of any
changeset before checking it into the repository. If you fail to do this, a dia-
log box appears prompting you to abort the check-in or explain why you
haven’t complied with the check-in policy; see Figure 10-3. Sometimes there
may be good reason for you to ignore a check-in policy, but mostly devel-
opers will not want to go on record as needlessly flouting team standards.

Establishing Policies for Source Code 201

WARNING

Any local alterations you make to your code analysis rules that result
in them becoming more restrictive than the agreed policies may be
unintentionally propagated to the rest of your team if you subse-
quently check in the changes to your project files.

Exercise 10-4: Overriding a Static Code Analysis Check-in Policy

This exercise explains how you can ignore a check-in policy and still check
your code into the repository, but this event will be recorded, so your rea-
sons for doing so may be investigated.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Update Luke’s workspace with the latest version of the OSPACS
files from the repository, and open the osImageManager Visual
Studio Solution; see steps 3 and 5 of Exercise 9-1, in Chapter 9. This
will include the new code analysis policy settings you made in
Exercise 10-3.

3. Rename the osImageManagerLib file from “Class1.cs” to
“osImageManagerLib.cs” and, when prompted, click Yes to rename
the references to this code element. Effectively, this renames the
class in a way that violates the code analysis rules CA1724.

4. Rebuild the osImageManager Solution (Build | Build Solution).
The build will fail because you have violated the preceding code
analysis rules.

5. Check your changes into the repository using the Pending Changes
window (View | Other Windows), as described in step 9 of Exer-
cise 9-1, in Chapter 9. However, because you have not fixed the
code analysis warnings, the Policy Failure dialog box appears (see
Figure 10-3). Therefore:

a. Enter a suitable comment in the Policy Failure dialog box.

b. Click OK to acknowledge that you have checked in some code
that doesn’t comply with the team’s coding standards.

6. You have now finished this exercise, so log off.

Chapter 10: Policing Your Project with TFVC202

Figure 10-3: Policy Failure message during check-in

CONCLUSION

Policing access to the repository allows your team to implement quality
assurance for its code base by restricting access to its files and folders as
well as by setting constraints for checking them out and checking them
back into the repository. This ensures that everyone is able to share code
effectively, and helps maintain the quality of common source code files by
policing the team’s coding standards.

Establishing Policies for Source Code 203

NOTE

Good coding standards do not just improve the quality of your team’s
shared code base; they also have an educational role by steering peo-
ple away from coding pitfalls and thereby encouraging them to write
code like expert programmers.

NOTE

We leave it as an exercise for the reader to make sure that the work-
spaces of Tom, Peter, Sarah, and Luke all contain the latest version of
the code which can be built without generating errors when static code
analysis is applied.

Review of Section 3
Use Version Control

TH E T H I R D S E C T I O N of the OSPACS team’s road map to better software
development addresses the problems it was having sharing code with

each other. Using version control properly was the first step the team took
toward improving the basic quality of its software development. The fol-
lowing were among the activities the team completed:

• Managed change—The team decided to have just one main line of
development for its new OSPACS system rather than having a dif-
ferent branch for each client, as it had originally conceived. Accord-
ingly, the team introduced the Single Code Base practice for its
OSPACS Team Project.

• Organized its repository—The team partitioned the $/OSPACS
folder it created in the repository for the Team Project into a Produc-
tion folder and a Spike folder. The team then created a standard
directory structure for its new code in the Production folder.

• Migrated its legacy code base to Team Foundation Version Control
(TFVC)—The team migrated the code from its legacy Picture Archiv-
ing and Communication System (PACS) into the Spike folder. It then
created a new branch for its legacy code, called Sandpit, so that it had
a separate code base to use when practicing with the TFVC tools.

• Created a skeletal Visual Studio Solution—The team created an
initial collection of Visual Studio Projects in the Production folder
from which to start the development of its new system.

205

• Learned to use TFVC—The team became proficient in using its new
version control system by using the Sandpit branch of the legacy code
base in its Spike folder to conduct sample programming episodes dur-
ing which it merged files, created shelvesets, and rolled back changes.

• Introduced coding standards—Nobody really wanted any coding
standards, but the team realized that they were a necessary part of
working together effectively. After conducting a coding standards
workshop, the team introduced a common format for Production
code layout and created a set of rules against which source code files
could be automatically validated before they were checked into the
repository.

The Team’s Impressions

The team was happy that at last it was starting to use some of the new Visual
Studio Team System (VSTS) tools. It was very impressed with the facilities
of TFVC, as it seemed so much better than the Visual SourceSafe tool the
team had been using previously. However, the team also took care to under-
stand how this tool might help team members to work in an Agile way.

Developer: Luke
“It is clear that part of the problem was that people didn’t really know
much about version control, or even how to use the tool properly.”

Developer: Sarah
“I’m the first to admit that version control wasn’t my strong point. How-
ever, I’m much more comfortable with these ideas now that we’ve spent
time playing with TFVC in our Sandpit.”

Review of Section 3: Use Version Control206

TIP

Get into the routine of putting proper version control in place at the
start of every project to avoid running into difficulties later when the
problems have become much bigger and there is usually less time to
fix them.

Developer: Tom
“Demonstrating the version-by-version development of our code will help
us to defend any future intellectual property action taken by our venture
partner.”

Developer: Sarah
“We started by introducing a very simple set of rules against which we
could check our code before checking it into the repository. However,
within three months, we plan to have a much stricter set of rules and most
of our legacy code validated.”

Developer: Peter
“Before we can really implement the Shared Code practice, we are going to
have to improve the quality of our code significantly. The coding standards
put in place are a start, but we also need to implement thorough unit testing.”

Agile Values

The team agreed to implement the following practices: Shared Code, Single
Code Base, and Code and Tests. The team hoped this would help team
members in the following ways.

Communication
The Shared Code practice allows people to communicate at the code level
across the whole project. There are no black holes that are the sole preserve
of one or two people. This allows knowledge to spread throughout the
team and allows people to learn from each other.

By concentrating on code and tests rather than pieces of paper and
e-mails, the team improves communication about the things that matter. It
also reduces the danger of people filling the repository with documents that
are redundant and out-of-date.

Having a single code base means the team needs to communicate about
only one code branch, not many.

The Team’s Impressions 207

Feedback
The Shared Code practice allows people to learn from the changes other
people have made to their code. It also allows them to discover mistakes
more quickly because it drives the team to implement other practices such
as Continuous Integration, Pair Programming, and so on.

Courage
People are more confident about undertaking challenging work because
other people on the team have access to the code and will improve it, if
required. There’s no finger wagging.

The version control tools act like a safety net, allowing you to roll back
the changes in your workspace.

Simplicity
The Single Code Base practice reduces duplication that often accumulates
in different code branches. There is only one code base for the team to learn.

Whenever possible, documents are automatically generated from the
code and tests, and this helps the team focus on producing artifacts that have
real value to the customer, thereby removing unnecessary bureaucracy.

Respect
The Shared Code practice allows junior members of the team to improve
the work of more senior people and therefore gain their respect. It also
encourages teamwork by making people “play nicely” together and take
collective responsibility for their work.

Review of Section 3: Use Version Control208

Section 4
Build and Integrate Often

B U I L D I N G A N D I N T E G R AT I N G need to be part of your team’s every-
day activities because putting together the parts of your software is

not something that you want to leave until the end of the project. Chap-
ter 11 introduces the basic ideas of creating an environment to centralize
this work and validating the resulting software with different types of
tests. It also makes the case for automating these actions so that they can
be performed regularly, reliably, and consistently. Chapter 12 explains how
to put the theory into practice using Team Foundation Build, which allows
your team to progress its work toward final deployment in the business

209

Photograph by Simon Lewis (Copyright Science Photo Library 2006).

You can see progress taking place during the construction of a house,
but in software development you must rely on regularly checking the
results of the team’s Integration Build. This is the heartbeat of your
project.

environment by creating frequent versions of its software in an automated
production line.

Story from the Trenches

Many years ago I joined a team producing engine management software for
a large automobile manufacturer. Our job was to produce the software
needed to control the injection of gas into the various cylinders of an engine
and then precisely time the sparks to give good performance over a wide
range of operating conditions. The company had dozens of different engine
configurations all supported by a code base containing hundreds of thou-
sands of lines of assembly code. There were about thirty people on the team
and we developed our software on a VAX cluster. The huge size of this com-
puter contrasted starkly with the size of our target machine, which was a
box about the size of this book.

I spent the first few weeks shadowing a more experienced member of
the team, but thereafter I was given my own task to complete. As I recall,
it was something to do with retarding or advancing the spark to make the
catalytic converter operate more efficiently. The VAX development envi-
ronment provided version control and all the other tools we needed. How-
ever, it was slow work because of the time needed to build the binary file
and load it into the simulator for testing. Typically, our edit-build-test cycle
took four or five hours, so consequently we each worked with our own
branch of the code base to avoid extending this cycle any further. It took me
several months to complete my task, but fortunately I finished in time for
the code to be included in the team’s next software integration phase.

The integration process was very complex because it involved merging
together the changes made by dozens of programmers in their individual
branches of the code base. This was a task made more difficult because the
code was completely monolithic, and therefore the effect of each change
was not limited to a particular area of the program. For example, I could
write a value into the spark timing variable to make the catalytic converter
operate more efficiently and then find that it was overwritten by someone
attempting to improve the engine’s power output. The more changes we

Section 4: Build and Integrate Often210

attempted to integrate at the same time, the more complex these sorts of
interactions became.

We spent three months trying to integrate the team’s work and produce
a single branch of the code base that would pass all the necessary tests.
Eventually, though, we succeeded in integrating only two people’s work
into the same code branch, and this became the basis of our next release.
Everyone else’s work, mine included, was added to the growing mountain
of code pending integration which had been left over from previous
releases. During my entire time working with this team, I contributed less
than a dozen lines of code to any actual release of the software, but I didn’t
feel too bad because some people worked on the team for two years with-
out contributing a single line.

The fundamental problem this company had was the slowness of the build
process which encouraged the team to work independently and therefore postpone
integration. I’ve experienced this problem in numerous organizations, but seldom
was it as evident as it was in this case. In the next two chapters, we explain how
to set up your project for the frequent building and integration of everyone’s work
to make sure this sort of thing doesn’t happen to you.

Story from the Trenches 211

11
Building and Integrating Software

TH I S C H A P T E R D E S C R I B E S how teams go about assembling their soft-
ware. We introduce the idea of a Build Lab and explain the way it auto-

mates the various tasks required to generate a version of software. We also
consider the different types of software testing performed during this build
process and then finally walk you through a typical programming episode
to put these procedures into a realistic context. After completing this chap-
ter, you will know enough about the basics of building and integrating soft-
ware to understand the purpose of Team Foundation Build, whose setup
and use are described in the next chapter.

Software Construction

Transforming source code into a set of binary files (.exe, .dll) is a mechani-
cal process which most people learn to automate within the first few weeks
of their programming career. For example, you might run your compiler
from some form of batch file to save you the bother of typing out the com-
mands each time the program needs rebuilding. Automating such a task
helps make it reliable so that you can be confident that the executable
binary files will accurately reflect the changes you’ve made to your source
files. It also makes the operation consistent so that running your batch file
twice generates exactly the same program.

213

Building and Integrating As a Team
When you’re developing software as a team, the process of assembling pro-
grams is particularly demanding because you must consider applying the
changes made by several people to the same set of source files. This is the
problem that software integration must solve by testing the software as a
system rather than as just a set of separate classes and components. It is
work that needs to be automated so that it can be regularly, reliably, and
consistently completed just like the build itself. Therefore, when working
with others you can no longer simply run a script on your PC and then per-
form a few manual tests. Instead, you need to start thinking about creating
an automated facility that builds and tests the team’s shared code base in
a common environment. For this reason, teams typically create some form
of “automated build lab” that performs such work for them.

Automated Build Lab
The Build Lab is an environment which allows your team to automate the
building and integration of its work in a reliable as well as consistent way.
Accordingly, your Build Lab should operate according to a prescribed
process, just like a factory except its raw materials are source files and its
finished products are programs.

Chapter 11: Building and Integrating Software214

NOTE

Whether you’re working on your own or as part of a team, the ability
to perform reliable and consistent software builds is an essential pre-
requisite for any sort of serious software development.

NOTE

Building and integrating software requires a production process to min-
imize the variation in its results. This contrasts with the sort of design
process needed during analysis, design, and coding which promotes
variance so as to yield useful information.

The term Build Lab reflects the fact that it provides a separate environ-
ment from both the development environment in which you create source
files and the production environment where the programs are actually
employed; see Figure 11-1. However, keep in mind that although the
Build Lab and development environments are separate, they usually exist
in the same physical place, unlike the final production environment
which is typically located outside the team’s workspace. You will want to
control the movement of software among these various software envi-
ronments with a set of formal procedures to help ensure that only a fully
tested and properly audited system ends up being used for business
purposes.

Figure 11-1: Flow of software from its origination to final use

Test Machines

DevServer
TFS Application and Data Tier

Production Machines

DeveloperPC
Visual Studio
Team Suite

with Team Explorer

Edit Test

1. Local Build

2. Check-in

3. Run Integration Build

4. Run Release Build

(Get Latest)

(Copy Build Products)

(Store Build Results)

Build Status Reports PC
(optional)

BuildLabPC
MSBuild & Build Service

Luke’s Development
Environment

Build Lab Environment

Production
Environment

Drop Site
Build Collection

5. Deploy
Specific Build

4.

1.

2.

3.

5.

Software Construction 215

It is not difficult to see how the idea of having a set of instructions (or a
script) to automatically assemble the software on your development PC can
be extended in a Build Lab to include tasks such as getting the latest source
files into the Build Lab’s workspace, running tests, and copying the build
products to some form of public “drop folder” on your network. However,
a Build Lab needs to run these instructions not just at the click of a button
(on demand), but at scheduled times and in response to events such as the
detection of a change to a source file in your version control system (con-
tinuous integration). In this way, you can start automating the entire
process of constructing and testing the integration of the source code
changes made by different members of your team.

Software Integration and Test Environment
The first stage of integration is done when different developers add their
changes to the team’s version control system; see Chapter 7. However, the
real work of integration involves verifying that these changes result in soft-
ware that works together as required. Therefore, in addition to providing
a software construction environment, your Build Lab must also provide a
suitable operating environment for your tests so that they can be run as
realistically as possible. Ideally this test environment would exactly mirror
the production environment into which the software will ultimately be
deployed. However, in practice, teams usually just provide some sort of
emulation of the production environment within their Build Lab, though in
some cases a separate Test Lab may be used instead.

The deployment of software into a production environment becomes an
increasingly complex matter as we start to build larger distributed systems,
rather than client-server solutions and stand-alone applications. This means
that your Build Lab (and to a lesser degree your development environment)

Chapter 11: Building and Integrating Software216

NOTE

The types of automated structural (unit) and functional tests needed to
prove your build products are described in Sections 5 and 7 of this
book. You can also find details of other types of tests to perform on the
products of your builds later in this chapter.

must undertake more work to provide the necessary data, services, machine
configurations, and so on needed for the proper testing of the team’s build
products; see the section Making a Build Validation Test in Chapter 12.
Accordingly, in addition to automating the building and testing of your
team’s software, you should consider automating the maintenance of your
Build Lab’s test environment so that you can quickly restore it to a standard
state before starting your tests.

Automated Software Testing

The time taken to resolve incompatibilities in our code rises steeply with
the numbers which exist at any one time because the number of permuta-
tions rises factorially. Therefore, it makes sense to address such problems as
they arise rather than letting them accumulate. For this reason, you must
reduce the time delay between someone making a change to the code base
and receiving confirmation of its success, because the longer this feedback
takes, the greater the opportunity for incompatible changes to accumulate
in the code base.

On an Agile team, the rule is simple: Regularly check in small changes
with business value and verify that they work within ten minutes, or back
them out. In this way, the software is kept in a working state almost all of the
time, which reduces the overall time the team spends addressing software
integration issues. However, in order to apply this policy, your Build Lab
needs to automate a substantial part of its software testing so that at the click
of a button, a new version of the product can be rapidly generated and

Automated Software Testing 217

TIP

It is particularly useful to emulate1 your production environment in
the Build Lab by using Microsoft’s Virtual PC2 product, because when
you need to restore the operating system or a database to a known
state, you can simply reload the virtual image.

1. Waldon, Ben. “Program Customized Testing Environments” (MSDN Magazine, Aug. 2004
http://msdn.microsoft.com/msdnmag).

2. Microsoft Virtual PC Web site (www.microsoft.com/windows/virtualpc).

validated. For this reason, Agile teams work to streamline the integration and
testing of their work so that they can complete it in less time than it takes to
drink a cup of coffee; see the upcoming sidebar, Ten Minute Build Practice.

Ten Minute Build Practice
The Ten Minute Build practice means that less than ten minutes after

someone puts his changes into the repository, the latest version of the

team’s software has been rebuilt and its integration tests run.

The Ten Minute Build practice makes integration into a low-overhead task

that can be done each time you take a break from the Test-First Program-

ming practice. Ten minutes is time enough to get a cup of coffee and reflect

upon what you’ve done with your programming partner. If you take a break

for longer than ten minutes, you’ll get sidetracked on some other issue.

However, break for less than ten minutes and there’s not enough time to

have a decent conversation. The Ten Minute Build practice ties together

the need for periodic breaks, taking small steps and regular integration. It

also gives you some time to think.

Automation is the key to implementing the Ten Minute Build practice. You

need to be able to kick off the build before you go for a break and then

come back ten minutes later to check the result. Fortunately, Team Foun-

dation Build allows you to completely automate your build and test

process so that at the start of your project, it is usually not difficult to

rebuild everything and then run all the tests within ten minutes. Of course,

this does mean that you must monitor the time needed to complete such

a build and take steps to speed things up when the size of your code base

starts to make it difficult for you to achieve this target. For example, you

might need to implement incremental builds, as described in Chapter 12.

Chapter 11: Building and Integrating Software218

TIP

You shouldn’t seek to automate your testing entirely, because manual
testing often reveals obvious problems (sanity checks) and introduces
a degree of variance which allows you to discover new bugs.

Smoke Tests
When testing a new build of software, you need to find out quickly whether
it is worth spending more time and effort progressing it toward possible
release into the production environment. People often use the term Smoke
Test3 to describe this sort of testing, the idea being to rapidly detect any fires
in the code by looking for the telltale signs of smoke. You need to run new
tests to confirm that the changes made to your software produce the
desired new behavior, but more important, you also need to run your old
tests to check that these changes don’t impair any existing behavior; this is
called regression testing.

Without automated software testing, a Smoke Test might simply involve
running the program for 15 minutes so that you can check that you can per-
form a basic set of operations without encountering any obvious bugs.
However, when automated tests are used, the amount of testing that you
can perform during a quick Smoke Test rises considerably because it
becomes quite feasible to run hundreds of regression tests to check the new
version of the program in terms of both its structure and its function. There-
fore, by using the automated part of your Smoke Test to weed out obvious
problematic builds, you can concentrate more of your efforts performing
the manual part and thereby find the subtler problems which often exist in
the remainder.

Functional Tests
Functional testing is often called black-box testing4 because it treats the soft-
ware under test as a system inside a sealed box which has a given state and

Automated Software Testing 219

3. McConnell, Steve. “Daily Build and Smoke Test” (IEEE Software, Vol. 13, No. 4, 1996).

NOTE

Regression testing helps you detect bugs that your code changes create
indirectly, by running all the old functional and structural (unit) tests
for parts of the code you have not changed, in addition to the new tests
for the code you have changed.

produces particular outputs in response to certain inputs. Functional test-
ing in its most general sense involves validating what the software does,
but we shall defer explaining the specifics of its implementation until we
cover customer tests in Section 7.

Functional tests are useful from an integration point of view because
they usually test the program (or system) from end to end, verifying that
each separately developed element does what it is meant to do and thus
forms part of a cohesive whole. The problem with a functional test is that
when it fails you usually have no indication to help you identify the code
or data that is causing the problem. In terms of the black-box analogy, all
you know is that the output of the box is just not what was predicted for the
given set of inputs.

Structural (Unit) Tests
Structural testing allows us to look inside the sealed box that represents
your software during functional testing so that we can write tests for the
various parts of this code working in isolation. For example, we might
write a structural test to check the operation of a particular function or an
individual method of a class. Structural testing is generally concerned with
validating how software works, which is why it is sometimes called white
or glass box testing. However, it is most commonly termed unit testing to
emphasize the fact that you are testing separate pieces of code in isolation.
We will show you how to write structural tests (also known as Program-
mer’s Tests) when we cover test-driven development (TDD) in Section 5.

Structural testing is a bottom-up approach. It relies on the idea of rigor-
ously testing the individual parts of a program to ensure that when they are
put together they will all work correctly. When a structural test fails you
usually have a good indication of the exact line of code or data value that
is causing the problem, but it is often difficult to relate that information to
some reported failure of the system as a whole.

Quality of Service Tests
In addition to tests that validate software against its functional require-
ments, you must also test it against nonfunctional requirements such as

Chapter 11: Building and Integrating Software220

4. [BBT] Beizer, Boris. Black-Box Testing (John Wiley & Sons, 1995).

security, performance, and so forth. Microsoft refers to such nonfunctional
requirements as Quality of Service (QoS) items. Typically you implement
QoS testing by running functional tests to exercise the software and then
measure things such as its performance under high-transaction volumes
(loading testing), or its response when system resources such as memory
are in short supply (stress testing).

You might perform QoS testing during integration if there was a partic-
ular nonfunctional requirement that the team was trying to satisfy. For
example, you might be striving to reach a target of 50 transactions per sec-
ond (TPS) and therefore want to reject at the Smoke Test stage any build
that was unable to achieve at least 45 TPS. However, it is more usual to
make QoS testing part of any final system testing which must be completed
before the software is judged ready for release into the production envi-
ronment; see Chapter 28.

Integration Testing
An Agile team validates each version of software produced by its Build Lab
by performing integration testing which includes a regression test of most,
if not all, of the automated structural and functional tests that have been
developed for the project. It combines tests that functionally go from one
end of the system to the other with tests developed to prove its structural
integrity. This sort of orthogonal testing can be very effective at finding the
incompatibilities that inevitably result when different people work on a
common code base, but of course, it is highly dependent on having a col-
lection of tests that adequately cover both code and features; we address
this matter in Sections 5 and 7.

Automated Software Testing 221

NOTE

You may also need to add further structural or functional tests for the
specific purpose of testing the interfaces between the software that is
being integrated. Robert Binder’s book,5 Testing Object-Oriented Sys-
tems, provides excellent advice in this area.

5. [TOOS] Binder, Robert. Testing Object-Oriented Systems (Addison-Wesley, 2000).

Build and Test Cycles

Figure 11-1 (earlier) shows the flow of software from its origination in the
development environment to its final use in the production environment.
This flow results from the repetition of activities which can be described in
terms of various build (and test) cycles that drive the iterative and incre-
mental nature of Agile software development. Let’s now see what these
activities involve by following the building and integrating of software
during a typical 24 hours with the OSPACS team we described in the
Introduction.

Local Build
Luke has assumed responsibility for implementing the “Mask Personal
Details from Image” story; see Figure 3-1 in Chapter 3. He has broken down
the story into a number of tasks, one of which involves reading the patient
identifier field (volunteer ref) from a DICOM-formatted file so that he can
create a record for its image data in the OSPACS database. This task should
take him a couple of hours to complete, and he will perform it while pair
programming with Sarah, his teammate, in what we term a programming
episode.

Luke and Sarah get the latest version of the OSPACS code base into
Luke’s workspace (see Exercise 9-1 in Chapter 9) so that they can do test-
driven development (TDD) by repeatedly cycling through the following
sequence:

1. Write a structural (unit) test.

2. Write the code to make the test pass.

3. Improve the code by removing duplication, and clarifying and
simplifying it.

We will cover the technicalities of TDD in Section 5, but for now, just
understand that Luke and Sarah are building and testing a few classes
every few minutes using the Visual Studio Integrated Development Envi-
ronment (IDE). Although these classes are part of the OSPACS system,

Chapter 11: Building and Integrating Software222

only the files that have been altered need compiling, so it doesn’t take
more than a few seconds to build and test each change. This encourages
Luke and Sarah to stay focused on the programming task at hand and to
solve the problem by taking a succession of small steps. Working in this
way, it takes them a couple of hours to write the tests and code needed to
implement the programming task and check their changeset into the
repository.

TDD requires intensive concentration, so you need to take regular
breaks. Therefore, Luke and Sarah end their programming episode by ini-
tiating an Integration Build and then going for coffee to talk through what
they have just achieved. They are confident that the changes they have
made in their development environment are ready to be promoted to the
Build Lab environment because they have done the following:

• Peer-reviewed their work through the Pair Programming practice

• Built their software in the development environment without incur-
ring any errors from the compiler or warnings from the team’s static
code analysis rules

• Passed the unit tests they had developed and recorded the lines of
code that were executed (code coverage) to make sure they ade-
quately exercised their new code

• Regression-tested their work against all the unit and customer tests
that were passing before they started the programming episode to
check that they hadn’t inadvertently broken anything

Build and Test Cycles 223

NOTE

You may find that certain customer tests fail in your development
environment simply because you do not have access to the same sort
of data and services set up to emulate the production environment in
the Build Lab.

Continuous Integration Practice
The Continuous Integration practice requires your software to be rebuilt

from the team’s shared code base whenever you check in any changes to

the repository.

During a programming episode, you will first update your workspace with

the latest source code from the TFS repository and then implement some

changes which you will build and test on your own PC before finally check-

ing the resulting changeset into the repository. The Continuous Integration

practice requires that these programming episodes take little more than an

hour or so and conclude with the ten-minute (integration) build which con-

structs and tests the latest version of the software in the repository, there-

fore demonstrating the successful integration of the changeset.

The rationale often given for delaying integration is that developers take

less time to integrate their work when it is batched up and done together

as a distinct phase or task. However, there is ample evidence to suggest

that the longer you postpone integrating people’s work, the longer and

more complex the job becomes. It is now customary for teams to integrate

their work as a task at the end of each day (Daily Build), but if you lower the

overhead associated with integration even further, there is no reason why

it can’t be done even more frequently. This is precisely what the Ten Minute

Build practice provides: the ability to automate integration so that it can be

done during the coffee break that takes place after each developer com-

pletes a programming episode.

Some Agile teams use tools such as CruiseControl.NET to implement con-

tinuous integration so that a Team Build is automatically kicked off each

time a changeset is checked into the repository. This is certainly very cool,

but it can make you feel a bit remote from the integration process. Per-

sonally, we like the idea of manually starting a ten-minute build before

going for coffee and then checking the results upon our return. We value

these breaks because they give us time to think and stop us burning out on

test-first programming. In this respect, we view continuous integration as

being more a case of frequent rather than instantaneous integration.

Chapter 11: Building and Integrating Software224

Integration Build
The Integration Build and Test cycle repeats at the conclusion of each suc-
cessful programming episode and ensures that changes to the code base are
safely shared among the team. It is performed by running a sort of script
in the Build Lab that checks out the latest version of the code base (includ-
ing its tests) into a working directory where it is rebuilt and tested over a
short period; see the sidebar, Ten Minute Build Practice, earlier in this chap-
ter. All this happens in a well-defined way because the Build Lab is a stan-
dardized environment, unlike the development PCs belonging to Luke and
the other developers. A report is generated upon completion of an Integra-
tion Build and Test that details any errors or warnings found.

Luke checks the results of his Integration Build after returning from cof-
fee, and fortunately there are no problems, so he doesn’t need to back out
his changes (see Exercise 9-4 in Chapter 9). Luke knows that although the
work Sarah and he did in the development environment may have helped
eradicate many of the problems that arise when people share source files,
it is only in the Build Lab that the subtler issues are identified. Accordingly,
he now feels more confident that anyone updating his workspace to get the

Build and Test Cycles 225

TIP

Rather than updating your workspace from the latest version of files in
the repository, you might instead update it from the version used to cre-
ate the most recent Integration Build which has been judged successful.

NOTE

Controlling the configuration of a developer’s PC is usually difficult
because these machines will frequently have new libraries, tools, and
so forth installed on them, which sometimes results in a developer
using the wrong version during a local build.

version of code from the repository corresponding to this build will receive
a collection of files that can be assembled into a fully functioning version
of the software. This is due to the following:

• The Build Lab provides the gold standard for building the team’s
software, so a successful build in this environment means that any
build problems subsequently encountered in someone else’s devel-
opment environment probably result from incompatibilities on her
PC; for example, out-of-date libraries, incorrect compiler settings,
and so forth.

• The testing of the programs generated in the Build Lab is more com-
plete because it emulates the production environment more closely
than in Luke’s development environment. The tests are also per-
formed in a more controlled way with the Build Lab being reset to a
known state before the tests are started; for example, databases are
rebuilt, Web services restarted, and so on.

• In Luke’s development environment, the testing was primarily
focused on running structural (unit) tests. However, in the Build Lab
more functional tests are run that exercise processes from one end to
the other. The success of these tests is a better indication that differ-
ent areas of the code base work together properly.

• The changes made during Luke’s programming episode (including
tests) have been combined with changes made in other areas of the
code base by people who have also completed a programming
episode over the past few hours. The success of the Integration Build
and Test indicates that the software still interoperates correctly after
all these changes.

Chapter 11: Building and Integrating Software226

WARNING

Roll back your changeset from the repository immediately if you dis-
cover that it contains an error (or other issue) because the longer it
remains there, the more likely it is that other developers will copy the
problem into their workspaces when they get the latest version of
the files.

Had it been necessary for Luke to back out his changeset because it
failed the integration Build Validation Test (BVT), he might have decided to
ask Sarah if she could help him resolve the problem by continuing their
programming episode. Alternatively, he might have chosen to defer the
matter by repeating the entire programming task at some future date, pos-
sibly with another developer. Whatever approach is taken, the Ten Minute
Build practice allows Luke to back out a troublesome changeset within ten
minutes of it being checked in, which significantly helps to retain the
integrity of the OSPACS code base.

Daily Build
Each day after the OSPACS team has left the office, the Daily Build (and
test) is run as a scheduled job in the Build Lab. This provides a regular syn-
chronization point for the project that gathers together in one build all the
changes made during the previous day’s programming episodes. It is a
complete rebuild of the system and should generate everything needed to
deploy the system in the production environment, including installation
programs, help files, and so forth. The programs created by the build are
subjected to all the available automated tests, and the next morning, the
person given responsibility for maintaining this Daily Build (the process
technician) will perform additional manual testing needed to complete the
Smoke Test and any other forms of testing6 that may be judged necessary.

Performing a Daily Build means that at any time, the OSPACS team is
able to deploy everything it has done apart from what has been achieved
in the current day. However, in practice, the team’s software will actually be
deployed into the production environment only at the end of certain itera-
tions every few months or so; see Section 8. In this way, the team regularly
practices for deployment, and consequently, when it really happens, it just
needs to follow a well-polished procedure. Deployment itself is a very sim-
ple task on the OSPACS team at this early stage of the project because it just
requires that the team grant access rights to folders containing the appro-
priate Daily Build so that its installation program can be downloaded when
someone clicks on the appropriate link in the company’s public Web site.

Build and Test Cycles 227

6. Ambler, Scott. “The Full Life Cycle Object-Oriented Testing (FLOOT) Method”
(www.ambysoft.com/essays/floot.html).

Typically, the team will know when the results of an iteration are sched-
uled to be deployed into the production environment, and therefore will
put particular emphasis in that iteration to performing more intensive sys-
tem testing. The products of any Daily Build may potentially be deployed,
though inevitably most are not, either because they fail at some stage dur-
ing the testing performed as they progress through the team’s formal
release process, or simply because they do not offer enough value to the
business to warrant the cost of their deployment in terms of training,
changing business processes, and so forth.

CONCLUSION

Building and integrating your team’s software is a production process that
you need to automate so that it can be performed regularly, reliably, and
consistently. This is the purpose of a Build Lab. It allows the team to create
a production line that moves software from its various development envi-
ronments into a single area where it can be built and tested before being
progressed into the production environment. The automated software test-
ing that is carried out in a Build Lab dramatically reduces the cost of this
software integration work, thereby making it an activity that can be
repeated many times each day. A team that is able to regularly build and
integrate its work improves the value delivered to the business because
overall, the team spends less time putting its work together and can also
reveal its worth much earlier in the project.

Chapter 11: Building and Integrating Software228

NOTE

Some organizations adopt the less than Agile approach of never releas-
ing software into the production environment without it first passing
through a separate team responsible for conducting further tests which
typically may take days, weeks, or even months.

12
Working with Team
Foundation Build

This chapter explains the practicalities of building and integrating your
team’s software in the way we described in the preceding chapter. We

will introduce you to Team Foundation Build and show how you can use
it to automate the process of building and testing the source files stored in
your team’s repository. You will also learn how to perform incremental
builds and optimize the dependencies between your code libraries so that
you can scale up Team Build for larger code bases. The aim of the chapter
is to help your team regularly create versions of its software and use the
information generated to progress its work toward eventual deployment in
the production environment.

Welcome to Team Foundation Build

The Team Foundation Build that comes with Team Foundation Server (TFS)
provides everything you need to set up your own public Build Lab. The
underlying engine performing the various build tasks is MSBuild, with the
associated source control, reporting facilities, and Web services being pro-
vided by TFS. Put together in the framework of Team Foundation Build,

229

you’ve got the functionality you need to implement the sort of integration
and build process discussed in Chapter 11.

Setting Up Team Foundation Build
Although you can install Team Foundation Build (TFB) on the machine
hosting your TFS or on a Client Tier PC, we strongly recommend that you
run it on a machine used exclusively as your Build Lab, such as the Build-
LabPC shown in Figure 1-1 in Chapter 1. You have plenty of flexibility in
terms of the physical machine used for this purpose, because typically TFB
does not demand either a very fast processor or large amounts of RAM. The
TFS Installation Manual1 gives full details about the TFB minimum hard-
ware requirements and its installation procedure. However, there are two
things that you should keep in mind: First, TFB must be explicitly installed
on a PC because it is not installed with TFS or Visual Studio Team Suite.
Second, you should have Visual Studio Team Suite installed on the same
machine as your TFB so that you can run a full range of automated VSTS
tests as part of your build process: unit tests, code coverage, static code
analysis, generic tests, and so forth.

How Team Foundation Build Works
A Team Build is started when a command is passed from the TFS Client Tier
to the Team Foundation Build Web Service running on the Application Tier;
see step 1 in Figure 12-1. This Build Web Service coordinates the execution
of the build steps executed by MSBuild by communicating with the Build
Service running on the Build machine (steps 2 through 4). The results of
running the Team Build are then passed back to this Build Web Service for
storage in the Team Foundation Build Store, the database responsible for
maintaining a record of each Team Build performed by your team (steps 5
and 6). When your Team Build completes, all its products (.dll, .exe, and
.msi files) are stored in a subfolder of the “build drop folder” which is
named after the build type, the date, and its sequence number; for example,
MyBuildType_20061128.3.

Chapter 12: Working with Team Foundation Build230

1. TFS Installation Guide (http://go.microsoft.com/fwlink/?LinkId=40042).

Figure 12-1: Components of Visual Studio Team System (VSTS) associated with Team
Foundation Build

Fortunately, when you run a Team Build you don’t need to worry about
any of the preceding technical details; you simply select the type of build
you want to run from Visual Studio’s Build Team Project dialog box and
then click its Build button. Alternatively, you can schedule the running of
a Team Build at a particular time of day (or night), as we explain in Exer-
cise 12-4.

The Role of MSBuild
MSBuild allows you to automate the various tasks required to build your
software. Although it usually integrates with hosts such as Visual Studio
2005, you can also run MSBuild directly from the command line, so you
don’t absolutely need to install Visual Studio Team Suite in your Build Lab.
However, we don’t recommend this choice, because as we mentioned ear-
lier, it prevents you from running the VSTS automated tests as part of your
build process.

Team Foundation
Build Client

Team Build
Service

Build Service

Create and maintain Build Type files and MSBuild Scripts

Copy Script
and

Source files

Put Build
Products

Start Build

Set Build Status
and Results

MSBuild Get Source Files

TFS Data Tier

Visual Studio
Team Edition

Build Machine TFS Application Tier

Set Build Results

Update Build Status

Start Build

2.

3.

4.

5.

6.

Get Team
Build Script

Build Drop
Folder

Working
Folder

Process Script Repository

Team
Build
Store

Work Item
Store

TFS Version
Control Service

Update
Bug Items

1.

4.

3.

5.

2.
6.

Welcome to Team Foundation Build 231

People who have used NAnt will find MSBuild quite familiar because
both tools use XML to define the steps needed to build your software prod-
uct. However, as you might expect, each tool required a different form of
XML. You can use MSBuild to perform all types of builds because its input
parameter simply requires a reference to an XML project file. For example,
when hosted by Visual Studio 2005, MSBuild might run a “local build”
using myApp.csproj, and when run remotely on your build machine it
might run an “Integration Build” using teamIntegration.proj. These proj-
ect files contain a number of build tasks related to the construction of build
products or targets (for example, an assembly). MSBuild executes such
tasks synchronously and the files generated by one task can form the input
to another, so by setting various conditions to govern whether a particular
task is executed, you can exercise a great deal of control over the creation
of your software, its testing, and even its deployment.

Most of the time you don’t need to edit the XML in your MSBuild proj-
ect files directly because Visual Studio does the job for you. For example,
if you add a class to a project or change the build configuration, your proj-
ect file is automatically updated. However, you can edit the project file itself
should the need arise, but bear in mind that although it forms a type of
script, it does not support many of the features you might associate with a
proper scripting language such as JavaScript. Therefore, if you want to add
some special control logic to your build, you should extend MSBuild with
a custom .NET library; see the book’s Web site for details.

Chapter 12: Working with Team Foundation Build232

NOTE

Visual Studio 2005 replaces the traditional NMAKE2 build tool with
MSBuild so that whenever you press F6 (or apply Build | Build Solu-
tion, and so on) you are actually using the same tool to build your pro-
grams as your team uses in its Build Lab.

2. NMAKE is Microsoft’s adaptation of MAKE, a build tool originating from UNIX and C.

Making a Build Validation Test
A Build Validation Test (BVT) serves to validate the products of a build and
is typically run as a build task at the end of a Team Build. It is basically a list
of the tests people have created to prove the software in some way. For
example, after writing a unit test to check some aspect of the code in your
development environment, you might check in the test and then add it to
a BVT to ensure that the same test was subsequently executed whenever
the Integration Build was run in your Build Lab environment.

In order to create a BVT you need to have some tests. Therefore, you
should start by creating a Visual Studio C# Test Project which, by default,
has two initial tests: a unit test called TestMethod1 and a manual test called
ManualTest1. Exercise 12-1 takes you step by step through this procedure.

Exercise 12-1: Creating a Build Validation Test

In this exercise, you will create the osImageManagerUT Visual Studio C#
Test Project and then add its TestMethod1 unit test to a Test List you make
in your Test Manager window. This Test List forms your BVT.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for details
about this PC and Luke’s security groups.

2. Make sure Luke’s workspace is up-to-date by opening the Source
Control Explorer (View | Other Windows), selecting the $/OSPACS
folder, and then choosing Get Latest Version from its context menu
(Right-click | Get Latest Version).

Welcome to Team Foundation Build 233

TIP

Change the number and type of default tests created for your Test Pro-
jects by changing the settings in your Visual Studio Options dialog
box: Tools | Options | Test Tools, Test Project.

3. Load the osImageManager Visual Studio Solution by opening
the osImageManager.sln file in Luke’s workspace (File | Open |
Project/Solution).

4. Create a new Visual Studio Project called osImageManagerUT; open
the New Project dialog box (File | New | Project) and select Test
Project from the Visual C# project types. Use the dialog box to add
this project to the osImageManager Solution and select a suitable
directory in Luke’s workspace for its source files (for example,
osImageManager\src).

5. Open the Test Manager window (Test | Windows) and create a new
Test List for your BVT by opening its Create New Test List dialog box,
typing “IntegrationBVT” as the test list name, and then clicking OK.
You open this dialog box by selecting Lists of Tests and then choosing
New Test List from its context menu (Right-click | New Test List).

6. Add a unit test to your new Test List by dragging the osImageMan-
agerUT test named TestMethod1 from the Test View window (Test |
Windows) onto IntegrationBVT in the left pane of the Test Manager
window. To make sure this test is run as part of the integration test,
click the selection box next to IntegrationBVT in the right pane of the
Test Manager window.

7. Check that your IntegrationBVT test runs without error by clicking the
Run Checked Tests button in the toolbar at the top of the Test Manager
window; see Figure 12-2. The results appear in the Test Results window.

8. Check-in your changes into the TFS repository for OSPACS by open-
ing the Pending Changes window (View | Other Windows) and
clicking its Check In button; see Figure 8-2 in Chapter 8.

9. This exercise is now complete, so log off.

Chapter 12: Working with Team Foundation Build234

TIP

Install Visual Studio Team Suite on all the team’s PCs so that people
can add the tests they create to the IntegrationBVT Test List after they
have successfully run them in their own development environment
and checked them into the repository.

Figure 12-2: Running a BVT in your Test Lab environment

Setting Team Build Permissions
Three security groups were formed when the OSPACS Team Project
was created in Exercise 5-1 in Chapter 5: [OSPACS]\Administrators,
[OSPACS]\Readers, and [OSPACS]\Contributors. The default permissions
of [OSPACS]\Contributors allow the developers on your team to use what-
ever facilities of VSTS they need to do most parts of their job. However, in
order for developers to create and run Team Foundation Builds, they need
the additional permissions granted in Exercise 12-2.

Run Checked Tests

Welcome to Team Foundation Build 235

NOTE

Create the OSPACSDevs security group for the developers on your
team so that you can grant them the permissions they need for using
the various facilities of VSTS simply by making OSPACSDevs a mem-
ber of [OSPACS]\Contributors.

Exercise 12-2: Allowing Developers to Create and Run Team Builds

After completing the following exercise, all members of [OSPACS]\
Contributors will be able to start and administer Team Builds, provide
build quality comments, and publish test results.

1. Log on as Tom (OSPACS Project Administrator) to the DeveloperPC,
start Visual Studio, and then connect to the OSPACS Team Project as
you did in the previous exercise.

2. Open the Project Security dialog box (Team | Team Project Settings |
Security) and select the OSPACS\Contributors security group before
checking the following boxes in the list at the bottom of this dialog box:

a. Administer a Build

b. Edit Build Quality

c. Publish Test Results

d. Start a Build

e. View Project Level Information (already checked)

3. Apply your changes and close the dialog box by clicking its Close
button.

4. Create the directories c:\TeamBuild\Drops\OSPACS and
c:\TeamBuild\Builds. Make the Drops directory a shared directory
of the same name with the following permissions:

a. Read permissions for members of OSPACSDevs

b. Write permissions for the Team Build Service account specified
during the installation of Team Foundation Build on your
BuildLabPC

5. You have completed this exercise, so log off.

Chapter 12: Working with Team Foundation Build236

TIP

You can share a directory on your PC and set its permissions using
Windows Explorer by choosing Sharing and Security from its context
menu (right-click). If this menu item does not appear, try logging on as
the original owner, for example, “darren”.

Creating Team Build Types
Each Team Build a team performs is an instance of a particular build type
as defined by an MSBuild project file. You can create this project file by run-
ning the Team Build Type Wizard, as described in Exercise 12-3, and there-
fore define such things as the following:

• A list of Visual Studio Solutions that will be built

• A build configuration such as “release” or “debug” and the target
platform

• The name of the build machine and the location of the build drop
folder

• A list of any Build Validation Tests to be executed and whether static
code analysis should be performed

Exercise 12-3: Creating a Team Build Type for Integration

In this exercise, you will create the osImageManagerIntegration Team Build
type with a Release configuration for the osImageManager Visual Studio
Solution. Builds of this type will be validated by the IntegrationBVT
and the build products will be copied into subdirectories of the
\\DevServer\Drops\OSPACS shared directory.

1. Log on as Luke (OSPACS Contributor) to the BuildLabPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

Welcome to Team Foundation Build 237

TIP

Create a collection of Team Build types, each with different settings
and Build Validation Tests, so that your team can perform builds to sat-
isfy particular objectives. For example, create one for fast Integration
Builds and another for more thorough Daily Builds.

2. Create a new Team Build type by completing the appropriate wizard
(Build | New Team Build Type):

a. Enter “osImageManagerIntegration” as the name of the new
Team Build type and give a description of its purpose before
clicking Next.

b. Select the osImageManager Solution as the Visual Studio Solution
to build. If you want to build more than one solution, use the
arrow buttons at the side of the list of Solutions to set their build
order. Click Next to continue.

c. Select the Release configuration as the “type of configuration” to
use during the build. In this way, all Visual Studio Projects will
be built according to the release settings in their corresponding
*.vsproj files. Click Next to continue.

d. Enter the build machine name as “BuildLabPC”, the build
directory as “c:\TeamBuild\Builds”, and the drop location as
“\\DevServer\Drops\OSPACS”. Click Next to continue.

e. Select Run Test, and from the test metadata file, select the Integra-
tionBVT Test List created in Exercise 12-1. You should also select
Perform Code Analysis before clicking Next to continue.

f. Check the summary of your selections, and then click Finish to
create a directory containing the various files that define your
new Team Build type. The wizard will also check all these items
into the TFS repository for you.

3. This exercise is complete, so log off.

Chapter 12: Working with Team Foundation Build238

NOTE

You can share a directory on your PC and set its permissions using
Windows Explorer by choosing Sharing and Security from its context
menu (right-click). If this menu item does not appear, try logging on as
the original owner; for example, “darren”.

Scheduling a Daily Build
A Daily Build provides a regular synchronization point for all the changes
the team has made during a single day. It is usually performed after every-
one has left the office, so it needs to be a scheduled task which you can per-
form from the command prompt, as we describe next.

Exercise 12-4: Scheduling a Daily Team Build

This exercise runs a Team Build from the command prompt and then sets up
a Windows scheduled task to repeat this action each weekday at 10:00 p.m.

1. Log on as Luke (OSPACS Contributor) to the BuildLabPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Open an MS-DOS command prompt and execute a Team Build
by typing:

TFSBuild Start BuildLabPC OSPACS osImageManagerIntegration

The progress of the build will be displayed, and after a few minutes, the
build should successfully complete. You can obtain more information about
TFSBuild by issuing the command with just the parameters: Start /?.

3. Allow your Daily Build to be started automatically at a given time of
day by starting the Window Scheduled Task Wizard (Control Panel
| Scheduled Tasks | Add Scheduled Task) and making the following
choices:

a. Select Command Prompt as the program you want to schedule.

b. Enter “OSPACS Daily Build” as the name of the task, and set it to
be performed daily.

c. Enter “10:00 p.m.” as the start time of the task, and set it to be
performed on weekdays from the current date.

Welcome to Team Foundation Build 239

d. Enter Luke’s username and password so that the task will be per-
formed with his rights and permissions.

e. Click Finish to add the task to the BuildLabPC’s list of scheduled
tasks. You can subsequently edit the settings for this task from the
Control Panel | Scheduled Tasks menu and thereby set the neces-
sary command-line parameters in the Task Run edit box.

4. You have finished the exercise, so log off.

Sample Programming Episode: Integration Build
To give you some practice completing the sorts of Team Builds you need

to perform in your day-to-day work, let’s now walk through the program-
ming episode we described in Chapter 11.

Exercise 12-5: Programming Episode Walkthrough and Integration Build

In the first part of this exercise, you will make a small alteration to the
Visual Studio Project created in Exercise 8-4 in Chapter 8, and then validate
it with the test you created in Exercise 12-1.

Chapter 12: Working with Team Foundation Build240

NOTE

We have specified that the OSPACS team’s Daily Build should use the
Team Build type created in Exercise 12-3 for its Integration Build.
However, as work progresses, you will need to create specialized Team
Build types for these different sorts of builds.

NOTE

A programming episode typically involves completing a discrete
chunk of work, such as fixing a bug or implementing some distinct
part of a story. It concludes after you check your changeset into the
repository and successfully perform an Integration Build.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Make sure Luke’s workspace is up-to-date by opening the Source
Control Explorer (View | Other Windows), selecting the $/OSPACS
folder, and then choosing Get Latest Version from its context menu
(Right-click | Get Latest Version).

3. Load the osImageManager Visual Studio Solution by opening
the osImageManager.sln file in Luke’s workspace (File | Open |
Project/Solution) and then change the title of the osImageManagerApp
main form by opening Form1.cs from the Solution Explorer and
editing its Text property (View | Properties Window), as you did in
Exercise 9-1 in Chapter 9.

4. Validate the change in your development environment by perform-
ing a local build and then running your automated tests as follows:

a. Press F6 to build the solution (Build | Build Solution).

b. Select the TestMethod1 test in your Test View window (Test
| Windows) and select Run Selection from its context menu
(Right-click | Run Selection).

c. Open the Test Results window (Test | Windows) to see the results
of the test.

Next you will associate the changeset you have just created with a work
item and then check it into the repository.

5. Open the Pending Changes window (View | Other Windows) and
then select Work Items from its left toolbar so you can select the All
Work Items query and thus list all the work items for the OSPACS
Team Project.

6. Place a checkmark against the GUITask (created in Exercise 6-2 in
Chapter 6) and set its Check in Actions as Resolve; then click the
Check In button to put your changeset into the repository.

The final part of the exercise performs a Team Build to integrate these
changes with the team’s shared code base and then sets the status of the

Welcome to Team Foundation Build 241

build to inform other team members that it successfully validates the work
item associated with the changeset.

7. Open the OSPACS Build dialog (Build | Build Team Project
OSPACS), select the Build Type as osImageManagerIntegration
(created in Exercise 12-3), and then click the Build button.

8. The Team Build Report window opens in Visual Studio (see
Figure 12-3) to show the progress of the build on the BuildLabPC,
though you can close this window at any time without interrupting
your Team Build.

9. After the Team Build completes, expand the items at the bottom
of the Team Build Report window to confirm that it includes the
changeset and its associated work item; see steps 3 and 6.

Figure 12-3: Team Build Report window

Chapter 12: Working with Team Foundation Build242

10. Specify the quality of the Integration Build you have just performed
by changing its Build Quality to Integration OK, as follows:

a. Display the list of Team Builds of this type that have been performed
by using Team Explorer to select osImageManagerIntegration in
the OSPACS Team Builds folder and then choose Open from its
context menu.

b. Add a new build quality value for the OSPACS project by select-
ing any item in the build list’s Build Quality column and then
choosing <Edit…> from its drop-down list to open the Edit Build
Quality dialog box.

c. Add a new build quality value by clicking the dialog’s New
button and typing “Integration OK” into the dialog box that
appears. Click the Close button to save this new value and close
the dialog box.

d. Apply the Integration OK value to the build you have just per-
formed by selecting it from the list of builds and then selecting
the appropriate value from the drop-down list in the Build
Quality column. You should save this change by selecting
another column in the list.

11. This exercise is complete, so log off.

Deleting Build Products
Most teams will be content to let their build products accumulate in the
Build Store and Drop Site folders because lack of storage space should not
be a significant concern. However, sometimes the need arises to perform a

Welcome to Team Foundation Build 243

NOTE

Your team needs to agree to immediately back out from the TFS repos-
itory any changeset that causes the Integration Build to fail, but this
should rarely happen because the changes made will have been thor-
oughly tested in your development environment beforehand.

bit of housekeeping, so we explain in Exercise 12-6 how you can delete the
build products from the drop site and remove all information about the
build from your Build Store database.

Exercise 12-6: Deleting Build Products

After you have completed this exercise, you will have deleted all the prod-
ucts of the Team Build performed in Exercise 12-5—that is, its build report
in TFS as well as the executable files in its “drop” directory in your
BuildLabPC.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Identify the name of the Team Build you want to delete from the list
of Team Builds that have been performed. You can display this list
by double-clicking the osImageManagerIntegration item in Team
Explorer’s Team Builds folder.

3. Open the command prompt and enter the following command,
where the final parameter is the name of the Team Build identified
in step 2:

TFSBuild Delete BuildLabPC OSPACS osImageManagerIntegration_20060228.3

Confirm this action by pressing the y key and wait for the process to
complete before closing the command prompt.

4. Log off, as this exercise is complete.

Chapter 12: Working with Team Foundation Build244

NOTE

In order to complete Exercise 12-6 successfully, you need to have per-
mission to administer builds for the OSPACS Team Project, permis-
sions that were granted to [OSPACS]\Contributors in Exercise 12-2.

Build Management

Over the course of a project, the output from perhaps thousands of builds
accumulates into a complete archive of your team’s build history. However,
like any archive, it can quickly lose its value useless you manage it properly.
In this part of the chapter, we will discuss a number of ways in which your
team might make better use of the information generated by performing
Team Builds.

Process Technician Role
Giving the job of process technician (build coordinator) to a team member
makes someone ultimately responsible for ensuring that Team Builds are
properly executed and managed. Typically, the role is performed by devel-
opers in rotation so as to encourage knowledge about the job to become dis-
tributed throughout the team. This is a practice which also fosters
cooperation, as each developer knows that sooner or later he will undertake
the role, so it is in everyone’s interest to make the job easy.

At the start of the project, it is the process technician who will create the
initial Team Builds and help establish check-in policies (see Exercise 10-3
in Chapter 10) or manual procedures to make certain that the teams agreed
practices and policies are met. However, as the project proceeds, the job
becomes more a matter of running the daily Smoke Test, keeping the build
and test environment in good working order, and maintaining the Team
Build types. The process technician might, for example, have to implement
an Incremental Build in order to maintain the team’s target, running its
Integration Build within ten minutes, or delete a series of Integration Builds
because they no longer serve any purpose.

Build Management 245

TIP

During your turn as the process technician, try to make some lasting
improvement in the way your team builds its software. For example,
create a new type of build report or restructure a library to make Incre-
mental Builds more efficient.

Build Notification
Team Builds are like a heartbeat in that a regular series of successful builds
gives a fair indication that your project is in good health. Everyone on the
team can easily monitor this heartbeat by setting up a Project Alert so that
an e-mail is sent to each team member when a Team Build completes or its
status (build quality) changes.

The problem with setting up alerts using the Project Alerts dialog box
is that you can quickly become inundated with e-mails telling you a build
has completed, something that might happen a dozen or so times a day on
a small team and much more often on a larger team. This can be especially
irritating if you have also arranged to receive a Systems Management
Server (SMS) message on your mobile telephone whenever you get an
e-mail from your Team Foundation Server (TFS). What you really want is
an e-mail when a Team Build fails, rather than when it completes. This
might be particularly important if you were the current process technician
and needed to be called in the middle of the night if the Daily Build failed.
In this sort of situation, you might want to use the BisSubscribe command-
line tool, as shown in Listing 12-1.

Listing 12-1: Receiving Project Alerts Only When a Team Build Fails
3

BisSubscribe.exe /eventType BuildCompletionEvent
/address <email address>
/deliveryType EmailHtml
/server <server name>
/filter "TeamProject='<Team Project>' AND CompletionStatus='FAILED'"
/userid <your id>

Chapter 12: Working with Team Foundation Build246

TIP

Create a Project Alert by selecting one of the standard alerts from the
Project Alerts dialog box (Team | Project Alerts) and then entering an
appropriate e-mail address or distribution list.

3. The solution in Listing 12-1 was suggested on the MSDN VSTS Forum by M.N. Kishore.

Build Identification
The output of a Team Build is identified by a unique build name formed by
the Build Type name, the date it was performed, and an incremental build
number for that date. This build name appears both on the list of build
records created when you run a build report (see Figure 12-3) and as the
name of the folder containing the build products in the “drop site.” There-
fore, it is not difficult to find a particular set of build products given their
date and sequence number. However, you often need to run some form of
query to discover this information. For example, you might run a query to
find a particular work item so that you can then determine the build name
in which it was resolved; see Figure 12-4.

Figure 12-4: Work item’s “Resolved in build” details

Build Management 247

NOTE

Replace the contents of the angle brackets in Listing 12-1 with details
relevant to your own project and enter them all on the same line from
the command prompt. The parameters are shown on different lines in
the listing only for reasons of space and clarity.

Build identification is particularly important when you are attempting
to resolve a bug because you will often need to identify the exact configu-
ration of the software in which the bug was found so that you can re-create
it in your development environment. Given the build name, it is usually not
difficult to find the changeset from its build report (see Figure 12-3) and
then check out this version of the software into your workspace; see Exer-
cise 9-4 in Chapter 9. However, when the software has been deployed out-
side the Build Lab environment, it can be difficult to correctly identify this
build name because it is not automatically written into the executable files.

Build Reports
The information gathered about Team Builds is potentially very useful in
terms of helping you to understand and therefore better control the activi-
ties of your team. A considerable amount of information is stored in the
Team Foundation Build store that allows you to create quite sophisticated
reports. However, the standard build report for Team Projects that are
based on the MSF for Agile Software Development (or MSF for XP) project
template is quite basic. It simply lists the percentage of passing tests, code
churn, and code coverage for each Team Build, as shown in Figure 12-5.

Chapter 12: Working with Team Foundation Build248

NOTE

Associating a work item with a changeset in the Pending Changes
window (View | Other Windows) and setting its State to Resolved will
result in its “Resolved in build” details being automatically updated
the next time you run a Team Build.

TIP

Make it part of your release process to associate the build name with
the version information belonging to your various assemblies. In this
way, you inextricably link your build product files (.exe and .dll) with
the name of the Team Build that created them.

Figure 12-5: Build report details

The standard build report provides some useful quality metrics, but
they might be better displayed in a chart regularly printed out on a large
sheet of paper and then pinned to your office walls. Your challenge as an
Agile team is always to pull the data out of the computer and make it acces-
sible, rather than hiding it inside a report that nobody reads.

Scaling Up Team Integration Builds

So far, we’ve just considered the case of setting up a new Team Project with
a small code base when your problem is making the Integration Build take
long enough to give people a decent break between programming episodes.
However, as your project progresses, the code base grows in size and starts
to take longer to build. Therefore, sooner or later you encounter the issue of
being able to complete your Integration Build within ten minutes.

Scaling Up Team Integration Builds 249

NOTE

Display the VSTS standard build report in Visual Studio’s main win-
dow by double-clicking the appropriate item in your Team Explorer’s
Reports folder. Alternatively, display it in your browser using the links
in your team’s Report Site (Team | Show Report Site).

Incremental Builds
Scaling up your Team Integration Builds to handle larger code bases usu-
ally means building only what has changed rather than trying to rebuild
everything, and for this reason you may want to create the incremental
Team Build type described in Exercise 12-7.

Exercise 12-7: Creating an Incremental Team Build Type

The TFSBuild.proj file belonging to the osImageManagerIntegration Team
Build is edited here so that it will rebuild only the parts of the product
whose source files have changed in the BuildLabPC’s workspace.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Perform Team Build for osImageManagerIntegration to create an
up-to-date set of build products; see step 7 of Exercise 12-5.

3. Check out the TFSBuild.proj file belonging to the
osImageManagerIntegration Team Build by selecting it in your
Source Control Explorer window (View | Other Windows) and
choosing Check Out for Edit from its context menu.

4. Use Visual Studio’s XML editor to open the TFSBuild.proj file which
is now in Luke’s workspace (File | Open) so that you can add to the
bottom of its PropertyGroup section the lines shown in Listing 12-2.
This will cause the file to be added to your Pending Changes win-
dow (View | Other Windows).

5. Use the Pending Changes window to check in the changeset you
have just created by entering a suitable comment and then clicking
its Check In button.

6. Perform another osImageManagerIntegration Team Build (repeat
step 2), and upon completion, review the BuildLog.txt file to confirm
that you have not built the files that remained unchanged—in other
words, that you are now building incrementally.

Chapter 12: Working with Team Foundation Build250

Listing 12-2: Settings for Performing an Incremental Team Build
4

<PropertyGroup>
<SkipClean>true</SkipClean>
<SkipInitializeWorkspace>true</SkipInitializeWorkspace>
<ForceGet>false</ForceGet>
</PropertyGroup>

Optimizing Package Dependencies for Building
In a project with a large code base which is organized into many separate
class libraries, the time taken to run a Team Build may be significantly
reduced if you have to rebuild only the parts of your software that have
changed. For example, rather than rebuilding all 50 class libraries, you
might need to rebuild only one. Therefore, altering your Integration Team
Build type so that it builds incrementally may be an effective way of
upholding the Ten Minute Build practice for a team that has such a code
base. However, you can easily lose these gains if many of the team’s
changes involve a library upon which all the other libraries depend, such as
the Maths library in Figure 12-6.

Consider the package hierarchy shown in Figure 12-6, where the arrows
show dependencies arising from a class in one library “using” a class in
another: Is it better to move the Calc class into the ImageHandlerAuto
library or keep it in the Maths library? Your decision may be influenced by
a number of factors, but if you expect the Calc class to change frequently,
keeping it in the Maths library might not be such a good idea because each
single alteration will necessitate a rebuild of all the libraries. In contrast,
alterations to a class contained within the ImageHandlerAuto library will
require only its own library to be rebuilt because no other libraries are
dependent upon it.

Scaling Up Team Integration Builds 251

4. The solution in Listing 12-2 was obtained from Nagaraju Palla’s Web log.

Figure 12-6: Package diagram showing dependences between code libraries

It is not always easy to decide which classes should go into which
libraries, because you must balance the need to build your software against
the need to maintain your architectural design. One of the reasons it is so
difficult to perform architectural design upfront is that information about
the volatility of a particular class becomes evident only when you start to
develop the code. Referring again to Figure 12-6, it is likely that someone
decided to put the Calc class in the Maths library well before it became evi-
dent that this class would often need alteration. The Agile approach of let-
ting the package structure evolve as the project progresses (bottom-up)
confers significant advantages over fixing such matters at an early stage in
the project when thoughts are usually focused solely on functional decom-
position (top-down). It is a fact of life that requirements will change; the
issue, therefore, becomes one of deciding which parts of the code will flex.
Big projects that put this flexibility into packages which are inherently dif-
ficult to change tend to pay a big price in terms of the time it takes them to
build their code.

ImageHandlerUI

Codex Encryption

Maths

ImageData:Compress()
DataStream:Encrypt()

Calc:Hash()Eigen:PcOne()

ImageHandlerAuto

Matrix:Transpose()

Chapter 12: Working with Team Foundation Build252

CONCLUSION

During the course of your project, your team might create thousands of
builds, but only very few will ever be released into the production envi-
ronment. The tools provided with Visual Studio Team System help you to
manage all of these builds so that you can then select the ones that offer the
best value to your business in terms of features, quality, and timeliness. In
this chapter, you have gained the knowledge and basic skills you need to
put these tools to good use. Therefore, you should be able to reliably and
consistently release your software, which provides a solid foundation for
other areas of improvement.

Conclusion 253

NOTE

Typically, you will have all night to run a Daily Build, so there is no need
to build your libraries incrementally. However, failing to give proper
consideration to the dependencies in your libraries may also make it
pointless to attempt an incremental Integration (ten-minute) Build.

Review of Section 4
Build and Integrate Often

TH E OSPACS T E A M wanted to introduce a process that would regu-
larly, reliably, and consistently move its software from its development

environment into production. Providing effective version control had
helped the team take the first steps toward this objective by allowing it to
combine the changes made by different developers to the same source files.
However, the team now wanted to implement the rest of the process by
centrally building and integrating its code so that it could be tested in an
environment that more closely emulated its production environment. This
required the team to undertake the following activities:

• Set up the build environment—Visual Studio Team Suite, Team
Foundation Build, and InstallShield Standalone were installed
on the team’s build machine; see the BuildLabPC in Figure 1-1 in
Chapter 1. In addition, the team set up a Virtual PC to emulate the
production environment and created a Build Validation Test (BVT)
so that it might validate the products of its Team Builds.

• Perform the Ten Minute Build Practice—The team built the Integra-
tion Team Build type along with its associated working directories
and drop folders. It took a matter of minutes for the team to run the
Team Build because at this stage of the project, there was very little
code and few tests to process. Nevertheless, the team was now able
to perform Integration Builds after each programming episode, so it
had the infrastructure it required to implement the Continuous Inte-
gration practice. The team saw this as a major milestone.

255

• Perform the Daily Build—The team created the Daily Team Build
type with additional build steps to create an Installation Program
using the InstallShield Standalone command-line tool and then ran
it. The team also set up a scheduled task on the Team Foundation
Server to run this Team Build at 10:00 p.m. each weekday so that it
would get into the habit of performing a Daily Build. But the team
was aware that a lot of hard work was ahead in terms of improving
this Daily Build to meet the demands of its project as it progressed.

• Perform Team Builds—All the team’s developers went through a
number of programming episodes to create a skeletal OSPACS sys-
tem that they could flesh out with real functionality once they had
mastered test-driven development. This helped the team get a feel
for the process it had created which would eventually move its soft-
ware from its development environment into production.

The Team’s Impressions

The usual objective of the project’s first iteration is the delivery of a thin ver-
tical slice of the system, some small piece of functionality that goes from its
input all the way through to its output. This skeletal collection of libraries
and classes is fleshed out in subsequent iterations as additional function-
ality is implemented. In this way, the features of the system are incremen-
tally delivered iteration by iteration. The comments of the teams as they
built the infrastructure required to integrate and build this skeletal system
are given in the following sections.

Review of Section 4: Build and Integrate Often256

NOTE

The OSPACS team created a simple installation program which was
built as part of its Daily Build so that it could address deployment
issues from the start of the project. See Chapter 29 for information
about creating this installation program.

Developer: Tom
“The time taken for the team to produce any form of software release kept
on increasing because the more we deferred integration, the longer the task
became. We didn’t notice this effect so much at the start of the project, but
when the code base grew, so did our problems. I didn’t need much con-
vincing that regular integration was a good thing.”

“The decision to deploy a build must be driven by business need rather
than IT time scales. Therefore, a build will be deployed into the production
environment only when its potential value to the business is greater than
the cost of its deployment.”

Developer: Sarah
“Now that I’ve seen what we can do, our old approach to building and test-
ing the system seems so inadequate. It involved little more than pressing F6
in Visual Studio and then running the program in a debugger to exercise a
few of its key features. It’s not surprising that we found it so difficult to inte-
grate our work.”

“This new Build Lab makes sure our test data stays separate from the
live data in our production environment.”

“Writing an installation program is easy at this stage of the project, but
I know from bitter experience that it gets much harder as time goes by.”

Developer: Peter
“The key to making this work is to convince everyone to run all of the unit
tests and most of the functional tests from his development environment so
that he can be confident that the Integration Build will succeed before
checking in a changeset.”

“Viewing a successful check-in as evidence of successful integration is
like taking a clean compile as a reason to suppose that your code is work-
ing. Integration can be judged successful only when you have rebuilt and
tested the software in the build and test environment.”

“You must test as part of integration; if you’re not testing, you’re not
integrating.”

The Team’s Impressions 257

Developer: Luke
“My usual response to Maggie complaining about a bug in my code was
‘but it works on my machine!’ I can see now that my PC didn’t really match
the production server, so it’s not surprising that the program behaved dif-
ferently in the two environments.”

Agile Values

Although the team isn’t yet ready to attempt the sorts of Agile iterations we
discussed in Chapter 3, it has managed to create a skeleton for the OSPACS
system and put together the infrastructure needed for to start working in
this way. This allowed the team to implement the Ten Minute Build practice
and the Continuous Integration practice, which helped the team develop its
Agile values as follows.

Communication
The Ten Minute Build practice encourages developers to take time for cof-
fee and discuss informally what they have done. Other developers who are
standing in the kitchen often get involved in such conversation, which
helps to spread ideas and knowledge throughout the team.

Practicing continuous integration means that the whole team regularly
resynchronizes its work, so changes are communicated to everyone swiftly.

Feedback
The Integration Build is like the project heartbeat because it repeatedly sig-
nals that the project is progressing. It validates that the team is producing
working code, and when a small problem does arise, it can be fixed before
it becomes a large problem which is difficult to solve.

Courage
Integration is performed in small, simple steps so that any problems are
quickly apparent. This means the team does not have to worry about hav-
ing to perform complex “big-bang” integration at some future date.

Review of Section 4: Build and Integrate Often258

Simplicity
Automated Team Builds performed in the BuildLabPC are reliable and
consistent, which means people tend to blame themselves rather than
their tools.

Respect
The team members gain respect for each other by regularly integrating their
work, because when someone does check in some code that causes the Inte-
gration Build to fail, it serves as a reminder that they are all mutually
dependent.

Agile Values 259

Section 5
Practice Test-Driven Development

T E S T-D R I V E N D E V E L O P M E N T (TDD) is the mechanism that underpins
an Agile team’s ability to deliver valuable and high-quality code in a

reliable fashion. This section is all about TDD. It starts in Chapter 13 with
an introduction to the basic concepts of TDD in preparation for Chapters 14
and 15, which guide you through a complete working example using the
tools provided by Visual Studio Team System (VSTS). Chapter 16 wraps up
this example by showing you how you can use the tests you have devel-
oped to check performance and produce code coverage information.
Finally, we conclude Section 5 with Chapter 17, which proposes how you

261

Photograph by Camerique (Copyright Getty Images 1935).

Each test performed by an Agile team acts like a small experiment
which proves the software and helps the design evolve.

might integrate your TDD code with a user interface generated by the
Windows Forms Designer in order to create a complete application.

Story from the Trenches

I had always felt a bit inadequate working as a programmer because my
degree was in electronic engineering and not computer science. Therefore,
I jumped at the chance to work for two of the software industry’s biggest
players, which were collaborating on the development of a new operating
system. I hoped that this experience might help me better understand how
software should be produced.

The development team contained hundreds of people split into dozens
of small groups at sites located across two continents However, what struck
me more than the size of the team was the caliber of its staff, for everyone
seemed very smart and clearly knew a lot about software development.
Consequently, I listened to our group leader with particular care as she
explained to us the importance of performing rigorous analysis and design
before contemplating writing even a single line of code. We were assured
that the coding stage would take no time at all once we got the design right.
Therefore, our group set to work aiming to create the perfect design for the
graphics printing module which was the component of the operating sys-
tem we were charged with developing.

For the next four months, we worked on the design of this graphics
printing module and in the process generated copious amounts of docu-
mentation, models, and diagrams which described every aspect of our
design. We then spent weeks collectively walking through this design on
paper trying to foresee every problem and coming up with increasingly
complex solutions. Our design was next subjected to an in-depth review
involving some of the most senior people on the project, but after a num-
ber of revisions, we finally got the go-ahead to start writing the code. Every-
thing went well for the first few weeks and we made good progress, just as
our group leader had predicted. The few minor glitches in the design that
did appear were quickly papered over and we resolved to address them
properly once we had delivered the first release.

Section 5: Practice Test-Driven Development262

After about a month of coding, we came to realize that all these minor
problems were beginning to have a significant impact on the design. Take
the simple matter of a poorly named function, for example. When we
started coding we could have changed the name quite easily, but we didn’t
because this would have involved changing the design document and
going through the whole sign-off process again. Therefore, after a month
of coding, this inappropriately named function came to be invoked in hun-
dreds of places throughout our code base, therefore making any future
attempt to change its name so much harder. Poor names made our code
more difficult to understand, which in turn caused bugs. However, badly
named functions were the least of our worries, because the design was
starting to unravel in more serious ways as well. There were unexpected
data dependencies, holes in the functionality, and numerous other issues
which necessitated tactical coding solutions, causing the design and the
code to diverge.

We wanted to use our experience of coding this module over the past
month to revisit the design. However, we had committed ourselves to pro-
ducing a perfect design upfront, so the process denied us this opportunity.
Our group struggled with the flawed design over the next month, and
eventually we managed to produce a release of the graphics printing mod-
ule which managed to pass system testing. However, nobody was particu-
lar proud of the achievement, because given all our effort to design the
software correctly, we had still managed to produce something that looked
like a big ball of mud. These sorts of problems were not isolated to our
group, and it was soon apparent to me that even some of the best people
in the industry were having trouble following this upfront design process.
Clearly there had to be a better way to design software.

Story from the Trenches 263

13
Introduction to TDD

IN T H I S C H A P T E R, we introduce the concept of writing tests much ear-
lier in the development process so that they drive not just the validation

of our software, but also its specification, analysis, and design; hence the
term test-driven development (TDD). We cover the basic principles of TDD to
describe what it involves and walk you through a few cycles of the Test-
First Programming practice to illustrate just how easily you can adopt this
approach to software development.

The Nature of Test-Driven Development

Programmer tests are similar to unit tests in traditional software testing in
that they focus on the structure of the software and are written from the
programmer’s point of view. However, these tests have a greater purpose
than simply checking our code; they also form a scaffold that supports its
development. Therefore, writing programmer tests forms an integral part
of the software development process. It is not just a task that might be per-
formed at the end if there is enough time.

Settling into the Rhythm of Test-First Programming
Programmer tests act like scaffolding because they are written before the
code is implemented. This avoids the programmer’s judgment about what

265

to test being clouded by the code he has written. However, more important,
it discourages him from writing code that isn’t necessary to satisfy the test.
Because programmer tests play a role in analysis and design as well as dur-
ing coding and testing, you cannot separate these activities into distinct
phases of the project, as you might when following the sort of Waterfall
process or Rational Unified Process (RUP) we discussed in Chapter 3.
Instead, for the duration of the programming episode, you repeat the sim-
ple rhythm of

1. Writing a failing test

2. Writing just enough code to make all the tests pass

3. Refactoring to improve the code by removing duplication, making it
simpler and easier to maintain

Test-First Programming Practice
Test-first programming (TFP) requires you to let your coding activities be

driven by two simple rules:

• Never develop new code unless you have a failing automated test.

• Eliminate duplication.

The first of these rules requires you to write code only after writing one or

more tests to reveal the defect it must fix. The second rule drives you to

Chapter 13: Introduction to TDD266

NOTE

In this book, we use the term test-first programming (TFP)1 to describe
the practice of cycling through the steps of testing, coding, and refac-
toring. We use the term test-driven development (TDD)2 to describe the
bigger picture of developing software using this practice.

1. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005), p. 50.

2. [TDDE] Beck, Kent. Test-Driven Development by Example (Addison-Wesley, 2003), p. 203.

improve your code once it passes its tests because, as Kent Beck3 says,

duplication is a symptom of the dependencies which seriously inhibit our

ability to change our code in a simple and easy way.

TFP makes teams more effective because they develop new code only

when there is a tangible requirement—in other words, a failing test. This

test begins as a way to specify the work and ends up checking that it has

been completed correctly. Working in this way encourages you to do only

what you need to do to meet the specification, and to stop once you’ve met

the objective. Therefore, your code, being free of unnecessary embellish-

ment, is quicker to write and quicker to test. Furthermore, the passing of

tests unambiguously marks progress, so there is less risk of people wast-

ing time on work that has no purpose. TFP also removes the need for teams

to produce a perfect upfront design because it allows them to work from

the bottom up to evolve a design which is both simple and easy to adapt

if their requirements change or they discover a better way to do things.

In order to implement TFP, developers need to have access to tools that

allow them to write and execute tests quickly enough so that the natural

flow of their everyday work is not disturbed. In this respect, NUnit4 has

proven to be so successful that Microsoft seems to have based the unit test-

ing tools for Visual Studio Team System (VSTS) around the same concept.

However, regardless of which tool you use, the basic pattern of the Test-First

Programming practice is the same. First, you create a test that initially fails

when run, as indicated by a red icon in the VSTS Test Results window or by

a red bar in NUnit. Second, you write just enough code to get all your tests

to pass so that the icon or bar goes green. Finally, you refactor your code

to improve its structure without changing its purpose, thereby keeping the

icon (or bar) green. This cycle repeats as you write another test to specify

something else that needs implementing. Piece by piece, you add func-

tionality to your program, always keeping it in a working state and refac-

toring when necessary to let the design converge into the desired solution.

The Nature of Test-Driven Development 267

3. [TDDE] Beck, Kent. Test-Driven Development by Example (Addison-Wesley, 2003), p. 8.
4. NUnit is supported at www.nunit.org.

Top Down versus Bottom Up
The traditional top-down approach to software development requires that
you decompose a problem into a number of parts so that you can design
solutions for each part before you begin building and testing them. It’s a
case of “design everything, code everything, and then test everything.” In
contrast, the bottom-up approach, which TFP takes, builds up the system
by specifying one part, getting it to work, and then addressing the next
part, letting the refactoring step converge the design into a solution. It’s a
case of “test a bit, code a bit, and then design a bit.”

The bottom-up approach of TFP probably goes against everything
you’ve ever been taught about good software development practice. How-
ever, the advantage of this approach is that it’s much more responsive to
change than the top-down approach is. When you’re building things using
TFP, a change to the requirements doesn’t matter so much because you can
evolve your working software through a series of small changes to make
your design converge to a different solution. This means you don’t have to
throw away your work and return to the drawing board, as you do when
requirements change in a top-down approach.

Unfortunately, the flexibility of a bottom-up approach comes at a cost,
because after each small change, you need to check that the software still
works. However, as you will see in this section of the book, with efficient
tools and the right process, all this extra testing is no longer the impediment
it once was to teams working in a bottom-up fashion.

Chapter 13: Introduction to TDD268

NOTE

Agile teams should create all their production code using the Test-First
Programming practice. Otherwise, the code will become difficult to
adapt as their requirements change.

Simple Test-First Programming Exercises

The following exercise aims to convince you that there is nothing funda-
mentally difficult about the TFP approach. It contains the sort of code that
you might write when you’re learning to program in C# and doesn’t
require the use of any special tools. However, it is obviously much easier
to practice TFP with the VSTS tools.

Define the List of Tests
In Exercise 13-1, we will help you implement the part of a story that is con-
cerned with calculating the number of bytes needed to store an image (e.g.,
an X-ray) given its length and width. The exercise starts with you having
defined the follow list of tests:

• Size is 6 units when length is 3 units and width is 2 units; a
typical case.

• Size is 0 units when length is 0 units and width is 0 units; a
boundary case.

Set Up a Basic Test Harness
A team’s testing efforts need the support of some form of test harness which
provides a convenient way to run the test adapters (also known as test driv-
ers) and other tools needed for the reliable and consistent execution of their
various test suites. The implementation of a test harness can range from the

Simple Test-First Programming Exercises 269

NOTE

You would normally expect to produce a list of perhaps a dozen or so
tests at the start of a proper programming episode; see Table 14-1 in
Chapter 14. However, the two tests in the preceding list are sufficient
for our purposes in this short exercise.

sort of simple program shown in Listing 13-1 to a completely integrated sys-
tem such as that provided by Visual Studio Team System; see Chapter 14.

Exercise 13-1: Implementing a Simple Test Harness

1. Log on as Luke and start Visual Studio. You will not need to connect
with Team Foundation Server (TFS) for the purposes of this exercise.

2. Create a new Visual Studio Project for a Console application called
TestHarness (see Listing 13-1). Make a directory for the Solution, but
locate its files on your local hard drive outside of Luke’s workspace
(File | New | Project, Visual C#, Windows Console Application).

Listing 13-1: Test Harness

namespace TestHarness
{

class Program //Test Harness
{

static void Main (string[] args)
{

TestDrivers.ImageTest test = new TestDrivers.ImageTest();
test.Run();

}
}

}

Chapter 13: Introduction to TDD270

NOTE

In this book, we use Robert Binder’s5 description of a “test case” as a
set of inputs, execution conditions, and expected results developed for
a particular objective. We also use the term test suite to describe a col-
lection of one or more such test cases which are run together.

5. [TOOS] Binder, Robert. Testing Object-Oriented Systems (Addison-Wesley, 2000).

3. Create the new namespace, TestDrivers, at the bottom of the
Program.cs file. Add into this namespace the test adapter class,
ImageTest, together with a method called Run:

namespace TestDrivers
{

class ImageTest //Test Adapter
{

public void Run() {}
}

}

4. Add the statements shown in Listing 13-1 to create a Main static
method in the Program class so that your test adapter will be
invoked when the program is executed.

5. Finally, build and run the application to confirm that all is well by
selecting Debug | Start Debugging.

Your test adapter invokes the implementation under test (IUT) and typ-
ically has responsibility for providing test input, controlling test execution,
and reporting test results. In this case, we have put everything in one file that
contains two classes, such that the ImageTest class serves as a test adapter
for the Image class, which is the IUT we will develop in Exercise 13-2.

TFP Cycle for the First Test
Let’s now complete a simple TFP cycle by writing a test, writing enough
code to make the test pass, and completing a small refactoring. You should
note that the tests are implemented using Assert statements which, as you
are probably aware, throw an exception when their first parameter is
passed a false value, but do nothing when this parameter is set as true.

Simple Test-First Programming Exercises 271

TIP

When using an Assert statement in your own code, remember to use
an identifying text label as its message parameter. Otherwise, it can be
hard to determine the one that fired, particularly if you have multiple
Assert statements in the same block of code.

Exercise 13-2: Writing a Failing Test

1. Add the Assert statement to the Run() method of ImageTest, your
test adapter class:

public void Run()
{ //Test Case

System.Diagnostics.Debug.Assert(pic.Area(3,2) == 6);
}

2. So that you can build the program, add the Image class to the Ospacs
namespace at the bottom of Program.cs and implement the Area
method so that it returns 0. You will also need to add an Image
instance variable to ImageTest and initialize it in the constructor
(see Listing 13-2).

Listing 13-2: Test Adapter and Implementation under Test

namespace TestDrivers
{

class ImageTest //Test Adapter
{

private Ospacs.Image pic;
public ImageTest() { pic = new Ospacs.Image(); }
public void Run()

{ //Test Case
System.Diagnostics.Debug.Assert(pic.Area(3,2) == 6);

}
}

}

namespace Ospacs
{

class Image //Implementation Under Test
{

public int Area (int length, int width) { return 0; }
}

}

3. Build and run the application to confirm that the program asserts
because Image.Area() doesn’t return the value 6 when the test is
executed (Debug | Start Debugging).

Chapter 13: Introduction to TDD272

The failing test proves that the Assert statement is executed, and when
we fix the code, it gives us confidence that our changes have corrected the
problem. It is important to get into the habit of creating a failing test
because you will not always be working with such simple code.

Exercise 13-3: Fixing the Code to Pass the Test

1. Do the simplest thing to make the test pass by hardcoding 6 as the
return value of Image.Area():

class Image //Implementation under test
{

public int Area (int length, int width) { return 6; }
}

2. Build and run the application to confirm that the program no longer
asserts because Image.Area() now returns the value 6 when the test
is executed (Debug | Start Debugging).

After fixing the code to pass a test, you should consider the option of
refactoring. However, it is not always necessary to alter the code. Therefore,
when there is nothing obvious to do, as in this case, you should proceed to
the next test.

TFP Cycle for the Second Test
The second test checks the boundary condition to ensure that the area is 0
when the length and width are 0.

Exercise 13-4: Writing Another Failing Test

1. Add an additional Assert statement to the Run method of the Test
adapter class, ImageTest:

public void Run()
{

System.Diagnostics.Debug.Assert(pic.Area(3,2) == 6);
System.Diagnostics.Debug.Assert(pic.Area(0,0) == 0);

}

Simple Test-First Programming Exercises 273

2. Build and run the application to confirm that the program asserts
because Image.Area() doesn’t return the value 0 when the second
test is executed (Debug | Start Debugging).

Exercise 13-5: Fixing the Code Again

1. Make Image.Area() return the product of its parameters so that it
will pass both tests:

class Image //Implementation under test
{

public int Area (int length, int width)
{

return length * width;
}

}

2. Build and run the application to confirm that the program no longer
asserts because Image.Area() now returns the correct value for both
tests (Debug | Start Debugging).

Exercise 13-6: Refactoring (To Make the Code Easier to Maintain)

1. Move the parameters for length and width to the Image constructor
so that the data required for the Area calculation can be stored in the
object responsible for performing this action instead of being held in
the various objects invoking the method; see the boldface code in
Listing 13-3.

Listing 13-3 : Refactored Test Harness, Test Adapter, and IUT Source Code

namespace TestHarness
{

class Program //Test Harness
{

Chapter 13: Introduction to TDD274

static void Main (string[] args)
{

TestDrivers.ImageTest test = new TestDrivers.ImageTest();
test.Run();

}
}

}

namespace TestDrivers
{

class ImageTest //Test adapter
{

private Ospacs.Image picSix;
private Ospacs.Image picZero;

public ImageTest()
{

picSix = new Ospacs.Image(3,2);
picZero = new Ospacs.Image(0,0);

}
public void Run()
{

System.Diagnostics.Debug.Assert(picSix.Area() == 6,"Test 6");
System.Diagnostics.Debug.Assert(picZero.Area() == 0, "Test 0");

}
}

}
namespace Ospacs //Production Code
{

class Image //Implementation under test
{

private int length;
private int width;

public Image (int len, int wd)
{

length = len;
width = wd;

}
public int Area (int length, int width)
{

return length * width;
}

}
}

Simple Test-First Programming Exercises 275

2. Build and run the program to confirm that it still passes its tests
(Debug | Start Debugging).

3. This exercise is complete, so log off.

Avoid changing both the IUT and the Test Case code at the same time by
refactoring in small steps. For example, add the new Area method (with-
out any parameters) and check that the original tests pass. Then, change the
tests to use the new method signature and remove the old Area method
(with parameters). In this case, the refactoring is quite simple; you will be
thankful for this advice when you start doing more extensive refactoring.

Review of the Exercises
The exercises in this chapter demonstrate that even a complete novice can
use TFP to produce useful software. However, this technique didn’t dumb
down the job of developing software; on the contrary, it encouraged you to
work like an expert by

• Forcing you to consider the purpose of the code before you wrote
it; your tests specified software and later validated it.

• Promoting simple design by eliminating unnecessary code and
complexity; you didn’t write any software without a supporting
test, and you refactored your work to make it easier to maintain
(see Exercise 13-6).

• Producing software that you can easily and safely adapt as the
system grows; your tests allowed you to improve the structure of
the code without changing its purpose.

TFP didn’t require you to create a perfect design upfront. Instead, you
allowed the code to slowly evolve and correct itself. For example, the mis-
take we encouraged you to make by failing to recognize that length and
width should be stored in the Image object was soon identified and cor-
rected. In fact, this refactoring was the only part of TFP that needed any real
thought, because even through using this basic test harness and driver, you

Chapter 13: Introduction to TDD276

required very little effort to write the tests, develop the code, and then per-
form the unit testing.

Getting Started with Test-First Programming

TFP is something you must learn through practice, which is why this sec-
tion of the book has so many exercises for you to follow. However, to help
you understand their relevance, we conclude this chapter by explaining the
applicability of TFP to your team as well as the basic concepts of creating
a list of tests, finding more tests, and refactoring.

Applying TFP on Your Team
You can use TFP to develop almost any sort of procedural code for which
you can find (or make) the necessary test tools, harnesses, and drivers.
Almost anyone can master the basic technique of TFP within a few hours.
However, you can practice it for a lifetime and still discover something new
about TDD each time you use it. This means that the whole team can con-
tribute to the development of production code, not just a few experts,
thereby enabling the Whole Team practice.

Getting Started with Test-First Programming 277

NOTE

When developing code for use in a production environment, you must
do TFP and pair programming at the same time, because the discus-
sions you have with your partner about tests and refactoring oppor-
tunities are what actually lead to better software.

NOTE

TFP does not lend itself to the sort of declarative programming that
involves dropping components on a form and then setting their prop-
erties and events (for example, the creation of Windows Forms). How-
ever, we suggest how you can handle this type of code in Chapter 17.

Creating a List of Tests
The starting point for TFP is a list of tests which you and your program-
ming partner produce during the first 15 to 30 minutes of a programming
episode. You make this list by analyzing the task in hand using traditional
top-down problem decomposition, brainstorming, or other techniques.
During this process, you might meet with the customer to make sure you
understand the requirement, or perhaps you may do a bit of Agile model-
ing to help you explore the design; see Section 6. After you have created a list
of tests, you should start with the one that seems the easiest to address, and
when you have completed it, you should attempt the next most obvious test
on your list. Continue to apply TFP in this manner until all your tests pass
and no further tests can be identified; at this point, the task is complete.

The secret of TFP is to keep moving forward by writing simple tests and
equally simple code. When you become stuck and don’t know what to do
next, just choose the next simplest thing. You should expect to identify
additional tests as you and your programming partner work through the
test list, using your judgment to decide whether you should write such tests
immediately or add them to your list for later implementation. Experience
will help you write more discriminating and meaningful tests. It will also
help you write simpler code and make better refactorings. However, you
should not use lack of experience as an excuse for not doing TFP, because
it’s hard to make a truly catastrophic mistake when you apply TFP prop-
erly. It should always be possible to refactor your work at a later date or just
undo your changes using version control.

Finding Additional Tests
The Image class shown in Listing 13-3 is far from complete, because clearly
we need to write more tests, and this will drive additional extensions of the

Chapter 13: Introduction to TDD278

NOTE

Identification of the tasks needed to implement a customer story starts
during iteration planning (see Section 8), but often continues as the
iteration progresses.

class. For example, the introduction of tests containing negative values for
length or width would require additional code for error handling. Without
much thought, you could probably identify half a dozen additional tests,
but would that be enough? To give you some idea of the number of tests
that you could develop, consider the classic problem posed by Glen Myers:6

Three integer values representing the lengths of each side of a triangle are
read from an input dialog so that your program can determine whether
you have specified a scalene, isosceles or equilateral triangle. What test
cases do you need to write in order to prove adequately that the program
works correctly?

Myers’ challenge concerns a program that is not much more complex
than the one we have been developing in this chapter, yet he manages to
identify 24 test cases. Robert Binder7 later extends this list to 64 test cases by
addressing the object-oriented aspects of the program Myers did not con-
sider when he originally stated the problem in 1979. Therefore, it is not so
much a case of considering how many tests to write, but of knowing what
tests to write and when to stop. In this respect, people who have a strong
background in testing have a distinct advantage because their knowledge
and skill will help them quickly find meaningful tests.

If you are not fortunate enough to have an expert tester on your team,
this book’s bibliography contains references to a number of books that may
help you write better tests; The Art of Software Testing [AST] is particularly
recommended. However, the key thing to remember is that there is no point
in writing tests that don’t tell you anything, so you need to concentrate on
writing tests that yield important information. In the case of TFP, this
means writing a test that gives you information about some flaw or omis-
sion in your code; in other words, a failing test. For this reason, stop writ-
ing tests for a task when you can no longer start a TFP cycle with a failing
test, because this typically means that your existing tests cover all the nec-
essary code paths and it’s time for you to move on.

Getting Started with Test-First Programming 279

6. [AST] Myers, Glenford J., et al. The Art of Software Testing (John Wiley & Sons, 2004 edition).
7. [TOOS] Binder, Robert. Testing Object-Oriented Systems (Addison-Wesley, 2000).

Refactoring
Martin Fowler8 describes refactoring as improving the structure and design
of the code without changing its functionality. You should think of refac-
toring as the ongoing maintenance of your software.

The motto you must apply to refactoring is “Clean as you go!” This
means that if you see a mess, you should clean it up. It does not mean that
you should accumulate messes and then at some point come back and fix
all of them. It also does not mean that you should refashion as you go.
There is a definite distinction between the two; don’t be tempted to add fea-
tures as you refactor the code. Think of writing software as an experiment.
If you change too many things at once, you will not know which one caused
the problem. Therefore, if you hold the functionality constant, make small
changes to the code, and run the tests, you will know immediately whether
the change you made has altered your expectations.

The decisions you make during refactoring are usually a matter of per-
sonal choice combined with a certain amount of judgment and experience.
In Exercise 13-6, for example, the decision to change the Image constructor
was driven by the realization that length and width needed to be stored in
the Image object and not passed as parameters to its Area method. We chose
to address the problem immediately and to refactor, but there is also some
justification for deferring this work until the need to refactor becomes more
compelling. Ultimately, successful refactoring is not about the rights and
wrongs of such decisions; it is about managing to evolve the software safely
without compromising your ability to respond to future changes.

The best way to improve your refactoring skills is to spend a lot of time
pairing with good programmers who understand the nature of TDD.

Chapter 13: Introduction to TDD280

8. [RIDEC] Fowler, Martin, et al. Refactoring (Addison-Wesley, 1999).

TIP

Make sure any testing experts on your team become as much involved
in TFP as people who come from a programming background. Use
pair programming to spread this expertise throughout the team.

However, you will gain more from such opportunities if you already appre-
ciate the main concepts of object-oriented programming as presented in
books such as The Object Primer [OP3] and have acquired some insight into
the way refactoring decisions are made; see Chapters 14, 15, and 16 in this
book, as well as books such as Test-Driven Development in Microsoft .NET
[TTDM] and Extreme Programming Adventures in C# [XPAC].

CONCLUSION

In this chapter, we introduced you to test-driven development and
explained in some detail the practice of Test-First Programming. You saw
how this simple yet powerful technique allows the whole team to engage in
the development of production code. However, the tools we used in this
chapter are very primitive and are not really suitable for use in a real-life
project. Therefore, in the next few chapters, we will take you through a
sequence of additional exercises which show you how to develop test
adapters and production code as components in their own assemblies so
that you can use the test harness and tools provided by Visual Studio Team
System. In this way, you will learn how you might use this powerful tech-
nique to develop all of your project’s production-quality procedural code.

Conclusion 281

TIP

You will find it helpful to learn some of the standard refactoring pat-
terns found in books such as Martin Fowler’s Refactoring: Improving the
Design of Existing Code [RIDEC], William Wake’s Refactoring Workbook
[RWB], and Joshua Kerievsky’s Refactoring to Patterns [R2P].

TIP

Make the running of your tests into a stress reliever by ensuring that
you can execute them in so little time that you can repeat this action
whenever you fear your changes have somehow broken the program;
transform testing from a burden into a good thing.

14
Developing Your First Tests

TH I S C H A P T E R S TA RT S by showing you how to set up the Visual Stu-
dio Projects you need for test-first programming (TFP) and then

describes “Image Favorites,” which is the story you will implement in this
section of the book. After creating an initial list of tests for this story, we
spend the rest of the chapter implementing the first two of these tests with
the goal of showing you how easy it is to implement the Test-First Pro-
gramming practice using the tools provided by Visual Studio Team Sys-
tem (VSTS).

Creating Visual Studio Projects for TFP

The primitive test environment you created in the preceding chapter was
useful for demonstrating the basic concepts of TFP, but it really is not suit-
able for doing any proper work. Therefore, let’s examine the way VSTS
supports unit (structural) testing, and then we’ll create a set of Visual Stu-
dio Projects to support the exercises in the remainder of Section 5, which
show how you would practice TFP in a real project.

How VSTS Supports Unit Testing
When you perform unit testing with VSTS, you still have the same essen-
tial parts that were present in the small console application we developed

283

in Chapter 13. However, instead of just three classes contained in a sin-
gle file, they are separated into different components, as shown in Fig-
ure 14-1. Consequently, when testing with VSTS the following are still
present:

• Test harness (runner)—A convenient way to run test adapters and
other tools needed for the reliable and consistent execution of a col-
lection of test cases

• Test adapter (driver, fixture)—Controls test method execution,
sends the results back to the test harness, and performs test initial-
ization as well as cleanup

• Test method (case)—Sets up the implementation under test (IUT)
objects, invokes their methods, and tests the return values to provide
the results of the test case

• IUT—The software being developed for eventual deployment in the
production environment

This arrangement requires that the various classes and methods that
form your test adapters and test cases be decorated with certain attributes
so that the VSTS test harness can find them; see Figure 14-1. It also means
that your test code needs to be contained in an assembly which has been
created from a Visual Studio Test Project, thereby forcing the separation of
your test and production code.

Locating the test and production code in separate assemblies inside the
test environment conflicts with the object-oriented concept of information
hiding, because it means the production code in your IUT assembly must
be accessible to the test adapter classes located in your test driver assembly.
However, we are happy to recommend this approach because it does have
the advantage of allowing you to deploy your IUT assembly directly into
the production environment without you having to rebuild it in order to
remove any test code.

Chapter 14: Developing Your First Tests284

Figure 14-1: Visual Studio test harness and unit test process

Setting Up Visual Studio Projects for Unit Testing
In order to run unit tests in the VSTS environment, you must create a Visual
Studio Test Project and then add it to the Solution containing the Visual Stu-
dio Projects you want to test.

Test Report

RUN

Test Driver TestMethod
TestClass

(Reflection)

Test Driver
Classes

IUT Classes

Test Environment

Visual Studio

Filesystem

Test Harness

Test Results
Window

Collect Results

Compiler

IUT

Invoke Test
Driver Methods

Create Test Drivers

Creating Visual Studio Projects for TFP 285

NOTE

Booch’s classic book,1 Object-Oriented Analysis and Design, explains
information hiding. You can find out more about making production
code accessible to test adapter classes by reading about Friend Assem-
blies in C# Programmers Reference.2

1. Booch, Grady. Object-Oriented Analysis and Design, Second Edition (Benjamin Cummings, 1994).
2. Microsoft. C# Programmers Reference (http://msdn.microsoft.com).

Exercise 14-1: Creating Visual Studio Projects for Tests and Production Code

This exercise creates a Visual Studio C# Test Project for your test environ-
ment called LocalFavoritesTest and a C# Class Library Project for your pro-
duction environment called LocalFavorites. It then adds them to the
osImageManager Solution you created in Exercise 8-2 in Chapter 8.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for details
about this PC and Luke’s security groups.

2. Make sure Luke’s workspace is up-to-date by opening the Source
Control Explorer (View | Other Windows), selecting the $/OSPACS
folder, and then choosing Get Latest Version from its context menu
(Right-click | Get Latest Version).

3. Load the osImageManager Visual Studio Solution by opening
the osImageManager.sln file in Luke’s workspace (File | Open |
Project/Solution).

4. Create a new Visual Studio C# Test Project for your test adapters,
called LocalFavoritesTest, by opening the New Project dialog box
(File | New | Project) so that you can do the following:

a. Select Test Project from the Visual C# project types.

b. Add this project to the osImageHandler Solution.

c. Select a suitable directory in Luke’s workspace for its source files
(e.g., osImageHandler\src).

5. Delete any unit tests and manual tests created by default in your
new Test Project by opening the LocalFavoritesTest folder in the
Solution Explorer, selecting the files, and then choosing Delete from
its context menu (Right-click | Delete).

6. Create a new Visual Studio C# Class Library Project for your pro-
duction code, called LocalFavorites, by following the instructions
given in step 4, but this time select a Class Library Project. You

Chapter 14: Developing Your First Tests286

should also delete any default classes created for this Class Library
Project in the same way you deleted the default test files in step 5.

7. Build the osImageHandler Visual Studio Solution to check that
you’ve correctly created these projects so that they can be rebuilt
without errors (Build | Build Solution).

8. Put your work in a version control shelve so that you can always
return to this point in the future; click the Shelve button in the Pend-
ing Changes window (View | Other Windows); see Exercise 9-6 in
Chapter 9.

The Story behind the Tests

TFP is typically initiated by someone’s need to implement a story (see
Chapter 3), so to put the following exercises into context let’s quickly
review the “Image Favorites” story and divide it into the two programming
episodes that will occupy us for the rest of Section 5.

The Story behind the Tests 287

NOTE

It is not strictly necessary to integrate the LocalFavorites and
LocalFavoritesTest projects with the OSPACS Team Project, but not
doing so means you lose the benefits of working with VSTS (e.g., ver-
sion control, work item tracking, etc.).

NOTE

The complete implementation of the “Image Favorites” story is pro-
vided as an independent Visual Studio Solution on the book’s Web site.

Figure 14-2: “Image Favorites” customer story

About the “Image Favorites” Story
Clinicians prepare for a conference about a patient by reviewing all the
available images and selecting the ones that are particularly significant. This
process is termed bookmarking, and OSPACS will support this activity by
implementing the “Image Favorites” story shown in Figure 14-2. The cus-
tomer isn’t interested in having any sort of facility for organizing Favorite
items, nor is it a requirement that individual clinicians have these items
restored when they log on to different machines. Therefore, an apt metaphor
for the “Image Favorites” story is the “favorites” facility in Internet Explorer.
However, instead of being used to bookmark particular Web page
addresses, it will be used for bookmarking references in the OSPACS data-
base to specific patient images, such as X-rays, ultrasounds, and so forth.

Dividing the Story into Tasks
The story we need to deliver is mostly about implementing a collection of
Favorite items, each of which is just a text label and a reference to an image
in the database. Accordingly, it seems reasonable to split the work into two
tasks which can be completed in separate programming episodes:

Chapter 14: Developing Your First Tests288

• Implement the Favorite items functionality which is similar to that
required for almost any type of collection, namely Create, Retrieve,
Update, and Delete (CRUD).

• Invoke this functionality from some user interface code generated by
the Visual Studio visual editor.

We do not recommend using TFP to generate code that is produced
declaratively using the visual editor, wizards, and other Visual Studio tools.
Therefore, the exercises in this chapter (as well as those in Chapters 15 and
16) will focus on this first task. However, in Chapter 17, we will address the
second task by suggesting how you might integrate your work with a Win-
dows Forms application.

Create a Test List

The secret of getting ahead is getting started. The secret of getting started
is breaking your complex overwhelming tasks into small manageable
tasks, and then starting on the first one. —Mark Twain

Finding Your Initial Tests
Let’s now create an initial test list for our programming task by thinking
about what we are trying to accomplish and how certain tests might show
progress toward this goal. We will assume all tests execute independently
of each other, so data and state don’t persist between tests; the collection
of Favorites is therefore always created fresh at the start of each test (see
Table 14-1).

Create a Test List 289

NOTE

The implementation of the “Image Favorites” story represents the sort
of task that a pair of developers on your team might be able to com-
plete within two programming episodes, each lasting about a couple
of hours.

Table 14-1: Initial Test List for Favorites

1. Count == 0

2. Add(Favorite), Count == 1

3. Add(Favorite), Remove(Favorite), Count == 0

4. Add(Favorite1), Add(Favorite2), Count == 2

5. Add(Favorite1), Add(Favorite2), Remove(Favorite1), Count == 1

6. Add(Favorite1), Add(Favorite2), call Clear(), Count == 0

7. Add(Favorite), Remove(Favorite) should return true

8. Add(Favorite), Contains(Favorite) should return true

9. Remove(Favorite) that is not in the collection, should return false

10. Contains(Favorite) that is not in the collection, should return false

11. Add 3 x Favorite items call GetEnumerator and verify that the 3 Favorites
are enumerated

12. Add(Favorite1), Add(Favorite2), Find(Favorite1.Label) should return
Favorite1

13. Add a Favorite with a null label, expect ArgumentNullException

14. Add a Favorite with a null URI, expect ArgumentNullException

15. Add a Favorite, add another with the same label, expect
ArgumentException

Looking at the test list we seem to have hit most of the areas associated
with the task that we expect to complete during our first programming
episode. A number of tests focus on making sure the count is correct when
we add and remove favorites. Also, a number of tests focus on the contents
of the collection and whether we can retrieve the favorites from the

Chapter 14: Developing Your First Tests290

collection. There are bound to be other tests, but for now the list is suffi-
cient. If we discover the need to add or subtract tests during development,
we can easily change the list.

Our idea was to be able to complete this list of tests and the associated
code implementation in a single programming episode which lasts about
a couple of hours. Now that you and your partner have spent some time
thinking about the problem and its potential solutions, make sure you don’t
need to split the task again in order to achieve this objective. You don’t want
to make tasks too big, because you want to get and give feedback as quickly
as possible. If your task is estimated to take a week, you might not know
until the end of the iteration that it’s not going to be completed on time, but
if the task is meant to take half a day, you should discover much sooner that
it is running behind schedule and therefore be able to take appropriate
action to mitigate the impact of the problem.

Record the Test List
There are a number of ways to record your test list. You could simply write
it down on an index card or other suitable piece of paper kept by your desk.
This allows you to cross off each test as you complete it, which provides a
convenient visual reminder of the work you’ve done and the work that still
remains. Clearly this is very simple and helps keep you focused on the task
at hand. However, it has the drawback of making the list difficult to change.
A better solution is to create your test list as code, which we will do in Exer-
cise 14-2.

Create a Test List 291

TIP

You certainly want to be able to finish a programming episode without
you and your partner having to stay in the office until midnight; see
our discussion of the Energized Work practice in Chapter 15. There-
fore, make sure your targets are realistic.

Exercise 14-2: Implementing a Test List

This exercise continues from Exercise 14-1 by creating a test method for
each test case in Listing 14-1 within a new FavoritesTests class. These test
methods simply act as placeholders for the tests you will implement in
future exercises.

1. Create a new C# test class called FavoritesTests in the
LocalFavoritesTests project by selecting the project in the Solution
Explorer window and choosing Add New Test | Unit Test from its
Project context menu.

2. Edit the name of the TestMethod1 method in the class you just cre-
ated to make it more meaningful, and add an Assert.Inconclusive
statement, as shown in Listing 14-1.

Listing 14-1: Creating a Test List

using System;
using Microsoft.VisualStudio.QualityTools.UnitTesting.Framework;
[TestClass]
public class FavoritesTests
{

[TestMethod]
public void EmptyFavoritesCountShouldBeZero()
{

Assert.Inconclusive("Test List: Count == 0, Not Implemeneted");
}

}

3. Copy the entire method together with its TestMethod attribute and
then paste additional methods into the FavoritesTests class, one
for each test on your list. Change their names and the comment in
the Assert statement to something appropriate.

4. Build the project on your own PC to check that you’ve done the job
properly (Build | FavoritesTests).

5. Add your work to a version control shelve so that you can always
return to this point in the future by clicking the Shelve button in the
Pending Changes window (View | Other Windows); see Exercise 9-5
in Chapter 9.

Chapter 14: Developing Your First Tests292

Organization of Your Test List Code
There are a few things you should notice about the code in Listing 14-1. First,
a using directive appears at the top of the file to declare the namespace for
the Visual Studio unit testing framework. Second, the [TestClass] attribute
marks the class as containing test methods, therefore informing your VSTS
test tool (the test harness) that this class must be treated as a test adapter.
Third, each individual test method (test case) must be marked with the
[TestMethod] attribute to ensure that the VSTS test tool invokes it during a
test run. Finally, the name of the test method doesn’t have to follow any par-
ticular syntax, so it is made as descriptive as possible in an attempt to be self-
documenting.

You should note that naming a method appropriately and descriptively
pays dividends later when you encounter a test failure because its name
immediately gives you a clue as to what has gone wrong. For example, the
method name in Listing 14-1 makes it clear that you are testing that the
count is 0 when the Favorites object is empty, as it is when first created.
The names of your other test methods should be similarly informative, as
should the comments in their Assert statements.

Shelving Your Test List Code
All the tests you have created are listed in the Test View window (Test | Win-
dows), and if you selected and ran them, they would simply be reported in
the Test Results window as being “inconclusive.” This typically signifies that
the test has not yet been implemented. Therefore, as you would not normally
want to share any file with other members of your team until all the associ-
ated unit tests have passed, it makes sense to keep everything safe in your
own personal shelve in the repository (see Exercise 9-6 in Chapter 9) rather
than checking your changes into the main branch of your team’s code base.

Create a Test List 293

TIP

We do not recommend that you create a work item for each test on
your test list because it should take less than five minutes to complete
a test run and there seems little value in tracking the team’s work at
this sort of granularity.

Implementing the Tests

Now that we’ve created a test list, we’ll start implementing it. However, we
are not going to describe the implementation of all the tests because that
could get boring; programming is not a spectator sport. We’re just going to
implement ones that describe interesting aspects of the solution or ones that
assist in the understanding of the test tool.

Start with the Easiest Test
Let’s start with the simplest test, EmptyFavoritesCountShouldBeZero, which
also happens to be the first on our list. What could be simpler than check-
ing that a newly created Favorites object has no initial collection of Favorite
items? You should write the test without regard to what is already imple-
mented, or in this case, what is not implemented, because the compiler is
very happy to tell you whether what you are asking for has been defined.

Exercise 14-3: Implementing the First Test

In this exercise, you will replace the placeholder statement in your first test
with some functional code, and in so doing drive the creation of the pro-
duction code Favorites class and the implementation of its Count property.

1. Replace the Assert statement in the EmptyFavoritesCountShouldBeZero
method and type the following test. This creates an instance of the
Favorites class and asserts that the value returned from its Count
property is 0. It also states that we are using the LocalFavorites
namespace:

using LocalFavorites;
[TestMethod]
public void EmptyFavoritesCountShouldBeZero()
{

Favorites favorites = new Favorites();
Assert.AreEqual(0, favorites.Count);

}

Chapter 14: Developing Your First Tests294

2. Build the project (Build | FavoritesTests). This will produce an error
because we haven’t created the Favorites class, so it cannot be
found.

3. Add a new C# class called Favorites by selecting the LocalFavorites
project in the Solution Explorer window and then selecting Project |
Add Class | Class. Edit the Favorites.cs file and type “public” imme-
diately before the word class.

4. Add a reference for the LocalFavorites assembly to your
LocalFavoritesTests project by following these steps:

a. Open the Add Reference dialog box by selecting the
LocalFavoritesTest project in the Solution Explorer window and
choosing Add Reference from its context menu (Right-click |
Add Reference).

b. Select LocalFavorites from the Project page of the Add Reference
dialog box and then click OK to close the dialog box and add the
reference.

5. Rebuild the solution (Build | Build Solution). You will still see an
error because the Favorites class doesn’t have a definition for
Count, so implement it in the simplest way possible, as shown here:

Namespace LocalFavorites
{

public class Favorites
{

public int Count { get {return 0;}}
}

}

6. Again, rebuild the solution (Build | Build Solution) so that finally
you get a clean build and can run the test.

7. Run the test by selecting EmptyFavoritesCountShouldBeZero in
the Test View window (Test | Windows) and then clicking the Run
Section button (top left). Observe the results in the Test Results win-
dow (Test | Windows); you should see results similar to Figure 14-3.

Implementing the Tests 295

Figure 14-3: Test Results window

This first test is clearly as simple as we can make it. There is no need to
worry about how naïve it may seem. We have many more tests to imple-
ment and the additional tests will add the information we need to come up
with a better implementation. We could speculate on an implementation,
but we encourage you not to do that. Let the additional tests and the code
itself tell you what the implementation should look like.

Fix a Failing Test and Refactor
Let’s now address the next four simplest tests on our list. They add and
remove various Favorite items from the Favorites object to verify that the
Count property always returns the correct value. In the process, we’ll cre-
ate a new class that doesn’t have any tests and check out a new feature in
Visual Studio 2005 that allows you to automatically generate methods that
are declared, but not implemented.

Chapter 14: Developing Your First Tests296

NOTE

OSPACS defines the URI format of db://xxxxxxx for identifying an
image in its database, where x is a digit between zero and nine and the
seven-digit number is formed by combining the patient identifier with
the image sequence number.

Exercise 14-4: Fixing a Failing Test

This final exercise in the chapter implements an additional test that just
adds something to a Favorites object and then confirms that its Count is
one rather than zero. In order to provide this something we have to create a
new class called Favorite, which contains the label and URI of a particu-
lar image.

1. Implement the AddFavoriteCountIsOne test in FavoritesTests.cs by
replacing the test’s Assert statement with the following code:

[TestMethod]
public void EmptyFavoritesCountIsOne()
{

Favorites favorites = new Favorites();
favorites.Add(new Favorite("Label",

new Uri("db://0000101")));
Assert.AreEqual(1, favorites.Count);

}

2. Add a new C# class called Favorite to the LocalFavorites project
(see step 3 of Exercise 14-3). Make the class public, but otherwise
keep the code generated by Visual Studio.

3. Implement the Add method for Favorites using a new feature in
Visual Studio 2005 that allows you to generate methods that are not
implemented:

a. Click on the word Add in AddFavoriteCountIsOne and then hold
your mouse over the small bar that appears under the letter A to
reveal a smart tag with a menu item to generate the missing code.

b. Click this menu item so that the following code is automatically
added to Favorites.cs:

public void Add(Favorite favorite)
{

throw new Exception(
"The method or operation is not implemented.");

}

Implementing the Tests 297

4. Build the project (Build | Build Solution). This produces an error
because the new Favorite class requires two parameters for its con-
structor. Implement the required constructor (Listing 14-2) and
rebuild; this time it should succeed.

Listing 14-2: Favorite Class Implementation

public class Favorite
{

private string label;
private Uri uri;

public Favorite(string label, Uri uri)
{

this.label = label;
this.uri = uri;

}
public string Label { get { return label; }}
public Uri Uri { get { return uri; }}

}

5. Run the test by selecting it in the Test View window and then click-
ing the Run Section button. The Test Results window will show that
the test failed, and if you double-click the corresponding red icon a
window will open giving you further details. In this case, the Add
method threw an exception because it wasn’t implemented.

6. Do the simplest thing to get the test to pass: Replace the Exception
statement in Favorites.Add() with a statement that increments the
count instance variable. You will also have to add this variable to the
class and change the Count property to return its value, as shown in
Listing 14-3.

Listing 14-3: Favorites Class Implementation

public class Favorites
{

private int count;

public int Count { get { return count; }}
public void Add(Favorite favorite){ count++; }

}

Chapter 14: Developing Your First Tests298

7. Rerun all the tests you have implemented so far by selecting them
in the Test View window and clicking the Run Section button; they
should pass. You will notice that whenever you run the tests the
project is automatically rebuilt.

8. We have now reached the refactoring step, when duplication is
banished and the code is made simpler, more flexible, and easier to
understand. However, each time you make a change, you should
rerun all the tests to check that you haven’t accidentally broken
anything.

9. Add your work to a version control shelve so that you can always
return to this point in the future. Click the Shelve button in the
Pending Changes window (View | Other Windows); see Exercise 9-6
in Chapter 9.

10. Log off, as you have finished the exercises in this chapter.

Comments about the Refactoring
Refactoring your code can be the most challenging part of TFP, but often
there is not much to do, as was the case here. Looking at the Favorites class,
it made sense to introduce a variable to manage the number of Favorite
objects and return its value in the Count property; otherwise, we could not
have made both our tests pass. We must accept that the implementation of
the Favorites class is still quite rudimentary and will require adaptation as
we complete the test list. However, it is hard to think of a simpler or more
flexible solution that meets the needs of our current two tests. There is no
duplication and the code is easy to understand; see Listing 14-3. What more
could we ask for? Let’s just postpone thinking about how we are going to
store and access Favorite items until we implement a test that needs this
functionality.

Turning our attention to the Favorite class, how might we refactor that?
Review Listing 14-2 and you’ll see there is nothing to do. Should we write
some tests for this class? Again, there is nothing to do; we recommend that
you do not write tests for a class when the compiler is able to catch more

Implementing the Tests 299

or less everything that could go wrong. In this case, the only obvious source
of error arises in the constructor where values might not be properly
assigned to member variables, but as this isn’t something that often trips us
up, we don’t test for it. However, if the Favorite class became a base class,
you might want to create some additional tests to check that it was properly
initiated by any derived class. Alternatively, if people on your team often
forget to initialize an object properly, by all means create some tests.

We’ll come back to refactoring in the next chapter, but for now, just get
into the habit of reviewing the code with your pairing partner after you’ve
succeeded in making it pass all its tests. You should always select and run
all the tests in your Test View window after refactoring just to make sure
that none of your changes has any unexpected impacts on the existing code.
Indeed, it is advisable to do this whenever you have made any change to
the code.

Do the Next Three Tests Yourself
We’ve now completed the implementation of AddFavoriteCountIsOne, so
we need to start on the next simplest test on our list. However, we’ll leave
the completion of the next three tests as an exercise for the reader:

• AddRemoveFavoriteCountIsZero

• AddTwoFavoritesCountIsTwo

• AddTwoFavoritesRemoveFavoriteCountIsOne

These tests are very similar to the one we just implemented, and they
require only the addition of a Remove method in Favorites to decrement the
Count variable in the Favorites class.

Chapter 14: Developing Your First Tests300

NOTE

You should write tests only for your own team’s code, not for code
generated by Visual Studio or code in a third-party library. However,
occasionally you may put tests around the interfaces of such libraries
to detect changes in behavior when a new version is installed.

CONCLUSION

If you’ve been following our instructions, you have implemented five tests
and written the production code necessary to manage the count of Favorite
items in the Favorites object. Let’s reflect on what else you’ve done:

• You wrote tests before the production code and therefore imple-
mented just the classes and methods that were absolutely necessary
to pass the tests. There was no redundant functionality or unneces-
sary complexity.

• The tests you’ve implemented should make you confident about
making any future changes to the way you manage the count of
Favorite items. Your tests will always tell you whether the Count
property is working correctly, even if you completely change the
way it is implemented.

• Writing tests forced you to think about the way others may use your
code; code that you find difficult to test is usually also difficult to use.

• You wrote the code by taking a succession of very small steps that
didn’t require you to be an expert C# programmer or know much
about Visual Studio. You didn’t need to use the Debugger or any
complex tools, and you got the code working quickly before think-
ing about how you could improve it.

• You’ve spent less than an hour writing five tests, but you’re a signifi-
cant way through the task. The tests prove that you’ve made progress
and that your code works. You don’t need to give your boss any reas-
suring messages; just tell him to run your tests!

• Anyone who wants to know how your code works has a number of
examples to follow. The tests document the code, and to check that
it’s up-to-date you simply run the tests; there’s no static document
that needs to be kept up-to-date.

We’ve now covered the basics of test-first programming, so let’s dig a bit
deeper in the next chapter and learn some more about refactoring.

Conclusion 301

15
Learning to Refactor

IN T H E P R E C E D I N G C H A P T E R, you implemented the first part of the
“Image Favorites” story and along the way learned how to use the new

unit testing facilities of Visual Studio 2005 to perform test-first program-
ming (TFP). This chapter is more concerned with the refactoring required
as you implement more of the “Image Favorites” story and, therefore, find
yourself wanting to improve the structure and design of your code without
changing its functionality. We will start by making refactorings that cause
such improvements to happen in a small way, but by the end of the chapter,
you will have learned how to make refactorings that result in a significant
enhancement of your code.

Doing Small Refactorings

The secret of refactoring is to make your changes through a series of small,
safe steps. Therefore, you need to gain experience in making small refac-
torings before you can string them together to achieve some big change in
your code. However, you don’t need to worry about making mistakes as
you are learning to take these small steps, because your programmer tests
should detect any problems, and you can always roll back the changes you
have made by restoring your workspace to some previous version of the
code base; see Exercise 9-4 in Chapter 9.

303

Implement a Collection
We start by addressing AddTwoFavoritesClearCountIsZero, which is the
sixth test on our list; see Table 14-1 in Chapter 14. This test involves adding
two Favorite items, invoking Clear, and then checking that Count is 0, as
shown in Listing 15-1. Accordingly, we need to introduce a Clear method
for the Favorites class. This brings us to a point where it seems to make
sense to have the Favorites class implement the ICollection<Favorite>
interface, for we will shortly need some mechanism to store Favorite items
in Favorites.

Exercise 15-1: Implementing the ICollection Interface

1. Log on as Luke (Team Foundation Contributor) to the DeveloperPC,
start Visual Studio, and then connect to the OSPACS Team Project,
as described in Exercise 5-7 in Chapter 5.

2. Make sure Luke’s workspace is up to date and then load
the osImageManager Visual Studio Solution by opening the
osImageManager.sln file (File | Open | Project/Solution) so
that you can continue from the work you did in Chapter 14.

3. Implement the AddTwoFavoritesClearCountIsZero test in
FavoritesTests.cs by replacing the test’s Assert statement with the
code shown in Listing 15-1.

Listing 15-1: Test for Clear

[TestMethod]
public void AddTwoFavoritesClearCountIsZero()
{

Favorites favorites = new Favorites();
favorites.Add(new Favorite("X-Ray of left humerus",

new Uri("db://0000102")));
favorites.Add(new Favorite("X-Ray of right humerus ",

new Uri("db://0000103")));
favorites.Clear();
Assert.AreEqual(0, favorites.Count);

}

Chapter 15: Learning to Refactor304

4. Implement the Clear method by adding the following line of code to
the Favorites class:

public void Clear() { count = 0; }

5. ICollection is part of the new Generic collections provided in .NET
2.0, so you also need to add a using statement at the top of the
Favorites.cs file:

using System.Collections.Generic;

6. Change the definition of the Favorites class to state that it imple-
ments the ICollection interface by editing Favorites.cs as follows:

public class Favorites : ICollection<Favorite>

7. You can make the Favorites class implement all the methods
required by the interface by taking the following steps:

a. Click on the word ICollection and then move your mouse pointer
over the bar that appears under the letter I in order to reveal its
smart tag menu.

b. Click the “Implement interface ICollection<Favorite>” item so
that Visual Studio will automatically add the required code to the
class; see the warning at the end of this exercise.

8. Remove the automatically added method, called Remove, and change
your existing implementation of Remove so that it returns true and
therefore conforms to the interface:

public bool Remove(Favorite favorite)
{

count--;
return true;

}

9. Trigger the rebuilding of the Solution by rerunning all the tests you
have implemented so far; select them in the Test View window and
click the Run Section button. All the tests should pass (or be incon-
clusive) so that you can start refactoring.

Doing Small Refactorings 305

Refactor the Test
You may notice by looking at the tests in FavoritesTests.cs that a Favorites
object is created in every test method. Although the duplication occurs in the
test code, it still is bothersome, so let’s use the [TestInitialize] attribute to
move this declaration code to one place. The resulting code after the change
is shown in Listing 15-2. This is an example of the Set Up Refactoring pattern
described in the book Test-Driven Development in Microsoft .NET1 and it
moves common initialization code into one place in a test adapter class.

Listing 15-2: Example of a Set-Up Refactoring

[TestClass]
public class FavoritesTests
{

private Favorites favorites;
private Favorite armLeft;
private Favorite armRight;
private Favorite legRight;

[TestInitialize]
public void BeforeTest()
{

favorites = new Favorites();
armLeft = new Favorite("X-Ray of left humerus",

new Uri("db://0000102"));
armRight = new Favorite("X-Ray of right humerus ",

new Uri("db://0000103"));

Chapter 15: Learning to Refactor306

WARNING

Don’t select the smart tag menu item that “Explicitly” implements the
interface in step 8, because this will add all the methods required for
the interface, including ones that you have already defined, such as
Add and Count.

1. [TDDM] Newkirk, James W., and Alexei A. Vorontsov. Test-Driven Development in
Microsoft .NET (Microsoft, 2004).

legRight = new Favorite("X-Ray of right fibia",
new Uri("db://0000105"));

}

[TestMethod]
public void EmptyFavoritesCountShouldBeZero()
{

Assert.AreEqual(0, favorites.Count);
}

// The rest of the tests
}

Exercise 15-2: Implementing the SetUp Refactoring Pattern

1. Implement the BeforeTest method in FavoritesTests.cs and remove
the declaration of Favorites from each method. You can also
remove the duplication that each test has with the creation of the
Favorite objects armLeft and armRight; see Listing 15-2.

2. Trigger the rebuilding of the Visual Studio Solution by rerunning all
the tests as before. All the tests should pass because you have not
changed the functionality of the code, just removed some unneces-
sary duplication.

3. Add your work to a version control shelve so that you can return to
this point in the future. Click the Shelve button in the Pending
Changes window (View | Other Windows); see Exercise 9-5 in
Chapter 9.

Doing Small Refactorings 307

NOTE

In a test class, a method marked with the [TestInitialize] attribute
will be executed by the test harness prior to the execution of each test.
The [TestCleanup] attribute causes a method to be executed after the
execution of each test.

Refactor the Production Code
Now let’s see if any refactoring is required in the production code file
Favorites.cs. You will recall that we changed the declaration of the Remove
method because the ICollection<Favorite> interface wanted this method
to return a “bool.” The documentation2 for this interface says that Remove
will return true if a Favorite item is successfully removed from the col-
lection. Therefore, rather than refactoring the code, let’s add a test to ver-
ify that the return value of Remove is true if the Favorite item is removed.

Exercise 15-3: Adding a New Test: AddRemoveReturnsTrue

1. Implement AddRemoveReturnsTrue in FavoritesTests.cs, as shown
in Listing 15-3, and change the Favorites class method, Remove, in
Favorites.cs so that it returns true.

Listing 15-3: Making the Code Clearer by Adding a Test

[TestMethod]
public void AddRemoveReturnsTrue()
{

favorites.Add(armLeft);
Assert.IsTrue(favorites.Remove(armLeft));

}

2. Rerun all the tests (as before) to trigger the rebuilding of the Solution.
Again, all the tests should pass because you have simply made the
code clearer by adding a test rather than changing its functionality.

3. Add your work to a version control shelve by clicking the Shelve
button in the Pending Changes window (View | Other Windows);
see Exercise 9-5 in Chapter 9.

The last bit of cleanup we need to perform before moving on is to
update our test list. Implementing the interface brought in a couple of
functions, such as IsReadOnly and CopyTo, which we did not take into

Chapter 15: Learning to Refactor308

2. C# Language reference, ICollection (http://msdn.microsoft.com).

account in the test list. So let’s add the following three tests to Table 14-1 in
Chapter 14:

• RemoveFromEmptyCollectionReturnsFalse—This test will call
Remove for an empty Favorites collection, which should return false.

• IsReadOnlyShouldBeFalse—This test will call IsReadOnly on the
Favorites collection, which will always return false.

• Add3FavoritesCopyTo—This test will add three Favorite objects to
a collection, call CopyTo, and then verify that the array has the three
Favorite objects.

We now have 18 tests in our test list of which we have eight tests
implemented and passing. In the next section, we’ll implement some
additional tests and, in the process, learn a bit more about using the Test
Results window.

Safely Changing Code Implementation
The AddFavoriteContainsReturnTrue test is interesting because it makes us
turn our attention to storing Favorite objects in some form of collection
implemented by our Favorites class. The test shown in Listing 15-4 adds
a Favorite object to the Favorites object and then confirms that it has been
correctly stored by invoking the Contains method, as defined by the ICol-
lection interface.

Exercise 15-4: Storing Favorite Items in a Collection

1. Implement the AddFavoriteContainsReturnTrue test in
FavoritesTests.cs by replacing the test’s Assert statement with the
code shown in Listing 15-4.

Listing 15-4: Making the Code Clearer by Adding a Test

[TestMethod]
public void AddFavoriteContainsReturnTrue()
{

favorites.Add(armLeft);
Assert.IsTrue(favorites.Contains(armLeft));

}

Doing Small Refactorings 309

2. Rebuild the Solution and rerun all your tests by selecting them in the
Test View window and then clicking the Run Section button. The
new test should fail because the Contains method has not been
implemented, as shown in Figure 15-1.

After you run a set of tests, the results are displayed in your Test Results
window. Unfortunately, though, this window displays all test results, even
the successful ones, so it doesn’t give you an immediate indication about
whether the test run passed or failed; the equivalent of the NUnit3 green
bar. You can overcome this limitation to some degree by changing the order
in which the Test Results window displays its results so that the failures are
listed first.

Figure 15-1: Tests grouped by result in the Test Results window (Test | Windows)

Chapter 15: Learning to Refactor310

3. NUnit is the original programmer test tool for .NET development (www.nunit.org).

TIP

To group the test results by their outcome, select Result Value from the
Group By drop-down list in the window’s toolbar; see Figure 15-1.
This produces a much more useful report because you don’t need to
scroll down to discover which tests failed.

Exercise 15-5: Implementing a Linked List

Let’s now get the failing test to pass. This requires us to implement some
form of storage mechanism.

1. Create a LinkedList to store your Favorite items by changing the
code in Favorites.cs, as shown in Listing 15-5.

Listing 15-5: Using a Linked List for the Favorites Collection

public class Favorites : ICollection<Favorite>
{

private LinkedList<Favorite> favorites =
new LinkedList<Favorite>();

public int Count
{

get { return favorites.Count; }
}

public void Add(Favorite favorite)
{

favorites.AddLast(favorite);
}

public bool Remove(Favorite favorite)
{

return favorites.Remove(favorite);
}

public void Clear()
{

favorites.Clear();
}

public bool Contains(Favorite favorite)
{

return favorites.Contains(favorite);
}

// ...
}

2. Rerun all the tests to trigger the rebuilding of the Solution. This time
the test should pass, signaling that we can start refactoring again.

Doing Small Refactorings 311

3. Add your work to a version control shelve by clicking the Shelve
button in the Pending Changes window (View | Other Windows);
see Exercise 9-5 in Chapter 9.

You can gain a sense of when some refactoring is needed from indica-
tions of bad code, which are termed smells and are catalogued in books such
as Martin Fowler’s Refactoring.4 It is often said that sometimes you choose
to ignore a smell and it goes away; other times the longer you leave the
smell, the worse it becomes. When you can stand a smell no longer it is time
to refactor it away.

Comments about the Refactoring
There isn’t anything obvious to refactor in Listing 15-5, but we need to keep
an eye on the Favorites class because it seems to be somewhat redundant
now that we’re using the LinkedList<Favorite> collection. Let’s not do
anything right now, but wait until we’ve implemented some more tests to
see if there is a continuing justification for having a separate class rather
than just using the LinkedList directly. Don’t get too hung up on these
sorts of decisions, for it is often better to have code that represents the
requirements than it is to go for a totally minimal solution.

You might want to pause and reflect on what we’ve just done here. The
original implementation of Favorites was based on maintaining the sim-
ple integer property, Count. However, in a single stroke we’ve completely
replaced it with the much more complex LinkedListCollection. We made
this fairly significant change to the Favorites class in total safety because
we had a half dozen or so tests to check that we didn’t break any existing
behavior. The ability of TFP to keep the cost of changes low in this way is
the reason that we can defer making significant architectural decisions until
we know more about the problem we’re solving, as we discuss later in this
chapter when we consider simple design.

Chapter 15: Learning to Refactor312

4. [RIDEC] Fowler, Martin, et al. Refactoring (Addison-Wesley, 1999).

Refactor As You Go

Refactoring is performed each time you get a new test to pass, for two main
reasons: First, you want to think more deeply about the test and code
you’ve written while the issues are still fresh in your mind; and second, you
want to make changes to code that already works. Therefore, to gain more
experience in refactoring, you simply need to write some more tests.

Implementing More of the Requirement
In the preceding section, we entrusted most of the work being performed
by Favorites to its LinkedList member variable. One of the consequences
of this change was that its Remove method no longer has a hardcoded return
value, but instead uses the return value of the object to which it entrusted
the task; this LinkedList variable. We can use this same technique to imple-
ment a number of the remaining tests.

Exercise 15-6: Removing Items from an Empty Collection

1. Implement the RemoveFromEmptyCollectionReturnsFalse test in
FavoritesTests.cs by replacing the test’s Assert statement with the
code shown in Listing 15-6.

Listing 15-6: Removing Items from an Empty Collection That Fails

[TestMethod]
public void RemoveFromEmptyCollectionReturnsFalse()
{

Assert.IsFalse(favorites.Remove(armLeft));
}

2. Rebuild the Solution and rerun your tests by selecting them in the
Test View window and then clicking the Run Section button, as

Refactor As You Go 313

TIP

Although you should be seeking to have a simple design, this doesn’t
necessarily mean expressing the code in the minimum number of lines.
Sometimes it is better to use a few more statements so that you can
express an idea simply and clearly.

you have done before. All the tests should pass or be declared
inconclusive.

3. There is nothing to refactor here, so add your work to a version con-
trol shelve; click the Shelve button in the Pending Changes window.

The following tests are also quite simple to implement; therefore, you
should gain experience in TFP by doing them yourself. When you have
implemented these tests, you should have 14 passing tests:

• Add(Favorite), Remove(Favorite), Contains(Favorite)—Should
return false.

• Contains(Favorite) that is not in the collection—Should return false.

• Add(Favorite1), Add(Favorite2), Add(Favorte3) and copy collection
to an array—May suggest additional tests, such as passing a null
collection.

• Add(Favorite1), Add(Favorite2), Add(Favorte3), call GetEnumerator,
verify that the three Favorites are enumerated—Should return true.

• IsReadOnly()—LinkedList<T> does not define IsReadOnly, so
implement it by just returning false.

All of these tests and their resultant implementations may convince you
that we don’t need a separate Favorites class because we can use the
LinkedList<Favorite> class directly; a “smell” known as the (redundant)
middle man. However, you do not want to take this refactoring step just yet
because the next few tests might reveal some new information. Therefore,
let’s leave refactoring for the moment and continue with the implementa-
tion of our solution by implementing a test to find a Favorite in our col-
lection using its label, which is something that the customer thought would
provide useful business value.

Chapter 15: Learning to Refactor314

TIP

You don’t always need to change code during refactoring because
sometimes it is better to wait rather than act, particularly if there is a
chance that a refactoring done now might need to be reversed later.
You get better at making these sorts of judgment calls with experience.

Exercise 15-7: Finding a Favorite from Its Label

1. Add a new test method that contains the code shown in Listing 15-7.

Listing 15-7: Finding a Favorite Using Its Label

[TestMethod]
public void AddTwoFavoritesFindByLabel()
{

favorites.Add(armLeft);
favorites.Add(armRight);

//note: indexing not yet implemented
Assert.AreEqual(armLeft.Uri,

favorites[armLeft.Label]);
Assert.AreEqual(armRight.Uri,

favorites[armRight.Label]);
}

2. When you compile, an error is reported which will remind you that
you need to implement indexing for Favorites, so add the code in
Listing 15-8 to the Favorites class. Run your tests from the Test
View window to rebuild the Solution and display the result. This
new test should pass.

Listing 15-8: Implement Index for Favorites

public Uri this[String label]
{

get
{

foreach (Favorite item in favorites)
{

if (item.Label.Equals(label))
return item.Uri;

}
return null;

}
}

3. It is now time to refactor, but again you might want to spend more
time thinking than actually making code changes. Add your work to
a version control shelve by clicking the Shelve button in the Pending
Changes window.

Refactor As You Go 315

Refactoring Opportunities
Several possible refactorings jump out at us here. Because we have to access
the Favorite objects by their labels, we could store them in a Dictionary
instead of a LinkedList, but can we justify this change right now? There is
also the ongoing question of the purpose of our Favorites class; do we
really need it? Although implementing the preceding test has spawned
some code that does more than just entrust its work to the
LinkedList<Favorite> class, there is still no strong justification for keeping
Favorites because we could get a similar result by using the Find method
on LinkedList<Favorite>.

The next test is AddFavoriteNullLabel, which says that you should get
an error when you try to add a Favorite with a null label to the Favorites
collection; see Listing 15-9. It is debatable as to whether it is better to detect
and handle such an error in the Favorite constructor or wait until you
attempt to add an invalid Favorite item to the Favorites collection; we
chose the latter, but the test could equally have driven us to implement the
former.

Exercise 15-8: Testing for an ArgumentNullException

1. In the FavoritesTests.cs file, replace the Assert statement of the
AddFavoriteNullLabel test with the code shown in Listing 15-9
and rerun your tests. This new test will fail because we haven’t
implemented any parameter checking in the Add method of the
Favorites class.

Chapter 15: Learning to Refactor316

NOTE

We are putting our thought processes down on paper, and this might
make us seem unsure or indecisive. However, this reflects the fact that
there are seldom any absolute rights or wrongs when refactoring, and
you often find yourself simply exploring matters with more tests.

Listing 15-9: Implement Index for Favorites

[TestMethod]
[ExpectedException(typeof(ArgumentNullException))]
public void AddFavoriteNullLabel()
{

Favorite favorite = new Favorite(null, armLeft.Uri);
favorites.Add(favorite);

}

2. Insert into the Add method the parameter check, as shown here, and
again rerun the test; this time it should pass, so let’s start refactoring.

if (favorite.Label == null)
throw new ArgumentNullException("Label cannot be null");

3. Looking at the implementation of the Add method, it is clear that we
need to do some more parameter checking for the AddFavoriteNull-
Uriand AddFavoriteAddAnotherSameLabel tests, so we should
implement the code shown in Listing 15-10.

Listing 15-10: Parameter Checking in Add

public void Add(Favorite favorite)
{

if (favorite.Label == null)
throw new ArgumentNullException("Label cannot be null");

if (favorite.Uri == null)
throw new ArgumentNullException("Uri cannot be null");

if (this[favorite.Label] != null)
throw new ArgumentException("Duplicate Label");

favorites.AddLast(favorite);
}

Refactor As You Go 317

NOTE

The [ExpectedException] attribute defines the expected exception.
Therefore, the test in Listing 15-9 will pass only when the execution of
its code results in the generation of an ArgumentNullException.

You should now write tests for adding a Favorite with a null URI and
adding two Favorites with the same label to exercise the new parameter
code you have just implemented.

4. When we rerun the tests, all 18 are now passing and we have no
inconclusive results. However, we haven’t finished yet, as there is
still some more refactoring to do. Therefore, add your work to a ver-
sion control shelve; click the Shelve button in the Pending Changes
window before starting the next exercise.

Doing a Big Refactoring

Although all the tests in our test list are now passing, there are a couple of
issues we still need to resolve. First, for some time we’ve been questioning
the need for the Favorites class because it seems to entrust most of its work
to LinkedList<Favorite>. Second, there is the matter of whether we should
use a Dictionary or a LinkedList to store our Favorite objects.

Remove the Middle Man
Remove the Middle Man is a refactoring pattern described by Martin
Fowler5 that applies to a class that is doing too much simple delegation.
Therefore, we have to ask ourselves whether the Favorites class is a can-
didate for such a refactoring because it clearly delegates its responsibility
for maintaining the collection of Favorite items to LinkedList<Favorite>.

Chapter 15: Learning to Refactor318

TIP

Refactoring, like any worthwhile experiment, can go wrong. There-
fore, before embarking upon any significant refactoring, save your
work in a version control shelve in case you decide to abandon it part
way through and need to back out your changes; see Exercise 9-4 in
Chapter 9.

5. [RIDEC] Fowler, Martin, et al. Refactoring (Addison-Wesley, 1999).

Upon reflection, we would probably remove the Favorites class at this
stage if its sole responsibility was to maintain the collection of Favorite-
Items. However, now that we have implemented all of the tests, it becomes
clear that the Favorites class has another responsibility, for as you can see
from Listing 15-10, its Add method provides an important parameter-check-
ing function. For this reason, we will leave the Favorites class as it stands.

Changing the Type of a Collection
When it comes to deciding whether to change the implementation of our
Favorite item collection from a LinkedList to a Dictionary, there is a
clear case for refactoring because it would allow us to access Favorite
objects directly by their Label properties rather than forcing us to iterate
through the entire collection, looking for a match; see Listing 15-8. How-
ever, this is a rather big refactoring because it means changing practically
every method in the Favorites class to use a Dictionary<string,
Favorite> collection in place of a LinkedList<Favorite>. We must ask
ourselves, is it worth the effort?

In this case, we will implement the refactoring because it makes the code
easier to understand and maintain. We might have reached this conclusion
sooner if we had done some modeling earlier, but we could also argue that
writing some better tests would have led us to this decision more quickly as
well. However, the approach we took is certainly not wrong because it
identified the problem and created the tests that now allow us to correct the
situation easily. Indeed, we should be feeling quite satisfied that we have
explored a number of options for implementing our collection and we have
actually arrived at a good solution in a reasonable amount of time.

Doing a Big Refactoring 319

NOTE

You don’t always need to change the code when refactoring. Some-
times it is better to spend time considering potential code changes and
then to do nothing, as we did in this case. Perhaps we should define
this as the “Do Nothing” refactoring pattern!

Exercise 15-9: Significant Refactoring of the Implementation under Test

1. Replace the code in Favorites.cs with that shown in Listing 15-11.

2. Rerun the tests by selecting them in the Test View window and then
clicking the Run Section button, as you have done many times
before. All the tests should pass, as you have not changed the func-
tionality of the code, just its implementation.

3. Add all the tests you have developed to the Integration Build Vali-
dation Test created in Exercise 12-1 in Chapter 12 so that they can be
run whenever anyone performs the osImageManagerIntegation
Team Build.

4. Add your work to a version control shelve by clicking the Shelve
button in the Pending Changes window. However, you should be
aware that the tests added to IntegrationBVT in the previous step
will not be run as part of the Integration Team Build until your
changes are actually checked in.

5. You have now finished the exercises in this chapter, so log off.

We have now completed the test list which we initially expressed in
Table 14-1 in Chapter 14, and have since expanded to 18 tests; see Figure 15-2.
However, we have not quite finished the programming episode because we
need to demonstrate that our code is properly tested and performs well,
matters we will cover in Chapter 16.

Listing 15-11: Favorites Class after Refactoring

using System.Collections.Generic;
public class Favorites : ICollection<Favorite>
{

private Dictionary<string, Favorite> favoriteDictionary =
new Dictionary<string, Favorite>();

public int Count {get { return favoriteDictionary.Count; }}
public bool IsReadOnly { get { return false; }}

Chapter 15: Learning to Refactor320

public void Add(Favorite favorite)
{

if (favorite.Label == null)
throw new ArgumentNullException("Label cannot be null");

if (favorite.Uri == null)
throw new ArgumentNullException("Uri cannot be null");

if (Contains(favorite))
throw new ArgumentException("Duplicate Label");

favoriteDictionary.Add(favorite.Label, favorite);
}
public bool Remove(Favorite favorite)
{

return favoriteDictionary.Remove(favorite.Label);
}
public void Clear()
{

favoriteDictionary.Clear();
}
public bool Contains(Favorite favorite)
{

return favoriteDictionary.ContainsKey(favorite.Label);
}
public void CopyTo(Favorite[] array, int arrayIndex)
{

favoriteDictionary.Values.CopyTo(array, arrayIndex);
return;

}
public Uri this[string label]
{

get
{

Favorite favorite = favoriteDictionary[label];
return (favorite == null) ? null : favorite.Uri;

}
}
public IEnumerator<Favorite> GetEnumerator()
{

return favoriteDictionary.Values.GetEnumerator();
}
public System.Collections.IEnumerator

System.Collections.IEnumerable.GetEnumerator()
{

return favoriteDictionary.Values.GetEnumerator();
}

}

Doing a Big Refactoring 321

Figure 15-2: The test list containing 18 passing tests

Take a Break
The path you have followed to arrive at this point may appear to be some-
what convoluted and tortuous, but in practice, without the need to read the
exercises, it would probably take you less than an hour to implement these
18 tests. With that said, TFP is very tiring work, so make sure you take reg-
ular breaks. Indeed, it is recommended that you limit the duration of your
programming episodes to one or two hours and attempt only three or four
in a day. Only in this way will you be able to apply the Energized Work
practice.

You should aim to complete any refactoring within a few hours and fin-
ish by checking in your code so that it can be tested and integrated with the
team’s common code base; see Exercise 12-5 in Chapter 12. Therefore, you
should break up big refactorings into a series of small steps which are indi-
vidually no more difficult than the ones you have completed in this chap-
ter. In this way, you should be able to complete a major refactoring without

Chapter 15: Learning to Refactor322

needing to undertake any marathon programming sessions which disrupt
your ability to work in a sustainable way.

Energized Work Practice
The Energized Work practice helps the team avoid any long-term decline in

its productivity by ensuring that people get the frequency, quality, and

duration of breaks they need in order to recover fully from their work. It’s

about each individual achieving a satisfactory balance between work, rest,

and play over the various cycles of his life: daily, weekly, and yearly.

People have different capacities for sustaining work, but at some stage

all need some time to recover; otherwise they will not be able to work at

the same pace as before. It makes no sense to perform test-driven devel-

opment continuously all morning if it means you and your partner are

unable to work effectively in the afternoon. In the same way, it is counter-

productive to work all night completing a task at the end of one iteration

when it results in a loss of contribution during the first few days of the next

iteration. An Agile team recognizes that a smooth flow of work over months

and years gets more done than occasional spurts of high-intensity activ-

ity over a few days or weeks.

Implementing the Energized Work practice is not just a case of insisting

that everyone works from 9:00 a.m. to 5:00 p.m. and takes an hour for

lunch. It calls for you to address various complex cultural and social issues.

For example, developers usually like to work hard and tend to measure this

effort in terms of the time they spend at their desks. This is because

elapsed time is easy to calculate and has strong psychological associa-

tions with effort and reward. Therefore, introducing the Energized Work

practice means you must convince such people to swap this cherished

metric of individual office hours with one that better reflects their produc-

tivity as a group. In this way, people start getting the rest and play they

need because it leads to an improvement in something they now care

about: a metric-based productivity rather than elapsed time.

Doing a Big Refactoring 323

Continues

When it comes to adopting the Energized Work practice, each team will

have its own set of issues to identify and overcome. You should not expect

this process to happen in a few weeks, and you must also accept that from

time to time, an urgent deadline will still require people to undertake

heroic amounts of overtime. However, the point about energized work is

that you try to make such events the exception rather than the rule so that

most of the time the team operates at a pace it can sustain over the lifetime

of the project and beyond.

CONCLUSION

Test-driven development means you don’t have to start with a perfect
design, but instead evolve the design to meet your needs. This evolution is
driven by refactoring, but it is possible only because your tests give you a
safety net which encourages you to make changes in the implementation.
Everyone is obliged to refactor whenever they encounter any code that
needs attention. You refactor code to remove duplication, and make it sim-
pler, easier to understand, and more flexible while taking care not to change
its functionality—a case of cleaning up, not remodeling. In this way, the
design of the team’s software improves over time, making it easier to work
with, not harder, as the project progresses.

Chapter 15: Learning to Refactor324

16
Code Coverage and Performance

TH I S C H A P T E R E X P L O R E S some activities related to test-first pro-
gramming (TFP) by finishing the programming episode we started in

Chapter 14 with some exercises that reveal the adequacy of your unit testing
as well as the presence of any unexpected performance bottlenecks. After
finishing this chapter, you should be able to use the Visual Studio tools to
identify any parts of your code that are not exercised by unit tests and
understand how to improve the code’s performance using the Dynamic
Code Analyzer.

Code Coverage

The exercises in Chapters 14 and 15 showed you how to implement part of
a story called “Image Favorites” using the Test-First Programming practice.
This involved creating an initial list of tests which drove the development of
a class library for your production code, called LocalFavorites, and a cor-
responding library for your tests, called LocalFavoritesTest. If you were
following the exercises, by the end of Chapter 15 you should have succeeded
in passing 18 tests and have confidence in your software’s capability to man-
age a collection of bookmarks for images in the OSPACS database.

You may be confident that your code works, but how do you convince
other people that it works? How can you be sure that every important part

325

of the team’s software is covered by tests when they are run from the Test
View window? The Visual Studio Team System (VSTS) integrated Code
Coverage tool provides answers to such questions.

How to Generate Code Coverage Information
The Code Coverage tool allows you to record each line of code executed
during a test run so that you can subsequently identify those areas of the
code base which haven’t been exercised by a test. Exercise 16-1 shows how
it works for the Visual Studio Solution you created by following the exer-
cises in Chapters 14 and 15.

Exercise 16-1: Generating Code Coverage Information

In this exercise, you will create coverage information to identify the state-
ments in your code that are executed when you perform the programmer
(unit) tests for the favorites.dll file developed in the previous chapters.

1. Log on as Luke, start Visual Studio, and connect to the OSPACS Team
Project. Open the osImageHandler.sln solution file (File | Open |
Project/Solution) so that you can continue from your previous work
in Chapter 15.

2. Select the localtestrun.testrunconfig item in your Solution Explorer
window’s Solution Items folder and double-click it to open the dia-
log box shown in Figure 16-1.

3. Select Code Coverage from the list displayed in the left pane of the
dialog box, and then select the name of the assembly you would like
to instrument; in this case, choose the LocalFavorites.dll file that
appears in the Favorites directory. Close the dialog box and save
your changes when prompted.

4. Rerun your tests by selecting them in the Test View window and
clicking the Run Selection button. After the tests have completed,
information about the code that has been executed is displayed in
the Code Coverage Results window (Test | Windows | Code Cover-
age Results); see Figure 16-2.

Chapter 16: Code Coverage and Performance326

Figure 16-1: Code coverage configuration

Figure 16-2: Code not covered by tests in Favorites.cs

Code Coverage 327

TIP

Don’t instrument assemblies containing the unit tests because you
need to know which statements in your production code have been
executed, not which statements were executed in the test.

Figure 16-3: Code coverage results

Looking at the results in Figure 16-3, we can see that even our little
example did not get 100 percent code coverage. We got to only 93.10 per-
cent. Where did we miss some code? Drilling down into the hierarchy dis-
played in the left column of the Code Coverage Results window, we can
follow the items with the largest percentage of uncovered code down to
individual methods.

5. Open the hierarchy in the Code Coverage Results window to locate
the index property in the Favorites class which is not well covered
by tests. Double-click on this line to open the corresponding source
file, Favorites.cs, at the position this property is implemented.

6. The red highlighted code in Favorites.cs shows the lines that were
not executed during the test. It seems we didn’t write a test for the
case when we attempted to find a Favorite for a label that doesn’t
exist in the collection; see Figure 16-2.

7. Write a test to make sure the statement is exercised by adding the
code in Listing 16-1 to FavoritesTests.cs.

Chapter 16: Code Coverage and Performance328

Listing 16-1: Test for Null When Label Not Found

[TestMethod]
public void FavoritesIndexerLabelNotContainedInCollection()
{

Assert.IsNull(favorites["Unknown"]);
}

8. Rerun the tests to build the Solution and confirm that everything
now works. Unfortunately, all is not well because Dictionary throws
an exception saying that the key wasn’t present. Fix the problem in
Favorites.cs by swapping the statements in the get block with the fol-
lowing code:

get
{

return (favoriteDictionary.ContainsKey(label)) ?
favoriteDictionary[label].Uri : null;

}

9. When you rerun the tests they should all pass. If you hadn’t
checked your code coverage, you might not have caught this
potential bug so quickly.

10. Add your work to a version control shelve so that you can mark
the changes; click the Shelve button in the Pending Changes
window.

11. You have now finished the exercise, so log off.

Code Coverage 329

NOTE

When James Newkirk originally developed these exercises, he realized
that he had forgotten to test for a label that didn’t exist only after
obtaining code coverage information. This illustrates the importance
of including code coverage in your testing.

Following the Test-First Programming practice has allowed you to get
high code coverage, very close to 100 percent. However, sometimes you
may fall out of the practice and implement something without tests. This
might happen when you are working with an external system that prevents
you from writing tests for all of the conditions. It could also happen when
you’ve done a large refactoring and have added code which is not covered
by tests. Running the Code Coverage tool will inform you of such holes and
give you the opportunity to provide more tests (if appropriate) before pro-
claiming your task complete.

You should also keep in mind that it is not difficult to get complete code
coverage by following examples in books such as this one, but in practice,
100 percent coverage is very difficult to achieve and often you should not
even try to achieve it. Remember that code coverage is not a universal
panacea, and people must look at coverage data in context. In particular,
you need to question whether the data is telling you something that’s
important (as in the preceding example) or whether it is telling you some-
thing that you can safely ignore. You must also beware of people who sim-
ply focus on achieving the metric rather than truly advancing the state of
the software. For example, what is the point of getting 100 percent code
coverage for code that has no business value, or for code that has serious
quality issues such as resource leaks, missing functionality, and so forth?
In our opinion, a goal of 100 percent code coverage is not realistic or desir-
able in a commercial project of any significant size, as you would be better
off putting this effort into areas that yield actual business value.

Chapter 16: Code Coverage and Performance330

TIP

Divide your system in functional components and then set coverage
targets based on factors such as their relative risk and importance. For
example, you might aim for an average coverage of 80 percent, but
raise the bar to 90 percent in some components and lower it to 70 per-
cent in others.

Performance Analysis

The Dynamic Code Analyzer tool provided with Visual Studio Team Sys-
tem helps you obtain information about the operation of your program that
may help you identify problems such as performance bottlenecks. It does
this in two different ways:

• Sampling—Your program is periodically interrupted so that per-
formance data can be collected about all the code currently execut-
ing. You can also trigger such sampling by employing on-chip
performance counters for certain events such as page faults, register
access, or process and thread operations.

• Instrumentation—Small pieces of code called probes are inserted
into the entry and exit points of selected methods, which results in
performance data being collected about them each time they are
executed.

This performance data is gathered during an analysis session when your
program is run by the Code Analyzer tool. The data is used to create reports
so that you can determine things such as the most frequently called func-
tions, memory allocation, and so forth; see Figure 16-4.

Figure 16-4: Performance analysis report

Launch button

Performance Analysis 331

Sampling
The advantage of sampling is that it has very little impact on the normal exe-
cution of your program, so the results more accurately reflect the actual per-
formance you will encounter in a production environment. It also gives you
an overall picture of your program’s performance and therefore will typically
be used to guide subsequent gathering of data for specific parts of the code
with instrumentation. The disadvantage of sampling is that the performance
data snapshot is not guaranteed to be taken at the right moment, so it can fail
to gather all the information you need to fully understand the problem.

Instrumentation
Instrumenting your code for performance analysis has the advantage that
you can hone in on a precise area of code and therefore find the root cause
of the problem. It yields much more data and the results are much more
consistent than the hit-and-miss approach of sampling. However, the draw-
back of instrumentation is that it alters the code you are trying to measure
and, therefore, increases the amount of experimental error. You also need to
remove the instrumentation from the code before you release it into the pro-
duction environment, so you might spend a lot of time tuning a program
with performance probes only to discover that it becomes detuned again
once you remove them.

Example Performance Profiling Session
The implementation of the “Image Favorites” story is not a good example of
the sort of code you should attempt to optimize because it is unlikely that
your customer would notice any improvements you might make. Therefore,
we will use the Favorites class in the following exercise to illustrate only
how you might analyze your code and will not concern ourselves with
enhancing its performance.

Chapter 16: Code Coverage and Performance332

TIP

Let your customer drive any efforts to improve performance. Try to
identify the features that need optimizing, quantify the amount of
improvement they each require, and then deliver these improvements
incrementally.

Exercise 16-2: Performance Session for a Unit Test

This exercise instruments a new test which you will add to the
LocalFavoritesTests Visual Studio Project created in Exercise 14-2 in
Chapter 14.

1. Log on as Luke, start Visual Studio, and connect to the OSPACS
Team Project. Open the osImageHandler.sln solution file (File |
Open | Project/Solution) and continue from your previous work in
Chapter 15 (or Exercise 16-1).

2. Write a new test in FavoritesTests.cs to reflect how the code in
LocalFavorites might be used to implement a feature needed by a
clinician. Add three favorites and then find one; see Listing 16-2.

Listing 16-2: Performance Test

[TestMethod]
public void AddThreeAndFindOne()
{

Favorites.Add(armLeft);
Favorites.Add(armRight);
Favorites.Add(legRight);
Assert.AreEqual(armRight.Uri, favorites[armRight.Label]);

}

3. Run the test by selecting AddThreeAndFindOne in the Test View
window and then choosing Run Selection from its context menu
(Right-click | Run Selection). Observe the execution of the test in
your Test Results window.

4. Create a Performance Session for this test using the Performance
Wizard by selecting AddThreeAndFindOne in the Test Results
window and then choosing Create Performance Session from its
context menu.

5. Use the Performance Wizard to specify Instrumentation Profiling
and then click Finish. This opens the Performance Explorer window
where you can see the newly created LocalFavoritesTest as an item
in its treeview.

Performance Analysis 333

6. Run the test from the Dynamic Code Analyzer tool by clicking the
Launch button in the Performance Explorer toolbar. This
automatically starts the profiler, executes the test, and generates a
series of reports from the profile data.

7. Change the properties of the Performance Session to suit your
requirements by selecting the LocalFavoritesTest item in the Perfor-
mance Explorer window and then choosing Properties from its con-
text menu (Right-click | Properties). See Figure 16-5.

8. Rerun the test using the Dynamic Code Analyzer and inspect the
reports it generates.

9. Check in your changes following the procedures agreed upon by your
team (see Chapter 10) and then run the osImageManagerIntegration
Team Build to ensure they are correctly integrated into the team’s
code base.

10. Log off, as you have finished the exercises in this chapter.

Figure 16-5: Performance session property pages

Chapter 16: Code Coverage and Performance334

Creating a Build Configuration for Performance Analysis
Minimize the differences between the program you release and the program

you analyze by creating a special build configuration for performance-based

testing. Base this configuration on your release settings, but then include sym-

bolic information for your class libraries so that your reports contain proper

class names and other symbolic information. This can be achieved as follows:

• Open the Configuration Manager dialog box from the Build menu so

that you can create a new configuration by selecting New from its

Active Solution Configuration drop-down list.

• Select the Visual Studio Project for the class library in your Solution

Explorer window and open its Properties window: Project | Favorites

Properties). Click the Advanced button in the Build page to open a dia-

log box from which you can set the output debug information as “full.”

After you have created your new Build Configuration, select it as the

Active Solution Configuration in the Configuration Manager dialog box, and

then rebuild your Visual Studio Solution (Build | Build Solution) before con-

ducting another performance profile session.

Improving Your Library Code’s Performance
The reports that the Dynamic Code Analyzer tool generates help you iden-
tify areas of your code that suffer from poor performance so that you can
start trying to eliminate them. Typically, this involves rewriting the code so
that you can execute it in a more efficient way. It’s a job much like refactor-
ing because it requires you to improve your code without changing its func-
tionality. However, after optimizing your code, it may not always be easier
to understand and maintain.

Performance Analysis 335

TIP

You might need to avoid (or undo) a refactoring in order to optimize
your code for performance. When this happens, you should add some
comments to the code to explain what you’ve done, and why.

The Test-First Programming practice supports your optimization activ-
ities by providing a set of tests which allow you to experiment and make
significant changes to your code in relative safety. You can often achieve the
performance you need simply by doing something such as moving a sin-
gle statement out of a loop so that it is invoked once rather than many
times; see Listing 16-3. The Dynamic Code Analyzer helps you identify that
statement and your tests to make sure that any change you make doesn’t
then break the existing behavior.

Listing 16-3: Code with Potential for Performance Improvement

public string GetListing
{

string outputText = "My Favorites: ";
IEnumerator<Favorite> myEnum = GetEnumerator();
while (myEnum.MoveNext())
{

outputText += myEnum.Current.ToString();
outputText = formatListing(outputText);

}
return outputText;

}

You should attempt to improve performance by making a series of
small steps so that you can measure the gain you achieve after each one
and use this feedback to guide further work. This helps you avoid wasting
time on unproductive activities so that you can concentrate on doing the
things that actually create results. For example, you might be tempted to
try hand-optimizing the statements in a section of code to improve on the
work your compiler has already performed. However, by taking small

Chapter 16: Code Coverage and Performance336

NOTE

In Listing 16-3, moving the invocation of formatListing to the return
statement may significantly improve the performance of GetListing
because the string will be formatted only once instead of in the loop
each time a favorite item is added.

steps, you will quickly learn that performance isn’t usually improved by
removing whitespace, writing terse code, or even switching to a different
.NET language.

Improving System Performance
Improving the performance of your code libraries can achieve only so much
because often the big problems lie at a system level. It is a case of finding
and then eliminating such issues as unnecessary calls across the network,
inefficient resource allocation, and so forth. To resolve these sorts of prob-
lems you usually need a detailed knowledge of the operating system
design as well as a good understanding of the various server products in
your system. Therefore, improving system performance is not a job that an
average developer is qualified to tackle. However, you can gain some
insight into the causes of your problems by using the Dynamic Code Ana-
lyzer tool in sampling mode to find the general areas that are suffering from
poor performance. The information yielded by such an investigation may
then help you to identify the sort of expertise you need to employ.

Performance Analysis 337

NOTE

The biggest gains usually come from changing the design of a
method rather than from hand-optimizing its statements. Indeed,
certain hand optimizations can prevent the compiler from perform-
ing much better optimizations of its own and, therefore, can actually
reduce performance.

NOTE

You can attach a performance session to other types of programs
besides those used when running unit tests, allowing you to analyze
the performance of your program in various sorts of situations; see the
Visual Studio Team System Help Topics.

CONCLUSION

Code coverage and performance analysis are both ways of objectively
measuring the quality of the job done during test-first programming. How-
ever, you must be careful that the effort you spend on these activities pro-
vides value to the customer. In a real-life situation, it is seldom possible to
cover 100 percent of your code with unit tests, so you must balance the cost
of further improving your coverage against the customer benefits that this
brings in terms of reliability. Likewise, you must balance the time taken to
improve the execution time of your software against the benefits that this
faster code gives to the customer.

Chapter 16: Code Coverage and Performance338

17
Integrating TFP Code with
a User Interface

TH E P R E V I O U S T H R E E chapters described the way in which test-first
programming (TFP) allows you to implement most of the “Image

Favorites” story in a class library called Favorites. In this chapter, we sug-
gest how you might finish this story by integrating this class library with
a suitable user interface to provide a complete Windows Forms application.
We also review how TFP makes design something that you do all the time
instead of a specific phase you do at the start of a project.

Implementing the User Interface

At the beginning of Chapter 14, we divided the “Image Favorites” story
into two programming episodes. The subsequent exercises guided you
through the first of these episodes: implementing the functionality that
allows a clinician to create a collection of favorite images. Therefore, you
should now be ready to address the second episode, which requires you to
invoke this functionality from user interface code generated by the Visual
Studio editor. In order to do this, you need to model the user interface,
create a task list, and then implement the application.

339

Define the User Interface
We suggest you start developing the user interface (UI) by modeling its lay-
out and behavior with your customer; see Chapter 20. Accordingly, you
might decide that the simplest form of UI for the “Image Favorites” story
requires just three static menu items so that a clinician can display, add, and
discard Favorite items, as well as a dialog box in which he can specify the
label and database reference of a new Favorite item. Figure 17-1 shows how
this might look in a Windows Forms application.

Figure 17-1: User interface for the “Image Favorites” story

Chapter 17: Integrating TFP Code with a User Interface340

TIP

Use the Visual Studio Forms Designer to create quick prototypes of
your forms with your customer when discussing the user interface. In
this way, the user interface may evolve into something that better
meets your user’s needs and expectations.

Create a Task List
Most of the work associated with constructing a UI involves declarative
programming activities such as dragging items onto a form, setting their
properties, and creating handlers for the various events they need to
process. For this reason, developers tend not to drive the development of
the user interface by writing tests. Therefore, instead of creating a list of
tests (as you did in Chapter 14), we suggest you simply make a list of the
main tasks you need to complete in order to assemble the UI. For example,
to create the UI shown in Figure 17-1 for the “Image Favorites” story, you
might summarize the following tasks on an index card:

1. Provide osImageHandlerApp with a reference to LocalFavorites.dll.

2. Create a dialog box called Add Favorite for labeling a new
Favorite item.

3. Create an item in the application’s main menu bar for Favorites and
create a submenu item for Add Favorite.

4. Create an event handler for the Add Favorite menu item that will
open the dialog box and then use the information supplied by
the user to create a new Favorite item which can be added to the
collection.

5. Create an event handler for the Delete menu item which removes
the associated Favorite from the collection.

6. Create an event handler for the Display menu item which displays
the URI value associated with the favorite item.

7. Populate the Favorites menu with submenu items from the Favorites
collection. Each item will require an additional two submenus for
the display and delete functions, as well as connections to appropri-
ate event handlers.

Implementing the User Interface 341

TIP

Write your task list on a 6-by-4 index card and stick it to your monitor
so that you can cross off each item as you complete it. This helps you
to keep track of how much work you still need to complete as you
progress through your programming episode.

Implement the Windows Forms Application
Implementation of this second task requires only basic Windows Forms
programming skills,1 so we leave it as an exercise for the reader. However,
to get you started, Exercise 17-1 shows you how to implement the event
handler for the Add Favorite menu item; see the fourth item in the preced-
ing list.

Exercise 17-1: Providing a User Interface for LocalFavorites

In this exercise, you will add a menu strip with a number of menu items to
the Windows Forms application you developed in Exercise 8-4 in Chapter 8
so that you can link them with appropriate event handlers to your code in
Form1.cs. You will then create a dialog box so that a user can specify the
information needed to create a new Favorite item and then dynamically
add it to this menu.

1. Log on as Luke, start Visual Studio, and connect to the OSPACS
Team Project. Open the osImageHandler.sln solution file (File |
Open | Project/Solution) and continue from your previous work
in Chapter 16.

2. In the osImageHandlerApp project, add a reference to the
LocalFavorites class library; see step 4 of Exercise 14-3, in Chapter 14.

3. Open the application’s main form in Design View by double-click-
ing the Form1.cs item and choosing Designer from the View menu.
Next, drag a MenuStrip item from the Visual Studio toolbox (View
| Toolbox) and drop it onto the form to create a main menu for
your application.

4. Add the Favorites menu item by typing “Favorites” into the
MenuStrip control, and then add a submenu by typing “Add…”
into the box that appears below this new Favorites menu item.

5. Add an event handler for the Add submenu item by first clicking the
Favorites menu item and then double-clicking the Add submenu; a

Chapter 17: Integrating TFP Code with a User Interface342

1. [PWF] Petzold, Charles. Programming Microsoft Windows Forms (Microsoft Press, 2006).

skeletal method will automatically be created and the editor will
switch to Code View (View | Code) so that you can implement the
handler. Type the code in Listing 17-1 into this method.

Listing 17-1: Adding an Item to the Favorites Collection

private void toolStripMenu_AddFavorite(object sender, EventArgs e)
{

AddFavoriteDlg dlg = new AddFavoriteDlg();
if (dlg.ShowDialog() == DialogResult.OK)

favorites.Add(new Favorite(dlg.Label, new Uri(dlg.Uri)));
}

6. Implement AddFavoriteDlg by adding a Windows Form to the
osImageHandlerApp project and then dragging and dropping the
necessary controls onto it from the toolbox.

7. Add a private instance variable for Favorites to the Form1 class and
instantiate it in the class constructor to provide “favorites.”

8. Build the Solution (Build | Build Solution) and then run the applica-
tion (Debug | Start without Debugging) so that you can confirm that
a form appears with a Favorites menu containing the Add… item,
which opens the AddFavoriteDlg dialog box when clicked.

9. Check in your changes following the procedures agreed by your
team (see Chapter 10) and then run the osImageManagerIntegration
Team Build to ensure that they are correctly integrated into the
team’s code base.

10. Log off, as you have completed the exercises in this chapter.

Implementing the User Interface 343

NOTE

The Form1.cs file (Listing 17-2) contains the part of the class edited in
Code View, and the Form1.Designer.cs file contains the part of the class
edited in Designer View; see Figure 17-2. However, you can download
the entire solution from the book’s Web site.

Figure 17-2: Visual Studio Forms Designer

Aim to Create a Thin User Interface Layer
When producing user interface code, you should adopt the strategy of
keeping the user interface layer as thin as possible. For example, looking at
the Windows Forms code in Listing 17-2, you can see that most methods are
only two or three lines long and defer any complex processing to the
Favorites class we developed using TFP in the preceding chapters. In fact,
it could be argued that the PopulateFavoritesMenu method in Listing 17-2
is too complex to sit in the user interface layer and should have been moved
to a class library so that it could be developed with the necessary unit tests,
but we leave this as an exercise for the reader.

During the development of your user interface, it is really a case of
trusting the Visual Studio editors and the Forms framework to do their
jobs properly so that you can connect the resultant code to the fully unit-
tested library classes with a minimum number of intermediary statements.
Clearly, the simpler you can make this connecting code, the less chance
there is that it will contain an error.

Chapter 17: Integrating TFP Code with a User Interface344

Listing 17-2: Implementation of the User Interface in the Partial Class Form1.cs

using LocalFavorites;
public partial class Form1 : Form
{

private Favorites favorites;

public MainForm()
{

favorites = new Favorites();
InitializeComponent();

}
private void favoritesMenu_DropDownOpened(object sender, EventArgs e)
{

PopulateFavoritesMenu();
}
private void toolStripMenu_AddFavorite(object sender, EventArgs e)
{

AddFavoriteDlg dlg = new AddFavoriteDlg();
if (dlg.ShowDialog() == DialogResult.OK)

favorites.Add(new Favorite(dlg.Label, new Uri(dlg.Uri)));
}
private void toolStripMenu_DisplayFavorite(object sender,EventArgs e)
{

ToolStripDropDownItem item = sender as ToolStripDropDownItem;
if (item != null)

MessageBox.Show(favorites[item.OwnerItem.Text].ToString());
}
private void toolStripMenu_DeleteFavorite(object sender, EventArgs e)
{

ToolStripDropDownItem item = sender as ToolStripDropDownItem;
if (item != null) //you must implement Favorites.Find()

favorites.Remove(favorites.Find(item.OwnerItem.Text));
}

Implementing the User Interface 345

WARNING

Take care to test the user interface because it is very easy to acciden-
tally alter the properties of elements in a Window Form or incorrectly
bind them to your code. However, it is notoriously difficult to auto-
mate such tests, so you may need to perform manual testing instead.

private void PopulateFavoritesMenu()
{

favoritesToolStripMenuItem.DropDownItems.Clear();

ToolStripItem[] FavItems = new ToolStripItem[favorites.Count+1];
FavItems[0] = new ToolStripMenuItem("Add...", null,

new System.EventHandler(toolStripMenu_AddFavorite));
int cnt = 1;
IEnumerator<Favorite> myEnum = favorites.GetEnumerator();
while (myEnum.MoveNext())
{

ToolStripMenuItem item = new
ToolStripMenuItem(myEnum.Current.Label);
item.DropDownItems.Add("display image", null,
toolStripMenu_DisplayFavorite);
item.DropDownItems.Add("delete favorite", null,

toolStripMenu_DeleteFavorite);
FavItems[cnt++] = item;

}
favoritesToolStripMenuItem.DropDownItems.AddRange(FavItems);

}
}

Simple Design

Some people will doubtless be surprised that we embarked on implement-
ing the “Image Favorites” story without first producing any sort of formal
design. However, we question whether such effort would have resulted in
us creating a better solution than the one we have produced. Therefore, let’s
complete this chapter by taking a brief look at how we have arrived at this
simple, yet adequate, design without needing a big investment in upfront
design work.

Chapter 17: Integrating TFP Code with a User Interface346

NOTE

You do not need to write unit tests for third-party software unless
your team is treating such code as its own or needs to isolate problems
by covering the interfaces with tests to detect any changes in their
behavior.

Code Criteria for Simple Design
Simple design is about stopping the build-up of unnecessary complexity
in code. It requires you to improve the product by making it simpler until
you reach the point at which further simplification results in loss of value.
Unnecessary complexity impedes change and, left unaddressed, this will
eventually bring a project to its knees. Each refactoring step is an opportu-
nity to simplify the design which you need to exploit by evaluating the
code against the following minimum set of criteria, shown in priority order:

• The code should be appropriate for your audience—It provides an
example of how you think people should write code in the context
of the given problem. There shouldn’t be too many examples of bad
code, otherwise people may lose confidence in the overall solution.

• The code must pass all the tests—If the code does not pass the tests,
stop. Fix the code and then continue the evaluation.

• The code must communicate the design intent—As Jack Reeves
says,2 the only real blueprint for software is the source code itself.
It needs to express all the things you had in mind when you were
designing the program and must communicate to other people how
the implementation works.

• The code should contain the smallest number of classes—Your
code should satisfy the first three criteria and do it in the smallest
number of classes.

• The code should contain the smallest number of methods—Last
but not least, the code should have the smallest number of methods.

Simple Design 347

NOTE

We have actually spent a great deal of time thinking about the design
and how it could be improved. It’s just that we interspersed this work
with writing tests and code, so perhaps it wasn’t very visible.

2. Reeves, Jack. What is Software Design? (Publications, www.bleading-edge.com).

In 1657, Blaise Pascal said something that embodies the intent of simple
design: “I have made this letter longer than usual because I lack the time
to make it shorter.” The implication is that it is quicker to create superflu-
ous material than it is to consider how you might reduce something to its
bare essentials. This is certainly true of software, which often accumulates
unnecessary complexity because it’s more difficult to take steps to prevent
complexity from being added to the code than removing it afterward.

Avoiding Big Design Up Front
Simple design means there is no need for you to perform Big Design Up
Front (BDUF) because the tests validate the operation of the code at the
lowest level, which permits you to make in relative safety any large refac-
torings that might later become necessary. Accordingly, you can defer mak-
ing decisions until you have a better understanding of the problem, which
avoids the need for you to add complexity at the start of the project just in
case it is needed. Therefore, you might well question when the right time
would be to address such issues.

In the words of Kent Beck, “You should design your software at the last
responsible moment.”3 When is the last responsible moment? It really
depends on your project and the situation. If you are designing a Web site
that has 10 million page views and 400,000 unique visitors per month, you
should not wait until the software is finished to think about the scalability
of your solution. However, if you’re designing a program that provides
access to people’s favorite Web sites, you may be able to defer a decision
about exactly how to store the data until late in the project.

Chapter 17: Integrating TFP Code with a User Interface348

3. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

NOTE

Most stories are more complex than the “Image Favorites” story, so it
can be beneficial for teams to spend more time exploring the design
than we have. Therefore, in Section 6, we describe the sort of Agile
modeling that might help you in such situations.

CONCLUSION

Test-first programming is a very good way to produce class libraries such
as LocalFavorites, but it’s difficult to practice when you are not writing
procedural code—for example, when you are creating a user interface with
the Visual Studio Designer tool. Therefore, in this chapter, we showed how
you can address this problem by moving most of your user interface logic
into a class library, thereby leaving only a thin veneer of untested code
which has been primarily generated by your Visual Studio tools. In this
way, you can automate the testing of the parts of your interface that involve
complex processing and leave the manipulation of its user interface ele-
ments to manual testing, or to a specialist UI test tool.

Conclusion 349

WARNING

When a form is open in the Visual Studio Designer, it is easy to change
a property unintentionally. Therefore, we suggest you open forms only
when absolutely necessary and conduct a thorough test of the user
interface before checking in any change to a form source file.

Review of Section 5
Practice Test-Driven Development

TH E T E A M WA N T E D to master test-driven development (TDD) so that
everyone on the team could help write the new code required for the

OSPACS Team Project instead of having to rely on just the expert pro-
grammers on the team. The team members also hoped that the quality of
their software would improve by making sure that structural (unit) testing
was an integral part of the process rather something that could be dropped
whenever time was short. They undertook the following activities to imple-
ment the Test-First Programming practice as a first step toward making the
whole development approach test-driven:

• Created Visual Studio Test Projects—They permitted the structural
testing of the team’s class libraries. In this way, each new class
library would have a corresponding test library for its structural
test adapters.

• Added tests to the Build Validation Test (BVT)—Developers were
made responsible for adding all new tests created during their pro-
gramming episodes to the list of tests run during build validation
testing; see Chapter 12. In this way, they could run these programmer
tests (and coverage) in the Build Lab using the command-line tools.

• Enforced coding practices and policy—They agreed that all new
production code should be developed using TFP and pair program-
ming. The team decided to enforce this decision, creating a check-in
policy that required the unit testing of its changesets prior to them
being checked into the repository; see Chapter 10.

351

• Replaced legacy code—They decided to replace their legacy code
class by class whenever there was a need to change any part of it so
that eventually, the entire code base would be rewritten using TFP.
However, in the meantime, the team would try to manage the risk
of having code not covered by tests by isolating the legacy code in
separate class libraries and covering the important (or troublesome)
interfaces with unit tests.

The Team’s Impressions

The team was intrigued by the idea of test-first programming because it
was such a radical departure from the way it had developed code in the
past. However, it was clear that this idea worked and would help the team
write much higher-quality code. Here are their comments as they started
to apply this practice.

Developer: Tom
“Tests give us a safety net for making changes. I feel confident about refac-
toring because any mistake will be picked up by our tests.”

“It looks like, test by test, the software will evolve into a solution formed
from solid code that we can prove works as intended. This programmer
testing and refactoring clearly support the development of high-quality
software.”

“The lack of tests for the legacy code is something we are going to have
to watch. Everyone will need to take great care when altering this code.”

Review of Section 5: Practice Test-Driven Development352

NOTE

The term programmer tests is preferred to unit tests when talking about
the sort of structural tests written during TFP. This helps emphasize
the fact that these tests aim to help programmers write the code rather
than validate their work after the event.

Developer: Maggie
“I’m a bit worried about actually developing some code, but it will be OK
if I’m pair programming with someone such as Peter or Sarah. I might even
teach them a thing or two about testing!”

“Making unit testing a nonoptional part of the development process will
make a huge difference to the quality of our code. I’m delighted by the idea
of test-driven development.”

Developer: Peter
“TDD is about applying a series of simple solutions to small problems and
letting the design emerge from the bottom up rather than the top down.”

“We will need to keep the execution time of our tests short so that it
doesn’t disturb the natural rhythm of red/green/refactor.”

“Writing a test causes me to think from the outset about how my code
might be used by other people. What’s difficult to test will probably be dif-
ficult to use.”

“The information provided by the Dynamic Code Analyzer tool gives
me a different perspective on the code. I can see how it actually operates in
terms of objects and their method calls, memory allocation, etc.”

Developer: Sarah
“TDD changes our paradigm of software development in much the same
way as other significant advances such as object-oriented languages and
managed code. It’s going to give our company a big competitive advantage.”

“Tests give me early feedback about my code because I am using classes,
interfaces, and so forth at the same time as I’m implementing them. Mak-
ing my code easy to test helps me create code that is easy to stick together
(cohesive) while also being less dependent on other parts of the code base
(loosely coupled).”

“I like the idea of using code coverage to reveal any serious holes in our
testing rather than aiming for an arbitrary score such as 90 percent. We
should spend our time testing what’s important, not writing tests that will
never generate any useful information.”

The Team’s Impressions 353

Developer: Luke
“Test-first programming is a great way to learn a new language or technol-
ogy, particularly when combined with pair programming. It helps alleviate
my fear of writing some code that messes up the system for everyone else.”

“Creating a list of tests is simply a matter of breaking down a task into
a number of subtasks and then thinking about what sort of test might prove
they had been successfully implemented. It’s no different from the problem
decomposition we did during ninth grade science classes.”

“Anytime you run into problems, just use version control to go back to
code that passed all its tests and try again, but this time taking smaller steps.”

“The simplest refactoring involves renaming something so that it is more
meaningful to people. For example, rather than using a cryptic code such as
‘dwParam’ to represent a variable, use a name such as ‘FuelLitersInTank’
instead.”

Agile Values

The team has passed a critical milestone in adopting the Test-First pro-
gramming practice, not just in terms of being able to develop software as
a team, but also in terms of the reinforcement it gives to Agile values.

Communication
A number of points in TFP reinforce the value of communication. For exam-
ple, when brainstorming a test list, developers learn to talk through ideas
with their pair programming partner. They also learn to write code that
communicates their design intent so that others can understand what was
done, and why, after they move on to different tasks.

Review of Section 5: Practice Test-Driven Development354

WARNING

Hungarian notation such as “dwParam” makes sense when program-
ming in languages such as C that don’t express type information, but
it is completely redundant in object-oriented languages such as C#.

Feedback
TFP is mostly about providing feedback sooner rather than later. In partic-
ular, code evolves through the feedback provided by running software and
passing tests. However, feedback is given in other ways, such as when a
complex task is broken up into smaller ones, allowing people to better
understand its nature and therefore adjust their estimates, consider alter-
natives, and so forth.

Courage
The ability to perform effective regression testing using the tests developed
during TFP gives the team courage to undertake large refactorings of the
code base. The Energized Work practice addresses the fear people have that
the project will take an unacceptable toll on their health and personal life by
ensuring that they get the rest they need so that they can work at a sus-
tainable pace.

Simplicity
One of the core values embodied by TFP is simplicity. The goal for the
team’s code is best stated as “Everything should be made as simple as pos-
sible, but not simpler.” By focusing on the requirements that are known and
not speculating on future unstated requirements, the team achieves a
design that best suits the given requirements. However, this is no shortcut,
for simplicity is usually more difficult to achieve and may take people
much longer.

Respect
The improvements developers are expected to make to each other’s code
help remove the ego from their programming activities and, therefore, fos-
ter a climate of mutual cooperation.

Reinforcement of Agile Practices

At this stage of the OSPACS road map, the team was starting to under-
stand how the various Agile practices reinforced each other, for clearly the

Reinforcement of Agile Practices 355

Test-First Programming practice didn’t operate in isolation, but worked
with other practices in the following ways.

Pair Programming
Working with someone else helps you break down tasks and brainstorm the
test list. It is also better to apply the experience and knowledge of two peo-
ple when refactoring than just one; you should try to learn from each other.

Shared Code
You have an obligation to refactor whenever you believe it is necessary to
do so. This applies to any code you encounter. Therefore, you must have
implemented the Shared Code practice to start the Test-First Programming
practice. However, version control needs to be in place before you start the
Test-First Programming practice because refactorings can go wrong, leav-
ing you with a pile of broken code and tests which can be fixed only by
rolling back the changes from your workspace.

Single Code Base
When there are multiple code branches (see Chapter 7), you may need to
retrofit the same refactoring in more than one place, which creates the very
duplication that TDD is trying to eradicate. For this reason, it is usually
much better to develop the production code in a single main branch.

Ten Minute Build
Part of the build process involves running all programmer (and customer)
tests. You need to keep the process short so that it can be performed fre-
quently, so make sure that your programmer tests execute quickly.

Continuous Integration
The longer you leave integration, the more likely problems will arise when
you try to assemble everybody’s work. Continuous integration gives you
better feedback on your test-first programming, which helps stop small
problems from becoming much bigger and more difficult to solve.

Review of Section 5: Practice Test-Driven Development356

Section 6
Explore by Modeling

TH I S S E C T I O N E X P L A I N S how models and patterns help you improve
the quality of your team’s software. We start in Chapter 18 by present-

ing the values, principles, and practices of Agile Modeling (AM) and then
describe how such modeling fits into your development process. We follow
this with a brief introduction, in Chapter 19, on creating the sorts of dia-
grams that will cover most of your modeling needs so that in Chapter 20 we
can bring these two preceding chapters together by presenting a variety of
approaches to Requirement, Architectural, and Implementation Modeling
in an Agile project. Finally, Section 6 concludes with Chapter 21, which

357

Photograph by Daniel Mordzinski/AFP (Copyright Getty Images 1993).

Simple blackboard models helped Watson and Crick deduce the
structure of DNA. Why should you need anything more complex to
explore the composition of your software?

explains how various forms of patterns allow you to produce better soft-
ware by leveraging the work of experts.

Story from the Trenches

A confocal microscope is essentially like a normal light microscope, except
that instead of viewing the image through an eyepiece, you see it displayed
on a monitor as a series of optical slices which are created by scanning the
specimen at different depths with a laser. Biologists find this tool very use-
ful for obtaining high-resolution images and 3D reconstructions at the tens
to hundreds of micrometers scale.

Some years ago I worked on a small team, developing software to con-
trol the scanning and display of images from a confocal microscope. The
code was written in C++ and it was quite mature in the sense that we were
working on something like version 8.1. There had been a high turnover of
staff on the team, so all the original developers had long since been replaced
by new people, including a succession of software contractors like myself.
Our job was to implement a number of new features and fix some of the
bugs so that we could periodically release a new version of the software.

I spent the first morning of my contract exploring the project’s numer-
ous artifacts, and during this time I encountered an impressive number of
Unified Modeling Language (UML) diagrams that had been created to
model the software. However, upon closer inspection, it became clear that
they had all been created by the same person within a few weeks of each
other. In fact, they appeared suspiciously like the work of someone who
had just completed a training course and wanted to practice drawing every
conceivable type of UML diagram with her new set of CASE tools. A team-
mate later confirmed these suspicions, but told me that we couldn’t discard
the diagrams because they were the work of the person who was now the
company’s chief technical officer. I gathered from what he said that the
team was rather skeptical about the value of modeling and preferred to
design while typing code at the keyboard.

Not surprisingly, a closer examination of the code base revealed that it
was a pastiche of different ideas, styles, and designs which had amalga-
mated over the years into the software equivalent of a big ball of mud. In

Section 6: Explore by Modeling358

fairness to the team, it was no different from the code in most of the mature
systems I had encountered over the years. However, I remember feeling
that the situation could have been improved considerably if the team had
taken a more suitable approach to modeling. The idea of summarizing key
collections of classes in a graphical form was sound; it was just the way the
UML diagrams had been used that was poor. Unfortunately, at the time, I
couldn’t suggest a better approach to modeling, so like everyone else,
I ignored these diagrams and got on with my coding.

Many developers are not very enthusiastic about software modeling. Often this
is because they have had bad experiences struggling to produce UML diagrams
with CASE tools that ultimately proved to have little value. In this section of the
book, we present an Agile approach to modeling which will help you deal with the
growth of your software and therefore prevent it from maturing into the sort of
mess that typically characterizes old code.

Story from the Trenches 359

18
Modeling with Agility

TH I S C H A P T E R I N T R O D U C E S Agile Modeling, which is an approach to
modeling that is more about helping teams to model effectively than

prescribing the sorts of models they should produce. It is defined by a num-
ber of values, principles, and practices which we present at the start of the
chapter, before explaining how members of an Agile team can apply them
when they engage in modeling activities, either as a group or while pair
programming. The chapter concludes by describing how such modeling
fits into the iterative life cycle of an Agile team through a process called
Agile Model-Driven Development (AMDD).

Introduction to Modeling

We produce models to help us understand things. However, the models
themselves capture only a small amount of the information we generate
during the modeling process. Anyone who has participated in a group
modeling session will appreciate how little information ends up on the
actual diagram. Ultimately, all the discussions, the disagreements, and
hopefully those rare moments of insight may be summarized by no more
than a few boxes joined together by some lines on a whiteboard. The value
here clearly lies in the modeling and not in the model.

361

When we start to view a model as something that facilitates modeling,
its appearance becomes less important to us. Indeed, we can form a model
from almost anything; a simple system drawing on the back of an envelope,
a collection of text in a document, a free-form illustration on a flip chart, or
even a series of detailed diagrams produced by a sophisticated CASE tool.
The content of a model should concern us, not its presentation.

Models and Process
The sort of modeling you need to do depends on the sort of software devel-
opment process you follow. People who adopt a formal process may feel
uncomfortable writing code, unless they have a prescribed set of models to
guide them and they willingly devote a significant amount of time to this
activity. Conversely, people who are not following any sort of real process
may want to go straight to coding, and therefore, they spend almost no time
producing models. An Agile team needs to take a path between these two
extreme positions.

Chapter 18: Modeling with Agility362

NOTE

When it comes to sharing our model with others, we obviously need
to adopt some rules in terms of the way we display it. Therefore, in
Chapter 19, we present a brief overview of some conventions that will
help you communicate better when drawing your models.

NOTE

It is very difficult to develop anything but trivial software without
doing some sort of modeling. Most teams create models, even if it is
just a case of drawing some diagrams on paper napkins while drink-
ing a few Jolt Colas at a local bar.

Values, Principles, and Practices of Agile Modeling

Scott Ambler defined an approach to modeling for Agile teams that he calls
Agile Modeling.1 It is influenced by the ideas of Extreme Programming
(XP), and therefore, it complements the information you’ll find elsewhere
in this book. Agile Modeling is a collection of values, principles, and prac-
tices that help your team realize value from its modeling work.

Values
Agile Modeling shares the XP values of communication, simplicity, feed-
back, and courage, as discussed in Chapter 2. However, in place of “respect”
it promotes the value of “humility.” There doesn’t appear to be much dif-
ference between the words respect and humility in the sense in which they
are used in Extreme Programming and Agile Modeling. However, humility
seems to go further than just valuing the importance of other people’s con-
tributions. It implies that we must also expect others to be more knowl-
edgeable about certain aspects of the work than we are, and that others
should have a willingness to learn from them.

Principles
There are 11 core principles of Agile Modeling, five of which are based on
Agile concepts that should already be familiar to you: Rapid Feedback,
Assume Simplicity, Embrace Change, Software Is the Primary Goal (working

Values, Principles, and Practices of Agile Modeling 363

1. Agile Modeling Web site (www.agilemodeling.com).

NOTE

Agile Modeling is not a complete software process. Instead, it is
intended to enhance the modeling activities for a variety of different
types of host processes, including XP, the Rational Unified Process
(RUP), and the Microsoft Solutions Framework (MSF).

software, that is), and Incremental Change. However, the other six core
principles require some additional explanation beyond just their names:

• Model with a Purpose—Produce a model only when you can iden-
tify who will use it and how it will help him or her.

• Multiple Models—Create different models so that the same issue
can be viewed from various perspectives.

• Travel Light—Provide just enough information to meet your objec-
tives, and keep only those models that continue to serve a purpose.

• Enabling the Next Effort—You must aim to solve today’s problems
in the simplest way, but not at the expense of losing your ability to
respond to additional changes in the future.

• Quality Work—Your customer probably doesn’t need a perfect job,
but good enough doesn’t excuse poor workmanship.

• Maximize Stakeholder Investment—Modeling must be justified
in terms of giving the people who are paying for the work the best
return on their investment.

In addition to these core principles, Agile Modeling also identifies two sup-
plementary principles that reinforce them. One is largely self-explanatory:
Open and Honest Communication. The other states that Content Is More
Important than Representation, which basically means that it’s not the
accuracy of the drawing that counts, but the value of the information the
drawing contains.

Practices
The principles of Agile Modeling give rise to 13 core practices which are
concerned with the actions you take during a modeling session. Again, we
address the ideas behind some of these practices in other sections of this
book—Model with Others (similar to Pair Programming), Model in Small
Increments (similar to Incremental Design), Collective Ownership (the
same rationale as Shared Code), and Create Simple Content (similar to
Simple Design). Here is a summary of the remaining nine core practices:

Chapter 18: Modeling with Agility364

• Apply the Right Artifacts—All models have different strengths and
weaknesses, so let purpose decide the type of model you create. For
example, if you want to model the dynamic behavior of the objects
in your program, create a sequence diagram, not a class diagram.

• Create Several Models in Parallel—Don’t expect one model to
reveal everything; address the same problem in different ways and
then switch among these various types of models to gain different
perspectives. (See the Apply the Right Artifacts bullet point.)

• Iterate to Another Artifact—The point of modeling is the generation
of information, so when this stops, try switching your attention to
another type of model in the hope that the flow of information will
resume. (See the Create Several Models in Parallel bullet point.)

• Depict Models Simply—Don’t clutter diagrams with unnecessary
details. The fact that the standard notation allows you to represent
all the methods and attributes of a class doesn’t mean that your
Class diagram must include all this information.

• Use the Simplest Tools—The principle of content being more
important than representation leads us to prefer a meaningful
drawing on a whiteboard over a less useful diagram produced by
a UML-conforming CASE tool.

• Prove It with Code—Regularly check that you can actually imple-
ment the various models you are developing; prove that they are
valid abstractions of the real world.

• Single Source of Information—Information should be stored in just
one place, so keep only one model of a particular concept, even if the
final model is actually your code. (See the core principle on traveling
light, earlier in this chapter.)

• Display Models Publicly—Models should uphold the Open and Honest
Communication principle by conveying information rather than hid-
ing it. Therefore, make the artifacts from a modeling session immedi-
ately available to the rest of the team, and to your project stakeholders.

• Active Stakeholder Involvement—Like the XP practice of Real
Customer Involvement, all the people who have a stake in your proj-
ect should be involved in creating models that at least help them to
understand what the system must do.

Values, Principles, and Practices of Agile Modeling 365

In addition to these core practices, there are five supplementary prac-
tices which can we put into three groups. First, the Apply Modeling Stan-
dards and Formalize Contract Models practices are concerned with
providing information after the process of modeling has finished. They
counterbalance the tendency for value to lie only in the modeling rather
than in the model by addressing the need for a model to speak to people
beyond just those who created it; in other words, the principle of Open and
Honest Communication. For example, you might model the organization of
your system’s data layer as an Entity Relationship (ER) diagram so that the
company’s database administrator can understand it.

Second, the practice of Apply Patterns Gently encourages you to use
modeling to explore the problem space, identify and analyze the require-
ments, and investigate design alternatives before attempting to apply a pat-
tern (see Chapter 21). Third, the practices of Update Only When It Hurts
and Discard Temporary Models help you to implement the principle of
traveling light. They recognize the fact that most of the models you produce
are not formalized contract models which must be kept up-to-date and
retained. Often you will create a model by reusing some existing pattern,
sketch it on a whiteboard, and then leave it for a few days before erasing
it. These sorts of models act simply to jog your memory and don’t need to
be updated unless they start to cause misunderstandings.

Agile Modeling in Use

The five values, eleven core principles, six supplementary principles, thir-
teen core practices, and eight supplementary practices of Agile Modeling
are a lot to digest. Therefore, when introducing Agile Modeling to a team,
Scott Ambler recommends that you start with the principles and practices
that will improve communication, keep things simple, and encourage peo-
ple to model in an iterative and incremental way. In this way, Agile Mod-
eling can be seen as complementing the values and practices of Extreme
Programming and just requires the team to embrace modeling as a part of
its work, both as a group and as individual programming pairs.

Chapter 18: Modeling with Agility366

Group Modeling
Group modeling happens when the entire team gets together around a
whiteboard or conference table and starts to discuss the system under
development. It is one way to implement the Model with Others practice,
and it usually generates lots of useful information because people’s
assumptions are challenged and alternative viewpoints are considered.
Typically, more value is generated from this sort of collaborative think-
ing when you have a diverse group, so make sure you involve project
stakeholders as well as developers in this activity. We cannot overstate
the importance of soliciting contributions from people who really under-
stand the nature of the business which will ultimately benefit from the
project.

The presence of nontechnical people in a group modeling session also
helps prevent unnecessary detail and arcane UML notation from sneaking
into your models, thereby encouraging the Depict Models Simply practice.
This is where simple tools such as whiteboards come into their own,
because anyone can grab a pen and sketch out an idea without necessarily
having any in-depth knowledge of CASE tools or standard modeling nota-
tion. In this respect, whiteboards democratize modeling by encouraging a
more informal style that puts the emphasis on producing meaningful con-
tent rather than pretty diagrams.

Group modeling can occur at any time during the lifetime of a project,
but in particular, it should take place during the first few weeks to provide
the team with an opportunity to explore the problem space as well as to

Agile Modeling in Use 367

TIP

The number and type of project stakeholders will vary according to the
objectives of the modeling session, but you must ensure that someone
acts as the customer so that developers do not end up guessing what
the business wants.

develop the following initial requirements and architectural models for the
system:

• Requirement models—Allow customers and developers to explore
the system together so that they can gain a better insight into what
it must do. In addition, they play an important role in helping cus-
tomers to identify and prioritize their initial stories.

• Architectural models—Stimulate the production of something
such as the System metaphor described in Chapter 20, or even just
a whiteboard drawing.

When developing these initial models, it is important to realize that the
value lies in the activity, not necessarily in the resulting model. Therefore,
travel light during the session by creating just the material you really need
in order to move forward, and at the end of the session, be prepared to dis-
card temporary models that no longer serve any purpose.

A group modeling session (see Figure 18-1) may last for a few hours or
even an entire day, but it should certainly not take weeks. You should
model in small increments, aiming to provide only as much detail as you
can prove in your code over the next iteration. You must keep the larger
picture abstract so that you can defer actual design decisions to the last
responsible moment. In this regard, a metaphor can prove to be a helpful
representation of an architectural model. Such a metaphor will develop as
the project progresses and needs to be complemented by other types of
architecture models created in parallel. Similarly, you should use multiple

Chapter 18: Modeling with Agility368

TIP

Allow your team to photograph the whiteboard (or flip chart) with a
digital camera so that they can store the images on the Project Web site.
People may be more willing to implement the practice of discarding
temporary models when they realize that these images are never actu-
ally accessed.

models to express requirements so that you can see the same issue from dif-
ferent perspectives, with each one contributing in some way to the overall
level of understanding. You must aim to evolve these models over the life-
time of the project by regularly engaging in group modeling sessions.

Figure 18-1: Group modeling session around a whiteboard

Agile Modeling in Use 369

TIP

Don’t fool yourself into believing that you can create a single model
that will remain unchanged and drive the entire development effort
throughout your project. Agile Modeling seeks to move your team
away from this sort of Big Design Up Front (BDUF) thinking.

Modeling in Pairs
Modeling in pairs happens during a programming episode when two
developers create some form of model in an attempt to discover new tests
or better understand the nature of their task. It implements the Modeling
with Others practice. Although such models more likely contain imple-
mentation details rather than plain abstractions, they should not take long
to produce—a matter of minutes, not hours. For example, two developers
might spend a few minutes sketching a fragment of their class hierarchy to
help them find a new base class which would simplify their code; see
Figure 18-2.

Figure 18-2: Model sketched on the back of an envelope

Chapter 18: Modeling with Agility370

NOTE

Use the Visual Studio Team System (VSTS) Class Designer (Chapter 19)
while modeling in pairs if you find this quicker and more convenient
than sketching on paper. However, when using such tools, keep in
mind the need to depict models simply, travel light, and discard temporary
models.

There is no prescribed time to model during a programming episode,
nor is there a particular type of model that you should produce. It is a case
of spending a few minutes modeling when it seems productive to do so and
generating the sort of model that looks most likely to generate the infor-
mation you need. This type of group modeling works best when both
developers are familiar with a number of different model types, because
you will often want to create several models in parallel so that you can iter-
ate to another artifact (diagram) during a programming episode. Clearly,
if your programming partner doesn’t really understand the nature of these
models, there is no point producing them. Therefore, you must ensure that
everyone on your team is familiar with basic modeling techniques (see
Chapter 20), particularly as models developed during pairing tend to
include additional notation for expressing implementation details.

You can quickly prove with code the models you produce during pair
programming because you developed them in conjunction with Test-First
Programming (TFP); it’s a case of model a bit, then code and test a lot.
Sometimes you create a model simply to suggest some tests, and therefore
you may discard it almost immediately, but on other occasions you may
retain the model over several programming episodes and numerous revi-
sions, each one revealing some additional detail and taking you closer to
your goal. Therefore, it can be appropriate to consider modeling in terms of
the Incremental Design practice proposed by XP (see the following side-
bar), particularly when the results are used to evolve the team’s require-
ment and architectural models.

Agile Modeling in Use 371

TIP

Not everyone likes to think visually, so consider using lists and tables
rather than diagrams if they help you communicate better. Good mod-
els don’t necessarily need to be graphical; personas, acceptance tests,
and even design patterns2 are all valid types of models.

2. [DP] Gamma, Erick, Richard Helm, et al. Design Patterns (Addison-Wesley, 1994).

Chapter 18: Modeling with Agility372

Incremental Design Practice
The Incremental Design practice makes design an everyday activity, so you

perform it in small steps which you immediately validate by coding and

testing. It makes the consequences of your decisions immediately appar-

ent and therefore forces the person who is creating the design to take

responsibility for its implementation.

Big Design Up Front (BDUF) is the antithesis of incremental design, as it

advocates completing the entire design before starting any form of imple-

mentation work and therefore decouples design from coding. Most teams

find that perfecting the design upfront is very difficult. In fact, we’ve never

worked with anyone able to produce a design that didn’t subsequently

need modification once coding had begun. The advantage of taking an

incremental approach is that it encourages you to go back and improve

your design using the knowledge you’ve gained during its implementation.

It results in the production of a design that proves itself capable of

responding to change. This means you can defer certain decisions and

then use the experience of coding to guide you toward a better solution a

little further down the line.

Refactoring captures the very essence of the Incremental Design practice,

for it results in your design being improved through a succession of small

steps, each of which is validated against a growing collection of tests. You

are providing just enough design to solve today’s problems without mak-

ing tomorrow’s problems any worse.

Agile Model-Driven Development
Agile Model-Driven Development (AMDD) is the term Scott Ambler used
to describe his version of model-driven development, for it provides an
alternative to the sort of extensive upfront modeling required by
approaches such as the Object Management Group’s Model-Driven Archi-
tecture (MDA).3 Figure 18-3 summarizes AMDD by showing the relation-
ship between the requirement and architectural models that are produced

3. The Object Management Group provides details of MDA on its Web site: www.omg.org/mda.

through group modeling and the detailed modeling performed during pair
programming.

AMDD requires initial requirement and architectural models to be pro-
duced when the project is being set up; this is the part of the project that is
often called iteration zero. The requirement model helps your team identify
what the customer wants the system to do, and the architectural model
aims to define just enough of the infrastructure to support the team’s imme-
diate coding needs; Chapter 20 provides examples of these types of models.
AMDD intends that these initial models will be improved in subsequent
iterations as a consequence of the experience gained during detailed mod-
eling and actual implementation.

Detailed modeling happens frequently during the iterations that follow
iteration zero, as we described earlier; see the section Modeling in Pairs.
AMDD doesn’t insist that any particular types of models be produced dur-
ing this activity, just ones that are appropriate. The objective is to model the
detail rather than to create a detailed model, so these models should not
take very long to develop and will often be quickly discarded. AMDD
allows you the option of performing periodic reviews to validate the vari-
ous models, but it is preferable to perform such validation by following the
Prove It with Code practice.

Figure 18-3: Activities during Agile Model-Driven Development

Detailed Modeling
(minutes)

Implementation
(TDD)
(hours)

Requirements
Modeling

(days)

Architectural
Modeling

(days)

Iteration 0: Start of Project

Iteration 1
Iteration 2

Iteration n

Reviews (optional)
(hours)

Each Iteration

Agile Modeling in Use 373

CONCLUSION

Agile Modeling is more about helping teams to model effectively than pre-
scribing the sort of models they should produce. It gives you a framework
of values, principles, and practices that help your team gain better value
from its modeling activities. You don’t need to implement every Agile Mod-
eling practice or embrace all its principles at once. Indeed, you should mod-
ify Agile Modeling to suit the nature of your project, team members, and
organization. However, you do need to make group modeling and model-
ing in pairs a part of your team’s development process; otherwise, you are
not really performing Agile Model-Driven Development.

Chapter 18: Modeling with Agility374

TIP

We recommend that you introduce AMDD into your project simply by
initiating group modeling and modeling in pairs, as described earlier.
These activities complement the values and practices of Extreme Pro-
gramming and can add significant value to your work.

TIP

Expect the production of models to generate and communicate ideas
within your team as well as to explore their implementation. However,
we repeat once more the point that much of the value lies in the mod-
eling rather than within the model itself.

19
Creating Models

W E W R O T E T H I S C H A P T E R for people who have been put off mod-
eling by the perception that it involves creating a multitude of

diagrams which must each conform rigidly to some cryptic standard.
Accordingly, we start by encouraging you to sketch out your ideas as free-
form drawings which pay scant attention to formal conventions. We then
introduce a minimal subset of the Unified Modeling Language (UML) by
describing two types of diagrams that cover most of your modeling needs:
the Class diagram and the Sequence diagram. After reviewing some tools
that might help you create such diagrams, we conclude the chapter with
a set of tips for producing better model diagrams.

Free-form Diagrams

Models that are represented by free-form diagrams do not have to comply
with any standard form of notation, so you can draw them without requir-
ing any special training. Typically, you would sketch these diagrams on a
whiteboard during the sort of group modeling session we described in
Chapter 18. Such drawings usually contain just a few rectangular boxes
joined by various lines, because the detail here lies in the discussion, not in
the diagram; see Figure 19-1.

375

Figure 19-1: Free-form diagram of the OSPACS system

The main advantage of a free-form diagram is that it allows you to con-
centrate on communicating ideas without being constrained by notation.
Therefore, you will often find that a single free-form diagram can not only
take the place of numerous formal diagrams, but also better capture the key
concepts being modeled. However, this lack of formality comes at a price,
because a free-form diagram does not always properly represent all the crit-
ical details which can make it unintelligible to people who did not take part
in the modeling session. For this reason, various types of formal notation
have been developed, the most significant of which is UML.

Chapter 19: Creating Models376

TIP

The vast majority of models an Agile team produces will involve the
production of free-form diagrams, so make sure you can draw them
quickly without using a rule or stencil.

UML Diagrams

Unified Modeling Language1 is a standard graphical notation for describ-
ing and designing software systems that is controlled by the Object Man-
agement Group.2 The first version of the standard was introduced in 1997
and unified the notation used in a number of software development meth-
ods, including the Booch, Object Modeling Technique (OMT), and Objec-
tory methods; the forerunners of the Rational Unified Process (RUP).
However, UML is applicable to most forms of object-oriented processes
because it makes no assumptions about the actual way it is used, which is
a facet that has allowed it to quickly become the lingua franca of the object-
oriented software modeling world.

Martin Fowler makes the point3 that people tend to use UML in three
ways: for sketching, for creating blueprints, or as a programming language.
When people use it to create blueprints or as a programming language, the
models must be complete enough so that coding becomes a task which can
be respectively semi-automated or fully automated. However, in this book,
we use UML just for sketching, particularly in terms of creating the sort of
Class diagrams and Sequence diagrams described in this chapter, as well as
the Package diagram and Deployment diagram depicted in Figure 12-6 (in
Chapter 12) and Figure 30-6 (in Chapter 30), respectively. Therefore, we
attempt to describe only the parts of the notation that are most likely to be
used during Agile Modeling and refer you to other sources for complete
coverage of the subject; see the Bibliography.

Class Diagram Notation
The UML Class diagram is probably the most common type of UML dia-
gram you will need to draw. You use it to model the static structure of an
object-oriented program by showing the nature and organization of the

UML Diagrams 377

1. You can freely download the full specification from www.uml.org.
2. Object Management Group is a not-for-profit industry consortium; www.omg.org.
3. [UMLD] Fowler, Martin. UML Distilled (Addison-Wesley, 2004).

classes from which it is composed. People often use Class diagrams to help
them explore the problem domain during Requirement Modeling, but you
might also create a Class diagram during test-driven development (TDD)
because it can help you identify tests or possible refactorings. Indeed, the
sort of Class diagram you might produce during detailed modeling is
shown in Figure 19-2 and contains the following key elements:

• Class box—This box often contains just the name of the class, though
it can also be divided into ordered sections containing lists of things
such as field (property) and method names qualified with the sym-
bols shown in Table 19-1. It is rare, though, for such documentation
to be complete unless the diagram will be used to automatically gen-
erate the implementation files.

Figure 19-2: UML Class diagram

Chapter 19: Creating Models378

• Relationships—When a class has a property which is another class
rather than a simple field such as an integer, a line is drawn connect-
ing the two class boxes to show the type of relationships between
them, which may be one of the following:
– Association—Models the collaboration between classes, typically

resulting from an object of one type having some form of refer-
ence to an object of another type. By default, associations are
assumed to be bidirectional; however, in Figure 19-2, the Patient
class knows about the Image class but the Image class doesn’t
know about the Patient class, so the relationship is shown by the
arrowhead to indicate that it is directed. A Patient object can also
have an association with zero to many Image objects, as shown by
the “0..*” multiplicity indicator; see Table 19-1 for a full list.

– Inheritance—Models the specialization that exists between a set
of similar classes. For example, in Figure 19-2, the UltraSound
class is like an Image class, but it is specialized to handle the par-
ticular aspects of images that concern only ultrasound pictures.
Inheritance is shown by a triangle that has its apex next to the
base class, which is the more general class from which the more
specialized classes are derived.

– Composition—Models the relationship in which an instance of
one class contains an instance of another, which it owns exclu-
sively. In Figure 19-2, we deduce that a Patient object has a Person
object as well as a BillingAccount object contained within it. They
are not references that might be shared with other objects, so
when the Patient object dies, its composite objects die as well.
Composition is shown by a solid diamond on the side of the rela-
tionship that represents the owning class.

– Dependencies—Model reliance between classes such that a change
to one class might necessitate a change to the other. For example,
the Annotate method of the Image class contains a parameter of
type Dicom, so Image is dependent upon the Dicom class, as
shown by the dotted line.

UML Diagrams 379

• Stereotypes—Extend the use of a modeling element in a particular
way. For example, in Figure 19-2, the Image class has the <<abstract>>
stereotype to show that you can create objects only from its derived
classes. You can indicate stereotypes using text surrounded by angle
brackets, as well as visually with special symbols (see the Interfaces
entry, next in this list) or through the use of different fonts. An abstract
class, for example, is often shown in an italic font.

• Interfaces—Models a cohesive set of behaviors for a class to pro-
vide. For example, in Figure 19-1, the Patient class provides the
Report interface which allows it to be connected to any class that
requires such an interface in order for it to work. The provision of
an interface by a class is indicated by the lollipop symbol, or by a
dependency to a class box stereotyped as an interface. The require-
ment for a class to be provided with an interface is indicated by the
socket symbol; see AccountStatement in Figure 19-2.

• Notes—You can add miscellaneous information about the model in
a note which can be attached to the element to which it refers. The
note may contain some form of structured language, but often free-
form text is used, as in Figure 19-2, which details a constraint for an
Image collection held by a Patient object. UML provides a modeling
element specifically for constraints, but they are often better
expressed, as here, as notes in plain language.

Chapter 19: Creating Models380

NOTE

Multiplicity indicators may appear in requirement models and
detailed models. However, visibility symbols should be used only in
detailed models because they are related to coding decisions.

NOTE

The immediate benefit of learning UML is that you are able to com-
municate with others using diagrams that contain a standard notation.
This makes it much easier to explain models to people who didn’t
attend the modeling session.

Table 19-1: Visibility Symbols and Multiplicity Indicators for Class Diagrams

Visibility Symbols Multiplicity Indicators

+ 1 One object only (default)

n A specific number of n objects
(e.g., 5)

~ * Many objects

- 0..1 Zero or one object

0..* Zero or more objects

0..n Between zero and n objects

1..* One or more objects

1..n Between one and n objects

n..* Between n and many objects

m..n A minimum of m objects and
a maximum of n objects

Accessible only from objects of
the same type; private

Accessible only from objects in
the same program; internal

Accessible only from objects of
the same type or derived from
that type; protected

Accessible from all objects
(default); public

UML Diagrams 381

CLASS BOX DETAILS

Various custom sections can follow the property and method sections
in a class box, allowing you to document other key information such
as the list of exceptions thrown by the class. You can also show the
types of methods and properties, but it is necessary to provide this
information only if the type is some form of constraint. For example,
you might want to show explicitly that a value in your class was a
32-bit integer because it’s corresponding to the value in a particular
database field.

Sequence Diagram Notation
Sequence diagrams are useful when modeling the dynamic behavior of the
objects in your program. Normally, they show objects that participate in a par-
ticular scenario. For example, Figure 19-3 shows the objects involved in imple-
menting the “Acquire Image” story, and by reading the diagram from top to
bottom, you can see how they collaborate to achieve the required behavior.
People usually draw Sequence diagrams during Implementation Modeling,
but they can also be useful during Requirement Modeling when you want to
capture interactions among objects in the domain model; see Chapter 20.

The boxes at the top of a Sequence diagram are typically objects; instances
of the classes identified in your Class diagrams. The vertical dotted lines
emanating from them are called lifelines, and when they are active they
become tall, thin rectangles called activation blocks, which you would draw
just as a thick line on a whiteboard. Method calls between these objects are
more properly called messages and are shown by various arrows arranged
from top to bottom in the diagram to reflect their order of execution.

Chapter 19: Creating Models382

MORE ABOUT RELATIONSHIPS

It is worth knowing the following additional information about relation-
ships among classes. First, you can model an association as a class during
Requirement Modeling, but you cannot actually implement the concept
in C# or in any other .NET language because you cannot create pointer
data types (unlike in C and C++). Therefore, you will need to evolve your
association into a normal class during Detailed Modeling. Second, aggre-
gation is indicated by an open diamond and expresses a relationship that
is similar to composition, but without the idea of ownership. Therefore,
it is not much different from a simple association, though it is often used
to indicate that the classes should be developed together.

NOTE

A scenario is a sequence of steps that describe a particular interaction
between a user and the system. A collection of related scenarios forms
a use case, which provides an alternative to a customer story when it
comes to describing a system’s requirements.

Figure 19-3: UML Sequence diagram

You should have no difficulty determining from Figure 19-3 that the sce-
nario is initiated when the acquireImage method of the aPatient object is
invoked, which causes the anImage object to be created (new). The anImage
object reads a file with a call to its own readFile method and is then returned
to aPatient, which invokes the makeCharge method of the BillingAccount
object before adding anImage to the list of images it keeps with a call to
addImageToList. The notation in Figure 19-3 also contains the following
noteworthy aspects:

• Found message—The message that starts the scenario, acquireImage,
has a solid dot at its origin to indicate that it comes from an unde-
fined source.

• Naming—You name an object by putting “a” or “an” before its asso-
ciated class name; for example, an instance of the Patient class is
called aPatient. You can also adopt the syntax of “name:class,” as
in WillStott:Patient. The message name usually corresponds to the
name of the method being invoked in the activated object and may
include parameters; see addImageToList(anImage), in Figure 19-3.

UML Diagrams 383

• Object creation and destruction—You should show objects being
created when doing so adds useful information to the diagram. For
example, Figure 19-3 tells us that the anImage object is created when
the scenario is executed, while the other objects are presumed to
already exist. In an automated garbage-collection environment such
as .NET, you cannot explicitly indicate object deletion, but an X at
the end of a lifeline shows that the object is no longer required.

• Return items—It is sometimes useful to indicate that an object
(or other item) is returned from a message with a dotted arrow; see
anImage, in Figure 19-3.

• Synchronous and asynchronous messages—Most messages are
synchronous, so when object A calls a method in object B, no further
processing happens in object A until the call returns. However, if
object A and object B are operating in different threads, the call from
object A doesn’t necessarily need to wait for the call to return before
continuing with its processing, so the message can be synchronous
or asynchronous. A synchronous message is indicated by a solid
arrowhead, whereas an asynchronous message is usually shown
with a half-stick arrowhead; see makeCharge(), in Figure 19-3.
However, UML version 2.0 doesn’t make this distinction.

• Self-calls—A message that an object sends to itself is indicated by
an arrow that reverses back upon itself and creates a subactivation
block. This might happen when an object invokes one of its own
methods; see readFile() and addImageToList(), in Figure 19-3.

UML version 2.0 defines some additional notation for Sequence dia-
grams, but we will not describe them because they are unlikely to be use-
ful in terms of helping you to communicate your ideas during Agile
Modeling sessions. Sequence diagrams are a great way to show how objects
collaborate during the execution of your program to implement a scenario.
However, beware of adding too much detail to these diagrams as it is easy
to convert what was originally an informative drawing into something that
looks like a circuit diagram for the Starship Enterprise.

Chapter 19: Creating Models384

Using Modeling Tools

A whiteboard, a flip chart, or even the back of an envelope are all highly
effective modeling tools when people need to explore ideas together as a
group. Such tools encourage the sort of participation which is simply not
possible when everyone is huddled around a monitor struggling to operate
a complex CASE tool. You must remember that Agile Modeling is more
about producing good ideas than delivering neat diagrams. Therefore,
before adopting any new tool, you need to assess the advantages it gives
you over simpler alternatives. For this reason, we will compare the Class
Designer and Visio tools provided with Visual Studio Team System (VSTS)
against the humble whiteboard and leave you to decide which tool is more
appropriate for your team’s needs.

Class Designer
Class Designer is a part of Visual Studio 2005 and therefore is available
with every edition of VSTS (see Figure 19-4). It provides you with a visual
editor for your source files as an alternative to the usual text editor you
open when you double-click a file in Solution Explorer. Class Designer
renders a set of source files as a collection of graphical objects which look
similar to a UML Class diagram. It allows you to edit a class’s source code
in the context of the other classes in your Visual Studio project, which
helps keep you aware of the relationships and hierarchies that exist
between them.

Using Modeling Tools 385

TIP

If you want to show loops, conditionals, and other forms of program
logic, forget about putting ULM notation such as interaction frames,
iteration markers, and guards into Sequence diagrams, and express
your ideas as code instead.

Figure 19-4: Class Designer

Because Class Designer is directly editing your source files, any changes
you make will be reflected in any other sort of editor that is providing
views of the same files. To illustrate this point, in Exercise 19-1 we will add
a member variable to the source file of a class using a text editor, and then
observe the diagram in Class Designer as it is updated. We will then make
a change to this source file from Class Designer and watch the correspon-
ding update in the text editor.

Chapter 19: Creating Models386

NOTE

Class Designer is a step toward emerging technologies such as Lan-
guage Workbenches, which allow us to project the construction of a
program in different ways, not just as individual files containing lan-
guage statements rendered in a text editor; see Chapter 21.

Exercise 19-1: Editing a Source File Using Class Designer and Text Editor

1. Log on as Luke and start Visual Studio. You will not need to connect
with Team Foundation Server for the purposes of this exercise.

2. Create a new Visual Studio Project for a class library called
PatientImages. Make a directory for the solution, but do not locate
its files in Luke’s workspace or add them to version control; select
File | New | Project (Visual C#, Windows Class Library).

3. Open the file Class1.cs, which is in the Class Library you have just
created; double-click the file in Solution Explorer.

4. Use Class Designer to open all the source files in the PatientImages
project; select the project in Solution Explorer (Right-click | View
Class Diagram).

5. Use Class Designer to rename the Class1 class in Class1.cs by select-
ing the name in the diagram and typing “Patient”. Click on the text
editor view of this same file and check that the class name has been
updated.

6. Add a private integer member variable, called patientCode, to the
Patient class using the text editor in the normal way. Click on the
Class Designer view of this class and then click the Show button in
the top right of the Patient class box to reveal the new member vari-
able you have just added.

7. Add a method called listImages to the Patient class using the
Class Designer view by selecting its class box and then right-clicking
and selecting Add | Method. Type the name “listImages” into the
class box and press Enter to complete the job. Click on the text editor
view of the file and observe that the method is correctly displayed.

8. Experiment with adding new classes to the Class Designer view by
dragging them from the toolbox (View | Toolbox) and providing
appropriate names for the classes and their files. Try to implement
the Class diagram shown in Figure 19-1 to explore this new way of
creating and editing source files.

9. Log off, as you have completed this exercise.

Using Modeling Tools 387

You should understand that Class Designer does not attempt to draw
UML-compliant diagrams; it is primarily a source file editor. However, you
can use Class Designer for modeling and even to test the execution of the
resultant class methods using the Object Test Bench tool. With that said,
unless you intend to use the classes created by Class Designer for your
implementation, it doesn’t seem to have any significant advantage over
using a whiteboard. In terms of a tool for modeling, Class Designer also has
certain disadvantages when compared to a whiteboard:

• It supports only a small subset of the UML-like Class diagram nota-
tion. It is particularly restricted in terms of the relationships it can
express between classes.

• It is not very convenient for group modeling, which is true of any
PC-based tool.

• It requires you to create a Visual Studio Project for the implementa-
tion files it creates, which makes it cumbersome when used for mod-
eling in pairs with TDD.

• It doesn’t naturally suggest tests, and it puts you very close to
the implementation at a time when you may want to take a higher-
level view.

Although in its present form Class Designer doesn’t fit well with Agile
Modeling and TDD, you shouldn’t dismiss it because it provides you with
a very convenient way to create classes for your project, and it gives you a
view of their structure at absolutely no cost in terms of maintaining dia-
grams and so forth.

Chapter 19: Creating Models388

NOTE

Object Test Bench is a tool provided with Visual Studio 2005 that
allows you to test the methods in a class without having to create some
form of test application. However, the current version of the tool has
a reputation for not been entirely stable.

Visio for Enterprise Architects
Visio for Enterprise Architects is a specialized version of the Visio applica-
tion that forms part of the Microsoft Office suite, and it is available from
Microsoft as a stand-alone product as well as being included in the MSDN
Universal Subscription. The product is supplied with stencils for a wide
variety of different drawing types, including those used for UML and data-
base work. It also allows you to generate appropriate source files from a
Class diagram (i.e., forward engineering).

You should have no difficulty using Visio to generate a Class diagram
such as the one in Figure 19-5, as its user interface is consistent with other
applications in the Microsoft Office suite. Mostly, it is a case of dragging
drawing elements such as class boxes from the toolbox and then dropping
them onto the drawing surface so that you can specify their properties and
then establish relationships between them using additional elements from
the toolbox.

Figure 19-5: Class diagram produced using Visio for Enterprise Architects

Patient Image

UltraSound Xray CatScan

Person

BillingAccount

1

1

1

1

Report

Dicom

constraint: images must
be stored in date order

1 0..*

Using Modeling Tools 389

NOTE

Class Designer reads and displays the same physical file as your text
editor, but it renders the information as graphics rather than text.
Therefore, there is no conversion of diagrams to source code and vice
versa (in other words, the round-trip engineering typically performed
by CASE tools).

Visio allows you to create neat diagrams which you can export to a wide
variety of graphics formats. Therefore, it makes sense to use this sort of tool
when generating formal documentation for your project, because unlike
Class Designer, it can produce proper UML diagrams, and unlike a photo-
graph of a whiteboard, these diagrams can be edited. Visio can also gener-
ate source files and Data Definition Language (DDL) scripts from its
diagrams, which helps you transition between the model and its imple-
mentation. However, it is primarily just a drawing package, so you should
not equate it with more sophisticated CASE tools, such as Rational Rose.4

Visio as a modeling tool suffers from the following drawbacks:

• It is not very convenient for group modeling, unless you have a large
wall-mounted screen and a team that is comfortable using the product.

• The supplied stencils tend to push you toward creating a particular
type of diagram, which can unnecessarily constrain the creation of a
free-form diagram.

• Unnecessary details are sometime needed in a diagram to satisfy
the tool; for example, you must name the ends of certain binary
associations.

However, in our opinion, Visio’s redeeming feature is its capability to
generate the scripts you need to create a database. For example, you might
use Visio to create a Database Model diagram for the data structures in your
system, and then generate a schema as a DDL script which you can then run
with your database management system (DBMS) to create the required
database.

Chapter 19: Creating Models390

NOTE

Visio also allows you to generate a Database Model diagram from an
existing database, so when you use it in conjunction with its database
script-generating facilities, you can perform round-trip engineering on
your database.

4. IBM: Rational Rose Web site (www.ibm.com/software/rational).

Top Ten Tips for Drawing Diagrams
Whether you decide to use a whiteboard, Class Designer, Visio, or some
other form of drawing tool, the following tips will help you produce dia-
grams that better serve your modeling needs:

1. Respect the Agile Modeling values, principles, and practices given
in Chapter 18—In particular, consider the content of a diagram over
its presentation, travel light, update the diagram only when it hurts
not to do so, use the simplest tools, and depict your models simply.

2. Use a sensible subset of UML—Opt for common sorts of drawing
elements and supply a legend for any symbols that your audience
might not understand.

3. Use names consistently—Make sure names are spelled correctly
and are used consistently in different diagrams. Adopt the sort of
naming convention we discuss in Chapter 20.

4. Specifically show omissions—Indicate incomplete areas of your
diagrams with question marks to make it clear that the information
is required, but not yet supplied.

5. Limit the detail—Do not put too many drawing elements in one
diagram, and show only those attributes and methods that add
value to the model. When necessary, split large diagrams into a gen-
eral overview and a number of smaller diagrams containing specific
details.

6. Use big sheets of paper—Do not start drawing a diagram on a piece
of paper (or whiteboard) that is too small because you will undoubt-
edly produce something that is difficult to read.

7. Create a pleasing visual effect—Use plenty of white space and use
horizontal or vertical lines rather than diagonals or curves. Arrange
boxes symmetrically and join them by lines that terminate in the
middle of their boundaries rather than at a corner. Also, pay atten-
tion to the placement of labels and the fonts they use.

8. Beware of crossed lines or lines that are too close together—
Reorganize the elements in your drawing to minimize the need for
lines to cross over each other or appear to follow long paths; your
diagrams should not look like wiring or circuit diagrams.

Using Modeling Tools 391

9. Make the diagram read from left to right and top to bottom—
In most Western cultures, this is the way people instinctively read
material, but adapt this tip if your audience is from a culture that
reads material differently.

10. Use visual clues—Color helps emphasize relationships among
the various elements of a drawing; similarly, the size or line thick-
ness of a drawing element is usually used as an indication of its
importance.

CONCLUSION

In this chapter, we attempted to balance the need for you to create drawings
that other people can understand against the need to free people from
overzealous application of standards such as UML. Standards play an
important part in fostering communication among the people on your team
and beyond, but remember that the value of a diagram is determined by
its content more than its representation.

People who are reading this chapter with little or no previous experience
in software modeling should take heart from the fact that they don’t need
to know every aspect of the UML standard to start producing good models.
We concentrated on covering only the essential information you need to
start participating in your team’s Agile Modeling activities: Class diagrams
to express your program’s static structure and Sequence diagrams to show

Chapter 19: Creating Models392

NOTE

Many of these tips are suggested in Scott Ambler’s5 excellent little
book on UML, which we strongly suggest you read, along with Martin
Fowler’s book, UML Distilled.

5. [EUML] Ambler, Scott. Elements of UML 2.0 Style (Cambridge University Press, 2005).

its dynamic behavior. In the next chapter, we will show you how to put
such drawings to use in creating the types of models that often prove use-
ful in Agile projects.

Conclusion 393

TIP

You should try to develop your knowledge about different model
types so that you have a wide range of artifacts to apply should Class
or Sequence diagrams prove inadequate for your needs.

20
Using Models in an Agile Project

T E A M S T H AT H AV E adopted the sort of Agile approach to modeling
described in Chapter 18 will find that their models fall into one of the

following three categories:

• Requirement models—Help the team understand the nature of the
problem and identify what the software must do

• Architectural models—Provide the team with a high-level view of
the system design typically showing how its components will be
organized, implemented, and deployed

• Implementation models—Supply detailed information that sug-
gests developer (unit) tests as well as possible refactorings for test-
driven development (TDD)

After reading this chapter, you will understand the nature of these types
of models and have some examples of them so that you can realize such
models in the context of your own project.

Requirement Models

Developers usually produce requirement models during group modeling
sessions in order to help them gather and analyze their customer’s

395

requirements. This work starts at the beginning of the project and continues
as new requirements arise throughout the life of the project. Typically, a
team will explore the requirements for the system it is developing by pro-
ducing a domain model and a model of the user interface in addition to
modeling the functional requirements as stories and possibly even use cases.

Domain Models and CRC Cards
Domain models allow you to explore the business problem and therefore
identify the fundamental types of objects for the required system, as well as
the essential relationships that exist among them. For example, a domain
model might reveal that OSPACS needed an Image and a Patient class. In
some cases, such Domain classes end up becoming implemented in code,
and in other cases, they may evolve into completely different classes as a
result of your team’s detailed design efforts. Therefore, you should realize
that the domain model is not concerned with implementation issues; it is
concerned only with analysis of the requirement.

You can perform Domain Modeling in a number of ways,1 but an
approach that is particularly suitable for an Agile team involves CRC
cards. CRC is an acronym for Class, Responsibilities, and Collaborations.
It refers to the way in which you can divide an index card to show this
information; see Figure 20-1. The technique was first published in a paper2

by Ward Cunningham and Kent Beck, but was later popularized by
Rebecca Wirfs-Brock in her classic book,3 Designing Object-Oriented Soft-
ware (though Object Design is a more up-to-date book4 on the subject). She
built on the basic idea of CRC by suggesting that people should write on
index cards the following parts of speech which the customer uses to
express what the system must do, its inputs, and its responses:

1. [TOP] Ambler, Scott. The Object Primer (Cambridge University Press, 2004), Chapter 8.
2. Beck, Kent, and Ward Cunningham. “A Laboratory for Teaching Object-Oriented Think-

ing.” OOPSLA ’89 Conference Proceedings (http://c2.com/doc/oopsla89/paper.html).
3. [DOOS] Wirfs-Brock, Rebecca, et al. Designing Object-Oriented Software (Prentice-Hall, 1990).
4. [OD] Wirfs-Brock, Rebecca, and Alan McKean. Object Design (Addison-Wesley, 2003).

Chapter 20: Using Models in an Agile Project396

• Nouns—Write each significant noun phrase at the top of a separate
index card. Pay particular attention to proper nouns that name
abstractions and which can be given a clear statement of purpose.
You should also look for nouns that model physical objects and
interfaces to other systems, as well as nouns that form categories for
other nouns.

• Verbs—Add any significant verb phrase to the left column of the
index card that is most clearly associated with the action it describes.
You should also add to the same column a name for any sort of infor-
mation that is related to the action. For example, if you had the verb
Save on a card named “Image,” you might put Date in the left column
after learning that the date the image was saved had to be maintained.

Classes and Responsibilities

The initial objective of using CRC cards during a Domain Modeling session
is to create a stack of index cards (nouns) representing candidates for the
classes in your system with information in the left column of each card
(verbs) detailing the specific responsibilities of the particular class—in other
words, the knowledge every object of that type needed to maintain and
actions it could perform. Figure 20-1 shows an example of a CRC card.

Requirement Models 397

NOTE

Wirfs-Brock envisioned that these nouns and verbs could initially be
identified by highlighting them in the requirement specification doc-
ument. However, you can identify them just as easily during a con-
versation with a customer.

NOTE

The responsibilities of a class represent only the publicly available
services it provides. During Domain Modeling, you do not need to
consider anything it must “do” or “know” internally in order to fulfill
these responsibilities.

Figure 20-1: Example CRC card

Given a stack of such CRC cards, you can then identify additional
classes and responsibilities by laying them out on a table so that everyone
can see them and move them around. In this way, the cards provide a focus
for the group modeling session and stimulate discussion, which in some
cases may lead to classes being discarded as irrelevant and in other cases
may cause responsibilities to be moved from one card to another. The inten-
tion is to keep behavior with related information, redistribute intelligence
evenly throughout the system, and split larger general responsibilities into
smaller specific ones, perhaps divided across several classes. During this
process, people will naturally move some of the cards together on the table
because they seem related somehow. This sort of grouping provides an ini-
tial structure for your classes and encourages discussions about how a class
might fulfill its responsibilities.

Class

Responsibilities Collaborations

Chapter 20: Using Models in an Agile Project398

Collaborations

In some instances, the responsibilities of a class will be satisfied internally,
but in other cases, it may be more convenient to fulfill a particular respon-
sibility through collaboration with services which other classes provide.
Such collaboration creates dependencies among certain classes that should
be listed in the column on the right-hand side of the card that needs the
service. The search for collaborations will result in more discussion and
cause additional changes to the cards on the table as more responsibilities
are found, split up, or just moved from one class to another. Collaborations
help you further structure the classes in your system because they identify
groups of classes that need to work with each other and therefore identify
potential subsystems, as well as roles for classes such as client and server.

You should not spend more than a few hours doing CRC modeling, and
during this time you should aim to keep the discussion at a high level so that
you retain the interest of nontechnical participants. Domain Modeling is cer-
tainly not an opportunity for developers to engage in detailed discussions
about the design or about the merits of particular object-oriented concepts.
However, at the end of the modeling session, you should have walked
through the whole system and have a consistent model for the classes that
your customer considers to be important. You should produce this model
as a set of CRC cards which you lay out on a table; see Figure 20-2. In this
way, you produce an initial structure for your classes that you can then
express in the sort of Class diagram we previously discussed. Formally
such a diagram is called an Analysis Class diagram to differentiate it from
the detailed Class diagrams you might produce during your Implementa-
tion Modeling.

Requirement Models 399

NOTE

The real benefit of using CRC cards is that they encourage people to
explore alternatives, because they can pick up physical cards and
move them around during the course of a discussion without incur-
ring the overhead of redrawing.

Figure 20-2: CRC cards used for Domain Modeling

Naming Conventions

An important reason to draw Analysis Class diagrams is to help you find
appropriate names for your classes that correspond to how they fit into the
overall structure of the system. Choosing a good name is important because
it improves communication and reduces the need for other forms of docu-
mentation by providing a clue about what the class does and how it is used.
Part of selecting a good name is having some form of convention to make
sure your names are consistent with each other. We took the following sug-
gestions from The Elements of UML 2.0 Style.5 It also includes suggestions for
naming attributes and methods.

• Base class names on common terminology from the business or tech-
nical domain so that everyone can understand the class’s purpose—
for example, Account, Dicom.

Chapter 20: Using Models in an Agile Project400

5. [EUML] Ambler, Scott. The Elements of UML 2.0 Style (Cambridge University Press, 2005).

• Change names to make them appropriate for your audience. For
example, the requirement model should present names in a cus-
tomer-friendly way, such as First Name, whereas a detailed model
can use more technical representation, such as firstName.

• Use complete singular nouns for class names; so, use Account instead
of names such as Accounts and Acnt.

• Use complete names and capitalize the first letter of each noninitial
word for methods and attributes—for example, verifyPatientAccount(),
patientSex.

• Start method names with a strong verb, so use printImage() rather
than imagePrint().

• Name attributes with nouns from the business domain—for example,
patientCode.

User Interface Models
Modeling the user interface requirement with your customer complements
the work you do when modeling the domain, so it is a good idea to develop
such models together. In this way, when ideas for the domain model stop
coming, you can switch to the user interface model and vice versa. You will
also find that thinking about one model may stimulate some ideas for the
other, thereby helping the team to develop a more complete picture of the
system it is building.

It is important to avoid making assumptions about the eventual imple-
mentation when you are modeling the user interface requirements. The idea
is to identify that someone using the system will require a certain report

Requirement Models 401

NOTE

It is often difficult to find the best name for a class, even with the help
of a Class diagram. Therefore, during refactoring you may often find
yourself renaming a class by changing the code as well as any models
you have kept.

containing a given collection of data, or a particular screen with certain but-
tons, input fields, and so forth. At this stage, you are not concerned with
matters such as whether the screen will be formed by a window, an HTML
page, or even an old character-based terminal. Therefore, you should avoid
using any prototyping tools that might inadvertently steer you toward a
specific technology. As suggested by Constantine and Lockwood,6 the best
way to create a technologically neutral user interface model is to use sheets
of paper for things such as screens and reports, and to use sticky notes for
the elements they contain, such as buttons and lists. You can then produce
a diagram such as the one shown in Figure 20-3 to highlight how a user
might navigate among the various screens, and thereby start to develop a
basic architecture for your user interfaces as well as stimulate ideas about
the sorts of user stories you might need to support them.

Figure 20-3: User interface flow diagram

Chapter 20: Using Models in an Agile Project402

6. Constantine and Lockwood, Ltd. “Rapid Abstract Prototyping” (1999) (www.foruse.com).

Use Case Models
You construct a use case from a collection of scenarios relating to a partic-
ular form of interaction between a user and the system; for instance, sav-
ing a medical image into the database. You start by listing in a text file the
main success scenario, or the steps that most users will take to produce the
desired outcome during this type of interaction. The remaining scenarios
are then documented as variations of this main success scenario, called
extensions. Typically, a collection of use cases are put in a Use Case diagram
as this can provide a useful summary of your system’s requirements; see
Figure 20-4.

Figure 20-4: Requirements summarized in a Use Case diagram

Image Record
Creation

Re-create MO Disk

Edit Image Record

Duplicate Database

Record

Data Entry Clerk

Clinician

Administrator

OSPACS

Find Image

Annotate Image

Group Images

Requirement Models 403

TIP

You should name each sheet of paper or sticky note that corresponds
to some type of user interface element so that it reflects its purpose. In
addition, create an identifier such as S-101 so that you can reference the
same user interface element in different diagrams without having to
write out its full name.

The idea of modeling requirements with use cases was pioneered by
Ivar Jacobson7 in 1986, but the approach can also be applied to Agile Pro-
jects; see books such as Alistair Cockburn’s8 Crystal Clear. However, there
is no direct equivalent between a use case and a customer story, so XP teams
tend to use them simply as a mechanism for simulating discussion between
developers and the customer about new stories. With that said, you might
also want to create a Use Case diagram such as Figure 20-4 in order to pro-
vide an overview of your system in terms of its main features and the peo-
ple who will use them. You could then include such a diagram at the
beginning of user manuals and help files as an introduction to the system
for both technical and nontechnical people.

Customer Stories
We introduced the customer story cards in Chapter 3 as a way to summa-
rize a conversation between a customer and developer about the imple-
mentation of some aspect of the system that has business value. The
ultimate objective of your Requirement Modeling is the generation of these
customer stories because they are the things that drive your project for-
ward; see Section 8. Sometimes you can find all your customer stories with-
out going through other forms of Requirement Modeling, but usually it is
helpful to try a number of different techniques. This searching for stories
using multiple models is something that you need to repeat throughout
your project, because you should not expect to discover them all by pro-
ducing just a single model at the start of your project.

Chapter 20: Using Models in an Agile Project404

NOTE

Nontechnical people usually find Use Case diagrams easy to under-
stand, and customers in particular tend to like them because they can
express their requirements in terms of a specific type of person (actor)
using the system to achieve a particular objective (use case).

7. [OOSE] Jacobson, Ivar. Object-Oriented Software Engineering (Addison-Wesley, 1992).
8. [XC] Cockburn, Alistair. Crystal Clear (Addison-Wesley, 2005).

Figure 20-5: Customer stories on a desk

Architectural Models

Architectural models are often just extensions of the models developed for
exploring the requirements—for example, a glossary provides the vocabu-
lary for the system’s architecture, domain models identify the key classes,
and your user interface model and customer stories provide a high-level
view of what the system must do. This is appropriate because one of the
key purposes of architecture is to provide a link between requirement and

Architectural Models 405

NOTE

Laying out customer stories on a desk, similar to the way you lay out
CRC cards, helps you spot inconsistencies and gaps in your func-
tional requirements (see Figure 20-5). It also allows you to group
related requirements and thereby provide the beginning of the sys-
tem architecture.

design. In this respect, you can consider an architectural model simply as
a statement of the high-level design for your system. It explains the ration-
ale behind the organization of your classes and suggests how you might
put them together in a way that will allow them to be successfully deployed
and used in the target business environment.

The Architect’s Role on an Agile Team
Agile teams don’t usually have a role for a full-time architect. Instead,
developers are expected to make architectural decisions and are supported
by people acting in the customer role who might manage the datacenter or
otherwise have responsibility for IT architecture within the larger organi-
zation. Therefore, you must include such people in the sort of group mod-
eling sessions described in Chapter 18. Typically, they will help the team
develop initial architectural models during iteration zero, when the pri-
mary objective is to establish enough architecture for coding to commence.
However, throughout the project, they will also be expected to help evolve
the more important of these models so that the changes which inevitably
arise during software development can be properly accommodated.

Creating a Skeletal Architectural Model
When describing simple design in Chapter 15, we explained that an Agile
team tries to defer design decisions until the last possible moment because
it is usually better to wait until you have more information about a problem
before committing yourself to a particular solution. Applying the same
logic, you should also avoid making too many architectural commitments
at the start of the project, because at this time, you know the least about the

Chapter 20: Using Models in an Agile Project406

TIP

People with the title “architect” on their business card should have
many years of experience backed up with detailed knowledge about
the technology used by their organization. They must also demon-
strate an ability to apply this expertise by spending a considerable
amount of time writing code with their teams.

system you are developing. Therefore, your initial architectural model
should be as simple as possible, typically just enough for the purposes of
deploying the code you are going to write in the first iteration.

Normally, an Agile team will be very conservative about the function-
ality it is committing to provide in the first iteration. In part, this is because
nobody really knows how much work your team can achieve during an
iteration, so it makes sense to accept only a few customer stories. However,
the main reason for being cautious is the need for your team to be able to
deploy a system that provides a thin vertical slice that goes from one end
of the system to the other. This forms the basic skeleton which subsequent
iterations will flesh out with the functionality described by appropriate cus-
tomer stories.

The free-form diagram shown in Figure 20-6 is one way to model the
architecture of such a skeletal system, because it can show the essential
layers that must be implemented in the thin vertical slice. In this case, there
is a user interface layer, a business layer, and a data layer. Therefore, by
implementing a very small number of classes in each layer, you can deploy
a system that goes from acquiring data from a user to storing it in the data-
base. It doesn’t matter that the only functionality you have provided is
something such as storing a patient’s name; what matters is that you’ve
got your thin vertical slice. A free-form diagram is very suitable for explor-
ing this sort of initial architecture because you can put into it all the infor-
mation you need to start implementing the code and then deploy it later.
When the system starts to become more complex, you might consider
splitting this general diagram into the more specific ones we will describe
in the next section.

Architectural Models 407

NOTE

In most projects, we must accept that some architectural decisions will
have already been made. For example, your client might want to use
some existing IT infrastructure, so there is no point delaying your com-
mitment to providing a compatible architecture.

Figure 20-6: Free-form system layer diagram

Evolving Your Architectural Model
Once you have created a thin vertical slice of the system, your initial archi-
tectural model will need to evolve during subsequent iterations to help
your team construct a system that is robust in the face of change, a system
that the team can scale and adapt to meet the anticipated needs of the busi-
ness over a period of time. You should take care to establish a mechanism
for handling changes which might impact the system in the future, even if

Chapter 20: Using Models in an Agile Project408

NOTE

Teams creating Web services for deployment in distributed systems
may create their skeletal architectural model using the Application
Designer tool, which can also generate an initial set of Visual Studio
Projects complete with the interfaces you need; see Chapter 30.

it is a matter of just capturing such potential causes of change in some form
of personal project notebook.

Although you should keep your focus on providing only enough
architecture to support the stories which are currently being developed, it
is inevitable that you will need to create additional models in order for
you to explore specific aspects of the system under construction. There-
fore, you should acquaint yourself with the following types of models so
that you can follow the Agile Modeling practice of applying the right
artifact:

• Class Package diagrams—Help you split up a large collection of
classes by organizing them into appropriate assemblies for deploy-
ment as well as development; see Figure 12-6 in Chapter 12 and the
associated text. Historically, package diagrams were used to model
the relationships between Java classes so that they could be put into
appropriate packages, but it is also appropriate to use them with
.NET and other languages.

• Component diagrams—Define interfaces and ports as well as the
associated underlying classes for modeling deployable units of code
produced by third parties or other teams in your organization. You
may also use these diagrams when a large project is split among a
number of subteams to model the contracts among the various com-
ponents they are developing. Essentially, these are diagrams similar
to the one in Figure 19-1 in Chapter 19, except they have a rectangu-
lar boundary containing small squares for the interaction points
(ports) between the classes in the component and those in its exter-
nal environment.

• Network diagrams—Allow you to model the hardware that will
support the various parts of your system. Typically, these dia-
grams show things such as the desktop PC upon which the appli-
cation is installed, the server that hosts your database, and the
firewalls that protect the connections between these machines; see
Figure 20-7.

Architectural Models 409

Figure 20-7: Free-form Network diagram

The evolution of the architectural models must take into account events
going on outside the project as well as those happening within it. In par-
ticular, the project’s architecture should attempt to converge with the archi-
tecture evolving in other projects so that the organization as a whole moves
toward an environment in which the sharing of resources and reuse of code
is an accepted part of the development culture. People who consider them-
selves “architects” should play an important part in ensuring that this sort
of enterprise-level architecture is eventually achieved by helping the vari-
ous project teams to reach some form of consensus about such matters.

Chapter 20: Using Models in an Agile Project410

NOTE

Models produced by the various tools in Visual Studio Team System
for Architects may also help your Architectural Modeling efforts, par-
ticularly in respect to Web service deployment; see Chapter 30.

System Metaphor
The development of a system metaphor was intended to address the need
for an architectural model in Extreme Programming (XP). It was hoped that
teams could easily create a suitable metaphor for their systems that would
act like the picture on a jigsaw puzzle and therefore guide the placement
of the pieces to form a coherent whole. However, the creation of an appro-
priate metaphor is not always easy, so the value of this modeling technique
is often questioned.

It is true that a poor metaphor is usually worse than having no
metaphor at all, but when you are able to discover some story or image that
manages to capture the essence of what your system is all about, it is cer-
tainly worth pursing the idea of the XP system metaphor. Use of a shopping
cart as a metaphor for a Web site payment system, for example, provides a
very powerful vision of the system that everyone involved in the project
can easily understand. It suggests that you need a mechanism which allows
a shopper to move things from the shelves into the shopping cart, a means
of adding up their cost, and then finally a way to pay for them. With the
help of the shopping cart metaphor and this one short sentence, you have
the basis of your initial architecture, so after creating a simple free-form dia-
gram such as the one in Figure 20-6, you may have sufficient technical
detail to start work on the initial implementation.

Implementation Models

Implementation models are normally created by two developers who are
working together (pair programming) during a programming episode, and
they serve to help the developers discover new tests or better understand

Implementation Models 411

TIP

If you can’t find a suitable metaphor, create a collage of apt pictures
on the wall of your project room so that you can subsequently relate
them to customer stories as well as to the technical parts of the system.

the nature of their task. Often the models are simple free-form sketches sim-
ilar to the one shown in Figure 18-2 in Chapter 18, and they take only a few
minutes to create and will not be kept after the end of the programming
episode. However, such sketches are typically based on more formal types
of models, such as those we introduce in the following section.

Structural Models
Static structural models help you understand the organization of the classes
and data in your system. Here are the most common types of this class of
model:

• Class diagram—Use this type of diagram to show the classes
in your system, the relationships that exist between them, and
(optionally) their important methods and properties. It is one of
the essential types of diagrams that you need to be able to draw
and understand. See Chapter 19 for a more detailed explanation.

• Object diagram—This sort of diagram often clarifies a Class dia-
gram by showing how the classes might be used. It uses a notation
similar to that used in a Class diagram, except class boxes name the
specific object (e.g., WillStott:Person) and assign values to any rele-
vant fields (e.g., city = Montreux).

• Component diagram—There is little difference between a Compo-
nent diagram and a Class diagram, except that you represent a com-
ponent as a class box stereotyped with either a symbol or the text
“<<component>>”, and the links between the boxes represent con-
nections to their public interfaces. This sort of diagram is useful when
you need to show the division of your system into components.

Chapter 20: Using Models in an Agile Project412

NOTE

Familiarity with different types of models allows you to apply the
Agile Modeling practices of Create Several Models in Parallel and Iter-
ate to Another Artifact, which often result in the generation of more
useful information; see Chapter 18.

• Package diagram—Technically, a package diagram can take any
Unified Modeling Language (UML) construct and group its ele-
ments together into a simple high-level representation. However,
it is typically used to group classes into namespaces or libraries; see
Figure 12-6 in Chapter 12. Therefore, it is often useful for identifying
components for deployment.

• Logical Data Model (LDM) diagram—This sort of diagram can be
drawn using the same notation as Class diagrams, but instead of
helping you to model your classes it lets you explore your system’s
data structures so that you can identify the entity types and attrib-
utes required for your database.

Dynamic Models
Dynamic models are concerned with representing your system in terms of
the runtime behavior of its classes and their collaborations. You can express
such models using the following types of drawings:

• Sequence diagram—Illustrates how a scenario is implemented in
terms of the objects involved and the messages that pass between
them. It is good for showing how classes are used, but poor at express-
ing program logic. We explain Sequence diagrams in Chapter 19, as
they are one of the essential types of diagrams that you need to be
able to draw and understand.

• State (machine) diagram—This type of diagram describes how
something moves among different states as it is used. For example,
an X-ray machine object starts in the ready state, moves to the busy
state when an image is acquired, and then returns to the ready state.

Implementation Models 413

NOTE

Although UML doesn’t specifically support diagrams for modeling the
data in your system, a wide range of templates for drawing database
diagrams are provided with Visio for Enterprise Architects.

Such diagrams allow you to model the way an object responds to
multiple scenarios, but they are most often used for specialist pur-
poses such as the development of real-time systems or for objects
with complex state behavior.

• Activity diagram—This diagram looks like a traditional flowchart
and serves a similar purpose in terms of displaying things such as
business logic and workflows. Although by adding “fork” and “join”
elements you can use these diagrams to model forms of parallel pro-
cessing, we suggest you keep your Activity diagrams simple and use
them just to confirm the business behavior your customer needs.

CONCLUSION

Although many traditional approaches to software modeling are decidedly
un-Agile, this should not discourage you from adopting the sort of Agile
Model-Driven Development (AMDD) we described in Chapter 18. Accord-
ingly, we have introduced a wide range of Requirement, Architectural, and
Implementation Modeling techniques so that you can apply AMDD during
your group modeling sessions as well as when you are modeling in pairs.

You should now recognize that you can practice these techniques with-
out having to learn extensive amounts of specialist modeling notation.
Indeed, you should be able to produce all the models you need by com-
bining the material in this chapter with the information about creating
UML Class and Sequence diagrams provided in the preceding chapter. In
an Agile Project, modeling allows you to achieve your goals better, faster,
and cheaper, a theme we explore further in the next chapter, when we tell
you how to apply patterns to your work.

Chapter 20: Using Models in an Agile Project414

NOTE

You can discover more about these types of implementation models by
reading the UML books listed in the Bibliography. However, you will
probably learn much more by pairing with someone who has experi-
ence using them.

21
Modeling Solutions with Patterns

TH I S C H A P T E R E X P L A I N S how various forms of patterns allow you to
reuse ideas in different contexts so that you don’t need to implement

every solution from scratch. We start by introducing you to a common soft-
ware engineering pattern called the Façade and show you how you might
use it to gradually introduce test-driven development (TDD) into a project
that has a lot of existing code without supporting programmer tests. We
then look at the way reusable components and Domain-Specific Languages
(DSLs) help people describe and assemble the sorts of things they want to
build without having to write masses of low-level code.

What Is a Pattern?

Martin Fowler defines a pattern as “an idea that has been useful in one prac-
tical context and will probably be useful in others.”1 In this sense, a pattern
can include almost anything capable of expressing an idea, ranging from a
handy fragment of code to an abstract model of a software system. However,
it is equally reasonable to define a software pattern in terms of a mechanism
for cataloging proven designs to create some form of language that will help
people describe and build their programs. Indeed, this is what software
engineers usually mean when they talk about software patterns.

415

1. [AP] Fowler, Martin. Analysis Patterns (Addison-Wesley, 1997), p. xv.

Pattern Languages
One of the first papers about pattern languages2 was presented by Kent
Beck and Ward Cunningham at the Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA) conference in 1987. This
paper made a connection between the way software might be designed
and the work of architect Christopher Alexander, who had created a lan-
guage3 for the building and planning of towns, houses, gardens, and
rooms. Alexander expressed his language as a collection of patterns which
provided an extensible vocabulary allowing people to describe in a cohe-
sive and harmonious way the things they wanted to build. Beck and
Cunningham realized that the identification of corresponding patterns in
software programs might provide developers with similar benefits, so they
wrote their paper to promote these ideas.

Pattern languages gained widespread recognition after the so-called
“gang of four” (Gamma, Helm, Johnson, and Vlissides) published their
seminal book, Design Patterns,4 in 1994. This book provided software devel-
opers with a type of language for describing their designs and gave them
guidance about their implementation. Therefore, instead of spending hours
walking someone through the specifics of your code or model, you could
explain the nature of your design in a few minutes just by discussing the
patterns you had implemented. Furthermore, these patterns allowed you to
work like an expert because each pattern explained the situations in which
it should be used, its association with related patterns, the trade-offs of
applying the pattern, and implementation details including sample code.

Armed with Design Patterns, you no longer had to implement every
solution from the ground up because you could reuse the book’s high-
quality, proven designs in your project as you needed them. The success of
Design Patterns spawned many other books which followed the same basic
formula of providing a collection of patterns, each documented in some
common format that would typically include the information shown in
Table 21-1.

Chapter 21: Modeling Solutions with Patterns416

2. Beck, Kent, and Ward Cunningham. “Using Pattern Languages for Object-Oriented
Programs” (OOPSLA, 1987).

3. Alexander, Christopher, et al. A Pattern Language (Oxford University Press, 1977).
4. [DP] Gamma, Erich, et al. Design Patterns (Addison-Wesley, 1995).

Table 21-1: Common Information Provided about a Design Pattern

Section Content

Name By naming patterns, you create a vocabulary for
discussing design issues.

Description The problems the pattern addresses and the
solution it supplies. This often takes the form of a
short statement of the pattern’s intent, followed by
a scenario describing its use in the real world. Alter-
native names for the pattern may also be listed.

Structure of solution The classes that participate in the design pattern
are represented by suitable Unified Modeling
Language (UML) diagrams. The collaborations and
responsibilities of these classes are also described.

Context Explains the situations in which you can apply the
pattern as well as the consequences of the pattern’s
use in terms of the trade-offs involved.

Implementation Provides sample code to show how you might
implement the pattern as well as describes pitfalls,
hints, and language-specific issues of which you
should be aware. Known uses of the pattern may
also be detailed.

Related patterns Other patterns which are closely associated with
the pattern, along with suggestions for the circum-
stances in which you should use them.

Example: The Façade Pattern
In order to illustrate how a pattern works, here is an abbreviated form of the
Façade pattern cataloged in Design Patterns. Later in the chapter, we will
describe how you can apply this pattern to a legacy system so that you can
gradually replace the old code with code produced by TDD.

• Name—Façade.

• Description—Allows access to a subsystem through a single
unified interface rather than via multiple internal classes. For

What Is a Pattern? 417

example, to store an image of a patient, you might currently have
to invoke methods in four different objects, but by introducing a
Façade, you might be able to complete this operation by invoking
just one method in the single object responsible for implementing
the interface.

• Structure of solution—Figure 21-1 shows the classes that participate
in the Façade. The client classes collaborate with the Façade class,
which then collaborates with the various internal classes of the sub-
system to provide the required behavior.

• Context—Use a Façade when you want to decouple a subsystem
from its clients so that you can gradually replace it, or when you
need to provide a simple interface to a complex subsystem. How-
ever, you should note that although a Façade makes a subsystem
easier to use, it may also make the subsystem less general-purpose.

Figure 21-1: Structure of the Façade pattern

Patient Image

UltraSound Xray CatScan

Person

BillingAccount

1

-b

1

1-a

1

Dicom

1 0..*

+StoreImage()

Façade

Client

Subsystem

Chapter 21: Modeling Solutions with Patterns418

• .NET implementation—Move the classes in the subsystem into their
own class library and then change their accessibility to “internal” so
that you can provide your Façade class as the only public interface
to the library. The following code illustrates the Façade interface
method for storing an image of a patient:

public class ImageHandler
{

public void StoreImage(string PatientID, Image image)
{

Patient patient = new Patient(PatientID);
image.Store(patient, DateTime.now);
patient.DebitAccount(image.Cost);

}
}

• Related patterns—The Façade pattern is sometimes confused with the
Adapter pattern. You should use the Adapter pattern when you want
to adapt an existing interface on a single object, and the Façade pattern
when you want to provide a new interface for an entire subsystem.

Sources of Patterns
You can find patterns presented in a format similar to the one used in
Design Patterns in many books covering a wide range of software develop-
ment issues, including the following:

• Analysis—Captures the knowledge of experts from the business.
For example, Martin Fowler’s book,5 Analysis Patterns, contains pat-
terns that represent common constructions in business modeling,

What Is a Pattern? 419

TIP

Don’t be satisfied with just reading about a pattern; apply it, explore its
use in different situations, and discuss your experiences with other peo-
ple. Extend your knowledge by collecting notes about each pattern you
encounter, and create your own catalog for any new patterns you find.

5. [AP] Fowler, Martin. Analysis Patterns (Addison-Wesley, 1997).

such as conversion ratios and accounting systems, as well as models
that relate to the construction of complete systems.

• Design—Catalogs of reusable object-oriented software concepts
produced by experienced developers. Most of the books in this field
tend to provide additional insight into Design Patterns, and in this
respect, Design Patterns Explained6 does a particularly fine job.

• Refactoring—A list of procedures for removing duplication from
your code, simplifying it, or making the code easier to understand
and maintain. Such patterns help you to perform refactoring like an
expert, and you can find them in books such as Martin Fowler’s
Refactoring7 and Joshua Kerievsky’s Refactoring to Patterns.8

In addition to patterns presented in a formal way, there are various other
representations for things that have proven to be useful in one context but
may be applied in others:

• Code fragments—Smaller, language-specific patterns are often
called idioms because collectively they lack the connections necessary
to form a true pattern language. However, they remain an important
source of information which you can find in books such as Allen
Jones’s C# Programmer’s Cookbook, as well as in the .NET electronic
documentation. You should also investigate the “Code Snippet”
facilities of Visual Studio 2005, as they provide a convenient way to
both manage small, standard blocks of code and add them to your
programs.

• Frameworks—A collection of classes that provide a general struc-
ture for your programs. For example, the C++ Microsoft Framework
Classes (MFCs) implemented a number of common design patterns,
most notably the Observer pattern, which provides a model-view-
controller for user interfaces.

Chapter 21: Modeling Solutions with Patterns420

6. [DPE] Shalloway, Alan, and James Trott. Design Patterns Explained (Addison-Wesley, 2002).
7. [RIDEC] Fowler, Martin. Refactoring (Addison-Wesley, 2000).
8. [R2P] Kerievsky, Joshua. Refactoring to Patterns (Addison-Wesley, 2005).

• Template projects—Visual Studio 2005 allows you to create a tem-
plate project or an item template from the content of an existing proj-
ect (File | Export Template). Project templates will appear in your
New Project dialog box, whereas Item templates appear in the Add
New Item dialog box (Project | Add New Item).

• Reusable application blocks—These are collections of code which
blur the distinction between a pattern and a component. They are
part of the Enterprise Library for .NET v2.0 produced by the people
in Microsoft’s Patterns and Practices group.9 The current implemen-
tations focus on providing nonfunctional requirements such as
logging, exception handling, and security, as well as architectural
mechanisms such as data access and caching.

Using Patterns in an Agile Project

Patterns provide you with a powerful way to exploit the experience gained
by other people, and this clearly supports the key Agile objective of provid-
ing good value to your customer. However, you should be aware that pat-
terns don’t always lead to better solutions, because sometimes developers
introduce them where they aren’t needed and therefore produce excessively
complex solutions to what are essentially simple problems, a condition
known as being pattern-happy. More than anything else, the need to address
this issue characterizes the way patterns are used in an Agile project.

The Agile antidote for being pattern-happy is to introduce design-
related patterns during refactoring, and to do so only when you can justify
them in terms of making the program simpler or easier to understand.

Using Patterns in an Agile Project 421

9. Microsoft: Patterns and Practices Initiative (http://msdn.microsoft.com/practices).

NOTE

Our intention here is just to give you some idea of the range of pat-
terns that are available. A list of additional sources for patterns which
might prove useful to you is given on the book’s Web site.

Therefore, you might implement a Façade pattern to simplify access to a
subsystem after it has been built, but not to address upfront concerns that it
may prove difficult to use. This approach to pattern usage is called apply
patterns gently and promotes the value of simplicity as well as the practice
of Incremental Design, as explained in Chapter 18, in the section Agile
Modeling in Use.

Example: Evolving Legacy Code with the Façade Pattern
Background: You want to introduce test-driven development into a project with
lots of existing code that lacks the sort of programmer (unit) tests described in
Section 5. In the long term, you will rewrite all this legacy code so that it is test-
driven, but in the short term, you need to continue delivering valuable software to
the business.

The use of design type patterns in an Agile project starts with the real-
ization that you have a problem with your code, so the time to consider
such issues is during refactoring. Therefore, let’s suppose you have just
passed a test for part of the new class you’re writing to implement an ele-
ment of some initial customer story. Consequently, you are now reviewing
with your programming partner the method which was developed to pass
the test. Essentially, this method passes much of the actual work to other
classes in the legacy code, and therefore makes your new class act like a
client of the existing system. However, it is apparent that anyone working
with this class in the future will need to have extensive knowledge of the
legacy code. This means that the new members of your team must spend a
lot of time acquiring knowledge that will become redundant once the
legacy code has been rewritten. For this reason, you consider refactoring
the code to make it simpler and easier for them to maintain.

Chapter 21: Modeling Solutions with Patterns422

NOTE

You often can identify problems in your code by looking for certain
telltale signs of trouble known as bad smells in code, a term originally
used by Kent Beck and Martin Fowler in the book Refactoring10 to
describe their pattern catalog of such issues.

10. [RIDEC] Fowler, Martin. Refactoring (Addison-Wesley, 2000).

It appears unlikely that the problem you are facing is unique to your
project, so you consult the collection of design patterns in the team’s library
in the hope that you will find a good solution. In the structural section of
Design Patterns, you find the Façade pattern, which seems appropriate, so
you look for further information about it from other sources. After a bit of
research, you discover that implementing a Façade will not only provide a
simple interface for your new class to use, but also allow you to achieve
your aim of slowly evolving the system so that the legacy code is rewritten
in a test-driven way. Joshua Kerievsky11 identifies the process in terms of a
series of steps which you adapt for your purposes:

1. Divide the legacy system into subsystems—This is easy to achieve
if the classes are loosely coupled and cohesive, but unfortunately,
your legacy code is poorly structured, so you will have to move it
into one large class library with its own Visual Studio project.

2. Write Façades for one of the subsystems—You identify the collec-
tion of legacy classes that might form a subsystem for the client class
you are refactoring. You will need to create a class to act as a Façade
for this subsystem, as described earlier in the chapter. This Façade
class will be developed in a test-driven way and put into a new class
library, again with a separate Visual Studio project.

3. Refactor the client class to use the Façade—You change the imple-
mentation of your method so that it uses the Façade class rather than
the classes in the legacy code. Your client class is already in a sepa-
rate class library and has associated programmer tests, so you will
be able to rerun them to confirm that all these changes haven’t
altered the existing behavior.

4. Rewrite the subsystem used by your client class—You will reim-
plement the subsystem in the class library containing the Façade
class using TDD. Again, rerunning your tests will give you confi-
dence that your changes haven’t broken anything.

Using Patterns in an Agile Project 423

11. [R2P] Kerievsky, Joshua. Refactoring to Patterns (Addison-Wesley, 2005).

5. Refactor the Façade to use the new subsystem—The implementa-
tion of the Façade will be changed so that it no longer uses the large
class library containing the legacy code. The tests for the client class
will confirm that the new subsystem behaves in the same way as the
legacy code.

6. Repeat the process—Implement the next new subsystem and Façade
so that the system will gradually evolve until you are able to discard
the old legacy code library after having replaced it with new classes
developed using TDD.

Potentially you have identified a huge refactoring that will involve the
whole team and probably take several months to complete. However,
because you must complete your programming episode within a couple of
hours, you take just a small first step and create a simple Façade class which
you can use to refactor the method whose test you have just passed. This
gives you an example of the sort of refactoring the team needs to undertake
and therefore helps make the case for the team agreeing to the much larger
refactoring effort at its next morning meeting.

Implementation of Patterns and Models

According to the definition we gave at the beginning of this chapter, you
can consider many things to be patterns, from an abstract idea described
in a book to a very specific concept expressed in executable code. Indeed,
we have stretched the definition further than some people might like by
describing Microsoft’s reusable application blocks as forms of patterns.

Chapter 21: Modeling Solutions with Patterns424

NOTE

You should refactor in a series of small, safe steps. You will find that
the patterns identified in Martin Fowler’s book, Refactoring, will help
you break down big refactoring into a series of such moves.

Design Patterns versus Components
The point about a software pattern is that there has to be some form of
practical application, and there is always a trade-off between the ease
of such implementation and its generality. For example, the .NET calendar
control provides us with a pattern for selecting dates which we can reuse
simply by dropping the calendar control onto a form and declaring its
properties. However, the calendar control is a pattern that you can use
only in .NET programs. Conversely, you can implement the Façade pattern
in almost any sort of object-oriented program, but you need to hand-code
it each time you use it. We are now going to blur the boundaries between
patterns, components, and language so that we can look at various ways
in which we can leverage the expertise of others to provide real solutions
to our problems.

Reusable Components
The early promise of object-oriented development to deliver significant
code reuse within organizations has largely failed to materialize. People on
the same team may reuse a class through mechanisms such as aggregation
or inheritance, but in practical terms, for the class to be more widely reused
it must be formally released in some form of library or component; this is
known as the Reuse-Release Equivalence Principle.12 Unfortunately, the
challenge of a team making its libraries available to the wider organization
has proven to be significant, and the sort of vibrant market of component
producers and consumers predicted by advocates of component-based
development13 has so far failed to materialize. Therefore, the sorts of com-
ponents you are most likely to use in your programs today are produced by
third parties and comprise things such as grid controls, which can be sold
into large horizontal markets.

Implementation of Patterns and Models 425

12. [ASD] Martin, Robert. Agile Software Development (Prentice Hall, 2003).
13. Allen, Paul, and Stuart Frost. Component-Based Development for Enterprise Systems (SIGS

Books, 1998).

The challenge you face when attempting to make your team’s libraries
available as resources within your organization is to make their use as easy
as placing something such as a calendar control on a Windows Form, but
also providing the high level of sophistication typically required for reuse
in a vertical market application. For example, you could hardly configure
a component that calculates the yields of exotic financial instruments in the
same way that you might use a drop-down list to set the date format of a
calendar control. To address these sorts of challenges there is currently con-
siderable interest in the use of models and languages to help construct sys-
tems from such specialized components.

Emergence of Domain-Specific Languages

Pattern languages are concerned with helping people describe and assem-
ble the sorts of things they want to build (or rebuild). At present, most soft-
ware pattern languages are aimed at developers and concentrate on aspects
of systems that are not specific to a particular market segment. For exam-
ple, you might find a Façade design pattern in a capital markets trading
system, but you also might find it in a healthcare product such as OSPACS.
However, people are now starting to consider whether pattern languages
might also be created which would allow domain experts (customers) to
describe and assemble systems for a specific vertical market. One way in
which this ambition might be achieved is through the development of
Domain-Specific Languages (DSLs).

Chapter 21: Modeling Solutions with Patterns426

NOTE

Selling in a horizontal market means you produce a general product
(such as a word processor) that appeals to different classes of cus-
tomers, whereas selling in a vertical market requires you to produce a
highly customized product for a certain class of customer.

Use of DSL in Horizontal Market Applications
At present, it is more common to find DSLs in software tools marketed
horizontally. For example:

• Structured Query Language (SQL)—Allows data experts to query
a database using terms that are familiar to them, such as tables, joins,
and views

• HyperText Markup Language (HTML)—Permits graphic design
experts to render information on Web pages using terms such as
bold, font, and heading

• MATLAB—Enables engineers and mathematicians to produce pro-
grams expressed in the symbolic language of algebra and differen-
tial calculus

Historically, the huge amount of effort required to create a DSL has
restricted their appeal to large horizontal markets where the develop-
ment costs can be more easily recouped from high sales volumes. How-
ever, the availability of tools which can be described as being forms of a
“language workbench” promise to bring DSLs into more specific vertical
markets as well.

The Language Workbench
The commercial viability of creating and using a DSL is about to be changed
by the advent of a new class of tools which Martin Fowler calls language

Emergence of Domain-Specific Languages 427

NOTE

You might create a DSL to allow someone to define the rules for trad-
ing certain types of exotic financial instruments. Such a language
would appeal only to people working in a small vertical segment of
the financial services marketplace.

workbenches.14 It is predicted that these tools will form part of an Integrated
Development Environment (IDE) and facilitate the creation and use of
DSLs in the production of your software systems. However, in order to real-
ize this aim, you must move away from developing software by editing text
files containing computer language statements and start working with pro-
jections created from the abstract form of your program generated by the
compiler.

A language workbench promises to provide separate representations of
a program based on its transitory abstract form created by the compiler.
Therefore, when you open a program in an editor, your language work-
bench will first read the storage representation previously stored on your
hard disk and then use a suitable compiler to regenerate the abstract form
before representing it as an appropriate projection in your editor’s window.
You will then work with this projection and the compiler to make your
changes to the underlying abstract form before producing from it the final
executable representation (IL code) for use by your customer.

On the surface, this might not be much different from loading a C#
source file into a text editor, adding a new property to a class, and then
building a new executable. However, you should realize that beneath the
covers, the editor isn’t rendering the contents of a source file, but instead
is giving you a projection of your program as a set of C# language state-
ments in a window. You can, of course, have multiple projections of your
program, so you might open one type of editor to work on its classes rep-

Chapter 21: Modeling Solutions with Patterns428

NOTE

The Visual Studio Team System (VSTS) Class Designer described in
Chapter 19 shows how mainstream IDEs are starting to provide lan-
guage workbench facilities. It allows you to manipulate the classes in
your program using an editor that provides a projection of them in a
Class diagram.

14. Fowler, Martin. “Language Workbenches: The Killer-App for Domain Specific Languages?”
(www.martinfowler.com).

resented in a Class diagram, and open another one when you want them
shown as a treeview.

The great advantage of a language workbench is that it allows you to
work at the level of the abstract program rather than at the level of the
instructions used in its construction. This makes it much easier to work in
an integrated fashion with a collection of different languages, and hope-
fully will encourage the exploitation of DSL in various vertical markets.

Software Factories
The term software factory is historically associated with attempts to trans-
form software development into a sort of production-line activity. How-
ever, the book Software Factories16 applies the term in a way which is more
compatible with the values and practices of an Agile team. This more
enlightened view of a software factory promotes the idea of creating soft-
ware product lines from reusable components whose properties and behav-
ior are set by a DSL to accommodate variants from some standard system
or application. To many companies the possibility of creating such a soft-
ware factory is appealing for the following reasons:

• DSLs—Models and patterns can be mined as well as created so that
domain knowledge can be represented in the DSL and then directly
applied to the solutions being developed.

• Reusable components and frameworks—These greatly reduce the
amount of new code that needs to be written in order to deliver a

Emergence of Domain-Specific Languages 429

NOTE

Section 9 explores the tools provided with Visual Studio Team Edition
for Architects that were produced using Microsoft’s DSL tools15 in
order to help operations staff deploy your systems into their data-
centers.

15. Microsoft’s DSL tools are supplied as a technology preview with the Visual Studio 2005
Software Development Kit (SDK).

16. Greenfield, Jack, et al. Software Factories (Wiley Publishing, 2004).

solution. In many cases, the variations between different implemen-
tations can be expressed entirely in the DSL.

• Automation—Many of the repetitive tasks needed to produce the
variations in the company’s products can be handled by an appro-
priate DSL and associated tools. This particularly applies to issues
such as deployment, testing, and documentation.

• Software product lines—By developing core assets such as DSLs,
reusable components, and automation, a company can create inte-
grated environments that support the rapid development and main-
tenance of variants of standard products to meet the specific needs
of a particular market segment.

• Agility—Working with DSLs promotes closer communication with
the business, rapid development gives earlier feedback, the creation
of software product lines gives people the safety they need to be
courageous, and thinking in terms of components makes for simplic-
ity in design.

This brief introduction should give you sufficient information to decide
whether Microsoft’s DSL tools and software factory approach are worth
investigating further. However, remember that not everyone needs to
develop and maintain variants of a standard product, so it might not be
appropriate for your organization to set up a software factory.

CONCLUSION

A pattern language allows you to talk about design by creating a vocabu-
lary describing a connected set of predefined solutions whose properties
and relationships provide the syntax which controls the way you can bring
them together. Clearly such languages can capture expert knowledge, but
currently most of what we record is development knowledge, not domain
knowledge.

It is hoped that new technologies such as language workbenches will
make it much easier to create DSLs that can express these domain pat-
terns. This would allow domain experts to become much more closely

Chapter 21: Modeling Solutions with Patterns430

involved in the development of vertical market applications, leading to a
fundamental shift in the nature of software development for some teams.
They would no longer be concerned with supplying the solution, but
rather would build the tools needed to support a DSL that would
empower businesspeople to provide the software solutions to their own
problems.

Conclusion 431

NOTE

Developers already have access to the sophisticated tools and lan-
guages they need to build highly advanced systems. Therefore, future
advances in technology will probably focus on helping the business
play a more direct part in providing the solutions to their problems.

Review of Section 6
Explore by Modeling

TH E OSPACS T E A M whose road map to Agility we presented in the
Introduction now has a much better appreciation of how exploring

problems with models will allow team members to achieve their aim of
delivering software with a consistent level of quality. They undertook the
following actions to improve the way modeling was done on the team:

• Model drawing—Every person on the team was expected to learn
the basic notation for drawing Class diagrams and Sequence dia-
grams so that they could communicate better. They practiced pro-
ducing these sorts of diagrams both freehand and with the use of
tools such as Class Designer and Visio.

• Free-form drawing—The team accepted that every drawing didn’t
need to conform to Unified Modeling Language (UML) standards,
enabling people to freely express their thoughts without being inhib-
ited by notation.

• Group modeling—The team bought a large whiteboard on a frame
with wheels so that they could perform group modeling during
their regular technical meetings. They also bought a digital camera
so that they could make a record of any drawing and then store it
on the Project Web site.

• Modeling in pairs—Pads of paper and pencils were put next to
people’s computers to encourage them to draw during pair pro-
gramming sessions.

433

• Brown-bag pattern sessions—Once a week the developers on the
team decided to hold a technical session in a meeting room during
their lunch hour, with sandwiches supplied in brown bags. During
this time, they planned to address one type of design pattern so that
week by week, they would collectively discover more about patterns
by looking at examples of their use and engaging in discussions
about them.

The Team’s Impressions

The team was surprised that it could do so much modeling without using
any electronic tools. However, it was also clear to team members that future
generations of the Visual Studio Team System (VSTS) modeling tools
would fundamentally change the way people approached software devel-
opment.

Developer: Tom
“Walking through a design is no substitute for observing working software.
Models by their nature are not complete representations of the real world,
and as it is often remarked, you can’t crash a flow diagram!”

“Models allow people to explore ideas without incurring the cost of
implementing the product in final form. It makes sense to spend a lot of
time doing this when the product is a spaceship, but not necessarily when
it’s a computer program.”

“People are entitled to have their own values, and it seems wrong to
insist that one value is compatible with Extreme Programming (XP) or
Agile Modeling while another is not. What is important is that the interplay
of values at work on a team supports team members’ activities and makes
them successful.”

Developer: Luke
“I now realize that simple is best when it comes to UML diagrams. There’s
no need to worry about most of the notation because you only really need
to know about basic forms of Class and Sequence diagrams.”

Review of Section 6: Explore by Modeling434

“The five values, thirteen principles, and eighteen practices of Agile
Modeling are a lot to digest, so I’ve pinned a list of them to the kitchen wall
to remind us.”

Developer: Sarah
“I’m very self-conscious about drawing UML diagrams in public because
I don’t really know the notation. This tends to make me avoid modeling
altogether.”

“I’m not really a visual thinker. I much prefer expressing things in text,
tables, and lists, which I guess explains why I like coding so much.”

“When you’re designing software, it often takes less time to model the
idea in code than it does to create a diagram.”

Customer: Sally
“I always felt so stupid when developers showed me UML diagrams
because they were usually full of little boxes, lines, and funny symbols,
which frankly I didn’t understand. However, I’m actually looking forward
to using them now that Tom has taken the time to explain to me the simple
ones I need to know about.”

Developer: Peter
“Modeling tools produce really neat diagrams which you can put in your
documentation, but when it comes to group modeling, give me a white-
board every time.”

“A diagram showing a class hierarchy might help you understand the
structure of a program, but without being involved in the production of
the model, you wouldn’t necessarily know why the classes are arranged in
this way.”

“The sections of XML config files relating to Microsoft’s reusable appli-
cation blocks are a bit like a Domain-Specific Language because they allow
deployment experts to program the way your program handles exceptions,
security, logging, and so forth.”

The Team’s Impressions 435

Agile Values

The OSPACS team thought that Agile Modeling fit very well with the val-
ues and practices of Extreme Programming (XP), so by adopting this
approach they hoped it would help them develop their values in the fol-
lowing ways.

Communication
Modeling facilitates discussion; models don’t. The practices of Modeling
with Others and Producing Multiple Models help people see a problem
from different perspectives; the practices of Storing Information in One
Place and Displaying Models Publicly encourage the team to develop the
design together.

Feedback
Proving it with code means the team validates its designs almost immedi-
ately with code and tests. The team can then go back and improve the
design using the knowledge gained during implementation.

Courage
Implementing the design incrementally results in people taking more risks
because they don’t have to wait months to discover whether their ideas
worked out.

Simplicity
Agile Modeling encourages the team to travel light, depict models simply,
and discard temporary models, which stops people from becoming bogged
down with superfluous information. People are constantly reminded to
look for the simplest and most elegant solution by using only the simplest
tools and providing just enough design to solve today’s problems without
making tomorrow’s any worse.

Review of Section 6: Explore by Modeling436

Respect
Active stakeholder involvement helps the customer appreciate the skill and
dedication of the developers; likewise, the developers see the contribution
their customer is making to the product. The team also became more aware
that due to group modeling, great suggestions came from the most unlikely
of people, and this helped people realize that everyone on the team had a
contribution to make.

Agile Values 437

Section 7
Implement Customer Testing

TH I S S E C T I O N E X P L A I N S how customer testing can provide the details
you need to fully understand the requirements of the software you’re

developing, and can supply the information necessary to improve both the
product and your process throughout the project. We will take you step by
step through the process of setting up a Visual Studio Team System (VSTS)
generic test so that you can use a tool often used in Agile projects for cus-
tomer testing: Framework for Integrated Test (FIT). We explain how vari-
ous FIT fixtures allow your customer to test the part of the system he can
see (user interface), the information he wants to store (data layer), and the

439

Photograph by Wayne Eastep (Copyright Getty Images).

Customer tests confirm that a feature works properly so that there
are no nasty accidents after the software goes into production.

business rules he requires implementing (business layer). By the end of this
section, you should be able to implement customer testing in your own
project and understand how the team can use the information it generates
to create better software.

Story from the Trenches

The problem with waiting for public transportation in a city is that you
never know when it’s going to arrive. Heavy traffic, diversions, and the
occasional vehicle breakdown conspire to make bus timetables inherently
unreliable. To tackle this problem many city authorities have invested in
technology that provides a digital sign at each bus stop announcing when
the next bus is due. A few years ago I worked for a small start-up com-
pany that was supplying this sort of public transportation information
system.

I joined the company when it was about to roll out a system to its first
client, the transit authority of a medium-size city. On my first day, I spent
a few hours reading some thick documents that specified the client require-
ments and described the tests that needed to be satisfied during the com-
missioning of the system—the user acceptance tests (UATs). Unfortunately,
these documents were full of vague language and glossed over the detail,
so they didn’t really help me understand what the system was intended to
do. When I talked to my manager about them, he smiled and told me that
the technical content had largely been removed during months of negotia-
tion with lawyers. However, he seemed confident that the client would
accept whatever we delivered because they had little knowledge of the
technology and needed the system installed in a hurry.

Over the next week, I spent most of my time with David, a senior devel-
oper, watching him test the system. He favored a structural approach to
testing, involving the use of debuggers, unit tests, and trace logs to check
that the data was correctly moving around the system and didn’t crash the
program. This type of testing relied on an understanding of the way the
software was constructed to validate its operation; for example, we could
confirm things such as “method ‘X’ with parameters ‘1, 2, 3’ returns value

Section 7: Implement Customer Testing440

‘A’.” Working in this way, we checked the individual parts of the code, but
it was hard to test the system as a whole because analyzing the detailed
information our structural tests generated took too long when more than a
few methods were involved. Therefore, we produced little evidence that
the system actually satisfied its main requirement: predicting bus arrival
times at each sign according to the current vehicle locations. Nevertheless,
by the end of the week, our manager was satisfied that we had done
enough to justify releasing the system, so the following week we arrived at
the client’s site to start the UAT.

The manager’s assumption that our client knew very little about soft-
ware proved to be correct. However, their expert understanding of the way
buses were operated allowed them to produce an impressive collection of
tests for the messages which had to be displayed at each sign as the buses
traveled along their routes—the detail that was missing from the UAT doc-
ument. They viewed the system as just a black box to which particular out-
puts were expected in response to certain inputs, and therefore avoided all
the complexity that was inherent in our structural testing. This functional
approach to testing allowed our client to exercise the system in ways that
we had simply not considered during structural testing. When the system
started to fail the client’s functional tests, it became obvious that we really
hadn’t grasped how their business worked; the system just didn’t do what
they wanted.

Over the next few months, we worked closely with our client to fix the
problems their functional tests identified. In the process, we learned a lot
about the way a bus company operates, and this resulted in some big
changes to our system and the way we tested it. However, eventually we
were able to pass the UAT, so the company got paid for the system, though
not with the amount of profit everyone had anticipated.

The point about this story is that relying solely on structural tests and
excluding the business from your testing until the final stages of a project is very
risky. Therefore, in the next three chapters, we consider how you should drive the
delivery of useful software from the start with functional tests written by the
“customer.”

Story from the Trenches 441

22
Involving Customers in Testing

A F T E R R E A D I N G T H I S C H A P T E R, you will be aware of the benefits that
arise from involving customers in the functional testing of your soft-

ware. You will also have installed and used Framework for Integrated Test
(FIT), an open source product that allows customers to specify their soft-
ware by writing acceptance tests in a Word (HTML) document for execu-
tion against the code being developed. The chapter concludes by describing
storytest-driven development (STDD), which is a way to let customers
drive a software project by writing tests that define the features of each
story they want implemented.

Agile Customer Testing

It is a developer’s job to decide how the software will work, and it is the
customer’s job to know what the software must do. The main objective of
unit testing is to find defects in the code by checking how it works using
structural tests; see Section 5. The main aim of customer testing is to con-
firm that the software meets the needs of the business by checking what it
does using functional tests, called customer acceptance tests (or just cus-
tomer tests).

443

Testing throughout the Project
In most traditional projects, functional testing happens only at the end of
the project. Conversely, in Agile projects, this sort of testing is performed
throughout the project, which has a number of advantages:

• It provides a reliable measure of progress because the passing of
customer tests is an unambiguous way of validating that the project
is continuing to deliver functionality valued by the business.

• Developers can learn from the problems revealed by early customer
testing and apply this knowledge in subsequent iterations. This
encourages high-quality work and helps keep the bug count low
throughout the project.

• It confirms that changes to the code do not break existing function-
ality. This encourages developers to be bold when refactoring or
implementing new requirements because there is an additional
layer of testing to catch bugs.

• It immediately tells developers when they have satisfied a require-
ment. The story is deemed complete when it passes all its customer
tests, and this helps keep the code simple by avoiding the accumula-
tion of unnecessary features.

• It encourages customers to explore the requirement by writing and
running tests. This ensures frequent feedback and communication
between developers and customers, which is particularly important
for projects that start with unknown or vague requirements.

Chapter 22: Involving Customers in Testing444

NOTE

Functional tests treat the system like a sealed (black) box1 which gen-
erates certain outputs in response to particular inputs. Structural tests,
on the other hand, require you to look inside the sealed box so that you
can test some aspect of the way the code inside works.

1. [BBT] Beizer, Boris. Black-Box Testing (John Wiley & Sons, 1995).

However, performing customer testing throughout the project means
you must automate the tests so that you can run them at little cost. It also
means you must make it easy for customers to write these tests using the
business (domain) language they understand and tools that are familiar to
them, such as Word and Excel. Fortunately, an open source tool, called FIT,
helps teams meets these needs.

FIT: Framework for Integrated Test

Framework for Integrated Test (FIT) is an open source tool developed by
Ward Cunningham, inventor of the wiki and one of the founders of the Agile
movement. It is often used for customer testing in Agile projects because
it provides a simple, yet effective, tool that customers can learn quickly.
You can obtain a copy of FIT for .NET development from Ward’s Web site,2

though Java, Python, Perl, Smalltalk, C++, and Ruby are also supported.

Overview
FIT allows customers to write their tests in the form of HTML tables in
a text document file. This file forms the input for the FIT test harness
program which parses the document and matches each table to a par-
ticular type of object called a test fixture. FIT then invokes methods in
this test fixture object according to the information found in the table.
For example, in Figure 22-1, the fixture object is an instance of the
osImageManagerFIT.DICOMFileValidation class and the first four
columns of the table form the input values for its IsValid() method,
whose expected return value is shown in the last column.

FIT: Framework for Integrated Test 445

2. Ward Cunningham’s FIT Web site (http://fit.c2.com).

NOTE

The output file has exactly the same form as the input document,
except that the result column is rendered in a color that indicates
whether the test passed (green), failed (red), or was not processed
(gray), or whether the fixture was not found (yellow).

Figure 22-1: FIT executing a test contained in a Word document

Essentially, FIT allows your customer to write a functional specification
in Word containing tests that can be executed directly from the document.
Information that is not in a table is ignored and the results are shown in the
same form as the original document, so there is no excuse for your cus-
tomer not understanding them. Therefore, to write and execute a functional
test your customer just needs to create a document such as the one shown
in Figure 22-1 (or Table 23-1 in Chapter 23), save it to an agreed-upon loca-
tion on your network, start a batch file to run the test, and then open the
results file in Internet Explorer.

In order to give your customer this sort of ownership of his tests, the
team’s developers need to provide some supporting infrastructure, but as
you will see, it is very easy to install and run FIT in a development or test
environment. The only significant work is related to developing the fixtures
that provide the link between FIT and the software under test, a topic we
cover in Chapter 23. However, to give you an idea of what this involves, the
code for the fixture used in Figure 22-1 is shown in Listing 22-1.

FITSoftware under test

Chapter 22: Involving Customers in Testing446

Listing 22-1: Column Fixture for Supporting the Tests Shown in Figure 22-1

using System;
using fit; //The FIT library (ColumnFixture)
using osImageManagerLib; //Your software under test
namespace osImageManagerFIT //Your FIT Fixture namespace
{

public class DICOMFileValidation : ColumnFixture
{

public string PatientID;
public string PatientName;
public string StudyDate;
public string StudyInstanceUID;

public bool IsValid()
{

//TODO: call validation method in software under test
return true;

}
}

}

You will note that the fixture’s class name appears in the top left of the
table in the customer’s test document; see Figure 22-1. The public instance
variables correspond to its first four column headings and the IsValid()
method corresponds to the heading of the final result column. Typically, the
language of the business domain is used to name the fixture, its methods,
and public instance variables, so customers do not have to type arcane
names into their test documents.

Installing and Running FIT
In the next two chapters, we describe how to set up and execute customer
tests using FIT in the Visual Studio Team System (VSTS) environment.

FIT: Framework for Integrated Test 447

NOTE

FIT’s test fixtures execute directly against classes in your class library,
so it could be argued that they are a form of structural (unit) testing.
However, from the perspective of the person writing the tests (cus-
tomer), they are undoubtedly viewed as functional tests.

However, we suggest that you start by installing and running FIT in a
simple Visual Studio Solution so that you can gain some experience before
attempting to use it in a larger project.

Exercise 22-1: Installing FIT on a Developer PC

In this exercise, you will simply install FIT on your PC and confirm that it
is operating correctly by running one of the tests supplied as part of the
package.

1. Log on as Luke to a DeveloperPC and download the FIT ZIP file for
.NET, from http://fit.c2.com/wiki.cgi?DownloadNow. Extract the
files into a suitable installation directory, such as c:\FIT; see the
warning at the end of this exercise.

2. Open a command prompt, navigate to your FIT installation direc-
tory, and check that FIT is working by typing the following in order
to run the supplied arithmetic.html tests:

runfile source/examples/arithmetic.html MyResults.html .

If you remember to type the final dot, RunFile should respond
by giving you the number of tests it executed: right (37), wrong
(10), ignored (0), and exceptions (2). You should then open
MyResults.html and check the result of each test for yourself.

3. Log off.

Chapter 22: Involving Customers in Testing448

NOTE

The version of FIT used for the exercises in this book is contained in the
fit-dotnet-1.1.zip file, which you can find on the DownloadNow page
of http://fit.c2.com.

RunFile Command-Line Parameters

RunFile is a test runner that will execute FIT tests according to the follow-
ing input parameters supplied to it:

• Input-file—Path and name of the HTML input file (save Word docs
as HTML).

• Output-file—Path and name of the result file.

• Fixture-dir—Path of the directory containing your fixture DLL. It serves
a similar purpose to Java’s CLASSPATH and allows you to specify mul-
tiple directories by separating their pathnames with semicolons.

Exercise 22-2: Setting Up FIT for Customer Testing on a Developer PC

After completing the following exercise, you will have created a bit of software
to test and a simple Column fixture to link it to your test document. You will
also have set up all the files you need to run this test on a development PC.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for a specifi-
cation of this PC and details of Luke’s security groups.

FIT: Framework for Integrated Test 449

WARNING

Windows XP blocks files that have arrived on your computer from
e-mail or downloads as a security measure. To unblock an executable
file in the FIT directory, select the file, open its Properties dialog box,
and then click “unblock” on the General page.

NOTE

Most of the FIT files you need you can find in the top-level directory
of the FIT installation directory, but the product’s source code is pro-
vided in case you need to rebuild the libraries or the test runners.

2. Update Luke’s workspace with the latest version of the files in the
repository and open the osImageManager Visual Studio Solution, as
described in steps 3 and 5 of Exercise 9-1, in Chapter 9. This Solution
contains the osImageManagerLib Visual Studio Project you created
in Exercise 8-4 in Chapter 8.

3. Delete any default classes in osImageManagerLib and add a new
class, called DICOMFile, by selecting osImageManagerLib in Solution
Explorer and choosing Add Class from the Visual Studio Project
menu (Project | Add Class).

4. Create another Visual Studio Project for a C# class library, named
osImageManagerFIT, and add this project to your osImageManager
Solution in the same way you created and added osImageManagerLib
in Exercise 8-4 in Chapter 8.

5. Delete any default classes that might exist in osImageManagerFIT
and add the new class, DICOMFileValidation, in the same way you
did in step 3. Type the code in Listing 22-1 into this new class.

6. Create a batch file to run your FIT tests by taking the following steps:

a. Create a new text file (File | New | File), which will then open in
your editor.

b. Type the following two commands into the file, not forgetting the
final dot!

del fit.dll
runfile ValidateImageFile.htm VIFResults.htm c:\FIT;.

c. Save your file as RunFIT.cmd in the same directory as your
DICOMFileValidation class.

7. Add RunFIT.cmd to your osImageManagerFIT Visual Studio Project
and set its properties so that it will be copied to the output directory:

a. Select osImageManagerFIT in your Solution Explorer and choose
Add and then Existing Item from its context menu. This opens
the File Browser dialog box.

Chapter 22: Involving Customers in Testing450

b. Select your RunFIT.cmd file in the File Browser dialog box and
then click OK to add it to your Visual Studio Project.

c. Select RunFIT.cmd in your Solution Explorer and use the Proper-
ties window to set its “Copy output to Directory” property to
“Copy if newer”.

8. Add references to FIT.dll and osImageManagerLib.dll as explained
in step 4 of Exercise 14-3, in Chapter 14, though you will need to use
the browse page of the Add Reference dialog to select the FIT.dll file
in the c:\FIT directory.

Exercise 22-3: Running Customer Tests on Your Developer PC

The aim of this exercise is to create a document containing some functional
tests and to run them against the software under test using the fixture you
developed in Exercise 22-2.

1. Create your test document by taking the following steps:

a. Create a new HTML file (File | New | File, HTML page) which
will then open in your editor; see Figure 22-2.

b. Add the table as shown in Figure 22-2.

c. Save your test document as ValidateImageFile.htm in the same
directory as your DICOMFileValidation class.

d. Add your test document to the osImageManagerFIT Visual
Studio Project and set its properties so that it will also be copied
to the output directory; see step 7c of Exercise 22-2.

FIT: Framework for Integrated Test 451

WARNING

You must only add references to the FIT.dll file in the c:\FIT directory,
and then ensure that this particular library file is loaded by runFile.exe
when you run your tests by deleting the copy in your project’s output
directory; see the first command in RunFIT.cmd.

Figure 22-2: Test document in HTML markup form

2. Rebuild the osImageManager solution (Build | Build Solution) to
copy the files needed to run your customer tests into the output
directory of osImageManagerFIT.

3. Open Windows Explorer and select RunFIT.cmd, which is now in
the osImageManagerFIT output directory. Double-click this batch
file in order to run it and thus create VIFResults.htm.

4. Open VIFResults.htm and check that it looks like the output file
shown in Figure 22-2.

5. Add your work to a version control shelve by clicking the Shelve
button in the Pending Changes window. You should not check in
your work because the test you have created cannot yet be run auto-
matically by your integration Team Build.

6. Log off, as you have finished all the exercises in this chapter.

Now that you’ve successfully installed FIT and created a Visual Studio
Solution that demonstrates how it is used, there is no reason why you can’t
implement this sort of customer testing in any small project. It’s just a mat-
ter of granting your customer access to a directory containing the output
directory files so that he can edit and run these tests without your assis-
tance. Using FIT in a bigger project requires a little more thought, as you

Chapter 22: Involving Customers in Testing452

will see in Chapter 24, when we consider how to do customer testing with
FIT in a Team System project, but you’ll be relieved to discover that the
basic concepts remain the same.

Test Organization
In Exercise 22-3, you executed your customer test by running a batch file
that passed an appropriate set of parameters to RunFile.exe in order to run
the test. RunFile.exe is a small program supplied with FIT that acts as a test
runner (i.e., a program, like a test harness, that supports the execution of
tests). It is convenient to execute this program from a batch file so that
you can run all the tests in your development environment just by double-
clicking the RunFIT.cmd file; see Listing 22-2.

Listing 22-2: RunFIT.cmd Running a Collection of Test Cases Using FIT’s Test Runner

del fit.dll
runfile ValidateImageFile.htm VIFResults.htm c:\FIT;.
runfile PatientNameValidation.htm PNVResults.htm c:\FIT;.
runfile ImageList.htm ILResults.htm c:\FIT;.
runfile ImageListOrdered.htm ILOResults.htm c:\FIT;.
runfile ImportFile.htm IFResults.htm c:\FIT;.
runfile ImportFileImageList.htm IFILResults.htm c:\FIT;.

FIT: Framework for Integrated Test 453

WARNING

Customers must keep a separate copy of their test documents safe in
another directory because the contents of a Visual Studio Project’s out-
put directory (e.g., bin/Debug) may be overwritten or deleted.

NOTE

The third parameter of runFile contains a list of directory paths sepa-
rated by semicolons. These directories contain the various assemblies
needed by your tests and should include those in the c:\FIT directory
as well as those in your project’s output directory, the current directory
denoted by the “dot”.

When it comes to running your collection of customer tests as a test
suite, there other more sophisticated mechanisms than the sort of simple
batch file we just described, including the following:

• FitNesse3—A wiki-based Integrated Development Environment
(IDE) for FIT that allows you to create, run, and manage your cus-
tomer tests as a collection of Web pages.

• WinFITRunner4—Permits customers to write their tests in Excel
spreadsheets which are then managed and run by WinFITRunner.

• Visual Studio Team System Test Lists—Allows you to use the VSTS
tools to manage a collection of generic tests, each invoking RunFile
for a specific test document. Team Build also can run these test lists;
see Chapter 24.

It is a good idea to review the way your team organizes its tests on a reg-
ular basis because a large collection of test documents can quickly become
unwieldy without proper attention to its management.

Storytest-Driven Development

Giving customers the ability to write and run their own tests usually
changes the way a software project is run. This provides the benefits we
already identified concerning functional testing throughout the project, and
it can result in the business taking a more active role in driving the project
through storytest-driven development (STDD).

In Chapter 3, you learned that Agile teams create stories to represent
their customer’s requirements. Although this is helpful in a number of ways,
the lack of precise information about a story can make it difficult to know
when the implementation has managed to satisfy the customer’s expecta-
tions, so there is a risk that developers will provide more of the feature than
is strictly required. STDD manages this problem by requiring that storytests

Chapter 22: Involving Customers in Testing454

3. FitNesse Web site (www.fitnesse.org).
4. Stott, Will. “Get Your Customers Involved in the Testing Process” (MSDN Magazine, Feb.

2005; http://msdn.microsoft.com/msdnmag).

(customer tests) be available before the developers start working on a story,
and deems their work complete when all the storytests pass. In this way, the
business, through the customer, assumes much of the responsibility for
delivery of useful features within the available development time.

Costs and Benefits of STDD
The benefit of STDD to developers is that they are freed from having to
decide “what” the customer wants and therefore can concentrate on “how”
to implement the requirements in the simplest possible way. Any tempta-
tion for developers to gold-plate the requirement with superfluous func-
tionality is avoided by insisting that only enough code is written to pass the
storytest; something that can be monitored by measuring code coverage
when the storytests are run. The cost of STDD to developers arises from the
need to support the storytests, which in the case of FIT means developing
additional code for the fixtures.

The advantage of STDD to the business is that it allows them more con-
trol of the project so that they can better manage the associated risks,
because typically risk management is something the business is good at
doing. However, this benefit comes at the cost of the customer having a
much closer involvement with the project and the creation of tests.

Storytest-Driven Development 455

NOTE

Without a mechanism such as storytests, the business has little chance
of successfully managing a project because it has no accurate means
of measuring progress and therefore must rely on reports from devel-
opers about work that is “almost completed.”

NOTE

Chapter 24 explains how you might use FIT to support storytest-
driven development in a Team Project such as the one you created for
OSPACS in Exercise 5-1 in Chapter 5.

Real Customer Involvement Practice
The practice of involving a real customer requires that the voices of the

people who will use the software (or who have a stake in its use) are prop-

erly heard by making them a part of the team. It puts the people with the

requirement in direct contact with the people responsible for satisfying

their needs: the developers.

Many benefits are associated with having real customers talking directly

to the people who are developing the software. However, one of the main

justifications for this practice is avoiding the addition of features that pro-

vide little or no value to the business. When a developer and a customer

discuss a feature face to face, it quickly becomes obvious whether the

feature is really required. For example, a customer who is unable to pro-

vide a developer with any proper acceptance criteria for a feature obvi-

ously has no real idea how it might be used, usually a sure sign of a

redundant feature.

Making a real customer part of the team is difficult when the role is not

being shared, because businesspeople are usually not available to sit with

the rest of the team for months at a time. Therefore, it is more realistic to

make a real customer part of a customer team (see Chapter 4) because this

ensures that someone is always available to the developers and provides

the added benefit that more than one customer voice is heard. You might

also consider letting developers visit the users of the software in their work

environment so that they can experience firsthand the issues such people

face. However, this type of exercise is no substitute for ongoing involve-

ment between developers and their customer.

Chapter 22: Involving Customers in Testing456

NOTE

Until a real customer is able to demonstrate that there is a pressing
need for a feature, it remains useless and any effort expended on its
development is wasted.

Role of Testers in STDD
Team members who have testing experience usually spend a lot of their
time helping customers write good tests. However, they may also take part
in the Pair Programming practice described in Chapter 2, as their knowl-
edge and skill in developing tests is equally as valuable during TDD as a
programmer’s ability to write code. Therefore, if your team is fortunate
enough to have someone with testing experience, encourage them to coach
not just customers but also developers so that everyone starts writing bet-
ter tests.

Relationship of Customer Testing to Your Release Process
FIT allows you to automate the process of running customer tests, not just
in your development environment, as we described in this chapter, but also
in your Build Lab, because typically you would run FIT tests as part of your
Team Build; see Chapter 24. In this way, automated customer acceptance
testing is performed during your team’s Integration Builds as well as dur-
ing its Daily Builds. Therefore, you should be confident that software that
has passed such tests does what the customer wants and thus meets the
needs of the business. However, this doesn’t necessarily mean that the soft-
ware is ready to be used in the business environment, for as we discuss in
Chapter 28, most teams will follow some form of prescribed release process
to further prove the software before taking this step. The ultimate aim of
this release process is to ensure that the software provides the anticipated
benefit to the business without any unexpected side effects, such as losing
data or trashing your users’ hard disks.

The business must learn to balance the benefits of any new software
against the risk that its testing has failed to detect some potential side effect
which could cause significant damage. In this respect, the sort of customer

Storytest-Driven Development 457

WARNING

Coaching does not mean writing tests for the customer. It is important
that the customer write his own tests, because otherwise there is a
danger that he might not understand them and accept a story which
doesn’t really meet the business need.

testing that lies at the heart of STDD may prove persuasive, particularly
when combined with the programmer tests and coverage information
described in Section 5. However, you should bear in mind that the main pur-
pose of customer testing is to support STDD, thereby enabling an approach
to user acceptance testing that continues throughout a project rather than
one that happens only at the end. Therefore, you should make the business
aware that customer acceptance testing is not intended to provide the only
form of testing required before your team deploys its software.

CONCLUSION

FIT allows customers to develop tests in their own language and therefore
build a model of the system that they can understand. Their tests should
be focused on validating that the software meets its business requirements
so that it does what the customer wants. Putting the responsibility for cre-
ating and running such functional tests in the hands of the customer per-
mits the business to better track and understand the project’s risks as the
software evolves from iteration to iteration. This allows the team to fix
problems as they arise and to learn from them so that both the product and
the process improve as the project progresses.

Chapter 22: Involving Customers in Testing458

NOTE

It is difficult to give specific advice about the steps you need to take
during a release process because that depends so much on the nature
of your team and its project. However, Sam Guckenheimer’s book5

about VSTS gives some good advice in this regard.

5. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft Visual
Studio Team System (Addison-Wesley, 2006).

NOTE

The transparency of STDD builds trust between technical people and
businesspeople, allowing them to leverage their respective strengths
and skills so as to deliver the best possible return on investment.

23
Creating FIT Fixtures

TH I S C H A P T E R I N T R O D U C E S the standard Framework for Integrated
Test (FIT) fixtures for supporting tables that allow customers to create

tests for their business rules (column fixture), for the information stored by
the system (row fixture), and for the workflow of their user interface (action
fixture). We describe each fixture in turn and provide an example of their
use in a project. The chapter then concludes by describing how to create a
custom fixture so that your customer’s tests can be made to look more like
the actual things they test.

Standard FIT Fixtures

You will recall from Chapter 22 that FIT connects your customer’s exe-
cutable test documents to the associated “software under test” through a
collection of simple objects, called fixtures, created by the developers on
your team; see Listing 22-1 in Chapter 22. These fixtures can be considered
Adapters (see the Design Patterns book1) and you usually derive them from
one of the three standard classes provided by FIT.dll: ColumnFixture,
RowFixture, or ActionFixture.

Each standard fixture class supports a particular type of table that is
useful for customer testing. These tables correspond to the three layers of

459

1. [DP] Gamma, Erich, et al. Design Patterns (Addison-Wesley, 1994).

architecture commonly found in today’s software: the business layer, the
data layer, and the user interface layer. Therefore, the customer can create
a test model of the system in terms of the parts she can see (user interface
layer), the business rules she can define (business layer), and the informa-
tion she needs to store (data layer). It doesn’t matter whether these layers
map to the actual implementation because your fixtures provide an adapter
which can handle the abstraction. What is important is that the customer
can write tests for a model of the system that she understands, so let’s now
take a closer look at these three tables in terms of the way customers use
them to write their tests and the sort of code needed to support them.

Column Fixtures: Testing Decisions in the Business Layer
A column fixture table is intended to test the system’s business logic. The
table forms a test case and the rows (after the first two rows) are its test sce-
narios. These sorts of tables have the same general form as Table 23-1, which
shows the expected results of validating the contents of a DICOM file’s
patient name field against names given by the corresponding patient record.

The first row of the table references the FIT fixture developed to support
the test case. The next row of the table contains the headers for subsequent
rows which map each column to the name of a particular method or input
field in the fixture object. Each subsequent row contains input and output
data for a test scenario which FIT will read by going from the left column
to the right column in the same sequence as the header row. Customers
rather than developers should name the fixture, its input fields, and its
result methods so that the tests are expressed in the language of the busi-
ness. The only restrictions you must apply, as for all FIT fixtures, are that
result column names need to end with a set of parentheses, and names must
resolve to .NET tokens (i.e., they cannot contain white spaces, keywords,
operators, directives, or various special symbols).

Chapter 23: Creating FIT Fixtures460

TIP

Present your customers with examples of the three types of tables which
standard FIT fixture classes support, and then let them decide which
sort of table is most appropriate for the type of test they want to perform.

Table 23-1: Sample Column Fixture Table

osImageManagerFIT.PatientNameValidation

DICOM_PatientName Db_Surname Db_FirstNames IsValid()

William^Stott Stott William true

Stott^William Stott William true

STOTT^WILLIAM Stott William true

Stott^Will Stott William false

William^Scott Stott William false

Exercise 23-1: Using a Column Fixture in a Customer Test

In the following exercise, you will re-create Table 23-1 inside a test docu-
ment and then add some business layer code to osImageManagerLib and
a ColumnFixture to osImageManagerFIT. You will complete the exercise by
running these tests in your development environment.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for a specifi-
cation of this PC and details of Luke’s security groups.

2. Open the osImageManager Visual Studio Solution, as described in
step 5 of Exercise 9-1, in Chapter 9. This Solution contains the Visual
Studio Projects osImageManagerLib and osImageManagerFIT,

Standard FIT Fixtures 461

NOTE

The PatientNameValidation fixture referenced in Table 23-1 takes
strings as data types for its input fields and gives its results as a
Boolean. However, you can also develop fixtures that use different
data types, such as integers or fit.ScientificDouble.

which you created in Exercise 8-4 (in Chapter 8) and Exercise 22-2
(in Chapter 22), respectively.

3. Create an HTML file for your test document (File | New | File,
HTML page) and add the table shown in Table 23-1 by typing the
appropriate <TABLE>, <TR>, and <TD> tags as well the associated
values. Save this file as PatientNameValidation.htm in the same
directory as the osImageManagerFIT source code files.

4. Add PatientNameValidation.htm to the osImageManagerFIT Project
and then set its properties so that this test document will be copied
to the output directory; see step 7c of Exercise 22-2, in Chapter 22.

5. Add a new class, called PatientName, to osImageManagerLib so that
you can implement your business layer code as follows:

a. Select the project in Solution Explorer and select Add Class from
Visual Studio’s Project menu (Project | Add Class).

b. Type the code given in Listing 23-1 into this new class.

Listing 23-1: Implementation of PatientName.Validate in the OSPACS Business Layer

using System;
namespace osImageManagerLib
{

public class PatientName
{

public static bool Validate(string fullName, string surname,
string firstNames)

{
bool rc = false;
string dicomName = fullName.ToUpper();
if ((dicomName.IndexOf(surname.ToUpper()) > -1)

Chapter 23: Creating FIT Fixtures462

NOTE

osImageManagerLib is destined for your production environment, so
you should implement your code changes using test-driven develop-
ment (TDD); see Section 5. However, we have not described this work
due to space limitations.

&& (dicomName.IndexOf(firstNames.ToUpper()) > -1))
rc = true;

return rc;
}

}
}

6. Add the new class, PatientNameValidation, to osImageManagerFIT
by following the same procedure described in step 5. Type into this
class the code given in Listing 23-2 to provide a suitable fixture for
your test document.

Listing 23-2: Implementation of the PatientNameValidation Column Fixture

using System;
using osImageManagerLib;
using fit;
namespace osImageManagerFIT
{

public class PatientNameValidation : ColumnFixture
{

public string DICOM_PatientName;
public string Db_Surname;
public string Db_FirstNames;

public bool IsValid()
{

return PatientName.Validate(DICOM_PatientName, Db_Surname,
Db_FirstNames);

}
}

}

7. Add the following command to the bottom of the RunFIT.cmd batch
file created in Exercise 22-2 in Chapter 22, remembering to save the
file (File | Save) after typing the final dot:

runFile PatientNameValidation.htm PNVResults.htm c:\FIT;.

8. Rebuild the osImageManager solution (Build | Build Solution) to
copy into the output directory the files needed to run your cus-
tomer tests.

Standard FIT Fixtures 463

9. Run the RunFIT.cmd batch file (double-click it) in the output direc-
tory to create PNVResults.htm and then open it so that you can con-
firm that all your customer tests have passed.

10. Add your changes to a version control Shelve by clicking the Shelve
button in the Pending Changes window (View | Other Windows)
and then log off, as you have finished this exercise.

Figure 23-1 shows the sort of customer test you have developed in the
preceding exercise embedded in the specification document for a real sys-
tem. You should also consider adding your customer test tables to a formal
specification of the software written in a Word document (and then saved
as an HTML file), because in this way, your specification not only describes
the requirement, but also validates it.

Figure 23-1: Specification document for a real system
2

displaying the actual results
of a customer test

Chapter 23: Creating FIT Fixtures464

2. The document shown in Figure 23-1 is reproduced with kind permission of the Institute
of Women’s Health, University College London.

Row Fixtures: Testing Lists in the Data Layer
Arow fixture table is intended to support tests for the information a customer
wants the system to store; this is usually some form of list held in the table’s
data layer. These sorts of tables have the same general form as Table 23-2,
which shows a list of patients and their corresponding image data.

The first row of the table references the FIT fixture developed to support
the tests in the table. The second row contains headers for subsequent rows
which map each column to the name of a field provided by the system’s
ImageList data set. Subsequent rows contain the values of these fields for
each record the customer expects to find in the system. In Table 23-2, the
customer expects just three image records to be stored in the system with-
out any consideration about their order. When the test is run, a “missing”
error will be raised if any of these records cannot be found, and a “surplus”
error will be raised if extra records appear. Errors will also be raised if the
values of these records are not correct.

Table 23-2: Sample Row Fixture Table

osImageManagerFIT.ImageList

Surname FirstNames SOPInstanceUID ImageDate

Newkirk James 999-1-1 06-07-2006

Stott William 999-0-1 07-02-2006

Stott William 999-0-2 07-15-2006

Standard FIT Fixtures 465

NOTE

After you have set up the sort of Build Validation Test (BVT) described
in Chapter 24, your customer tests will automatically run in the Inte-
gration and Test environment whenever anyone performs an Integra-
tion Team Build.

Exercise 23-2: Using a Row Fixture in a Customer Test

The following exercise repeats Exercise 23-1, except that you will re-create
Table 23-2 inside your test document and add to your class library proj-
ects some data layer code in osImageManagerLib and a row fixture in
osImageManagerFIT.

1. Repeat the first two steps of Exercise 23-1 so that you have logged
on to the DeveloperPC as Luke and opened the osImageManager
Visual Studio Solution.

2. Create an HTML file for your test document (File | New | File,
HTML page) and then add the table shown in Table 23-2. Save this
file as ImageList.htm in the same directory as the source code files of
osImageManagerFIT and then add the file to the project, setting its
properties so that it will be copied to the output directory; see step
7c of Exercise 22-2, in Chapter 22.

3. Add the new class, Image, to osImageManagerLib in the same way
you did in step 5 of the preceding exercise, and type into this new
class the code in Listing 23-3 in order to implement some data
layer code.

Listing 23-3: Implementation of the OSPACS Data Layer

using System;
using System.Collections.Generic;
namespace osImageManagerLib
{

Chapter 23: Creating FIT Fixtures466

NOTE

Specify the order of the records by adding a column to the table con-
taining the sort order and then creating a corresponding field in the
ImageAdapter class whose value is incremented for each record
returned by the data layer; see the Order variable in Listing 23-4.

public class Image
{

private string patientLastName;
private string patientFirstNames;
private string imageID;
private DateTime acquiredDate;

public Image(string lastName, string firstNames, string ImageID,
DateTime date)

{
patientLastName = lastName;
patientFirstNames = firstNames;
imageID = ImageID;
acquiredDate = date;

}
public string PatientLastName {get { return patientLastName; } }
public string PatientFirstNames {get { return patientFirstNames; }}
public string ImageID { get { return imageID; } }
public DateTime AcquiredDate { get { return acquiredDate; } }

}

public class Data
{

private static Data data = null;
private List<Image> images;
private Data() { }
static Data()
{

data = new Data();
Data.Instance.images = new List<Image>();

//hardcode the record entries for now
Data.Instance.images.Add(new Image("Stott", "William",

"999-0-1", new DateTime(2006,7,2)));
Data.Instance.images.Add(new Image("Stott", "William",

"999-0-2", new DateTime(2006,7,15)));
Data.Instance.images.Add(new Image("Newkirk", "James",

"999-1-1", new DateTime(2006,6,7)));
}
static public Data Instance { get { return data; } }
public List<Image> Images { get { return images; } }

}
}

Standard FIT Fixtures 467

4. Add the new class, ImageAdapter, to osImageManagerFIT in the
same way you did before. Type into this class the code in Listing 23-4
to provide the fields for the ImageList data set as required by
Table 23-2.

Listing 23-4 : Implementation of ImageAdapter to Provide the ImageList Properties

using System;
using osImageManagerLib;

namespace osImageManagerFIT
{

public class ImageAdapter
{

private static int order = 1; //support for ordered lists

public string Surname;
public string FirstNames;
public string SOPInstanceUID;
public string ImageDate;
public int Order; //support for ordered lists

public ImageAdapter(Image image)
{

Surname = image.PatientLastName;
FirstNames = image.PatientFirstNames;
SOPInstanceUID = image.ImageID;
ImageDate = image.AcquiredDate.ToString("MM-dd-yyyy");
Order = order++; //support for ordered lists

}
}

}

Chapter 23: Creating FIT Fixtures468

NOTE

Initially, just to get the test to pass, we created the Data class, as shown
in Listing 23-3, which is actually implemented as a Singleton pattern
(see the Design Patterns book3). However, you would normally replace
it with a class that better serves the needs of your system to store and
retrieve image information.

3. [DP] Gamma, Erich, et al. Design Patterns (Addison-Wesley, 1995).

5. Add the new class, ImageList, to osImageManagerFIT in the same
way as before. Type into this class the code in Listing 23-5 to provide
a suitable fixture for your test document. In most cases, you just
need to override the query and getTargetClass methods of the
RowFixture base class.

Listing 23-5 : Implementation of the RowFixture ImageList

using System;
using System.Collections.Generic;
using osImageManagerLib;
using fit;
namespace osImageManagerFIT
{

public class ImageList : RowFixture
{

public override Type getTargetClass()
{

return typeof(ImageAdapter);
}

public override object[] query()
{

ImageAdapter[] rc = null;

List<Image> imageList = Data.Instance.Images;
rc = new ImageAdapter[imageList.Count];
for (int index = 0; index < imageList.Count; index++)

rc[index] = new ImageAdapter(imageList[index]);
return rc;

}
}

}

Standard FIT Fixtures 469

NOTE

The order and Order variables in Listing 23-4 are not required for the
test in Table 23-2. However, if you wanted to confirm that the system
was returning rows in a specific order, they would support an Order
column in your table containing ascending integer values.

6. Edit the RunFIT.cmd batch file in the same way you did in step 7
of Exercise 23-1. Add the following command to the bottom of the
batch file, not forgetting the final dot, and then save your changes
(File | Save):

runFile ImageList.htm ILResults.htm c:\FIT;.

7. Rebuild the osImageManager solution (Build | Build Solution)
to copy into the output directory the files needed to run your cus-
tomer tests.

8. Run the RunFIT.cmd batch file (double-click it) to create ILResults.htm
and confirm that all the tests pass.

9. Add your changes to a version control Shelve by clicking the Shelve
button in the Pending Changes window (View | Other Windows),
and then log off.

Action Fixtures: Testing Workflow in the User Interface Layer
An action fixture table is intended to test the sequence of actions a user will
follow when completing some task. Typically, such tests mimic the entering
of text, pressing of buttons, and checking of output fields that occur when
someone is completing a dialog box or other part of the user interface.
These sorts of tables have the same general form as Table 23-3, which shows
the steps a customer would take when adding an image from a DICOM file
to OSPACS.

Chapter 23: Creating FIT Fixtures470

NOTE

In a real project, you would use test-driven development (TDD) to
develop the Image and Data data layer classes so that you could be cer-
tain that your code was structurally sound before attempting to start
functional testing.

Table 23-3: Sample Action Fixture Table

fit.ActionFixture

start osImageManagerFIT.ImportImageDialog

enter Filename C:\999-1-1.dicom

press Import

check ImageID 999-1-1

check ImageDate 06-07-2006

check PatientName James^Newkirk

The top row of an action fixture table defines the standard Action Fix-
ture class which supports the commands listed in Table 23-4, though you
can define additional commands by deriving your own action fixture from
this class. The following rows declare the sequence of actions this class per-
forms, with the left column defining the action and subsequent columns
containing its arguments. Therefore, in Table 23-3, the first command (start)
is equivalent to a user opening the system’s Import Image dialog box. The
second command mimics someone entering a filename into a text box, the
third command is equivalent to clicking the Import button, and the final
three commands check that ImageID, ImageDate, and PatientName have
been read correctly from the header as a result of importing the file
c:\999-1-1.dicom.

Standard FIT Fixtures 471

NOTE

Action fixtures test the functions of a user interface, not its operation.
Therefore, as part of your release process, you may need to perform
additional testing to test the setup of things such as the data binding
to the form, its control behavior and properties, event activation, and
so forth.

Exercise 23-3: Using an Action Fixture in a Customer Test

The following exercise repeats Exercise 23-1, except that you will re-create
Table 23-3 inside your test document and add to your class library projects
some user interface code in osImageManagerLib, and an action fixture in
osImageManagerFIT.

1. Repeat the first two steps in Exercise 23-1 so that you have logged
on to the DeveloperPC as Luke and opened the osImageManager
Visual Studio Solution.

2. Create an HTML file for your test document (File | New | File,
HTML page) and add the table shown in Table 23-3. Save this file
as ImportFile.htm in the same directory as the source code files of
osImageManagerFIT, and then add the file to the project, settings its
properties so that it will be copied to the output directory; see step
7c of Exercise 22-2, in Chapter 22.

3. Add the new class, ImportDlgUI, to osImageManagerLib by select-
ing the project in Solution Explorer and select Add Class from Visual
Studio’s Project menu. Type the code in Listing 23-6 into this new
class to implement some user interface layer code.

Chapter 23: Creating FIT Fixtures472

NOTE

FIT processes sequences of tables in a test document in the order they
appear, so your document might start with an action fixture table that
imports a number of images and then have a row fixture table which
confirms that they have been stored correctly in the system.

TIP

Make the user interface code in your Windows Forms classes as simple
as possible by putting any additional processing logic in a class library,
as suggested in Chapter 17. In this way, the part of the user interface
that you can’t test with FIT is kept small.

Listing 23-6: User Interface Layer Code to Support the Import Image Dialog

using System;
using System.Collections.Generic;

namespace osImageManagerLib
{

public class ImportDlgUI
{

private string imageRef;
private DateTime imageCreated;
private string firstNames;
private string surname;

public bool ImportFile(string fileName)
{ //Todo: implement code to read actual dicom file header

imageRef = "999-1-1";
imageCreated = new DateTime(2006,7,6);
firstNames = "James";
surname = "Newkirk";

//save image item in data layer; see Exercise 23-2
Data.Instance.Images.Add(new Image(surname, firstNames,

imageRef, imageCreated));
return true;

}
public string ImageRef { get {return imageRef;}}
public string ImageCreated
{

get { return imageCreated.ToString("MM-dd-yyyy"); }
}
public string ImageName
{

get { return firstNames + "^" + surname;}
}

}
}

Standard FIT Fixtures 473

NOTE

ImportDlgUI.ImportFile creates an Image object which is saved in the
data layer using the Data class created in Exercise 23-2. You may use
this feature later with a test that first imports an image and then con-
firms that it has been correctly stored in the system.

4. Add the new class, ImportImageDialog, to your osImageManagerFIT
project in the same way as before. Type the code in Listing 23-7 into
this class to support the commands in Table 23-4.

Listing 23-7: Implementation of the ActionFixture ImportImageDialog

using System;
using osImageManagerLib;
using fit;

namespace osImageManagerFIT
{

public class ImportImageDialog : ActionFixture
{

private string filename;
private string imageID;
private string imageDate;
private string patientName;

public void Import()
{

ImportDlgUI ui = new ImportDlgUI();
ui.ImportFile(filename);
imageID = ui.ImageRef;
imageDate = ui.ImageCreated;
patientName = ui.ImageName;

}

public void Filename(string pathfilename)
{

filename = pathfilename;
}
public string ImageID() { return imageID; }
public string ImageDate() { return imageDate; }
public string PatientName() { return patientName; }

}
}

5. Edit the RunFIT.cmd batch file to add the following command (not
forgetting the final dot) and then save your changes (File | Save):

runFile ImportFile.htm IFResults.htm c:\FIT;.

Chapter 23: Creating FIT Fixtures474

6. Rebuild the osImageManager solution (Build | Build Solution) to copy
into the output directory the files needed to run your customer tests.

7. Run the RunFIT.cmd batch file (double-click it) to create
IFResults.htm and then open it to confirm that all your tests pass.

8. Add your changes to a version control Shelve by clicking the Shelve
button in the Pending Changes window (View | Other Windows)
and then log off, as you have finished the exercises in this chapter.

Listing 23-8: Invoking User Interface Layer Code from the Windows Form

using System.Windows.Forms;
using osImageManagerLib;

namespace osImageManagerApp
{

public partial class DlgFileImport : Form
{

public DlgFileImport()
{

InitializeComponent();
}

private void buttonImport_Click(object sender, EventArgs e)
{ //only the following three lines were written by a programmer

//so there’s not much to unit test in this class
ImportDlgUI ui = new ImportDlgUI();
if (ui.ImportFile(textBoxFileName.Text))

this.Close();
}

}
}

Standard FIT Fixtures 475

NOTE

In your own project, use the Visual Studio Design Editor to create the
dialog box and defer all processing to the part of the user interface
layer code you developed using TDD (e.g., ImportDlgUI) so that the
Windows Form code is thin enough not to need unit testing; see
Listing 23-8.

Table 23-4: Standard fit.ActionFixture Commands and Their Arguments

Command Argument List Equivalent Pseudocode

start myFixture ShowDialog (new myFixture)

enter methodA, value1 myFixture.methodA(value1)

press doSomething myFixture.doSomething()

check methodB, result1 Assert (myFixture.methodB() ==
result1)

Custom FIT Fixtures

The standard row, column, and action fixtures are sufficient for the cus-
tomer testing needs of most projects. However, you can also develop
custom fixtures so that tables look like certain forms in your problem
domain. For example, Figure 23-2 shows a type of data entry form which
radiologists would use when storing an ultrasound scan image in the
OSPACS system. In this way, the customer’s tests can look more like the
feature in the system that the tests are testing.

Example of a Custom Fixture
In order to create a test with a table that looks more like a real form than
the sorts of tables you have developed in the previous exercises, you need
to write a customer fixture such as the one shown in Listing 23-9. This

Chapter 23: Creating FIT Fixtures476

NOTE

You should derive the name of the action fixture from the title of the
dialog box your customer expects to open when using the actual appli-
cation. Likewise, the names of the command arguments correspond to
the labels of user interface components found in this dialog box.

fixture is derived from the TableFixture class, which is available for down-
load from this book’s Web site. Essentially, it creates an instance of the pro-
duction code you want to test (e.g., UltraScanForm), and then invokes its
methods to check that the data in the test table is valid by reading the val-
ues at specific locations (i.e., row, column).

For example, in order to validate that the Patient Ref corresponds to the
Last Name in Figure 23-2, the fixture reads the values in cells 1,3 and 2,3
and passes them to its Check method, which invokes the right or wrong
TableFixture method, depending on whether the values in the test match
those that UltraScanForm expects. The right or wrong method then
arranges for the result of the test to be displayed in the test document at
runtime.

Figure 23-2: Custom fixture allowing close emulation of a real form during testing

Custom FIT Fixtures 477

In order to perform further customization of the FIT fixture, you will
need to become familiar with the source code supplied with the FIT down-
load. In this respect, we recommend you read the excellent book about FIT,
written by Rick Mugridge and Ward Cunningham,4 which contains a good
explanation about customizing fixtures, though the examples are given in
Java. Indeed, the idea for the preceding custom fixture as well as various
other matters in Section 7 came from this source.

Listing 23-9: Deriving a Custom Fixture from the TableFixture Class

using System;
using bsdFITLib; //contains TableFixture class
using osImageManagerLib; //contains ultrascanForm class
using fit;

namespace osImageManagerFIT
{

public class ImportImageDialog : TableFixture
{

private ultrascanForm;

public ImportImageDialog()
{

ultrascanForm = new ultrascanForm();
}

public void doStaticTable()
{

Check (1,3, ultrascanForm.GetPatientName(getText(2, 3)));
Check (2,3, ultrascanForm.GetPatientRef(getText(1, 3)));

}

private void Check(int row, int col, String expected)
{

if (expected.Equals(getText(row, col)))
right (row, col);

else
wrong (row, col);

}
}

}

Chapter 23: Creating FIT Fixtures478

4. [FIT] Mugridge, Rick, and Ward Cunningham. Fit for Developing Software (Prentice Hall, 2005).

CONCLUSION

It is essential that your customers understand the importance of becoming
involved in the team’s testing in order to get the functionality they want
from the system being developed. FIT encourages such involvement by
helping customers develop a model of the system through their tests in
terms of the parts they can see (user interface), the business rules they
define, and the information they need to store or retrieve. Although these
tests are developed in collaboration with the rest of the team, they are
owned by the customers and expressed in their own language. This raises
the profile of testing on the team, making it into something that is perceived
as driving the project forward rather than dragging it backward.

Conclusion 479

5. FitNesse Web site (http://fitnesse.org).

NOTE

The TableFixture class originates from a class of the same name in
FitNesse,5 but it has been rewritten in C# and is available for download
from the book’s Web site as the class library called bsdFITLib.

NOTE

Teams that are fortunate enough to have people with testing experience
have a significant advantage because they have the resources on hand
to coach their customers in the art of writing effective tests, which is
often the most challenging aspect of introducing STDD to a team.

24
Running FIT with
Team Foundation Build

TH I S C H A P T E R I S concerned with running Framework for Integrated
Test (FIT) customer tests in your project test and integration environ-

ment (Build Lab) as part of a Team Foundation Build (TFB). It explains how
you can wrap such tests in the generic test types provided by Visual Stu-
dio Team System (VSTS) and then execute them automatically from MSTest
as Build Validation Tests (BVTs). In this way, you can run all your customer
tests whenever you perform a Team Build. The chapter then walks through
the development of a customer test from its inception on a whiteboard to its
successful execution in a Team Build, before concluding with a list of ten
test design tips.

481

NOTE

In order to follow the exercises in this chapter, you need access to a PC
that has Visual Studio Team Suite or Team Edition for Testers installed,
because otherwise you cannot create generic tests; see Appendix B for
a discussion about these license issues.

Performing Customer Tests in Your Build Lab

In the preceding chapter, we described how you could use FIT to run cus-
tomer tests in your development environment to confirm that your imple-
mentation of a story satisfied the functional requirements of the business.
However, before a story is deemed complete, you must perform an Inte-
gration Build and Test so that you can confirm that your code changes do
not conflict with changes that other members of the team have made.
Therefore, your customers will want to run their functional tests in the
Build Lab environment because this gives them assurance that the story
still works when fully integrated into the code base. You can give your cus-
tomers this facility by making their tests run as part of the Team Build and
providing access to the results from the Project Portal.

Wrapping FIT in a Generic Test
Visual Studio permits you to create, manage, and run a number of standard
tests such as unit tests, load tests, Web tests, and so forth. However, it also
permits you to work with other forms of tests in a similar way by putting
them into a generic test wrapper. The only requirements for wrapping a test
in this way are that the test runner or harness can be run from the command
line and that it returns a value of either true or false, depending upon
whether the tests passed or failed. The FIT test tester, runFile.exe, meets
these requirements, so we can wrap it into a generic test which we can then
manage and run using Team System tools.

Chapter 24: Running FIT with Team Foundation Build482

NOTE

Running customer tests in your development environment is some-
times difficult because you may lack all the resources and data you
need. However, your Build Lab should be much closer to the produc-
tion environment, so such problems will arise less often.

Exercise 24-1: Setting Up FIT for Customer Testing in Your Build Lab

This exercise deploys to your Build Lab a generic test that wraps the FIT test
runner so that you can run the osImageManager customer tests in your
Integration Build and Test environment.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for a specifi-
cation of this PC and details of Luke’s security groups.

2. Open the osImageManager Visual Studio Solution, as described in
step 5 of Exercise 9-1, in Chapter 9. This Solution contains the osIm-
ageManagerUT and osImageManagerFIT Visual Studio Projects,
which we created in Exercise 12-1 (in Chapter 12) and Exercise 22-2
(in Chapter 22), respectively.

3. Add a new class for your generic test to osImageManagerUT, and
call it ValidateDICOMFile, by following these steps:

a. Select the project in Solution Explorer, and then choose Add and
New Test from its context menu to open the Add New Test dialog
box (Right-click | Add | New Test).

b. Select the Generic Test template from the Add New Test dialog
box and name your test ValidateDICOMFile.GenericTest.

4. Ensure that ValidateDICOMFile.GenericTest will be included in your
build products by setting its Copy to Output Directory property to
“Copy if newer”; see step 7c of Exercise 22-2, in Chapter 22.

Performing Customer Tests in Your Build Lab 483

NOTE

Technically, a test runner is an independent program (.exe) whereas a
test harness is a collection that objects need to support the execution of
a test. However, in practice, the two terms are mostly used inter-
changeably.

5. Set the test runner for ValidateDICOMFile.GenericTest by entering
the following into the form displayed in your Visual Studio Editor;
see Figure 24-1:

a. Program: c:\FIT\runFile.exe

b. Working directory: (leave blank)

c. Run Settings (runFile’s command-line arguments):

"%TestDeploymentDir%\ValidateImageFile.htm"
"%TestDeploymentDir%\VIFResult.htm" "%TestDeploymentDir%"

Set the additional files you need to deploy for the test by clicking
the form’s Add button and then selecting the following files from
your osImageManager Solution directory:

Src\osImageManagerFIT\ValidateImageFile.htm
Src\osImageManagerFIT\bin\Release\osImageManagerLib.dll
Src\osImageManagerFIT\bin\Release\osImageManagerFIT.dll

Figure 24-1: Creating a generic test for FIT

Chapter 24: Running FIT with Team Foundation Build484

6. Implement DICOMFileValidation.IsValid() in Listing 22-1 so
that all your customer tests pass when run in your Development
environment. Therefore, you should be able to rebuild the
osImageManager Solution (Build | Build Solution) and then exe-
cute RunFIT.cmd without any test failing.

7. Check in your changes, as described in step 9 of Exercise 9-1 in
Chapter 9, and then log off, as you have finished this exercise.

Running a Generic Test in Your Build Lab
The generic test created in Exercise 24-1 allows you to run the customer
tests which you prepared in Chapter 22 in your Build Lab (Test PC). There-
fore, you can now perform customer testing in both your development and
test environments.

Performing Customer Tests in Your Build Lab 485

WARNING

When performing the build in Exercise 24-1, you will not actually run
the generic test, so before checking in your changes, you should run
your customer tests in the development environment, as described in
Exercise 22-3 in Chapter 22.

NOTE

Each time you run the osImageManagerIntegration Team Build Type
created in Exercise 12-3 in Chapter 12, its build products will be copied
into a directory created specifically for them in your BuildLabPC’s
c:\TeamBuild\Drops\OSPACS directory. This is termed the latest
build directory.

Exercise 24-2: Running a Generic Test with MSTest

After completing the following exercise, you will have successfully run the
generic test prepared in Exercise 24-1 from the command line using MSTest.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as you
did in Exercise 24-1.

2. Perform a Team Build of osImageManagerIntegration (Build | Team
Build). This deploys the customer tests, the associated test fixture,
the generic test wrapper, and the rest of the build products to the
“release” subdirectory of the latest build directory in the Build-
LabPC, but it does not yet automatically run the generic test.

3. Open Windows Explorer so that you can confirm that Team Build
has successfully deployed the following into the release subdirectory
of your latest build directory:

a. Your software under test: osImageManagerLib.dll

b. Your FIT fixture: osImageManagerFit.dll

c. Your generic test: ValidateDICOMFile.GenericTest

4. Open the Command Prompt and navigate to the location of the
“release” subdirectory where ValidateDICOMFile.GenericTest can be
found. Type the following and wait for your customer tests to execute:

mstest /testcontainer:ValidateDICOMFile.GenericTest

5. Check that the VIFResult.htm file has been created in the “out” sub-
directory of the directory created for your test’s results. Open this
file in your browser and confirm that all of its tests have passed.

6. Log off, as you have finished this exercise.

Chapter 24: Running FIT with Team Foundation Build486

NOTE

Each time you execute MSTest, as described in Exercise 24-2, a new
directory is created for its results. This can be found in the TestResults
directory of your latest build directory’s “release” subdirectory.

Automated Customer Testing

The ability to automatically run all your customer tests as part of your Team
Build in the same way as your unit tests should give you considerable con-
fidence that your code changes have been properly integrated into the code
base because you are orthogonally testing from both a structural and a
functional perspective. It also gives your customer the opportunity to judge
what progress the team is making in terms of satisfying the business
requirements because upon the completion of each Team Build, the results
of his customer tests are available from the project Web site.

Running Customer Tests in Team Foundation Build
All the team’s customer tests and unit tests should be run each time some-
one integrates his work in the Build environment to confirm that the
changes are successful. Therefore, you need to add the sort of generic test
developed in Exercise 24-2 to your osImageManagerIntegration Team
Build, as described in Exercise 24-3.

Exercise 24-3: Running Customer Tests As Part of a Team Build

After completing this exercise, you will add a Build Validation Test (BVT)
to your Team Build so that you can run your customer tests as part of the
team’s code integration process.

1. Log on as Luke (OSPACS Contributor) to the DeveloperPC, start
Visual Studio, and open the osImageManager solution, as explained
in Exercise 24-1.

2. Create a new Visual Studio Test Project for your customer tests in the
same way you created one for your unit tests in Exercise 12-1 in
Chapter 12, except this time do the following:

a. Name the project osImageManagerCT.

b. Delete the default tests, ManualTest1.htm and UnitTest1.cs. Also
take this opportunity to delete from osImageManagerUT the
generic test you created in Exercise 24-1.

c. Recreate ValidateDICOMFile.GenericTest by repeating steps 3,
4, and 5 of Exercise 24-1, but this time add your test to

Automated Customer Testing 487

osImageManagerCT. Then add a new test list to this Visual
Studio Project, called CustomerBVT; see steps 5 and 6 of
Exercise 12-1, in Chapter 12.

d. Create similar generic tests for the other customer tests you have
developed and add them to your CustomerBVT test list.

e. Make sure these tests are run as part of the integration test by
clicking the selection box next to CustomerBVT in the right pane
of the Test Manager window.

3. Add CustomerBVT to your osImageManagerIntegration Team Build
by editing its Build Type Definition file as follows:

a. Open the osImageManagerIntegration TFSBuild.proj file for edit-
ing, as described in steps 3 and 4 of Exercise 12-7, in Chapter 12.

b. Edit the <MetaDataFile> section at the bottom of the file to
include your CustomerBVT test list:

<TestList>IntegrationBVT;CustomerBVT</TestList>

4. Check in your changes, as described in step 9 of Exercise 9-1, in
Chapter 9.

5. Run the osImageManagerIntegration Team Build (Build | Team
Build Project) and confirm that your customer tests have been exe-
cuted by opening the corresponding Build Report as follows:

a. Use Team Explorer to open the Team Builds folder for your Team
Project.

b. Double-click the osImageManagerIntegration item to open a list
of builds from which you can view individual results.

6. Log off, as you have finished the exercises in this chapter.

Chapter 24: Running FIT with Team Foundation Build488

NOTE

Visual Studio displays a summary of your Team Build results, as
shown in Figure 24-2. However, you should also check the actual FIT
result file in the “out” subdirectory of the TestResults subdirectory of
your latest build directory.

Figure 24-2: The results of the tests run by a Team Build

Allowing Your Customers to Edit and Run Tests from Their PCs
Customers will generally not appreciate having to learn how to use Visual
Studio Team Test in order to perform their testing. Therefore, you must pro-
vide a simple way for your customer to edit her test document, run the tests
it contains during an Integration Build, and then review the results. There
are a couple of ways you can provide such a facility:

• E-mail—Ask the customer to send her test document to one of the
developers as an e-mail attachment. The developer will then check
the test document into the repository, run a Team Build, and then
return the resulting FIT output file to the customer in another e-mail.

• Remote access to Team Foundation Server (TFS)—Allow the cus-
tomer to use a freely available program such as PsExec1 so that she

Automated Customer Testing 489

1. PsExec v1.73 (www.microsoft.com/technet/sysinternals/utilities/psexec.mspx).

can remotely run a set of scripts (see Listing 24-1) on the Team Foun-
dation Server from her PC. In this way, she might

– Use the Team Foundation Version Control (TFVC) command-line
tool (TF.exe) to check out her test document from the repository
onto a workspace on her PC

– Edit the test document in her workspace

– Use the TFVC command-line tool to check her test document back
into the repository

– Use the Team Build command-line tool (TFSBuild.exe) to start a
Test Build that puts the build products (including the FIT output
file) into a shared drop folder on the TFS

– View in her browser the FIT output file in the shared drop folder

• Test dashboard—Develop some form of utility, such as the one shown
in Figure 24-3, so that your customer can perform the preceding
actions from her own PC. We will put on the book’s Web site details
about any utilities of this nature that are bought to our attention.

Figure 24-3: Mockup of a customer acceptance dashboard

Chapter 24: Running FIT with Team Foundation Build490

NOTE

If you followed the instructions in Appendix A, you should be able to
find TFSBuild.exe and TF.exe in the directory added to your PC’s path
environment variable.

According to the current “Microsoft Visual Studio 2005 Team System
Licensing White Paper,”2 your VSTS license allows nonlicensed users to
access the operating system and server software “solely for the purpose of
user acceptance testing.” It is possible that the sort of customer acceptance
testing we have proposed here meets this criterion, so you would not need
to buy a license for each member of your customer group. However, as
mentioned in Appendix B, we advise that you obtain proper legal advice on
such issues.

Listing 24-1: Script to Run a Customer Test Suite from the Command Line

tf get :: get latest version files from repository document folder
tf checkout *.* :: allow customer to edit files
tf checkin /comment:"added name test" /noprompt
tfsbuild start DevServer OSPACS osImageManagerIntegration

Introducing Your Team to Customer Testing

After setting up your Build Lab so that customer tests can be run automat-
ically as part of a Team Build and experimenting with the three basic types
of FIT tables described in the previous chapter, you are ready to introduce
customer testing to your team. You should start by implementing a simple
customer test for a particular aspect of a story that is currently under devel-
opment; some type of business rule is ideal. Once people experience the
benefits of customer testing, it is usually not difficult to expand the prac-
tice so that all new stories start with the production of a storytest, as we pro-
posed in Chapter 22.

Introducing Your Team to Customer Testing 491

2. “Microsoft Visual Studio 2005 Team System Licensing White Paper” (http://go.microsoft.com/
fwlink/?LinkId=55164), Nov. 2005).

NOTE

Listing 24-1 assumes that you have previously created a workspace
for your customer that is mapped to your Documents folder in the
repository.

Discussions around a Whiteboard
A customer test usually originates from a discussion around a whiteboard
(or flip chart) about some feature of a story that is scheduled for completion
before the end of the current iteration. The customer will be involved in this
discussion, as will the developers who are charged with implementing the
story. It is also helpful if someone with testing experience is present as well.

The customer should be encouraged to describe the feature by provid-
ing examples of how it will work, starting with the normal case and then
expanding the discussion to include all exceptions. For example, when
developing the Patient Name Validation business rule described in the pre-
vious chapter, the whiteboard might look like Figure 24-4. The developers
and people with testing experience should then suggest additional tests in
order to explore the requirement more fully. During the ensuing conversa-
tions, the real requirement will slowly start to be revealed as all parties con-
sider additional test scenarios. We suggest that you do the following:

• Keep the discussion focused on the creation of customer tests rather
than attempting to identify any form of technical solution.

• Attempt to capture any underlying business algorithm or rules.

• Focus on functional issues; for example, you could discuss the con-
tent of a dialog box, but not its layout.

• Make notes during these discussions in some form of personal proj-
ect notebook,3 but give as much space to capturing design issues as
to planning and tracking your work.

Chapter 24: Running FIT with Team Foundation Build492

NOTE

Teams become test-infected when people start viewing test creation as
a good thing that helps them deliver better software more quickly and
less expensively.

3. [PSP] Humphrey, Watts. Introduction to the Personal Software Process (Addison-Wesley, 1997).

Figure 24-4: Early development of the Patient Name Validation business rule

Putting the Information into a Table
When the customer has finished creating the tests on the whiteboard(s),
the tests need to be put into a table that the FIT can read. Normally, this
requires the customer to create a set of tables in a Word document (see Fig-
ure 24-5), but other tools may be used instead; all that matters is that the
customer is comfortable using the tool and the document can be saved as
an HTML file.

Introducing Your Team to Customer Testing 493

TIP

It is not unusual for discussions about these tests to expose gaps in
your customer’s knowledge about the requirement, so adjourn the
meeting if necessary to allow time for your customer to discuss the
tests with colleagues.

Figure 24-5: Word document with customer test (used with kind permission of UCL)

You should show your customer examples of the standard tables for col-
umn, row, and action fixtures and let her decide which one is more appro-
priate for her needs without necessarily explaining the intended use of each
table. However, you should explain the basic format of each table and ask
the customer to decide on the names of the columns and fixtures, and add
the namespaces later. It is important that the customer takes responsibility
for creating the table rather than delegating the task to a developer (or
tester) because this helps establish her ownership of the resultant tests. You
should also take this opportunity to demonstrate the way in which such

Chapter 24: Running FIT with Team Foundation Build494

NOTE

Most of the customers we have observed put their tests in tabular form
without any prompting from us or other developers. It seems that
Excel spreadsheets or Word tables are the way businesspeople natu-
rally present this sort of information.

documents can be managed and where results of tests can be found after a
Team Build, as we discussed previously.

Implementing the Fixtures for the Story
After the customer has saved her tests in a shared network directory acces-
sible from your Build Lab (TestPC), you should review them and add any
additional information that might be required for successful execution, a
fixture namespace, for example. Developers must then implement the fix-
tures named in each table, as described in Exercises 23-1, 23-2, and 23-3 in
Chapter 23. At this stage, you do not need to implement the code for the
story under development (software under test). However, tests that are not
fully implemented should fail (red) when executed so that the customer is
kept aware of what features are incomplete.

When you are satisfied that the customer tests are running correctly as
part of each Team Build, you can start work implementing the associated
story using test-driven development (TDD) within a normal programming
episode. Eventually, you will know that you’ve completed the story
because all its associated customer tests will pass during the Integration
Team Build performed after you check in your code changes. Your cus-
tomer will also know you’ve completed the story because when she looks
at the results of the latest team build, all her customer tests will now pass.

Introducing Your Team to Customer Testing 495

TIP

If your customer uses Microsoft Word to create her test document,
make sure she saves it as an HTML file before checking it into the
repository. Alternatively, create an Office Automation task so that it
can be done as a custom build step prior to executing your BVT.

NOTE

The standard row, column, and action fixtures are sufficient for the
needs of customer testing in most projects. However, you can develop
custom fixtures (see Chapter 23) so that a table can be made to look like
a particular form in your problem domain (see Figure 23-2).

Using Sequences of Tables in Customer Tests
Some customer tests are best expressed in independent tables, but others
require the execution of tests in a sequence of tables. For example, if the
customer wanted to write a test that first added some images to the sys-
tem and then confirmed that they had been correctly stored, this would
involve creating several related tables such as those shown in Figure 24-6.
You will recall that FIT allows you to add any number of tables to a test
document and will execute them in order, going from the top to the bot-
tom of the file.

Figure 24-6: Results from a customer test document containing a sequence of tables

Chapter 24: Running FIT with Team Foundation Build496

When running a test that involves a sequence of tables, you will usu-
ally find you need to perform some form of setup to put the system into
a certain state as well as to communicate changes in this state among the
tests in different tables. In Figure 24-6, the first command in the first table
is labeled ResetImageList and this removes any images already stored in
the system by invoking the method shown in Listing 24-2. You will also
notice that the Instance static variable provides a convenient way to pass
information around. You should develop similar ways of controlling the
state of your system to ensure the successful execution of your customer
tests.

Listing 24-2: ImportImageDialog ResetImageList Method

public void ResetImageList()
{

Data.Instance.Images.Clear();
}

Introducing Your Team to Customer Testing 497

NOTE

At the bottom of Figure 24-2 is an FIT Summary Table that conve-
niently summarizes the results of the tests in the document. To include
this information in your test documents, just add a table with one row
and one column containing fit.Summary.

NOTE

In general, you will test a feature of the system by creating a sequence
of tables in the same document. However, you should always ensure
that test documents can be run independently of any other and in any
order.

Top Ten Tips for Test Design
Designing good tests is difficult and requires plenty of practice as well as
a willingness to learn from past mistakes. We hope the following tips will
help your team avoid some of the more obvious pitfalls while you gain this
experience:

1. Let your tables evolve. Start with simple tests and then expand them
as your knowledge of the problem grows.

2. Make the tables clear so that business colleagues can understand
them without any explanation. It should be obvious what is being
tested and why.

3. Refactor your tests on a regular basis to remove duplication and
redundant information as well as to make them simpler and easier
to understand.

4. Do not combine different tests into the same table. Have each table
test just one aspect of a problem.

5. Where possible, compact information spread across different
columns. For example, instead of having two columns labeled “start
time” and “end time,” have just one column labeled “duration.”

6. Keep your table short by making sure each row in your table (test
scenario) reveals important information when it fails. Include the
boundary cases and exceptions, not repetitions of normal values.

7. Action tables will usually involve the sequence of “set up,” “change
state” (action), and “check.” Look carefully for any Action table that
has missed any of these steps.

8. Provide a single table that performs any setup required by your
tests, instead of including this work at the beginning of each table.

9. Avoid having to frequently change your tests for areas of the code
that are constantly changing (such as the user interface) by creating
suitable adapters.

10. Frequently review the way your tests are organized and run so that
as the numbers grow, they do not become difficult to manage and
maintain.

Chapter 24: Running FIT with Team Foundation Build498

CONCLUSION

In this chapter, we showed how Visual Studio Team System allows you to
run tests using third-party (or open source) tools. Although wrapping tests
in a generic test so that you can run them during a Team Build does involve
some work, we believe that the benefit of introducing storytest-driven
development into your development process makes such effort worth-
while.

Conclusion 499

TIP

Use a virtual PC to host the database of the system under test so that
you can restore the system state before running your customer tests
simply by reloading the server image from a file. This is usually much
quicker and easier than attempting to restore the database.

Review of Section 7
Implement Customer Testing

TH E OSPACS T E A M quickly embraced the idea of customer testing
because it seemed to benefit everyone. Developers would get concrete

examples of what the customer wanted in terms of executable tests, and
assurance that once these tests passed, the story would be judged complete.
Customers would get the features they wanted and the ability to track the
team’s progress in delivering them. Therefore, they took the following
actions to implement customer testing:

• Created a skeletal test document—In order to keep all of the cus-
tomer tests together, the team created a Microsoft Word document
and added it to Team Foundation Version Control (TFVC). The
customer (Sally) was given “full” access rights to this document
because she was considered its owner, but the rest of the team was
granted “read” access because they would need to implement the
Framework for Integrated Test (FIT) fixtures and stories that corre-
sponded to her tests.

• Version control—The team developed a couple of scripts so that
Sally could check in and check out the test document without need-
ing to install Visual Studio Team System (VSTS) on her PC.

• Team Build—The team updated the project’s Team Build types to
automate deployment and execution of the customer’s tests on the
BuildLabPC so that the latest version of the customer tests would
run in conjunction with the latest version of the developer’s soft-
ware and fixtures.

501

• Access to test results—The team updated the Team Build types so
that the build products would be put into a shared Drop folder on
the Team Foundation Server (TFS). In this way, the customer (and
the rest of the team) could access the test result files produced by FIT
when Team Builds completed.

• Coaching the customer—People with testing experience, such as
Maggie, agreed to help Sally write her tests. However, everyone
clearly understood that the customer would be responsible for pro-
ducing the tests.

• Writing FIT fixtures—The team’s developers gained experience
developing different types of fixtures to support the customer’s tests.

The Team’s Impressions

The team readily embraced the idea of driving its development with story-
tests and was pleased to discover that it could so easily integrate an open
source tool such as FIT with VSTS.

CEO: Mike
“I don’t need to ask people about their progress. Instead, I just run the cus-
tomer tests from my office and see what they’ve achieved.”

Developer: Tom
“Storytest-driven development means that we perform User Acceptance Test-
ing throughout the project, not just at the end. However, that’s not to say that
further testing isn’t needed before the software finally goes into production.”

“Customer testing shifts power from IT to the business, which means
that we’re no longer entirely to blame when products aren’t ready for ship-
ping with the features our customers are demanding.”

Review of Section 7: Implement Customer Testing502

WARNING

You should not give defect-laden code to your customer for testing.
Therefore, a prerequisite for introducing customer testing is to make
sure your team can consistently deliver high-quality software.

Developer: Luke
“The customer’s job is to write the tests in a Word document and the devel-
oper’s job is to write the associated fixtures in C#.”

“I found it easy to develop the fixtures needed for Sally’s tests, because
basically, they are like the Adapter pattern1 I’ve been reading about. They
just act as a wrapper for our production code.”

“It’s really cool to use a Word document as a test script. I wouldn’t have
thought of doing that, but it makes perfect sense to use a tool that busi-
nesspeople already know how to use.”

Developer: Sarah
“Storytest-driven development sounds a bit like ‘design by contract,’2

except the test becomes the contract. This makes it much clearer what the
business wants.”

“We’ll still use manual tests to check the operation of the user interface,
but this involves much less work because Sally’s customer tests have
already validated its basic function.”

Developer: Peter
“The tests give me concrete examples of what is needed, which is much bet-
ter than having to interpret Sally’s wordy descriptions of the underlying
business algorithms.”

“The customer still needs to perform some manual testing of the user
interface, because otherwise, we wouldn’t get regular feedback on issues
such as performance and usability.”

Developer: Maggie
“The team members now view testing as something that helps them deliver
software, rather than as a hindrance. There is general enthusiasm for writ-
ing tests. Frankly, I’m amazed.”

“I like coaching people about writing tests. They respect my skill and
experience, which makes me feel much more valued as a professional.”

The Team’s Impressions 503

1. [DP] Gamma, Erich, et al. Design Patterns (Addison-Wesley, 1995).
2. Wikipedia. “Design by contract” (http://en.wikipedia.org/wiki/Design_by_contract).

“For the first time in my career, I feel like I’m part of the team. I’m no
longer the bad guy who sits in an office down the corridor, trying to destroy
other people’s work.”

Customer: Sally
“Writing my own tests gives me a measure of progress that I can really
believe in. There should be no more surprises just days before a release date
about the software not being ready.”

“I was a bit skeptical about actually writing executable tests because it
all sounded a bit techie. However, after seeing a few sample tables in a
Word document, it wasn’t really much different from the sorts of specifica-
tions I was already writing.”

“Maggie has helped me a lot and I’m now writing much better tests, but
it’s good to have her review my tests from time to time.”

Agile Values

Implementing storytest-driven development (STDD) and the Real Cus-
tomer Involvement practice helped the team apply Agile values in the fol-
lowing ways.

Communication
Real customer involvement means there is direct contact between the peo-
ple who decide “what” the system should do and the people who decide
“how” these needs are best satisfied. Writing customer tests encourages
communication among such business and development people by express-
ing requirement details as specific tests which both parties can readily
understand.

Feedback
Giving the customer responsibility for writing these tests means the team’s
progress can be measured in terms of the value being added to the business.
This allows the business to track and understand the project’s growth in a
way that can never be achieved by reading a periodic progress report. Cus-
tomer testing also allows developers to learn from functional errors dis-

Review of Section 7: Implement Customer Testing504

covered in their software so that they can improve both the product and the
development process.

Courage
Customer testing gives the team confidence that it can deliver what is
needed, when it is needed. This encourages the team to try out new ideas
and more aggressively seek better business value. It also reduces the fear
of a small change causing some unforeseen problem, and therefore makes
the team less defensive.

Simplicity
Any code not covered by customer tests is likely to be associated with fea-
tures that add little value to the business and, therefore, represent unnec-
essary complexity. Customer testing encourages the discipline of
developers implementing just enough code to pass the test. It also helps cre-
ate a system that is easy to test and thereby avoids any tight coupling that
otherwise might be introduced inadvertently among components.

Respect
The success of the project is visibly measured in terms of passing customer
tests, which makes everyone on the team constantly aware that they are all
integral to the success of the project. Without the domain knowledge pro-
vided by the business, the developers risk producing software that has no
value, and without the skill and dedication of the developers, there would
be no product to deliver.

Agile Values 505

Section 8
Estimate, Prioritize, and Plan

TH I S S E C T I O N O F the book is about managing an Agile project so that
the team delivers what the business needs, when it needs it. Chapter 25

provides the foundation for Agile planning by explaining the role of story
cards in estimating and then prioritizing the team’s work. In Chapter 26, we
present an Agile approach to planning that involves repeatedly making
plans for different time scales throughout the project as well as dynamically
controlling it with feedback from both the business and the developers. The
section concludes with Chapter 27, which combines an explanation of using
the project management facilities provided by Visual Studio Team System

507

Photograph by Picture Post Hulton Archive (Copyright Getty Images 1953).

Controlling a software project is a bit like navigating a ship, as you
constantly need to estimate your position and alter your course to
reflect changes in circumstances.

(VSTS) with a walkthrough of the way a small Agile team might plan and
execute an iteration.

Story from the Trenches

Most people working in software development will probably experience at
least one death-march project1 during their career. This term is something
of a hyperbole, as people are not forced to work under conditions of near
starvation and nobody is taken outside and shot for misplacing a curly
bracket. However, such projects are distinctly unpleasant to work on and
often have a high attrition rate in terms of staff. No one intends to create a
death march; it’s just something that happens. However, often there are
warning signs from the very start of the project.

Several years ago I worked for an avionics company that had embarked
upon a project to build a system for aircraft to communicate with ground-
based maintenance systems using digital radio. This was a high-profile
project that had been won only after an acrimonious battle in which it
appeared that politics rather than common sense prevailed. The company
was therefore under a lot of pressure to deliver all the features and quality
it had promised within the ambitious time scales and budget it had quoted.

When I joined the small team of people charged with implementing this
project, they seemed confident that the project would be a success despite
their general lack of experience and poor knowledge of its core technology,
X.25 data communication. The team leader, Jason, didn’t seem too con-
cerned about such issues because he was following a formal process, so he
was certain that all the details would slot into place once the team had
drawn enough Unified Modeling Language (UML) diagrams. Therefore,
the team had been fully occupied for the preceding month developing
dozens of class and object drawings which were now neatly bound in the
first draft of the project’s design document. Meanwhile, the deputy project
manager had been busy learning to use Microsoft Project and had papered
the walls of his office with Gantt and PERT charts that showed the project

Section 8: Estimate, Prioritize, and Plan508

1. Yourdon, Edward. Death March (Prentice Hall, 2003).

was on course for its target delivery dates. The senior project manager
knew very little about software development, but clearly was impressed by
all of these visible signs of progress.

After spending a few days familiarizing myself with the project, I felt
confident enough to ask Jason some obvious questions, such as why did he
think it would take 12 days to develop the data link layer code? On what
similar work did the team base its estimate? Did anyone actually know
what the data link layer did? Frustrated by his refusal to give me a straight
answer, I asked the deputy project manager how he had arrived at this
12-day estimate. The answer was simple: The software had to be delivered
in four months, so they had worked backward to allocate the work into the
time available. Regardless of the size and complexity of the data link layer
coding, it would take 12 days because they didn’t have any more time to
complete it.

The people on the team I had joined weren’t estimating and planning;
they were engaged in wishful thinking. Estimating depends upon knowing
where you are and where you want to be, and then having some knowledge
of the time it takes to travel between such points. Our team didn’t know how
to implement the software, so how could it identify its path? The team had
no experience writing similar code, so how could it judge its speed? Without
reliable estimates, the team’s plan was no more than a smoke screen hiding
the fact that the team was hopelessly lost. When the politics and commercial
pressure of this project were added to the mix, there was only one possible
outcome: It would become a death-march project.

It was easy for me to foresee that replanning work to correct poor esti-
mates would soon become a regular event and this would inevitably lead
to more and more work being demanded from the team. Eventually the
developers would find themselves spending 18 hours a day hacking out
code in a futile attempt to reach some impossible objective. After missing
a few deadlines, the recriminations would start, thereby adding misery to
feelings of hopelessness and exhaustion. I would like to be able to say that
I stayed with the team, sprinkled some pixie dust, and rescued the project,
but actually I left the company within two weeks of joining the team. How-
ever, my departure did trigger a radical shake-up and reorganization which
allowed the team to eventually reach its target and deliver the system,

Story from the Trenches 509

which I understand was done without exacting too high a price on the indi-
viduals involved.

Section 8 presents a way to estimate, prioritize, and plan a software project
which allows you to achieve your objectives in a better way than the team man-
aged in this story. However, you should keep in mind that the position of this sec-
tion in the book reflects the fact that such issues are largely irrelevant until your
team has learned how to reliably deliver quality software that provides high value
to the customer.

Section 8: Estimate, Prioritize, and Plan510

25
Estimating and Prioritizing
Stories

AN AG I L E T E A M needs to define the software features which have
value to the business and then plan their implementation to realize

this value without delay. In this chapter, we describe how story cards help
teams identify such features and explain how to properly estimate and pri-
oritize the work associated with implementing them. This is important
groundwork for Chapter 26, which presents an approach to planning Agile
projects.

Working with Customer Stories

Customer stories provide a way to identify the discrete features of a soft-
ware product that have value to the business. Therefore, the team can use
stories to define and plan its work as well as to provide an objective meas-
ure of its progress in delivering valuable software to the business. You
would normally expect a pair of developers to implement a story within a
small number of programming episodes.

511

Overview
We first introduced customer stories in Chapter 3, when we explained
that they have three basic parts: card, conversation, and confirmation.3

Figure 25-1 shows an example of the card part of a story. It contains a sum-
mary of the conversation part of the story on its face and describes the con-
firmation part of the story, a customer test, on its reverse side. Stories arise
from brief conversations between developers and customers that happen
informally during the life of the project as a result of the Stories practice.
Accordingly, most of the information about the feature is not written down,
so take care that you don’t just look at the card in isolation. For example, the
story in Figure 25-1 summarizes a conversation between two members of
the OSPACS team: Luke (developer) and Sally (customer). At first glance,
the story looks quite simple to implement, but if you could talk to Luke you
would quickly discover that it actually represents a significant amount of
work, for it involves accessing an external database and then matching the
contents of multiple fields which are inconsistently populated in different
formats; see Figure 24-4.

Chapter 25: Estimating and Prioritizing Stories512

NOTE

Although customer stories originate from Extreme Programming
(XP),1 they often are used in other types of Agile projects. We prefer the
term customer stories (or just stories) to user stories because it avoids any
possible confusion with use cases.2

1. Beck, Kent. Extreme Programming Explained, First Edition (Addison-Wesley, 2000).
2. Jacobson, Ivar. “Object-oriented development in an industrial environment” (OOPSLA, 1987).
3. Jeffries, Ron. “Essential XP: Card, Conversation, Confirmation” (www.xprogramming.com).

NOTE

The small size of the card means that it can capture only a small frac-
tion of the issues discussed between the developer and the customer
during their conversation. The specific detail is contained in tests
which are subsequently written by the customer; see Section 7.

Figure 25-1: Story card from the OSPACS project, front and back

Stories Practice
The Stories practice requires the team to plan a project using cards that

serve to summarize, estimate, and prioritize the work.

The developer produces a story card during a brief discussion with the

customer about something the business wants the software to do. The

developer summarizes this conversation on the card in the form of a state-

ment, such as “a <type of user> wants <capability> so that <business

value>”.4 He also writes the name of the story on the card, being careful

to choose a name that is short and meaningful enough for the team to be

able to use it during later discussions.

Soon after the card is written, the team estimates the work required to

implement the story. This gives the customer a feel for the cost of imple-

menting the story, which helps decide its priority as indicated by its posi-

tion in the pile of stories awaiting implementation. At the beginning of each

iteration, the team plans its work simply by removing cards from the top

of this story pile until the cumulative size reaches the same level delivered

in the previous iteration. In this way, the project is regularly replanned to

adjust delivery targets according to the team’s actual progress and current

business priorities.

Working with Customer Stories 513

4. [USA] Cohn, Mike. User Stories Applied (Addison-Wesley, 2004).

Continues

Chapter 25: Estimating and Prioritizing Stories514

Agile teams focus on the delivery of valuable features rather than the

completion of tasks, which means that they can take a much simpler and

more dynamic approach to planning. Consequently, team members don’t

need to identify all the requirements at the start of the project and can

respond more flexibly to any changes in the business environment that

occur before it is completed. This gives them a significant advantage over

traditional teams whose detailed planning process and reliance on formal

documents generally limit them to making a more complex static plan at

the start of a project. Such plans tend to be less effective than the simple

dynamic plans yielded by the Stories practice in terms of delivering soft-

ware that satisfies the actual business need.

Generating Stories
When a customer and developer initially sit down to discuss a story, it may
take only a few minutes to write out the card and decide on a suitable name.
The developer may not ultimately implement the story, so there is little
point in getting into specifics at this stage. It’s important to consider only
those details which are necessary for estimating its size—for example, the
number and complexity of business rules, the nature of the user interface,
data that needs to be stored, and so forth. Whether the developer summa-
rizes these details on the back of the story card (see Figure 25-1) or puts
them in his personal notebook, he needs to put them in general terms,
because as we mentioned before, the full details of a story are captured only
later, when the customer test is being written.

NOTE

Iterations always last for a fixed period. In some projects, they last a
week, but in others they may last two or even three weeks.

People become proficient at producing customer stories through prac-
tice, so you should look at the examples provided in books such as Mike
Cohn’s User Stories Applied5 and then try to copy the general style. How-
ever, the INVEST acronym, coined by Bill Wake,6 provides a useful way to
remember the attributes of a good customer story and may help you avoid
some of the common pitfalls:

• Independent—One story should not depend on the implementation
of another so that you can prioritize them for business rather than
technical reasons.

• Negotiable—Neither the customer nor the developer must use his
position to dictate the terms of a story.

• Valuable—If the feature doesn’t offer any direct value or benefit to
the business, why would the business want to implement it?

• Estimate—Split large stories (epics) into smaller ones and investi-
gate the unknown issues until you can confidently estimate the time
they will take to implement.

• Small—Split or rework stories until a developer can complete them
within a few days. However, don’t make them so small that the cod-
ing takes minutes rather than hours.

• Testable—You must be able to test a story to ensure that there is an
agreed-upon criterion for the story’s completion. This also guards
against you creating stories for nonfunctional requirements such as
ease of use, reliability, and so forth.

Working with Customer Stories 515

5. [USA] Cohn, Mike. User Stories Applied (Addison-Wesley, 2004).
6. Wake, Bill. “INVEST in Good Stories, and SMART Tasks” (http://xp123.com/xplor/

xp0308/index.shtml).

TIP

Do not be tempted to write a program for managing customer stories
electronically because this loses the significant value of having physi-
cal cards to handle while discussing stories with other people.

Estimating

Estimates of stories are more reliable when they are produced by people
who have some experience doing the work; therefore, estimating is done by
developers. There are three common approaches to estimating the size of
a story:

• Gut feel—After spending a few minutes thinking about the matter,
you produce an estimate based on your experience doing similar
work. Your gut feelings can be surprisingly accurate if you have the
relevant skills and know the team well.

• Comparison—You compare the work to similar jobs the team has
already completed to produce a relative estimate of its size. This
works best when you can size the work as being a little more than
job “A,” but a little less than job “B.”

• Splitting up the work—Divide a large task into a set of subtasks
that you find easier to estimate by gut feel or comparison, and then
sum all the estimates for these subtasks. This is a good way to han-
dle some work that is much larger than the rest, but becomes inaccu-
rate when you split up the work too finely.

Estimates are notoriously difficult to get right, whatever approach you
use and regardless of the amount of effort you apply. Indeed, often your ini-
tial gut feeling after ten minutes is no worse than an estimate produced
after the team has spent hours splitting up the work and deliberating about
suitable comparisons to other jobs.

Sizing Stories
Stories describe what features the business requires, not how developers
will implement them. Therefore, when estimating the size of a story, start
by considering with other developers alternative ways in which you might
complete the work. The developer who initially wrote the story card should
lead the discussion by describing the sorts of tests the customer envisioned,
because this usually reveals a lot about the nature of the work. After five

Chapter 25: Estimating and Prioritizing Stories516

or ten minutes of discussion, the group must then try to reach a consensus
about the size of the task that will lead to the most promising solution.

Although you must eventually divide a large story (epic) into smaller
stories which you can implement individually within a single iteration, it is
not always necessary to split up such epics initially. It is more important to
keep discussions about story estimations at a high level and to concentrate
on alternatives that have a significant impact on the size of the task being
considered. You are not attempting to identify each part of the task, size
them individually, and then produce an estimate as the sum of the parts.
You are just spending five or ten minutes getting a feel for the size of the job
by talking it through with your colleagues, perhaps while standing around
the coffee machine. The detailed planning of the task comes much later, just
before implementation, as described in Chapter 26.

Absolute Values versus Relative Values for Estimation
A common way to state the size of a task is to give a figure for the number
of hours it might take, but this can create problems. Consider the following:

A team of ten developers determines that the tasks comprising a
project will require 360 man-weeks’ worth of work. Therefore, they
predict that they will be able to complete the project in 36 weeks:
36 = 360/10. Four weeks later, the team is behind schedule: the
developers have completed only 20 man-weeks’ worth of work
instead of the 40 they anticipated they would have been able to com-
plete in this time. Accordingly, they must change every man-week
estimate in the project plan to correct for their slow progress, and
recalculate their delivery date: 72 = (360 x 2)/10.

Estimating 517

TIP

When sizing a story, take the opportunity to identify any preparation
which would prevent you from completing the story within a single
iteration. In this way, the team can make sure it completes this work
before attempting to implement it; see the section titled Task Plan, in
Chapter 26.

Putting absolute times into a project plan means that you will need to
update each estimate whenever the team’s rate of progress changes. Not
only does changing all these estimates take a significant amount of time,
but also, after a few months, the people involved start to lose confidence in
the figures because you’ve changed them so often, even though the prob-
lem is as much about identifying the correct rate of progress as it is about
poor initial estimates.

Let’s consider how we could improve things by expressing size as a rel-
ative quantity instead of an absolute one:

A team of ten developers rates the tasks comprising a project on a
scale of 0 to 9, which gives them a total of 2,880 points. They expect
to complete 80 points each week, and they anticipate completing the
project in 36 weeks: 36 = 2,880/80. Unfortunately, a month later they
have completed only 40 points’ worth of tasks. However, they don’t
need to change any estimates in the project plan because their rela-
tive size is still correct. Instead, they simply change the number of
points they expect to deliver each week to 40 and recalculate the
delivery date: 72 = 2,880/40.

Expressing estimates as a relative quantity makes it much easier to keep
the project plan up-to-date because the individual figures aren’t changing
very often. In fact, the only time you need to adjust an individual task esti-
mate is when it becomes obvious that its relative size is wrong. For exam-
ple, if you estimate the creation of all dialog boxes at 1 point, but later
discover that a more realistic size for such a task would be 2 points, it is
appropriate to adjust all the other estimates relating to dialog box creation.
What really matters is being consistent so that the size of each task is in pro-
portion to all the others.

Chapter 25: Estimating and Prioritizing Stories518

NOTE

The work required to alter absolute estimates makes it difficult to
adjust your project plan for changes in the team’s rate of progress more
than once a month. But using relative estimates you can adjust it fre-
quently, an important consideration when planning dynamically.

Relative Estimate Scales
Most people find it easier to compare the size of things than to produce an
absolute value of size. For example, an estimate that your shoes are just a
bit bigger than your friend’s is likely to be more reliable than an estimate
that your shoes are 10.5 inches long. However, it is important to use appro-
priate scales when making such comparisons. For instance, stating a col-
lection of shoe sizes as 72, 81, 82, 69 on a scale of 1 to 100 is actually less
accurate than stating them as 7, 8, 8, 7 on a scale of 1 to 10. Mike Cohn7 has
reported considerable success using the following nonlinear scale for esti-
mating stories:

0, 1, 2, 3, 5, 8, 13, 20, 40, 100

This scale includes 0 for tasks that are too small to consider for the pur-
poses of planning, but nevertheless need to be completed. Giving such
tasks a positive score would result in a false impression of progress when
it came to counting how many points had been delivered over a period.
However, you can expect to complete only so many of these zero-point
tasks during a period before they collectively start to become significant.

Numbers which are larger than 8 in Mike’s scale are intended for sto-
ries that are much larger than normal, which means that you will estimate
most of your stories in terms of being a relative size of 1, 2, 3, 5, or 8. The use
of a nonlinear series forces you to be less precise about comparisons as they
get bigger so that something that is certainly bigger than 3, but definitely
less than 8, becomes a 5. In an ideal world, most of your comparisons
would fall as 1, 2, or 3 task points—a range which is small enough for all
developers to apply consistently over the course of a project.

Task Points and Story Cost Estimation
The main disadvantage of using a relative quantity for estimating is that it
makes the figures more difficult to understand. This is not a problem when
developers are discussing estimates among themselves, because everyone
very quickly gets a feel for the difference between a 1-, 2-, and 3-point task.

Estimating 519

7. [AEP] Cohn, Mike. Agile Estimating and Planning (Addison-Wesley, 2006).

However, explaining such differences to people who are not involved in the
estimating process can be difficult. For this reason, we suggest you convert
task point estimates into story costs with the simple calculation shown in
Figure 25-2, where the following terms are used:

• Task point is what developers use for estimating. It is the relative
size of some work expressed on the nonlinear scale; 0, 1, 2, 3, 5, 8, 13,
20, 40, 100.

• Velocity is a measure of the team’s progress. It is the sum of the task
point values for the stories successfully implemented during an iter-
ation.

• Iteration burn rate is the cost of running the project for an iteration.

• Story cost is what customers use for budgeting. It expresses the dol-
lar cost of implementing a story. The customer obtains this figure by
dividing the sum of the story’s task points by the team’s velocity,
and then multiplying by its iteration burn rate.

Figure 25-2: Spreadsheet showing task points and story cost

Story Cost
Formula

Chapter 25: Estimating and Prioritizing Stories520

Budgeting
It is very easy to adjust a project as a result of changes to its budget, because
the total number of iterations available for the team to implement its stories
depends upon the budget (price) according to the following simple formula:

Total Number of Iterations = Total Project Price / Iteration Burn Rate

Therefore, if you had a budget of $250,000 and an average burn rate of
$25,000 per iteration, the team would have ten iterations available to imple-
ment the stories, or ten weeks if you assume the iteration length is one
week. Reducing this budget by $50,000 takes two iterations away from the
team’s total, which will cause some of the lowest-priority stories to be can-
celed and will move the date of the final release forward by two iterations.

Prioritizing

The priorities of your stories determine the order in which you should
implement them. Deciding priority is primarily a job for customers,
because they are ultimately responsible for deciding what should be

Prioritizing 521

NOTE

The project’s burn rate doesn’t have to be the actual cost of running the
project for an iteration, but you should make this figure realistic
because it helps focus both customers and developers on providing
good value for the money being spent.

WARNING

We do not advise that you increase the budget in the hope of increas-
ing your team’s velocity, because as Brooks’ law8 states, adding devel-
opers to a project that is running late only makes it later. Instead,
accept the reality of your velocity and ask the customer to reprioritize.

8. [MMM] Brooks, Frederick P. The Mythical Man-Month (Addison-Wesley, 1975).

delivered to the business and when. However, priorities also need to be set
in response to technical business issues; therefore, developers must provide
some input to the process.

Value
Value starts flowing from the moment the software is released to the busi-
ness, so it makes sense to prioritize stories that provide the biggest value
so that this benefit can accumulate from as early as possible in the project;
see Section 10. You can quantify this sort of financial value in terms of dis-
counted cash flow, valued added analysis, and so forth, and then use the
figures to set your priorities. However, you also can state value in nonfi-
nancial terms by assessing the relative desirability of a story and the likely
level of user satisfaction that might result from its implementation. You can
perform this sort of analysis simply by asking a representative selection of
customers (and users) to score your stories on some basis, such as the
MoSCoW rules of DSDM:9 Must have, Should have, Could have, and Won’t
have. Sam Guckenheimer10 gives a good overview of such techniques in his
book, Software Engineering with Visual Studio Team System.

Business Risk
Risk from a business perspective is about the potential failure of the busi-
ness to obtain the best possible value from its investment. This may happen
because the software is delivered late, so the opportunity cannot be fully
exploited; or it may result from the software costing more to develop than

Chapter 25: Estimating and Prioritizing Stories522

9. DSDM: Dynamic Systems Development Method Web site (www.dsdm.org).
10. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft Visual

Studio Team System (Addison-Wesley, 2006).

TIP

Ask an accountant to calculate any financial values; this will lend
authority to your analysis and prevent your entire plan from being
questioned because of some inappropriate financial assumption.

anticipated, thereby reducing the business’s profit margin. However, the
most significant business risk is usually that the delivered software doesn’t
meet the business’s current needs.

The risk of the delivered software not meeting the current needs of the
business arises because of changes in the external environment or because
the developers did not properly understand what they must deliver. There-
fore, to manage business risks, customers need to reduce the priority of sto-
ries that are sensitive to changes in the external environment and increase
the priority of stories that are somehow difficult to explain. In this way, the
team delivers as late as possible any stories that are likely to be affected by
external change, as this gives the environment less time to change between
implementation and delivery. It also means that the team delivers any com-
plex stories as soon as possible, so any misunderstandings can be resolved
with a minimum of disruption to the flow of business value.

Technical Risk
Risk from a technical perspective concerns the possible failure of the team’s
developers to fully implement the story by the required delivery date.
When technical risk arises due to uncertainty among the team’s develop-
ers about how they should implement a story, it may be appropriate to
increase the priority of the story. This is because the knowledge generated
when you start work on a story often reduces the risk by removing some
of the uncertainty about the rest of its implementation. It is better to under-
take this sort of risk reduction early in the project because it gives you more
time to find a technical solution and prevents you from creating a product
that cannot be released because it lacks some key feature.

Prioritizing 523

NOTE

Customers with a business background are usually good at managing
the sorts of risks that arise from late delivery or budget overspending,
so it makes sense to use these skills by giving them the means to con-
trol the project, as described in Chapter 26.

Removing Dependencies
Clearly your customer cannot prioritize effectively on the basis of risk and
value when dependencies exist between stories; for example, story A can be
done only after story B is finished. Therefore, you should avoid creating
any dependencies between stories and remove any dependencies that
might have been introduced before attempting to set priorities.

Typically, dependences arise when developers are estimating a story
rather than when customers are formulating it. This is because during esti-
mation, developers are thinking about implementation, so they may be
tempted to split the task for a story into a sequence of subtasks and then
declare some of them as being common to other stories in order to optimize
the work. When a task relates to more than one story, it creates a depend-
ency between them, so to remove this sort of problem, you simply need to
make sure each task relates to just one story and accept the fact that this
may result in a certain amount of task duplication. Some of this duplication
may be removed when developers start optimizing just before implemen-
tation; see the section titled Task Plan, in Chapter 26.

One of the reasons you should avoid splitting up your work too finely is
that you will start to think about optimizing work by sharing tasks among

Chapter 25: Estimating and Prioritizing Stories524

NOTE

The MSF for Agile process template allows you to create work items
for any risks you have identified so that you can track and report them.
However, on a small team, it is more convenient to write a comment on
the story card to remind people about the issue.

NOTE

Occasionally, the estimate for a story significantly depends upon when
it is done. In such cases, you need to bring the issue to the customer’s
attention when the story is being prioritized, in the same way you
would alert the customer of a technical risk.

different stories and, as a result, risk creating dependencies. Therefore, the
presence of dependencies between stories is often an indication that devel-
opers are going into too much detail when estimating their tasks. For this
reason, many Agile teams avoid explicitly discussing tasks during estima-
tion and instead write the size of a story directly onto the associated card
in units, as “story points.” We consider it more natural for people to pro-
vide a size for something they will do (task) rather than for something they
want (story), and for this reason, we prefer using the term task points.

CONCLUSION

In this chapter, we identified the following key points for you to consider
when creating, estimating, and prioritizing stories:

• Developers and customers develop stories together in terms of pro-
ducing a card, having a conversation, and then defining a test as a
form of confirmation. The acronym INVEST describes the attributes
of a good story; it is independent, negotiable, valuable, capable of
being estimated, small, and testable.

• Developers estimate a story by writing a value for its relative size
on the card in units such as task points. In this way, you can adjust
plans for changes in the rate of progress without having to change
the estimate of each story. Relative estimates also tend to be more
accurate.

Conclusion 525

11. Beck, Kent. Extreme Programming Explained, First Edition (Addison-Wesley, 2000).
12. [AEP] Cohn, Mike. Agile Estimating and Planning (Addison-Wesley, 2006).

NOTE

The traditional Agile measurement for story size is ideal days,11 but you
may find other units, such as story points,12 used in some projects. The
name of the unit is irrelevant when you are dealing in relative values.
What matters is making accurate comparisons between task sizes.

• You should use a nonlinear scale such as 0, 1, 2, 3, 5, 8, 13, 20, 40, 100
to express size; however, most stories will lie within a small range of
these values: 1, 2, or 3 task points.

• Customers prioritize stories by arranging the pile of cards awaiting
implementation so that the highest-priority ones are put at the top.
They set priority according to business value and risk such that the
stories that provide the greatest value for the least business risk are
done first.

• Developers also play a part in setting the priority of stories because
technical risk needs to be addressed sooner rather than later, but
technical dependencies between stories must be avoided because
they inhibit the setting of business priorities.

Chapter 25: Estimating and Prioritizing Stories526

NOTE

Proper estimates and priorities are a prerequisite for controlling any
project, because feeding garbage into a planning process will inevitably
result in nothing but garbage coming out.

26
Agile Planning

IN T H I S C H A P T E R, we explore the nature of plans and explain the way
an Agile team engages in planning at various times throughout the

project: daily, weekly, and quarterly. The resulting task, iteration, and
release plans are simple to follow as well as easy to produce, which enables
a team to control its project more dynamically. In this way, a team can
respond effectively to changes in the business environment as well as its
own rate of progress, thereby helping the team to satisfy the business it
serves through the early and continuous delivery of valuable software.1

The Nature of Plans

Plans help us organize a project by creating a schedule of work so that
everyone on the team knows what he must do next. Good plans arrange
such work so that it provides optimum value for a given set of constraints,
such as budget, time, quality, and features. Depending on what you’re
doing, your plan may operate best when you implement the work accord-
ing to the schedule with a minimum of variation, or your plan may need
frequent adjustment during its execution.

527

1. [ASD] Martin, Robert. Agile Software Development (Prentice Hall, 2003).

Plans for Repeated Execution versus One-Time Plans
Plans that are intended for repeated execution should always give the same
result. For example, when you follow Mary Berry’s recipe for double-
chocolate muffins,2 you get the same sort of muffin each time. The recipe
results from much experimentation, but ultimately it consists of a fixed set
of instructions for delivering a muffin. Many people’s expectations about
plans often come from following such recipes.

When you are creating things such as double-chocolate muffins, it is rea-
sonable to look for a plan that has been repeatedly executed because that
will minimize variation in what you are attempting to achieve. In this case,
at the beginning of the process, you want a plan delivered which contains
precise details of the sequence of steps that will lead you to your objective.
You should then insist that the steps are followed without variation, as this
way you are certain of producing the sort of muffins you want. However,
when you are designing things such as software, no existing plan is avail-
able for you to follow, for there is seldom any point in producing the same
program, in the same way, twice in a row. Therefore, you need to find a plan
that is suitable for what Donald Reinertsen calls a one-time process.3 This
type of plan accepts that you cannot precisely define a sequence of tasks at
the start of a project, so instead it encourages the team to adapt its schedule
regularly in response to its progress toward the current design objective.

Agile Planning
An Agile team understands that it needs a one-time plan, and therefore it
does not expect to have a complete plan at the start of a project. Instead, it
produces a plan a bit at a time as the project progresses; this is often called
rolling wave planning. It is accepted that the plan will be wrong, particu-
larly the further you move along in the schedule. However, does it matter
whether your plan for next week is wrong? What really matters is having
a correct plan for this week and being able to correct next week’s plan
before the weekend. This is what Mary Poppendieck means when she says,
“Do the planning, but throw out the plans.” She makes the point that your

Chapter 26: Agile Planning528

2. Berry, Mary. Complete Cookbook (Dorling Kindersley, 1995).
3. [MTDF] Reinertsen, Donald. Managing the Design Factory (Simon and Schuster, 1997).

current plans will rapidly become out-of-date and that you will need to
replace them regularly with new ones. Obviously, the further a one-time
plan looks into the future, the more likely it is to be wrong, so it is better to
concern yourself only with short time scales when creating such plans.
Therefore, you achieve long-term goals by following a sequence of small,
good plans made on a regular basis to correct for any changes to the objec-
tive or variations in the team’s rate of progress. An Agile team manages
changes to its objective by regularly re-sorting an ordered pile of story cards
awaiting implementation (see Chapter 25) as a result of changes to its rate
of progress measured in terms of velocity.

Using Velocity to Measure Rate of Progress
Velocity measures the team’s progress over a fixed period of time by adding
up the task points for the stories which are successfully implemented dur-
ing an iteration. Therefore, if your iteration length is one week, and during
this time your team delivers work that it has estimated to be worth a total
of 80 task points, the team’s velocity is 80. When the team is able to main-
tain a constant velocity, it can make projections about the delivery date of
the software it is developing. For example, a team with a total of 800 points
of work that has an average velocity of 80 points per iteration might be
expected to finish in ten iterations (weeks). However, if its velocity fell to
50 points per iteration, it would need 16 iterations to finish (16 = 800 / 50).

At the start of your project, you need to make a rough guess of the
team’s initial velocity before you can make any projections concerning the
likely delivery (release) dates. However, after a couple of iterations, you can

The Nature of Plans 529

NOTE

One of the four fundamental statements in the Manifesto of the Agile
Alliance4 is “Responding to change over following a plan.” Therefore,
you can identify an Agile team by the fact that the team engages in
planning throughout the project life cycle rather than just at the start.

4. The Agile Alliance Web site (www.agilealliance.org).

use a rule called “Yesterday’s Weather”5 to determine the team’s velocity.
This rule states that the best estimate for a team’s velocity in the next iter-
ation is the figure that was measured for the previous iteration. It is to be
expected that from iteration to iteration, your team’s velocity will vary
slightly as it delivers work with different task point totals, but after a few
iterations, the team ought to be able to establish a fairly constant velocity
and therefore present its plans more confidently.

Planning at Every Time Scale

The software development life cycle of an Agile project (see Figure 3-2 in
Chapter 3) dictates that a project has a number of fixed-length iterations,
and that after completing a certain number of iterations, the customer is
able to pull the software into the business by calling for a “release.” There-
fore, the team needs a release plan as well as an iteration plan, both of
which are concerned with scheduling the implementation of stories. In
addition, developers will create plans to schedule the tasks they need to
complete. Consequently, an Agile team regularly makes (and remakes)
plans at a time scale of months, weeks, and days, or even hours. In each
case, the team follows the same basic approach proposed by Kent Beck:6

1. List the items of work that may need to be done.

2. Estimate the size of each item.

Chapter 26: Agile Planning530

5. Beck, Kent, and Martin Fowler. Planning Extreme Programming (Addison-Wesley, 2001).
6. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition

(Addison-Wesley, 2005).

NOTE

You should not attempt to measure the velocity of individual pro-
grammers because this leads to members of the team competing
against each other, thereby disrupting the cooperation needed for
practices such as Pair Programming, Shared Code, and so forth.

3. Set a budget for the total size of the work you want to schedule.

4. Negotiate about which items can be added to the schedule, but don’t
change the budget or the estimates.

Task Plan
Task plans serve to identify the work that developers must do next. Usually
developers agree on a high-level task plan during a meeting at the start of
an iteration, and then create their own detailed task plans during the daily
team meeting or at the start of a programming episode, as explained in
Chapter 27. When creating task plans, you are very much concerned with
optimizing the sequence of the work, but the time horizon is short. At most,
task plans cover an iteration, and often just the next few hours of work. A
developer’s detailed task plan is essentially a “to-do” list sequencing the
work he is responsible for completing. This includes implementing stories
as well as other tasks, such as the following:

• Spikes—These are time-boxed investigations into some technical
aspect of the project that may be required to reduce risk or improve
the accuracy of an estimate.

• Support—Developers often need to provide support for software
already in the production environment, even for products totally
unconnected to the current project. However, as reported by Gerald
Weinberg,7 a significant cost is associated with someone switching
among different projects.

Planning at Every Time Scale 531

NOTE

Iterations serve to time-box the development work, so they each have
the same fixed duration for the whole project, typically set at between
one and four weeks.

7. [SQM] Weinberg, Gerald. Quality Software Management (Dorset House, 1992).

• Bugs—Although the team should identify and correct any defects
in its software before declaring it complete, inevitably bugs will be
found in stories after the end of the iteration in which they were
implemented. Sam Guckenheimer8 provides good advice about bug
reporting in his recent book about VSTS.

Because you make the plan very close to when the work is being per-
formed, it is less sensitive to external events but flexible enough to respond
to any last-minute changes in the requirement. However, the short lead
time between plan and implementation can be a problem when any
advance preparation is needed. For example, if a story requires access to the
corporate database, you may need to complete the necessary forms a few
days before the work starts. You can handle these sorts of issues by creating
the necessary tasks while estimating the story and then flagging them with
a suitable sequence in order to remind people that they need to be sched-
uled separately.

Initially the task of implementing a story is implied by its story card.
However, when you identify additional tasks for a story (or a spike, bug,
etc.), we suggest that you write a summary of the work on a colored task
card such as that shown in Figure 26-1, estimate its size, and then put it in
the pile of stories awaiting implementation such that its order sets its pri-
ority. These colored task cards provide a visual warning of a problem in the
team’s planning process, because lots of colored cards indicate either that
too much work is unrelated to the stories or that too many dependencies
are being created for stories by way of their subtasks.

Chapter 26: Agile Planning532

8. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft Visual
System Team System (Addison-Wesley, 2006).

NOTE

You produce a task card for each story during the high-level planning
meeting of the iteration in which it is implemented. The card does
nothing more than just implement the story and serves only to track
the progress of this work during the iteration; see Figure 27-3 in
Chapter 27.

Figure 26-1: Task card: preparing a story for implementation

It should be possible to implement stories in almost any order, because
there should not be any dependencies among the stories. But clearly,
preparatory tasks may require execution in a certain sequence. Therefore,
you may need to add a sequence number to a task card, but this will not cre-
ate any dependencies among the tasks as long as you do not attempt to
share the task among several stories. For this reason, you should state only
one “owning” story at the top of each task card. You should give the size
of a task in the same units you use to size your stories; however, they do not
count toward the team’s velocity. Stating the size of a task just helps the
team avoid over-committing itself during iteration planning.

Planning at Every Time Scale 533

NOTE

Task cards simply serve as a reminder of some work that needs to be
done in some future iteration. In general, you will not create task cards
during detailed task planning and should expect only a small per-
centage of your tasks to have been identified in this way.

Iteration Plan
An iteration plan serves to list the stories that the developers will imple-
ment next. It is usually displayed on a notice board with a collection of
story cards pinned to it; see Figure 26-2. Once the customer and develop-
ers have finished arranging the pile of story cards into a suitable order of
priority, iteration planning is simply a matter of developers taking turns to
remove the next card from the top of the pile and pinning it next to their
name on the notice board to signify ownership. They stop picking up cards
just before the cumulative total of task points on the board exceeds the
team’s estimated velocity and respect the rule that only the top card from
the pile can be removed so that the customer’s priority is respected. It is
common for a team to display a plan for the current iteration on one side
of a notice board while constructing a plan for the next iteration on the
other. In this way, iteration planning can take place on a continuous basis.

Figure 26-2: Iteration board showing stories in successive iterations

Chapter 26: Agile Planning534

Developers can expect the customer not to change the iteration plan
once the iteration has started so that they are aiming at a fixed target. How-
ever, it is usual to have some negotiations during the team’s morning meet-
ing on the first day of the iteration when last-minute adjustments are made
to make the plan as good as possible. During the iteration, the owner of
each story becomes responsible for its completion and will perform the nec-
essary task planning to make sure this happens. The story is judged com-
plete when it passes its customer tests (see Section 7), and only then does
it count for the purposes of calculating the team’s velocity. Therefore, the
story either passes its tests at the end of the iteration and all the task points
get credited to the team, or it fails its tests and none of the task points is
counted. This may seem a bit harsh, but it provides a powerful incentive for
people to finish jobs completely and makes velocity a much more objective
measurement.

Planning at Every Time Scale 535

NOTE

The developer who owns the story is responsible for making sure it is
completed, but during actual implementation, the work is done with
help from another developer, as we explained in the Pair Program-
ming practice.

NOTE

Task cards are not displayed on the iteration plan because the itera-
tion plan is concerned with the delivery of features rather than the
completion of tasks. People decide for themselves how best to organ-
ize their work so that the team can deliver the stories by the end of the
iteration.

Weekly Cycle Practice
The Weekly Cycle practice is about synchronizing the achievement of the

team’s immediate goals with some naturally reoccurring event in the work-

place, such as the end of the week (or the end of two weeks). The weekly

cycle results in new features being added to the software and therefore is

responsible for moving a project forward.

Teams seem to work best when a set of goals are scheduled for completion

at the end of a cycle they all share. Most teams finish the week on the same

day, so it makes sense to plan for certain goals to be completed by this day.

A week is long enough to give flexibility in case some tasks prove more diffi-

cult than anticipated, but not so long that people lose sight of their objectives.

It also creates an effective planning horizon because it is hard to judge

progress when goals are set too far in the future or too close to the present.

Implementing the Weekly Cycle practice means your team must develop

software in a series of short, fixed-length iterations. Ideally, an iteration

should last a week, though for some teams two weeks may be more appro-

priate. A short planning meeting will be held before the start of an iteration

to decide which stories should be targeted for completion; see the section

Iteration Plan, earlier in this chapter. The work typically starts with the

development of the customer tests which will show when a story is com-

plete. The developer writes the software needed to make these tests pass

and then goes on to refine both code and tests. In this way, the develop-

ers and customers work together and create a product which is ready for

deployment in the production environment at the end of the iteration.

Release Plan
The software should always be ready for release to the business at the end of
each iteration, as explained in Section 9. Therefore, the customer can decide
when to deliver the software solely on the basis of the value it contains; this
often makes release dates quite irregular. These decisions are contained in
the release plan (see Figure 26-3), which is more useful to the business than
the team because it allows the business to plan its own activities for the
delivery of the new software; for example, training, sales drives, and so

Chapter 26: Agile Planning536

forth. Typically, the customer would prepare the release plan in a spreadsheet
that lists the new stories together with information such as the following:

• Release date = last release date + (iterations in next release * iteration
length)

• Release cost = iterations in next release * iteration burn rate

The release plan may impact an assessment of a story’s business value
and, therefore, its priority, because it is common for a customer to collect
groups of similar stories into themes to give a cohesive set of functionality
to each release. For example, the first release might concentrate on all the
stories needed to import ultrasound images into the hospital’s database so
that a particular area of the business can benefit from the software at the
earliest possible date.

Figure 26-3: Excel spreadsheet showing the OSPACS release plan

Planning at Every Time Scale 537

NOTE

Deployment of a team’s software may not be instantaneous when
organizations have a release process operated by people outside the
team which required them to rebuild and retest the software before
installing it in the production environment; see Section 9.

Quarterly Cycle Practice
The Quarterly Cycle practice promotes the idea of a collection of stories

with a common theme being implemented over a number of iterations and

then released to the business together so as to satisfy some general

strategic goal. Repeating this cycle four (or so) times a year keeps the team

in regular synchronization with the business it serves while also aggregat-

ing changes to minimize the disruption that inevitably results when new

software is put into production.

Introducing a quarterly cycle helps the team view its work in the context

of moving toward some longer-term goals without which its software might

lose its integrity and become just a collection of disconnected features.

The end of the quarterly cycle provides a periodic opportunity for both the

business and the developers to realign their objectives. It also provides a

time to initiate repairs and correct problems that have accumulated over

a number of iterations.

Implementing this practice requires that the team create a release plan at

the start of each quarterly cycle; see the section Release Plan, earlier in

this chapter. However, this plan may be discarded if the business decides

to pull the software into production before the end of the cycle. Therefore,

the team always plans for one quarter’s worth of iterations in advance and

adjusts its quarterly cycle to fit in with the needs of the business. The need

for a team to make big adjustments to its quarterly cycle often indicates a

more fundamental problem in its development process.

Controlling Plans

The team’s plans are reformed on a regular basis to take account of the two
types of changes which significantly impact an Agile project. First, varia-
tions in the business environment give rise to new requirements as well as
the need to change existing ones. This may result in the alteration of budg-
ets or variations in risk or value assessment. Second, the team’s actual rate
of progress may vary because of resource changes that result from budget

Chapter 26: Agile Planning538

adjustments. It can also vary for technical reasons because, for example, the
developers have adopted a new tool, or issues such as morale, group cohe-
sion, and energy need to be addressed.

Levers of Control
We previously described a good plan as one that delivers the best value for
given feature, budget, date, and quality constraints. Therefore, the people
who are ultimately responsible for providing value must react to change by
varying these constraints in an attempt to reoptimize the team’s delivery
of value. For this reason, the customer must be allowed to control an Agile
project using the following mechanisms:

• Features—Adjusting the priority of stories influences the features
that will be made available to the business in the next release. It
allows the customer to control a project by changing its scope.

• Budget and date—Adjusting the number of iterations affects the
total cost of the project and its final delivery date. When the cus-
tomer reduces the budget, the business gets fewer stories delivered
in a shorter time; when the customer increases the budget, the busi-
ness gets more stories, but they take longer to deliver.

• Quality—Adjusting the criterion for passing customer tests influ-
ences the team’s velocity by changing the way stories are judged to
be complete. It allows the customer to control a project by changing
the quality of the finished work.

You can consider the control of an Agile project as a dynamic system (see
Figure 26-4), with planning being driven by business changes which are

Controlling Plans 539

NOTE

Increasing the amount of work a team delivers by reducing the qual-
ity threshold is seldom worthwhile because it causes reworking, which
reduces morale, often leading to an even steeper decline in velocity.
Therefore, in practice, wise customers do not try to control quality.

influenced by the results of release plans as well as business events, and
velocity changes which arise from the results of iteration plans. Stories lie
at the center of the scheme, which emphasizes that the system is more con-
cerned with delivering features than it is with producing plans or tasks. You
will note that task plans do not appear on the diagram because they are just
mechanisms to help people organize their work and are not concerned with
controlling the project.

It is important for any control system to regulate the amount of feedback
it generates; otherwise, there is a risk of instability. The control system for
an Agile project is no different because too much change causes the system
to become chaotic and too little change makes it sluggish. In order to sta-
bilize the system, it is necessary to choose the correct iteration length, indi-
cated by the calendar in Figure 26-3. A week is a convenient scheduling
period for most teams, because a day is too short and a month is too long.
However, the decision as to whether the iteration length should be one
week, two weeks, or even longer needs to be made by each team on the
basis of their individual circumstances.

Figure 26-4: A dynamic system for controlling an Agile project

Project Planning

Release Plans

Velocity ChangeBusiness Change

Date, Budget
List of stories
Iteration count

QualityBudget (date)

(Add/Remove) (Add/Remove)

Iteration Plans
List of stories

to do next

Scope

Task Planning

March

Stories
Cost

Priority
Tests

Chapter 26: Agile Planning540

Story Life Cycle
Throughout the project, the customer will create new stories as the business
thinks of additional requirements (see Figure 26-5). Developers will then
estimate these stories during gaps between programming episodes, and the
customer will later prioritize them by inserting the corresponding cards at
an appropriate location in the pile of stories awaiting implementation.
Developers will monitor this pile of stories and perhaps discuss informally
among themselves a particular technical risk which may lead to a discus-
sion with the customer and then some reordering of the stories in the pile.
There is no need to discuss such matters at a team meeting unless there is
a clear difference of opinion about the risk.

Controlling Plans 541

NOTE

Scope, date, and quality can be considered to form a triangle9 such that
each point is interconnected, so adjusting one parameter affects the
others. But Kent Beck10 adds cost to this list and calls them the “four
control variables”: cost, time (date), quality, and scope.

9. Yourdon, Ed. The Rise and Resurrection of the American Programmer (Prentice Hall, 1996).
10. Beck, Kent. Extreme Programming Explained, First Edition (Addison-Wesley, 2000).

NOTE

Details of a story, such as the specific business algorithm that must be
implemented or the sort of data it concerns, are usually captured from
the customer when its tests are written just before the story is actually
implemented.

NOTE

The implementation of a story is complete when all the related cus-
tomer tests pass at the end of an iteration. The customer will then
remove the story card from the iteration planning board, attribute its
size to the team’s velocity, and then discard the card.

Figure 26-5: The life of a story

CONCLUSION

In this chapter, we showed how to plan a software project so that the team
can respond rapidly as new business opportunities lead to fresh require-
ments, and variations in market conditions necessitate adjustments of
budgets as well as value and risk assessments. The important aspects of this
approach to planning are as follows:

• Goals are based on delivering features (stories) rather than complet-
ing tasks so that the team’s progress toward them can be measured
objectively by the passing of customer tests. To achieve these goals
the team follows a sequence of small, good plans which it makes on
a regular basis to correct for any changes to the objective or varia-
tions in its rate of progress.

1. Create 2. Estimate 3. Prioritize

4. Assign

Tom

Luke

Sarah

5. Implement
VELOCITY = SUM OF COMPLETED

STORY SIZES

Iteration Three

LEGEND

Developers Customer

1. 2. 3.

3.2.4.
3.2.5.

6. Complete3.2.6.

Chapter 26: Agile Planning542

• The team’s plans are made in a similar way, but at various time
scales:
– Task plans allow people to organize their own work and are con-

cerned with optimizing the sequence of tasks in the time scale of
hours or days. A high-level task plan may be produced at the start
of an iteration, but detailed task plans are no more than people’s
individual “to-do” lists produced at daily meetings or at the start
of programming episodes.

– Iteration plans require individuals to take responsibility for deliv-
ering particular stories in the time scale of a week or two. This
sort of planning happens continuously as developers take owner-
ship of a story by placing it next to their name on the iteration
planning board.

– Release plans are projections of the features a team will deliver
in the time scale of months. However, at the end of each iteration,
the software is always ready for release, so a customer needs to
regularly adjust the release plan so that software is pulled into
production when it provides the most value.

• The project is controlled as a dynamic system with feedback being
provided by the team’s rate of progress (velocity) and by the soft-
ware delivered to the business. The customer controls the system by
adjusting the budget and scope (but not the quality) of this released
software to meet the changing demands of the business.

Conclusion 543

NOTE

An Agile team accepts that it cannot create a perfect plan at the start
of its project, so it puts considerable effort into planning throughout
the project life cycle without any expectation that the resultant plans
will survive for more than the briefest periods of time.

27
Managing Agile Projects

IN T H I S C H A P T E R, we show you how to use the project management
facilities in Visual Studio Team System (VSTS) so that you can import

work items into your Team Project from Excel, define iterations, and gen-
erate reports to help you manage your project from the information stored
about it in Team Foundation Server (TFS). We then describe the way a small
Agile team might use these facilities over the course of an iteration, using
the approach to estimating, prioritizing, and planning presented in the pre-
vious two chapters. The chapter then concludes with ten tips for manag-
ing an Agile project.

Using Visual Studio Team System for Project
Management

In Section 2, we explained how to create a Team Project for a small Agile
team by adapting the MSF for Agile Software Development process tem-
plate provided with VSTS. We called this process template MSF for XP;1

545

1. MSF for Extreme Programming Web site (www.msf4xp.org).

it creates a Team Project with the following project management-related
elements:

• Project Structure—The team’s first three iterations are defined;
however, it can add others using the Areas and Iterations dialog box
(Team | Team Project Setting | Areas and Iterations).

• Work item types and queries—Use Visual Studio’s Team menu to
add Bug, Story, and Task work items to your project, which you can
then list by running a suitable query contained in Team Explorer’s
Queries folder.

• Documents—The Project Portal provides access to documents man-
aged by SharePoint Services, including various Excel workbooks for
lists of work items.

• Reports—The Team Explorer’s Report folder contains a number of
standard reports intended to help you manage your project.

We will now look at each element in turn and explain how a small Agile
team might use them.

Project Structure
The project structure in VSTS serves to organize the team’s work into var-
ious time slots called iterations, which are equivalent to the sort of itera-
tions that form the columns on an Iteration Plan board; see Figure 26-2.
However, within Visual Studio, these iterations are used only for the pur-
poses of classifying work items.

Exercise 27-1: Creating a New Iteration for Your Project

In the following exercise, you will add an additional iteration to the three
that you defined when you created the Team Project.

1. Log on to the DeveloperPC as Tom (OSPACS Administrator), start
Visual Studio, and then connect to the OSPACS Team Project as
described in Exercise 5-7 in Chapter 5; see Appendix A for a specifi-
cation of this machine and details of Tom’s security groups.

Chapter 27: Managing Agile Projects546

2. Select the OSPACS project node in Team Explorer and open the Area
and Iterations dialog box by choosing Team Project Settings and
Areas and Iterations from the Team menu.

3. Select the Iteration tab to display the project’s default iterations in a
treeview. Add a new iteration by selecting the root item of this tree
and choosing New from its context menu. Type the name of your
new iteration and then press the Enter key.

4. Close the dialog box and log off, as you have finished this exercise.

Although the Area and Iterations dialog box allows you to create mul-
tiple areas and a complex hierarchy of iterations, we do not consider such
actions appropriate for a small Agile team. Instead, we suggest you just fol-
low Exercise 27-1 to generate a sequence of iterations with the root node as
their common parent. We also suggest you keep the default naming con-
vention (Iteration 0, 1, 2, etc.) because it isolates you from actual dates and
conveys the iteration sequence in a clear and unambiguous way.

Work Item Types and Queries
Each work item type that your process template defines has its own distinct
properties as well as those it shares with other work item types; see
Table 27-1. The Story and Task work item types correspond to the story
cards and task cards presented in the previous chapters; see Figure 25-1 in
Chapter 25 and Figure 26-1 in Chapter 26, respectively.

Using Visual Studio Team System for Project Management 547

NOTE

You do not need to define any additional areas because Agile teams are
not organized into different functional areas, as explained in the Whole
Team practice.

Exercise 27-2: Creating a New Story Work Item for Your Project

The following exercise creates a Story work item for your Team Project and
then sets its size and priority.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and connect to the OSPACS Team Project.

2. Select the OSPACS project node in Team Explorer and open the
form which will define the new story by choosing Add Work
Item–Story from the Team menu. Enter into this form the details
shown in Figure 27-1 and then save your work (File | Save All).

3. Close the window containing the form for the story you have just
created.

You can create new Bug and Task work items in the same way described
in Exercise 27-2, although in each case, the form is slightly different; see
Table 27-1. All these work items are stored in TFS, so you can subsequently
open them for editing by executing a suitable query, as explained in the
next exercise.

Chapter 27: Managing Agile Projects548

NOTE

You may want to repeat this exercise each time anyone in your team
starts to implement a new story so that source code changesets, bugs,
and so forth can be associated with a particular Story work item. How-
ever, agree to such a policy only if you are sure the information gath-
ered in this way will be useful.

NOTE

An Agile team should create work items only for the things it is
attempting to measure: its metrics. Therefore, don’t create a Task work
item if you are not measuring and generating reports about tasks.

Figure 27-1: Creating a new story with VSTS

Exercise 27-3: Running a Query to Find an Existing Story Work Item

In the following exercise, you will find the Story work item created in Exer-
cise 27-2, and then assign it to Iteration Three for implementation.

1. Open the Work Items–Team Queries folder of the OSPACS project
in Team Explorer and run the All Stories query by double-clicking
it. This creates a list of the matching work items in Visual Studio’s
main window.

2. Open the work item you created in Exercise 27-2 by selecting it from
the Query Results window and choosing Open from its context menu.
Then specify the iteration in which this story should be implemented
by opening the Iteration drop-down list and selecting Iteration Three.

3. Save your changes (File | Save) and close the window containing
the form.

Using Visual Studio Team System for Project Management 549

Exercise 27-4: Creating a Query to List All Story Work Items for Iteration Three

This next exercise shows you how to create your own queries so that you
can find and select the work items for your project stored on its Team Foun-
dation Server.

1. Create a new query by selecting the Work Items folder of the
OSPACS project and then choosing Add Query from its context
menu (Right-click | Add Query). This opens a query editing form
whose first line states that it will return all the work items for the
current project:

'Team Project' (field) '=' (operator) '@Project' (value)

2. Qualify the query so that it returns only the story items for Iteration
Three by adding the following statements in the next two lines:

'And' (and/or) 'Work Item Type' (field) '=' (operator) 'Story' (value)
'And' (and/or) 'Iteration Path' (field) 'Under' (operator) 'Iteration 3' (value)

3. Run the query to confirm that it works (Team | Run Query) and
then save it as a “My Query” called “All Stories in Iteration 3” using
the Save Query dialog box (File | Save Query).

4. Log off, as you have completed the exercise.

Chapter 27: Managing Agile Projects550

NOTE

You can associate a work item with a changeset when you are checking
in your work prior to performing an Integration Build and Test; see
Exercise 12-5 in Chapter 12.

NOTE

The Save Query dialog box allows you to save a query as a Team
Query or as a My Query. In the first case, the query appears in every-
one’s Team Explorer window in the Work Items–Team Queries folder,
but in the second case, it appears only in your My Queries folder.

Table 27-1: Main Properties of MSF4XP Process Work Item Types

Property Story Bug Task

Title X X X

Classification Area X X X

Iteration X X X

Status Assigned to X X X

State (active, complete, etc.) X X X

Priority X X X

Details Size X X

Integration build (when completed) X X X

Customer test (document name) X

Found in build X

Resolved in build X

Test method (namespace.class.name) X

Documents
You can integrate documents into a Team Project using the Project Portal
(Web site) and SharePoint Services, although anyone with Visual Studio
Team Edition installed on her PC will probably find it easier to access doc-
uments from the Documents folder in Team Explorer. The initial folders
(and files) that appear within the Documents folder depend upon the

Using Visual Studio Team System for Project Management 551

NOTE

Table 27-1 applies only to a Team Project created with the MSF4XP
process template. Full details about the properties of work item types
defined by any process template should be provided in the Process
Guidance section of the Project Portal it creates.

process template used to create your Team Project. However, team mem-
bers can add subfolders and documents to this collection at any time, so it
provides a general mechanism for them to collaborate with each other
using familiar Microsoft Office applications such as Word and Excel while
producing project documentation.

Exercise 27-5: Updating an Excel Spreadsheet with Stories from a Team Project

The following exercise adds an Excel spreadsheet to a Team Project’s Pro-
ject Management Document Library and then populates it with a list of the
project’s Story work items (including the one created in Exercise 27-2).

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and connect to the OSPACS Team Project.

2. Start Excel and create a new workbook (File | New), and then save
the file as MyStoryList.xls in a convenient directory on your PC
(File | Save). Close Excel.

3. Open the Documents folder for the OSPACS Team Project in your
Team Explorer window and then upload the Excel file MyStoryList.xls
by selecting the Project Management folder and then choosing Upload
Document from its context menu (Right-click | Upload Document).

4. Open the MyStoryList.xls Excel file for editing by selecting this item
in the Windows Explorer Project Management folder and selecting
Edit from its context menu (Right-click | Edit). This starts Excel and
opens the document.

5. Create a new list in the Excel document by clicking the Team toolbar
button labeled New List. This causes the New List dialog box to open,

Chapter 27: Managing Agile Projects552

NOTE

Team Explorer’s Documents folder and the Project Portal’s Document
Libraries provide different ways of viewing the same collection of fold-
ers and files, so changes made with Team Explorer are reflected in the
Project Portal and vice versa.

which contains a drop-down list of queries for populating your work-
sheet. Select the All Stories query and then click OK to create the list.

6. Save the changes you have made to MyStoryList.xls (File | Save)
and then close Excel.

Exercise 27-6: Updating a Team Project with Stories from an Excel Spreadsheet

In this exercise, you will add some stories to the Excel spreadsheet you
created in Exercise 27-5, and then insert these new stories into your Team
Project.

1. Open the MyStoryList.xls Excel file for editing by selecting this item
in the Team Explorer Project Management folder and selecting Edit
from its context menu (Right-click | Edit). This starts Excel and
opens the document.

2. Add a new story to MyStoryList.xls by clicking the bottom row of
its Story List, selecting Story from the list in the Work Item Type col-
umn, and then completing all the remaining columns required for a
story (each column marked with a green flag).

3. Save your changes (File | Save) and then publish them to your pro-
ject’s Team Foundation Server by clicking the Publish button in the
Team toolbar.

4. Open the Work Items–Team Queries folder of the OSPACS project
in Team Explorer and run the query called All Stories to confirm that
you have successfully added your new story.

5. Close Excel and log off, as you have finished this exercise.

Using Visual Studio Team System for Project Management 553

NOTE

If you created your Team Project from the MSF for XP process tem-
plate, you can use StoryList.xls instead of having to upload your own
Excel spreadsheet to the Project Portal.

Reports
The reports created by the process template for your Team Project are man-
aged by SQL Server Reporting Services and operate on the work item
records held by Team Foundation Server. These reports are contained in
your Team Explorer’s Report folder and are listed in their own Report Web
site (Team | Show Report Site).

Exercise 27-7: Producing a Bug Rate Report from TFS Work Items

The following exercise creates a chart to describe the total number of active
bugs on each day during a given period. It also shows the bugs fixed and
the new bugs created each day.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and connect to the OSPACS Team Project.

2. Open the Report folder for the OSPACS Team Project in Team
Explorer and then run the Report item labeled Bug Rates; double-
click it. This creates a chart in Visual Studio’s main window, like the
one shown in Figure 27-2.

3. After reviewing the report, log off, as you have finished the exercises
in this chapter.

Chapter 27: Managing Agile Projects554

NOTE

You can synchronize Microsoft Project files to your Team Project in
much the same way you would an Excel spreadsheet. This provides an
alternative way to manage the work items related to your project for
people who like Microsoft Project.

NOTE

The Report Web site provides access to a report builder so that you can
create custom reports; see Chapter 31.

Figure 27-2: Bug Rate report

Clearly, the usefulness of these charts depends upon the effort a team
puts into collecting the information. If everyone on your team creates a new
work item for a bug immediately after it is discovered and then sets its
“resolved in build” property (Table 27-1) once the fix has been successfully
integrated, your chart will contain meaningful information; if your team
doesn’t follow such a procedure, it will not.

2. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Visual Studio Team
System (Addison-Wesley, 2006).

Using Visual Studio Team System for Project Management 555

NOTE

Sam Guckenheimer’s recent book2 about VSTS provides an excellent
section, Troubleshooting the Project, which explains how to use some
of the most useful standard reports, including Bug Rate reports.

Example Agile Planning Life Cycle

We can define a planning life cycle because it is an activity which is per-
formed iteratively throughout the duration of an Agile project. Therefore,
the general process of planning changes little from iteration to iteration.
The only iteration that is different is the first one, as its objectives are
skewed by the need to create a basic framework for the ensuing work (see
Section 9) as well as by tasks such as setting up the development, integra-
tion, and test environments. Therefore, we will describe the planning of the
second iteration in order to give a more representative example of what you
should be aiming to do.

Start of Iteration
The OSPACS team has set its iteration length as one week, so the team
members hold a meeting at 8:15 each Monday morning to agree on a high-
level task plan for the next five days. At this stage, the developers have
already taken ownership of the stories they will each try to deliver before
Friday, so the iteration planning board will look much like the one shown
in Figure 26-2 in Chapter 26. However, during the course of the meeting,
it is not unusual for developers to sign up for some additional stories or
put some stories back on the pile if it looks like the team might be
overcommitted.

Chapter 27: Managing Agile Projects556

THIN VERTICAL SLICE

In the first iteration, try to follow the general planning life cycle, but
treat this as a learning exercise and set yourself only modest objectives.
You might, for example, aim to complete just one story concerned with
just saving and restoring an image. This takes a thin vertical slice
through the system, thereby allowing your team to encounter the main
abstractions of user interface, business logic, and data storage. It results
in the team building a basic framework (or skeleton) from which it can
hang its future work.

At the start of the meeting, the whole team gathers around its task notice
board (which may look like the one shown in Figure 27-3), and the meeting
starts with each person taking a couple of minutes to tell everyone else
what they intend to work on during the next iteration. This includes not
just implementing their stories, but also resolving bugs, conducting spikes,
preparing for future stories, and accomplishing any other tasks needed to
ensure smooth execution of the project. During these brief presentations,
developers remove task cards from the “Pending” area of the notice board
and pin them in their row to show the proposed sequence of their work.
They also pin in their row the task cards they created for the stories they
own, though typically each developer has only one task card per story, with
the words “implement story” on it. The emphasis here is directed toward
explaining the scope and sequence of the work rather than identifying
exactly what must be done, but inevitably people touch on implementation
details as well.

Figure 27-3: Task Board showing work in progress during an iteration

Example Agile Planning Life Cycle 557

After ten minutes or so, everyone has had the opportunity to explain
his work, so a more general discussion starts about ways in which the
work might be optimized and the conflicts, problems, and risks that are
to be addressed. This will cause the team to create some new task cards
as well as reorder certain tasks and switch others to different people,
until eventually the team has arranged the work into some form of cohe-
sive plan that it feels is realistic, given the time and resources available.
It will take less time for the OSPACS team to create such a high-level task
plan as it gains more experience organizing its work. However, this is
only the second iteration, so there is a general feeling of relief at 9:00 a.m.
when the meeting ends, because everyone has been standing now for
45 minutes.

At the end of the planning meeting, the OSPACS team has made any
last-minute adjustments to its iteration plan and everyone on the team
knows roughly what he has to do over the next five days in terms of the
high-level task plan. According to this plan, the team will deliver nine
stories by the end of the week, with a cumulative size of 21 task points;
in addition, the team will fix three serious bugs as well as complete one
spike. Therefore, Tom (who was the project manager) edits the Excel files
he added to the team’s Project Management Document Library and cre-
ates work items for the nine stories (Exercise 27-6) so that his fellow
developers can associate their changesets with them over the course of
the next week.

Chapter 27: Managing Agile Projects558

NOTE

The “Pending” section of the Task Board is a holding area for task
cards that the developers will need to complete in some future itera-
tion. It is important to keep such future tasks visible so that they are
not forgotten.

Slack Practice
The practice of allowing people enough freedom to effect change is called

Slack.3 The drive for too much efficiency on most teams is counter-productive

because it reduces the slack required for the team to do its job properly.

On a software team, you will rarely encounter someone who doesn’t work

hard enough. You’ll often find people working very hard, but going in entirely

the wrong direction. You may also find people who lack the skills required for

the job. However, most people work too hard, because they don’t have

enough slack to do the things that might make them more effective, such as

automating repetitive tasks, improving their technical knowledge, and learn-

ing to use new tools. One of the main reasons people don’t have enough slack

is that the plan doesn’t allow it. All of the people on the team are fully com-

mitted to complete tasks that will take 100 percent of their time. This gives rise

to a secondary problem: Without slack, people are unable to meet their com-

mitments when something goes wrong. Working on a project without enough

slack doesn’t just make people less effective; it also makes them losers.

Implementing slack isn’t just a matter of accepting that the number of hours

in an “ideal” day is less than the hours you actually spend in the office. It also

requires a team to factor some slack into its plan. For example, the team might

decide to work a 2 x 6 + 1 iteration cycle, thereby allowing one week for devel-

oper-chosen tasks after six iterations every two weeks. Alternatively, it might

decide to let developers take turns working as the tool builder for an itera-

tion rather than working on the implementation of customer stories.

Example Agile Planning Life Cycle 559

3. [SLAK] DeMarco, Tom. Slack (Broadway Books, 2002).

NOTE

Tom doesn’t need to create any work items for the bugs because the
team members created them when they first identified them. He will
also not create any work items for the spike or for the team’s other
tasks because it is easier to track them using a Task Board such as the
one in Figure 27-3.

Sample Programming Episode: Task Planning
A programming episode involves two developers who are pair program-
ming, and it is how all code that is destined for the production environment
is written, whether it is stories being implemented or bugs being fixed.
Developers on the OSPACS team try to fit two or three programming
episodes into their day so that they each complete about 15 of them during
each iteration.

After the team meeting finishes at 9:00 a.m., Sarah quickly asks Luke to
help with her first task on the Task Board: the implementation of a partic-
ular story. The unwritten rule is that a developer must give help when
asked, unless he or she is occupied on another matter. So, because Luke is
not yet doing anything, he agrees to help Sarah. Accordingly, Sarah moves
the story’s task card into her “In Progress” column on the Task Board before
sitting down with Luke for ten minutes in order to create a to-do (or test)
list; see Chapter 14. The programming episode then proceeds in much the
same way as we described in Section 5, as the two of them repeat the micro-
cycle of write a test, write the code to pass the test, and then refactor. A few
hours later, they have completed each test on their list, so they check in their
new code, linking its changeset to the Story work item before running
an Integration Build and Test to validate their work; see Exercise 12-5 in
Chapter 12. While this is running, they go for coffee together and discuss
what they have done.

Chapter 27: Managing Agile Projects560

NOTE

Teams usually split or combine stories until they can complete them
in about three programming episodes. This allows work to “flow”4

more efficiently because each developer can own two or three stories
and still have six episodes per week available to pair with others.

4. [LT] Womack, James P., and Daniel T. Jones. Lean Thinking (Simon & Schuster, 2003).

Between Programming Episodes
When Sarah returns from coffee at 11:30 the results of the Integration Build
and Test show that it was successful, so she judges the programming
episode to be complete. There isn’t time to start another session before
lunch, so she works on her own doing some preparation work for another
story which will be implemented in the next iteration. This work has a task
card, so she moves it into her “In Progress” column on the Task Board.
However, the task doesn’t take long to complete, so by noon she moves the
card into her “Completed” column.

Sally (the customer) can see that Sarah isn’t busy, so she comes over to
discuss a new feature with her. The conversation doesn’t last more than
five minutes, but it results in a new story card appearing in the area of the
Iteration Planning Board reserved for stories that have not yet been esti-
mated: the upper-right section of the “Future Iterations” column (see
Figure 26-2 in Chapter 26). The Iteration Planning Board is conveniently
located in the coffee room, so Sarah immediately manages to engage Tom
and Peter in a conversation about the likely size of this new story. They all
agree that it seems to be a 2 task point story, so Sarah writes the size on the
card and moves it into the area of the Iteration Planning Board reserved for
stories that have not yet been prioritized: the lower-right section of the
“Future Iterations” column. In this way, the next time Sally is having cof-
fee, she can consider putting the story in her ordered list of stories for
future iterations.

Example Agile Planning Life Cycle 561

TIP

Create a Task work item for “Refactoring” at the start of each iteration
so that when people make improvements to the code base (the Share
Code practice) which are not related to any story, you can still associ-
ate the changeset with a work item to assist with later identification.

Sarah needs to do a reasonable amount of work between her program-
ming episodes over the next five days, and most of it will never appear on
the Task Board, not to mention in TFS. These are tasks which are not nec-
essarily related to the project, but still need to be done. Therefore, before
breaking for lunch, Sarah spends ten minutes writing her own personal
to-do list for the iteration which includes ordering some books from
Amazon.com and preparing a presentation for the team about a new chart
she wants to introduce.

Planning Customer Tests
After lunch, Sarah and Sally discuss the tests for one of Sarah’s stories. They
had first talked about these tests last week when Sarah was considering tak-
ing ownership of the story, but now they need to consider the fine details.
Sally has already seen that the story is in Sarah’s “In Progress” column, so
during the morning, she created a Word document with some Column Fix-
ture tables containing tests for the business logic she wanted to implement.
It was now clear to Sarah that the business rules were quite simple, and
once they are implemented the story will be complete. Therefore, she goes
back to her desk and starts developing the necessary fixtures so that Sally
can run her tests; see the exercises in Chapter 23.

Chapter 27: Managing Agile Projects562

NOTE

The OSPACS team encourages comments from everyone about prior-
ities by pinning new story cards in priority order to the “Future Itera-
tions” column of the Iteration Planning Board instead of keeping them
out of sight on Sally’s desk.

NOTE

The fixtures needed for customer tests just provide the necessary glue
to link the Framework for Integrated Test (FIT) libraries to the compo-
nent libraries under development. They usually require very little cod-
ing, so they can often be produced quite quickly.

Completing a Story
It takes Sarah until 2:30 p.m. to complete the fixtures for Sally’s customer
tests and make them accessible. However, once Sarah finishes this work,
she is confident that she can complete the story with just one more pro-
gramming episode. This time Sarah asks Peter to be her programming pair,
so they work together in the same way she and Luke had done during the
morning.

Sarah’s prediction that the story would be completed quickly is correct,
so by 4:00 p.m., they have checked in and validated their work using an
Integration Build and Test. Accordingly, Sarah moves the story’s task card
into her “Completed” column on the Task Board as a sign to Sally that she
should now check that the software passes her tests. If Sally is not satisfied,
she has the option of discussing the matter with Sarah and writing some
more tests. However, when Sally runs the test, she is satisfied, so the story
card is removed from the Iteration Planning Board and its task points are
credited to the team’s velocity score. Sally also runs a query from her Team
Explorer window to find the work item associated with the story (Exer-
cise 27-3) so that she can set its State property to Complete and, therefore,
include work in the “Story Burn-down” chart Sarah implemented in the
previous iteration. This chart shows after each day the amount of work
remaining before the team reaches its iteration targets.

Completing a Bug Fix
Although it is 4:00 p.m., Sarah is on a roll having finished her story in two
programming episodes rather than the three she had estimated. Therefore,
she decides to fit a third programming episode into her day so that she can
implement a bug fix before leaving the office. On this occasion, she recruits

Example Agile Planning Life Cycle 563

NOTE

The completion of spikes, bug fixes, and other work doesn’t count
toward a team’s velocity because it is a measure of the team’s rate of
progress in the delivery of features valued by the business—in other
words, the completion of stories.

Tom to help her, so after moving the corresponding task card on the Task
Board into her “In Progress” column, she starts pair programming with her
third partner of the day.

Sarah and Tom first run a query to find the work item associated with
the bug (see Exercise 27-3). This work item gives them lots of information
about the problem, including the steps they need to take in order to repro-
duce it. Therefore, after ten minutes discussing the issue, they have pro-
duced the list of actions they think will lead most swiftly to a fix. Thirty
minutes later they have completed the unit test, which takes them directly
to the source of the problem. Fixing the bug involves changing a single line
of code, but it takes another five minutes for the Integration Build and Test
to complete successfully, so it is almost 5:00 p.m. before Sarah is able to
move the task card into her “Completed” column on the Task Board. She
then updates the work item in TFS, changing its status to Fixed and setting
the Integration Build property to the Integration Build she has just run.

Daily Meetings
The OSPACS team holds a stand-up meeting around the Task Board each
day at 8:15 a.m. On Mondays, as mentioned earlier, the meeting is mainly
about making high-level task plans for the new iteration. However, on
other days, people are more concerned with reviewing progress and iden-
tifying any actions that might help the team achieve its iteration goals by
Friday. Except for the Monday meetings, these meetings seldom last for
more than 15 minutes.

At the start of the meeting, each person gives a brief summary of what
he did yesterday, what he aims to do today, and what is delaying him, if
anything. When you’re standing in front of the task planning board, it’s

Chapter 27: Managing Agile Projects564

NOTE

Fixing a bug usually requires some change to the project’s code base,
and therefore it is a task that the developers who are pair program-
ming should complete. You should approach it in a similar way to
implementing a story, except usually there are no customer tests.

difficult to obscure the truth about your progress. However, the meeting
isn’t about punishing or humiliating people. Instead, anyone who is falling
behind with his tasks gets helps from other members of the team. There-
fore, throughout the week, the OSPACS team adjusts its task plan by mov-
ing cards from one person to another and even reassigning ownership of a
story if the circumstances warrant it.

During the course of the week, the OSPACS team doesn’t need to set
time aside for an iteration planning meeting, because the plan emerges as
developers review the pile of stories in the gaps between their program-
ming episodes and pin the next story from the pile next to their name on the
notice board. This approach gives the team a significant advantage, because
in addition to avoiding the inevitable disruption formal meetings cause to
the team’s flow of work, they also gain more programming episodes.

End of the Iteration
The OSPACS team’s iterations end on Friday afternoons at 5:00 p.m. There-
fore, toward the end of each week, the team members must consider
whether they can add another story to the Task Board, or whether they
need to remove one because their progress has been slower than antici-
pated. It is better to make such plans with the customer in advance rather
than discovering that an important story isn’t quite complete a few minutes
before the deadline.

The developers spend the final hour of the iteration demonstrating their
completed stories to the rest of the team using the software generated by
the latest Integration Build. These demonstrations show the features oper-
ating in real-life scenarios and give everyone an opportunity to spot flaws
in the testing. The fact that people know their software will be given such

Example Agile Planning Life Cycle 565

NOTE

The OSPACS team doesn’t literally have a pile of stories. Instead, the
team members pin cards in the pile in priority order to the “Future
Iterations” area of their Iteration Planning Board; see Figure 26-2 in
Chapter 26.

a grilling by the rest of the team at the end of the iteration provides a pow-
erful incentive for them to run proper tests before declaring a story to be
complete.

Any significant problems the team finds during the demonstrations may
require removal of a story by backing out its changesets from the repository
(see Exercise 9-4 in Chapter 9) and then running a new Integration Build
and Test. However, this procedure should take less than ten minutes, so
before the team members leave on Friday, they should be able to deliver a
working Integration Build containing the stories successfully implemented
in the iteration. Fortunately, the OSPACS team finds only one largely
insignificant bug, which it handles by creating a new Bug work item. There-
fore, at 5:00 p.m., all of the team members are able to leave the office for the
weekend feeling quite satisfied with their work and looking forward to
Monday when iteration three starts.

Release Planning
The OSPACS developers are not really involved in release planning, because
Sally (the customer) does this work while they are working on the code. She
prepares the plan on a spreadsheet like the one shown in Figure 26-3 in
Chapter 26 and updates it after each iteration to adjust for changes in veloc-
ity as well as business need. Primarily the release plan serves to give the
business an idea of what it is getting and how long it must wait. This allows
the business to adjust the project’s budget and resource allocation against
financials such as return on investment. However, Sally regularly talks
about the release plan during the morning stand-up meetings so that the
developers are kept aware of the point to which the iterations must

Chapter 27: Managing Agile Projects566

NOTE

The scheduled Daily Build and Test (see Exercise 12-4 in Chapter 12)
performs a more thorough check of the software on Friday night so
that each Monday morning, the team starts with a solid code base on
which to work. If necessary, people come into the office over the week-
end to make sure this happens.

converge. She has also uploaded the release plan spreadsheet to the Project
Portal (Exercise 27-5) so that it is available to all members of the team.

Top Ten Tips for Managing Agile Projects

To manage Agile projects you need to create a succession of good plans
which allow the team to react dynamically to changes in objectives and rate
of progress. We provide the following tips to help you make such plans as
well as the accurate estimates and correct priorities upon which they
depend:

1. Plan tasks from the bottom up—Tasks are the most difficult part of
the project to plan, so keep the process simple and let the tasks arise
from within the team rather than imposing them from software such
as Microsoft Project.

2. Make good estimates—Estimate the size of a task (story) rather than
the time it will take, and express the size as a comparison using a
nonlinear scale. Split and combine work so that you can express
most of it as a comparison to something you know, x, in terms of
the same size as x, twice the size of x, and three times the size of x.

3. Set priorities correctly—Deliver first stories that promise to provide
the most value for the least business risk, but also give priority to
stories that address technical risk. Remove dependencies between
stories so that you can prioritize them separately.

4. Aim to deliver features rather than complete tasks—Allow the team
to become self-organizing so that people take responsibility for deliv-
ering the stories they “own” instead of hiding behind the ambiguity
of task definition and completion.

Top Ten Tips for Managing Agile Projects 567

NOTE

Agile projects generally end when the customer is unable to discover
anymore stories whose implementation cost can be justified in terms of
the business value they deliver.

5. Plan at different time scales—Produce a sequence of good plans
at the time scale of hours and days (task), weeks (iterations), and
months (releases). Use the longer-term plans to guide the shorter-
term ones and expect to replan frequently.

6. Provide the team with some slack—Avoid letting the team become
so busy that it doesn’t have time to address things that would make
it more productive. Allow buffers in the schedule in order to contain
tasks that overrun.

7. Manage the project in iterations—Set clear goals at the start of each
iteration in terms of the stories it will deliver, and make objective
measurements of team progress by counting the size of the stories
that are actually delivered at the end.

8. Control the project dynamically—The customer controls the project
with the release budget (price, time) and story priority (scope) using
feedback from the business as well as from the team. However, the
iteration length and release dates must dictate the amount of feed-
back so that there is enough to make the team responsive, but not so
much that it becomes chaotic.

9. Communicate—Involve the whole team in project management by
improving communication so that every voice can be heard. It’s best
to do this via frequent face-to-face interaction rather than through
formal meetings and documents posted on the project Web site.

10. Learn—You cannot hope to refine a software development plan in
the light of its execution because it is a one-time plan. Improvement
comes only by gaining knowledge and experience, so make sure that
what is done in your current iteration is captured and disseminated
to benefit all future ones.

Chapter 27: Managing Agile Projects568

NOTE

The OSPACS team occasionally holds meetings over lunch to discuss
some technical or educational issue. These are called brown-bag meet-
ings for the simple reason that lunch is traditionally provided for the
team in brown bags.

CONCLUSION

In this chapter, we showed you how to use the facilities of Visual Studio
Team System to manage a small Agile project, and then walked through an
iteration so that you could see how you might use them in a real-life Agile
project in conjunction with the approach to estimating, prioritizing, and
planning that we presented earlier in this section of the book.

Conclusion 569

Review of Section 8
Estimate, Prioritize, and Plan

TH E OSPACS T E A M’S adoption of test-driven development (TDD)
and customer testing, combined with the other Agile practices it had

introduced over the past few months, at last allowed the developers to
deliver consistently high-quality software at the end of each iteration. Con-
sequently, they were much more confident about their ability to plan so that
in the future, the business should get more of the software it wants at the
time it needs it. Therefore, the team adopted a more Agile approach to esti-
mating, prioritizing, and planning by taking the following actions:

• Planned around the delivery of stories—They oriented their plan-
ning around the delivery of stories, so the story cards became central
to the planning process. Developers were expected to take owner-
ship of a story and assume responsibility for its delivery at the end
of a particular iteration.

• Erected notice boards for iteration and task planning—They
erected notice boards for iteration planning and task planning so
that everyone could become involved in the planning process. They
also created a spreadsheet for the release plan and added it to the
Team Project’s Document Library so that everyone could access it.

• Became self-organizing—Developers were given the responsibility
of producing their own task plans during an iteration, and there-
fore, they became self-organizing. Everyone agreed on the iteration
plans before the iteration started, and release plans became Sally’s
responsibility.

571

• Set relative story size—The developers started estimating stories
in task points rather than man-hours. They compared each story to
some work that was rated at 1 task point and used a nonlinear scale
of 0, 1, 2, 3, 5, 8, 13, 20, 40, 100.

• Allowed the customer to set story priority—Sally based the priority
of a story upon its quantifiable value and its associated risk. Sally
was also put in charge of controlling the project, which she achieved
by setting the number of iterations available to the team as well as
the priority of the stories.

• Tracked bugs—The developers agreed that they would track bugs
by creating a Bug work item for each bug that was discovered.

The Team’s Impressions

Most of the team hadn’t really thought too much about estimating, priori-
tizing, and planning in the past because they relied on Tom to tell them
what to do. However, they now realize that on an Agile team, everyone
must address these issues.

CEO: Mike
“Finishing weekly iterations on time lets the team practice prioritizing its
commitments in order to meet deadlines, which hopefully will allow us to
deliver the product’s ‘must haves’ on time, even if this means we lose a few
‘nice to haves’ along the way.”

Review of Section 8: Estimate, Prioritize, Plan572

TIP

Improve your ability to estimate and plan by recording in a project
notebook the difference between the time you think it will take to do
something and the actual time you spend doing it. Make sure your data
is meaningful by setting tangible goals for the completion of each task.

Developer: Tom
“Giving the customer control of the project seemed like a bad idea, until I
realized that the developers would no longer be blamed for exceeding
budgets or failing to meet the needs of the business.”

“It is easy for a developer to become over-committed by signing up for
stories without fully appreciating the number of other tasks that will
occupy his (or her) time during the next iteration.”

Developer: Luke
“Keeping a personal project notebook has given me a much better under-
standing about how I spend my time, as well as making me more organized.”

“It is hard to improve upon the simplicity of a story card.”

Developer: Sarah
“The major benefit we get from the project management facilities of VSTS
is bug tracking. It’s great to have bug tracking linked directly to our version
control system.”

“We need to consider carefully how we are going to use the information
added to a work item before deciding to collect it.”

“People don’t spend 100 percent of their time working on the project,
so it makes much more sense to reflect this fact in our plans. Allowing
people to work on other things also gives us a bit of a buffer in case things
go wrong.”

Developer: Maggie
“I know that the bug rate has declined rapidly since we starting doing TDD
and customer testing. However, the bug tracking features of VSTS prom-
ise to make it much easier to manage the few that remain.”

“Providing people with a bit of time to work on our tools and utilities
is an investment that will pay big dividends. In the past, we’ve been so
busy working on the project that we’ve not had the time to save time.”

The Team’s Impressions 573

Customer: Sally
“Managing the budget by setting the number of iterations available to the
team makes my job much easier. I can immediately see the impact of budget
changes on what the business will get and when.”

Agile Values

The improvement in the way the team estimates, prioritizes, and plans its
work, together with the Agile practices of Slack, Stories, Weekly Cycle, and
Monthly Cycle, supported the Agile values the team was trying to promote
in the following ways.

Communication
The team has pulled the plans from Tom’s PC and put them on notice
boards that everyone can see. The use of story and task cards also promotes
communication during meetings because people can physically handle the
cards instead of fighting for control of the keyboard and mouse.

Feedback
The Weekly Cycle practice provides enough feedback to steer the product
to the next release, but not so much that the team never manages to finish
anything. In a similar way, the Monthly Cycle practice steers the project
toward its eventual conclusion.

Courage
The team members feel less defensive about their iteration and task plans
because they cover such a small time scale, so they are frequently rewritten.
This makes them more willing to undertake challenging work because the
impact of any failure is limited to the iteration.

Simplicity
The team has adopted an approach to planning that everyone understands.
It requires nothing more complex than a notice board and some index
cards. Planning is done regularly, but it mainly addresses short time scales,
so the team doesn’t need such complex plans.

Review of Section 8: Estimate, Prioritize, Plan574

Respect
The ability of the developers to achieve a constant velocity and to produce
estimates that seldom change gives them respect from the businesspeople.
The customer’s ability to prioritize the work correctly and manage the
team’s budget gives her the respect of the developers.

The introduction of the Slack practice resulted in developers having the
time to meet their commitments and do a proper job, which built up peo-
ple’s trust in the team and its capabilities.

Agile Values 575

Section 9
Practice for Deployment

IN SE C T I O N 9, we urge you to practice moving your software products
to the production environment from the earliest stages of the project.

Chapter 28 describes some of the obstacles you might face achieving this
objective within Agile time scales and suggests ways to prepare for the iter-
ative and incremental deployment of your software. Chapter 29 then
explains how to develop the sorts of installation programs that will allow
you to automate such regular deployments both in the datacenter and on
your user’s desktop. Finally, Chapter 30 covers the Distributed System
Designer tools provided by Visual Studio Team System for Architects and

577

Photograph by Jo Hale (Copyright Getty Images 2006).

Successful software deployment depends on your team exhaustively
practicing a choreographed set of moves before performing them in
front of an audience.

explains how you might use them to help you deploy Web services in a dis-
tributed system environment.

Story from the Trenches

Some time ago, I accepted a contract from a large insurance company to
help it build a call center system so that it could sell its products directly
over the telephone. The project was a multimillion-dollar investment for
the company and the team comprised more than a hundred people. It had
a client-server architecture and was run in a typical Waterfall fashion, with
separate phases for analysis, design, code, test, and deployment. Most of
the team was concerned with the development of a database to support the
new system that would run on the company’s mainframe. My job was to
provide the glue software that would connect a third-party Windows appli-
cation to this new database.

Few people on the team knew anything about Windows development,
so there was a bit of a cultural divide between us. However, we all got on
well enough, and as the months passed, the project finally reached its
deployment phase. Our managers viewed this primarily as a data migra-
tion exercise, populating the production database with information about
real customers and removing all the test data. Nobody had given much
thought to the deployment of the desktop software because it didn’t seem
to involve much more than copying some files onto a bunch of PCs.

The deployment of the database went smoothly enough, but when the
components I had written were installed on the production PCs, the desktop
application stopped working and even the database connection could not be
established. This came as a shock to me because everything had worked per-
fectly in the system test environment. However, my project manager was
more than shocked; he was panic-stricken! Nothing worked, yet a big adver-
tising campaign was already well on the way, promising a launch date in a
few days’ time. Accordingly, I was dispatched to the call center with clear
instructions to sort out the problem or find myself a new job.

When I arrived at the call center the next morning, it quickly became
apparent that the production PCs were configured differently than the ones

Section 9: Practice for Deployment578

we used during system testing. The deployment team had simply installed
the latest versions of all the software without realizing that not all of these
versions were compatible with each other. Therefore, I had to start from a
production PC that had little more than the operating system installed, and
then laboriously install each product, together with its updates, until I had
figured out which ones were causing the problem. Eventually, in the early
hours of the morning, I completed a list of the allowable updates so that the
deployment team could rebuild the 250 production PCs. Later that same
day, the business accepted the system so that it could now be launched as
planned, which saved my project manager from any further humiliation.

The moral of this story is that software deployment needs to be considered
from the start of the project; otherwise, you condemn yourself to discovering
problems at a time when you have the least amount of time to fix them. In this
section of the book, we discuss the ways in which an Agile team can put such good
advice into practice.

Story from the Trenches 579

28
Moving into Production

TH I S C H A P T E R I N T R O D U C E S the main issues that a team needs to think
about when moving its software into the production environment. It

starts by considering the release process and explains the need to remove
bottlenecks elsewhere in your organization when your team is not entirely
responsible for this work. We then look at how an Agile team can prepare
for the iterative and incremental deployment of its software by building up
its proficiency in releasing software from the start of a project, while it is still
simple to install. Finally, we explore ways in which facilities such as logging
and a support Web site can help you monitor the results of your software’s
deployment so that your team can improve its development process and
learn from past mistakes.

Managing Deployment

Developers create software inside their own development environments,
but after each programming episode, they check the software into Team
Foundation Version Control (TFVC) so that it can be moved into the Build-
LabPC for integration with the rest of the team’s work. Every night this inte-
grated software is rebuilt from the ground up by the scheduled Daily Build
in order to prepare everything required for the possible deployment of the
team’s work and deposit it into in a shared drop folder; see Figure 11-1 in

581

Chapter 11. However, before such software can be migrated into the pro-
duction environment and used by the business, it will typically have to pass
through some form of release process.

The Release Process
In some organizations, the deployment of a build involves not much more
than turning the drop folder into a shared network folder and then invit-
ing your business community to access its contents. However, more typi-
cally you will need to follow a process which addresses issues such as the
following:

• Sanity test—Automated tests often miss things that are immediately
obvious to a human tester, so you need to perform some form of
manual test of the software’s basic functionality. Typically, the team
does this as the final part of the Daily Build’s Smoke Test, discussed
in Chapter 11.

• System test—It is often important to predict the performance of the
software as a system in your production environment under condi-
tions of normal as well as abnormal load and stress; see Robert
Binder’s book1 for more information.

• System installation—In order to install your software into its target
environment, you may need to arrange for support staff to visit par-
ticular machines in order to log on and run some type of installation
program.

Chapter 28: Moving into Production582

NOTE

Software teams are seldom put in total control of the release process, so
they usually hand that control off to a of deployment team, though the
point at which that happens varies significantly from organization to
organization.

1. Binder, Robert. Testing Object-Oriented Systems (Addison-Wesley, 2000).

• Data migration—New software often depends on changes to the
production database; see the Data Deployment section, later in this
chapter. Therefore, such work must be completed before the system
can be used.

• Production of physical material—A release may require the pro-
duction of things such as printed manuals and DVDs, so these items
need to be prepared in time for the actual release date. This is a par-
ticularly important consideration if your team is developing shrink-
wrapped software for sale in a store or on an Internet site.

• Uploading to a Web site—Someone may need to copy the drop
folder to another location so that people can download its contents
from a publicly accessible Web site.

• Provision of support—Help desk support, user training, bug report-
ing, and so forth may require updating in regard to the new release.
Typically, you need to initiate these sorts of actions well in advance
of the scheduled release date.

In a large organization, it is not unusual for the release process to take
months (see Figure 28-1) and, therefore, significantly delay the moment at
which the business can get a return on its investment as well as increasing
the risk of the software failing to satisfy the real business need. An Agile
team addresses such issues by introducing the Daily Deployment practice
so that potentially all new software can be installed in the production envi-
ronment at the start of the next business day. In this way, the business can
decide when to use the new software without being constrained by the time
delay of actually making the software available to them.

Managing Deployment 583

NOTE

The release process is actually a production activity, not a design activ-
ity. Therefore, during the deployment of your software, you should
seek to minimize variation by following a well-defined procedure,
parts of which may be completely prescribed.

Chapter 28: Moving into Production584

Figure 28-1: Timeline showing a five-month deployment schedule

Daily Deployment Practice
Daily deployment requires you to put all new software into the production

environment for the start of each business day. In some ways, it is like set-

ting your iteration length to a single day, though clearly you must consider

longer periods for the purposes of project planning and control.

The usual reason for implementing daily deployment is when your team

is serving a business that needs to respond to daily changes in its market.

However, it can also be justified in terms of reducing the time required for

your software to transition into production; for the longer this takes, less

value is returned, and there is greater risk that the business environment

will change and render the software obsolete.

You must face a number of practical issues when you deploy your soft-

ware into production each day. In particular, you need to consider the

impact of even the smallest change to the way people work or use the

Time Working

Time Waiting

5 minutes

1 week

1 hour

1 week

1 day

1 week

3 days

3 weeks

1 day

Deployment
Request

Rebuild Product
from Its

Source Code

Package Product
for System Test System Test

User
Acceptance

Test
A

Data Migration

Installation of
Software on
Production

Servers

Installation of
Software on
Production
Desktops

Switch to
New ProductA

Time Waiting

Time Working

1 week

2 hours

1 week

2 hours

2 weeks

3 days

2 weeks

1 hour

system. You also need to ensure that the documentation and other related

materials are kept in sync with the daily changes you are making to the

software. Ultimately, these matters are determined by what the business

is prepared to accept, because it is the customer who has to balance the

disruption caused by a new release against the value it provides.

Implementing the Daily Deployment practice is a challenge because it

requires your team to reduce its bug rates to very low levels as well to set

up a release process that delivers software into production with minimal

manual intervention. The difficulties of achieving such levels of quality and

automation mean that daily deployment often remains more of an objec-

tive than something a team actually manages to achieve.

Removing Bottlenecks
If your organization’s release process involves transitioning through
stages such as system testing, quality control, auditing, and beta testing,
you should press for the reengineering of these processes along Agile lines
to remove any bottlenecks that might delay deployment. There may be
good reasons why you cannot move your software into production right
away; for example, it might be a safety-critical system that requires exter-
nal validation of code changes. However, aiming for daily deployment can
only help improve the flow of your organization’s value stream2 and

Managing Deployment 585

TIP

Set the more realistic goal of your team releasing its software each day
into some form of preproduction environment by way of a handoff to
another team, which will then take responsibility for selecting a build
and completing the rest of the release process.

2. [LSD] Poppendieck, Mary, and Tom Poppendieck. Lean Software Development (Addison-
Wesley, 2003).

reduce its cost through the automation of its processes, so it remains a
good goal to aim for, even when there are insurmountable barriers to its
actual introduction.

Handing Over the Release to a Deployment Team
Companies with large IT infrastructures more often than not have rigorous
standards for deploying software and employ specialist deployment teams
to ensure that they are correctly implemented. This work is essentially a
configuration management exercise requiring strict control of any changes
to the baselines carefully established for each type of platform the organi-
zation uses. Therefore, such teams are not only concerned with the deploy-
ment of software that originates from within their organizations, but also
must handle software from external sources such as third-party applica-
tions, updates, and operating system service packs.

You can get a general idea of what a deployment team does from such
literature as “The 20 Commandments of Software Packaging.”4 However,
when it comes to handling the release of software from an internal devel-
opment team, it is normally a matter of the following:

• The deployment team rebuilds the software in its own Build Lab as
a test of the developer’s configuration management process.

Chapter 28: Moving into Production586

NOTE

A software team never works in total isolation, so the benefits of an
Agile approach to development cannot be fully realized until the con-
cept of lean thinking3 has become well established across the whole
organization.

3. [LT] Womack, James P., and Daniel T. Jones. Lean Thinking (Simon & Schuster, 2003).
4. Ruest, Nelson, and Danielle Ruest. “The 20 Commandments of Software Packaging”

(www.sms-alliance.com).

• The team checks the software’s compatibility with the target
environment.

• The team packages the software for automated deployment using
tools such as the following:
– Macrovision’s FLEXnet AdminStudio,5 which allows you to

implement a standard process for preparing and testing software
packages

– Microsoft’s Systems Management Server (SMS),6 a change and
configuration management solution for deploying software pack-
ages and updates across an enterprise

Preparing for Deployment

It is best for a team to consider deployment problems from the start of a
project when the software products are still simple. You can then build up
your expertise so that deployment becomes a polished and well-practiced
process. Therefore, we suggest that you aim to have a functional installa-
tion program by the end of your first iteration, if not before. In this way, you
start with the simplest possible installation program and then slowly add
the necessary support as your software becomes more complex.

Preparing for Deployment 587

5. FLEXnet Admin Studio Web site (www.macrovision.com/products/flexnet_adminstudio).
6. Microsoft SMS Web site (www.microsoft.com/smserver).

NOTE

When an organization has a dedicated team responsible for deploying
all its software, there may be a delay of several weeks (or even months)
before the team’s release becomes available to the business, which sig-
nificantly reduces the benefits of its Agile approach.

The Installation Program
The most obvious sign of your team’s commitment to reducing delays in
deployment is the development of an installation program which, with not
much more than a single mouse-click, allows a release to be deployed or
rolled back. In a simple project, you might be able to satisfy this requirement
by creating a batch file,7 but in most cases, a team will use a tool such as
InstallShield8 (or WiX9) to develop its installation program(s). These sorts of
programs generally handle all aspects of deployment to the desktop or data-
center, including the following:

• Detecting any installation prerequisites on the target platform, such
as operating system type, service packs, and components

• Providing guidance for the person deploying your system, and col-
lecting any information such as the target directory location, license
acceptance statements, and so forth

• Installing the executable files (.exe, .dll) generated by your build,
together with all the redistributable software components upon
which they depend

• Configuring the Windows environment through environment vari-
ables, configuration files, and Registry settings, as well as configur-
ing server components such as Internet Information Services (IIS),
COM+ servers, and applications

• Copying help, release notes, license, and other forms of documenta-
tion for your product into the appropriate directories

• Executing SQL scripts and installing any data files that your soft-
ware may require

• Creating shortcuts to your program on the target platform desktop,
handling localization issues, and so forth

Chapter 28: Moving into Production588

7. Advice on creating DOS batch files is available at www.computerhope.com/batch.htm.
8. InstallShield Web site (www.macrovision.com/products/flexnet_installshield).
9. Windows Installer XML (http://wix.sourceforge.net).

Deploying the First Iteration
It is the customer who ultimately decides which stories the developers
should address in each iteration, a decision the customer normally bases on
the value the stories offer to the business. However, in the first iteration, this
decision is influenced by the team’s need to create a framework (or skele-
ton) upon which it can hang its subsequent work. Such a framework takes
a thin vertical slice through the system and usually implements elements of
its most important layers. For example, the OSPACS team aimed to com-
plete just one story in its first iteration, which required its developers to
build components for the user interface, business logic, and data storage so
that a user of the system could simply save and restore an image.

It is unlikely that the software the team produces during the first itera-
tion will have sufficient business value to warrant its immediate deploy-
ment. However, you should still prepare an installation program because,
like your software framework, it provides a thin vertical slice through the
issues you must face. Therefore, at the end of the first iteration, your team
should not only be able to demonstrate a functioning program that does
something the business wants, but also show that you have the means to
deploy it into the production environment. It doesn’t matter whether the
stories you have implemented are low on the list of business priorities, for
this is justified by them addressing the technical risk of building a suitable
initial architecture. What is important is the proof you have provided to the
business of your team’s ability to deliver working software. Each new bit of
the product which is deployed will act to reinforce this trust and confidence
in your team and its work.

Preparing for Deployment 589

NOTE

We will address some of these issues in the next chapter, when we
explain how to create a basic desktop installation program with Install-
Shield. The issues associated with deploying Web services to a data-
center are covered in Chapter 30.

Incremental Deployment Practice
Incremental deployment means releasing a product a bit at a time rather

than attempting to release it all at once. This practice is particularly impor-

tant when you are replacing a legacy system because it avoids having to

make an abrupt transition to the new system, the big-bang approach.

Taking an all-or-nothing approach to deploying a new system is risky

because in the event of a serious problem, you must roll back everything

and restore the old system. In such circumstances, management support

for the new system may evaporate, especially when a significant amount

of time and money was lost preparing for the ill-fated transition. Incre-

mental deployment addresses this risk by delivering the system in parts.

Therefore, even if it is necessary to roll back the deployment of one part, its

predecessors remain in place and continue to provide value. It also limits

the cost of such failure to just the preparation of the part whose deploy-

ment was aborted. Anyone who has participated in a big-bang deployment

will appreciate the toll it takes on the team in terms of the stress and work-

load of preparing for the big day. Incremental deployment prevents teams

from having to enter such long and arduous deployment phases, which

allows them to keep their work flowing at a steady rate, consistent with

good Agile practice.10

In order to practice incremental deployment, it must be possible to grad-

ually switch off parts of the old system so that you can replace them with

parts of the new system. Accordingly, both systems must run as one in the

production environment, and this may require the team to undertake addi-

tional work, such as the construction of scaffolding11 for the temporary

integration of the two systems. Working in this way, you can gradually

replace the old system with the new one through a series of small,

reversible deployments. Eventually, when the new system is doing all the

Chapter 28: Moving into Production590

10. [LSD] Poppendieck, Mary, and Tom Poppendieck. Lean Software Development (Addison-
Wesley, 2003).

11. Scaffolding usually refers to the temporary code, files, and data that support the operation
of an incomplete system. However, in this case, scaffolding serves to integrate the differ-
ent parts of the old and new system so that they can work together.

work, you complete its deployment by removing the scaffolding as well as

all remnants of the old system. Although the accumulated cost of incre-

mental deployment might exceed the cost of deploying in a single big

bang, this is justified by the reduction in risk as well as the savings made

by terminating failing projects much earlier in their life cycles—in other

words, you discover at the start of your project that the system can’t be

deployed, not at the end.

Stubs and Scaffolding
When creating a thin vertical slice through your system, you often need to
write some temporary code in order to support the story you are imple-
menting. This sort of code is called scaffolding when it calls your story
(production) code and a stub when it is called by your story code. For
example, your story code may require some scaffolding to implement the
program’s main() entry point and a stub that acts as a placeholder for the
PatientName() method in some database object that you will implement
later. In this way, you can create a working system from the outset and
slowly bring the production code into service by displacing scaffolding and
stub code piece by piece.

Data Deployment
One of the biggest challenges of incremental deployment is keeping the data
synchronized with your code changes, particularly in regard to data held in
databases. At the very least, you should have a data deprecation mechanism
in place so that it is possible for old and new data to exist side by side for a

Preparing for Deployment 591

TIP

Put your scaffolding and stub code in a separate namespace (and
library) so that as you implement the equivalent production code, you
can discard it easily and so that during deployment, there is a clear
separation between production and nonproduction components.

time until you can safely remove the old data. For example, you might take
the following steps when implementing separate first name and last name
fields in a database table that currently has a single name field:

1. Add two new fields to the table for first name and last name, and
create a script to populate them with appropriate data from the cur-
rent name field.

2. Develop a database trigger to keep the new field contents synchro-
nized with contents of the old field. Therefore, a change to the
name field propagates to the first name and last name fields and
vice versa.

3. Declare the old name field as deprecated and announce the date
when it will be removed. In the case of a production database that
is shared by several teams, this date may be months (or years) in
the future.

4. Write all new code to use the new fields, and gradually refactor all
existing code to use them too.

5. Remove the old name field from the table after the deprecation date
has expired, but be prepared to roll back this change if necessary.

Monitoring the Production Environment

By carefully monitoring deployed systems, you often avoid the need to pro-
vide an emergency response to a problem and can perform preventive
maintenance instead. For example, your system might require a certain
amount of free disk space, so by monitoring the hard drives of the machines

Chapter 28: Moving into Production592

12. [RDB] Ambler, Scott, and Pramod Sadalage. Refactoring Databases (Addison-Wesley, 2006).

NOTE

Data deployment is a big topic which we have barely introduced.
People who want to know more about this subject should read Scott
Ambler’s book, Refactoring Databases.12

on which it is deployed, you can ensure that appropriate maintenance
action is scheduled after a defined space threshold is reached. In the same
way, you might monitor the amount of CPU usage so that you can alter the
priority of certain threads in your program to keep it within acceptable
bounds. Products that allow sophisticated monitoring of systems are avail-
able from vendors such as AVIcode,13 but even without this sort of budget,
you can easily monitor your product by implementing simple logging facil-
ities and a support Web site.

Logging
Programmers traditionally created a log file by adding statements to their
code which caused information about its runtime behavior to be recorded
in a simple ASCII text file. However, thanks to the provision of .NET library
classes such as EventLog, you no longer need to be concerned with the
mechanics of creating and maintaining such log files. Instead, you can use
the event management facilities the operating system provides and just
write the information you want captured to an easily accessible object. In
this way, you can manage the logs of all programs consistently, often from
a remote computer.

Monitoring the Production Environment 593

13. AVIcode Web site for Intercept Studio 3 (www.avicode.com).
14. Microsoft’s Patterns & Practices Web site area (http://msdn.microsoft.com/practices).

NOTE

The monitoring of deployed systems provides an Agile team with use-
ful feedback about its work, so it is important to provide mechanisms
that encourage the communication of this sort of information.

TIP

Microsoft’s Patterns & Practices initiative14 has produced a reusable
application block that allows you to add very sophisticated logging
facilities to your programs, as we mentioned in Chapter 21.

Creating a Support Web Site
A support Web site provides an excellent platform from which you can dis-
tribute new versions of your software, updates, and so forth, particularly
if it can be accessed directly from your application (Help | Support |
Website). The Web site at www.ospacs.org/support gives an example of
what you can achieve and includes the following features which are inte-
grated via Web services into the OSPACS product:

• Bug reporting—You can report bugs in the product by completing a
form on the Web site or a dialog box in the application.

• Health monitoring—Information in the application’s event log can
be automatically uploaded to the Web site to help identify problems.

• Usage statistics—Usage and performance statistics that the appli-
cation gathers can be automatically uploaded to the Web site to
provide the developer with information about the popularity of
particular features.

CONCLUSION

Try to automate your release process so that your Daily Build becomes a
dress rehearsal for the actual deployment of your software. Practicing for
a release in this way will make the actual event much less problematic and
prepares your team for putting its software into production at the start of
each business day (the Daily Deployment practice). However, we recog-
nize that in most organizations, software deployment is a complex matter
which is taken out of the hands of a development team, so it is not always
possible to deploy with such regularity. Nevertheless, you should work to

Chapter 28: Moving into Production594

TIP

Consider providing a facility so that members of your team can create
a Bug work item directly from the information in your product’s sup-
port Web site about a particular bug, as submitted by one of your users.

establish the ideas of lean thinking across your organization and seek to
implement the Incremental Deployment practice so that you are able to
release your product a bit at a time rather than all at once.

Conclusion 595

NOTE

Incremental deployment gives the team regular feedback from the
business about the actual value being delivered by its software, so it is
essential for effective management and control of an Agile project.

29
Developing Installation Programs

TH I S C H A P T E R D E S C R I B E S how Windows Installer and ClickOnce pro-
vide two different ways of automating deployment software into its

target environment. We start by introducing you to Windows Installer
because this is the most common mechanism for installing software on
most modern Microsoft platforms. We briefly explain how it works and
take you step by step through the creation of an installation program using
the well-known InstallShield tool as well as its team-based counterpart,
InstallShield Collaboration. The chapter concludes with a description of the
new ClickOnce technology provided by .NET 2.0 for Windows Forms client
applications and shows you just how much it simplifies the processes of
publishing, deploying, and updating such software.

Introduction to Windows Installer

The Microsoft Office 2000 development team developed Windows Installer
to address the problems people faced when installing its product. At the
time, there was no common way to install software on a Windows platform,
so machines would often be left in an unstable state because of things such
as .dll file version conflicts and partially completed installs. Large organi-
zations were also finding it difficult to manage applications such as
Microsoft Office because the installation programs were not standardized,
which made them difficult to administer and control.

597

The Office team’s Installer didn’t immediately solve all these problems,
but it did enough to convince Microsoft to develop the technology further.
Accordingly, Microsoft decided to make the Windows Installer service part
of the operating system so that people might have a uniform way to deploy
software on their PCs.

Basic Concepts
From a user’s perspective, a software product is composed of a collection of
features, whereas from the developer’s point of view, it is simply a collec-
tion of components. Therefore, Windows Installer maps the components
the developers have produced onto the features a user wants to install by
introducing the following concepts:

• Products are what you might create in a Visual Studio Solution.
Products are formed from components which implement a prod-
uct’s features. You can sometimes get more features for a product
by buying and installing additional components.

• Features are the sorts of things a story describes. Each feature
relates to a particular product, and they are made available to the
user through menus and other elements of the user interface, but
otherwise they have no physical meaning.

• Components are what you might create in a Visual Studio Project.
They are executable files (.exe, .dll) as well as other resources such
as Registry entries, shortcuts on the desktop, typelibs, and so on.
One component may provide one or more features and may serve
more than one product.

Therefore, during the construction of your installation program, you
define the components of a product and then map them to the features they
provide. For example, Figure 29-1 shows how you might create a hierarchy

Chapter 29: Developing Installation Programs598

NOTE

Windows Installer first appeared with Windows 2000, but it is now
present on all the main Microsoft platforms: Windows XP, Windows
Server 2003, and Windows Vista.

for the components and features that belong to two products built by the
OSPACS team: osImageManager and MxScreenMap.

A product has a core set of features implemented within key compo-
nents, such as its main executable file, and these will always be installed.
However, the product may also have optional features which you can select
when the installation program is run to put additional components on your
PC; see Figure 29-2. Furthermore, as you’re doubtless aware, you don’t
need to make all of these selections initially, because the Windows Installer
service also has a maintenance function which permits the product’s instal-
lation program to be run again so that you can install more features or
remove ones previously installed as well as reinstall the product, repair it,
or remove it from your computer.

Figure 29-1: Two products sharing common components

Help Tutorial

Product
osImageManager

Feature
MainApp

Feature
Image Export

Feature

Resource
osImageManager.exe

Entry Point
desktop shortcut

Component
Main Program

Resource
osImageManager.chm

Entry Point
desktop shortcut

Component
Main Program

Component
Supplement

Feature
MainApp

Resource
MxScreenMap.exe

Entry Point
desktop shortcut

Component
Main Program

Feature
Image Export

Resource
osImage.dll

Product
MxScreenMap

Introduction to Windows Installer 599

TIP

Test your installation program by deploying your software in a Virtual
PC1 environment. In this way, before running the test, you can restore
the system to a known state simply by reloading the hard disk image.

1. Microsoft Web site for Virtual PC 2004 (www.microsoft.com/windows/virtualpc).

Figure 29-2: Selecting features to install via the Add or Remove
Programs applet

Principles of Operation
Your product’s installation program is actually formed by a set of data
organized into a relational database. This database is packed into an MSI
file arranged as COM structured storage with a summary information
stream as well as a cabinet file containing the items to be deployed. You
pass the name and location of this MSI file to the Windows Installer service,
either by running msiexec.exe from a command prompt or by executing the
Control Panel’s Add or Remove Programs applet. This results in the data-
base being loaded into memory so that its contents can be used to drive the
installation process; see Figure 29-3.

It may strike you as odd to express a program as records in a database
rather than as statements laid out in a file. However, when you think about it,
describing the installation of a product is not as concerned with defining
actions as it is with setting the properties and relationships among features
and components. In fact, most installation programs execute more or less the
same actions in the same sequence and differ primarily in terms of the
parameters passed to standard functions that copy files, write to the Registry,

Chapter 29: Developing Installation Programs600

and so forth. Therefore, developing an installation program becomes just a
matter of creating a sequence of records in an Installation Procedure table
such that each record invokes a particular function from a library and sets its
parameters according to the data read from rows in other tables. You can get
some idea as to how this might work by considering the following tables:

• Feature—Each row refers to a particular feature of a product and
defines its name, description, and other properties. It has relation-
ships with numerous other tables, including the Component and
Directory tables.

• Component—Each row refers to a resource that implements one or
many features (or some part of them). It too has relationships with
numerous other tables, including the Feature, Directory, File, Reg-
istry, Typelib, and Shortcut tables.

• Directory—Its rows identify the sources and targets for files copied
or created during the installation process. The table may be modified
by the end user’s choice of directory settings, but ultimately it defines
the directory structure of the installed product.

Figure 29-3: Operation of Windows Installer

MSI Database
Loaded into RAM

Obtain Information
from User

Generate Install
Script from MSI

Database

Generate Rollback
Script

Client Process
(Standard rights)

Service Process
(Administrator rights)

Execute Script
and Install
Application

Start Install
Process

Introduction to Windows Installer 601

You can categorize a number of other tables in the MSI database into
groups, such as Files, Registry, and User Interface (tables that describe the
properties of dialog boxes and their controls).

The huge advantage of using a database to express your installation pro-
gram is that any subsequent maintenance and modification becomes a mat-
ter of editing data in tables rather than changing statements in a program
or script. This means that once you understand how these tables work, you
can alter any installation program developed for Windows Installer with-
out necessarily needing to know how it was constructed. When you put
yourself in the shoes of someone working on a specialist deployment team
who has to customize hundreds of different products, the benefits of this
approach become obvious.

Security
Organizations usually protect their Windows IT infrastructure by establish-
ing centralized security controls for their servers and workstations with the
Group Policy Editor. This helps prevent people from installing unnecessary,

Chapter 29: Developing Installation Programs602

NOTE

Depending on the parameters passed to Windows Installer, the user
interface can be full, reduced, basic, or silent, which allows installation
programs to be run with or without user supervision. A reduced or
basic user interface displays only modeless dialog boxes to show
progress.

NOTE

Windows Installer supports other types of COM structured storage
files which are sometimes useful when installing or maintaining prod-
ucts. These include Merge Modules (.msm), Transforms (.mst), and
Patch Packages (.msp); see http://msdn.microsoft.com for details.

harmful, or unlicensed programs on their computers, by allowing only users
who are logged on as Administrators to have unrestricted access to the Reg-
istry, filesystem, and so forth. However, this has the less desirable effect of
stopping users from installing authorized programs on their PCs as well.

Fortunately, Windows Installer runs the install execution script (created
by Windows Installer from the MSI database) with the elevated privileges
of the Windows Installer service process; see Figure 29-3. Therefore, even
if the logged-on user doesn’t have the necessary Administrator rights
needed to install all programs, these rights can be granted to the Windows
Installer service in such a way that his (or her) membership of a particular
security group is enough to allow the installation of specific programs to
proceed. Indeed, this makes it possible to automate the remote deployment
of programs in the following ways:

• Assign to a computer—There is no need for anyone to log on to the
computer, because the program is automatically installed the next
time it is rebooted (by the user or remotely).

• Assign to a user—The programs that members of a particular secu-
rity group need are made available for installation through the
Control Panel’s Add or Remove Programs applet whenever the
user logs on to a computer or when he attempts to open particular
types of files.

• Publish—The program is made available to all users on all comput-
ers through the Control Panel’s Add or Remove Programs applet.
The installation may also be triggered when a user tries to open a file
associated with the program. For example, attempting to open a
PDF file might start the installation of Adobe Acrobat.

Introduction to Windows Installer 603

NOTE

The IntelliMirror technology allows users to roam between different
machines by mirroring their desktop data, settings, and programs on a
Windows 2003 (or 2000) server.

Remote product deployment depends upon a Windows Installer facil-
ity called Advertising, which creates the entry points for a program, such
as an item in the Add or Remove Programs applet or an association with
a particular file type, without actually installing it. You can install a prod-
uct in this way by setting the top-level action parameter of msiexec.exe to
ADVERTISE (/j) in place of INSTALL (/i) or ADMIN (/a). Run msiexec.exe /?
from the command prompt to display a list of its options and parameters.

Creating an Installation Project with InstallShield

Although you should be aware of the facilities that Windows Installer pro-
vides and have some idea about how it works, you’ll be happy to know that
there is no need for you to delve into the specifics of COM structured stor-
age and MSI databases. This is because tools such as InstallShield are avail-
able to guide you through the process.

Using InstallShield with Visual Studio
You can integrate InstallShield directly into Visual Studio 2005 so that you
can develop an install project in the same environment as the other proj-
ects that compose your Solution. However, InstallShield also comes with its
own Integrated Development Environment (IDE) and some teams prefer
this option because it helps create a clear boundary between software
development and software deployment. Regardless of which IDE you
decide to use, InstallShield provides two different views of your installation
project: the Project Assistant view and the Installation Designer view.

Chapter 29: Developing Installation Programs604

NOTE

Visual Studio 2005 provides a template for creating a Setup Project in
the Other Project Types category which produces a simple installation
program, but as your team’s deployment requirements become more
sophisticated, you will probably outgrow this facility.

Using the InstallShield IDE
The Project Assistant takes you through the main steps of defining your
installation project, which provides a useful introduction to the process, but
it doesn’t give you much more than you could achieve using a Visual Stu-
dio Setup project. Therefore, we suggest you create a test install project
(spike) using the Project Assistant (see Figure 29-4) and then follow Exer-
cise 29-1 to see how the Installation Designer gives you complete control
over the process.

Figure 29-4: InstallShield Project Assistant workflow

Creating an Installation Project with InstallShield 605

WARNING

Knowledge Base article 922989 relates to problems in the support pro-
vided by Visual Studio Team Suite for add-ins such as InstallShield
version 12. Until these problems are resolved, you should disable the
Visual Studio .NET integration when installing InstallShield.

Exercise 29-1: Creating an InstallShield Project

This exercise uses the InstallShield IDE to create a Basic MSI Project called
osImageManagerInstall and adds its file to the OSPACS team’s repository.

1. Log on to the TesterPC as Luke (OSPACS Contributor) and start the
InstallShield IDE; see Appendix A for a specification of this machine
and details of Luke’s security groups.

2. Create a new Basic MSI Project called osImageManagerInstall by
following these steps:

a. Open the New Project dialog box (File | New | Project).

b. Select the Basic MSI Project template, name the project, and set
its location to the osImageManager\Install directory in Luke’s
workspace.

c. Click OK to close the dialog box and create the project.

3. Close the InstallShield IDE.

4. Start Visual Studio and connect to the OSPACS Team Project; see
Exercise 5-7 in Chapter 5. Add the InstallShield Project file to your
team’s source control repository as follows:

a. Open the Source Control Explorer (View | Other Windows)
and get the latest version of the files in the repository to update
Luke’s workspace, as described in step 3 of Exercise 9-1, in
Chapter 9.

b. Add the osImageManagerInstall.ism file to version control by
following the procedure described in step 2 of Exercise 8-3, in
Chapter 8, but this time add a file, not a folder (File | Source
Control | Add to Source Control).

Chapter 29: Developing Installation Programs606

NOTE

The first time you start InstallShield it performs some initialization
which requires you to be logged on with an account that has local
Administrator rights. Members of the OSPACS team, such as Luke,
should have been granted these rights; see Appendix A.

5. Check in your changes by clicking the Check In button in Visual
Studio’s Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

Exercise 29-2: Creating a Windows Forms Application for Your Install Project

This exercise adds an HTML file to the simple Windows Forms application
we created in Exercise 8-4 in Chapter 8, and then rebuilds its Visual Studio
Solution using the standard Release configuration settings.

1. Open the osImageManager Visual Studio Solution, as described
in step 5 of Exercise 9-1, in Chapter 9.

2. Add a Help file called osImageManagerApp.htm to your
osImageManagerApp Visual Studio Project by following these steps:

a. Select the osImageManagerApp project in the Solution Explorer
window and open the New Item dialog by choosing Add and
then New Item from its context menu.

b. Select HTML Page from the list of templates, name it
osImageManagerApp.htm, and then click the Add button to
both close the dialog box and add the file to your project.

3. Build a release version of the osImageManager Visual Studio
Solution as follows:

a. Select osImageManager in your Solution Explorer window and
use the Properties window (View | Properties) to change its
Active config property to Release | Any CPU.

b. Rebuild the Solution and all of its Visual Studio Projects (Build |
Build Solution).

Creating an Installation Project with InstallShield 607

NOTE

If you were creating your InstallShield project from the Visual Studio
IDE, you could add it to source control just by checking a box in the
New Project dialog box.

Exercise 29-3: Using the Installation Designer to Define the Installation

The following exercise defines the features and components of your instal-
lation product and sets up the shortcuts that will be installed on the target
PC’s Program menu.

1. Use the Source Control Explorer window to check out
osImageManagerInstall.ism for editing as follows:

a. Select the file in the Install folder and open the Check Out dialog
box (File | Source Control | Check out for Edit).

b. Select “allow shared checkout” in the dialog box and click
Check Out.

2. Start the InstallShield IDE, open the Install project file you created
in Exercise 29-1 (File | Open), and switch to the designer view of
your MSI project by clicking the Installation Designer tab at the top
of InstallShield’s main window; see Figure 29-5.

Figure 29-5: Installation Designer view

Chapter 29: Developing Installation Programs608

3. Open the designer view’s list window (View | View List) so that
you can see the various categories of information in the MSI data-
base. Make changes to the following sections:

a. Installation Information, General Information—Select Product
Properties in the middle window and set INSTALLDIR as:

{OSIMAGEMANAGER}[ProgramFilesFolder]OSPACS\osImageManager

b. Organization, Features—Add an item called MainApp and
another called HelpFiles as follows:

i. Select Features in the Organization folder (left window).

ii. Select Features in the middle window and choose New
Feature from its context menu (Right-click | New Feature).

iii. Rename both your new Feature item and its Display Name
property appropriately.

c. Organization, Components—Set up your Product’s HelpFiles
features as follows:

i. Add a component for your Help file—Select Components
in the Organization folder at the left of the window; select
Components in the middle window, and choose New Com-
ponent from its context menu (Right-click | New Compo-
nent). Finally, type “HelpFiles” to name it.

ii. Define the resources for the HelpFiles component—Click
the + icon next to the HelpFiles folder in the middle window
and then click its Files item; move your mouse over the right
window and choose Add from its context menu (Right-click
| Add). This opens a standard File Open dialog box so that
you can select the osImageManageApp.htm file you created
in step 2 of Exercise 29-2.

iii. Add a shortcut for the HelpFile to the Programs menu—
Select the Shortcuts item in the middle window, then select
Programs Menu in the next window before choosing New
Shortcut from its context menu (Right-click | New Shortcut).
This opens a dialog box that will allow you to select the

Creating an Installation Project with InstallShield 609

osImageManageApp.htm file in INSTALLDIR. Name this
shortcut “Help.”

iv. Associate the component with the feature—Select Setup
Design in the Organization folder at the left of the window,
then select HelpFiles in the middle of the window, apply
Right-click | Associate Components, and select the HelpFile
component in the dialog box before clicking OK.

d. Organization, Components—Set up your Product’s MainApp
feature in the same way as you did in step 3c, but this time do the
following:

i. Add a component for your executable files and call it
“Binaries.”

ii. Define the files for the Binaries component as the executable files
in your project’s Release folder (e.g., osImageManagerApp.exe).

iii. Add a shortcut called Start osImageManagerApp and select
the osImageManagerApp.exe file in INSTALLDIR.

iv. Associate the Binaries component with the MainApp feature.

4. Check for any components that osImageManagerApp depends upon
by performing a dynamic scan as follows:

a. Start the Dynamic Scan tool (Project | Perform Dynamic Scan),
which then runs your Windows Forms application so that you
can exercise its various features.

b. Add any dependencies the tool finds to the Binaries component,
as described in step 3b (ii). For example, if you completed Exer-
cise 17-1 in Chapter 17, you will need to add the class library
executable LocalFavorites.dll.

5. Close the InstallShield IDE and then check in your changes by click-
ing the Check In button in Visual Studio’s Pending Changes window.
Then check out osImageManagerInstall.ism for editing; see step 1.

6. Log off, as you have finished the exercise.

Chapter 29: Developing Installation Programs610

Exercise 29-4: Using the Release Wizard to Create Your Install Files

This exercise gathers the settings that will be used to shape the creation of
your installation program and produces the collection of files needed for
people to download and install the osImageManagerApp program from
your Web site with just one click.

1. Start the InstallShield IDE, and open the Install project file created in
Exercise 29-1 (File | Open).

2. Start the Release Wizard (Build | Release Wizard) and then use the
information in Table 29-1 to supply the necessary responses. The last
page of the wizard gives you the option of building the install, but
you can build the release at a later date by choosing Build Beta from
its Build menu.

3. Test the Install on your TestPC by choosing Run Beta from the Build
menu (Build | Run Beta).

4. Remove the osImageManagerApp from your PC using the Control
Panel’s Add or Remove Programs applet (Start | Settings | Con-
trol Panel) and close the InstallShield IDE.

5. Check in your changes by clicking the Check In button in Visual Stu-
dio’s Pending Changes window; see step 9 of Exercise 9-1, in Chapter 9.

Creating an Installation Project with InstallShield 611

NOTE

You can customize the install user interface by editing the layout and
behavior of the dialogs listed under Sequences-Installation-User Inter-
face in the Behavior and Logic section of the Installation Designer’s
list view.

TIP

Set one of your component files as a Key File (Right-click | Set Key File)
so that the component will be judged correctly installed if Windows
Installer detects its presence in the right location in the target machine.

Table 29-1: Example Settings for InstallShield’s Release Wizard

Wizard Step Settings to Apply Comment

Product Configuration Creates various configura-
tions, each with a different
collection of wizard
settings.

Specify a Release Creates variants of a
particular configuration.

Filter Settings (none) Sets flags to include special
features or resources for a
specific language.

Setup Languages English Creates installations with
user interfaces for different
languages.

Media Type Network Image Creates install files suitable
for distribution from a
network server.

Release Configuration Compress all files Creates a single instal-
lation file.

Setup Launcher Setup.exe installs the
Windows Installer (if
necessary) and then passes it
the MSI file as a parameter.

Freely available from
Microsoft.

Local Machine Saves download on target
machine.

Cache installation
on local machine

Download from
the Web

Windows Installer
Location

Version 3.1 or 2.0
(best fit for system)

New Release
named Beta

New Product named
Std Product

Chapter 29: Developing Installation Programs612

NOTE

InstallShield allows you to validate your install program to check that
it compiles with various Microsoft Logo certification requirements
(Build | Validate).

Developing Installation Programs on an Agile Team 613

Wizard Step Settings to Apply Comment

Digital Signature (none) Signs your files to prevent
them from being modified.

(none) Protects your install
program.

.NET Framework Installs .NET 2.0 on the
target machine, if required.

(none) Parameters to pass to
Dotnetfx.exe (its install
program) and language
support.

(none) Parameters to pass to
LangPack.exe.

(none)

Advanced Settings (default)

Summary Checks that your options
are correct.

Developing Installation Programs on an Agile Team

In many organizations, installation program development is considered a
specialist task which is best done by an expert “installation developer” (or
team). However, we believe that Agile teams should undertake this work,

Select “Build
the release”

Visual J# Run-Time
Options

.NET Language Pack
Run-Time Options

.NET Run-Time
Options

Include .NET 2.0 by
downloading from
the Web

Password and
Copyright

NOTE

InstallShield allows you to create a setup.exe file which handles any
required updates on your PC and then automatically starts the execu-
tion of your installation program file (.msi). However, not all installa-
tion tools offer this facility.

because otherwise they are not applying the Whole Team practice. It also
helps your team avoid the problems that often arise when deployment
requirements are passed between the group of people writing the software
and the group of people producing the installation program.

InstallShield Collaboration
Recognizing the need for software development teams to become more
involved in the gathering of deployment requirements, Macrovision2 has
produced a tool called InstallShield Collaboration which allows developers
to record deployment details in a type of XML file termed a Dim file. In this
way, the team can gather its various Dim files and import them into Install-
Shield to define the components of its software product’s Windows
Installer MSI database.

Exercise 29-5: Creating DIM Projects to Gather Installation Requirements

The first part of this exercise creates a Dim project called InstallMainExeReq for
the osImageManager Solution you created in Exercise 8-2 in Chapter 8 so that
your team can gather the installation requirements for osImageManagerApp
during development.

1. Log on to the DeveloperPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5. Note that the specification for
this machine includes the installation of InstallShield Collaboration;
see Appendix A.

Chapter 29: Developing Installation Programs614

NOTE

When your installation program has developed beyond the sort of sim-
ple affair we described in previous exercises, consider employing an
installation developer consultant for a few days to train the team and
suggest ways in which your installation program might be improved.

2. InstallShield Collaboration Web site (www.macrovision.com/products/flexnet_installshield/
collaboration).

2. Update Luke’s workspace with the latest version of the files in the
repository and open the osImageManager Visual Studio Solution as
described in steps 3 and 5 of Exercise 9-1, in Chapter 9.

3. Create a new Visual Studio Project called InstallMainExeReq using
the InstallShield Collaboration Project template and add it to your
osImageManager Solution, as explained in Exercise 8-4 in Chapter 8.

4. Rename the Dim file created for your project as MainAsmby.dim by
selecting Dim1.dim in Solution Explorer’s InstallMainExeReq folder
and then choosing “rename” from its context menu (Right-click |
Rename).

5. Set the General properties of MainAsmby.dim, such as Name,
Version, Description, and so on, using the form that appears when
you select the General tab at the bottom of the editor window.

6. Add a description for the Prerequisites Meta Information; double-
click the Description column of the Prerequisites row at the bottom
of the form and type “Install .NET 2.0”.

7. Add the osImageManagerApp.exe file to the Contents page of your
Dim file by taking the following steps:

a. Select the Contents tab at the bottom of the editor window and
then select the File System folder that appears in the editor’s left
window; see Figure 29-6.

b. Open a form in your editor window by choosing Add File Set from
the File System folder’s context menu (Right-click | Add File Set).

c. Click the Add button in the form and then select the executable
files osImageManagerApp.exe and LocalFavorites.dll belonging
to the release version of your osImageManagerApp project.

Developing Installation Programs on an Agile Team 615

NOTE

Although the InstallShield IDE is not installed on the DeveloperPC,
you can still edit the InstallShield Project created in Exercise 29-1 from
your Visual Studio IDE, but it doesn’t offer the same rich features and
isn’t intended for gathering installation requirements.

Figure 29-6: InstallShield Collaboration project

8. Rename the item you just added to the File System folder as Main
Exe. Just select New File Set, and choose Rename from its context
menu (Right-click | Rename).

The second part of the exercise takes you through an InstallShield
Collaboration’s unit test procedure to check that your Dim file can generate
a valid installation program.

9. Set your InstallMainExeReq project as the osImageManager Visual
Studio Solution’s start-up project (select the InstallMainExeReq
project, Right-click | Set as Startup Project).

10. Check that your Dim file can generate a valid install file by follow-
ing these steps to run a unit test:

a. Build the project (Build | Build InstallMainExeReq).

Chapter 29: Developing Installation Programs616

b. Start the install program using the Unit Test tool (Debug | Start
without Debugging), and then follow the instructions to install
osImageManagerApp on your PC.

c. Start osImageManagerApp.exe from the Main Assembly DIM
directory which has been created in c:\Program Files\OSPACS.

d. Close osImageManagerApp.exe and remove it from your PC
using the Control Panel’s Add or Remove Programs applet.

The final part of the exercise creates another DIM project called
InstallHelpReq for the osImageManager Solution so that your team can
gather the installation requirements for its Help files during development.

11. Create another InstallShield Collaboration Project called
InstallHelpReq by repeating steps 3 through 10, but this time enter
values that are appropriate for the Help file you created in step 2 of
Exercise 29-2; specifically:

a. Rename the Dim file HelpFiles.dim.

b. Add HelpMyWinApp.htm in the File System folder to the
Contents page of your Dim file (step 7 of this exercise).

c. Rename the item in the File System folder as “Help File Set”.

12. Check in your changes by clicking the Check In button in Visual
Studio’s Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

Developing Installation Programs on an Agile Team 617

NOTE

Typically a Dim file will be created for each Visual Studio Project in
your Solution. However, developer pairs who are working simultane-
ously on the same project will still need to avoid conflicts by regularly
checking in any changes to the Dim file they are sharing.

Exercise 29-6: Creating an Install Program from DIM Files

This exercise uses the Dim files you prepared in Exercise 29-4 to create a
new installation program called osImageManagerInstallDim.

1. Use the InstallShield IDE to create a new install project in Luke’s work-
space by following the instructions in Exercise 29-1. However, this time
call your new Basic MSI Project “osImageManagerInstallDim”.

2. Define your new installation project in the same way you did in
Exercise 29-3, but instead of defining the components yourself (steps
3c and 3d), import the settings from your Dim files as follows:

a. Select Setup Design in the Organization folder at the left of the
window, and then select MainApp in the middle of the window
so that you can open the New Dim Reference dialog and select
the MainAsmby.dim file created in step 4 of Exercise 29-5.

b. Select HelpFiles in the middle of the window, apply Right-click |
New Dim Reference, and select the HelpFiles.dim file created in
step 11 of Exercise 29-5.

c. Select Shortcuts in the System Configuration folder at the left
of the window, and select Programs Menu in the next window
before opening the New Shortcut dialog box so that you can
select the osImageManagerApp.exe file.

d. Repeat the preceding step to create a shortcut for the Help file in
HelpFiles.dim.

e. Name your shortcuts “Launch osImageManager” and “Help”.

f. Create the Install files for your new Installation project in the
same way you did in Exercise 29-4, and confirm that your instal-
lation program works as you expect. When you have finished,
remove it from your PC using the Control Panel’s Add or
Remove Programs applet.

3. Add osImageManagerInstallDim.ism to version control (see Exer-
cise 8-3 in Chapter 8) and then check in your changes by clicking
the Check In button in Visual Studio’s Pending Changes window
(see step 9 of Exercise 9-1, in Chapter 9). Finally, log off, as you have
completed this exercise.

Chapter 29: Developing Installation Programs618

Automating the Creation of Your Installation Program
When an Agile team has responsibility for producing an installation pro-
gram, it makes sense to automate the task so that the team can perform it each
day during the Daily Build. In this way, the team can deploy the product at
the start of any day just by granting people access to the Web site that holds
its installation files. Fortunately, a stand-alone version of the InstallShield
product is available that can use a file such as osImageManagerInstall.ism to
generate the necessary installation files from the command line. Therefore,
after installing this product on your BuildLabPC, you should add some cus-
tom build steps to your Daily Team Build in order to automate the produc-
tion of your installation program at the end of the build process and then
copy its files to a suitable Web server directory.

Developing Installation Programs on an Agile Team 619

3. Microsoft: SMS Web site (www.microsoft.com/smserver).

TIP

Create collaboration projects for gathering your installation requirements
at the start of the project, when things are relatively simple, because these
requirements will only become more complex as time goes by.

TIP

Select settings in InstallShield’s Release Wizard to generate a “one-
click install” Web page, and then provide a link to this page from your
Team Project’s Portal to make it simple for people to install the latest
software on their PC.

NOTE

Developers often have the Administrator rights they need to install
software on their PCs, but this is seldom true in the case of business-
people. Therefore, you may have to consider other ways to actually
deploy your software to production, such as by using Systems Man-
agement Server (SMS).3

ClickOnce Technology

ClickOnce4 technology provides a much simpler alternative to Windows
Installer and the MSI database for certain classes of applications. In some
respects, these applications give you the best of all worlds because you can
deploy them like thin clients, yet they support the sort of rich user experi-
ence that only a desktop application can provide. Furthermore, they execute
in a security sandbox, which prevents them from harming other applica-
tions (or data), and they can be automatically updated whenever a new ver-
sion is loaded on the source server, typically a file share or basic Web server.

Suitable Applications
You can use ClickOnce technology only for Windows Forms applications
using .NET 2.05 (or greater) and similar modern technologies which are
operating on the target PC in one of two modes:

• Installed—Clicking on this link to the source server deploys the
application by creating entries in the target computer’s Start menu
as well as its Add or Remove Programs database. It also copies all
the program files into a cache so that the application can be run in
the future without any connection to its source server, but obviously
it will not be updated until the connection is restored.

• Online-Only—Clicking on this link copies all the program files into
a cache from which the application is run. However, the cache is
refreshed each time you click on the link, so you cannot run the
application without a link to its source server.

Chapter 29: Developing Installation Programs620

4. Microsoft: ClickOnce Web site (http://msdn.microsoft.com/clickonce).
5. “No-touch” deployment is a predecessor of this technology, which supports .NET 1.x.

NOTE

Users do not need Administrator rights to install a ClickOnce applica-
tion, so you can just publish its program files to a source server and
then send people a link to this location so that they can deploy the
application themselves.

ClickOnce is not suitable for Windows Forms applications that need to
operate outside the sandbox provided by .NET Code Access Security, per-
haps because they need unrestricted access to the filesystem, Registry, or
other privileged aspects of the target machine. You also cannot use it to
install services, shared assemblies in the Global Assembly Cache (GAC),
device drivers, and similar system-level software. For these sorts of instal-
lation jobs, you require Windows Installer or some form of bootstrapper.
However, for deploying something such as the client part of a distributed
system, ClickOnce is often an ideal solution, particularly if your client
needs to provide some type of sophisticated user interaction which is going
to be difficult to implement on a Web page (thin client).

Basic Concepts
You develop a ClickOnce application as you would any other Windows
Forms application and it requires no special classes, though you can pro-
grammatically control when updates are obtained by using classes in the
System.Deployment namespace. The deployment mechanism is contained
in the .NET 2.0 Framework and simply requires that you provide a couple
of XML files called the application and deployment manifests. Fortunately,
Visual Studio 2005 generates these files for you, so all you need to do is sup-
ply the appropriate settings in your project’s properties; see Exercise 29-7.

The application and deployment manifests act like the MSI database in
terms of describing the application and its settings, though they contain
information that is specific to ClickOnce deployment, such as the way it
should be updated from the source server, its security settings, and so forth.
In general, you should set the security settings of your application so that
they are no greater than the security policy expected on the target PC,
although you can allow users the option of granting one-click applications
elevated permissions when prompted from the .NET runtime.

ClickOnce Technology 621

NOTE

Visual Studio generates setup.exe as part of the publishing process
which can install .NET 2.0 (and other dependencies) on the target
machine, but for this to work the user must have Administrator rights,
so you may need to distribute it with a tool such as Microsoft SMS.

Publishing and Deploying
Anyone who has deployed any software in a corporate environment using
Windows Installer will be heartened by how easy it is to achieve the same
sort of result with ClickOnce technology. It really is very simple, and
although in the following example your application is published from
Visual Studio 2005, you will probably want to automate the process by
making it a task for Team Build to perform at the end of your Daily Build.

Exercise 29-7: Creating, Publishing, and Deploying a ClickOnce Application

You do not need to use Team Project to complete the following exercise, for
it just creates a simple Windows Forms application and then publishes it
to your local Internet Information Services (IIS) Web server from where
it is deployed.

1. Log on to the DeveloperPC as Luke and start Visual Studio.

2. Create a new C# Windows Forms application in its own Visual
Studio Solution using the template in your New Project dialog box
(File | New Project). Name this project “ClickOnce” and locate its
files in a convenient local directory (e.g., c:\Luke\OSPACS\Spike).
Do not add this project to version control.

3. Set the following publishing properties for ClickOnce by choosing
Properties from Visual Studio’s Project menu and then selecting the
Publish page:

a. Publishing location: c:\Luke\OSPACS\Spike\ClickOnce\

b. Installation URL: \\localhost\Drops\

Chapter 29: Developing Installation Programs622

6. [SCD] Noyes, Brian. Smart Client Deployment with ClickOnce (Addison-Wesley, 2007).

NOTE

Brain Noyes’ book, Smart Client Deployment with ClickOnce,6 provides a
lot of information that might be useful to anyone considering using
ClickOnce technology in her project.

c. Install mode: Application is available offline as well.

4. Build and publish the application by clicking the Publish Now but-
ton on the Publish page shown in Figure 29-7, and then manually
copy the files from the publishing location to the installation URL.

5. Deploy the application on your own PC by following these steps:

a. Open in your browser the Web page publish.htm in the location
defined in step 3b.

b. Click the Install button on this page and follow the instructions.

6. Confirm that your program works as you expect and then remove it
from your PC using the Control Panel’s Add or Remove Programs
applet.

7. Log off, as you have finished the exercises in this chapter.

Figure 29-7: ClickOnce publishing from Visual Studio

ClickOnce Technology 623

CONCLUSION

This chapter introduced the basic information an Agile team needs to build
the sorts of installation programs that will deploy its software into the pro-
duction environment, whether on a user’s desktop or on a server in some
datacenter. Although the exercises are not comprehensive, they are enough
to get you started, and from these simple projects you should be able to
slowly add more complexity to match the growing needs of your product.

Chapter 29: Developing Installation Programs624

NOTE

You would not deploy the server components of a distributed system
using ClickOnce, but instead might prepare a Windows Installer MSI
database using information generated by tools such as the Visual Stu-
dio Team System (VSTS) Deployment Designer; see Chapter 30.

NOTE

Additional details about Windows Installer and the MSI database are
available in Bob Baker’s classic InstallShield for Windows Installer Devel-
oper’s Guide.7 However, most people manage to develop perfectly good
installation programs without getting into this level of detail.

7. [OIW] Baker, Bob. InstallShield for Windows Installer Developer’s Guide (M&T Books, 2001).

30
Deployment of Distributed
Systems

TH I S C H A P T E R E X P L A I N S how the Distributed System Designer (DSD)
tools provided with Visual Studio Team Edition for Architects allow

you to model the deployment of a Web service-based distributed system
into a variety of different datacenters. We start by explaining why advances
in computer hardware have made distributed systems so important to
developers working with Microsoft technology and how the System Defi-
nition Model (SDM) helps you describe them. We then introduce each DSD
tool in turn and take you through the process of creating the diagrams that
allow you to model the deployment of your application.

Distributed System Architecture

A succession of technological advances have allowed each generation of PC
hardware to replace its predecessor with better processors, larger amounts
of memory, and more sophisticated communication facilities. Therefore, we
are now at a stage when extremely powerful computing resources can be
created simply by connecting relatively cheap PC boxes into some form of
distributed system. This has caused many organizations to fundamentally
rethink the way their computing resources are provisioned.

625

Distributed Components
In client-server architectures, the system’s data layer is located on a single
(database) server, so it can be shared by a collection of desktop PCs running
its client part. This idea is extended for systems that have a distributed com-
ponent architecture so that not only can the business layer execute on its
own server (host), separately from the data layer and the user interface
layer, but also the workload can be dynamically moved between machines
to avoid bottlenecks forming at particular servers. This allows you to build
systems from PC boxes with transaction rates that can surpass those found
on most mainframe architectures. However, successful deployment of such
systems requires a high level of specialist skills as well as close cooperation
between developers and the operations staff who are responsible for main-
taining these systems.

Service-Oriented Architecture (SOA)
The difficulty of building systems based on a distributed component archi-
tecture combined with the need to make best use of legacy systems based
on a range of different platforms has made Service-Oriented Architecture
(SOA) an attractive proposition for many organizations. It is based on the
idea of providing a relatively simple interface which provides a rich and
coherent business service to collections of disparate systems. Therefore,
when building a new system in an SOA environment, you become more
concerned with combining such services in novel ways than implementing
entirely new sets of (distributed) components. This isn’t to say that you
can’t create your own hosted applications, but that your aim in doing so is
to supply useful business services for others to use through the interfaces

Chapter 30: Deployment of Distributed Systems626

NOTE

In 1990, a Cray supercomputer cost $40 million and had a performance
of 10 gigaflops. Today you get the same performance from a four-
processor PC costing less than $3,000, which is why racks of PCs are
displacing mainframe computers in many datacenters.

you supply. Typically, to provide such a service you would need several
components as well as some form of back-end database.

System Definition Model (SDM)
In the SOA world, a Web service could just as easily be supplied by a busi-
ness partner in Bangalore as it could be provided by the machines in your
basement, so when it comes to deploying and managing these sorts of
systems, you can’t simply rely on getting things done by building per-
sonal relationships with your datacenter staff. For this reason, Microsoft
and its partners are encouraging the formation of standards to automate
the management of distributed systems through the Dynamic Systems
Initiative (DSI).1

The System Definition Model (SDM) is the part of the DSI that is con-
cerned with creating a schema for distributed systems that allows their log-
ical and physical organization to be separated in much the same way as a
database schema isolates us from the arrangement of data sectors on a disk
drive. These models are already supported by tools such as the Visual Stu-
dio Team System (VSTS) Distributed System Designers, but with the release
of Windows Longhorn, they will start to take an active role in the live man-
agement of the server. Therefore, in the future, people will no longer have
to work at the level of physical components and their configuration files, for
they will be able to use an application’s SDM in conjunction with an auto-
mated deployment mechanism such as SMS2 to affect its installation and
subsequent management.

Distributed System Architecture 627

NOTE

Services are usually supplied as Web services and described in terms
of an interface contract using Web Services Description Language
(WSDL). In this way, they can be consumed by distributed systems
regardless of their geographic location or technical platform.

1. DSI home page (www.microsoft.com/windowsserversystems/dsi).
2. Microsoft: SMS Web site (www.microsoft.com/smserver).

VSTS Distributed System Designers
Visual Studio Team System for Architects provides the following four tools
which are collectively known as the Distributed System Designers (DSDs).
These tools allow you to create a set of editable diagrams which define the
SDM for your Web service-based distributed systems:

• Logical Datacenter Designer (LDD)—Models a particular datacen-
ter in terms of its security zones and the different types of servers
found within them

• Application Designer (AD)—Models the components your team is
developing to provide and consume Web services

• System Designer (SD)—Models the assembly and configuration of
components from an AD model into reusable applications as well as
complete systems

• Deployment Designer (DD)—Creates a validated model for the
deployment of SD (and AD) models into the LDD model, which can
then be used to generate an XML report of your actual deployment
requirements

The XML-based language of the SDM is suitable for any system that
needs to be managed, from large distributed systems to small systems on
a single machine. Therefore, Microsoft envisions that within the next few
years, this language and its associated tools will let you manage your sys-
tems just as easily as you can now manage your databases using SQL and
Enterprise Manager.

Chapter 30: Deployment of Distributed Systems628

NOTE

SDM models are actually created using the sort of XML-based
Domain-Specific Language (DSL) described in Chapter 21, so you can
present the information they contain in different ways and easily trans-
fer it among the management tools on different systems.

Logical Datacenter Designer

The computers in a datacenter are usually connected together into some
form of network which is split by various communication boundaries into
a collection of different zones, each with their own level of security. There-
fore, your organization might create a secure inner zone for the server host-
ing its private customer database and then establish a less secure outer zone
for the server hosting its public Web site in such a way that all communi-
cation between the two zones goes through a boundary controlled by a fire-
wall. The Logical Datacenter Designer (LDD) allows you to create models
of such datacenters in terms of the servers in their various security zones
as well as the settings and constraints that apply to them.

Creating a Logical Model of a Datacenter
In the following exercises, you will model a hypothetical datacenter with
just two zones and two servers. However, you should subsequently create
models that accurately reflect the servers and zones in your actual produc-
tion datacenters as well as the test machines in your Build and Test Envi-
ronment (see Chapter 11), something that future versions of the tools will
doubtless do automatically.

Logical Datacenter Designer 629

NOTE

Although the DSD tools allow you to model at the separate levels of
Application, System, Datacenter, and Deployment, what you are actu-
ally creating is a set of diagrams that combine to form a unified System
Definition Model.

NOTE

The models that the LDD creates cannot (yet) represent the physical
servers in a zone, so although your model might represent a Web site
server and a database server as separate entities, in reality they could
conceivably be hosted on the same machine.

Exercise 30-1: Making a Visual Studio Solution for Your Logical Datacenter Diagrams (.ldd)

This exercise creates a Logical Datacenter Solution called CommonData-
centers for your organization’s Logical Datacenter Diagrams and adds it to
the OSPACS repository.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5; see Appendix A for a specifi-
cation of this machine and details of Luke’s security groups.

2. Update Luke’s workspace with the latest version of the files in the
repository, as described in step 3 of Exercise 9-1, in Chapter 9.

3. Create a new Visual Studio Logical Datacenter Solution called
CommonDatacenters using the New Project dialog as follows:

a. Open the New Project dialog box (File | New | Project) and select
the Distributed System Solutions–Logical Datacenter template.

b. Name the Solution, set its location to the Production directory in
Luke’s workspace and then check the Add to Source Control box.

c. Click OK to close the New Project Dialog box and, when
prompted, select the $/OSPACS/Production folder as the loca-
tion for storing your Solution in the repository.

4. A default LDD file is automatically opened in the Visual Studio edi-
tor window after you create your Solution, but you should close this
file (File | Close) and then remove it from the Solution Items folder
in your Solution Explorer window (Right-click | Remove).

5. Check in your changes by clicking the Check In button in Visual
Studio’s Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

Chapter 30: Deployment of Distributed Systems630

TIP

Create just one Visual Studio Solution to contain all your organiza-
tion’s Logical Datacenter Diagrams so that multiple (team) projects can
share them and the people responsible for maintaining the machines to
which they relate can keep them up-to-date.

Exercise 30-2: Creating a Logical Datacenter Diagram (.ldd) with Zones and Servers

We continue the preceding exercise by adding an LDD to the Visual Studio
Solution and then adding various zones and servers to reflect the layout of
our hypothetical datacenter.

1. Add a new LDD file to the CommonDatacenters Solution and call it
BartsDatacenter by taking the following steps:

a. Select the Solution Items folder in your Solution Explorer win-
dow and choose Add | New Distributed System Diagram from
its context menu in order to open the Add New Item dialog box.

b. Select the Logical Datacenter Diagram, type its new name, and
click OK to close the dialog box and create the new diagram.

2. Add the first zone to your diagram by opening the toolbox (View |
Toolbox) and drag-dropping its Zone icon into the middle of the
LDD editor window. Rename the zone and its endpoint to “Public”
and “Public_EP”, respectively; double-click the default names and
then type the new names.

3. Add the second zone to your diagram by repeating step 1, but this
time name the zone and its endpoint, respectively, “Private” and
“Private_EP”.

4. Add an IISWebServer to the Public zone by drag-dropping its icon
from the toolbox into the middle of the Public zone in the LDD edi-
tor window.

5. Rename this IISWebServer server to “IISPublic” in order to reflect its
role rather than its physical presence. You should also rename the
Web site endpoint of this IISPublic server to “IISPublic_EP”.

Logical Datacenter Designer 631

TIP

You can drag-drop the various endpoint icons around the perimeters
of their zones and servers to make the diagram look neat. You can also
display or hide their associated labels from their context menus by
selecting each one and applying Right-click | Show Label.

6. Add a DatabaseServer to the Private zone by drag-dropping its icon
from the toolbox, as you did in step 4. Rename this server and its
endpoint, respectively, to “DbPrivate” and “DbPrivate EP”.

7. Join the servers to their zones by selecting each server’s endpoint in
turn and delegating it to the endpoint of its corresponding zone. For
example, select the icon labeled IISPublic_EP, open the Delegate to
Endpoint dialog box (Right-click | Delegate), and then select Public
as the zone and Public_EP as the endpoint.

8. Form a communication pathway between the Public zone and the
Private zone by following these steps:

a. Select the Public zone’s outbound endpoint and choose Connection
from its context menu to open the Create Connection dialog box.

b. Set the Connect To zone as Private and the endpoint as
Private_EP, as shown in Figure 30-1.

9. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

Figure 30-1: LDD diagram

Chapter 30: Deployment of Distributed Systems632

Endpoints and Servers in Your Toolbox
You use endpoints to define communication pathways between logical
servers as well as between zones. However, you can create these pathways
only between endpoints that are compatible in terms of their type and
properties. For example, a zone endpoint whose communication flow prop-
erty is set to outbound might be connected to another inbound (or bidirec-
tional) zone endpoint, but not to another outbound one.

The most important thing to remember about endpoints is that you can-
not directly connect a server endpoint in one zone to a server endpoint in
another zone; instead, you must delegate each server’s endpoint to a zone
endpoint so that a connection can then be formed between the two zone
endpoints. Visual Studio’s toolbox (View | Toolbox) contains a variety of
endpoints which you can add to following logical servers:

• IISWebServer—Models a Microsoft Internet Information Services
(IIS) Web server that hosts ASP.NET Web applications, generic
applications, and external Web services as well as BizTalk.3 It pro-
vides all types of endpoints, including WebSiteEndPoint, so it can
render Web pages to any server (or Windows client) having an
HTTPClientEndpoint.

• DatabaseServer—Hosts all types of external databases as well as
generic applications and can provide the endpoint of communica-
tion pathways to most types of servers. However, it normally acts
as a database server endpoint.

Logical Datacenter Designer 633

NOTE

It is sometimes better to think of communication pathways between
servers being formed through “boundary points” because “endpoints”
do not always refer to things that are actually at the end of a commu-
nication pathway.

3. Microsoft: BizTalk Web site (www.microsoft.com/biztalk).

• GenericServer—Hosts all types of external Web services as well as
generic applications, and provides all types of endpoints. Therefore,
in addition to acting as a generic server, it can supply and consume
Web pages, form a database client, and act as a client of its own (or
another) generic server.

In due course, you should expect Microsoft and third-party vendors to
add other server types to the toolbox that model specific products more
closely than the current generic or database servers. However, in the mean-
time, you must make do with these general server templates and mostly set
up each server in your model manually.

Properties, Settings, and Constraints
When you select an element in your LDD diagram you can set its proper-
ties from Visual Studio’s Properties window (View | Properties Window),
and this usually gives you a good idea of what it does. For example, an end-
point’s direction property might indicate that it is a consumer, so you know
it must connect to a provider endpoint. However, the most interesting part
of these properties is the section for settings and constraints, which are dis-
played in their own window; click Setting and Constraints in the Properties
window and then click its “…” button.

Constraints act to limit the way you can use an endpoint—either as a
server or as a zone. For example, you can set a constraint for the Public
zone in Figure 30-1 to prohibit anyone from adding a database server to
this part of the model. You can also add constraints to a zone so that only

Chapter 30: Deployment of Distributed Systems634

TIP

After adding a server to your LDD diagram and manually entering its
settings, you should add the server to your toolbox so that you can use
it to define the next server of that type without having to reenter all the
settings. You can do this by selecting the server in the diagram and
choosing Add to Toolbox from its context menu.

IISWebServers with settings for a particular version of the Common Lan-
guage Runtime (CLR) are valid within the zone (see Figure 30-2). In this
way, you can model your datacenter in terms of the settings of its various
zones, servers, and endpoints and the constraints that apply to the way
each of these elements may interact.

Some constraints are implicit, so you cannot alter them; others you can
set explicitly, such as requiring a particular version of the CLR. A third
type of constraint is user-defined, which means that you can add your own
requirements for the way something must be used. Similarly, settings can
also be implicit, explicit, or user-defined. You should think of explicit set-
tings as the things you would find in your server’s configuration file, or
the things you might set from its Options dialog box, and the process of
validating the model as confirming that these settings are compatible with
the components you intend to deploy and the environment in which they
must operate.

Figure 30-2: Settings and constraints for IISWebServer

Logical Datacenter Designer 635

NOTE

Properties, settings, and constraints are associated with almost every
element in the diagrams produced by the DSD tools and form an
important part of the modeling mechanism.

Importing Settings from Your Existing IIS
IISWebServer is an example of the sort of server you would hope to find in
your toolbox because it represents a specific product commonly found in
datacenters. Therefore, its properties, settings, and constraints are closely
allied to those actually found in a real server of this type. Indeed, rather
than modeling a server by entering these properties by hand, you can
import them directly from the corresponding device in your datacenter.

Exercise 30-3: Importing Settings from the IIS in Your Datacenter

We continue the preceding exercise by adding a new server type to your tool-
box that contains the settings which apply to the IIS in your organization.

1. Initiate the process of importing the settings of an IIS located in your
datacenter into your model’s IISWebServer by starting the Import IIS
Settings Wizard as follows:

a. To start the wizard, select IISWebServer in the Public zone and
choose Import Settings from its context menu (Right-click |
Import Settings).

b. Move to the wizard’s second page (click Next) and select the
physical server hosting IIS in your datacenter by clicking the
Browse button and navigating to your physical server (or type
“localhost”). Enter an Administrator’s username and password
for this server and then click Next.

c. Set the endpoint in your model that will be bound to the Default
Web Site on the physical IIS server by selecting IISPublic_EP from
the drop-down list and then click Next.

d. Import the settings into your model by clicking Next on the
wizard’s Summary page.

e. Click Finish to close the wizard.

2. Make any further adjustments to the IISWebServer’s properties,
settings, or constraints as follows:

a. Select IISWebServer in the Public zone and change its values in
the Properties window (View | Properties).

Chapter 30: Deployment of Distributed Systems636

b. Adjust the contents of the Settings and Constraints window
(Right-click | Settings and Constraints).

3. Add a new server type to your toolbox that reflects this IISWebServer’s
properties, settings, and constraints as follows:

a. Open the Add to Toolbox dialog box so that you can name the
new server by typing “MyIIS” into the appropriate edit box;
select IISWebServer, right-click, and then select Add to Toolbox.

b. After you click OK, you are prompted to save your server proto-
type, so accept the suggested filename and click the Save button
to complete this action.

4. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

5. Log off, as you have completed this exercise.

Application of LDD Models
In a large organization, an Agile team might not use the LDD tool, but sim-
ply use the diagrams produced by other people to validate the deployment
of the components they are developing. In such a situation, the people
responsible for maintaining the datacenter are often the best placed to cre-
ate and preserve its LDD diagram(s) because they are managing the con-
figuration of the servers on a day-to-day basis. However, in smaller
organizations (or when the components under development are intended
for external deployment), an Agile team may have responsibility for this
work. In such cases, it is more of a challenge to keep the model up-to-date,
particularly if the team does not also control the datacenter. However, even

Logical Datacenter Designer 637

NOTE

Future versions of the DSD tools might provide additional wizards to
allow the automatic discovery of servers in a datacenter and support
the modeling of physical servers as well as logical ones.

an imperfect model serves to remind the team about deployment issues
and provides a more accessible alternative than looking at IIS config files or
the management console.

Application Designer

The construction of distributed systems based on an SOA depends upon
components located on different machines that are able to communicate
with each other. In practice, this usually means that they must consume and
expose Web services. The Application Designer (AD) allows you to model
the components that implement these Web services as well as the services
and applications with which they interact. The AD model is implicitly asso-
ciated with a corresponding Visual Studio Solution, so you can both create
the model from your existing code and generate the code from your model.

Creating an AD Diagram
Some teams will create an AD diagram while preparing for the deployment
of their completed components, in which case they will probably reverse-
engineer it from an existing Visual Studio Solution. However, other teams
will create an AD diagram to help them define the structure of their solu-
tion, so they will draw it while group modeling at the start of the project.

Chapter 30: Deployment of Distributed Systems638

NOTE

A datacenter is not always a massive air-conditioned room in some
secret bunker. It may be just a couple of servers underneath some-
one’s desk.

NOTE

The components which provide and consume the Web services
defined by the AD diagram must be implemented by Visual Studio
Projects which share the same Visual Studio Solution. For this reason,
you can add only one AD diagram to each Visual Studio Solution.

We will start by taking this second approach because the process is more
transparent, but we’ll focus on the mechanics of creating the diagram
because we already covered group modeling in Chapter 18.

Exercise 30-4: Making a Visual Studio Solution for Your Application Designer (.ad) Diagram

This exercise creates a Visual Studio Solution for your AD diagram and
adds it to source control.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Create a new Distributed System Solution called DistibOspacs and
add it to the OSPACS repository in the same way as you did in step
3 of Exercise 30-1.

3. A default AD file is automatically opened in a Visual Studio editor
window, but you should close this file (File | Close) and then
remove it from the Solution Items folder in your Solution Explorer
window (Right-click | Remove).

4. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window; see step 9 of Exercise 9-1, in
Chapter 9.

Exercise 30-5: Drawing an Application Designer Diagram

You now will add an AD diagram to the Visual Studio Solution created in
the preceding exercise, and you will add the various components required
for your distributed system as identified from your group modeling ses-
sion; a database component, a Web service component, and a Web applica-
tion for the user interface.

1. Add a new AD file to the DistibOspacs Solution and call it
DistribAppDiagram; see Figure 30-3.

Application Designer 639

Figure 30-3: AD diagram

a. Select your Solution Items folder, and then choose Add and then
New Distributed System Diagram from its context menu to open
the Add New Item dialog box.

b. Select Application Diagram and then click the Add button to
close the dialog box.

2. Add a database component to your diagram by opening the Toolbox
(View | Toolbox) and drag-dropping its ExternalDatabase icon into
the middle of the AD editor window; then take the following steps:

a. Rename the database to “ImageDb”; double-click the default
names and type the new name (the database component’s end-
point is renamed at the same time).

b. Rename the file that now appears in your Solution Items folder to
“ImageDb.sdm”.

3. Add an ASP.NETWebService component and an
ASP.NETWebApplication to your drawing in the same way you

Chapter 30: Deployment of Distributed Systems640

added the database component, but rename them “ImageWebService”
and “ImageWebApp” before changing their endpoint names to
“ImageService” and “ImageContent”.

4. Define the communication pathway between these components,
starting with ImageWebApp and proceeding through the
ImageWebService component to ImageDb as follows:

a. Select the component and choose Connect from its context menu
(Right-click | Connect).

b. The Choose Datasource dialog opens automatically when you
connect the ImageWebService to the ImageDb endpoint, but click
Cancel as you will set these properties later.

5. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window.

The toolbox’s ASP.NetWebApplication and ASP.NetWebService differ
only in terms of the default endpoint created when they are dropped onto
a diagram. ImageWebApp is created with a “Web content” endpoint
whereas ImageWebService is created with a “Web service” endpoint. How-
ever, both of these endpoints are “providers,” so a new “consumer” end-
point is automatically created in ImageWebApp when they are connected.
This is because communication between components is always through
compatible endpoints (consider them as boundary points), so a “provider”
can connect only to a “consumer” and not to another “provider.”

The purpose of consumer and provider endpoints is simple: A consumer
needs something that a provider supplies and their endpoints form the

Application Designer 641

NOTE

Use the “connection” tool in the toolbox to create connections by posi-
tioning the tool over a component (or endpoint), and then clicking to
start the connection, dragging the connection to the target element,
and then clicking once more to complete the action.

conduit for this transfer of information. You can add consumer endpoints
to a component using the Create Connection dialog4 either when you have
selected the component and are connecting to a provider endpoint, or when
you have selected the provider endpoint and are connecting to a compo-
nent. However, you can add provider endpoints directly to a component
from the component’s context menu (Right-click | Add New | Endpoint).

Exercise 30-6: Defining Operations for a Component’s Provider Endpoint

This next exercise walks you through the steps required to expose an oper-
ation provided by one of your components (also known as an Application).
This could be consumed by another one of your components or by some
external component seeking to use the Web service you are providing.

1. Open Visual Studio’s Web Service Details window by selecting the
ImageService endpoint in your AD diagram and choosing Define
Operations from its context menu (Right-click | Define Operations).

2. Add an operation to ImageService by following these steps:

a. Click on the <add operation> line and type its name:
“FindPatientImageCount”.

b. Qualify the properties of this operation by setting its type as String
and then entering some suitable text in the summary field; for exam-
ple, “return the number of images stored for the given patient”.

3. Add a parameter for FindPatientImage by expanding its node and
typing its name: “PatientID”. Qualify the properties of this parameter

Chapter 30: Deployment of Distributed Systems642

4. The Create Connection dialog refers to the components in your AD diagram as Applications.

NOTE

A consumer endpoint connects to only one provider endpoint, but a
single provider endpoint may have multiple consumers connected to
it. However, remember that only endpoints of a compatible type can be
connected together.

by setting its type as Integer and its summary as “unique patient
identifier”.

4. Check in the file you have created by clicking the Check In button in
the Pending Changes window.

Exercise 30-7: Defining a Connection String to a Database

Typically, you define the physical connection between your program and
an external database via a connection string contained in some form of con-
figuration file. The following exercise adds this connection string to your
model and assumes that you have already created a SQL Server database
called osImage on a server called TFSRTM\SQLEXPRESS that you can
access using Windows authentication.

1. Set the database connection string for the ImageWebService con-
sumer endpoint in the Connection Properties dialog as follows:

a. Open the Connection Properties dialog by selecting the endpoint
and choosing Define Connection String from its context menu
(Right-click | Define Connection String).

b. Define the name of your database server by typing
“TFSRTM\SQLEXPRESS” and then select Use Windows Authen-
tication before selecting osImage from the list of database names.

c. Check the connection by clicking Test Connection.

d. Click OK to close the dialog box and save your settings.

2. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window.

Application Designer 643

NOTE

The shaded boarder of the ImageDb in your diagram signifies that it
has been implemented, which is a reasonable assumption for an exter-
nal database. However, the other elements in your diagram have not
yet been implemented, so their borders are unshaded.

Exercise 30-8: Implementing Your AD Diagram As a Collection of Visual Studio Projects

In the next exercise, you will forward-engineer the applications (compo-
nents) in the AD diagram into a collection of Visual Studio Projects that are
part of your Visual Studio Solution. You will then build this Solution to pro-
vide an implementation of your model.

1. Set the Language property for ImageWebApp and ImageWebService
to Visual C# by selecting them in turn and choosing Properties and
Language from their context menus.

2. Create Visual Studio Projects for ImageWebApp and
ImageWebService as follows:

a. Select a blank area of the diagram and choose Implement All
Applications from its context menu (Right-click | Implement All
Applications).

b. When a dialog box appears with a summary of the Project that
will be created, click OK to confirm this operation.

3. Close any Security Warning messages that might appear and then
rebuild your Visual Studio Solution (Build | Build Solution).

4. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window.

Exercise 30-9: Testing a Web Service from Visual Studio

The Visual Studio Project that implements your Web service includes a Web
page which provides access to its operations from a browser. In the follow-
ing exercise, you will use such a page to test the operations you defined for
your Web service in Exercise 30-6.

Chapter 30: Deployment of Distributed Systems644

NOTE

All the boxes in your AD diagram have a shaded border because there
is now an implementation for each of them. You can also find the data-
base connection string you defined in Exercise 30-7 in the web.config
file of the ImageWebService project.

1. Set ImageWebService as the Startup project by selecting it in Solution
Explorer and choosing Set as Startup Project from its context menu.

2. Open the Web page that has been generated to facilitate the testing
of your ImageWebService:

a. Open the project’s directory listing (Debug | Start without
Debugging) and then open the ImageService.asmx file in your
browser by double-clicking it.

b. Click the hyperlink to open another Web page containing details
of the FindPatientImage operation.

c. Enter “999” into the PatientID field and click the Invoke button;
see Figure 30-4. This causes an HTTP 500 Internal Server Error
because the underlying code has thrown an exception, so close all
the browser pages and return your attention to Visual Studio.

Figure 30-4: Web page for testing ImageService

Application Designer 645

3. Correct the problem in the ImageWebService code by opening
ImageService.cs in Visual Studio and replacing the throw statement
in the FindPatientImage method with the following:

return "4";

4. Rebuild your Visual Studio Solution and repeat step 2; this time you
should get the correct result.

5. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window.

Ultimately, you will want to create a connection to the osImage database
and execute a SQL query so that you can return the correct number of rows
in the image table for the given patient, but we leave this as an exercise for
the reader. However, everything is now ready for you to develop the code
for your Web service using the practices and policies your team has man-
dated for production code (i.e., test-driven development [TDD], coding
standards, and customer tests).

Exercise 30-10: Reverse-Engineering an AD Diagram from a Visual Studio Solution

This exercise is the complement to Exercise 30-8 because it produces an
application diagram from a Visual Studio Solution containing a collection
of applications (components). However, rather than ask you to create this
Solution from scratch, we will just delete the AD diagram from the one we
have already implemented and then regenerate it.

Chapter 30: Deployment of Distributed Systems646

NOTE

The model and the Visual Studio Projects are now based on the same SDM
language, so if you alter ImageService.cs so that the FindPatientImage
method’s return type is String, your AD diagram will immediately
reflect this change and vice versa.

1. Close all the documents in Visual Studio (Window | Close all
Documents) and then use Solution Explorer to remove the
DistribAppDiagram.ad file from your Solution (Right-click | Remove).

2. Add a new AD diagram to your Visual Studio Solution as follows:

a. Open the Add New Item dialog by selecting the Solution Items
folder and choosing Add and then New Distributed System
Diagram from its context menu.

b. Select the Application Diagram, name it “DistribApp2Diagram.ad”,
and click Add.

c. Click OK to close the dialog and create the diagram.

3. You may need to reposition the elements in your new AD diagram
to make it look neat and tidy, but otherwise it is the same as the one
you removed in step 1.

4. Check in all the files you have created by clicking the Check In but-
ton in the Pending Changes window.

5. Log off, as you have finished this exercise.

Terms such as reverse-engineer and forward-engineer are usually associ-
ated with the round-trip facilities of certain CASE tools, such as Rational
Rose;5 in other words, they can generate code from a model and a model
from the code. However, in this case, the models that the DSD tools display
and the implementation that Visual Studio displays are really just different
views of the same SDM language; see the section Emergence of Domain
Specific Languages, in Chapter 21. Therefore, because VSTS has no “round-
trip” step, the model and its implementation are always synchronized.

Application Designer 647

NOTE

The AD diagram shows ImageService as an endpoint of the
ImageWebService application, but in a Class Designer diagram, it is
shown in terms of the interface that it supplies (select the endpoint,
right-click, and then select View in Class Diagram).

5. IBM: Rational Rose Web site (www.ibm.com/software/rational).

Defining Settings and Constraints
Elements in an AD diagram have properties that include settings and con-
straints such as those described earlier; see the section Logical Datacenter
Designer, earlier in this chapter. However, in this case, the settings and con-
straints are primarily concerned with specifying how components should be
deployed. For example, you can apply a constraint to your ImageWebService
application (component) that limits its deployment to an IISWebServer run-
ning on Windows 2003 with a particular service pack and/or build number.
You can also stipulate settings for the way in which your component should
be installed—for instance, whether it should be run as an InProcess or as a
PooledProcess.

Application of AD Models
An Agile team might find an AD diagram helpful in terms of implementing
the sort of thin vertical slice through the system discussed in Chapter 27.
Alternatively, the team may reverse-engineer the diagram from a Visual
Studio Solution which already contains such an architectural vision. Either
way, the team needs to produce this type of diagram during the early stages
of the project so that it can properly explore distributed Web services
deployment before making implementation decisions which may prove
difficult to change later on.

The AD diagram becomes useful to your team in other ways which
become evident as the project progresses. For example, it allows the team to
regularly validate the deployment of its work against a range of different
datacenters (as described shortly), and it helps the team manage its deploy-
ment requirements (as mentioned earlier). Indeed, when it comes to pack-
aging distributed Web service components for deployment, the AD diagram
serves a similar purpose to the MSI database (see Chapter 29), so it may war-
rant being distributed along with your team’s other project outputs.

Chapter 30: Deployment of Distributed Systems648

NOTE

An AD diagram can serve a similar purpose to the InstallShield
Collaboration product (described in Chapter 29) in terms of gathering
deployment requirements from the development team.

System Designer

The System Designer (SD) allows you to model systems as units of deploy-
ment created by aggregating the sorts of applications defined in an AD dia-
gram or by combining systems that have already been created in this way.
Therefore, armed with a suitable collection of AD and SD diagrams, you
might be able to satisfy some new business requirement just by recombin-
ing existing implementations into a new (and possibly very large) system.
This makes the job of building distributed systems into an exercise of defin-
ing new collections of deployable units that can be mapped onto logical
models of one or more physical datacenters using the reports generated by
the Deployment Designer (DD), described shortly.

Creating SD Diagrams
An SD diagram can be a simple representation of some or all of the appli-
cations in your Visual Studio Solution. It can also provide a composite rep-
resentation of a collection of SD diagrams gathered from the same (or
different) Visual Studio Solution(s). Therefore, you might produce a simple
SD diagram to help you deploy all your applications (components) into the
team’s test environment and produce a number of other simple SD dia-
grams to define how various subsets of these applications (components)
could provide certain useful services to the business. You could then cre-
ate a composite SD diagram from some of these simple SD diagrams to
define a collection of services for a particular client.

Exercise 30-11: Creating System Designer Diagrams from an AD Diagram

The following exercise creates an SD diagram from the applications created
in the previous exercises.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Open DistibOspacs, the Visual Studio Solution created in the previ-
ous exercises, or complete Exercises 30-4 through 30-7 to create an
AD diagram with some components and a Web service. Open the

System Designer 649

DistribAppDiagram.ad file from your Solution Explorer; double-
click it.

3. Create an SD diagram from the AD diagram to describe the system
which you will deploy in your Build Lab by following these steps:

a. Open the Design Application System dialog box by choosing
Design Application System from the Diagram menu (Diagram |
Design Application System).

b. Enter “TestImageSystem” in the dialog box to name your new
diagram.

c. Click OK to close the dialog box and create your diagram; see
Figure 30-5.

4. Create another SD diagram from the AD diagram to describe the sys-
tem which you will deploy to your client by following these steps:

a. Select the ImageWebService and the ImageDb applications.

b. Open the Design Application System dialog box as you did before,
but this time, name your new diagram “BasicImageSystem”.

c. Click OK to close the dialog box and create your diagram.

5. Create a proxy for the ImageService endpoint belonging to the
ImageWebService application (component) as follows:

a. Select the ImageService endpoint in the BasicImageSystem dia-
gram and choose Add Proxy Endpoint from its context menu
(Right-click | Add Proxy Endpoint).

b. Rename this new proxy endpoint to “ImageServiceProxy”.

6. Check in the file(s) you have created by clicking the Check In button
in the Pending Changes window.

Chapter 30: Deployment of Distributed Systems650

NOTE

An SD diagram is always associated with an AD diagram whose con-
tents are shown in the System View window as a collection of appli-
cations. Other SD diagrams in your Visual Studio Solution are also
shown in this window as a collection of systems.

Figure 30-5: SD diagram

Exercise 30-12: Creating Composite System Designer Diagrams

In this exercise, you will create an SD diagram which contains another SD
diagram as well as an application.

1. Create a new SD diagram called BartsHospital.sd and add the
BasicImageSystem to it together with the ImageWebApp application
by selecting the Solution Items folder and choosing Add New Dis-
tributed System Diagram from its context menu before dragging the
item from your System View window.

2. Connect the ImageWebApp application to the BasicImageSystem
(subsystem) as follows:

a. Use the Toolbox connection pointer to click BasicImageSystem’s
ImageServiceProxy endpoint.

System Designer 651

b. Drag-drop a connection to the ImageWebApp Application’s
ImageContent endpoint.

3. Check in the file(s) you have created by clicking the Check In button
in the Pending Changes window, and log off.

You can build up large-scale systems by importing SD diagrams from
other Visual Studio Solutions (select the Solution Items folder, right-click,
and then select Add Existing Item), but their applications will appear in red
(error) unless their implementation is accessible to your Solution. However,
you can avoid such errors by organizing the locations of your Visual Studio
Solutions such that you build up the Solution at the root from the Solutions
located lower in the hierarchy.

Defining Settings and Constraints
The various settings and constraints applied in your AD diagram are aggre-
gated together in the SD diagrams to form the settings and constraints for
the system you will deploy. Therefore, if you’ve applied a constraint to your
ImageWebService application that limits its deployment to an IISWebServer
running on Windows 2003 Service Pack 2, this becomes a constraint for any
SD diagram that contains this application (or any subsystem in which it is
included). However, you can override in the SD diagram some of the set-
tings applied in your AD diagram so that you can configure your applica-
tions for a particular deployment environment. One of the main benefits of
the SD tool is this facility to develop a set of applications that you can deploy
in a variety of different ways.

Application of SD Models
An Agile team might use a simple SD diagram to define how its Visual Stu-
dio Solution should be deployed in its Build Lab (e.g., BuildLabPC). This
deployment would probably include various applications that are not des-
tined for the production environment, but serve just to provide a conven-
ient way to exercise the system; an ASP.NetWebApplication test, for

Chapter 30: Deployment of Distributed Systems652

example. The team might also use composite SD diagrams to build useful
collections of Web services for other teams to use in the construction of their
systems as an alternative to sharing a common set of Web services in the
production datacenter. In this way, each client could have completely inde-
pendent distributed systems that didn’t need to share services outsourced
to some datacenter.

Deployment Designer

The Deployment Designer (DD) produces a diagram that models the
deployment of a given collection of software components into a particular
datacenter. This model is first validated against the constraints and settings
defined in the SD diagram as well as those defined in the LDD diagram and
then used to create a report which specifies the deployment requirements.
In this way, you can identify deployment problems from the start of a proj-
ect at a time when you don’t necessarily have any physical components to
deploy or even a finished datacenter in which to put them.

Creating a DD Diagram
Although you can create any number of DD diagrams for the various SD
diagrams in your Visual Studio Solution, it is more likely that there will be
a one-to-one correspondence between an SD diagram and the DD diagram
that defines how such a system could be deployed.

Deployment Designer 653

NOTE

The DD does not go so far as to create any form of installation program
or Unified Modeling Language (UML) deployment diagram because
this would require information about the datacenter’s physical repre-
sentation that isn’t (yet) present in the deployment model.

Exercise 30-13: Creating Deployment Designer Diagrams from an SD Diagram

This exercise models the deployment of a system defined by its SD diagram
into a datacenter modeled by an LDD diagram.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor), start
Visual Studio, and then connect to the OSPACS Team Project, as
described in Exercise 5-7 in Chapter 5.

2. Open DistibOspacs, the Visual Studio Solution for which you cre-
ated an SD diagram in Exercise 30-12. Open the BartsHospital.sd file
from your Solution Explorer; double-click it.

3. Create a DD diagram for this SD diagram by opening the Define
Deployment dialog box (Diagram | Define Deployment), selecting
the BartsDatacenter.ldd file created in Exercise 30-2 (Browse), and
clicking the Open button. Your diagram should now look like
Figure 30-6.

Figure 30-6: DD diagram

Chapter 30: Deployment of Distributed Systems654

4. Bind the applications from the BartsHospital SD diagram to the
appropriate logical servers in the BartsDatacenter LDD diagram by
using the System View window to select each application in turn so
that you can do the following:

a. Open the Bind Application dialog (Right-click | Bind Application).

b. Select a compatible logical server in the dialog box.

c. Click OK to close the dialog box and bind the application.

Deployment Properties
The properties of a DD diagram are displayed in Visual Studio’s Properties
window (View | Properties Window) in the same way as other elements in
your Solution. The properties you are most likely to alter are contained in
the Project Files and Report sections because they determine the location
of your deployment report, the files that will be included with it, the vari-
ous settings relating to errors, and so on.

Exercise 30-14: Setting the Properties of Your Deployment Designer Diagram

In the following exercise, you will set the properties of the DD diagram cre-
ated in Exercise 30-13 so that any deployment report generated from it will
be created in a suitable directory.

1. Set the Destination Path property of your DD diagram as follows:

a. Open Visual Studio’s Properties window (View | Properties
Window).

Deployment Designer 655

NOTE

You can generate a deployment model directly from your AD diagram,
but it is intended that actual deployments will be defined by a model
created explicitly from an SD diagram so that you can configure them
for different production environments.

b. Click on the surface of the diagram and set the Directory Path
property to a suitable directory in Luke’s workspace (e.g.,
c:\Luke\OSPACS\Production\Docs).

2. Check in the file(s) you have created by clicking the Check In button
in the Pending Changes window.

Validating Deployment
The key facility of the DD tool is its capability to validate the model of your
system in terms of its SD diagram against the model of your datacenter in
terms of its LDD diagram. This allows you to identify potential deployment
issues from the earliest stages of your project.

Exercise 30-15: Validating a Deployment Designer Diagram

This exercise validates the DD diagram and generates a list of errors or
warnings in regard to any incompatibility between the constraints and set-
tings of the system and the datacenter where it will be deployed.

1. List any errors or warnings about your intended deployment by val-
idating the DD diagram (Diagram | Validate Diagram). Review the
error messages that are generated.

2. Check in the file(s) you have altered by clicking the Check In button
in the Pending Changes window.

Chapter 30: Deployment of Distributed Systems656

TIP

Set properties to include binary and content files along with your
deployment report so that everything needed for deployment is put
into your Destination Path. The types of files copied into this direc-
tory depend upon the project, but may include .dll, .exe, .config, and
.wsdl files.

Creating a Deployment Report
The actual deployment report is XML-based so that it is machine-readable,
but a human-readable form is also rendered into an HTML page that may
include a list of errors and warnings as well as the related DSD. Typically,
you would pass this report to your deployment team or use it yourself to
help you complete the physical installation of your components into the
selected datacenter.

Exercise 30-16: Creating a Deployment Report

In this exercise, you will generate a report in order to help you deploy the
components your team has developed into a specific datacenter.

1. Prepare for the deployment of your components by producing a
deployment report, which you do by choosing Generate Deploy-
ment Report from the Diagram menu.

2. Check in the file(s) you have altered by clicking the Check In button
in the Pending Changes window.

3. Log off, as you have finished the exercises in this chapter.

Deployment Designer 657

NOTE

It is easy to identify the source of errors generated during validation
because they are listed in Visual Studio’s Error List window, and dou-
ble-clicking an error (or warning) opens the Settings and Constraints
window, taking you straight to the source of the problem.

NOTE

The deployment report’s original HTML and XML files are stored in
the main directory of your Visual Studio Solution. However, the equiv-
alent .sdm document files are created in the directory you set as your
DD diagram’s Destination Path property.

Application of DD Models
An Agile team should create a DD diagram for its Integration and Build
environment (Build Lab) as well as for its target production environment(s)
so that it can include in its automated Team Build process the validation of
these diagrams against the current settings and constraints in its AD dia-
gram. In this way, any small deployment issues will not be allowed to accu-
mulate in the project because they will be regularly identified and corrected
during the Integration (or Daily) Build.

Ideally your Team Build would also generate a deployment report for the
DD diagram associated with your Build Lab and then use it to automate the
actual deployment of the build products into this environment. However,
this would require an additional tool capable of translating a deployment
report into a form of installation program that you could automatically
apply to your physical datacenter (Build Lab). At present, the Microsoft
tools go only as far as a logical datacenter, but doubtless this is a limitation
that will soon be addressed.

CONCLUSION

The models that the DSD tools generate certainly make it much easier for
teams to design, develop, and deploy distributed systems based on Web
services. However, at present the automated deployment of their compo-
nents into a datacenter is still dependant upon someone developing some
form of installation program. Clearly, before too long, tools will be released

Chapter 30: Deployment of Distributed Systems658

NOTE

Macrovision6 is developing a product which uses the VSTS deploy-
ment report to generate an install package that you can distribute with
the Microsoft Systems Management Server (SMS), thereby opening the
way for automated deployment from your Team Build.

6. Macrovision: SDM Web site (www.macrovision.com/sdm).

to automate even this step so that in a matter of days, organizations can go
from initial business requirement to production system.

Deployment Designer 659

NOTE

Undoubtedly, not everyone will want to implement the Daily Deploy-
ment practice (see Chapter 28), but in the future, this will be for busi-
ness reasons rather than because of any technical constraints in the
development and release process.

Review of Section 9
Practice for Deployment

IN T H E PA S T, the OSPACS team didn’t do a great job deploying its prod-
ucts. This was because by the time it came to writing the installation pro-

gram, the developers had forgotten some of the important presumptions
they had made during coding about the presence on the target platform of
things such as Registry values, data files, service pack updates, and security
settings. Therefore, after running the installation program, there was
always some additional tweaking to be done before their system could be
considered successfully deployed in the production environment. To
improve matters, the team had already taken the following actions at the
start of its project:

• Made its installation program a mandatory product of the iteration
in the same way as its executable files

• Engaged an expert for three days to teach the developers about
installation programs and help them create a basic installation pro-
gram using InstallShield,1 which they could then extend as the proj-
ect progressed

• Installed InstallShield Collaboration on the PCs in the team’s devel-
opment environment to encourage the gathering of deployment
requirements at the time the code was being written

661

1. Macrovision: InstallShield Web site (www.macrovision.com/products/flexnet_installshield).

However, they now built upon this work by completing the follow-
ing work:

• Implemented logging in their applications so that they could moni-
tor their software once it was in the production environment

• Created a simple Web site to support their products and gain feed-
back from users about their problems and suggestions

• Worked with people in other departments to remove some of the
technical bottlenecks that were stopping the team from deploying its
software quickly

• Undertook a spike to investigate how the Distributed System
Designer (DSD) tools might help them better understand their
clients’ datacenter environments

The Team’s Impressions

The team learned a lot about writing installation programs from the expert
it had engaged and therefore felt more confident about including this task
in its Daily Build process. The team members realized that instead of
attempting to build a large and intricate installation program at the end of
their project, they should start with a small and simple one and then slowly
add complexity as the work progressed.

CEO: Mike
“Practicing the deployment of a system from the earliest stages of the
project helps us identify issues that might have an impact on the project’s
business case. For example, if we know that we cannot install a certain
component in a client’s datacenter, why waste time and money building
something that can’t actually be deployed?”

Developer: Tom
“I can’t imagine any commercial team really doing daily deployment, but
there’s nothing wrong with people trying to automate the deployment

Review of Section 9: Practice for Deployment 662

process and remove those bottlenecks in our organization that add
no value.”

“Clearly, future versions of the DSD tools will give us accurate data-
center models by actively probing our client’s production servers. It’s a
shame that these facilities aren’t available to us yet.”

Developer: Luke
“I’m trying to improve my skill at writing installation programs because I
like the idea of seeing the whole project through from beginning to end.”

“Regular deployment helps the team members build expertise in this
area so that when they deploy at a client’s site, it is a case of executing a
well-polished procedure.”

Developer: Sarah
“It is exciting to envision people building systems simply by integrating
our different services into some form of Web site.”

“We should always apply the Incremental Deployment practice when
upgrading a legacy system.”

Developer: Peter
“We should continue to develop client-server solutions and stand-alone
applications in those situations when this sort of architecture provides the
simplest and most appropriate way of meeting the business needs.”

“Daily deployment is something for very small user groups, not for a
larger organization. The last place I worked had monthly production
releases, and many people thought that was too fast because each deploy-
ment cost the business so much time in terms of changing procedures,
training, and so on.”

Developer: Maggie
“It is much easier to system-test the team’s software when there is an instal-
lation program that deploys it automatically. In the past, it was never clear
whether problems were due to a bug or the way a program was set up.”

The Team’s Impressions 663

Agile Values

The Daily Deployment and Incremental Deployment practices reinforced
the team’s Agile values in the following ways.

Communication
Capturing deployment requirements at the time the code is written ensures
that this information is accurately transferred from development to opera-
tions. Frequent deployment also encourages development staff and oper-
ations staff to talk with each other on a more regular basis.

Feedback
Early deployment allows a team to learn from its mistakes and therefore
improve the future releases of its product. It also gives the team earlier feed-
back from real users, particularly when it is monitoring the production
environment.

Courage
Teams feel less apprehensive about their system when they deploy it incre-
mentally because they can start with something simple and then add
sophistication as it is required. This makes them willing to undertake more
challenging work because the impact of any failure is limited to the next
deployment.

Simplicity
The team’s objective is to totally automate deployment so that it can be
completed with little more than a single mouse-click. The team will handle
the increasing complexity of its production environment by developing
models that allow the team to view them in a simpler way.

Respect
Regular deployment encourages respect between the people in develop-
ment, operations, and the business because the value of their respective
work is visible from the early stages of a project.

Review of Section 9: Practice for Deployment 664

Section 10
Provide and Reveal Value

IN T H I S F I N A L section of the book, we consider the importance of a team
providing and revealing the value that exists in its work from the earli-

est stages of a project. Chapter 31 addresses the value that a team can obtain
from the technical information gathered about its activities by Team Foun-
dation Server (TFS), and in particular, it looks at how a team might produce
reports from this data to help improve performance. Chapter 32 then dis-
cusses the value the business can obtain by exploiting the team’s software
earlier in the development cycle as a result of the team revealing its features
iteratively and incrementally. Ultimately, it is this ability to provide and

665

Photograph by James King-Holmes (Copyright Science Photo Library, 2006).

In the same way biologists can identify the genetic traits of an organ-
ism before it matures, your customers should be able to discover the
value in your software from the earliest stages of its development.

reveal value which defines an Agile team and leads the team to better soft-
ware development.

Story from the Trenches

A few years ago, I joined a team that was developing a capital markets trad-
ing system for large banks and other financial institutions. A number of
very talented developers were working on the project and they had already
produced a good product. Although this system wasn’t perfect, it did have
a number of significant advantages over its competitors and the bank that
had been our initial development partner was actually using it. The team’s
next objective was to rewrite the system so that it could be easily cus-
tomized to meet the needs of other customers. However, it was a race
against time because the cost of running the project was crippling the com-
pany and no income was being generated.

Shortly after starting the job, I attended a meeting to discuss our prior-
ities for the next few months. The businesspeople sat at one end of the
table and the developers sat at the other. Each side quickly established its
position. The business was adamant that it must have something to show
to its customers, and we were equally insistent that we needed to restruc-
ture the code before working on any form of demonstration. Given that
nobody knew whether he or she would be paid at the end of the month,
the atmosphere became highly charged as both sides struggled to domi-
nate the meeting.

The matter came to a head when the sales director, Charles, declared
that without anything to show his customers, he couldn’t close a single sale.
This resulted in my boss, James, telling him flatly that nobody would be
giving demonstrations until we had sorted out the code structure. The two
men then stared at each other across the table, in stony silence. It was clear
that James would walk out of the meeting and probably out of the company
if pressed any further on this question of a demonstration. It was equally
clear that unless Charles could make these sales, everyone’s future was in
jeopardy. The meeting broke up without this impasse being breached. We
had not really understood the problems the business faced and the business

Section 10: Provide and Reveal Value666

had clearly not understood our need to address the technical issues that
were worrying James. Both groups might as well have been speaking a dif-
ferent language which, indeed, in some ways they were.

Over the next three months, the company somehow managed to fund
our team, so eventually we were able to restructure the code and deliver a
demonstration version of the product. When Charles demonstrated this
system to his potential customers, they were clearly impressed, so it
seemed he was only a few weeks away from getting the sales that would
secure our future. Unfortunately, though, before they materialized, the
entire business was sold to a competitor. It transpired that our parent com-
pany was fighting a takeover battle and had already taken the decision to
dump us for a knockdown price. The company probably would not have
taken this action had it realized the true value that existed in our software.
The problem was that we could see the value in our software, but we hadn’t
revealed it in time to save the business.

Story from the Trenches 667

31
Producing Technical Reports

TH I S C H A P T E R S TA RT S by reviewing some of the standard queries and
reports generated from the template selected when you created your

Team Project. We briefly explain what they do and how they might be use-
ful to you. However, the real message of the chapter is that each team is dif-
ferent in terms of the information it needs, so each team must take
responsibility for creating and presenting its own reports. Therefore, we
explain how you can develop your own queries and reports from the infor-
mation about your project which is gathered in the relational and On Line
Analytical Processing databases of Team Foundation Server.

Revealing Valuable Information

Team Foundation Server (TFS) stores a huge amount of information about
your team’s software development activities, but in practice, only a small
subset of this data will be useful for managing and controlling your project.
Indeed, some of the most important information about your project isn’t
stored in TFS at all; it’s in the working software you deliver to your cus-
tomer, on the Task Boards on your office walls, and in the story cards peo-
ple have written. This isn’t to say that you can learn much from the data
gathered in TFS, but rather that you need to be selective in terms of how it
is used. For this reason, we will concentrate on covering only a few of the

669

standard queries and reports created for your Team Project, and then we’ll
discuss ways in which you can maximize the value of this information by
presenting it effectively.

Standard Queries and Reports
Queries typically create simple lists of information, as they involve just run-
ning a SQL query statement against a collection of tables in a relational
database. Reports, on the other hand, can generate much more sophisti-
cated sets of information because they operate on data provided from an
On Line Analytical Processing (OLAP) database. The standard queries and
reports listed in Team Explorer are determined by the template you selected
when creating your Team Project. For example, the following queries and
reports are among those created by MSF for Agile Software Development:

• Active Bugs—A query that lists all work items of type Bug whose
state is set as Active. This allows you to display all the known bugs
in your system ordered by their priority or by the person to whom
they are assigned. When a particular bug is selected, its properties
appear at the bottom of the window; these include its history, links
to other work items (e.g., bugs), and details of the build in which it
was first detected.

• All Work Items—A query that lists all work items of any type. This
summarizes all the work about which the team is gathering metrics
(see Figure 31-1).

• Bug Rates—A report that charts the number of bugs being found
and resolved each day against the total number of active bugs that

Chapter 31: Producing Technical Reports670

NOTE

Teams that regularly deliver working software do not need to spend a
lot of time producing traditional project reports. Instead, they can sim-
ply invite customers to run their tests to see what has been achieved
and what remains to be done; see Section 7.

have been identified in your code. Preferably you would like to see
more bugs being resolved than are being found each day until your
team has cleared its bug backlog, but a low rate of bug discovery
might actually reflect problems with your testing practices.

• Quality Indicators—A report that charts the number of passing
and failing (or inconclusive) tests each day against the percentage
of code coverage, active bugs, and the lines of code that have been
added or changed (code churn). Any lag between the bug total and
code churn curves indicates a delay in finding bugs, which might
mean you need to increase the code coverage achieved during your
unit testing. An Agile team should not keep code checked in that
causes a test to fail, and should maintain a high percentage of code
coverage even when there is a large amount of code churn.

• Builds—A report that lists your Team Builds showing the percent-
age of tests passed, code coverage, and code churn. You can drill
down into the details of each build to discover more about the com-
position of this data; see Figure 12-5 in Chapter 12.

Figure 31-1: Results of an All Work Items query

Revealing Valuable Information 671

Gathering and Presenting Information
Visual Studio Team System (VSTS) takes a lot of the hard work out of gath-
ering the data needed to produce your Team Project’s queries and reports
because most of the information is collected automatically as people per-
form day-to-day tasks such as creating bug reports, checking in their code,
running builds, and so forth. In theory, this means that team members
should be able to spend more time analyzing and acting upon the infor-
mation, but unless you’re careful, the shear amount of data may prove
overwhelming and result in people disengaging from the entire process.
Therefore, we suggest you start with a small number of standard queries
and reports, selected because they have a clear purpose in terms of reveal-
ing information that might help a team improve its performance. You
should then discuss how the data is gathered and its relevance to the team
before encouraging people to consider how the information might be pre-
sented in a more meaningful way. This isn’t just a case of asking for some
suggestions to adapt existing reports, but it might go so far as to rig up a
dot-matrix moving message sign to broadcast the percentage of code cov-
erage achieved in the last Team Build.

Chapter 31: Producing Technical Reports672

NOTE

You run the queries and reports belonging to a Team Project simply by
double-clicking the item in the Team Explorer window; see Exercises
27-3 and 27-7 in Chapter 27. You can also add new queries and reports
to your Team Project, as described shortly and as discussed in Exer-
cise 27-4 in Chapter 27.

NOTE

You need to generate enthusiasm for finding and resolving the issues
that are preventing the team from performing better. This won’t hap-
pen while people are still looking at reports developed by other teams
that are based on metrics which they don’t really understand.

Informative Workspace Practice
The Informative Workspace practice is about the team taking control of its

environment and making it support the work it is doing. It is an antidote

to the institutionalization that exists in many workplaces.

The artifacts of an informative workspace are usually practical as well as

symbolic. A large sign placed very visibly on a wall showing the results of

the latest Team Build, for example, tells people whether their work has

been successfully integrated into the product, something they really need

to know. However, the sign also acts like a flag because it tells the world

that the team has created working software! Such symbolism helps create

a team identity and is the sort of thing that inspires people to go beyond

the usual boundaries of their jobs. It signifies that people are part of a

team and that they care about what they do. This is not about window

dressing; it’s about creating an environment that encourages the behav-

ior and actions of a successful team.

You know when you’ve joined a team that is applying the Informative

Workspace practice because from the first time you enter the team’s space,

you immediately know the sort of people you’ll be working with and the

nature of their project. You can sense the enthusiasm and passion; notice

boards inform you about the tasks they’re doing; and Big Visible Charts

(BVCs; discussed shortly) on the walls tell you what’s really important to

the team and the progress they’re making on these issues. When you wan-

der into the kitchen, you see that there’s space for people to sit and talk,

and the smell of fresh coffee percolates through the air. To apply the Infor-

mative Workspace practice, start by asking what message your current

environment gives people and then consider how changing that message

might help your team produce better work.

Big Visible Charts
You might put a lot of effort into selecting your metrics and then presenting
them in a thoughtful manner, but unless this information is communicated
properly, its value may be completely lost. For this reason, Agile teams

Revealing Valuable Information 673

often put their most important information on big charts which they pin to
the walls of their offices. When is comes to attracting attention, it’s hard to
beat these Big Visible Charts (BVCs).1 However, you shouldn’t spend too
much time making them look like they’ve come out of a graphic design stu-
dio because part of their appeal is that you can draw them quickly and then
discard them once they’ve served their purpose. Indeed, this casual look
emphasizes their immediacy and relevance to the team’s current problems.

Extracting Data from Team Foundation Server

Team Foundation Server (TFS) acts as a central repository for all the data
associated with your Team Project, such as its source code, work items,
build products, and so forth. Most of the time you access this data through
Visual Studio, but occasionally you may need to get at the information
directly. Therefore, we will give you a brief overview of the structure of the
TFS Data Warehouse before describing how you can access it both as a tra-
ditional On Line Transaction Processing (OLTP) database and as an On Line
Analytical Processing (OLAP) database.

Chapter 31: Producing Technical Reports674

1. Jeffries, Ron. “Big Visible Charts” (www.xprogramming.com/xpmag/BigVisibleCharts.htm).

WARNING

The power of a BVC is diminished when there are too many charts on
the wall or when you do not update them regularly. Therefore, decide
what information is really important, and then apply the resources
needed to present it reliably and effectively to the whole team.

NOTE

The Bibliography contains references to a number of good books about
relational databases, SQL, and data mining. We recommend you
obtain a basic knowledge of these subjects before attempting to do any
serious work with the TFS Data Warehouse.

Introduction to the TFS Data Warehouse
Relational databases are based on the idea of collections of tables containing
rows (records) and columns (fields) which have certain relationships to each
other. This arrangement is fine for applications that are largely transactional
in their nature, but it’s less good when you need to pull together information
from different sources so that you can perform complex analysis on large
data sets. For this sort of data mining work you really need an OLAP data-
base. You build this type of database by automatically extracting data from
different sources (such as relational databases), performing any translation of
the data that may be required to put it in a common form, and then loading
the resulting data into the cube structures that characterize the OLAP data-
base. Once you’ve created these cubes, it’s a quick and easy matter for people
to drill down into the data and find all the information they want.

The TFS Data Warehouse is composed of both a relational database and
an OLAP database which are both provided by SQL Server 2005. You can
access the relational database using the SQL Server Management Studio
tool (see Exercise 31-1). The following tools are concerned with the OLAP
database (see Exercise 31-2):

• SQL Server Integration Services (SSIS)—Performs the extracting,
translation, and loading (ETL) of the OLAP database.

• SQL Server Analysis Services (SSAS)—Unifies the information
held in the relational database with the information held in the
OLAP database so that reports are always generated using the latest
information.

• SQL Server Reporting Services (SSRS)—Creates and manages
report definitions authored in Report Definition Language (RDL).
It also publishes and manages reports on the report server.

Extracting Data from Team Foundation Ser ver 675

WARNING

The preceding tools are not installed with VSTS, so you must use the
SQL Server 2005 installation disk supplied with your MSDN sub-
scription to install them on your PC and then set up the necessary user
rights before starting the exercises in this chapter.

Accessing Data in the TFS Relational Database
You should spend some time exploring the data stored in the various TFS
databases so that you gain a basic understanding of what data is available to
you and how it is organized. Fortunately, the SQL Server Management Stu-
dio tool makes this easy to do, as you can see from the following exercise.

Exercise 31-1: Running a SQL Query on the TFSWarehouse Relational Database

This exercise shows you how easy it is to obtain information about your
builds from TFS’s TFSWarehouse database. It’s a good idea to complete
this exercise to check that you have the necessary rights to access the TFS
databases.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor) and start
SQL Server Management Studio; see Appendix A for a specification
of this machine and details of Luke’s security groups.

2. Connect to the database engine on the server that hosts your TFS
(e.g., DEVSERVER) using Windows Authentication by making the
appropriate selections from the drop-down list controls in the
Connect to Server dialog box.

3. Prepare a SQL Query on the TFSWarehouse database as follows:

a. Open the Databases folder.

b. Open the Tables folder in the TFSWarehouse database.

c. Select the Build table, and then right-click and select Script Table
As | SELECT To | New Query Editor Window. This creates a
SQL Query in the Query Editor.

Chapter 31: Producing Technical Reports676

NOTE

SQL Server Management Studio replaces the Enterprise Manager and
Query Analyzer tools found in previous versions of Microsoft SQL
Server.

Figure 31-2: SQL Server Management Studio running a query

4. Run the SQL Query to list all the records in the Build table by select-
ing all the text in the Query Editor window (Edit | Select All) and
then applying Query | Execute; see Figure 31-2.

5. Log off, as you have completed this exercise.

Creating a Custom Report from the TFS OLAP Database
Microsoft uses the term business intelligence to describe the way its tools
allow valuable business information to be obtained from a central data
warehouse. The business information in which you are interested relates

Extracting Data from Team Foundation Ser ver 677

WARNING

Altering data in the TFSWarehouse database directly using SQL state-
ments may have unforeseen consequences, so we suggest you use the
TFS API to make any changes you might require.

to the metrics gathered during the operation of your Team Project and will
be presented by the reports you have created using the Report Designer.

Exercise 31-2: Using the Report Designer to Create a Custom Report

The following exercise takes you through the process of adding a report to
your team’s Report Site. In practice, though, you will probably want to con-
struct more sophisticated reports than the simple one we describe here.

1. Log on to the ArchitectPC as Luke (OSPACS Contributor), start SQL
Server Business Intelligence Development Studio (Visual Studio),
and then connect to the OSPACS Team Project, as described in Exer-
cise 5-7 in Chapter 5; see Appendix A for a specification of this
machine and details of Luke’s security groups.

2. Create a Business Intelligence Project using the Report Server Project
Wizard, call it “WICountReport”, and call its solution “Reports” (File
| New | Project, Business Intelligence Project | Report Server Project
Wizard). You do not need to add this project to version control.

3. Read the comments on the Welcome page of the Report Wizard and
then click Next.

4. Select a new data source for your report, name it “reportsTFS”, and
set its type as Microsoft SQL Server Analysis Services. Then click the
Edit button to open the Connection Properties dialog box so that you
can do the following:

a. Type “DEVSERVER” as the server name and “TFSWarehouse” as
the database name.

b. Click the Test Connection button to confirm your connection and
then click OK to close the dialog box.

Chapter 31: Producing Technical Reports678

NOTE

Your Team Project’s Report Site contains a button labeled Report
Builder, which starts a tool that also allows you to generate reports from
an OLAP database. However, you should use the Report Designer
when working with the TFSWarehouse.

5. Confirm that the connection string appears in the Select Data Source
page of the wizard, and then click Next.

6. Design your query by clicking the Query Builder button in the
Design the Query page of the wizard, and then do the following
(see Figure 31-3):

a. Select Team System in the drop-down box at the top of the left-
hand window.

b. Add the Assigned To dimension to your report by expanding the
Assigned To item in the left side of the window, selecting Person,
and then right-clicking and selecting Add to Query.

c. Add the Team Project dimension to your report by expanding the
Team Project item in the left side of the window, selecting Team
Project, and then right-clicking and selecting Add to Query.

d. Add the Cumulative Count measure to your query by opening
the Measures folder and then opening the Work Item History
folder before selecting Cumulative Count, right-clicking, and
selecting Add to Query.

e. Close the Query Builder by clicking OK.

Figure 31-3: The Query Builder

Extracting Data from Team Foundation Ser ver 679

7. Confirm that the query string appears in the Design the Query page
of the wizard and then click Next.

8. Select the Report Type as Tabular and click Next.

9. Group the data in your table by setting Team_Project as Page, Per-
son as Group, and Cumulative Count as Details. You can do this by
selecting the item in the Available Fields list and then clicking the
appropriate buttons. After completing the Design the Table page of
the wizard, click Next.

10. Leave the default values in the Choose the Table Layout page and
click Next.

11. Select the style as Corporate on the Choose the Table Style page and
click Next.

12. On the Choose the Deployment Location page, set the URL of the
Report Server as http://devserver/ReportServer and the deploy-
ment folder as WICountReport, and then click Next.

13. Name the report “WICountReport” on the Completing the Wizard
page and click Finish.

14. Set the properties of your WICountReport project so that you can
deploy your report as follows:

a. Open your project’s Property Pages dialog box by selecting it in
your Solution Explorer and choosing Properties from its context
menu (Right-click | Properties).

b. Set the TargetServerURL as http://devserver/ReportServer.

15. Deploy your report to the Report Server by selecting the
WICountReport.rdl file in your Solution Explorer and choosing
Deploy from its context menu (Right-click | Deploy).

16. Add the report to the home page of your Team Project’s Report Site
as follows:

a. Open the Report Site (Team | Show Report Site).

b. Click the Upload File button and then select the
WICountReport.rdl file in the directory you created for your
Visual Studio Solution.

Chapter 31: Producing Technical Reports680

17. Confirm that this new report works correctly by running it from the
Report Site (click on its link) as well as from the Team Explorer win-
dow (refresh the OSPACS Reports folder and then double-click the
WICountReport item).

18. Log off, as you have finished the last exercise in this book.

You should investigate how the standard reports supplied with your
Team Project template are written by downloading their RDL files from the
Report Site and adding them to your Visual Studio Solution. You can down-
load a report’s RDL file by clicking the Edit link in the Report Definition
section of its Properties page and then saving the file on your PC. You then
can add this file to the Reports folder in your WICountReport Visual Studio
Project (Right-click | Add Existing Item) so that you can edit it, as shown in
Figure 31-4, and later redeploy it, as described in the preceding exercise.

Figure 31-4: The Report Design Language Editor

Extracting Data from Team Foundation Ser ver 681

CONCLUSION

People gain a far deeper understanding of what some information means
when they have been involved in gathering, analyzing, and presenting the
underlying data. When using VSTS, you must take care that the automation
of these processes doesn’t inhibit the ability of your team to improve its per-
formance by learning from the information provided in its queries and
reports. For this reason, you should encourage people to consider how they
might gather new metrics about their project and to think about better ways
in which the data might be combined and presented. Information that is
particularly important to the team should not be hidden on some Web site,
but rather should be made a part of the team’s environment, as suggested
by the Informative Workspace practice.

Chapter 31: Producing Technical Reports682

NOTE

The bibliography on the book’s Web site lists a number of books that
explain how to use and interpret the standard reports supplied with
the MSF Agile process template. However, we particularly recommend
the one by Sam Guckenheimer and Juan Perez.2

2. [SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft Visual
Studio Team System (Addison-Wesley, 2006).

TIP

It is better for a team to monitor two or three metrics of its performance
that it really understands rather than look at a dozen charts which are
not really connected to the team’s activities.

32
Generating Business Value

IN THIS CHAPTER, we will look at the potential of lean thinking to change
the economics of software development so that we can identify value and

make it flow, thereby allowing customers to pull products into production
at a time when they can generate the most business value from them. The
chapter concludes with a brief discussion about how Agile software devel-
opment complements process improvement initiatives such as Six Sigma,
which other areas of your organization may already be promoting.

Lean Thinking

When people talk about generating value, they usually mean doing more
with less, and when researching this subject you can’t go very far without
encountering the Toyota Production System. Indeed, most books about
Agile software development refer directly or indirectly to automobile-
making ideas first pioneered at Toyota. At first, it may seem strange to con-
nect software development with this sort of manufacturing process.
However, the classic book, Lean Thinking, by James Womack and Daniel
Jones,1 identifies five basic principles at work in the Toyota Production Sys-
tem that you can apply to almost any type of production or design process.

683

1. [LT] Womack, James P., and Daniel T. Jones. Lean Thinking (Simon & Schuster, 2003).

Therefore, let’s start our discussion about generating value by looking at
how each principle might apply to an Agile team.

Specifying Value
The value that software provides, from a customer’s perspective, lies in its
capability to meet a current business need as well as its potential for future
adaptation, which allows the exploitation of any new opportunities that
might arise. Customers are seldom interested in how the solution works as
long as it provides a good return on their investment and does what they
want. Unfortunately, though, customers often don’t know what they want
until they start using the software and discover its shortcomings. Even then
the business can move faster than traditional software development is able
to deliver, so the opportunity may have gone by the time the software the
business needs is finally released. In this sort of environment, it is not sur-
prising that many customers value their spreadsheets more than the prod-
ucts of the IT department.

An Agile team rapidly and regularly delivers working software to the
business, which helps the business to identify its real needs and more pre-
cisely specify the value it requires.

Identifying the Value Stream
The identification of a value stream requires you to look at each step in a
process and then discover what actions create value to the customer, what
actions create no value but are unavoidable, and what actions are both
avoidable and create no value. The objective is to eliminate the waste
caused by doing things that don’t add value to the customer. For example,
Table 32-1 identifies “gold-plating” (code that implements a feature with no
obvious business value) as something that adds no value and is entirely
avoidable, but identifies “implementing a feature needed by the business”
as something that creates value. Performing this sort of analysis on the
team’s activities can be highly beneficial and is easy to do; you just need to
identify what artifacts a team produces and then ask, if we didn’t do that
would the customer notice? It may surprise you how much of what you do
adds no value and is entirely avoidable.

Chapter 32: Generating Business Value684

Table 32-1: Classifying Actions That Occur in a Value Stream

Process Step Creates Value Creates No Value, Creates No Value,
but Is Unavoidable and Is Avoidable

Specifications
nobody reads

Models that don’t
reveal anything
about the problem

Gold-plating

Build Builds that fail

Testing Writing a test that
doesn’t fail

Release Release that
nobody uses

Making Value Flow
We often tend to view efficiency in terms of utilization. For example, a test-
ing department may be judged in terms of the lines of code tested in a month
and therefore holds a large stock of code to ensure that its people are always
kept busy and throughput is maximized. However, such high levels of uti-
lization often come at a price, because your test department’s need to hold
large stocks of code results in the business losing opportunities and poten-
tial profits while the software sits waiting to be tested. The cumulative

Passing the user
acceptance test

Deploying a
product into the
production
environment

Running
regression tests
that pass

Writing a test
that identifies a
new bug

Maintaining the
build machine

Successfully
translating the
code into a
product

Code thrown
away because
the business
need changed

Implementing a
feature needed
by the business

Writing the
source code

Documents used
only to satisfy a
company policy

Spikes that help
you explore the
problem

Analysis and
design

Specifications
used to identify
nonfunctional
requirements

Specifications
used to identify
business need

Planning and
communicating

Lean Thinking 685

effect of such queues at different stages of the process might add months
to the time taken to deploy your software into the business environment;
see Figure 28-1 in Chapter 28.

The Agile alternative to this sort of batch and queue is a continuous flow
of work achieved by having a team of people who are able to perform all
the tasks involved in releasing software to the business. To make this work
the team needs to be trained across a range of disciplines and have access to
tools that reduce the need for specialists; see the Whole Team practice in
Chapter 4. In this regard, making the value flow might mean eliminating
the testing department bottleneck by getting the customer to write and exe-
cute tests.

Allowing the Customer to Pull Value
Traditional projects deliver software to the business on a release cycle
decided by the IT department. That is to say, perhaps twice a year, the
development team pushes its products into the business. Accordingly, many
months may pass between when the code is written and when it starts pro-
viding the business with any value simply because the development team
has decided to include other, less valuable features in the same release.

In an Agile project, the customer knows the value that exists in the soft-
ware, because at any time he can just click a button to execute the customer
tests. Therefore, it becomes a business decision as to whether this value
should be released immediately or held over until the next scheduled
release. Indeed, the customer might then decide that this scheduled release
doesn’t contain enough value to justify the disruption to the business and,
therefore, further delay the deployment of the feature. In this way, the busi-
ness is said to pull the product from the development environment to max-
imize the return on its investment.

Seeking Perfection
Jack Reeves2 points out that software is almost free to manufacture because
it is a job that you can automate with tools such as compilers and linkers.
The cost lays in the development of the design documents that provide the

Chapter 32: Generating Business Value686

2. Reeves, Jack. “What is Software Design?” (Publications, www.bleading-edge.com).

input to these tools—in other words, the program’s source code written in
a computer language such as Visual Basic or C#. Accordingly, most types of
software development involve iterating through a cycle of design, build,
and test until the software meets the customer’s requirements. This is
because the design doesn’t need to be perfected before it is manufactured, as
there are no production lines to build, no tooling costs, and no raw materi-
als to buy.

An Agile project is characterized by its many short iterations during
which design, build, and test are continuously repeated. The design is
therefore more frequently improved as a result of testing than it is in non-
Agile projects. This improvement takes place at a structural level in the
design of the code as a result of programmer tests. It also takes place at a
function level in the design of the system as a result of customer tests. How-
ever, it is not only the program that an Agile team seeks to perfect, for each
iteration provides an opportunity for the team to improve upon what it did
before by finding and correcting the problems associated with its develop-
ment process. This is how an Agile team continuously improves its process.

Root Cause Analysis Practice
Root cause analysis requires you to identify and correct the real cause of a

problem rather than addressing just its symptoms. The practice originates

from the Toyota Production System3 and entails asking why a problem arose

five times so that with each answer you come closer to its real cause.

The importance of root cause analysis is best illustrated with an example,

so let’s suppose that after your Team Build fails, you ask the following

questions and answer them accordingly:

• Why did the build break? Because a file hadn’t been checked in.

• Why wasn’t the file checked in? Because it wasn’t in the pending

changes list.

• Why wasn’t the file in this list? Because it wasn’t created by Visual Studio.

Lean Thinking 687

3. [TPS] Ohno, Taiichi. Toyota Production System (Productivity Press, 1988).

Continues

• Why wasn’t it created by Visual Studio? Because we haven’t created an

item template for test data files.

• Why haven’t we got this template? Because we don’t spend enough

time automating things.

Without asking why five times, your analysis of the problem might go no

further than identifying that a file hadn’t been added to source control,

therefore allowing the real problem to reappear in a different guise over

and over again. The Root Cause Analysis practice helps a team seek per-

fection by revealing such fundamental defects in its development process.

The main difficulty you face when implementing root cause analysis is

deciding when to apply it, because a design process is about generating

problems and it’s just not feasible to get to the root cause of them all. For

this reason, we suggest you start by applying the practice to activities that

are somewhat production-like, such as your Team Build and Deployment

process, and then gradually introduce it into your design activities as well.

For example, your team can learn from every bug it fixes by writing a set of

customer and unit tests that will reveal similar problems at a much earlier

stage of the development cycle. In this way, you don’t repeat why five

times, but instead repeatedly write tests that probe the problem at five dif-

ferent levels. This not only helps you fix the bug properly, but also may pre-

vent dozens more from arising in the future.

Changing the Economics of Software Development

There is a strong economic argument for taking an Agile approach to your
software development, because it allows you to generate business value much

Chapter 32: Generating Business Value688

NOTE

Writing tests that probe a problem at five different levels is much
harder than asking why five times, so you might start by writing just
one or two extra tests that go beyond the immediate scope of the bug
to explore its context more thoroughly.

earlier in the project life cycle and this is value that would otherwise be lost.
To illustrate the point, let’s compare the anticipated return for an Agile proj-
ect against that of a traditional project. In both projects, it is assumed that the
team has identical costs and works for 24 weeks, so costs start at zero and rise
at a constant rate to $160,000 when funding stops at the end of the project.

Value Generated by an Agile Project
The value in the software developed by the Agile team is visible to the busi-
ness from the start of the project due to its customer tests; therefore, the
team decides to release a version of the software into production after the
third two-week iteration (six weeks into the project). The business, there-
fore, starts getting a return on its investment from week six of the project
and this benefit accumulates as the development continues and later ver-
sions of the software are released. However, let’s take a conservative posi-
tion over the value of these later versions and assume that they don’t make
any further contribution to the rate of return. Therefore, eight weeks later
the break-even point is reached when the accumulated returns equal the
accumulated investment. After this date, the returns continue at the same
rate, past the end of the project when investment stops, until some point in
the distant future when benefits start to erode due to some external factor
such as a change in the business.

Value Generated by a Waterfall Project
In a traditional project, the business becomes aware of the value in the soft-
ware only when it is finally released, so it must wait until week 24 before dis-
covering its value. At this time, the Agile team has already provided a return
of $225,000 to the business. So in order to recover this ground, the software
produced by the traditional team must supply a greater rate of return.

Changing the Economics of Software Development 689

NOTE

These two teams are fictitious; you wouldn’t waste money getting two
equally matched teams to develop the same product using different
methodologies. However, we feel that Figure 32-1 provides a reason-
able model of what might happen in such a scenario.

However, there is no reason to suppose this might happen, because the two
teams are equally matched in terms of their skills and they have both spent
the same amount of time writing the code. Therefore, the gap between their
respective returns remains constant at $225,000 through the lifetime of the
software, which is the projected cost advantage of the Agile project.

It could be argued that the value of the software delivered by the Agile
project at week six is considerably less than the value of the final software
delivered at the end of the project, and therefore the rate of return will not
be constant. However, there is a counter-argument that 80 percent of the
value is delivered by 20 percent of the code, and because the stories are
ordered so that the ones with the most value to the business are done first,
a release after 25 percent of the code has been written (week six) will con-
tain 80 percent of the value. There is merit in both positions, but what seems
clear is that no matter how you might reasonably adjust the figures, the
Agile project will always have a lead in the gap between the anticipated
returns for the two projects and will always break even earlier, therefore
reducing its risk.

Linking Agile to Other Process Improvement Initiatives

Agile software development seeks to drive efficiency in the software indus-
try in much the same way that initiatives such as the Toyota Production
System have served other industries. Indeed, if you work for a company
whose core business is not software development, you may find that other
departments are already engaged in forms of process improvement
inspired by the Toyota Production System. Therefore, you might gain their
support by expressing the concepts of Agile software development in terms
that they already understand.

Chapter 32: Generating Business Value690

NOTE

Figure 32-1 is reproduced from the paper “Driving Development with
Customer Tests,” by Will Stott and David Putman, which they pre-
sented at the EuroSTAR 2004 Conference in December 2004. It is repro-
duced with kind permission of QualTech Conferences.

Figure 32-1: Cost-benefit comparison for Agile and non-Agile projects

Agile Development in the Context of Design for Six Sigma
Design for Six Sigma4 promotes values and practices that allow software
teams to work quickly and respond to change, producing work in a way
that minimizes mistakes, waste, and rework. Accordingly, you might
describe the Agile manifesto to Six Sigma teams in terms of the following:

• Customer collaboration—Applying resources to finding out what
customers really want and then devoting the entire project to meet-
ing the needs and desires of these customers.

• Working software—The customer defines some tests, developers cre-
ate software that can be measured against these tests, analysis of the
test results determines progress, improvement is made by generating
new tests and better software, and control is provided by allowing
the team to learn each time it delivers its software.

$450,000

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Accumulated Cost
Agile Benefit
Traditional Benefit

Break-even Point
for Agile Development

End of Project

Break-even Point
for Traditional
Development

Linking Agile to Other Process Improvement Initiatives 691

4. [DF6S] Chowdhury, Subir. Design for Six Sigma (Dearborn Trade Pub., 2002).

• Individuals and interactions—Typically, between six and 18 people
with cross-functional skills work together to produce a piece of soft-
ware that can be delivered to the business to give demonstrable value.
The team is self-organizing, taking responsibility for things such as
setting priorities and scheduling work.

• Responding to change—Waste and rework arising from changes in
requirements or business priorities is minimized by delivering soft-
ware through a succession of short iterations, each of which provides
working software ready for pulling into production should the busi-
ness decide it provides sufficient value.

CONCLUSION

The need for organizations to become more Agile in their approach to soft-
ware development is driven by the plain economics of doing more with less.
Ultimately, it is not Visual Studio Team System that will deliver this objec-
tive, but the people in your organization. Therefore, we have completed this
book by giving you some ideas about the issues you face and hope this stim-
ulates your interest in the wider issues of lean thinking and agility.

Chapter 32: Generating Business Value692

NOTE

The Bibliography lists a number of books that provide much more
detailed coverage of introducing Agile software development ideas
into an organization. In this book, we concentrated on just explaining
the technical aspects of this task.

Review of Section 10
Provide and Reveal Value

A T T H I S S TA G E, the OSPACS team had implemented all the basic prac-
tices and therefore concentrated on delivering increased value to the

business by improving its performance. The team did this by taking the fol-
lowing actions:

• At the start of each iteration, the team discussed whether it could
improve the metrics it was monitoring. Each group of metrics was
allocated to a member of the team who took responsibility for check-
ing the data and presenting it to the team.

• Team members were asked to suggest ways in which the metrics
they gathered could be better presented. Developers were then
allowed some time to put the best of these ideas into practice.

• The team took a critical look at its workspace and found ways to
make it more informative by arranging for some more notice boards
to be put in the coffee area and generally taking more of an interest
in its working environment.

• It was decided that the team should write at least two different tests
to illustrate each new bug as part of the process of fixing it. These
tests should attempt to test the same issue orthogonally.

The Team’s Impressions

The team is now starting to experience the benefits of working in a more
Agile way, but in order to improve further, it needs to analyze why things
have gone wrong and learn from the information it reveals.

693

CEO: Mike
“I certainly agree that 80 percent of the value lies in 20 percent of the fea-
tures, so clearly we need to identify and develop this 20 percent before any-
thing else. Isn’t this what we are doing with storytest-driven development?”

Developer: Tom
“Teams are more likely to improve their performance when they are involved
in deciding what metrics to monitor and have themselves designed the
reports which present this information.”

“It was highly instructive to identify the things we did that actually
added value to the customer. It showed us just how much waste we needed
to eliminate.”

Developer: Luke
“The charts on the walls are ours. We own them. They’re not a management
gimmick.”

“I’m glad to hear that everyone will take part in updating those charts
we’ve put on the walls. I feared that would become yet another job for me.”

Developer: Peter
“There’s more to the Informative Workspace practice than just putting Big
Visible Charts on the wall. It’s an expression of the culture on our team.”

“The route-cause analysis should help us address our fundamental
problems so that we don’t spend all our time fighting fires.”

Developer: Maggie
“I was impressed when I saw the chart showing the team’s bug count dis-
played above Tom’s desk. It shows he really does care about this issue.”

“We always knew the old test department was a bottleneck, but nobody
could suggest how to get rid of it. Part of the problem was that I wanted
to appear busy, so I would always make sure there was plenty of work
stacked up.”

Review of Section 10: Provide and Reveal Value694

Agile Values

The work the OSPACS team did in making its workspace more informative has
built a lot of team spirit and there is now a genuine interest in the metrics gath-
ered by Visual Studio Team System (VSTS). The other improvements the team
made to the way it worked promoted Agile values in the following ways.

Communication
The Big Visible Charts (BVCs) on the wall of the office make clear the met-
rics that the team considers to be most important and its progress toward
resolving the issues that they underline.

Feedback
The data automatically gathered by VSTS as the team carries out its daily
tasks provides a great source of information for the present projects as well
as future ones. It allows the team to learn from its mistakes.

Courage
In the past, the business avoided undertaking ambitious work because it
feared that the developers would hide the real problems until the very last
minute. The transparency provided by things such as customer tests
means the business is now less afraid of risk because it feels better able to
manage the risk.

Simplicity
The informal way of hand-drawing the charts the team has fixed to the
walls reinforces the team’s belief that simple ideas are often best. These
charts take so little time to produce that people are quite happy to throw
them away once they’ve served their purpose.

Route cause analysis helps the team strip away all the layers that
obscure the fundamental problem. These layers contain the complexity, but
often the problem itself is something quite simple.

Respect
The transparent way in which the development team and the business now
operate does a lot to build trust and respect among people.

Agile Values 695

Retrospective
Fixing the Process

I T I S N I N E M O N T H S since the OSPACS team installed Visual Studio
Team System (VSTS) and started its journey toward becoming an Agile

team. The team members have worked on the issues in the road map they
created in the Introduction (Table I-1), but more important, they’ve just
delivered the new generic version of their system to one of their new cus-
tomers. Accordingly, it is a good time for them to conduct a retrospective.

About Retrospectives

Agile teams commonly hold retrospectives at various points in their proj-
ects in order to promote the sort of learning that leads to further improve-
ments in the way they develop software. Some teams hold short
retrospectives at the end of every iteration, whereas others may hold longer
retrospectives at significant milestones, such as after a major release or at
the end of a project. There are advantages to both approaches, so you

697

NOTE

Before arranging a retrospective for your own team, we recommend
that you read Agile Retrospectives, by Esther Derby and Diana Larsen,1

as well as Project Retrospectives, by Norman Kerth.2 These books
describe many useful exercises, including those mentioned in this ret-
rospective.

1. [AR] Derby, Esther, and Diane Larsen. Agile Retrospectives (Pragmatic Bookshelf, 2006).
2. [PR] Kerth, Norman. Project Retrospectives (Dorset House, 2001).

should decide what works best for your team, perhaps even combining reg-
ular short retrospectives with the occasional longer one.

Preparation
The OSPACS team exceeded all expectations by releasing a generic version
of the system to its first client by the start of the fourth quarter, so Mike (the
CEO) decided to reward the team by funding a team-building weekend.
However, after some discussion, he was persuaded to extend the weekend
by one day so that the team could combine its team building with a formal
retrospective because everyone felt there was a need to consolidate what
they had learned over the past nine months. He was also persuaded to pay
for a qualified retrospective facilitator3 to ensure that the team arrived at a
proper set of conclusions, which the team could then form into an action
plan for the next stage of its project. Accordingly, the OSPACS team
employed a freelance facilitator, named Mary, who then set about prepar-
ing and organizing the retrospective in the following way:

• She booked a ski lodge in Colorado, because it was only a two-hour
drive from the office (and she got a good price because it was out of
season).

• Two weeks before the event she sent everyone an information pack
containing the following:

– Details of the accommodation

– A brief description of the format of the retrospective, which
includes a statement of its purpose and general objectives

Retrospective: Fixing the Process698

WARNING

Engage an experienced external facilitator when holding a retrospec-
tive, even if it is just a manager from another part of your organization.
This person must be able to lead the group, handle conflicts, and cre-
ate a safe environment that ensures that everyone’s voice is heard.

3. Retrospective Facilitators (http://finance.groups.yahoo.com/group/retrospectives).

– A copy of her biography so that the team would know about her
previous experience and background as a contract IT developer

– A list of things for them to do prior to arriving in Colorado

The most important thing Mary asked the team to do before the retro-
spective was to answer a questionnaire so that she could gauge the devel-
opers’ feelings about the project and the forthcoming retrospective.

Creating a Plan
A few days before the retrospective, Mary created a plan guided by the
feedback she obtained from the questionnaire as well as from some meet-
ings she had arranged with Mike and a few of the team members. This plan
included the following:

• Setting the objectives:

– Identifying the importance of Agile values and practices to the
team’s work

– Finding ways to improve the team’s performance for the next project

– Creating a report after the retrospective had been completed con-
taining a summary of the actions the team wanted to take during
the next project

• Structuring the activities:

– Friday—“Create Safety” exercise, white-water rafting, “Develop-
ing a Timeline” exercise (Parts A and B)

– Saturday—“Developing a Timeline” exercise (Part C), fly-fishing,
“Passive Analogy” exercise, “Retrospective Meal”

– Sunday—“Making the Magic Happen” exercise, lunch, “Closing
the Retrospective” exercise

About Retrospectives 699

TIP

Create an archive for your retrospective reports because they contain a
lot of valuable information and often help organizations improve their
whole approach to running projects.

The OSPACS Team’s Retrospective

Mary started the retrospective with the usual sort of introductory speech
and then spent some time helping the team to define its objectives and
ensuring that people felt comfortable about speaking out without fear of
looking stupid or saying something out of turn. That is to say, she created
a feeling of safety and established “Kerth’s Prime Directive,” which is as
follows:

Regardless of what we discover, we must understand and truly believe
that everyone did the best job he or she could, given what was known at
the time, his or her skills and abilities, the resources available, and the sit-
uation at hand.

After the team members discussed their mutual concerns over coffee,
they left for the white-water rafting event, which included lunch. There-
fore, it was late afternoon before the team returned to the ski lodge and
started the serious work of the day, which was the “Developing a Time-
line” exercise.

Developing a Timeline
This exercise aims to provide everyone with the big picture of the project.
It is a period-by-period review of all the main events that actually hap-
pened as seen from different people’s points of view. The objective of the
exercise is to find out what worked well in the past and what needs to be
done differently in the future.

Retrospective: Fixing the Process700

NOTE

During a project, people often become focused on a particular task and
can easily forget the issues they had to address a month or even a week
ago. The timeline exercise helps the team collectively refresh its mem-
ory of such issues and then put them into a proper context.

Typically, the exercise takes between three and five hours, split over two
days. It is divided into three parts. First, the team creates the timeline,
which may take a couple of hours. Second, the team gathers particular sorts
of information from it, a process called mining for gold. Third, the team uses
the information it gathered to stimulate further discussion, which might
last for another few hours. At the end of the exercise, the team summarizes
the information it generated and records it as a series of bullet points which
form an important part of the Retrospect Report.

Creating the Timeline

In order to create the timeline, the OSPACS team split into groups of natu-
ral affinity so that people who would naturally work together on the proj-
ect were put in the same group. Each group then received a different color
pen and three pads of self-adhesive Post-it Notes.4 People in the group used
these self-adhesive notes to identify the main events that happened during
the project from their own perspectives. For example, Sally thought that the
moment when she was able to run her own customer tests was the most
important event of the entire project, but Luke only remembered the tedious
work that he had to do writing all her test fixtures. Each team member wrote
each type of event on different color paper, based on the following:

• Green—Significant events: strengths, opportunities, achievements
(praise). These are the events people thought were particularly sig-
nificant in terms of creating opportunities or achieving something
worthwhile.

• Red—Difficult events: weaknesses, threats, hard or risky work
(action needed). These are the events that the exercise was really
trying to find because these would lead to discussions about how
the team might improve its performance for the next project.

• Yellow—Other noteworthy events, such as people joining or leaving
the team, significant external decisions that influenced the team (the
first sale of the system), or just when the team did something partic-
ularly memorable.

The OSPACS Team’s Retrospective 701

4. Post-it Notes are produced by 3M (www.3m.com/us/office/postit).

While the team was discussing the events of the past nine months, Mary
drew a timeline on a whiteboard to divide it into segments according to the
iterations the team had completed during this time; see Figure R-1. She then
wandered among the groups helping them to arrive at a consensus about
what events they needed to record.

After a couple of hours, each group had independently written up their
events on these self-adhesive notes, so they placed them on the whiteboard
at a horizontal position corresponding to the approximate date the event
happened; see Figure R-2. After they did this, they gathered around the
whiteboard and used their colored pens to indicate how they felt at vari-
ous points in the project. Were they happy about the way things were
going, or were they concerned? In this way, they created a scattergram of
their morale over the course of the project.

Figure R-1: The OSPACS project timeline

Delivery of
Generic OSPACS

to First ClientStart

Jan Feb Mar April May June July Aug Sept Oct

Internal Release Beta Release

To
ol

s
an

d
Va

lu
es

TF
VC

, B
ui

ld
La

b,
 a

nd
 In

st
al

l P
ro

gr
am

TD
D,

 M
od

el
in

g,
 C

us
to

m
er

 T
es

t

TD
D,

 M
od

el
in

g,
 C

us
to

m
er

 T
es

t

Es
tim

at
e,

 P
rio

rit
iz

e,
 P

la
n

Da
ily

 D
ep

lo
ym

en
t t

o
Pr

ep
ro

du
ct

io
n

Pr
ov

id
e

Va
lu

e

WEEKLY ITERATIONS

Retrospective: Fixing the Process702

NOTE

The significant events that the OSPACS team identified have a black
border around them in Figure R-2 to help differentiate them from the
lighter “yellow” self-adhesive notes and the darker “red” ones which
relate to difficult events.

Figure R-2: The completed Retrospective timeline

Mining for Gold

The timeline that the OSPACS team created helped the team view through
other people’s eyes the events they had all shared during the project. The
information this yielded provided a valuable context for the team’s future
exercises and discussions, so Mary had asked them to discuss the timeline as
a team and then classify the various Post-it Notes onto four flip charts (based
on the following four categories), which she placed around the room:

• What worked well (and must not be forgotten)—Items on the
timeline that point to matters which might easily be overlooked in
a subsequent project. For example, installing VSTS is unlikely to be
forgotten, but checking that it has been set up properly with all the
necessary permissions might be.

• What the team learned—These are the most important ways in
which the project has influenced the team’s future behavior. For
example, the team learned how to handle changing and unknown
requirements.

The OSPACS Team’s Retrospective 703

• What to do differently next time—Items that will be put into the
team’s report about the retrospective as action points. For example,
the developers on the team felt they needed to improve their basic
coding skills.

• Things to discuss later—These are things the team does not entirely
agree on, so to keep the discussion moving, they flagged them for
later discussion. For example, the team could not agree on the issue
of daily deployment into the business environment—did the team
want to do this differently next time?

Further Discussion

Discussions about the timeline led to some useful conversations; some of
them continued well into the night. The next morning, Mary asked the team
to spend another few hours pulling these discussions together into a list of
action points that the team members could apply to their work when they
returned to the office. In particular, she asked them to try to identify trends
as well as explanations for certain anomalies—for instance, the fact that the
scattergram at the bottom of the timeline didn’t correspond to the aggre-
gate color of the sticky notes above it.

Other Exercises
Mary led the team on a number of other exercises over the next day and a
half which helped the team explore how its road map to Agility had
changed its ideas about software development. The exercises were informal
and included a number of fun activities. However, by the end of the week-
end, nobody was left with any doubt about the value of the three days
spent in Colorado.

Retrospective: Fixing the Process704

NOTE

In general, when you are doing hard or risky work that results in
weaknesses and threats, morale will be lower than when you’re doing
work that results in a sense of achievement which gives rise to
strengths and opportunities for the team.

Analysis of the Project Timeline

The OSPACS team’s timeline corresponding to its iterations is shown in
Figure R-1. This may help you understand the structure of the project and
how it related to the steps on the team’s road map to Agility; see Table I-1 in
the Introduction.

Structure of the Project
The project started the first week of January, and after nine months, the
team had delivered the new OSPACS product to its first paying client. After
the first month, the team decided to work in weekly iterations. Here is a
summary of the team’s work:

• Iteration zero—Setting up the project and learning key skills, such
as test-driven development (TDD) and modeling. During this time,
the team also familiarized itself with VSTS and its new tools by con-
ducting various spikes which had the added benefit of helping the
team to explore its problem domain with the customer. This resulted
in an initial set of stories for the team to implement.

• Iterations 1 to 4—The team focused on implementing the cus-
tomer’s stories using the practices it had learned: TDD, modeling,
and customer testing. After the end of the first iteration, the team
had created a thin vertical slice through the system to establish a
basic architecture which included the user interface, business, and
data layers.

• Iterations 5 to 8—During these iterations, the team focused on activ-
ities that would help it estimate, prioritize, and plan, with the aim of
satisfying the business with the regular release of valuable software.
At the end of iteration eight, the team released the initial version of
the product in the company’s preproduction environment for evalu-
ation by the sales team.

• Iterations 9 to 12—At this stage of the project, the team was becom-
ing good at delivering high-quality software according to a plan, so
it switched its attention to the problem of deploying its software
each day into the company’s preproduction environment.

Analysis of the Project Timeline 705

• Iterations 13 to 35—The team now got into its stride and started to
really apply the Extreme Programming (XP) practices it had accu-
mulated in order to provide to the business the best possible return
on its investment. After the end of iteration 35, the business decided
the system was ready for final deployment at the customer site.

The developers did not undertake much serious planning until the sec-
ond month of the project. This was because they first needed to prove to
themselves that they could reliably deliver high-quality software. Upon
reflection, they decide this approach was no worse than the two months
they had spent in their previous project doing analysis and design work,
most of which they threw away a month after they started to write the code.

Things They Discovered
The OSPACS team’s road map to Agility (Table I-1 in the Introduction) had
taken the team on a journey which it now agreed had been extremely ben-
eficial. The green and red self-adhesive notes it had added to its timeline
told their own story.

Green: Significant Events, Strengths, Opportunities

• Installing VSTS—A memorable party was held after Tom got VSTS
to pass his tests so that the team could finally connect Team Explorer
to the OSPACS Team Project and start using its new tools.

• Agile training days—The day the people from the local Agile User
Group started their training will be remembered for some time. It
was when the team first began to believe that it could learn to oper-
ate like a top-performing team.

Retrospective: Fixing the Process706

NOTE

The OSPACS team didn’t start doing weekly iterations until a month
into the project because it had to acquire the basic skills needed to use
VSTS and develop in an Agile way. A more experienced team would
start doing iterations from the start of the project.

• Office reorganization—The act of removing the office partitions was
a very visible commitment to change. It was also the point at which
people first acted collectively to organize their own work, which
brought them together as a team.

• Ten-Minute Build practice—Everyone remembers when a pair of
programmers first managed to complete a programming episode
by checking their code changes and running the Integration Build
and Test.

• TDD—The day after the training stopped and the developers decided
that from then on they would develop all new production code using
Test-First Programming was a significant day for most people.

• Customer runs own tests—Nobody will forget the smile on Sally’s
face when she announced to the team at the morning meeting that
she had run her first test without help from the developers.

• Identified value stream—The team was shocked when it first looked
at all the things it did which had no real value to the business.

Red: Difficult Events, Weakness, Threats

• Preaching about Agile values—Tom realized that he was starting
to sound evangelical about Agile values when someone put a
priest’s collar on his desk with the words communicate and feedback
written on it.

• Overkill on creating work items—People recalled the day when the
team’s All Tasks report doubled in size because Luke had created a
work item for each step he intended to undertake when completing
a story. At the next team meeting, he agreed to put his personal
to-do list on an index card like everyone else.

• Introduction of coding standards—Early discussions about coding
standards revealed some shocking gaps in people’s knowledge of
basic C# coding matters.

• Group modeling with electronic tools—The memory of the team
huddled around a PC as Tom attempted to walk through the class
hierarchy made the point that it was best to do group modeling on
a whiteboard.

Analysis of the Project Timeline 707

Has the OSPACS Team Fixed Its Process?
Table R-1 shows the results of the OSPACS team’s attempt to mine its
development timeline for gold. It shows that the team is well on its way
to being an Agile team, though there was some discussion about what this
actually meant.

Table R-1: Results of the OSPACS Team Mining for Gold

Area Analysis

• Let people’s values develop through what they
do rather than what they’re told.

• Training is best done little and often, so arrange
regular brown-bag technical sessions for the
team to learn about things such as design
patterns, and organize external training to occur
during short sessions throughout the project.

• Get an InstallShield expert to set up a skeletal
installation program at the start of the project
and then train the team to develop it as the
project proceeds.

• Set up a Team Build so that it initiates the
sending of a text message to the team when the
build fails; the noise of five cell phones ringing
in unison makes a point!

What the team learned • Ways to identify and then deliver what the
business wants within agreed-upon time scales

• How to handle changing and unknown
requirements

• The importance of migrating code among
different environments (development, build and
test, production)

• How to write quality code (TDD, pairing, etc.)

• The benefits of drawing free-form model
diagrams

• How version control allows a team to share code
effectively

• How to identify the things the team produced
that add real value to the business

What worked well (and
must not be forgotten)

Retrospective: Fixing the Process708

Area Analysis

• Hold more retrospectives so that the team can
regularly reflect upon how it might become more
effective, and then adjust its activities accordingly

• Create a set of tests to validate the setup of VSTS
before starting any development work

• Remove more bottlenecks that are delaying
deployment

• Create work items only for the things they want
to measure

• The need for developers to improve their basic
coding skills and learn more patterns

• The tendency for people to create work items
that don’t measure anything useful

Things to discuss later • Should the team attempt to deploy into
production on a daily basis?

• Are developers willing to write two tests for each
bug rather than just one?

Is the OSPACS Team Extreme?

There is no form of certification for Extreme Programming, so how does a
team know when it has finally made the transition to this software devel-
opment approach? When can the team members proudly say, “We do XP”?
Such a question is hard to answer because there is no golden moment when
a team “becomes XP” because, for instance, it has implemented 90 percent
of the practices and has managed to condition everyone into valuing

What still troubles the
team

What to do differently
next time

Is the OSPACS Team Extreme? 709

NOTE

In the Introduction to this book, we said we wrote the book for people
who wanted to change their process because it was broken in some
way. Therefore, if the OSPACS team read a similar statement in a book
today, we hope the team would put the book right back on the shelf.

communication, feedback, courage, simplicity, and respect. It is more a
question of a team calling itself “Extreme,” because that is what best
describes how it regularly delivers valuable software to its business.

How the OSPACS Team Became Agile
Nine months after the OSPACS team first decided to fix its process by
applying the practices and values of XP to its work, it can reasonably claim
to be “doing XP” because of the following:

• It cares about doing most of the XP practices, though it does some
more rigorously than others. For example, all production code is
developed by pairs of developers using Test-First Programming, but
they deploy daily only into a production environment rather than
the business itself.

• Adopting the XP practices has helped the team improve its commu-
nication and feedback while also fostering a spirit of courage and
respect. However, a few people on the team don’t quite get the idea
of simplicity because they still tend to expect that tools such as VSTS
will play an important part of the solution to every problem.

• The team has replaced its old, broken process with something that
helps it successfully deliver high-quality software on time, within
budget, and with the features that the business needs most. Its new
process has also resulted in the team binding together as a group so
that people no longer wanted to leave. Indeed, most people reported
the previous nine months as being the most satisfying of their career.

However, the team realizes that it is not yet at the sweet spot of Agile
development and that it needs to make additional improvements to the
way it does things. In fact, it is clear to the team that even years down the
line, it will still be holding retrospectives in order to learn from what it has
done to improve upon its performance in the future.

Personal Agility
Helping your team to become Agile may seem like a daunting task, because
as you should now understand, it involves more than just putting a new

Retrospective: Fixing the Process710

tool on the team’s computers or presenting the team with some form of pre-
scriptive process. It is really about changing the way people look at their
world by leading them on a sort of journey during which they will learn to
do various things that, given time, will influence their values, hopefully in
a way that proves beneficial to everyone on the team. However, you must
respect the fact that this is a personal journey, and therefore, to some degree
people need to find their own way, albeit guided by others who have made
similar journeys themselves. In this respect, perhaps the first step on your
personal road map to Agility should be to consider advice given by Kent
Beck and Cynthia Andres in the preface of their book.5 They simply state:

• “No matter the circumstance you can always improve.”

• “You can always start improving with yourself.”

• “You can always start improving today.”

Is the OSPACS Team Extreme? 711

5. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

TIP

The following joke was found in a Christmas cracker, but it is actually
quite profound: Q. How do you eat an elephant? A. One bite at a time!

Appendixes

A
Setting Up VSTS for the Exercises

W E W R O T E T H E exercises in this book from the perspective of the five-
developer OSPACS team described at the beginning of the book; see

the Introduction and Figure 1-1 in Chapter 1. However, if you apply the
instructions in this appendix, you should be able to set up Visual Studio
Team System (VSTS) in such a way that you can use your own PC(s) to per-
form these same exercises.

We imagine most readers will take one of three options when setting up
a Software Project Environment to follow the exercises in this book:

• Set up a single evaluation server—You might take this option when
reading the book on your own and working with a single PC in con-
junction with one of following products:

715

TIP

Photocopy the pages at the end of this appendix that contains
Tables A-4 and A-5 so that you can create a record of how the names
of the computers and user accounts in the book are mapped to the
computer(s) and user accounts in your own environment.

– Team System Virtual PC (VPC)—This requires that you install
the Microsoft Virtual PC1 on your desktop PC; see Figure A-1.
In this way, you can load and run the Visual Studio 2005 Team
System VPC Evaluation image which is supplied by Microsoft as
a virtual machine file (.vmc).

– Team Foundation Server (TFS) Trial Edition—This involves
installing the Visual Studio 2005 TFS Trial Edition on a PC that is
running Windows Server 2003 Service Pack 2 (or R2).

• Set up TFS and Team Suite on a network—You might take this
option if you are reading the book in preparation for starting an
actual project and are working with a collection of PCs in conjunc-
tion with one of the following products:

– Visual Studio Team Suite with MSDN Premium Subscription

– Visual Studio Team Edition(s) with MSDN Premium Subscription
– TFS Trial Edition

• Use an existing installation—You would take this option if you
have access to a Team Foundation Server (TFS) and Visual Studio
Team Suite (or Team Edition2) that has already been installed. In this
case, you just need to follow the instructions in the section Actions
for All Set-Up Options, later in this appendix.

Appendix A: Setting Up VSTS for the Exercises716

NOTE

You can download the Team System VPC or the TFS Trial Edition
product from the VSTS Web site,3 or copy them to your target PC from
a Microsoft DVD.

1. Microsoft: Virtual PC 2004 Web site (www.microsoft.com/windows/virtualpc).
2. The List of Exercises section of this book identifies restrictions that apply to people using

just a single Team Edition.
3. Microsoft: Team System Web site (http://msdn.microsoft.com/teamsystem).

Figure A-1: Microsoft Virtual PC console, settings, and machine

Set Up a Single Evaluation Server

People who decide to set up a single evaluation server should first set up
Team System VPC or TFS Trial Edition as described in the following sec-
tion, and then follow the instructions in the Actions for All Set-Up Options
section.

Setting Up Team System VPC
You must have a PC capable of running Microsoft Virtual PC 2004 when
hosting TFS and Visual Studio Team Suite. The full system requirements are
provided on their respective product Web sites, but essentially this means
your PC should have the following:

• Processor—2.0 GHz Athlon, Duron, Celeron, or Pentium II, III, or 4
(or greater)

• RAM—2 GB, level-2 cache

Set Up a Single Evaluation Ser ver 717

• Free hard disk space—50 GB

• Operating system—Windows 2000 Pro, Windows XP Pro (or
Tablet PC)

The virtual machine image of Team System contains the full TFS prod-
uct (not TFS for Workgroups). You are also granted the licenses necessary to
use all the products in the image for evaluation purposes, so don’t worry
about the license issues discussed in Appendix B.

Instructions for installing the Team System VPC are available on the
Microsoft Web site, but essentially you must do the following:

1. Copy the self-extracting executable files containing the Team System
VPC onto your PC.

2. Run the .exe file to extract the Virtual Machine file (.vmc) and some
documentation to a temporary directory.

3. Download the Microsoft Virtual PC application, extract its installa-
tion program to a temporary directory, and then run Setup.exe to
install it on your PC.

4. Start the Virtual PC Console and use its New Virtual Machine Wiz-
ard to add an existing virtual machine (i.e., the TFS Virtual Machine
file you extracted in step 2).

5. Start the TFS Virtual Machine from the Virtual PC Console and then
log on (Action | Ctrl-Alt-Del) using the user account and password
supplied; see the note following this list of steps.

6. Follow the instructions in the Actions for All Set-Up Options section.

Appendix A: Setting Up VSTS for the Exercises718

NOTE

Type the password into the username box to check that your keyboard
is correctly mapped to the virtual machine; otherwise, you might enter
a different character than you intended. For example, pressing the @
key may result in you entering “ (and vice versa).

Setting Up TFS Trial Edition
Your server PC must run Windows Server 2003 SP2 (or R2) and would typ-
ically have a 2.0 GHz processor, 2 GB of RAM, and a 100 GB hard disk. The
TFS Trial Edition is the full TFS product, but it expires 180 days after you
install it. You are also granted the licenses necessary to use all the products
in the trial package for evaluation purposes, so you do not need to worry
about the license issues discussed in Appendix B.

Instructions for installing the TFS Trial Edition are available on the
Microsoft Web site, but essentially you must do the following:

1. Copy the .iso disk image file containing the TFS Trial Edition onto
your PC.

2. Use a program such as Roxio Easy CD and DVD Creator4 to burn a
DVD from this image file.

3. Download the TFS Installation Guide5 from the Microsoft Technical
Web site and follow the instructions relating to single-server deploy-
ment to install TFS on your server PC (i.e., DevServer in Figure B-1
in Appendix B). This involves installing the following:

a. Internet Information Services (IIS) (if not already installed)

b. Microsoft SQL Server 2005 Standard Edition (supplied with TFS)

c. SharePoint Services 2.0 with SP2 (which you can download from
the Microsoft Web site)6

d. TFS

4. Follow the instructions in the Actions for All Set-Up Options section,
but install all programs on the same PC.

Set Up a Single Evaluation Ser ver 719

WARNING

You must use the 32-bit version of Microsoft Server 2003 when
installing TFS on a single server because the Application Tier doesn’t
support WOW64.

4. Roxio Web site: (www.roxio.com).
5. Microsoft: TFS Installation Guide (http://go.microsoft.com/fwlink/?LinkId=40042).
6. Microsoft: SharePoint Services 2.0 download (http://go.microsoft.com/fwlink/?LinkID=55087).

Set Up TFS and Team Suite on a Network

People who decide to set up TFS and Team Suite on a network should first
read the following information and then follow the instructions in the
Actions for All Set-Up Options section.

Hardware Overview
The TFS Data and Application Tiers are located on one physical PC with a
specification similar to the TFS specified in Table B-1 in Appendix B. The
TFS Client Tier and Visual Studio Integrated Development Environment
(IDE) are installed on another PC with a specification similar to the Devel-
operPC specified in Table B-1. Therefore, your hardware configuration
would be as follows:

• One DevServer for the TFS Data and Application Tiers

• One PDC for the Primary Domain Controller (not required for Win-
dows Workgroups)

• One BuildLabPC for TF Build (optionally, you can install this on
DevServer)

• Between one and five DeveloperPCs for your Visual Studio IDE with
TFS Client Tier

Team Foundation Server for Workgroups
Teams of five people or less will normally start using VSTS with the TFS
for Workgroups product that is available when team members buy Visual
Studio Team Suite, or Editions for Developers, Testers, or Architects; see

Appendix A: Setting Up VSTS for the Exercises720

WARNING

When using the TFS Workgroup Edition, you have to install TFS on a
single physical server, which means you must use the 32-bit version
of Microsoft Server 2003 because the TFS Application Tier doesn’t sup-
port WOW64.

Appendix B. TFS for Workgroups has the same functionality as the full TFS
product, except for the following:

• It is limited to five users.

• It doesn’t need TFS Client Access licenses.

• You can set it up in either a domain or with Windows Workgroups.

Setting Up a Software Project Environment
You install the TFS Data and Application Tiers in the same way you set up
the TFS Trial Edition, except, of course, you install the products on different
PCs. After completing these steps, you should follow the instructions in the
Actions for All Set-Up Options section.

Actions for All Set-Up Options

You should now have access to the basic infrastructure you need to oper-
ate VSTS. Therefore, you only need to take the following steps before you
are ready to start the exercises in the book:

1. Confirm that the software packages in Table A-1 are installed on the
appropriate PCs and then complete Table A-4 so that you have a
record of how the names of your machines map to the names of the
computers in the book.

2. Add the system environment variable settings in Table A-2 to each PC.

3. Set up on your PCs the security groups and user accounts in Table
A-3 and complete Table A-5 to record how you have mapped their
names to the names of the accounts in the book.

Actions for All Set-Up Options 721

TIP

You must operate the full TFS product in a domain, so using Windows
Workgroups will require you to take a far more difficult upgrade path
should your team ever expand beyond five developers.

Depending on the machines available to you, you may be able to com-
bine some of the software packages in Table A-1 onto fewer machines. For
example, if you are setting up a single evaluation server, you would just
install everything onto one PC and then write its name in the right-hand
column of each row in Table A-4.

Software Installation
The exercises in the book assume you have installed the software in Table
A-1 on the machines in your Software Project Environment. The full prod-
uct name, current version, license type, and vendor Web site for these prod-
ucts are specified in Appendix B, Tables B-3, B-4, and B-6.

Table A-1: Software Installation Needed for Exercises in This Book

Book Machine Name PC Specification Packages to Install

DevServer

Desktop PC

ArchitectPC Desktop PC • Visual Studio 2005 Team Suite
(or Architect Edition)

• Microsoft SQL Server 2005
Standard Edition Client
Components

• Visual Studio 2005 Team Suite
(or Developer Edition)

• InstallShield Collaboration for
Visual Studio

• Software Development Kits
(SDKs): Microsoft Solutions
Framework (MSF) and Process
Customization, .NET
Framework 2.0

DeveloperPC

DeveloperPC2

DeveloperPC3

• IIS v6.0

• SQL Server 2005

• SharePoint Services 2.0 SP2

• TFS Data and Application Tiers

Team Foundation
Server

Appendix A: Setting Up VSTS for the Exercises722

Book Machine Name PC Specification Packages to Install

TesterPC Desktop PC • Visual Studio 2005 Team Suite
(or Testers Edition)

• InstallShield v12 (or later)

BuildLabPC Desktop PC • Visual Studio 2005 Team Suite
(or Developer Edition)

• TFS Build

(all) Desktop PC • Microsoft Office Software: Word,
Excel, Project, Visio

• Testing Automation: Framework
for Integrated Test (FIT)

System Settings
The exercises in the book assume you have applied the system environment
variable settings shown in Table A-2 to all machines that are used to run
programs from the command prompt or customer tests.

Table A-2: System Environment Variable Settings

Setting Value

PATH Append the following directory paths to the end of the existing
value for the PATH variable:

;c:\Program Files\Microsoft Visual Studio 8\Common7\IDE
;c:\Program Files\Microsoft Visual Studio 2005 Team
Foundation Server\Tools;

Actions for All Set-Up Options 723

NOTE

Open the Environment Variables dialog box by clicking the button in
the Advanced page of your System Properties applet (Control Panel |
System).

Setting Up User Accounts and Security Groups
The exercises in the book assume you have created the user accounts and
security groups listed in Table A-3. Consult your operating system’s Help
manual for specific instructions about creating such user accounts and
security groups

Table A-3: Security Group Membership Needed for Exercises

Book Group Security Group Membership or Settings

OSPACSAdmins • [SERVER]\Team Foundation Administrators (see Notes
1 and 2)

• [OSPACS]\Administrators (see Notes 5 and 6)

• SQL Server Reporting Services: Browser, Content
Manager, My Reports, Publisher, Report Builder (see
Notes 1 and 3)

• SharePoint Administration Group Account (see Notes 1
and 4)

• Domain Admins

OSPACSDevs • [OSPACS]\Contributors (see Notes 5 and 7)

• SQL Server Reporting Services: Browser, My Reports,
Publisher, Report Builder (see Notes 5 and 8)

• SharePoint OSPACS Site Contributor (see Notes 5 and 8)

• (Local) Administrators, Domain Users, Users

Book User Security Group Membership

Tom • OSPACSAdmins, OSPACSDevs

Luke • OSPACSDevs

Peter • OSPACSDevs

Sarah • OSPACSDevs

Maggie • OSPACSDevs

Appendix A: Setting Up VSTS for the Exercises724

Table A-3: Notes

1. Log on using the same account used to install TFS7 (e.g., TFSSETUP) to ensure that
you have the rights and permissions needed to make OSPACSAdmins a member of
[SERVER]\Team Foundation Administrators as well as giving it the required security
permissions for SQL Server Reporting Services and SharePoint Services; see Notes 2, 4,
and 5.

2. In order to make OSPACSAdmins a member of [SERVER]\Team Foundation Adminis-
trators, follow the instructions in Exercise 5-3 in Chapter 5, but at step 3, type the following
at the command prompt: TFSSecurity /server:DevServer /g+ “[SERVER]\Team
Foundation Administrators” n:OurDomain\OSPACSAdmins.

(In the preceding command, replace DevServer with the name of the PC hosting your
TFS and OurDomain with the name of the domain containing your OSPACSAdmins
group account. However, if OSPACSAdmins is a local group on your TFS, replace
OurDomain with the name of the TFS PC—for example, DevServer.)

3. In order to grant OSPACSAdmins the necessary security permissions for SQL Server
Reporting Services, follow the instructions in step 4 of Exercise 5-4, in Chapter 5, but open
the following page in your browser: http://DevServer/Reports/Pages/Folder.aspx.

(In the preceding command, replace DevServer with the name of the PC hosting your TFS.)

4. In order to grant OSPACSAdmins the security permissions for SharePoint Services, open
the SharePoint Central Administration Web page (All Programs | Administrative Tools)
and use the group account name OurDomain\OSPACSAdmins as the SharePoint
administration group. However, if OSPACAdmins is a local group on your TFS, use a
suitable user account name, such as DevServer\Tom.

5. After creating the OSPACS Team Project (Exercise 5-1 in Chapter 5), you need to add
OSPACSAdmins and OSPACSDevs to its security groups as well as grant them access to
its Project Portal and Report Site; see Notes 6, 7, and 8.

6. Follow the instructions in Exercise 5-3 in Chapter 5 to make OSPACSAdmins a member
of [OSPACS]\Administrators, but at step 3, type the following at the command prompt:
TFSSecurity /server:DevServer /g+ “[OSPACS]\Project Administrators”
n:OurDomain\OSPACSAdmins.

7. Exercise 5-3 in Chapter 5 explains how to make someone a Team Project Contributor.

8. The instructions in Exercise 5-4 in Chapter 5 explain how to grant people access to the
OSPACS Team Project Portal and Report Site.

Actions for All Set-Up Options 725

7. Microsoft: TFS Installation Guide (http://go.microsoft.com/fwlink/?LinkId=40042).

NOTE

If you are using the TFS for Workgroups product, you must also make
each developer’s user account a member of the special Team Founda-
tion Licensed Users security group created during installation of the
Workgroup Edition; see Appendix B.

Machines and Users Named in the Exercises

We suggest you photocopy Tables A-4 and A-5 and then enter the names
of the machines and security groups in your environment that correspond
to ones to which we refer in the exercises.

Table A-4: Mapping of Machines Named in the Exercises

Book Machine Name Your Machine Name

DeveloperPC

DeveloperPC2

DeveloperPC3

ArchitectPC

TesterPC

ExecutivePC

BuildLabPC

DevServer (TFS)

PDC

Appendix A: Setting Up VSTS for the Exercises726

NOTE

We do not refer to the Primary Domain Controller (PDC) in any of the
exercises. However, it is recommended that you have a separate
machine for this function when setting up a commercial Software Pro-
ject Environment; see Appendix B.

Table A-5: Mapping of Usernames and Security Groups Named in the Exercises

Book Username or Security Group Your Username or Security Group

OSPACSDevs

Luke

Peter

Sarah

Tom

Maggie

Machines and Users Named in the Exercises 727

B
Software Project Environment
for a Small Team

IN T H I S A P P E N D I X, we will specify the hardware and software products
that a five-developer team would need. This corresponds to the Software

Project Environment for the OSPACS team, as shown in Figure B-1. We will
also explore some of the licensing issues you may need to address when
such a team uses Visual Studio Team System (VSTS) in this environment.

Legal Disclaimer: Readers should verify for themselves that their use of any
software product is consistent with the actual license agreements they (or their
organization) have made. The information in this appendix and elsewhere in the
book is intended only to help people understand the general issues rather than pro-
viding any form of specific legal advice.

Hardware Requirements

Some teams spend a lot of time researching the hardware they need before
making their purchasing decision, and others just buy from well-known
suppliers. For the benefit of people in this latter category, we provide a list
of the computers and other equipment you need in order to create the sort
of Software Project Environment shown in Figure B-1.

729

Figure B-1: The OSPACS team’s Software Project Environment

Computers
Agile development teams should not constrain themselves by buying com-
puters that do not provide adequate performance. It is always better to
over-specify a development PC, particularly given the relatively low cost of
today’s machines.

Development Environment

Build and Test Environment

Test
Machines

Luke

DeveloperPC2DeveloperPC2
Visual Studio Team SuiteVisual Studio Team Suite

with Team Explorerwith Team Explorer

MaggieTom

DeveloperPC3DeveloperPC3

Sarah

DeveloperPCDeveloperPC
Visual Studio Team SuiteVisual Studio Team Suite

Peter

DevServer
TFS Application and Data Tier

SQL Server, IIS, SharePoint
ExecutivePC

Project Portal and Report Site
displayed by Internet Explorer

TesterPC
Visual Studio Team Suite

with Team Explorer
InstallShield, RoboHelp

ArchitectPC
Visual Studio Team Suite

with Team Explorer
MS SQL Server Client

DeveloperPC3
Visual Studio Team Suite

with Team Explorer

DeveloperPC
Visual Studio Team Suite

with Team Explorer

DeveloperPC2
Visual Studio Team Suite

with Team Explorer

BuildLabPC
Team Foundation Build

Visual Studio Team Suite
HTML Help Workshop

InstallShield Standalone

Gigabit Ethernet Switch

Firewall, Router, Switch

PDC
Active Directory, SMTP

Michael
(CEO)Internet

Appendix B: Software Project Environment for a Small Team730

NOTE

The lists of hardware in Tables B-1 and B-2 are available on this book’s
Web site. We intend to update these lists from time to time as a result
of reader feedback, so if you have some alternative hardware sugges-
tions, please send them to us.

Table B-1: Hardware Shopping List for the OSPACS Team

Item Typical Specification Quantity

1

1

6

1. The PCs in Table B-1 far exceed the system requirements in the Visual Studio Team
Foundation Installation Guide, but they are more like the machines that a small team
might sensibly buy.

2. Microsoft claims that in a small team environment, Team Foundation Build will run
satisfactorily on a machine with just a 1.5 GHz processor and 512 MB of RAM. However,
we suggest that you give your BuildLabPC the same sort of specification as the other
desktop PCs because this will allow you to install Visual Studio Team Suite so that you
can run customer and unit tests as part of your Team Builds.

3. Any desktop PC that needs to run a Virtual PC in order to emulate the production
environment during testing must allow between 50 MB and 2 GB of hard disk space for
each virtual hard disk that will be created. This is just for the operating system; more
space will be required for your database, system under test, and so on.

4. If you are developing only 32-bit software products, consider specifying a faster
Pentium 4 or Athlon in place of the Xeon processor for your desktop PCs. Visual Studio
2005 is a 32-bit application and you should not expect any performance improvement
when you run it on a multicore or multiprocessor PC.

5. You will experience performance gains when you run SQL Server 2005 on a multicore or
multiprocessor PC. Therefore, you might consider specifying an additional processor for
the TFS to improve the performance of your TFS Data Tier.

Dell Precision 690 with Xeon 2.0 GHz
processor, 2 GB of RAM, 250 GB SATA
drive, two 19-inch monitors, keyboard,
mouse, 16x DVD±RW

Preinstalled with Windows XP Pro SP2
(see note 3)

Desktop PC

(five DeveloperPCs and
one BuildLabPC)

Dell PowerEdge SC440 with Pentium
D 2.8 GHz processor, 1 GB of RAM,
two 250 GB SATA drives, one RAID
card, 16x DVD±RW

Preinstalled with 32-bit Windows
Server 2003 R2

Primary domain
controller

(PDC)

Dell PowerEdge 2900 with Xeon 3.0
GHz dual core processor, 4 GB of
RAM, two 320 GB SATA drives, two
RAID cards, 19-inch monitor,
keyboard, mouse, 16x DVD±RW

Preinstalled with 32-bit Windows
Server 2003 R2

Team Foundation
Server (TFS)

(DevServer)

Hardware Requirements 731

Continues

Appendix B: Software Project Environment for a Small Team732

1. Sutter, Herb. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software” (www.gotw.ca/publications/concurrency-ddj.htm).

Table B-1: Notes, Continued

6. Do not be tempted to save money by buying your desktop PCs with a Linux or MS-DOS
operating system and then installing Windows XP using the disk provided with your
team’s MSDN Premium Subscriptions, because if these machine break down, you will
want the PC vendor to repair them without having to restore the original operating
system. This would also constitute a “production” use of Windows XP and therefore
would violate your MSDN license.

7. You might save some money by not buying a desktop PC for each developer on your
team because they can be expected to spend most of their time sharing a machine while
pair programming. However, it is likely that a team of five developers would simultane-
ously use five machines often enough to justify the expense. You should also remember
that the Team System licenses specified in Table B-2 are granted per user, not per
machine.

8. You should not use the disks provided with your MSDN Premium Subscriptions to install
Windows Server 2003 on TFS or the PDC because again, this constitutes a production use of
the product. Therefore, you should buy these servers with preinstalled operating systems,
but make sure you obtain the five Windows client access licenses (CALs) for devices rather
than users.

9. If you are developing software to support 64-bit processors, you should install Windows
XP Professional for 64-bit on your desktop PCs. However, Visual Studio 2005 is a 32-bit
application, so do not expect any performance gain when using it with a 64-bit
operating system.1

Other Equipment
You must not forget the other sorts of hardware equipment your team
needs in order to do a good job; see Table B-2.

Table B-2: Other Equipment for the OSPACS Team

Item Typical Specification Quantity

Printer Brother Laser Printer HL-2070N 1

Scanner 1

Switch Blackbox 16 Port 10/100/1000 Mbps switch 1

1Netgear DG834 ADSL firewall, router, and
switch

Internet connection,
firewall, router

HP Scanjet N6010 Document Sheetfeed
Scanner

Software Requirements 733

Item Typical Specification Quantity

Backup device1 2

UPS for servers 2

Server KVM switch 1

Network cables 12

Power strips 2

Server trolley 1

1. Keep one backup device off-site and swap it with the on-site backup device on a
regular basis. If your servers are stolen, you should lose only a few days’ worth of
development work.

Software Requirements

The software you need to install in your Software Project Environment can
be categorized as the tools you need to buy, the software that is supplied
with other products, and the software which is freely available.

Software Tools to Buy and Install on the OSPACS Developer PCs
The basic tools that your team needs to buy are listed in Table B-3. How-
ever, you should also consult the book’s Web site for details of various
other tools that you might consider buying in order to help your develop-
ment effort.

Two shelves approximately 3-by-2
feet and four uprights with wheels
approximately 3 feet long

Six-outlet power strip with surge
protection

Ethernet CAT6 cables terminated with
RJ45 plugs

Blackbox Personal KVM ServSwitch
with two cabling kits to switch
monitor, mouse, and keyboard
between the DevServer and PDC

APC Smart-UPS 1500VA with serial
connection

Maxtor 300 GB external hard drive
with USB 2.0

Table B-3: Software Shopping List for the OSPACS Developer PCs

Product Name for Quantity
Purchase Order Buy From License Type to Buy

http://msdn.microsoft.com 5

http://msdn.microsoft.com 3

http://msdn.microsoft.com 1

http://msdn.microsoft.com 1

www.macrovision.com 1

Macromedia RoboHelp Office X5 www.adobe.com Upgrade or new 1

Upgrade or newFLEXnet InstallShield 12 Windows
Premier Edition

Free upgrade from MSDN
Universal, renewal, or new
licence (see notes 1 and 2)

Visual Studio 2005 Team Edition
for Testers with MSDN Premium
Subscription

(alternative to Team Suite)

Free upgrade from MSDN
Universal, renewal, or new
licence (see notes 1 and 2)

Visual Studio 2005 Team Edition for
Architects with MSDN Premium
Subscription

(alternative to Team Suite)

Free upgrade from MSDN
Universal, renewal, or new
licence (see notes 1 and 2)

Visual Studio 2005 Team Edition for
Developers with MSDN Premium
Subscription

(alternative to Team Suite)

New licence or renewalVisual Studio 2005 Team Suite with
MSDN Premium Subscription

(alternative to Team Editions)

A
p

p
e

n
d

ix
 B

: S
o

ftw
a

re
 P

ro
je

ct E
n

viro
n

m
e

n
t fo

r a
 S

m
a

ll Te
a

m
734

Table B-3: Notes

1. We specified the separate Visual Studio Team Editions for Developers, Architects, and
Testers in Table B-3 because on many small teams, people will be obtaining a free
upgrade from their MSDN Universal Subscriptions.

2. If you must buy separate Visual Studio Team Editions and are not doing Web service
development, consider purchasing another Developer Edition rather than the Architect
Edition. Alternatively, you might want to buy just five copies of the Tester Edition; see
the Tester PC subsection of the Licensing Issues section, later in this appendix.

3. Table B-2 does not include any operating systems and software products required to
emulate your production environment during testing.

4. We expect developers to create individual help topics as Word documents and store
them in the repository so that the team’s documentation expert can subsequently
assemble them into a cohesive document using RoboHelp on the TesterPC. The resulting
project file and HTML files would then be built into a Microsoft HTML Help file (.chm)
using the freely available HTML Help Workshop command-line tools installed on your
BuildLabPC; see the book’s Web site for further details. For this reason, we specify just
one RoboHelp license.

5. We assume InstallShield (full product) and RoboHelp will be installed on the Tester PC
because on the OSPACS team, Maggie has responsibility for creating the installation
program and writing Help documentation. However, you could also install it on one of
the Developer PCs or the Architect PC.

Software Products to Buy and Install on Server PCs
The software products listed in Table B-4 are not strictly needed for soft-
ware development, but they will protect your TFS and PDC in case of
power failure or other disasters.

Software Requirements 735

TIP

Due to the licensing issues raised later in this appendix, we suggest
you purchase Visual Studio Team Suite for each developer on your
team rather than installing separate Team Editions for people with spe-
cific roles (developer, tester, and architect).

Appendix B: Software Project Environment for a Small Team736

Table B-4: Software Shopping List for the OSPACS Team’s Servers

Product Name for Quantity
Purchase Order Buy From License Type to Buy

www.apc.com Discounted or new 2

www.symantec.com Single-server license 2

Software Supplied with Other Products
Some of the software your team needs for its Software Project Environment
will probably be bundled with other products; see Table B-5. For example,
when you buy a PC the operating system is generally included in the price.

Table B-5: Software Provided with Other Products on the OSPACS Team Shopping List

Quantity
Product Name Supplied With Machine for Install to Install

Desktop PC Desktop PCs 5

BuildLab PC BuildLabPC 1

DevServer PC DevServer 1

PDC PC PDC 1

DevServer 1Visual Studio Team
Suite (or Editions)
with MSDN Premium
Subscription

TFS Workgroup
Edition

Windows Server 2003
SP1 or R2 with five
CALs for devices

Windows Server 2003
SP1 or R2 with five
CALs for devices

Windows XP
Professional SP2

Windows XP
Professional SP2

Symantec Backup Exec
for Windows Small
Business Server v11d

APC PowerChute
v7.0.2 Business Basic
Edition

Quantity
Product Name Supplied With Machine for Install to Install

BuildLabPC 1

DevServer 1

IIS v6.0 Windows Server DevServer 1

MS Office Software Desktop PC 5

ArchitectPC 1

TesterPC 1

Desktop PCs 5

1. You can use single-server TFS installations to support project teams with as many as
400 users. Bigger teams or teams with requirements for better performance and relia-
bility should consider dual-server TFS installations, running the Data Tier on clusters
of machines, or using a caching proxy server; see the VSTS Installation Guide.

2. Windows Server 2003 is available as Datacenter, Enterprise, and Standard editions for
both 32-bit and 64-bit processors. In a small team environment, there is no advantage to
installing anything other than the Standard Edition with SP1.

3. The TFS Data Tier and Microsoft SQL Server 2005 support both 32-bit and 64-bit platforms,
but the TFS Application Tier runs only in a native 32-bit environment. Therefore, in a
single-server TFS installation, you must use a 32-bit operating system.

4. You should not use the PDC for much more than running the Active Directory for your
domain and hosting a SMTP mail server. In particular, you should not install TFS on this
machine.

5. Using SQL Server as the Data Tier of TFS is considered to be a production use of the
product, so you cannot use it under the terms of your MSDN license. Accordingly, you
must either buy normal end-user licenses, or use the license provided by TFS Workgroup
Edition.

6. InstallShield Collaboration is installed on each developer’s PC to facilitate the gathering
of deployment requirements. These requirements are stored in DIM files for subsequent
incorporation into an InstallShield setup project which can then be built into an install
program by the Standalone InstallShield Build Engine installed on the BuildLab PC; see
Chapter 29.

FLEXnet InstallShield
Windows Premier
Edition

InstallShield
Collaboration for
Visual Studio

FLEXnet InstallShield
Windows Premier
Edition

InstallShield
Standalone Build
Engine

Packaged with PCMicrosoft SQL
Server 2005 Client
Components

MSDN Premium
Subscription

TFS Workgroup
Edition

Microsoft SQL Server
2005 Standard Edition

TFS Workgroup
Edition

Team Foundation
Build

Software Requirements 737

Open Source or Freely Available Software
You should take advantage of the software listed in Table B-6 as it can be
installed on your PC for no cost and yet provides important functionality.
The book’s Web site lists other types of open source or freely available soft-
ware that might be of interest to an Agile software development team.

Table B-6: Freely Available Software Needed by the OSPACS Team

Machine Quantity
Product Name for Install to Install Obtain From

All PCs 1 http://msdn.microsoft.com

(.NET framework, downloads)

DeveloperPCs 1

DeveloperPCs 5 http://msdn.microsoft.com/
vstudio/teamsystem/downloads

ArchitectPC 1

TFS Power Toy Desktop PCs 6

DevServer 1 http://go.microsoft.com/fwlink/
?linkid=55087

BuildLabPC 1 http://msdn.microsoft.com
(Win32 Development, Tools, HTML
Help, 1.4 SDK, downloads)

FIT v1.1 for .NET Desktop PCs 6 http://fit.c2.com (downloads)

PsExec Desktop PCs 6 www.microsoft.com/technet/
sysinternals/utilities/psexec.mspx

HTML Help
Workshop v1.4

SharePoint
Services 2.0 SP2

MSF and Process
Customization

Domain-Specific
Languages (DSLs)

.NET Framework
2.0 SDK

.NET Framework
2.0 Redistributable
pack

Appendix B: Software Project Environment for a Small Team738

WARNING

You must use the 32-bit version of Microsoft Server 2003 when
installing TFS on a single server because the Application Tier doesn’t
support WOW64.

Licensing Issues for a Five-Person Team

In order to start work on a five-person project team, such as the OSPACS
team, you need to buy the software listed in Tables B-3 and B-4. Essentially,
this involves buying the following:

• Visual Studio 2005 Team Suite Edition with MSDN Premium
Subscription for each person

• RoboHelp and InstallShield for the TesterPC

• Backup Exec and Powerchute for the DevServer and PDC

Given that all the PCs are bought with preinstalled operating systems,
the license implications for the team in this scenario are explained in the fol-
lowing sections.

Primary Domain Controller
The machine that acts as your PDC should be supplied with the Windows
Server 2003 operating system already installed. Therefore, you should con-
sider the following in regard to the five Windows CALs that are typically
supplied with such a machine:

• You can assign CALs to a device such as a DeveloperPC (device
mode), but you can also assign them to a user (per-user mode).
Alternatively, you can assign a CAL to a particular server (per-server
mode). We suggest you buy CALs for assigning to a device because
this allows the customer (or other nonteam member) to occasionally
access files and so forth on the PDC or the DevServer using one of
the team’s desktop PCs.

Licensing Issues for a Five-Person Team 739

NOTE

PsExec is a lightweight Telnet replacement that lets you execute
processes on other systems, complete with full interactivity for console
applications, without having to manually install client software.

• You do not need a CAL to log on directly to the DevServer in order
to carry out administrative tasks such as backing up data, cleaning
up the hard disk, and so forth. However, any other device (or user)
that wants to access the domain hosted by the PDC or its services
needs a CAL. If you have bought two servers with operating sys-
tems preinstalled, you should have five spare CALs, so you will not
need to buy additional CALs until you want to access your PDC and
DevServer from more than ten PCs.

TFS (DevServer)
DevServer, like the PDC, should be supplied with Windows Server 2003
preinstalled. The OSPACS team assigned one of the CALs provided with
this operating system to Michael’s PC and kept the remaining four licenses
as spares. This is because the team’s five desktop PCs have been assigned
the per-device-mode CALs that came with the PDC and therefore are
licensed to access any Windows server.

TFS Workgroup Edition

TFS Workgroup Edition should be installed on the DevServer because its
license is included with any MSDN Premium Subscription that is bought

Appendix B: Software Project Environment for a Small Team740

NOTE

The VSTS Licensing White Paper2 states “non-licensed users may
access the [TFS] operating system and server software solely for the
purpose of user acceptance testing.” We interpret this as meaning that
people do require a specific license for VSTS if they are just creating and
running the sort of customer acceptance tests described in Section 7.

2. “Microsoft Visual Studio 2005 Team System Licensing White Paper,” Nov. 2005
(http://go.microsoft.com/fwlink/?LinkId=55164).

with Visual Studio 2005 Team Edition (or Suite). However, you should be
aware of the following:

• TFS Workgroup Edition is functionally identical to the full TFS
product except that it is limited to five users and doesn’t require
any TFS CALs.

• Despite its name, you can use the TFS Workgroup Edition within
a domain as well as within a workgroup. Indeed, we suggest that
you make your development, build, and test environments part of
a domain.

• All five members of the OSPACS team have purchased MSDN Pre-
mium Subscriptions with Visual Studio Team Edition and therefore
are licensed to access the TFS Workgroup Edition installed on the
DevServer. This license is per-user, not per-device. These users must
be added to the special Team Foundation Licensed Users security
group created during the installation of the Workgroup Edition in
order for them to connect to the server. This security group is limited
to five members and is not created during the installation of the full
(or trial) edition of TFS.

• TFS is normally accessed from desktop PCs using Team Explorer.
There is no restriction on the number of PCs upon which an OSPACS
team member can install Team Explorer as the license is per-person
and not per-device. However, this means that non-team members
(such as Michael) cannot use a team member’s desktop PC to access
his TFS, though a TFS CAL can be purchased for a particular user
(or device) if such access is required.

• An exception is provided so that non-team members can use a team
member’s desktop PC to access his TFS solely for the purposes of
user acceptance testing.

• Members of a team who are sharing TFS Workgroup Edition do not
need to be employees of the same company, but in general, they must
all work together in the same place. Although team members are
allowed to make occasional remote connections to the DevServer—
for example, when working from home—such permissions do not
extend to people who are normally working off-site.

Licensing Issues for a Five-Person Team 741

Microsoft SQL Server 2005

Microsoft SQL Server 2005 must be installed on the DevServer prior to the
installation of TFS Workgroup Edition (or full TFS); see Appendix A. TFS
Workgroup Edition includes a license for Microsoft SQL Server 2005 Stan-
dard Edition with the following restrictions:

• SQL Server software must be used only with TFS and not for other
purposes. However, the MSDN Premium Subscription gives you the
right to install SQL Server 2005 (any edition) on a machine for devel-
opment purposes.

• The SQL Server that provides the VSTS Data Tier must be installed
on the same physical machine as the Application Tier, so you have to
install TFS on a single physical server.

• Only the five members of the OSPACS team can view reports gener-
ated by SQL Server 2005 Reporting Services. However, a TFS CAL
can be purchased for a particular user (or device) so that non-team
members such as Michael can view these reports.

Internet Information Server and SharePoint Services

Internet Information Server (IIS) and SharePoint Services must be installed
on the DevServer PC prior to the installation of TFS Workgroup Edition (or
full TFS). Use of IIS and SharePoint services is subject to the Windows
Server 2003 license supplied with the DevServer PC. However, you should
note the following:

• There is no restriction on people distributing information using the
Team Web site (Project Portal) beyond the need for a CAL in regard
to the DevServer.

• Team members can manually distribute information they have gath-
ered from their TFS to third parties. Therefore, a team member could
run a query to list the project’s active bugs and save the results in an
Excel file which could then be attached to an e-mail and sent to
someone in, say, London.

Appendix B: Software Project Environment for a Small Team742

• You can automate the periodic distribution of information gathered
from TFS to third parties, but non-team members (such as Michael)
cannot initiate the gathering and distribution of this information.
Therefore, the OSPACS team could add a Web Part to its Project
Portal which lists the ten most important bugs at the start of each
day, but the team could not allow Michael to update the list by
pressing a button.

• Team members can manually input information into TFS from third
parties. For example, Michael can use his Executive PC to change a
project plan and then upload the file to the OSPACS team Web site
so that a team member can update the project plan held in TFS.
However, you cannot automate this process so that Michael can
make changes to the project plan that result in the information held
by TFS being updated without the involvement of a team member.

• A link can be provided on the OSPACS team Web site to a file in the
Team Build drop folder so that non-team members can access the
products of a Team Build. However, the drop folder would need
to be located on a machine for which the non-team member had a
CAL, unless the build is being accessed for the purposes of customer
testing.

Developer PCs
The Developer PCs should be supplied with Windows XP preinstalled.
They should also have a per-device CAL for the DevServer and PDC.
Therefore, anyone is licensed to use these machines as well as the basic
facilities of the team’s servers. However, as described earlier, only the five
team members can access the facilities provided by their TFS.

Licensing Issues for a Five-Person Team 743

NOTE

The various licenses for Microsoft products installed on the DevServer
seek to prevent people from using third-party products with the aim of
reducing the number of licenses required by a project team.

Given that the three developers on the OSPACS team who are respon-
sible for writing code (Sarah, Peter, and Luke) buy a Visual Studio 2005
Team Edition for Developers with an MSDN Premium Subscription, you
need to consider the following issues:

• The license is per-user, not per-device. Therefore, Sarah, Peter, and
Luke can use each other’s PCs, but not the Architect PC or the Tester
PC. This conflicts with the Whole Team practice because it encour-
ages people to have particular roles, and for this reason, you may
want to buy the more expensive Visual Studio 2005 Team Suite for
all five team members.

• Sarah, Peter, and Luke can pair-program together in any combina-
tion. There is no restriction on two people using the same Developer
PC at the same time as long as they both have a license to use the
machine individually. However, Tom and Maggie would be unable
to pair-program with anyone.

• Sarah, Peter, and Luke cannot create, manage, or run generic, man-
ual, or Web tests on their Developer PCs because this requires Team
Edition for Testers. They are also not able to use the Distributed
Application Designer tools because this requires Team Edition for
Architects.

• Any team member can use InstallShield Collaboration for Visual
Studio on the Developer PCs to gather installation requirements;
see Chapter 29. The license for this product is per-device. A five-
pack license is included with the Premier Edition of FLEXNet
InstallShield 12.

• Non-team members can use a Developer PC to access TFS solely for
the purposes of user acceptance testing.

• The license and MSDN Premium Subscription can be reassigned
if one person leaves the team and another person joins. However,
licenses cannot be regularly reassigned within the team. For example,
Tom (Architect PC) and Luke (Developer PC) cannot swap licenses in
the morning and then swap them back again in the afternoon.

Appendix B: Software Project Environment for a Small Team744

• The MSDN Premium Subscription gives all five team members the
right to install most of the Microsoft products on multiple devices
for development purposes. However, certain products are subject to
restrictions—for instance, Microsoft SQL Server 2005 and VSTS.

Architect PC
The Architect PC should be supplied with Windows XP preinstalled, so our
comments about basic access to the Developer PCs also apply to this PC.
Given that the architect on the OSPACS team (Tom) buys a Visual Studio
2005 Team Edition for Architects with an MSDN Premium Subscription,
consider the following:

• The license is per-user, not per-device. Therefore, Tom can use only
the Architect PC; he cannot use the Tester PC or any of the Devel-
oper PCs. This conflicts with the Whole Team practice, as described
earlier. It also means that Tom cannot take part in pair programming
with the rest of the OSPACS team.

• Tom cannot create, manage, or run generic, manual, or Web tests on
his Architect PC because this requires Team Edition for Testers. He
is also not able to use the unit testing, code coverage, or code ana-
lyzer/code profiler tools because this requires Team Edition for
Developers. However, unless the OSPACS team is developing dis-
tributed Web services, there is no justification for Tom buying Team

Licensing Issues for a Five-Person Team 745

DOES YOUR LICENSE PERMIT PAIR PROGRAMMING?

There may be clauses in your Microsoft license agreements that seem
to prohibit more than one person at a time from using a single PC.
However, as Microsoft encourages pair programming, it could be
argued that you are not breaking the intention of your agreement. It is
just that the license was written before pair programming became pop-
ular. In practice, it seems unlikely that Microsoft would enforce such
clauses if both people are licensed to use the PC individually.

Edition for Architects, so he should buy one of the other editions
instead.

• Non-team members can use the Architect PC to access TFS solely
for the purposes of user acceptance testing.

• Microsoft SQL Server 2005 Standard Edition Client Components
may also be installed on any Desktop PC (or server) and used by
anyone with an MSDN Premium Subscription. However, on the
OSPACS team, only Tom wants to use these tools, so they are
installed on the Architect PC.

• The license for the Architect Edition can be reassigned if Tom
leaves the team in the same way as the license for the Developer
Edition can be reassigned, as noted earlier. Tom also has the same
rights as other team members to install Microsoft software prod-
ucts for development purposes as a result of his MSDN Premium
Subscription (as noted earlier).

Tester PC
The Architect PC should be supplied with Windows XP preinstalled, so our
comments about basic access to the Developer PCs also apply to this PC.
Given that the tester on the OSPACS team (Maggie) buys a Visual Studio
2005 Team Edition for Testers PC with an MSDN Premium Subscription,
reflect on the following issues:

• The license is per-user, not per-device. Therefore, Maggie can use
only the Tester PC; she cannot use the Architect PC or any of the
Developer PCs. This conflicts with the Whole Team practice, as
described earlier, and means that Maggie cannot take part in pair
programming with the rest of the OSPACS team.

• Maggie cannot use the code analyzer or code profiler tools because
this requires Team Edition for Developers. She also cannot use the
Distributed Application Designer tools because this requires Team
Edition for Architects. However, if these tools are not usually used by
the OSPACS team, there is a case for all five team members buying

Appendix B: Software Project Environment for a Small Team746

Team Edition for Testers because this would allow them to imple-
ment the Whole Team practice and pair-program with each other.

• Non-team members can use the Tester PC to access TFS solely for
the purposes of user acceptance testing.

• The license for the Tester Edition can be reassigned if Maggie leaves
the team in the same way as the license for the Developer Edition
can be reassigned, as described earlier. Maggie also has the same
rights as other team members to install Microsoft software products
for development purposes as a result of her MSDN Premium Sub-
scription (as noted earlier).

BuildLab PC
The BuildLab PC should be supplied with Windows XP preinstalled, so our
comments about basic access to the Developer PCs also apply to this PC.
The following issues should be considered:

• Team Build is provided as part of the .NET SDK, so it can be
installed on any suitable PC (or collection of PCs) and anyone can
script, schedule, or start a Team Build as long as it does not need
access to a TFS.

• Only the five OSPACS team members can create, schedule, or start
a Team Build that requires access to their TFS Workgroup Edition.
There also certain restrictions:

– OSPACS team members who do not have a license to use Team
Edition for Developers cannot script a build that includes code
coverage or code analysis.

– OSPACS team members who do not have a license to use Team
Edition for Developers or Team Edition for Testers cannot script
a build that includes unit tests.

– OSPACS team members who do not have a license to use Team
Edition for Testers cannot script a build that includes generic,
manual, load, or Web tests.

Licensing Issues for a Five-Person Team 747

• InstallShield provides a license that allows the Standalone Build
Engine to be used by an automated build process such as Team
Build. In this way, the InstallShield set-up project prepared by the
full InstallShield product (see the Tester PC section) can be built into
an install program as part of a Team Build.

Standby TFS
It is a good idea for a team to keep a spare server on standby in case its main
DevServer fails for whatever reason. Ideally, this machine should be an
exact replica of the main DevServer in terms of hardware, but you might
also make do with a PC that has a lesser specification. There are a number
of issues to consider:

• If you intend to have both machines switched on at the same time
(warm standby), you need to buy the same set of licenses for the
standby machine as for the main DevServer. However, if you have
purchased Microsoft’s Software Assurance with your licenses, you
can install them on the standby machine without needing to buy a
duplicate set of licenses as long as both machines are not switched
on at the same time.

• It is advisable to validate your backup process by regularly restoring
the latest backup to the standby DevServer. You should restore the
standby DevServer from bare metal so that the machine should not
even have its operating system installed at the start of the restore
process.

• Occasionally using the standby DevServer in place of the main
server for a day helps identify any subtle problems with your
backup and restore process.

Appendix B: Software Project Environment for a Small Team748

NOTE

The BuildLabPC must have Visual Studio Team Suite installed in order
for Team Foundation Build to run tests that use the tools listed earlier.

Multiprocessor PCs and Multicore Processors
There are no license limitations in terms of TFS Workgroup Edition (or
any of the Visual Studio Team Editions) being used on machines with
multiple processors or single multicore processors. However, before
buying multiple-processor machines, we recommend that you read the
notes in Table B-1 that explain the performance gains you might expect
to achieve:

• The Test Load Agent (not covered in this book) is licensed per
processor.

• The Data and Application Tiers of the TFS Workgroup Edition must
be installed on the same physical machine. However, you can install
the Data and Application Tiers on different machines when using
the full TFS product and the Data Tier can then be further distrib-
uted into a server cluster.

• Software products such as RoboHelp and InstallShield do not take
advantage of multiple processors, so you should not expect any per-
formance gains when using them on multicore or multiprocessor
machines.

Increasing Your Team beyond Five People

In addition to buying an additional Desktop PC (with the Windows XP
operating system preinstalled), you will need to buy the licenses shown in
Tables B-7 and B-8 when your team size exceeds five.

Increasing Your Team beyond Five People 749

NOTE

Consult the “Visual Studio Team Foundation Administrator Guide”
for specific details about backing up and restoring TFS.

Table B-7: License Requirements for Sixth Team Member

Product Name License For Buy Because

User Someone new has joined the
team.

TFS CAL User More than five people are
working on the team, so you
can no longer use TFS for
Workgroups.DevServer

Desktop PCs

Windows SQL Server DevServer

Table B-8: Per-Member License Requirements for Seven or More Team Members

Product Name License For Buy Whenever

User Someone new joins the team

TFS CAL User Someone new joins the team

Desktop PCs The number of PCs exceeds
ten, 15, etc.

1. In order to put the Data and Application Tiers of VSTS on different servers (dual-server
installation), you must buy a TFS license for each physical server. Furthermore, if you
then want to cluster the Data Tier on a number of servers, you must again buy additional
TFS licenses for each machine.

2. A geographically dispersed team needs to buy a TFS license for any machine which is
used as a TFS proxy.

3. People who do not normally work in the same location as the team and are not employed
by the same organization are usually considered external users. Such people require an
external connector license to connect with the team’s TFS, whether this is via a TFS proxy
or some direct network connection such as a VPN.

4. When your team has more than five Developer PCs you will need to buy additional
FLEXnet InstallShield Collaboration licenses for each machine.

Windows Server 2003 CAL
(typically sold as pack of five)

Visual Studio 2005 Team
Suite (or Edition for
Developer, Tester, Architect)

Windows Server 2003 CAL
(typically sold as pack of five)

TFS Server License
(sold per server)

Visual Studio 2005 Team
Suite (or Edition for
Developer, Tester, Architect)

Appendix B: Software Project Environment for a Small Team750

Increasing Your Team beyond Five People 751

NOTE

Teams that are operating in a domain can move from TFS for Work-
groups to the full TFS product simply by updating their DevServer.
There is no need for them to create a new Team Project, apply new
security settings, or take any other sort of action.

C
Agile Workspace

TH I S A P P E N D I X P R E S E N T S some ideas for creating the sort of space that
helps a small Agile team work together more effectively. It also lists

some of the things you might find in such a workspace. However, we rec-
ognize that each Agile team has its own unique needs and constraints, so
what we propose might not work as well in every case. Therefore, you
should read this appendix simply with the aim of changing your environ-
ment so that it works for your team rather than against it.

Basic Office Layout

A team seldom has much choice about the basic floor plan of its work-
space, particularly in regard to window and kitchen locations. However,
this should not discourage you from seeking to rearrange your allocated
office space to create the various areas you need, such as those shown in
Figure C-1.

753

TIP

Plan for your team size to increase, and always try to exceed the min-
imum floor space requirements for employees in your organization.
The total floor area in Figure C-1 is about 1,000 square feet, which cor-
responds to 125 square feet per person for a team of eight.

Figure C-1: Floor plan for a small Agile team

Software Development Area
The essential requirement for the software development area is that it must
be an open space which is large enough for the entire team to sit together
for most of the day; see the Sit Together practice in Chapter 4. In particu-
lar, you must avoid having separate offices, cubicles, or desks separated by
any sort of partition. Most Agile teams arrange themselves in a cluster of
desks such as those shown in Figure C-1, but other elements of your soft-
ware development area that you should consider include the following:

• Space to hold impromptu group discussions—Your team needs
somewhere to explore ideas without moving out of its immediate
working space. This is why the desks in Figure C-1 leave space next
to the kitchen.

Conference Room

Software Development
Area

Kitchen

BuildLab PC

Printer
Photocopier

Whiteboards

Notice
Boards

Hot-Desk Area

Personal
Pedestal

Telephone

Library Area

LCD
Projector

Screen/
Whiteboard

Filing
Cabinets

Coffee
Machine

Refrigerator

Conference
Telephone

0 10 feet

Server
Trolley

Laptop Docking
Station

Pair-Programming
Desk

Appendix C: Agile Workspace754

• Pair-programming desks—It must be possible for two people to
share the same desk. Therefore, don’t waste money buying desks
with fitted cabinets or drawers that might restrict leg room. Instead,
spend your money on comfortable chairs, good-quality desk lamps,
and decent keyboards/mice. You should also provide each desk
with plenty of pens and index cards, as well as a desk organizer in
which to keep them and a waste basket for trash.

• Server trolley—Put the team’s servers (see Appendix B) on a trolley
together with equipment such as the Ethernet switch and UPS
devices. This gives you easy access to the back of these machines
and provides a central point from which to run power and network
cables to the PC on each pair-programming desk.

• BuildLab PC—The build and test environment should be separated
from the development environment, but still easily accessible. In
Figure C-1, the test machines are kept under the desk, but your
team might require more space for them.

• Whiteboards, flip charts, and notice boards—Provide plenty of
space for people to present information. It is useful to have some
whiteboards on a movable frame so that you can position them as
required.

• Storage—Provide lots of space for your team’s paperwork as well
as for supplies such as disks, toner cartridges, and other stationery
items. You should also keep a supply of spare equipment cords,
power strips, and so on.

Basic Office Layout 755

NOTE

Make your software development area a pleasant place in which to
work by utilizing natural light, growing plants, and having well-
coordinated wall colors. You also need effective air conditioning, or
better still, windows that open as well as blinds and fans.

Kitchen Area
The kitchen area provides a place for people to rest between the sort of pro-
gramming episodes we described in Chapter 12 (and elsewhere). However,
it also serves to promote the exchange of information and ideas among
team members. Therefore, insist on your team having its own private
kitchen area, or alternatively, make an area that serves as such, even if it
lacks a sink or water supply. In addition to a coffee maker and refrigerator,
your kitchen should have the following:

• Whiteboards for sketching ideas and notice boards for things
such as story cards that have not been estimated or assigned (see
Chapter 27).

• The latest technical magazines, books, and other material to keep
people aware of what is going on outside their immediate team; see
the Library Area section, later in this appendix.

• Fruit, cookies, and other sources of sustenance to keep people going.
You might also consider providing a microwave as well as cutlery
and tableware for instant meals.

Hot-Desk Area
People sometimes need to work on their own, away from the rest of the
team, whether this is to develop an idea (spike) or simply to do personal
things such as answer e-mail and make dentist appointments. A hot-desk
area is an efficient way to meet such needs because instead of allocating a
particular desk to each person, a collection of desks are provided which are
used only for as long as people require them. Therefore, a team of eight

Appendix C: Agile Workspace756

TIP

A well-organized kitchen is often an indicator of a well-organized
team, so let the team decide how best to stock its kitchen. However,
don’t forget things such as cleaning materials as well as a large trash
bin so that you can keep the area tidy.

people might share three hot desks because, most of the time, they will be
pair programming in the software development area. Each hot desk should
be equipped with the following:

• Desk telephone—Although most people have a cell phone, it is bet-
ter to provide a desk telephone away from the software develop-
ment area because this reduces the disruption caused by telephone
calls. Replacing the bell on these telephones with a flashing light
will further improve the team’s working environment.

• Space for a personal pedestal—Each person should have his own
set of drawers on wheels that so it can be easily moved to any desk.
Such pedestals enable people to have their own personal things
around them, and each should have at least one lockable drawer.

• Laptop docking station with monitor, keyboard, and mouse—You
gain more flexibility by supplying quick-fitting connectors to the
monitor, keyboard, and mouse (together with network and power
connections) rather than having a plug-in docking station for a spe-
cific type of laptop.

The use of hot desks is a contentious issue because most software devel-
opers expect to have their own personal space, complete with a desk and
PC. Therefore, you should address these issues by letting the team decide
whether to use hot desks. For example, if initially five developers and a cus-
tomer were sharing the workspace in Figure C-1, the developers might each
“own” a pair-programming desk and the customer might “own” a partic-
ular hot desk, leaving two hot desks as spares. However, once another
developer joins this team and takes ownership of another hot desk, the
demand for the remaining hot desk is likely to be such that people would

Basic Office Layout 757

TIP

Put people’s desktop PCs on low trolleys so that they can easily move
them to wherever they are working. The use of quick-fit connectors
further encourages the mobility of machines between different desks.

become less proprietary about their desks. Certainly, by the time this team
had grown to nine developers, it is reasonable to expect that it should have
established the basic principle that people didn’t “own” a particular desk,
but shared them as they were needed.

Library Area
The team needs an area to store technical books and magazines. This area
should not be hidden away, but carefully positioned so that it catches peo-
ple’s eyes. For example, the location of the library in Figure C-1 is such that
it is the first thing people see when they walk into the team’s environment.
The team needs to take responsibility for stocking the library as well as its
administration, because otherwise it will quickly become out-of-date and
disorganized. In particular, you must track your books and magazines so
that you can always find them easily.

Conference Room
The conference room provides a place for people to hold private conversa-
tions in addition to serving as a location for the team’s formal presenta-
tions. It does not need to be contained within the rest of the team’s

Appendix C: Agile Workspace758

NOTE

Hot-desking is really about the provision of personal space, and the
team must decide whether the occasional privacy provided by a hot
desk is worth sacrificing ownership of a specific desk in the software
development area.

TIP

The Bibliography identifies some of the books you might want to buy
when establishing your library, but you should organize your own
review process to ensure that new books are bought each month and
are read by at least one team member.

workspace, as shown in Figure C-1, but it does need to be readily accessi-
ble. You should consider the following aspects when setting up your con-
ference room:

• Provide a large table so that people can spread out index cards and
so forth during group modeling sessions, or when trying to resolve
planning issues.

• Ensure that the room projects the desired image of the team to
visitors such as potential recruits, clients, business sponsors, and
so on.

• Provide adequate power and network connections and floor
space so that you can move computers into the room when you
need them.

• An LCD projector and screen allow you to give PowerPoint presen-
tations and demonstrate the team’s software.

• Arrange for the room to be acoustically insulated so that conversa-
tions cannot be overheard when the door is closed.

• Organize a booking system to discourage your customer (and oth-
ers) from taking it over as a private office. You should also keep this
information because it may help you substantiate future discussions
about the room’s value to your team.

When you are negotiating for your team’s own conference room, make
the point that it replaces the traditional project manager’s office and pro-
vides somewhere for your customer to hold confidential business discus-
sions. However, you may ultimately need to concede that it will be shared
with other teams.

Supplies and Equipment

It goes without saying that to function efficiently as a team, you need to
have adequate supplies of stationery as well as miscellaneous other small
items of equipment which all help to make life easy for everyone. The fol-
lowing items were collated from various suggestions made by people in the

Supplies and Equipment 759

Extreme Programming Yahoo! Group1 about the typical supplies and low-
tech tools required by Agile teams:

• Small items of equipment:

– Digital camera to capture whiteboard contents

– Scanner to capture index cards

– Paper and disk shredder

– Staplers, hole punches, scissors, paper trimmer

– Kitchen timers for timing box meetings, etc.

– Toolbox, cable ties, duct tape

– Magazine boxes, plastic storage bins (for spare cords), etc.

• Miscellaneous office items:

– Wall clock

– Place to hang coats, etc.

– Movable uplighters to control ambient light

– First-aid kit

Imposing the Team’s Individuality

If you accept the idea that an Agile team knows best how to organize its
own work, it follows that the team must be given control of its environment
so that it can optimize it for its specific way of working. Unfortunately,
though, attempts by people to establish their own environment often create
conflict with other people in the organization who are seeking to impose
their own ideas of order and uniformity. However, these battles need to be
fought because they sometimes provide the catalyst that people need to
start working together as a cohesive, self-organizing team.

Appendix C: Agile Workspace760

1. Extreme Programming Group (http://tech.groups.yahoo.com/group/extremeprogramming).

Imposing the Team’s Individuality 761

NOTE

An old Bank of America advertisement about investing in disad-
vantaged neighborhoods makes the point that the bank knew it had
succeeded when flowerboxes started showing up on front porches.
What flowerboxes does your team display?

List of Exercises

We have listed here all the exercises in the book in order to help people who
just want to find out how to complete a specific task using Visual Studio
Team System (VSTS). The “Depends On” column in each table identifies
any exercises upon which the given exercise depends. For people who are
using a PC that does not have the full Team Suite installed, this column also
identifies any exercise which requires a specific Visual Studio Team Edition
as follows:

D—Visual Studio Team Edition for Developers

T—Visual Studio Team Edition for Testers

A—Visual Studio Team Edition for Architects

763

NOTE

Framework for Integrated Test (FIT) is required for Section 7, but it is
freely available from the C2 Web site.1 InstallShield and Installation
Collaboration are needed for the exercises in Chapter 29, but free eval-
uation editions are provided on the Microvison Web site.2

1. Ward Cunningham’s C2 Web site for FIT (http://fit.c2.com).
2. Macrovision’s Web site for InstallShield (www.macrovision.com/downloads).

Setting Up a Team Project Depends On Page

Exercise 5-1: Creating a Team Project 85

Exercise 5-2: Deleting a Team Project Exercise 5-1 87

Exercise 5-1 89

Exercise 5-3 90

Exercise 5-1 92

Exercise 5-6: Allowing All Valid Users to Create Exercise 5-1 92
a Workspace

Exercise 5-7: Connecting to Your Team Project Exercise 5-4 94

Process Templates Depends On Page

Exercise 6-1: Adding a New Work Item Type to a Exercise 5-7 108
Team Project

Exercise 6-2: Adding a New Query to a Team Project Exercise 5-7 109

Exercise 6-3: Exporting a Process Template to Your Exercise 5-7 113
Hard Disk As XML

Exercise 6-4: Importing a Process Template from Exercise 6-3 114
Your Hard Disk

Exercise 6-5: Changing Work Item Types in Your Exercise 6-3 115
Process Template

Exercise 5-5: Granting Permission to Administer
a Build

Exercise 5-4: Gaining Access to Your Team Project
Portal and Report Site

Exercise 5-3: Making a User into a Team Project
Contributor

List of Exercises764

List of Exercises 765

Version Control Depends On Page

Exercise 8-1: Creating Folders in Your Repository Exercise 5-7 150

Exercise 8-2: Adding a Visual Studio Solution Exercise 8-1 153
into a Directory Structure

Exercise 8-3: Adding Existing Files and Directories Exercise 8-2 160
to Version Control

Exercise 8-4: Adding a Visual Studio Project into Exercise 8-3 163
a Directory Structure

Exercise 8-5: Checking In Pending Changes and Exercise 8-4 164
Creating a Baseline Label

Exercise 9-1: Using Version Control to Share Code Exercise 8-5 174
Changes among Your Team

Exercise 9-2: Creating an Additional Workspace Exercise 5-7 178

Exercise 9-3: Merging Changes Made by Two Exercise 9-1 180
Developers to the Same File

Exercise 9-4: Rolling Back to a Previous Version Exercise 9-3 184

Exercise 9-5: Creating a Code Branch Exercise 8-4 186

Exercise 9-6: Saving and Restoring a Shelveset Exercise 9-4 188

Exercise 10-1: Making a File Check Out Only for Exercise 8-4 192
Project Administrators

Exercise 10-2: Using Static Code Analysis on Your Exercise 8-4 (D) 196
Own PC

Exercise 10-3: Setting a Static Code Analysis Exercise 8-4 (D) 199
Check-in Policy

Exercise 10-4: Overriding a Static Code Analysis Exercise 10-3 (D) 202
Check-in Policy

Build and Integration Depends On Page

Exercise 12-1: Creating a Build Validation Test Exercise 8-2 (T) 233

Exercise 12-2: Allowing Developers to Create and Exercise 5-7 236
Run Team Builds

Exercise 12-3: Creating a Team Build Type for Exercise 12-2 237
Integration

Exercise 12-4: Scheduling a Daily Team Build Exercise 12-3 239

Exercise 12-5: Programming Episode Walkthrough Exercise 12-3 240
and Integration Build

Exercise 12-6: Deleting Build Products Exercise 12-3 244

Exercise 12-7: Creating an Incremental Team Exercise 12-3 250
Build Type

TDD Depends On Page

Exercise 13-1: Implementing a Simple Test Harness 270

Exercise 13-2: Writing a Failing Test Exercise 13-1 272

Exercise 13-3: Fixing the Code to Pass the Test Exercise 13-2 273

Exercise 13-4: Writing Another Failing Test Exercise 13-3 273

Exercise 13-5: Fixing the Code Again Exercise 13-4 274

Exercise 13-6: Refactoring (To Make the Code Easier Exercise 13-5 274
to Maintain)

Exercise 14-1: Creating Visual Studio Projects for Exercise 8-2 286
Tests and Production Code

Exercise 14-2: Implementing a Test List Exercise 14-1 292

Exercise 14-3: Implementing the First Test Exercise 14-2 294

Exercise 14-4: Fixing a Failing Test Exercise 14-3 297

List of Exercises766

TDD Depends On Page

Exercise 15-1: Implementing the ICollection Exercise 14-4 304
Interface

Exercise 15-2: Implementing the SetUp Refactoring Exercise 15-1 307
Pattern

Exercise 15-3: Adding a New Test: Exercise 15-2 308
AddRemoveReturnsTrue

Exercise 15-4: Storing Favorite Items in a Exercise 15-3 309
Collection

Exercise 15-5: Implementing a Linked List Exercise 15-4 311

Exercise 15-6: Removing Items from an Empty Exercise 15-5 313
Collection

Exercise 15-7: Finding a Favorite from Its Label Exercise 15-6 315

Exercise 15-8: Testing for an Exercise 15-7 316
ArgumentNullException

Exercise 15-9: Significant Refactoring of the Exercise 15-8 320
Implementation under Test

Exercise 16-1: Generating Code Coverage Exercise 15-9 (D) 326
Information

Exercise 16-2: Performance Session for a Unit Test Exercise 15-9 (D) 333

Exercise 17-1: Providing a User Interface for Exercise 15-9 342
LocalFavorites

Modeling Depends On Page

Exercise 19-1: Editing a Source File Using Class 387
Designer and Text Editor

List of Exercises 767

List of Exercises768

Customer Test Depends On Page

Exercise 22-1: Installing FIT on a Developer PC 448

Exercise 22-2: Setting Up FIT for Customer Testing Exercise 8-4 449
on a Developer PC

Exercise 22-3: Running Customer Tests on Your Exercise 22-2 451
Developer PC

Exercise 23-1: Using a Column Fixture in a Exercise 22-3 461
Customer Test

Exercise 23-2: Using a Row Fixture in a Exercise 22-3 466
Customer Test

Exercise 23-3: Using an Action Fixture in a Exercise 22-3 472
Customer Test

Exercise 24-1: Setting Up FIT for Customer Testing Exercise 22-3 (T) 483
in Your Build Lab

Exercise 24-2: Running a Generic Test with MSTest Exercise 24-1 (T) 486

Exercise 24-3: Running Customer Tests As Part of a Exercise 24-1 487
Team Build

Planning Depends On Page

Exercise 27-1: Creating a New Iteration for Your Exercise 5-7 546
Project

Exercise 27-2: Creating a New Story Work Item for Exercise 5-7 548
Your Project

Exercise 27-3: Running a Query to Find an Existing Exercise 27-2 549
Story Work Item

Exercise 27-4: Creating a Query to List All Story Exercise 27-3 550
Work Items for Iteration Three

Exercise 27-5: Updating an Excel Spreadsheet with Exercise 27-3 552
Stories from a Team Project

Planning Depends On Page

Exercise 27-6: Updating a Team Project with Stories Exercise 27-5 553
from an Excel Spreadsheet

Exercise 27-7: Producing a Bug Rate Report from Exercise 5-7 554
TFS Work Items

Deployment Depends On Page

Exercise 29-1: Creating an InstallShield Project Exercise 8-4 606

Exercise 29-2: Creating a Windows Forms Exercise 29-1 607
Application for Your Install Project

Exercise 29-3: Using the Installation Designer to Exercise 29-2 608
Define the Installation

Exercise 29-4: Using the Release Wizard to Create Exercise 29-3 611
Your Install Files

Exercise 29-5: Creating DIM Projects to Gather Exercise 29-4 614
Installation Requirements

Exercise 29-6: Creating an Install Program from Exercise 29-5 618
DIM Files

Exercise 29-7: Creating, Publishing, and Deploying 622
a ClickOnce Application

Exercise 30-1: Making a Visual Studio Solution for (A) 630
Your Logical Datacenter Diagrams (.ldd)

Exercise 30-2: Creating a Logical Datacenter Exercise 30-1 (A) 631
Diagram (.ldd) with Zones and Servers

Exercise 30-3: Importing Settings from the IIS in Exercise 30-2 (A) 636
Your Datacenter

Exercise 30-4: Making a Visual Studio Solution for (A) 639
Your Application Designer (.ad) Diagram

Exercise 30-5: Drawing an Application Designer Exercise 30-4 (A) 639
Diagram

List of Exercises 769

Continues

List of Exercises770

Deployment Depends On Page

Exercise 30-6: Defining Operations for a Exercise 30-5 (A) 642
Component’s Provider Endpoint

Exercise 30-7: Defining a Connection String to a Exercise 30-6 (A) 643
Database

Exercise 30-8: Implementing Your AD Diagram As a Exercise 30-7 (A) 644
Collection of Visual Studio Projects

Exercise 30-9: Testing a Web Service from Visual Exercise 30-8 (A) 644
Studio

Exercise 30-10: Reverse-Engineering an AD Exercise 30-9 A 646
Diagram from a Visual Studio Solution

Exercise 30-11: Creating System Designer Diagrams Exercise 30-7 (A) 649
from an AD Diagram

Exercise 30-12: Creating Composite System Designer Exercise 30-11 (A) 651
Diagrams

Exercise 30-13: Creating Deployment Designer Exercise 30-12 (A) 654
Diagrams from an SD Diagram

Exercise 30-14: Setting the Properties of Your Exercise 30-13 (A) 655
Deployment Designer Diagram

Exercise 30-15: Validating a Deployment Designer Exercise 30-14 (A) 656
Diagram

Exercise 30-16: Creating a Deployment Report Exercise 30-15 (A) 657

Reveal Value Depends On Page

Exercise 31-1: Running a SQL Query on the 676
TFSWarehouse Relational Database

Exercise 31-2: Using the Report Designer to Create 678
a Custom Report

771

List of Extreme Programming
Practices

The second edition of Kent Beck’s book, Extreme Programming Explained,1

defines 24 practices that an Agile team should apply to its work. You can
read our interpretation of these practices in this book, as outlined in the fol-
lowing table:

Practice Chapter Page

Pair Programming 2 38

Whole Team 4 67

Sit Together 4 73

Team Continuity 4 77

Shared Code 7 131

Single Code Base 7 140

Code and Tests 8 155

Ten Minute Build 11 218

Continues

1. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

Practice Chapter Page

Continuous Integration 11 224

Test-First Programming 13 266

Energized Work 15 323

Incremental Design 18 372

Real Customer Involvement 22 456

Stories 25 513

Weekly Cycle 26 536

Quarterly Cycle 26 538

Slack 27 559

Daily Deployment 28 584

Incremental Deployment 28 590

Informative Workspace 31 673

Root Cause Analysis 32 687

List of Extreme Programming Practices772

NOTE

We do not cover the Negotiated Scope Contract, Pay-per-Use, and
Shrinking Teams practices in this book, but you can find information
about them on the book’s Web site.

Glossary

At the start of a project, there are often subtle differences between people’s
understanding of the same terms. However, in time, a common language
develops so that everyone is able to communicate more effectively. This
process of acquiring the team’s language includes learning terms that are spe-
cific to the business solution being developed (domain language) as well as
those specific to the technologies being used in the project. We hope the fol-
lowing glossary helps your team in this process of adopting its own language.

Key

A Term with meaning in the Agile community. For example, customer
has a specific meaning when used in regard to an Agile team.

V Term with meaning in the context of Visual Studio Team System
(VSTS). For example, you might create a test list to run a collection
of unit tests in a Visual Studio Test Project.

M Term with meaning in the Microsoft community. For example, Visual
Studio is Microsoft’s Integrated Development Environment (IDE).

X Term that we have defined or something that is not in common use.

773

NOTE

Words put in an italic font are defined elsewhere in the glossary. The
acronym a.k.a. stands for also known as and is used to indicate other
terms that share a similar meaning.

Big Design Up Front A Approach to software development that requires a

team to produce a complete design before writing

any code (see Chapter 17); a.k.a. BDUF. Contrast

with simple design.

Big Visible Charts A Display of the team’s metrics on charts drawn on

large sheets of paper attached to office walls and

windows (see Chapter 31).

build drop folder V Directory used for storing build products (see

Figure 12-1 in Chapter 12); a.k.a. drop folder.

build environment Common place for a team to build and test its

software that is separate from the team’s individ-

ual development environments and the eventual pro-

duction environment (see Figure 11-1 in Chapter 11);

a.k.a. Build Lab, integration environment.

build process Steps taken to create build products. An Agile team

will usually define a number of different build

processes, such as its Integration Build and its Daily

Build (see Chapter 11).

build products Files generated during the execution of a particu-

lar build process. In VSTS, the build products of a

given Team Foundation Build type are deposited in

its build drop folder and may include such things as

the executable binary files (.exe, .dll), help system

file (.chm), installation program, a build log, and

Build Validation Test (BVT) results (see Chapter 12).

Build Validation Test V Run at the end of the build process to confirm that

the latest changes to the software work as intended

and do not have any undesirable side effects on

the existing code (see Chapter 12); a.k.a. BVT.

CASE tools Computer-aided software engineering tools are

usually concerned with helping people to produce

Unified Modeling Language (UML) diagrams

from which source code can be automatically gen-

erated (forward engineering). However, the more

sophisticated of these tools may also allow you to

generate UML diagrams from the code (reverse

engineering) and so are termed round-trip tools.

Glossary774

changeset V Collection of files in a developer’s workspace that

have been altered since they were last synchro-

nized with the repository. A changeset is eventually

checked in as a single atomic change to the team’s

shared code base (see Chapter 9).

check-in policies V Validation performed before a changeset is applied

to the repository. For example, you might not be

able to check in your changeset without first

adding some notes and linking it to a work item

(see Chapter 10).

cloaked V Projects (and directories) in your workspace

marked as cloaked are effectively ignored when

version control commands such as Check-in and

Get Latest Version are applied to parent directo-

ries (see Figure 9-2 in Chapter 9).

code churn V Metric that reflects the number of lines added,

modified, or deleted between one version of a file

and another. Code churn data is automatically

gathered when people check in their changesets

and this information is used with other metrics to

help identify problems.

code coverage Metric that reflects the number of lines of code

executed when a test suite is run against the num-

ber of lines of code that are not executed, usually

expressed as a percentage (see Chapter 16).

code smell A Unquantifiable indication that something is

wrong with the organization of some code (see

Chapter 15); a.k.a. hunch, smell.

Context menu Menu that opens when you click your right mouse

button after selecting an object in a window.

cross-functional team Group of people with different types of expertise,

but who share a common goal so that their objec-

tives align to their team rather than to their

department (see the Whole Team practice and

Chapter 4).

Glossary 775

customer A Representative of the business who gets to say

“what” the product must do. This may be some-

one who is considered a full-time member of the

team or it may be treated simply as a role which is

then split among a customer group (see Chapter 4).

customer A Functional test to verify that the software meets

acceptance test a particular business requirement (see Section 7);

a.k.a. user acceptance test, acceptance test, cus-

tomer test.

customer story A Defines a particular feature that has value to the

business funding the project. It mainly takes the

form of a conversation between the team’s cus-

tomer and a developer, but it is also summarized on

an index card and confirmed by a customer accept-

ance test (see the Stories practice and Chapters 3

and 25); a.k.a. user story, story.

Daily Build Build process that runs overnight in order to gener-

ate the build products required for creating a

release of the team’s software (see Chapter 11).

declarative Style of programming characterized by setting

programming the properties and events associated with objects

using a visual editor (see Exercise 17-1 in

Chapter 17).

delta encoding Records different versions of the same file in terms

of their differences rather than as separate files.

Therefore, you can recover any version of a file

by starting from the original file and then succes-

sively applying the required number of deltas (see

Chapter 7); a.k.a. delta.

deployment Activities associated with preparing a build product

for use in its production environment, often expressed

in terms of a formal release process (see Chapter 28).

developer Technical person who gets to say “how” the needs

of the business will be implemented, usually com-

bining the roles of analyst, designer, programmer,

and tester.

Glossary776

development Place for individuals (or pair programmers) to

environment write and test their code that is separate from the

team’s common build environment and the eventual

production environment (see Figure 11-1 in Chapter 11).

domain expert Someone with knowledge, skills, and experience

in some particular area, usually related to the

business funding the project.

Domain-Specific Language and terms used by a domain expert.

Language Domain-Specific Languages allow domain experts

to produce programs expressed in their own

domain language rather than having to write

them in a computer language such as C# (see

Chapter 21); a.k.a. DSL.

elective process Requires people to decide for themselves how best

to complete their work. For example, Extreme Pro-

gramming (XP) is an elective process because the

team can decide whether it should adopt a partic-

ular practice (see Chapter 5).

Extreme Programming A Practices and values for an Agile team, as described

in Kent Beck’s book.1 This approach to software

development forms the basis for our book.

functional test Treats the software under test as a black box

which exists in a number of defined states, such

that for each state, the application of certain

inputs should result in particular measurable out-

puts. In other words, the test seeks to prove that

the software conforms to its external specification,

that it does what the customer intended (see

Chapter 22). Contrast with structural test.

group security M Grants access rights and privileges to someone

account performing a particular role. Typically, user

accounts are made members of the various group

security accounts which correspond to their roles

in an organization.

Glossary 777

1. [XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained, Second Edition
(Addison-Wesley, 2005).

ideal day A Time available to a developer during a normal

office day for working on the implementation of

customer stories, assuming there are no interrup-

tions and everything needed is readily available.

Stories are often estimated in ideal days (see

Chapter 25).

incremental Reaching some objective by taking a series of

small steps rather than taking the big-bang

approach of trying to achieve everything in one

try. Agile teams usually take an incremental

approach to things such as development, deploy-

ment, and integration. See iterative, later in this

glossary.

Integrated Collection of tools typically used in the

Development development environment that interoperate in such

Environment a way that a developer can work from a single user

interface. For example, Visual Studio integrates a

set of tools from various sources so that you can

edit files, build programs, and debug programs

(see Chapter 1); a.k.a. IDE.

integration Process of adding different people’s code changes

to the team’s shared code base in order to create a

tested build product that contains everyone’s work

(see Chapter 11). See single code base, later in this

glossary.

Integration Build A Build process run frequently during the day to inte-

grate the changes made by different developers to

the team’s shared source code files (see the Ten

Minute Build and Continuous Integration prac-

tices, and Chapter 11).

iteration A Fixed period during which the team will com-

pletely implement a given collection of stories and

prepare its software for deployment. It typically

lasts one or two weeks (see Chapters 3 and 26).

Glossary778

iteration burn rate X Cost of running the project for an iteration. Essen-

tially, it is the sum of a project’s fixed costs (salary,

office rent, etc.) apportioned over the time scale of

an iteration (see Chapter 25).

iteration plan A Collection of stories that a team intends to com-

plete during the iteration. It is often created by pin-

ning customer story index cards against specific

developers’ names on an iteration planning board

(see Figure 26-2 in Chapter 26).

iteration zero A Preparation work done before a team starts per-

forming fixed-length iterations; in other words,

setup of the version control system, development

environments, and build environment (see retrospec-

tive, later in this glossary).

iterative Repeating a given sequence of steps in order

to complete an incremental move toward some

objective. Agile teams usually take an iterative

approach to things such as development and

deployment (see the Weekly Cycle practice).

managed team Gives people little responsibility for deciding

how or when their work should be done because

their activities are controlled by someone in a

supervisory role, such as a project manager (see

Chapter 4). Contrast with a self-organizing team.

metamodel Meta comes from the Greek verb to build, so a

metamodel is a model that allows you to build

other models (see Chapter 5).

methodology Common set of methods, practices, and rationale

that form the basis of the processes adopted by

teams in an organization. This provides a gen-

eral strategic approach for undertaking software

projects.

Glossary 779

metrics A Measurements made by a team in order to better

understand the problems associated with its work.

In VSTS, metrics are specifically gathered by a team

through the creation of work items, but they are also

implicitly gathered during activities such as check-

ing files into version control (see Chapter 31).

mothball A Process of archiving a project prior to its closure

so that it can be restarted at some future date

without too much difficulty (see Chapter 3).

multiple checkout Synchronizes updates made by different people to

a file held in the team’s repository so that you are

prevented from checking in your changes only

when someone else has already checked in a new

version of the file before you (see Chapter 7); a.k.a.

optimistic locking. Contrast with single checkout.

nonfunctional Requirement that relates to the operation of the

requirement software product rather than to the implementa-

tion of some specific feature. Nonfunctional

requirements are concerned with matters such as

performance, availability, reliability, and so forth;

a.k.a. Quality of Service (QoS).

personas Fictitious characters created to help personify a

role that has a need for some particular feature

under development. It is often helpful to link a

persona to a photograph, as we did when describ-

ing the OSPACS team in the Introduction.

phased development Divides the work of software development into

distinct phases which are completed in a set

sequence. For example, the analysis phase leads

to the design phase, which leads to the coding

phase, and so on.

preproduction Place where the team’s build products are deployed

environment so that they can be subjected to further testing

before being moved into the production environ-

ment (see Chapter 28).

Glossary780

prescriptive process Sequence of activities required to transform a

work product from one state into another,

described in such detail that there is little possi-

bility for variance from the plan (see Chapter 5).

Contrast with an elective process.

process Common set of methods, practices, and rationale

which guide a team during the execution of a

project. Typically, a team’s process is based on its

organization’s methodology, but is adapted to meet

the specific needs of the team and the project. This

provides a specific tactical approach for undertak-

ing a particular software project. Contrast with

methodology.

Process Framework V Defines the work item types, Process Guidance, and

so forth for a Team Project that is intended to sup-

port a particular type of software development

process. VSTS provides a Process Framework for

MSF for Agile and MSF for CMMI, but other

frameworks are available from third parties (see

Chapter 5); a.k.a. Process Template.

Process Guidance V Explains to team members the basic concepts of

the process they are following as well as giving

specific guidance about how they should perform

the roles assigned to them. It is provided as a Web

site which is part of the Project Portal created for a

specific Team Project.

process technician M Person responsible for ensuring the success of the

team’s various build processes (see Chapter 12);

a.k.a. build coordinator, build master, integration

coordinator.

production code Code that is intended for eventual deployment into

the production environment as opposed to code that

is written to support testing or other aspects of

development. Typically, production code is sub-

jected to certain policies and standards set by the

team (see Chapter 10).

Glossary 781

production Place where the team’s build products will

environment eventually be deployed and used for business pur-

poses. This environment usually is separate from

the team’s development environments and build envi-

ronment (see Figure 11-1 in Chapter 11).

programmer tests A Structural tests written by a developer during test-

driven development. In VSTS, these are formed by

adding unit tests to a Visual Studio Test Project

(see Exercise 14-1 in Chapter 14); a.k.a. unit tests.

programming episode X Period lasting a couple of hours during which a

pair of developers will implement some part of a

story. Typically, it ends when the developers check

in their changeset and complete a successful Inte-

gration Build (see Chapters 9, 12, and 27).

Project Portal X Helps a team communicate during the completion

of its project by providing the team with an

editable Web site. The Project Portal created by

VSTS contains areas for people to make announce-

ments and share documents, and it has links to

other sites such as the team’s Process Guidance site

(see Chapter 1); a.k.a. project Web site.

Quality of Service M A.k.a. QoS. See nonfunctional requirement, earlier in

this glossary.

refactoring A Aims to improve the design of existing code with-

out changing its behavior. Refactored code is sim-

pler, easier to understand, and not duplicated

elsewhere in the code base (see Chapter 15).

release plan A High-level plan showing the number of iterations

available to the team (as calculated from its itera-

tion burn rate) and the individual stories scheduled

for completion by the end of specific iterations

during this period (see Chapter 26).

release process A defined sequence of actions that are taken when

deploying the team’s build products into the produc-

tion environment (see Chapter 28).

Glossary782

Report Site X Provides reports that analyze the metrics gener-

ated by the team as it completes its project (see

Chapter 31).

repository Central place for holding files. In VSTS it is located

in the Team Foundation Server Data Tier and is

accessed using the Team Foundation Version Control

system (see Chapter 7).

retrospective A Time set aside for the team to reflect so that it

might find ways to improve upon its performance.

Retrospectives are usually held after the team has

reached a significant milestone.

security group M See group security account, earlier in this glossary.

self-organizing team Gives its members full responsibility for deciding

how or when their work should be done (see

Chapter 4). Contrast with managed teams.

shelveset V Allows people to save their work in the repository

without it being integrated or shared with others

on their team (see Chapter 9); a.k.a. shelve.

simple design A An approach to software development that defers

making many design decisions until after the team

has gained a better understanding of the problem

by implementing parts of the solution. It aims to

provide simple solutions by just solving today’s

problems without making tomorrow’s any worse

(see Chapter 17). Contrast with Big Up Front Design.

single checkout Synchronizes updates made by different people to

a file held in the team’s repository so that only one

person at a time is allowed to check out a file for

editing (see Chapter 7); a.k.a. pessimistic locking,

strict locking. Contrast with multiple checkout.

Smoke Test Collection of tests applied to new build products

that aim to identify any obvious problems before

conducting further testing. Typically, a Smoke Test

is performed part automatically and part manu-

ally (see Chapter 11).

Glossary 783

Software Project X Provides a set of tools that are controlled from a

Environment common interface to help a group of people work

together. For example, VSTS integrates version

control, team build, planning, metric gathering,

reporting, and so on (see Chapter 1); a.k.a. SPE.

Source Control A.k.a. version control, revision control.

spike A Time-limited exploration of a particular aspect of

the software under development in order to solve

a perceived problem or quantify some identified

risk; a.k.a. prototype.

story A A.k.a. customer story.

structural test Approach to testing that relies on measuring the

response of the software to certain inputs applied

at specific points in the code (see Chapter 13).

That is to say, the test seeks to prove that the soft-

ware conforms to its internal specification; it does

what the programmer intended.

system metaphor A Unifying concept applied to the software under

development in order to help people understand

how its parts come together as a whole. For exam-

ple, a shopping cart may be a good metaphor

for a Web site that sells consumer goods (see

Chapter 20).

task card A Summary of the work required to implement a

story produced to help a team plan the iteration.

These cards are typically written on an index card

and then pinned to a task board (see Figure 27-3

in Chapter 27).

task point X Relative measure of the work required to imple-

ment a story expressed in terms of a nonlinear

scale. Similar measures used by Agile teams for

sizing a story include ideal days and story points

(see Chapter 25).

Glossary784

Team Foundation V Components of VSTS concerned with the

Build execution of a Team Foundation Build type in order

to generate a set of build products (see Figure 12-1

in Chapter 12); a.k.a. TFB.

Team Foundation V Special XML file defining the steps of a particular

Build type build process which is listed in the Team Builds

folder of your Team Project. Teams usually create a

number of build types for different purposes, such

as their Integration Build and their Daily Build (see

Chapter 12).

Team Foundation V Components of VSTS that form its Application

Server and Data Tiers are installed on one or more physi-

cal servers (see Chapter 1); a.k.a. TFS.

Team Foundation V Components of VSTS which provide a repository

Version Control on the TFS Data Tier as well as the various tools

needed to provide version control for the files it

stores (see Chapter 8); a.k.a. TFVC.

Team Project V Organizes a collection of people who are collabo-

rating in the development of some software and

who share a common schedule. A team will usu-

ally create a Team Project at the start of its soft-

ware project (see Chapter 5).

test environment Environment that emulates the production environ-

ment for the purposes of testing a set of build prod-

ucts. Typically, the test environment is made part

of the build environment and is separate from the

team’s development environments and the produc-

tion environment (see Figure 11-1 in Chapter 11).

test list V Collection of tests that are executed together dur-

ing a Build Validation Test as well as during other

forms of testing (see Chapter 12); a.k.a. test suite.

test list A Collection of tests written down as a to-do list

which drives the development during TDD (see

Table 14-1 in Chapter 14).

Glossary 785

treeview M Windows control that displays a collection of

items in a treelike structure, such as the list of

directories displayed by Windows Explorer.

unit test A.k.a. programmer test.

use case Collection of one or more scenarios relating to

a particular form of interaction between a user

(actor) and the system under development (see

Chapter 20). Contrast with customer stories.

user story A A.k.a. customer story.

velocity A Measure of the team’s progress in terms of the

sum of story sizes for stories that were completed

during the previous iteration. We recommend sto-

ries be sized as task points.

Version Control Controls changes to a collection of files stored in

System a repository and shared by a team of people. In par-

ticular, it resolves any conflicts that arise due to

several people altering the same file at the same

time (see Chapter 7); a.k.a. Source Control, revision

control.

Visual Studio M Microsoft’s Integrated Development Environment (IDE).

Visual Studio V Microsoft’s Software Project Environment that is

Team System composed of Team Foundation Server (Data and

Application Tiers), Visual Studio Professional

with Team Explorer (Client Tier), Project Portal

and Report Sites, and Team Foundation Build (see

Chapter 1); a.k.a. VSTS.

work item V Instance of some metric that the team wants

to measure. It is in the Team Foundation Server

Data Tier.

work item type V Work items are categorized by types such as Task

or Bug. The types available to you depend upon

the Process Framework selected when you start

your Team Project as well as any additional types

added during the course of the project (see

Chapters 5 and 6).

Glossary786

workspace Set of directories in a development environment

which are mapped to folders in a repository such

that a version control command such as Get Latest

Version will update the developer’s workspace with

the latest versions of the files in the repository,

and a command such as Check-in will update the

repository with the changes the developer has

made to the files in his or her workspace (see

Chapter 9).

Glossary 787

Bibliography

The books referenced in the text are listed below under a collection of dif-
ferent headings to help you find other books in the same category. We also
include some books that are not referenced in the text but nevertheless may
be of interest to you. All these books are on our bookshelves and are heav-
ily marked up with highlighter pen.

Books about Agile Software Development

[AEP] Cohn, Mike. Agile Estimating and Planning (Prentice Hall, 2006).

[APM] Schwaber, Ken. Agile Project Management with Scrum (Microsoft Press, 2004).

[ASD] Martin, Robert. Agile Software Development, Principles, Patterns, and Practices
(Prentice Hall, 2003).

[FIT] Mugridge, Rick, and Ward Cunningham. Fit for Developing Software: Framework
for Integrated Tests (Prentice Hall, 2005).

789

NOTE

You’ll find more details about these books on our Web site,1 as well as
other titles that we come across which we think might be of interest to
our readers.

1. This book’s Web site (www.BetterSoftwareDevelopment.org).

[LSD] Poppendieck, Mary, and Tom Poppendieck. Lean Software Development: An
Agile Toolkit (Addison-Wesley, 2003).

[QXP] McBreen, Pete. Questioning Extreme Programming (Addison-Wesley, 2003).

[USA] Cohn, Mike. User Stories Applied: For Agile Software Development (Addison-
Wesley, 2004).

[XC] Cockburn, Alistair. Crystal Clear: A Human-Powered Methodology for Small Teams
(Addison-Wesley, 2005).

[XPE2] Beck, Kent, with Cynthia Andres. Extreme Programming Explained: Embrace
Change, Second Edition (Addison-Wesley, 2005).

Coplien, James O., and Neil B. Harrison. Organizational Patterns of Agile Software
Development (Prentice Hall, 2005).

Succi, Giancarlo, and Michele Marchesi. Extreme Programming Examined (Addison-
Wesley, 2001).

General Books about Software Development

[AR] Derby, Esther, and Diana Larsen. Agile Retrospectives: Making Good Teams Great
(Pragmatic Bookshelf, 2006).

[CC] McConnell, Steve. Code Complete: A Practical Handbook of Software Construction
(Microsoft Press, 1993).

[DM] Yourdon, Edward. Death March, Second Edition (Prentice Hall, 2004).

[MMM] Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering,
First Edition (Addison-Wesley, 1975).

[PR] Kerth, Norman. Project Retrospectives: A Handbook for Team Reviews (Dorset
House, 2001).

[PSP] Humphrey, Watts. Introduction to the Personal Software Process (Addison-
Wesley, 1997).

[RD] McConnell, Steve. Rapid Development: Taming Wild Software Schedules, First
Edition (Microsoft Press, 1996).

[SQM] Weinberg, Gerald. Quality Software Management: Systems Thinking (Dorset
House, 1992).

Bibliography790

[UCA] Jacobson, Ivar, et al. Object-Oriented Software Engineering: A Use Case Driven
Approach (Addison-Wesley, 1992).

[UDP] Jacobson, Ivar, et al. The Unified Software Development Process (Addison-
Wesley, 1999).

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and Teams, Second
Edition (Dorset House, 1999).

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to
Master (Addison-Wesley, 2000).

Yourdon, Edward. Rise & Resurrection of the American Programmer (Prentice Hall, 1996).

Weinberg, Gerald. The Psychology of Computer Programming (Van Nostrand
Reinhold, 1971).

Books about Software Patterns, Analysis, Design, and
Modeling

[AP] Fowler, Martin. Analysis Patterns: Reusable Object Models (Addison-Wesley, 1997).

[DOOS] Wirfs-Brock, Rebecca, et al. Designing Object-Oriented Software (Prentice
Hall, 1990).

[DP] Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995).

[DPE] Shalloway, Alan, and James R. Trott. Design Patterns Explained: A New
Perspective on Object-Oriented Design (Addison-Wesley, 2002).

[EUML] Ambler, Scott. Elements of UML 2.0 Style (Cambridge University Press, 2005).

[OD] Wirfs-Brock, Rebecca, and Alan McKean. Object Design—Roles, Responsibilities,
and Collaborations (Addison-Wesley, 2003)

[OOSE] Jacobson, Ivar, et al. Object-Oriented Software Engineering: A Use Case Driven
Approach (Addison-Wesley, 1992).

[SCM] Berczuk, Stephen P., with Brad Appleton. Software Configuration Management
Patterns: Effective Teamwork, Practical Integration (Addison-Wesley, 2003).

[TOP] Ambler, Scott. The Object Primer: Agile Model-Driven Development with UML
2.0, Third Edition (Cambridge University Press, 2004).

Bibliography 791

[UMLD] Fowler, Martin, and Kendall Scott. UML Distilled: A Brief Guide to the
Standard Object Modeling Language, Third Edition (Addison-Wesley, 2004).

Greenfield, Jack, et al. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools (Wiley, 2004).

Books about Testing

[AST] Myers, Glenford J., et al. The Art of Software Testing, Second Edition (John Wiley
& Sons, 2004).

[BBT] Beizer, Boris. Black-Box Testing (John Wiley & Sons, 1995).

[TOOS] Binder, Robert. Testing Object-Oriented Systems: Models, Patterns and Tools
(Addison-Wesley, 2000).

Books about Refactoring and Test-Driven Development

[PUT] Hunt, Andy, and Dave Thomas. Pragmatic Unit Testing with NUnit (Pragmatic
Programmers, 2004).

[R2P] Kerievsky, Joshua. Refactoring to Patterns (Addison-Wesley, 2005).

[RDB] Ambler, Scott W., and Pramod J. Sadalage. Refactoring Databases: Evolutionary
Database Design (Addison-Wesley, 2006).

[RIDEC] Fowler, Martin, et al. Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999).

[TDDE] Beck, Kent. Test-Driven Development by Example (Addison-Wesley, 2003).

[TDDM] Newkirk, James W., and Alexei A. Vorontsov. Test-Driven Development in
Microsoft .NET (Microsoft Press, 2004).

[TDPG] Astels, David. Test-Driven Development: A Practical Guide (Prentice Hall, 2004).

[XNET] Roodyn, Neil. Extreme .NET: Introducing Extreme Programming Techniques to
.NET Developers (Addison-Wesley, 2005).

[XPAC] Jeffries, Ron. Extreme Programming Adventures in C# (Microsoft Press, 2004).

Wake, William. Refactoring Workbook (Addison-Wesley, 2004).

Bibliography792

Books about C# Programming and .NET

Thai, Thuan, and Hoang Q. Lam. .NET Framework Essentials: Introducing the .NET
Framework (O’Reilly, 2001).

[ADO2] Johnson, Glenn. ADO.NET 2.0 Applications (Microsoft Press, 2006).

[CCB] Hilyard, Jay, and Stephen Tielhet. C# Cookbook (O’Reilly, 2004).

[CPC] Jones, Allen. C# Programmer’s Cookbook (Microsoft Press, 2004).

[EC#] Wagner, Bill. Effective C# (Addison-Wesley, 2005).

[PWF] Petzold, Charles. Programming Microsoft Windows Forms (Microsoft Press, 2005).

Albahari, Ben, et al. C# Essentials: Programming the .NET Framework, Second Edition
(O’Reilly, 2002).

Sestoft, Peter, and Henrik I. Hansen. C# Precisely (MIT Press, 2004).

Hejlsberg, Anders, et al. The C# Programming Language, Second Edition (Addison-
Wesley, 2006).

Roodyn, Neil. Extreme .NET: Introducing Extreme Programming Techniques to .NET
Developers (Addison-Wesley, 2005).

Liberty, Jesse. Programming in C#: Building .NET Applications (O’Reilly, 2001).

Liberty, Jesse. Visual C# 2005: A Developer’s Notebook (O’Reilly, 2005).

Sells, Chris. Windows Forms Programming in C# (Addison-Wesley, 2004).

Books about Visual Studio and VSTS

[SETS] Guckenheimer, Sam, and Juan Perez. Software Engineering with Microsoft
Visual Studio Team System (Addison-Wesley, 2006).

[VSTS] Hundhausen, Richard. Working with Microsoft Visual Studio Team System
(Microsoft Press, 2005).

Grimes, Richard. Developing Applications with Visual Studio .NET (Addison-Wesley,
2002).

Skibo, Craig, et al. Working with Visual Studio 2005 (Microsoft Press, 2006).

Bibliography 793

Books about Other Specific Products

[OIW] Baker, Bob. The Official InstallShield for Windows Installer Developer’s Guide
(M&T Books, 2001).

[ECOM] Box, Don. Essential COM (Addison-Wesley, 1998).

[SCD] Noyes, Brian. Smart Client Deployment with ClickOnce (Addison-Wesley,
2007).

[SQLRS] Larson, Brian. Microsoft SQL Server 2005 Reporting Services 2005
(McGraw-Hill Osborne, 2005).

[TYSP] Spence, Colin, and Michael Noel. Teach Yourself Microsoft SharePoint 2003 in
10 Minutes (SAMS, 2004).

Hillier, Scot P. Microsoft SharePoint: Building Office 2003 Solutions (Apress, 2004).

Landrum, Rodney, and Walter J. Voytek II. Pro SQL Server 2005 Reporting Services
(Apress, 2006).

[PPA] Clark, Mike. Pragmatic Project Automation: How to Build, Deploy and Monitor
Java Applications (The Pragmatic Bookshelf, 2004).

Petzold, Charles. Programming Windows Version 3, Second Edition (Microsoft Press, 1990).

General Books about Agile Concepts

[DF6S] Chowdhury, Subir. Design for Six Sigma (Dearborn Trade Pub., 2002).

[FT] Manns, Mary Lynn, and Linda Rising. Fearless Change: Patterns for Introducing
New Ideas (Addison-Wesley, 2005).

[LEANT] Womack, James, and Daniel Jones. Lean Thinking: Banish Waste and Create
Wealth in Your Corporation (Simon & Schuster, 2003).

[MTDF] Reinertsen, Donald. Managing the Design Factory: A Product Developer’s
Toolkit (Simon & Schuster, 1997).

[SLAK] DeMarco, Tom. Slack: Getting Past Burnout, Busywork, and the Myth of Total
Efficiency (Broadway Books, 2002).

[TPS] Ohno, Taiichi. Toyota Production System: Beyond Large-Scale Production
(Productivity Press, 1988).

[WWB] DeMarco, Tom, and Timothy Lister. Waltzing with Bears: Managing Risk on
Software Projects, First Edition (Dorset House, 2003).

Bibliography794

Bibliography 795

TIP

When joining a new team, take a look at the team’s bookshelves. What
sorts of books and magazines does the team have? Are they up-to-date
and obviously well read, or are they old but still pristine? A team’s
books will tell you a lot about the people you’re going to work with.

Resources

We have organized the Web site addresses we provided throughout
the book into the following two tables. Table R-1 lists product Web
sites and Table R-2 lists information Web sites. The book’s Web site,
www.BetterSoftwareDevelopment.org, lists additional resources which
we will update from time to time.

797

Table R-1: Product Web Sites

Description URL Chapter(s)

AVIcode: Intercept Studio 3 www.avicode.com 28

IBM: Rational Rose www.ibm.com/software/rational 19, 30

Macrovision: Admin Studio www.macrovision.com/products/flexnet_adminstudio 28

Macrovision: InstallShield www.macrovision.com/products/flexnet_installshield 28

Macrovision: InstallShield www.macrovision.com/products/flexnet_installshield/collaboration 29
Collaboration

Macrovision: InstallShield www.macrovision.com/downloads Preface
evaluation

Macrovision: SDM www.macrovision.com/sdm 30

Microsoft: .NET Framework http://msdn.microsoft.com/netframework 1

Microsoft: BizTalk www.microsoft.com/biztalk 30

Microsoft: ClickOnce http://msdn.microsoft.com/clickonce 29

Microsoft: DSI www.microsoft.com/windowsserversystems/dsi 30

Microsoft: SMS www.microsoft.com/smserver 28, 29, 30

R
e

so
u

rce
s

798

Description URL Chapter(s)

Microsoft: SysInternals PsExec www.microsoft.com/technet/sysinternals/utilities/psexec.mspx 24

Microsoft: TFS Administrators http://go.microsoft.com/fwlink/?LinkID=52459 5, 7
Guide

Microsoft: TFS Installation Guide http://go.microsoft.com/fwlink/?LinkId=40042 1, 12,
Appendix A

Microsoft: Virtual PC 2004 www.microsoft.com/windows/virtualpc 12, 28,
Appendix A

Microsoft: Visual SourceSafe 2005 http://msdn.microsoft.com/vstudio/products 7

Microsoft: Visual Studio http://msdn.microsoft.com/vstudio 1

Microsoft: Visual Studio 2005 SDK http://msdn.microsoft.com/vstudio/extend/ 21

Microsoft: VSTS evaluation http://msdn.microsoft.com/teamsystem Preface,
Appendix A

Microsoft: Windows SharePoint http://go.microsoft.com/fwlink/?LinkID=55087 Appendix A
Services 2.0 with SP2

Open source: CVS source http://sourceforge.net/docs/E04/ 7
control tool

Open source: Eclipse project www.eclipse.org 7

R
e

so
u

rce
s

799

Continues

R
e

so
u

rce
s

800
Table R-1: Continued

Description URL Chapter(s)

Open source: FIT http://fit.c2.com Preface, 22

Open source: FitNesse www.fitnesse.org 22, 23

Open source: MSF4XP www.msf4xp.org 5, 31

Open source: NUnit Web site www.nunit.org 1, 13, 15

Open source: OSPACS www.ospacs.org (all)

Open source: Subversion source http://subversion.tigris.org 7
control tool

Open source: WiX (Windows http://wix.sourceforge.net 28
Installer XML)

Roxio: DVD Creator www.roxio.com Appendix A

Sun Microsystems: Java http://java.sun.com 20

Teamprise: SourceGear access www.teamprise.com 7
to TFS from Eclipse

Table R-2: Information Web Sites

Description URL Chapter(s)

Agile Alliance www.agilealliance.org 2

Agile Alliance—user groups www.agilealliance.com Introduction
listed under Resources

Agile communication www.agilemodeling.com/essays/communication.htm 2

Agile Manifesto www.agilemanifesto.org 2

Agile Modeling Web site www.agilemodeling.com 18

Big design upfront http://xp.c2.com/BigDesignUpFront.html 3

Big Visible Charts www.xprogramming.com/xpmag/BigVisibleCharts.htm 31

C# Language reference: http://msdn.microsoft.com 15
ICollection

Card, Conversation, Confirmation www.xprogramming.com 3, 25

Coding Style Guidelines www.ambysoft.com/essays/codingGuidelines.html 7

Cost of Change www.agilemodeling.com/essays/costOfChange.htm 3

Extreme Programming Group http://tech.groups.yahoo.com/group/extremeprogramming Appendix C

R
e

so
u

rce
s

801

Continues

Table R-2: Continued

Description URL Chapter(s)

Full Life Cycle Object-Oriented www.ambysoft.com/essays/floot.html 11
Testing

FxCop Rules Bug Slayer http://msdn.microsoft.com/msdnmag 10
(MSDN Magazine, Sept. 2004)

Generalizing Specialists www.agilemodeling.com/essays 4

Get Your Customers Involved http://msdn.microsoft.com/msdnmag 22
in the Testing Process
(MSDN Magazine, Feb. 2005)

Group Size www.dmu.ac.uk/~jamesa/teaching/group_size.htm 4

INVEST in Good Stories http://xp123.com/xplor/xp0308/index.shtml 25

Laboratory for Teaching http://c2.com/doc/oopsla89/paper.html 20
Object-Oriented Thinking

Language Workbenches: www.martinfowler.com 21
The Killer-App for DSL

MDA: Object Management Group www.omg.org/mda 18

Microsoft Solution Framework www.microsoft.com/technet/itsolutions/msf 5

R
e

so
u

rce
s

802

Description URL Chapter(s)

Microsoft: C# Programmer http://msdn.microsoft.com 14
Reference

Microsoft: Patterns & Practices http://msdn.microsoft.com/practices 21, 28
Initiative

Migrating from Visual SourceSafe http://msdn.microsoft.com/teamsystem 8

MSDN Magazine Web site http://msdn.microsoft.com/msdnmag Introduction

MSF for XP www.msf4xp.org 5

Object Management Group www.omg.org 19

Open source Microsoft projects www.codeproject.com 1
and code examples

PACS: general information www.auntminnie.com Introduction

Patterns http://c2.com/cgi/wiki?search=patterns; www.dofactory.com 21

Program Customized http://msdn.microsoft.com/msdnmag 11
Testing Environments
(MSDN Magazine, Aug. 2004)

Rapid Abstract Prototyping www.foruse.com 20

R
e

so
u

rce
s

803

Continues

Table R-2: Continued

Description URL Chapter(s)

Retrospective Facilitators http://finance.groups.yahoo.com/group/retrospectives Retrospective

Roadmap to Agility www.agilealliance.org/resources 2

The Free Lunch Is Over www.gotw.ca/publications/concurrency-ddj.htm Appendix B

UML Specification www.uml.org 19

Visual Studio Team System http://msdn.microsoft.com/teamsystem, Nov. 2005 Appendix B
Licensing White Paper

VSTS Licensing White Paper www.microsoft.com/teamsystem 24
(Nov. 2005)

What is CMMI? www.sei.cmu.edu/cmmi/general/general.html 5

What is Software Design? www.bleading-edge.com 4, 32

R
e

so
u

rce
s

804

Index

805

A
Account setup, 724–725
Action fixtures, 470–476
Action tables, 498
Active Bugs queries, 670
Activity diagrams, 414
Administrator rights

ClickOnce, 620
InstallShield, 606
Software installation, 619
Windows Installer, 603

Agile Alliance, 36–37
Agile Model-Driven Development (AMDD),

361, 372–374
Agile Modeling, 357, 361

practices, 364–365
principles, 363–364
values, 363

Agile teams, 65
building and integrating by, 214
inappropriate work for, 69–70
nature of, 65–66
roles

associated, 75–76
customer, 70–72
developer, 72–73

self-organizing, 68
size, 68–69

Agile values
Agile Alliance, 36–37
tools and values, 33–35

Alexander, Christopher, 416
Ambler, Scott

Agile Modeling, 363, 366
AMDD, 372
Coding Guidelines, 132, 195
Refactoring Databases, 592
UML, 392

AMDD (Agile Model-Driven Development),
361, 372–374

Analysis Class diagrams, 399–401
Analysis Patterns, 419–420
Appleton, Brad, 144
Application Designer (AD) tool, 408, 628, 638

application of, 648
description, 26
diagrams

creating, 638–647
System Designer diagrams from,

649–651
settings and constraints, 648

Applications architect role, 75
Apply Modeling Standards practice, 366
Apply Patterns Gently practice, 366, 422
Architects

on Agile teams, 406
developers as, 72–73
PC licensing issues, 745–746

Architectural models, 368, 405–406
evolving, 408–410
skeletal, 406–407
system metaphor for, 411

Associated roles, 75–76

Atherton, James, 69
Atomic check-in, 134

B
Backups

shared folders for, 128
Team Foundation Server version control,

170–171
Bad smells in code, 422
Baselines, 160

checking in and labeling, 164–166
configuration management, 142–143

BDUF. See Big Design Up Front
Beck, Kent, 37, 64

on code duplication, 267
on code problems, 422
on costs, 541
on Domain Modeling, 396
on pattern languages, 416
on planning, 530
on software design, 348

Berczuk, Stephen P., 144
Big-bang deployment, 590
Big Design Up Front (BDUF) thinking, 63,

348, 369, 372
Big Visible Charts (BVCs), 673–674
Binder, Robert

on test cases, 270, 279
on Testing Object-Oriented Systems, 221

BisSubscribe tool, 246
Black-box testing, 219–220
Booch, Grady, 285, 377
Bottom up approach

tasks planning, 567
test-driven development, 268

Box, Don, 160
Branching in version control, 138–139, 146,

185–187
Brooks, Frederick, 34, 521
Brown-bag sessions, 568
Budgets

in plan control, 539
in project life cycle, 58
in story estimates, 520–521

Bugs
queries, 670–671
reports, 554–555, 594
tasks, 532
work items, 96, 548

Build Labs, 213
customer tests in, 482–486
licensing issues, 747–748

Build Validation Tests (BVTs), 227, 233–235,
465, 481

Builds
managing, 245

identification, names, 247–248
notifications, 246
reports, 248–249, 671

notes for, 158
daily builds, 227–228
integration builds, 225–227
local builds, 222–223
test cycles, 222–228

Build Drop folder, 215
Business analysts role, 71
Buy or build decisions for tools, 34
BVCs. See Big Visible Charts
BVTs. See Build Validation Tests

C
Capability Maturity Model Integration

(CMMI), 100–101, 103–104
Changesets, 134–135
Check in, 130

constraints, 193–194
policies

overriding, 201–203
static code analysis as, 198–200

in version control systems, 134
for work items and builds, 146
Items settings, 169

Check-out, 129
in version control systems, 129
only files, 192–193

Class Designer tool, 23
language workbenches, 428
for modeling, 370, 385–389

Class diagrams, 156
Class Designer for, 388
for structural models, 412
UML, 377–382
Visio for Enterprise Architects for, 389

Classes
in CRC, 397
dependencies, 251–253
names, 198, 400–401
testing, 222
for user interface design, 347

Index806

ClickOnce technology, 620
basic concepts, 621
publishing and deploying, 622–624
suitable applications for, 620–621

Client parts of VSTS, 17
Team Explorer window, 20–22
Visual Studio Professional, 18–19

Coaching
in Agile teams, 75
in storytest-driven development, 457

Cockburn, Alistair, 404
Code

branching, 138–139, 146, 185–187
coverage, 325–330
duplication, 140
patterns in, 420
standards, 132, 195, 200–201

Code Analyzer tool, 331
Code and Tests practice, 155–156
Code Coverage tool, 24–25, 326–330
Coding Guidelines, 132, 195
Cohn, Mike, 515, 519
Collaborations

CRC, 398–399
pair programming, 38
requirements gathering, 619

Column fixtures, 460–464
Communication

as Agile value
Agile development, 121
Extreme Programming, 39–40

Component-based development, 425
Component diagrams

in architectural models, 409
in structural models, 412

Components
distributed, 626
factories for, 429–430
Installation Designer view settings,

609–610
Reusable, 425, 429–430
in Windows Installer, 598–599, 601

Conflicts in version control, 182–183
Connecting to team projects, 93–94
Constantine, Larry, 39, 402
Constraints

Application Designer, 648
check-in, 193–194

Logical Datacenter Designer, 634–635
System Designer, 652

Consultant role, 75
Consumer endpoints, 641–642
Continuous integration, 134, 356
Continuous Integration practice, 132, 224
Contributors, 82
Cost estimation for customer stories, 519–521
Courage as Agile value

Agile development, 122
Extreme Programming, 41

CRC (Class, Responsibilities, and
Collaborations), 396

Create Several Models in Parallel practice,
412

Cross-functional teams, 67
CruiseControl.NET tool, 224
Crystal Clear, 404
Cunningham, Ward

and CRC, 396
and Extreme Programming, 37
and FIT, 445, 478
on pattern languages, 416

Customer stories, 404–405, 511–512
completing, 563
estimating, 516–521
in Extreme Programming, 59–61, 63
generating, 514–515
life cycle, 541–542
overview, 512
prioritizing, 521–525
for specifying requirements, 55–57
Stories practice, 513–514
tasks in, 288–289
for Test-First Programming, 287–289

Customer Acceptance tests, 439–440
automated, 487–491
in Build Lab, 482–486
FIT. See Framework for Integrated Test

(FIT)
fixtures in

action, 472–476
column, 461–464
row, 466–470

introducing to teams, 491–498
overview, 443
planning, 562
storytest-driven development, 454–458

Index 807

Customers
in Agile teams, 70–72
in Agile software development, 36
in Six Sigma, 691
identifying, 76
pulling value, 686

CVS version control systems, 133

D
Daily Builds, 224, 227–228

in customer testing, 457
in project management, 566
Team Foundation Builds, 239–240

Daily Deployment practice, 583–585
Data Definition Language (DDL) scripts, 390
Data deployment, 591–592
Data migration, 583
Databases

connection strings to, 643
Model diagrams, 390
with Windows Installer, 600–602

Death-march projects, 508
Deleting

build products, 243–244
team projects, 87

Deltas, 135
DeMarco, Tom, 41, 73
Dependencies

in building, 251–253
in class diagrams, 379
in prioritizing stories, 524–525

Depict Models Simply practice, 367
Deployment, 577–578

with ClickOnce technology, 622–624
data, 591–592
first iteration, 589
Incremental Deployment practice, 590–591
Installation programs. See Installation

programs
bottlenecks in, 585–586
Daily Deployment practice, 583–585
deployment teams in, 586–587
release process, 582–584
monitoring, 592–594
preparing for, 587–592
stubs and scaffolding in, 590–591

Deployment Designer (DD) tool, 628, 653
application of, 658
description, 26

diagrams, 653–657
properties, 655

Derby, Esther, 697
Design

Agile teams for, 66–68
for building and integrating, 214
for patterns, 420
for Six Sigma, 691–692
Patterns, 416–417, 420, 423

Developers
in Agile teams, 72–73
identifying, 76
licensing issues, 743–745

Development phases, 54–55
Development environment, 215
Diagrams

Analysis Class, 399–401
Application Designer, 638–647
class, 156

Class Designer for, 388
for structural models, 412
UML, 377–382
Visio for Enterprise Architects for, 389

class package, 409
Deployment Designer, 653–657
for models

dynamic, 413–414
free-form, 375–376, 407–410
structural, 412–413
tips, 391–392
UML, 377–385

System Designer, 649–652
Dim files

preparing, 614–617
working with, 618

Directories
adding to version control, 160–164
mapping, 154, 177–178, 180
in Windows Installer, 601

Discard Temporary Models practice, 366, 368
Distributed System Designers (DSDs), 628–629
Distributed systems, 625

architecture, 625–629
Deployment Designer, 653–658

DLL Hell, 160
Documents

in project management, 551–554
in Team Explorer window, 20
version control for, 156–158

Index808

Documents folder, 156–158, 552
Domain Modeling, 396–401
Domain-Specific Languages (DSLs), 66, 192

language workbenches for, 427–429
software factories, 429–430

Drop Site folder, 216, 243
DSDM (Dynamic Systems Development

Method), 522
DSDs (Distributed System Designers),

628–629
DSI (Dynamic Systems Initiative), 627
Dynamic Code Analyzer tool, 24, 331,

334–337
Dynamic models, 413–414
Dynamic Scan tool, 610

E
Eclipse support, 147
Economics of software development,

688–690
Elective process, 102
End user role, 71
Energized Work practice, 323–324
Enterprise architect role, 75
Estimating, 507–508

in project management, 567
stories, 515–516

absolute vs. relative values, 517–518
budgeting in, 521
relative estimate scales, 519
size, 516–517
task points for, 519–520

Evolving
architectural models, 408–410
legacy code, 422–424

Executive role in Agile teams, 75
Exporting process templates, 112–113
Extending VSTS, 30–31
Extracting data from Team Foundation

Server, 674–682
Extreme Programming (XP), 37, 57–58

Agile values in
communication, 39–40
courage, 41
feedback, 40–41
respect, 43
simplicity, 42–43

project life cycle in, 58
transition to, 709–711

F
Facade Pattern

evolving legacy code with, 422–424
information for, 417–419

Facilitators for retrospectives, 698
Failing tests

fixing, 296–299
writing, 272–273

Features
vs. tasks, 514,539, 567
Windows Installer, 598–601

Feedback
in Agile, 55
as Agile value

Agile development, 121
Extreme Programming, 40–41

Files
access to, 192–193
adding to version control, 160–164

First iteration, 589
FIT. See Framework for Integrated Test (FIT)
FitNesse IDE, 454
FLEXnet AdminStudio, 587
Folders

access to, 192–193
for repositories, 150–151
shared, 128–129

Forward-engineering, 647
Fowler, Martin

and Extreme Programming, 37
on language workbenches, 427–428
on patterns, 415, 419–420, 422
on refactoring, 280–281, 312, 424
Remove the Middle Man pattern, 318
UML Distilled, 377, 392

Framework for Integrated Test (FIT)
fixtures, 459

action, 470–476
column, 460–464
custom, 476–479
row, 465–470
standard, 459–460

installing and running, 447–453
overview, 445–447
with storytest-driven development, 454–458
with Team Foundation Build, 481

automated customer tests, 487–491
customer test introduction, 491–498
customer tests in Build Lab, 482–486

test organization, 453–454

Index 809

Free-form diagrams
for models, 375–376
for skeletal architectural models, 407–410

Friendly Assemblies, 285
Functional components, 16
Functional tests, 219–220, 447
FxCop program, 196, 200

G
Gamma, Erich, 37, 416
Generalizing specialists, 68
Generating business value, 683

lean thinking in, 683–688
linking to other process improvement

initiatives, 690–692
software development economics, 688–690

Generic tests
Adapter tool, 25
with MSTest, 486
wrapping FIT in, 482–485

Glass box testing, 220
Gold-plating code, 684–685
Groups

for modeling, 366–369
for projects, 82

Guckenheimer, Sam
on bugs, 532, 555
and Extreme Programming, 58
on release process, 458
on reports, 682
on value, 522

H
Hacking vs. Extreme Programming, 62–63
Helm, Richard, 416
Hierarchy of iterations, 547
Horizontal markets, 426–427
Hot-desk area, 756–758
Humility, 363

I
Ideal days, 525
Identification of builds, 247–248
IDEs (Integrated Development

Environments), 16
Visual Studio, 18
InstallShield, 605–613

Idioms, 420
Implementation models, 411–412

dynamic, 413–414
sequence diagrams in, 382
structural, 412–413

Importing
datacenter settings, 636–637
process templates, 114
source files, 166

Incremental builds, 245, 250–251
Incremental Deployment practice, 590–591
Incremental Design practice, 371–372
Individuals

in Agile software development, 36
with Six Sigma, 692
Individuality, 760

Informative Workspace practice, 673
Infrastructure architect role, 75
Installation Designer view, 604, 608–611
Installation programs, 597

ClickOnce technology, 620
basic concepts, 621
publishing and deploying, 622–624
suitable applications for, 620–621

developing, 613–614
Dim files for, 617–618
InstallShield, 604–613
Windows Installer, 597–598

basic concepts, 598–600
operation, 600–602
security for, 602–604

Installer role, 71
Installing third-party libraries, 158–159
InstallShield, 605–613
InstallShield Collaboration tool, 614–617
Instrumentation for performance, 331–332
Integration. See also Building and

integrating
Interaction designer role, 71
INVEST acronym, 515
Iterate to Another Artifact practice, 412
Iteration Burn rate, 520–521
Iteration Planning Boards, 561
Iteration zero

AMDD in, 373
on timelines, 705
version control in, 171

Index810

Iterations
in Agile Modeling, 365
in Extreme Programming

and increments, 58–59
productional-quality code from, 60–61
and release cycles, 59–60

fixed periods for, 514
planning life cycle, 556–558, 565–566
plans, 534–535
in project management, 568
in project structure, 546–547

J
Jacobson, Ivar, 57, 404
Jeffries, Ron

on customer stories, 56
and Extreme Programming, 37

Johnson, Ralph, 416
Jones, Allen, 420
Jones, Daniel, 683

K
Kerievsky, Joshua, 281, 420, 423
Kerth, Norman, 697

L
Labels

baselines, 164–166
favorites, 315
version control, 138–139, 146, 184–185

Language workbenches, 427–429
Languages, pattern, 416–417
Larsen, Diana, 697
Lean thinking, 36, 683–684

customs in, 686
perfection seeking in, 686–687
specifying value in, 684
value flow in, 685–686
value stream in, 684–685

Legacy code, evolving, 422–424
Libraries

installing, 158–159
performance analysis, 335–337

Licensing issues
architect PC, 745–746
BuildLab PC, 747–748
developer PCs, 743–745
multiprocessor PCs and multicore

processors, 749

pair programming, 745
Primary Domain Controller, 739–740
standby TFS, 748
Team Foundation Server, 740–742
team size, 749–750
tester PC, 746–747

Life cycles
customer stories, 541–542
planning. See Planning life cycle

Lists
for modeling in pairs, 371
of tests, 454

in test-driven development, 269
in Test-First Programming, 278

Load Testing tool, 25
Local builds, 185, 222–223, 232
Lock and Merge feature, 136–138, 146
Locking graphics files, 183
Lockwood, Lucy, 402
Logical Data Model (LDM) diagrams, 413
Logical Datacenter Designer (LDD) tool,

628–629
applications of, 637–638
description, 26
diagrams, 633
properties, settings, and constraints for,

634–637
working with, 629–632

M
Manifesto of the Agile Alliance, 529
Manual Testing tool, 25
Mapping directories, 154, 177–178, 180
MDA (Model-Driven Architecture), 372
Mentor role, 73
Merging in version control, 136–138, 167,

180–183
Metaphors for architectural models, 411
Metrics for process frameworks, 107–110
Microsoft Solutions Framework (MSF), 95

activities in, 97
MSF for Agile, 85–86, 95, 102–104
MSF for CMMI, 95, 100–101, 103–104
MSF for XP, 102–104
roles in, 97
tracks and governance checkpoints in,

98–100
work items in, 96–97

Mining for gold, 701, 703–704, 708–709

Index 811

Model-Driven Architecture (MDA), 372
Models, 357

Agile. See Agile Modeling (AG)
architectural, 368, 405–406

evolving, 408–410
skeletal, 406–407
system metaphor for, 411

Class Designer for, 385–389
Domain Modeling, 396–401
free-form diagrams for, 375–376
implementation, 411–412

dynamic, 413–414
sequence diagrams, 382
structural, 412–413

introduction, 361–362
UML diagrams, 377

class, 377–382
sequence, 382–385

use case, 403–404
user interface, 401–403
Visio for Enterprise Architects for,

389–390
Moore, Geoffrey, 14
MoSCoW rules, 522
Mothballing projects, 61
MSBuild engine, 229–232
MSF. See Microsoft Solutions Framework

(MSF)
MSF4XP process template, 551
MSTest, 486
Mugridge, Rick, 478
Multiple-checkout approach, 136–138, 167
Multiplicity indicators, 380
Myers, Glen, 279

N
Namespaces for stubs and scaffolding, 591
Naming Rules list, 199
Network diagrams, 409–410
Notes

for builds, 158
in class diagrams, 380
in Document folder, 157

Notifications, build, 246
Non-functional requirement, 220
Nouns

for class names, 401
in CRC, 397

Noyes, Brain, 622
NUnit tool, 24, 267

O
Object diagrams, 412
Object Management Group, 377
Object Modeling Technique (OMT), 377
Object Test Bench tool, 388
Objects in sequence diagrams, 383–384
Office space and layout, 753
OLAP database, 675, 677–678
OMT (Object Modeling Technique), 377
One-click installs, 619–624
One-time plans, 528
Open and Honest Communication principle,

366
Optimistic locking, 136–138
Ordered Test Adapter tool, 25
OSPACS team, 1

background, 1–2
organizational structure and personas,

2–5
road map for, 6–8

Overriding check-in policies, 201–203

P
Package dependencies, 251–253
Package diagrams, 413
Pair programming practice, 38
Pair programming, 37–39, 43

in Agile Modeling, 370–371
desks for, 755
for implementation models, 411–412
licensing issues, 745
in Shared Code practice, 132
in Test-Driven Development, 356

Parallel models, 365
Pascal, Blaise, 348
Patch Packages (.msp), 602
PATH environment variable, 449, 723
Pattern-happy condition, 421
Patterns, 415

Domain-Specific Languages for, 426–430
example, 417–419
implementation, 424–426
languages, 416–417
sources, 419–421
working with, 421–424

Patterns & Practices initiative, 593
Performance analysis, 331

build configuration for, 335
example profiling session, 332–334
instrumentation for, 332

Index812

sampling for, 332
system performance, 337

Permissions
build, 92
files and folders, 192–193
projects, 82
Team Foundation Build, 235–236
workspaces, 92–93

Phased development processes, 54–55
Plans and planning, 507–508, 527

controlling, 538–542
customer tests, 562
planning life cycle, 556
nature of, 527–530
rate of progress measures, 529–530
repeated execution vs. one-time, 528
time scales in, 530–538

Plug-ins
process templates, 111–112
Visual Studio source control selections,

168
Policies for source code

coding standards in, 195
overriding, 201–203
rules updating for, 201
static code analysis for, 196–200

Poppendieck, Mary, 528–529
Practices in Agile Modeling, 364–365
Preproduction Environment, 585
Principles in Agile Modeling, 363–364
Prioritizing, 507–508

stories, 521–522, 567
business risk in, 522–523
dependencies in, 524–525
technical risk in, 523
value in, 522

Problem analysis, 687–688
Process frameworks, 107

description, 23
metrics for, 107–110
process improvement, 110–116

Process Guidance, 23, 84–85
Process technician role

build management, 245
for developers, 72

Process templates, 86
changing, 115
importing and exporting, 112–114

Product manager role, 71

Production environment, 592–594
Programmer role for developers, 72
Programmer tests, 352
Programming episodes, 60, 222, 560
Project Administrators, 82, 88
Project managers

responsibilities, 77
roles, 75

Project Portal, 27–28, 546, 551–552
for projects, 83–84, 90–91
for version control, 157
templates for, 112

Projects and project management, 545–546
documents in, 551–554
planning life cycle. See Planning life cycle
reports in, 554–555
structure, 82, 546–547

Prove It with Code practice, 373
Provider endpoints, 641–643
Proxy endpoints, 650–651
Publishing

with ClickOnce technology, 622–624
in remote deployment, 603

Purchaser role, 71
Putman, David, 690

Q
Quality

from Extreme Programming, 60–61
for models, 364
in plan control, 539, 541

Quality Indicators queries, 671
Quality of Service (QoS) tests, 220–221
Quarterly Cycle practice, 538
Queries

adding, 109–110
in project management, 547–551
for projects, 83
standard, 670–672

Queries folder, 546
Query Builder, 679

R
Rational Unified Process (RUP), 54, 377
RDL (Report Definition Language), 675, 681
Readers, 82, 88
Real Customer Involvement practice, 43, 456
Reeves, Jack, 66, 347, 686

Index 813

Refactoring, 127, 281, 303, 312, 318, 420, 422,
424

collection types in, 319–322
Remove the Middle Man pattern, 318–319
work breaks in, 322–323
opportunities, 316–317
for patterns, 420
tasks for, 561
in Test-First Programming, 280–281,

299–300
Refactoring Databases, 592
Refactoring to Patterns, 420
Regression testing, 219
Reinertsen, Donald, 66, 528
Relationships in class diagrams, 379, 382
Release manager role, 72
Releases and release process, 582–584

customer testing in, 457–458
to deployment teams, 586–587
in Extreme Programming, 59–60
notes for, 157
plans, 536–537, 566–567
in value stream, 685
in version control systems, 141

Remote access
Team Foundation Server, 489–490
Team Foundation Version Control, 146

Remote deployment, 603–604
Repeated execution plans, 528
Report Builder, 678
Report Definition Language (RDL), 675, 681
Report Designer, 678–681
Reports, 83

builds, 248–249
deployment, 657
in project management, 554–555
in Team Explorer window, 20
templates for, 112

Report Site, 16, 678
Repositories

folders for, 150–151
for sharing information, 129–131
in version control system. See Version

control
Requirement models, 368, 395–396

customer stories, 404–405
Domain Modeling and CRC cards,

396–401
use case models, 403–404
user interface models, 401–403

Requirements gathering, 614–617
Respect as Agile value

Agile development, 122
Extreme Programming, 43

Responding to change, 36
Responsibilities in CRC, 397–398
Retrospectives, 697

overview, 697–698
planning, 699
preparation for, 698–699

Reusable application blocks, patterns in, 421
Reuse-Release Equivalence Principle, 425
Reverse-engineering AD diagrams, 646–647
Roles

associated, 75–76
customer, 70–72
developer, 72–73

Rolling back versions
deltas in, 135
shared folders for, 128
in version control systems, 134–135,

183–184
Rolling wave planning, 528
Root Cause Analysis practice, 687–688
Round-trip facilities, 647
Row fixtures, 465–470
RUP (Rational Unified Process), 54, 377

S
Sampling for performance, 331–332
Sanity tests, 582
Scaffolding in deployment, 590–591
Scenarios

in MSF 4.0, 96
in sequence diagrams, 382
in use case models, 403

Scheduling daily builds, 239–240
SCM (Software Configuration Management),

142–144
Scope in plan control, 541
SDLC (software development life cycle), 58–59
SDM (System Definition Model), 627–628
Securities page, 169
Security

groups
membership, 88–89
setting up, 724–725

repository, 143
team project settings, 91–94

Index814

version control, 133, 169–170
Windows Installer, 602–604

Self-organizing teams, 68
Sequence diagrams

for dynamic models, 413
UML, 382–385

Server parts of VSTS, 27
Project Portal, 27–29
Team Foundation Build, 29
Team Foundation Server, 27

Service-Oriented Architecture (SOA),
626–627

Setup, 715–716
machine and user identification, 726–727
network, 720–721
single evaluation servers, 717–719
software installation, 722–723
system settings, 723
user accounts and security groups,

724–725
Shared Code practice, 131–132, 356
SharePoint Services, 742–743
Sharing information, 127–128

repositories for, 129–131
Shared Code practice, 131–132
shared folders for, 128–129

Sharp Tools, 34
Shelveset (TFVC), 146, 187–190
Simple Design, 346
Simplicity

as Agile value
Agile development, 122
Extreme Programming, 42–43

Single-checkout approach, 136
Single Code Base practice, 140–141, 356
Sit Together practice, 73–74
Six Sigma, 691–692
Size

Agile teams, 68–69
stories, 516–517

Skeletal architectural models, 406–407
Slack practice, 568, 559
Smoke tests, 219, 221
SMS (Systems Management Server), 246,

587, 619
SOA (Service-Oriented Architecture),

626–627
Software

automated testing, 217–221
development economics of, 688–690

small team requirements, 733–739
software factories for, 429–430
values and traditions, 35

Software Configuration Management (SCM),
142–144

Software development area, 754–755
Software development life cycle (SDLC),

58–59
Software factories, 429–430
Software Project Environment (SPE), 14-15
Source code.

Class Designer for, 385–389
importing, 166
policies

coding standards in, 195, 200–201
overriding, 201–203
rules updating for, 201
static code analysis for, 196–200

protecting, 191–194
repositories for, 129–131
in Team Explorer window, 20

SourceSafe tool, 144
Spike folder, 149–151
Spike tasks, 531
SQL Server Analysis Services (SSAS), 675
SQL Server Business Intelligence

Development Studio, 678
SQL Server Integration Services (SSIS), 675
SQL Server Reporting Services (SSRS), 554,

675
Standard queries and reports, 670–672
State diagrams, 413–414
Static Code Analysis tool, 23

rules updating for, 201
for source code policies, 196–200

STDD (storytest-driven development),
454–455

costs and benefits, 455
testers, 457

Stereotypes in class diagrams, 380
Storage space, 755
Stories. See Customer stories
Stories practice, 513–514
Story points, 525
Storytest-driven development (STDD),

454–455
costs and benefits, 455
testers, 457

Strict locking, 136, 183
Structural models, 412–413

Index 815

Structural tests, 220
Stubs in deployment, 590–591
Subversion version control systems, 133
Support role

in Agile teams, 75
for customers, 71

Support sites, 594
Support tasks, 531
Synchronizing

Daily Builds, 227, 239
deployment, 591–592
libraries, 159
repositories, 129, 140, 151
shared data, 27

System Definition Model (SDM), 627–628
System Designer (SD) tool, 628, 649

applications of, 652–653
description, 26
diagrams

creating, 649–652
Deployment Designer diagrams from,

654–655
settings and constraints, 652

System metaphor, 411
System performance, 337
System settings, 723
System tests, 582
Systems Management Server (SMS), 246,

587, 619

T
TableFixture class, 477, 479
Tables

for customer tests
information, 493–495
sequences of, 496–497

for modeling in pairs, 371
Task boards, 557–558, 560
Task cards, 532–535
Task points, 519–520
Task work item, 96, 548
Tasks

vs. features, 514, 567
plans, 531–533
in stories, 288–289

TDD. See Test-driven development (TDD)
Team Builds, 29–30. See also Team

Foundation Build (TFB)

Team Continuity practice, 77–78
Team Foundation Build (TFB), 16, 29,

229–230
build management, 245–249
Build Validation Test for, 233–235
Daily Builds, 239–240
deleting build products, 243–244
FIT with, 481

automated customer tests, 487–491
customer test introduction, 491–498
customer tests in Build Lab, 482–486

integration builds, 240–243
MSBuild engine role in, 231–232
operation of, 230–231
permissions for, 235–236
scaling up team integration builds,

249–253
setting up, 230
types, 237–238

Team Foundation Server (TFS), 16, 27, 81,
149

backup and restore, 170–171
Client Tier, 16
extracting data from, 674–682
folders for, 149–151
importing source files, 166
licensing issues, 740–742
remote access to, 489–490
reports from. See Technical reports
repositories in, 174
security settings, 92–93, 169–170
source control options, 168–169
structure for, 149–160
Team Project options, 167–168
Visual Studio options, 168–169
for workgroups, 720–721, 740–741, 751

Team Foundation Version Control (TFVC),
127, 173, 581

branching in, 185–187
in coding, 173–176
features, 145–147
merging changes in, 180–183
rolling back to previous versions,

183–184
shelves in, 187–190
source code policies in, 195–203
source code protection in, 191–194
workspaces, 177–180

Index816

Team Projects, 21, 81–82
artifacts from, 82–85
deleting, 87
documents, 152, 156–158
membership, 88–89
MSF for, 85–86
policy settings migration, 201
portal and report site access, 90–91
security settings, 91–94
service access, 89–90
version control options, 167–168

Teams. See Agile teams
Technical risk in prioritizing stories, 523
Technical writer role, 71
Templates

changing, 115
importing and exporting, 112–114
for processes, 86, 111–116
for Setup Project, 604
projects, 421

Ten Minute Build practice, 218, 224–225, 227,
356

Test adapters, 284
Test Case Management tool, 25
Test cases, 270
Test cycles, 222

daily builds, 227–228
integration builds, 225–227
local builds, 222–223

Test-driven development (TDD), 53, 60, 63,
261–262, 265

class diagrams for, 378
code coverage, 325–330
cycles in, 271–277
list of tests in, 269
nature of, 265
operating system development team

story, 262–263
performance. See Performance analysis
refactoring. See Refactoring
rhythm of, 265–266
in Shared Code practice, 132
Test-First Programming. See Test-First

Programming (TFP)
test harness for, 269–271
top down vs. bottom up approach, 268
in version control, 174

Test-First Programming (TFP)
applying, 277
code coverage, 330
conclusion, 301
cycles in, 271–277
finding tests for, 278–279
implementing, 294–300
list of tests in, 278
for modeling in pairs, 371
for performance, 336
refactoring in, 280–281, 299–300
stories for, 287–289
test lists for, 289–293
with user interface. See User interface
Visual Studio Projects for, 283–287

Test-First Programming (TFP) practice,
266–267

Test fixtures, 445
Test harnesses

in test-driven development, 269–271
in Test-First Programming, 284–285
vs. test runners, 483

Test lists, 278, 289–293, 454
Test Load Agent, 749
Test Manager window

for Build Validation Tests, 234
Visual Studio Professional, 19

Test managers
OSPACS team, 3

Test runners, 483
Testable attribute, 515
Testers

for developers, 72
PC licensing issues, 746–747
in storytest-driven development, 457

Testing Object-Oriented Systems, 221
Testing policy, 194
Tests

customer. See Customer tests
FIT. See Framework for Integrated Test (FIT)
for integration, 216–217
for interface design, 347
TDD. See Test-driven development (TDD)
TFP. See Test-First Programming (TFP)
in value stream, 685
in Waterfall process, 54
Web services, 644–646

Index 817

TFB. See Team Foundation Build (TFB)
TFP. See Test-First Programming (TFP)
TFS. See Team Foundation Server (TFS)
TFS Data Warehouse, 675–678
TFS Installation Guide, 16
TFS Trial Edition setup, 719
TFVC. See Team Foundation Version Control

(TFVC)
Thin user interface layers, 344–346
Thin vertical slices, 556
Third-party libraries, 158–159
Time scales

in planning, 530–538
in project management, 568

Timelines, 700–701
creating, 701–703
discoveries from, 706–707
mining for gold process, 703–704
for project structure, 705–706
results from, 708–709

Tools
buy or build decisions, 34
OSPACS team impressions, 45–46
VSTS, 22

all editions, 22–23
Visual Studio Architect Edition, 26–27
Visual Studio Developer Edition,

22–24
Visual Studio Tester Edition, 24–25

Top down approach, 268
Toyota Production System, 683, 687
Tracker role, 73
Traditional projects vs. agile development,

53–57
Trainer role

in Agile teams, 75
for customers, 71

Translation of TFS data, 675
Twain, Mark, 289

U
UML Distilled, 377, 392
UML Modeling tool, 23
Unified Modeling Language (UML)

diagrams, 358–359, 377
class, 377–382
Class Designer for, 388
sequence, 382–385

Unit Test tool, 24–25

Unit tests, 220
performance session for, 333–334
setting up, 285–287
support for, 283–285

Update Only When It Hurts practice, 366
Usage statistics, support for, 594
Use cases, 57, 382, 403–404
User interface, 339

action fixtures, 470–476
Big Design Up Front, 348
defining, 340
modeling, 401–403
sample design, 346–348
task lists for, 341
thin layers, 344–346
Windows Forms for, 342–344

User stories. See Customer stories

V
Validation

Build Validation Tests, 233–235
Deployment Designer diagrams, 656–657

Value, 665–666
in Agile Modeling, 363
generating. See Generating business value
in prioritizing stories, 522
technical reports. See Technical reports

Values. See Agile values
Velocity

as rate of progress measure, 529–530
in story cost estimation, 520

Version control, 123–124, 133
atomic check-in, 134
conclusion, 147–148
integration in, 134
labeling and branching, 138–139, 146
locking and merging, 136–138
rolling back versions, 134–135
security, 133
Single Code Base practice, 140–141
Software Configuration Management,

142–144
support for, 144–147
for Team Documents, 156–158
templates for, 112
TFS. See Team Foundation Server (TFS)
TFVC. See Team Foundation Version

Control (TFVC)
Virtual PC environment, 217, 599, 717–718

Index818

Visibility symbols, 380
Visio for Enterprise Architects tool, 23,

389–390
Vision statement, 157–158
Visual Studio

solutions, projects, and directories in,
151–154

source control options, 168–169
version control system integration in,

144–145
Visual Studio Industry Partner (VSIP)

program, 30
Visual Studio Professional, 18–19
Visual Studio SDK, 30–31
Visual Studio Team Edition for Architects,

17, 26–27, 410
Visual Studio Team Edition for Database

Professionals, 17
Visual Studio Team Edition for Developers,

17, 22–24
Visual Studio Team Edition for Testers, 17
Visual Studio Tester Edition, 24–25
Vlissides, John, 416
VSIP (Visual Studio Industry Partner)

program, 30

W
Wake, William, 281, 515
Waterfall projects

phases in, 54–55
value generated by, 689–690

Web services, 644–646
Web Services Description Language (WSDL),

627
Web Test tool, 25
Weekly Cycle practice, 536
White box testing, 220
Whiteboards

for customer tests, 492–493
in office space, 755–756

Whole Team practice, 67–68
Williams, Laurie, 39
Window Scheduled Task Wizard, 239
Windows

Code Coverage Results, 326–328
Error List, 196–198, 657
Pending Changes, 181-182
Performance Explorer, 333–334
Query Editor, 676–677

Query Results, 549
Solution Explorer, 18
Source Control Explorer, 184
Team Build Report, 242
Team Explorer window, 20–22, 86
Test Results, 241, 295–296
Test View, 19, 298–300

Windows Forms applications
creating, 607
for user interface, 342–344, 475

Windows Installer, 597–598
basic concepts, 598–600
operation, 600–602
security for, 602–604

Windows SharePoint Services (WSS), 112,
156–157

WinFITRunner, 454
Wirfs-Brock, Rebecca, 396–397
Wizards

Import IIS Settings, 636–637
Performance, 333
Release, 611–613
Report Server Project, 678
Team Build Type, 237
Team Project, 85–86, 129
Virtual Machine, 718

Womack, James, 683
Work items

adding, 108–109
Check-in Policy constraint, 194
for projects, 83, 547–551
templates for, 112

Work products, 83
Workgroups, TFS, 720–721, 740–741, 751
Workspace

permissions, 92–93
for TFVC, 177–180

WSDL (Web Services Description Language),
627

WSS (Windows SharePoint Services), 112,
156–157

X–Z
XP. See Extreme Programming (XP)

Yesterday's Weather rule, 530

Zones in Logical Datacenter Designer,
631–633

Index 819

	Visual studio team system : better software development for agile teams
	Contents
	Preface
	Acknowledgments
	About the Authors
	Introduction: Broken Process
	Welcome to the OSPACS Team
	Team Background
	Current Organizational Structure and Personas
	The Team’s Road Map for Fixing Its Process

	Section 1: Apply Sharp Tools and Values
	Story from the Trenches
	1 Introduction to Visual Studio Team System
	The Purpose and Structure of VSTS
	Client Parts of VSTS
	Server Parts of VSTS
	Extending VSTS

	2 Agile Values
	Tools and Values
	The Agile Alliance
	Extreme Programming (XP)

	Review of Section 1: Sharp Tools and Values
	The Team’s Impressions
	Agile Values

	Section 2: Introduce Agile Development
	Story from the Trenches
	3 Overview of Agile Development
	What Is Different about an Agile Project?
	Introduction to Extreme Programming
	Isn’t XP Just Hacking?

	4 Forming an Agile Team
	The Nature of Agile Teams
	Agile Team Structure
	Reorganizing the OSPACS Team

	5 Team Foundation Process Frameworks
	Team Projects and Process Frameworks
	Microsoft Solutions Framework (MSF) 4.0
	Frameworks for Specific Processes

	6 Improving Your Process Framework
	Providing a New Metric for an Existing Process Framework
	Improving Your Process

	Review of Section 2: Introduce Agile Development
	The Team’s Impressions
	Agile Values

	Section 3: Use Version Control
	Story from the Trenches
	7 Managing Change
	Sharing Information among Your Team
	Using a Version Control System
	VSTS Support for Version Control Tools

	8 Setting Up TFS Version Control
	Structuring Your Team Project
	Establishing the Initial Baseline for Your Project
	Other Set-Up Tasks

	9 Using TFVC in Your Project
	Using TFVC When Coding
	Common Version Control Tasks

	10 Policing Your Project with TFVC
	Protecting Your Source Code
	Establishing Policies for Source Code

	Review of Section 3: Use Version Control
	The Team’s Impressions
	Agile Values

	Section 4: Build and Integrate Often
	Story from the Trenches
	11 Building and Integrating Software
	Software Construction
	Automated Software Testing
	Build and Test Cycles

	12 Working with Team Foundation Build
	Welcome to Team Foundation Build
	Build Management
	Scaling Up Team Integration Builds

	Review of Section 4: Build and Integrate Often
	The Team’s Impressions
	Agile Values

	Section 5: Practice Test-Driven Development
	Story from the Trenches
	13 Introduction to TDD
	The Nature of Test-Driven Development
	Simple Test-First Programming Exercises
	Getting Started with Test-First Programming

	14 Developing Your First Tests
	Creating Visual Studio Projects for TFP
	The Story behind the Tests
	Create a Test List
	Implementing the Tests

	15 Learning to Refactor
	Doing Small Refactorings
	Refactor As You Go
	Doing a Big Refactoring

	16 Code Coverage and Performance
	Code Coverage
	Performance Analysis

	17 Integrating TFP Code with a User Interface
	Implementing the User Interface
	Simple Design

	Review of Section 5: Practice Test-Driven Development
	The Team’s Impressions
	Agile Values
	Reinforcement of Agile Practices

	Section 6: Explore by Modeling
	Story from the Trenches
	18 Modeling with Agility
	Introduction to Modeling
	Values, Principles, and Practices of Agile Modeling
	Agile Modeling in Use

	19 Creating Models
	Free-form Diagrams
	UML Diagrams
	Using Modeling Tools

	20 Using Models in an Agile Project
	Requirement Models
	Architectural Models
	Implementation Models

	21 Modeling Solutions with Patterns
	What Is a Pattern?
	Using Patterns in an Agile Project
	Implementation of Patterns and Models
	Emergence of Domain-Specific Languages

	Review of Section 6: Explore by Modeling
	The Team’s Impressions
	Agile Values

	Section 7: Implement Customer Testing
	Story from the Trenches
	22 Involving Customers in Testing
	Agile Customer Testing
	FIT: Framework for Integrated Test
	Storytest-Driven Development

	23 Creating FIT Fixtures
	Standard FIT Fixtures
	Custom FIT Fixtures

	24 Running FIT with Team Foundation Build
	Performing Customer Tests in Your Build Lab
	Automated Customer Testing
	Introducing Your Team to Customer Testing

	Review of Section 7: Implement Customer Testing
	The Team’s Impressions
	Agile Values

	Section 8: Estimate, Prioritize, and Plan
	Story from the Trenches
	25 Estimating and Prioritizing Stories
	Working with Customer Stories
	Estimating
	Prioritizing

	26 Agile Planning
	The Nature of Plans
	Planning at Every Time Scale
	Controlling Plans

	27 Managing Agile Projects
	Using Visual Studio Team System for Project Management
	Example Agile Planning Life Cycle
	Top Ten Tips for Managing Agile Projects

	Review of Section 8: Estimate, Prioritize, and Plan
	The Team’s Impressions
	Agile Values

	Section 9: Practice for Deployment
	Story from the Trenches
	28 Moving into Production
	Managing Deployment
	Preparing for Deployment
	Monitoring the Production Environment

	29 Developing Installation Programs
	Introduction to Windows Installer
	Creating an Installation Project with InstallShield
	Developing Installation Programs on an Agile Team
	ClickOnce Technology

	30 Deployment of Distributed Systems
	Distributed System Architecture
	Logical Datacenter Designer
	Application Designer
	System Designer
	Deployment Designer

	Review of Section 9: Practice for Deployment
	The Team’s Impressions
	Agile Values

	Section 10: Provide and Reveal Value
	Story from the Trenches
	31 Producing Technical Reports
	Revealing Valuable Information
	Extracting Data from Team Foundation Server

	32 Generating Business Value
	Lean Thinking
	Changing the Economics of Software Development
	Linking Agile to Other Process Improvement Initiatives

	Review of Section 10: Provide and Reveal Value
	The Team’s Impressions
	Agile Values

	Retrospective: Fixing the Process
	About Retrospectives
	Preparation
	Creating a Plan

	The OSPACS Team’s Retrospective
	Developing a Timeline
	Other Exercises

	Analysis of the Project Timeline
	Structure of the Project
	Things They Discovered
	Has the OSPACS Team Fixed Its Process?

	Is the OSPACS Team Extreme?
	How the OSPACS Team Became Agile
	Personal Agility

	Appendixes
	A: Setting Up VSTS for the Exercises
	Set Up a Single Evaluation Server
	Set Up TFS and Team Suite on a Network
	Actions for All Set-Up Options
	Identification of Machines and Users Named in the Exercises

	B: Software Project Environment for a Small Team
	Hardware Requirements
	Software Requirements
	Licensing Issues for a Five-Person Team
	Increasing Your Team beyond Five People

	C: Agile Workspace
	Basic Office Layout
	Supplies and Equipment
	Imposing the Team’s Individuality

	List of Exercises
	List of Extreme Programming Practices
	Glossary
	B
	C
	D
	E
	F
	G
	I
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

	Bibliography
	Resources
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

