
ptg6843614

ptg6843614

Praise for Essential Skills for the Agile Developer

“I tell teams that the lean and agile practices should be treated like a
buffet: Don’t try and take everything, or it will make you ill—try the
things that make sense for your project. In this book the authors have
succinctly described the ‘why’ and the ‘how’ of some of the most effec-
tive practices, enabling all software engineers to write quality code for
short iterations in an efficient manner.”

—Kay Johnson
Software Development Effectiveness Consultant, IBM

“Successful agile development requires much more than simply mas-
tering a computer language. It requires a deeper understanding of
agile development methodologies and best practices. Essential Skills for
the Agile Developer provides the perfect foundation for not only learn-
ing but truly understanding the methods and motivations behind agile
development.”

—R.L. Bogetti
www.RLBogetti.com,
Lead System Designer, Baxter Healthcare

“Essential Skills for the Agile Developer is an excellent resource filled with
practical coding examples that demonstrate key agile practices.”

—Dave Hendricksen
Software Architect, Thomson Reuters

www.RLBogetti.com

ptg6843614

Essential Skills for the
Agile Developer

ptg6843614

This page intentionally left blank

ptg6843614

Essential Skills for the
Agile Developer

A Guide to Better Programming and Design

Alan Shalloway
Scott Bain
Ken Pugh
Amir Kolsky

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg6843614

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Essential skills for the agile developer : a guide to better programming and design / Alan
Shalloway . . . [et al.].
 p. cm.
 Includes index.

ISBN 978-0-321-54373-8 (pbk. : alk. paper)
1. Agile software development. I. Shalloway, Alan.

 QA76.76.D47E74 2011
 005.1—dc23

2011023686

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-54373-8
ISBN-10: 0-321-54373-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, August 2011

ptg6843614

To my loving and lifetime partner, Leigh, my muse, who
keeps me more humble than I would otherwise be. And
while giving me a reason not to be writing books, keeps

the pressure up to get the job done.

—Alan Shalloway

To June Carol Bain. I wish she had lived to see her son
become the teacher she always told him he should be.

Hey, mom, you nailed it.

—Scott Bain

To Ron, Shelly, and Maria: those who matter.

—Amir Kolsky

To my brother Don, who gave me a reason to become an
engineer.

—Ken Pugh

ptg6843614

This page intentionally left blank

ptg6843614

ix

Series Foreword ___xvii

Preface __ xxi

Acknowledgments __xxiii

About the Authors __ xxv

Part I
The Core Trim Tabs __1

Chapter 1
Programming by Intention _________________________________ 3

Programming by Intention: A Demonstration _____________________3

Advantages ___6

Method Cohesion ___6

Readability and Expressiveness _________________________________7

Debugging ___ 10

Refactoring and Enhancing ___________________________________ 11

Unit Testing __ 13

Easier to Modify/Extend _____________________________________ 15

Seeing Patterns in Your Code _________________________________ 16

Movable Methods ___ 17

Summary ___ 18

Contents

ptg6843614

x Contents

Chapter 2
Separate Use from Construction ________________________ 21

An Important Question to Ask ____________________________________ 21

Perspectives ___ 22

Perspective of Creation ______________________________________ 23

Perspective of Use ___ 24

What You Hide You Can Change ______________________________ 25

Realistic Approach __ 27

Other Practical Considerations ________________________________ 30

Timing Your Decisions __ 30

Overloading and C++ __ 31

Validating This for Yourself __ 32

Summary ___ 33

Chapter 3
Define Tests Up Front ____________________________________ 35

A Trim Tab: Testing and Testability _________________________________ 35

What Is Testing? ___ 35

Testability and Code Quality ______________________________________ 36

Case Study: Testability __ 37

Setting Ourselves Up for Change ______________________________ 38

Programmer as Frog ___ 39

A Reflection on Up-Front Testing __________________________________ 39

Better Design ___ 42

Improving Clarity of Scope: Avoiding Excess Work ______________ 42

Reducing Complexity __ 42

Other Advantages ___ 43

No Excuses ___ 43

Summary ___ 44

Chapter 4
Shalloway’s Law and Shalloway’s Principle ___________ 45

Types of Redundancy ___ 46

Copy and Paste ___ 46

ptg6843614

Contents xi

Magic Numbers ___ 46

Other Types __ 46

Redefining Redundancy __ 46

Other Types of Redundancy _______________________________________ 47

The Role of Design Patterns in Reducing Redundancy ________________ 48

Few Developers Spend a Lot of Time Fixing Bugs ____________________ 48

Redundancy and Other Code Qualities _____________________________ 50

Summary ___ 52

Chapter 5
Encapsulate That! ___ 53

Unencapsulated Code: The Sabotage of the Global Variable ___________ 53

Encapsulation of Member Identity _________________________________ 54

Self-Encapsulating Members ______________________________________ 56

Preventing Changes __ 58

The Difficulty of Encapsulating Reference Objects ____________________ 59

Breaking Encapsulation with Get() _________________________________ 62

Encapsulation of Object Type ______________________________________ 64

Encapsulation of Design __ 67

Encapsulation on All Levels _______________________________________ 69

Practical Advice: Encapsulate Your Impediments _____________________ 69

Summary ___ 72

Chapter 6
Interface-Oriented Design ________________________________75

Design to Interfaces __ 75

Definition of Interface __ 75

Interface Contracts ___ 76

Separating Perspectives ___ 77

Mock Implementations of Interfaces _______________________________ 79

Keep Interfaces Simple ___ 79

Avoids Premature Hierarchies _____________________________________ 80

Interfaces and Abstract Classes ____________________________________ 81

Dependency Inversion Principle ___________________________________ 82

ptg6843614

xii Contents

Polymorphism in General ___ 83

Not for Every Class___ 84

Summary ___ 84

Chapter 7
Acceptance Test–Driven Development (ATDD) _______ 85

Two Flows for Development_______________________________________ 85

Acceptance Tests ___ 88

An Example Test ___ 88

Implementing the Acceptance Tests ________________________________ 90

User Interface Test Script _____________________________________ 90

User Interface for Testing ____________________________________ 91

XUnit Testing ___ 93

Acceptance Test Framework __________________________________ 93

Connection __ 94

An Exercise ___ 95

What to Do If the Customer Won’t Tell You _________________________ 95

Summary ___ 96

Part II
General Attitudes __97

Chapter 8
Avoid Over- and Under-Design __________________________ 99

A Mantra for Development _______________________________________ 99

The Pathologies of Code Qualities _________________________________ 100

Avoid Over- and Under-Design ___________________________________ 101

Minimize Complexity and Rework ________________________________ 102

Never Make Your Code Worse/Only Degrade Your Code Intentionally __ 102

Keep Your Code Easy to Change, Robust, and Safe to Change ________ 103

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy

System___ 103

Summary __ 107

ptg6843614

Contents xiii

Chapter 9
Continuous Integration __________________________________ 109

Branching the Source Code ______________________________________ 109

Multiple Versions: Specialization Branching ___________________ 110

Working in Isolation: Development Branching _________________ 112

Problem, Solution, Problem _________________________________ 114

The Merge-Back __ 115

Test-Driven Development and Merge Cost _________________________ 117

Continuous Integration __ 119

Continuous Integration Servers ___________________________________ 121

Summary __ 122

Part III
Design Issues ___ 125

Chapter 10
Commonality and Variability Analysis _________________ 127

Using Nouns and Verbs as a Guide: Warning, Danger Ahead! _________ 127

What Is the Real Problem? _______________________________________ 130

What We Need to Know ___ 131

Handling Variation ___ 132

Commonality and Variability Analysis _____________________________ 132

Commonality Analysis ______________________________________ 132

Variability Analysis ___ 133

Object-Oriented Design Captures All Three Perspectives ________ 133

A New Paradigm for Finding Objects ______________________________ 134

Tips for Finding Your Concepts and Variations with an Example _ 135

The Analysis Matrix: A Case Study ________________________________ 136

Selecting the Stories to Analyze ______________________________ 141

Summary __ 145

ptg6843614

xiv Contents

Chapter 11
Refactor to the Open-Closed ___________________________ 147

The Open-Closed Principle _______________________________________ 147

Open-Closed to Other Things ________________________________ 151

Open-Closed Is a “Principle” _________________________________ 152

Refactoring __ 154

Why Refactor? __ 155

Debt versus Investment _____________________________________ 155

Refactoring and Legacy Systems _____________________________ 156

Refactoring to the Open-Closed ______________________________ 157

Just-in-Time Design __ 159

Summary __ 161

Chapter 12
Needs versus Capabilities Interfaces _________________ 163

The Law of Demeter __ 163

Coupling, Damned Coupling, and Dependencies ____________________ 166

Coupling and Testability ____________________________________ 166

Needs versus Capabilities ___________________________________ 167

The Ideal Separation: Needs Interfaces and Capabilities Interfaces _____ 168

Back to the Law of Demeter ______________________________________ 169

Summary __ 171

Chapter 13
When and How to Use Inheritance ____________________ 173

The Gang of Four ___ 173

Initial Vectors, Eventual Results __________________________________ 176

Favoring Delegation ___ 178

The Use of Inheritance versus Delegation __________________________ 180

Uses of Inheritance ___ 181

Scalability ___ 183

Applying the Lessons from the Gang of Four to Agile Development ___ 184

Testing Issues ___ 185

There’s More ___ 187

ptg6843614

Contents xv

Part IV
Appendixes ___ 189

Appendix A
Overview of the Unified Modeling Language (UML) ___ 191

What Is the UML? __ 191

Why Use the UML? __ 192

The Class Diagram __ 192

UML Notation for Access ____________________________________ 194

Class Diagrams Also Show Relationships ______________________ 194

Showing the “has-a” Relationship ____________________________ 195

Composition and Uses ______________________________________ 195

Composition versus Aggregation _____________________________ 196

Notes in the UML __ 196

Indicating the Number of Things Another Object Has ___________ 197

Dashes Show Dependence __________________________________ 198

Sequence Diagram __ 198

Object:Class Notation _______________________________________ 198

Summary __ 200

Appendix B
Code Qualities __ 201

Christmas-Tree Lights: An Analogy _______________________________ 201

Cohesion __ 204

Description __ 204

Principles ___ 204

Practices __ 205

Pathologies __ 205

Indications in Testing _______________________________________ 205

Coupling __ 205

Description __ 205

Principles ___ 206

Practices __ 207

Pathologies __ 207

Indications in Testing _______________________________________ 207

ptg6843614

xvi Contents

Redundancy ___ 207

Description __ 207

Principles ___ 208

Practices __ 208

Pathologies __ 208

Indications in Testing _______________________________________ 208

Encapsulation __ 208

Description __ 208

Principles ___ 209

Practices __ 209

Pathologies __ 210

Indications in Testing _______________________________________ 210

Appendix C
Encapsulating Primitives _________________________________211

Encapsulating Primitives in Abstract Data Types ____________________ 211

Principles __ 212

Narrow the Contract __ 213

Expanding Abstract Data Types ___________________________________ 214

Use Text as External Values ______________________________________ 215

Enumerations Instead of Magic Values ____________________________ 217

Disadvantages __ 218

Summary __ 219

Index ___ 221

ptg6843614

xvii

If you are like me, you will just skim this foreword for the series and
move on, figuring there is nothing of substance here. You will miss

something of value if you do.
I want you to consider with me a tale that most people know but

don’t often think about. That tale illustrates what is ailing this industry.
And it sets the context for why we wrote the Net Objectives Product
Development Series and this particular book.

I have been doing software development since 1970. To me, it is just
as fresh today as it was four decades ago. It is a never-ending source of
fascination to me to contemplate how to do something better, and it is
a never-ending source of humility to confront how limited my abilities
truly are. I love it.

Throughout my career, I have also been interested in other industries,
especially engineering and construction. Now, engineering and con-
struction have suffered some spectacular failures: the Leaning Tower of
Pisa, the Tacoma Narrows Bridge, the Hubble telescope. In its infancy,
engineers knew little about the forces at work around them. Mostly,
engineers tried to improve practices and to learn what they could from
failures. It took a long time—centuries—before they acquired a solid
understanding about how to do things.

No one would build a bridge today without taking into account long-
established bridge-building practices (factoring in stress, compression,
and the like), but software developers get away with writing code based
on “what they like” every day, with little or no complaint from their
peers. And developers are not alone: Managers often require people to
work in ways that they know are counterproductive. Why do we work
this way?

Series Foreword

The Net Objectives Lean-Agile Series

Alan Shalloway, CEO, Net Objectives

ptg6843614

xviii Series Foreword • The Net Objectives Lean-Agile Series

But this is only part of the story. Ironically, much of the rest is related
to why we call this the Net Objectives Product Development Series. The
Net Objectives part is pretty obvious. All of the books in this series were
written either by Net Objectives staff or by those whose views are con-
sistent with ours. Why product development? Because when building
software, it is always important to remember that software development
is really product development.

By itself, software has little inherent value. Its value comes when it
enables delivery of products and services. Therefore, it is more useful to
think of software development as part of product development—the set
of activities we use to discover and create products that meet the needs
of customers while advancing the strategic goals of the company.

Mary and Tom Poppendieck, in their excellent book Implementing
Lean Software Development: From Concept to Cash (Addison-Wesley, 2006),
note the following:

It is the product, the activity, the process in which software is embedded that is
the real product under development. The software development is just a subset
of the overall product development process. So in a very real sense, we can call
software development a subset of product development. And thus, if we want
to understand lean software development, we would do well to discover what
constitutes excellent product development.

In other words, software in itself isn’t important. It is the value that
it contributes—to the business, to the consumer, to the user—that is
important. When developing software, we must always remember to
look to what value is being added by our work. At some level, we all
know this. But so often organizational “silos” work against us, keeping
us from working together, from focusing on efforts that create value.

The best—and perhaps only—way to achieve effective product devel-
opment across an organization is a well-thought-out combination of
principles and practices that relate both to our work and to the people
doing it. These must address more than the development team, more
than management, and even more than the executives driving every-
thing. That is the motivation for the Net Objectives Product Develop-
ment Series.

Too long, this industry has suffered from a seemingly endless swing
of the pendulum from no process to too much process and then back
to no process: from heavyweight methods focused on enterprise con-
trol to disciplined teams focused on the project at hand. The time has
come for management and individuals to work together to maximize

ptg6843614

This Book’s Role in the Series xix

the production of business value across the enterprise. We believe lean
principles can guide us in this.

Lean principles tell us to look at the systems in which we work and
then relentlessly improve them in order to increase our speed and qual-
ity (which will drive down our cost). This requires the following:

• Business to select the areas of software development that will
return the greatest value

• Teams to own their systems and continuously improve them

• Management to train and support their teams to do this

• An appreciation for what constitutes quality work

It may seem that we are very far from achieving this in the software-
development industry, but the potential is definitely there. Lean princi-
ples help with the first three, and understanding technical programming
and design has matured far enough to help us with the fourth.

As we improve our existing analysis and coding approaches with the
discipline, mind-set, skills, and focus on value that lean, agile, patterns,
and Test-Driven Development teach us, we will help elevate software
development from being merely a craft into a true profession. We have
the knowledge required to do this; what we need is a new attitude.

The Net Objectives Lean-Agile Series aims to develop this attitude.
Our goal is to help unite management and individuals in work efforts
that “optimize the whole”:

• The whole organization. Integrating enterprise, team, and indi-
viduals to work best together.

• The whole product. Not just its development but also its mainte-
nance and integration.

• The whole of time. Not just now but in the future. We want sus-
tainable ROI from our effort.

This Book’s Role in the Series

Somewhere along the line, agile methods stopped including techni-
cal practices. Fortunately, they are coming back. Scrum has finally
acknowledged that technical practices are necessary in order for agility
to manifest itself well. Kanban and eXtreme Programming (XP) have

ptg6843614

xx Series Foreword • The Net Objectives Lean-Agile Series

become interesting bedfellows when it was observed that XP had one-
piece flow ingrained in its technical practices.

This book was written as a stop-gap measure to assist teams that
have just started to do lean, kanban, scrum, or agile. Regardless of the
approach, at some point teams are going to have to code differently. This
is a natural evolution. For years I have been encouraged that most peo-
ple who take our training clearly know almost everything they need to
know. They just need a few tweaks or a few key insights that will enable
them to be more effective in whatever approach they will be using.

Why is this book a “stop-gap measure”? It’s because it is a means to
an end. It offers a minimal set of skills that developers need to help them
on their way toward becoming adept at incremental development. Once
developers master these skills, they can determine what steps they need
to take next or what skills they need to acquire next. They are readied
for an interesting journey. This book offers the necessary starting point.

The End of an Era, the Beginning of a New Era

I believe the software industry is at a crisis point. The industry is con-
tinually expanding and becoming a more important part of our every-
day lives. But software development groups are facing dire problems.
Decaying code is becoming more problematic. An overloaded workforce
seems to have no end in sight. Although agile methods have brought
great improvements to many teams, more is needed. By creating a true
software profession, combined with the guidance of lean principles
and incorporating agile practices, we believe we can help uncover the
answers.

Since our first book appeared, I have seen the industry change con-
siderably. The advent of kanban, in particular, has changed the way
many teams and organizations do work. I am very encouraged.

I hope you find this book series to be a worthy guide.

— Alan Shalloway
CEO, Net Objectives
Achieving enterprise and team agility

ptg6843614

xxi

Although this is a technical book, the idea of it sprang from the Net
Objectives’ agile development courses. As I was teaching teams

how to do scrum or lean, students would often ask me, “How are we
supposed to be able to build our software in stages?” The answer was
readily apparent to me. What they were really asking was, “How can
we best learn how to build our software in stages?” I knew of three
approaches:

• Read books. I am confident that anyone who read and absorbed
the books Design Patterns Explained: A New Perspective on Object-
Oriented Design and Emergent Design: The Evolutionary Nature of Pro-
fessional Software Development would know how to write software
in stages.

• Take courses. This is a better approach. The combination of Net
Objectives courses—Design Patterns and Emergent Design—can’t
be beat.

• Learn about trim tabs. The trim tabs of software development
make building software in stages more efficient.

The first one requires a big investment in time. The second one
requires a big investment in money. The third one requires less of both.
Unfortunately, there is no place where these “trim tabs” are described
succinctly.

What are trim tabs? They are structures on airplanes and ships that
reduce the amount of energy needed to control the flaps on an airplane
or the rudder of a ship. But what I mean comes from something Bucky
Fuller once said.

Preface

ptg6843614

xxii Preface

Something hit me very hard once, thinking about what one little man could do.

Think of the Queen Mary—the whole ship goes by and then comes the rudder.
And there’s a tiny thing at the edge of the rudder called a trim tab.

It’s a miniature rudder. Just moving the little trim tab builds a low pressure
that pulls the rudder around. Takes almost no effort at all. So I said that the
little individual can be a trim tab. Society thinks it’s going right by you, that
it’s left you altogether. But if you’re doing dynamic things mentally, the fact is
that you can just put your foot out like that and the whole big ship of state is
going to go.

So I said, call me Trim Tab.

In other words, these are the actions and insights that give the most
understanding with the least investment. In our design patterns courses,
we identify three essential trim tabs. Students who do these three things
see tremendous improvements in their design and programming abili-
ties. What were these three? Why, they are described in chapters in this
book of course:

• Programming by intention

• Separate use from construction

• Consider testability before writing code

These three are very simple to do and take virtually no additional
time over not doing them. All three of these are about encapsulation.
The first and third encapsulate the implementation of behavior while
the second focuses explicitly on encapsulating construction. This is a
very important theme because encapsulation of implementation is a
kind of abstraction. It reminds us that we are implementing “a way” of
doing things—that there may be other ways in the future. I believe for-
getting this is the main cause of serious problems in the integration of
new code into an existing system.

A fourth trim tab that I recommend is to follow Shalloway’s principle.
This one takes more time but is always useful.

This book is a compilation of the trim tabs that Net Objectives’
instructors and coaches have found to be essential for agile developers
to follow to write quality code in an efficient manner. It is intended to
be read in virtually any order and in easy time segments. That said, the
chapters are sequenced in order to support the flow of ideas.

ptg6843614

xxiii

Note from Alan Shalloway

We are indebted to Buckminster Fuller in the writing of this book for
many reasons. First, a little bit about Bucky, as he was affectionately
known by his friends. I am sorry to say I never met him, but he cer-
tainly would have been a dear friend of mine if I had. Bucky was best
known for the invention of the geodesic dome and the term “Spaceship
Earth.” He also coined the term “synergetics”—the study of systems in
transformation—which is essentially what we do at Net Objectives. Of
course, most relevant is that his use of the term “trim tab” (discussed in
the preface) was the actual inspiration for this book.

He was also an inspiration for me to always look for better ideas. This
quote is my all-time favorite Buckyism:

I am enthusiastic over humanity’s extraordinary and sometimes very timely
ingenuity. If you are in a shipwreck and all the boats are gone, a piano top
buoyant enough to keep you afloat that comes along makes a fortuitous life pre-
server. But this is not to say that the best way to design a life preserver is in the
form of a piano top. I think that we are clinging to a great many piano tops in
accepting yesterday’s fortuitous contrivings as constituting the only means for
solving a given problem.

All these are good reasons, of course. But in truth, I realized I wanted
to make a special acknowledgment for Bucky because he has been an
inspiration in my life from, ironically, mostly the moment he passed
away in 1983. He was not just one of these vastly intelligent men or
one of these great humane folks. He was a rare, unique combination
of both. If you are not familiar with this great man, or even if you are,
I suggest you check out the Buckminster Fuller Institute (http://www
.bfi.org).

Acknowledgments

http://www.bfi.org
http://www.bfi.org

ptg6843614

xxiv Acknowledgments

We Also Want to Acknowledge

This book represents our view of those skills that we believe every agile
software developer should possess. However, we did not come up with
this guidance on our own, and we owe a debt of sincere gratitude to the
following individuals.

Christopher Alexander, master architect and author of The Timeless
Way of Building. Although he is not a technical expert, Alexander’s pow-
erful ideas permeate nearly all aspects of our work, most especially the
concept “design by context.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
authors of the seminal book Design Patterns: Elements of Reusable Object-
Oriented Software. Although we hope to have significantly advanced the
subject of their work, it was the genesis of much of the wisdom that
guides us today.

James Coplien wrote the thesis “Multi-Paradigm Design” that became
the book that taught us about Commonality-Variability Analysis. This
in turn helped us understand how to use patterns and objects in a way
that fits the problem domain before us. Jim’s work is a powerful enabler
of many of the skills we teach in this book.

Martin Fowler, author of Refactoring and UML Distilled, as well as
many other thoughtful and incredibly useful books. Martin is definitely
the developer’s friend.

Ward Cunningham, one of the author/inventors of eXtreme Pro-
gramming and the progenitor of the role of testing in the daily life of
the software developer. Countless good things have come from that cen-
tral idea. Also, Ward, thanks so much for inventing wikis.

Robert C. Martin, author of Agile Software Development and many
other books and articles. “Uncle Bob” teaches how various critical cod-
ing skills work together to make software that is readable, scalable,
maintainable, and elegant.

In addition to these individual authors and thought leaders, we also
want to acknowledge the thousands of students and consulting clients
who have contributed endlessly to our understanding of what good
software is and how to make it. It has been said that the good teacher
always learns from the student, and we have found this to be true to an
even greater degree than we expected when Net Objectives was founded
more than 10 years ago. Our clients have given us countless opportuni-
ties to expand our thinking, test our ideas, and gain critical feedback on
their real-world application.

There would be no Net Objectives without our customers. We love
our customers.

ptg6843614

xxv

Alan Shalloway is the founder and CEO of Net
Objectives. With more than 40 years of experience,
Alan is an industry thought leader in lean, kanban,
product portfolio management, scrum, and agile
design. He helps companies transition to lean and
agile methods enterprisewide as well teaches courses
in these areas. Alan has developed training and
coaching methods for lean-agile that have helped
Net Objectives’ clients achieve long-term, sustain-

able productivity gains. He is a popular speaker at prestigious confer-
ences worldwide. He is the primary author of Design Patterns Explained:
A New Perspective on Object-Oriented Design and Lean-Agile Pocket Guide for
Scrum Teams. Alan has worked in dozens of industries over his career.
He is a cofounder and board member for the Lean Software and Systems
Consortium. He has a master’s degree in computer science from M.I.T.
as well as a master’s degree in mathematics from Emory University. You
can follow Alan on Twitter @alshalloway.

Scott Bain is a 35+-year veteran in computer tech-
nology, with a background in development, engineer-
ing, and design. He has also designed, delivered, and
managed training programs for certification and end-
user skills, both in traditional classrooms and via dis-
tance learning. Scott teaches courses and consults on
agile analysis and design patterns, advanced software

design, and sustainable Test-Driven Development. Scott is a frequent
speaker at developer conferences such as JavaOne and SDWest. He is the
author of Emergent Design: The Evolutionary Nature of Professional Software

About the Authors

ptg6843614

xxvi About the Authors

Development, which won a Jolt Productivity Award and is now available
from Addison-Wesley.

Ken Pugh is a fellow consultant with Net Objec-
tives. He helps companies transform into lean-agility
through training and coaching. His particular interests
are in communication (particularly effectively commu-
nicating requirements), delivering business value, and
using lean principles to deliver high quality quickly. He
also trains, mentors, and testifies on technology topics

ranging from object-oriented design to Linux/Unix. He has written sev-
eral programming books, including the 2006 Jolt Award winner, Pref-
actoring: Extreme Abstraction, Extreme Separation, Extreme Readability. His
latest book is Lean-Agile Acceptance Test Driven Development: Better Software
Through Collaboration. He has helped clients from London to Boston to
Sydney to Beijing to Hyderabad. When not computing, he enjoys snow-
boarding, windsurfing, biking, and hiking the Appalachian Trail.

Amir Kolsky is a senior consultant, coach, and
trainer for Net Objectives. Amir has been in the com-
puter sciences field for more than 25 years. He worked
for 10 years in IBM Research and spent 9 more years
doing chief architect and CTO work in assorted com-
panies big and small. He has been involved with agile
since 2000. He founded MobileSpear and subsequently

XPand Software, which does agile coaching, software education, and
agile projects in Israel and Europe. Amir brings his expertise to Net
Objectives as a coach and trainer in lean and agile software processes,
tools, and practices, Scrum, XP, design patterns, and TDD.

ptg6843614

PART I

The Core Trim Tabs

ptg6843614

This page intentionally left blank

ptg6843614

3

Everything old is new again. The folks who brought us the eXtreme Program-
ming (XP) books1 were, among other things, promoting a set of best practices
in software development. One of them, which they termed “Programming by
Intention,” was not actually new but was something that had been a very com-
mon coding technique in languages like COBOL and Smalltalk (usually called
“top-down” programming) years before. That’s actually a good thing; time-tested
practices are often the most credible ones, because they’ve proven their value over
and over again in realistic circumstances. In this chapter, we’ll examine this prac-
tice, first by simply demonstrating it and then by investigating the advantages we
gain by following it. Finally, we’ll discuss it as it relates to testing and testability
and to design.

Programming by Intention: A Demonstration

You need to write some code. What you need to create is just a service
that takes a business transaction and commits it. You’ve decided (rightly
or wrongly) to simply create a single object, with a simple public method
that does the work.

The requirements are the following:

• The transaction will begin as a standard ASCII string.

• The string must be converted to an array of strings, which are
tokens in the domain language being used for the transaction.

1. These include Kent Beck, Cynthia Andres, Martin Fowler, James Newkirk, Robert
Martin, Ron Jeffries, Lisa Crispin, Tip House, Ann Anderson, and Chet Hendrickson.

CHAPTER 1

Programming by Intention

ptg6843614

4 Chapter 1 • Programming by Intention

• Each token must be normalized (first character uppercase, all oth-
ers lowercase, spaces and nonalphanumeric characters removed).

• Transactions of more than 150 tokens should be committed differ-
ently (using a different algorithm) than smaller transactions, for
efficiency.

• The API method should return a true if the commit succeeds and
should return a false if it fails.

We’re leaving out some details—such as what the commitment algo-
rithms actually are—to focus narrowly on the practice we’re interested
in here.

In learning to write in a programming language, you train your mind
to break down problems into functional steps. The more code you write,
the better your mind gets at this sort of problem solving. Let’s capitalize
on that.

As you think about the previous problem, each bullet point repre-
sents one of these functional steps. In writing your code, you will have
the intention of solving each one as you go. Programming by Intention
says, rather than actually writing the code in each case, instead pretend
that you already have an ideal method, local in scope to your current
object, that does precisely what you want. Ask yourself, “What param-
eters would such an ideal method take, and what would it return? And,
what name would make the most sense to me, right now, as I imagine
this method already exists?”

Now, since the method does not actually exist, you are not con-
strained by anything other than your intentions (hence, you are “pro-
gramming by” them). You would tend to write something like this:

public class Transaction {
 public Boolean commit(String command) {
 Boolean result = true;
 String[] tokens = tokenize(command);
 normalizeTokens(tokens);
 if(isALargeTransaction(tokens)) {
 result = processLargeTransaction(tokens);
 } else {
 result = processSmallTransaction(tokens);
 }
 return result;
 }
}

ptg6843614

Programming by Intention: A Demonstration 5

The commit() method is the defined API of our object. It’s public, of
course, so that it can serve up this behavior to client objects. All of these
other methods (tokenize(), isALargeTransaction(), process-
LargeTransaction(), and processSmallTransaction()) are not
part of the API of the object but are simply the functional steps along
the way. They are often called “helper methods” as a result. For now,
we’ll think of them as private methods (however, as we’ll see, that’s
not always literally true). The point is that their existence is part of the
internal implementation of this service, not part of the way it is used
from the outside.

And, they don’t really exist yet. If you try to compile your code,
naturally the compiler will report that they do not exist (we like that,
though...it’s a sort of to-do list for the next steps). They have to be cre-
ated for the code to compile, which is what we must do next.2

In writing this way, we allow ourselves to focus purely on how we’re
breaking down the problem and other issues of the overall context we’re
in. For instance, we have to consider whether the String array being
used is, in our implementation language, passed by reference or passed
by copy (obviously we’re imagining a language where they are passed
by reference; otherwise, we’d be taking tokens back as a return). What
we don’t think about, at this point, are implementation details of the
individual steps.

So, what’s the point? There are actually many advantages gained here,
which we’ll investigate shortly, but before we do that, let’s acknowl-
edge one important thing: This is not hard to do. This is not adding
more work to our plate. The code we write is essentially the same that
we would have written if we’d simply written all the code into one big
method (like our “programs” back in the day, one big stream of code
logic). We’re simply writing things in a slightly different way and in a
slightly different order.

That’s important. Good practices should, ideally, be things you can do
all the time and can promote across the team as something that should
always be done. This is possible only if they are very low cost—essen-
tially free—to do.

2. Or someone else will. Sometimes breaking a problem up like this allows you to hand out
tasks to experts. Perhaps someone on your team is an expert in the domain language of
the tokens; you might hand off the tokenize() and normalize() methods to them.

ptg6843614

6 Chapter 1 • Programming by Intention

Advantages

So again, what’s the point of programming in this way?
Something so terribly simple actually yields a surprising number

of beneficial results while asking very little, almost nothing, of you in
return. We’ll summarize these benefits in a list here and then focus on
each individually.

If you program by intention, your code will be

• More cohesive (single-minded)

• More readable and expressive

• Easier to debug

• Easier to refactor/enhance, so you can design it minimally for now

• Easier to unit test

And, as a result of these benefits there are others: Your code will be
easier to modify/extend. The additional benefits include the following:

• Certain patterns will be easier to “see” in your code.

• You will tend to create methods that are easier to move from one
class to another.

• Your code will be easier to maintain.

Method Cohesion

One of the qualities of code that tends to make it easier to understand,
scale, and modify is cohesion. Basically, we like software entities to
have a single-minded quality, in other words, to have a single purpose
or reason for existing.

Let’s take classes, for instance. A class should be defined by its respon-
sibility, and there should be only one general responsibility per class.
Within a class are methods, state, and relationships to other objects that
enable the class to fulfill its responsibility. Class cohesion is strong when
all the internal aspects of a class relate to each other within the context
of the class’s single responsibility.

You might argue in our earlier example that some of the things
we’re doing are actually separate responsibilities and should be in other
classes. Perhaps; this is a tricky thing to get right.3 However, even if we

3. ...which is not to say we don’t have some help for you on class cohesion. See Chapter 3,
Define Tests Up Front, for more on this.

ptg6843614

Advantages 7

don’t always get that right, we can get another kind of cohesion right at
least most of the time if we program by intention.

Method cohesion is also an issue of singleness, but the focus is on
function. We say a method is strongly cohesive if the method accom-
plishes one single functional aspect of an overall responsibility.

The human mind is pretty single-threaded. When people “multitask,”
the truth is usually that they are actually switching quickly between
tasks; we tend to think about one thing at a time. Programming by
Intention capitalizes on this fact, allowing the singleness of your train
of thought to produce methods that have this same singleness to them.

This cohesion of methods is a big reason that we get many of the
other benefits of Programming by Intention.

Readability and Expressiveness

Looking back at our initial code example, note how readable it is.

public class Transaction {
 public Boolean commit(String command) {
 Boolean result = true;
 String[] tokens = tokenize(command);

normalizeTokens(tokens);
 if(isALargeTransaction(tokens)) {
 result = processLargeTransaction(tokens);
 } else {
 result = processSmallTransaction(tokens);
 }

return result;
 }
}

The code essentially “says” the following: “We are given a command
to commit. We tokenize the command, normalize the tokens, and then,
depending on whether we have a large set of tokens or not, we process
them using either the large transaction mechanism or the small one.
We then return the result.”

Because we are not including the “how” in each case, only the “what,”
we can examine the process with a quick read of the method and eas-
ily understand how this all works. Sometimes, that’s all we want—to
quickly understand how something works.

This lends readability, but it is also expressive. Note that we did not
include any comments in this code, and yet it’s still easy to “get.” That’s
because those things that we would have included in comments are
now instead the actual names of the methods.

ptg6843614

8 Chapter 1 • Programming by Intention

Comments are expressive, too, but the problem with them is that
they are ignored by the compiler4 and often by other programmers who
don’t trust them to be accurate. A comment that has been in the code
for a long time is unreliable, because we know that the code may have
been changed since it was written, and yet the comment may not have
been updated. If we trust the comment, it may mislead us, and there is
no way to know one way or the other. We are forced to investigate the
code, and so the expressiveness evaporates. Hence, comments may be
ignored by programmers as well, making them less than useful.5

The central, organizing method in Programming by Intention con-
tains all the steps but very little or no actual implementation. In a sense,
this is another form of cohesion: The process by which something is
done is separated from the actual accomplishing of that thing.

Another thing that tends to make code both readable and expressive
is that the names of the entities we create should express the intention
we had in creating them. When methods are cohesive, it is easy to name
them with a word or two that comprehensively describes what they do,
without using lots of underscores and “ands” and “ors” in the names.
Also, since we name the methods before they actually exist, we tend to
pick names that express our thinking. We call names of this type “inten-
tion-revealing names” because they disclose the intention of the name.
We want to avoid picking names that make sense after you understand
what the function does but can be easily misinterpreted before its inten-
tion is explained by someone who knows what is going on.

Comments as a Code Smell

Although we’re not claiming that you shouldn’t write comments, cer-
tain comments are actually a type of code smell. For example, let’s say
you had written something like the following:

public class Transaction {
 public Boolean commit(String command){
 Boolean result = true;
 Some code here
 Some more code here

4. Not all comments are to be avoided, however. If the comment exists to make the code
more readable, change the code to make it more readable on its own. If the comment
exists to explain the purpose of a class or method or to express a business issue that drives
the code, these can be very helpful to have.

5. They are less than useful because sometimes someone believes them when they are
wrong.

ptg6843614

Advantages 9

 Even some more code here that sets tokens
 Some code here that normalizes Tokens
 Some more code here that normalizes Tokens
 Even more code here that normalizes Tokens
 Code that determines if you have a large transaction
 Set lt= true if you do
 if (lt) {
 Some code here to process large transactions
 More code here to process large transactions
 } else {
 Some code here to process small transactions
 More code here to process small transactions
 }
 return result;
 }
}

You might look at this and say, “Wow, I don’t understand it; let’s add
some comments,” and you’d create something like the following:

public class Transaction {
 public Boolean commit(String command){
 Boolean result = true;

 // tokenize the string
 Some code here
 Some more code here
 Even some more code here that sets tokens

 // normalize the tokens
 Some code here that normalizes Tokens
 Some more code here that normalizes Tokens
 Even more code here that normalizes Tokens

 // see if you have a large transaction
 Code that determines if you have a large transaction
 Set lt= true if you do
 if (lt) {
 // process large transaction
 Some code here to process large transactions
 More code here to process large transactions
 } else {
 // process small transaction
 Some code here to process small transactions
 More code here to process small transactions
 }
 return result;
 }
}

ptg6843614

10 Chapter 1 • Programming by Intention

Note that you’ve inserted comments that describe what is going on
after writing the code. These comments would not be needed if we had
programmed by intention. The methods we’ve used in place of the com-
ments are more useful because they have to be up-to-date in order to
compile.

Debugging

In most of the courses we teach at Net Objectives, somewhere along the
way we’ll ask people if they think they spend a lot of time fixing bugs.
Unless they have already been a student of ours, they’ll tend to say yes,
that’s a significant part of what makes software development tricky.6

We point out, however, that debugging really consists largely of find-
ing the bugs in a system, whereas fixing them once they are located is
usually less problematic. Most people agree to that almost immediately.

So, the real trick in making code that you will be able to debug in the
future is to do whatever you can to make bugs easy to find. Naturally,
you should try to be careful to avoid writing them in the first place, but
you can be only so perfect, and you’re probably not the only person
who’ll ever work on this code.

When you program by intention, the tendency is to produce methods
that do one thing. So, if something in your system is not working, you
can do the following:

1. Read the overall method to see how everything works.

2. Examine the details of the helper method that does the part that’s
not working.

That’s almost certainly going to get you to the bug more quickly than
if you have to wade through a big blob of code, especially if it contains
many different, unrelated aspects of the system.

Legacy systems, for example, are tough to debug, and there are many
reasons for this. One big one, however, is that often they were written
in a monolithic way, so you end up printing the code, breaking out the
colored highlighters, and marking code blocks by what they do. “I’ll
mark the database stuff in yellow, the business rules in blue, ...” It’s
laborious, error-prone, boring, and not a good use of a developer’s time.

Let the computer do the grunt work.

6. If they are students of ours, they’ve heard this question from us before; we’re not claiming
our students don’t write bugs.

ptg6843614

Advantages 11

Refactoring and Enhancing

It’s hard to know exactly how far to go in design and how much com-
plexity to add to a system in your initial cut at creating it. Because complex-
ity is one of the things that can make a system hard to change, we’d
like to be able to design minimally, adding only what is really needed to
make the system work.

However, if we do that, we’re likely to get it wrong from time to time
and fail to put in functionality that is actually needed. Or, even if we
get it right, the requirements of our customers, our stakeholders, or
the marketplace can change the rules on us after the system is up and
running.

Because of this, we often have to do the following:

• Refactor the system (changing its structure while preserving its
behavior)

• Enhance the system (adding or changing the behavior to meet a
new need)

Refactoring is usually thought of as “cleaning up” code that was
poorly written in the first place. Sometimes it is code that has decayed
because of sloppy maintenance or changes made under the gun without
enough regard to code quality. Refactoring can also be used to improve
code once it is clear it should have been designed differently after more
is known about the program.

Martin Fowler wrote a wonderful book in 1999 called Refactoring7 that
codified the various ways in which these kinds of behavior-preserving
changes can be made and gave each way a name (often called a “move”).

One of the refactoring moves that most people learn first when study-
ing this discipline is called Extract Method; it takes a piece of code out
of the middle of a large method and makes it into a method of its own,
calling this new method from the location where the code used to be.
Because temporary method variables also have to move, and so forth, a
number of steps are involved.

Many of the other refactoring moves in the book begin by essen-
tially stating “Before you can do this, you must do Extract Method
over and over until all of your methods are cohesive.” However, you’ll
find if you program by intention, you’ve already done this part. In his

7. Fowler, Martin, et al. Refactoring: Improving the Design of Existing Code. Reading, MA:
Addison-Wesley, 1999.

ptg6843614

12 Chapter 1 • Programming by Intention

book Prefactoring,8 Ken Pugh examines extensively how simple, sensible
things like Programming by Intention can help you.

If you know that your code has routinely been “prefactored” in this
way, your expectation about how difficult it will be to refactor it in
other ways will be ameliorated, because code that already has method
cohesion is simply easier to refactor.

Similarly, Programming by Intention can make it easier to enhance
your system. Let’s go back to our transaction processing example.

Imagine that six months after this code was put into production, a
new requirement is added to the mix: Because of the way some third-
party applications interact with the transaction processing, we have to
convert some tokens (there’s a list of a dozen or so) from an older ver-
sion to the one supported by our system. The notion of “updating” all
the tokens is now something we must always perform in case the com-
mand string contains deprecated tokens from the domain language.

The change here would be reasonably trivial and could be made with
a high degree of confidence.

public class Transaction {
 public Boolean commit(String command){
 Boolean result = true;
 String[] tokens = tokenize(command);
 normalizeTokens(tokens);

updateTokens(tokens);
 if(isALargeTransaction(tokens)){
 result = processLargeTransaction(tokens);
 } else {
 result = processSmallTransaction(tokens);
 }
 return result;
 }
}

The next step would be to write the updateTokens() method, but
in so doing we note that the likelihood of doing any damage to the code
in the rest of the system is extremely low. In fact, making changes to
any of the helper methods can be done with a fair degree of confidence
that we are changing only what we intend. Cohesion tends to lead to
encapsulation9 like this.

8. Pugh, Ken. Prefactoring. Cambridge, MA: O’Reilly, 2005.
9. See Chapter 5, Encapsulate That!, for more information on this.

ptg6843614

Advantages 13

Unit Testing

In Programming by Intention, we’re not trying to broaden the interface
of the object in question; rather, we’re ensuring that we’re defining the
interface prior to implementing the code within it. In fact, we want
to follow the general advice on design that patterns promote insofar as
we’d like the clients that use our service to be designed purely to its
interface, not to any implementation details.

So, at least initially, we’d like to keep all these “helper methods” hid-
den away, because they are not part of the API of the service and we
don’t want any other object, now or in the future, to become coupled to
them (the way they work or even that they exist at all). We’d like to be
able to change our mind in the future about the exact way we’re break-
ing up this problem and not have to make changes elsewhere in the
system where this object is used.

However, it would seem to work against testing this object, if we make
all the helper methods private (see Figure 1.1).

Private methods cannot be called by the unit test either, so the only
test we can write is of the commit() method, which means we have to
test the entire behavior in a single test. Such a test may be more com-
plex than we want, and also we’ll be writing a test that could fail for a
number of different reasons, which is not what we’d prefer.10

10. See Chapter 3, Define Tests Up Front, for more information on this issue.

tests

TransactionTest
+testCommitATransaction()

Transaction
+commit(String):Boolean
-tokenize(String):String[]
-normalizeTokens(String[]);
-updateTokens(String[]);
-isALargeTransaction(String[]):Boolean
-processLargeTransaction(String[]):Boolean
-processSmallTransaction(String[]):Boolean

Figure 1.1 Programming by Intention, private methods

ptg6843614

14 Chapter 1 • Programming by Intention

If we can solve this conundrum, however, note that separating the
different aspects of this overall behavior into individual methods makes
them, at least in theory, individually testable, because they are not cou-
pled to one another. Much as the client of this class is coupled only to its
interface, the API method is coupled to the helper methods only though
their interfaces.

So, how do we deal with the untestability of private methods? There
are three general possibilities.

• We don’t test them individually, but only through the commit()
method. In unit testing, we want to test behavior, not implementa-
tion, so if these helper methods are really just steps in a single
behavior, we don’t want to test them. We want to be able to refac-
tor them (even eliminate them) and have the same tests pass as
before we refactored.

• We need to test them individually, as a practical matter. Even
though they are “just the steps,” we know there are vulnerabili-
ties that make them somewhat likely to fail at some point. For
efficiency and security, we want to be able to test them separately
from the way they are used. In this case, we need to get a little
clever and use testing tricks. These can be very language-depen-
dent but include the following: making the test a “friend” of the
class (in C++), wrapping the private method in a delegate and
handing the delegate to the test, also known as a “testing proxy”
(in .NET), making the methods protected and deriving the test
from the class, and so on. Beware of overusing these tricks, how-
ever; not all developers will readily understand what you have
done, they often don’t port well from one language/platform to
another, and we don’t want to couple our tests tightly to imple-
mentation unnecessarily.

• Maybe these helper methods are not merely “steps along the way”
but are, in fact, different behaviors that deserve their own tests.
Maybe they are used in this class, but they are, in implementa-
tion, entirely separate responsibilities. Note that the desire to test
this class is forcing us to look at this “Are they really just steps?”
issue, which is an important aspect of design. If this is the case,
then we need to revisit our design. For example, let’s say we deter-
mine that the step that normalizes the tokens is really something
that legitimately should be tested on its own. We could change the
design just enough (see Figure 1.2).

ptg6843614

Advantages 15

You’ll note that the use of TokenNormalizer is private. Nothing
outside Transaction is coupled to the fact that TokenNormalizer
is used there.11 However, the implementation of TokenNormalizer is
accessible through its own API and is thus testable on its own.

Also, you’ll note that because the normalization code was in a method
by itself in the first place, it is pretty easy to pull it out now into its own
class. Extracting a class is usually fairly trivial if methods are cohesive
from the get-go. We’re making this decision just as we need it, based on
the realization that the desire to test is providing us.

Another reason we might have seen this would be if another entity
in the system also had to perform token normalization. If the algorithm
is stuck in a private method in Transaction, it’s not usable in another
context, but if it is in a class by itself, it is. Here the desire to avoid code
duplication12 is leading us to this same just-in-time decision.

Easier to Modify/Extend

Given the previous improvements to the quality of the code as a result
of Programming by Intention, it should be evident that modifying and
extending your code should be easier to do. We know from experience

11. This does raise the question, “How does Transaction obtain an instance of TokenNormal-
izer?” See Chapter 2, Separate Use from Construction, for a discussion on this issue.

12. See Chapter 4, Shalloway’s Law and Shalloway’s Principle, for a more thorough discus-
sion on this concept.

TokenNormalizerTest
+testNormalize()

normalizeTokens(String[] tokens) {
 tokens = myNormalizer.normalize(tokens);
}

tests

tests

TokenNormalizer
+normalize(String[]):String[])

Transaction
TokenNormalizer myNormalizer
+commit(String):Boolean
-tokenize(String):String[]
-normalizeTokens(String[]);
-updateTokens(String[]);
-isALargeTransaction(String[]):Boolean
-processLargeTransaction(String[]):Boolean
-processSmallTransaction(String[]):Boolean

TransactionTest
+testCommitATransaction()

Figure 1.2 Design change

ptg6843614

16 Chapter 1 • Programming by Intention

that we will need to modify our code. It’s also known from our expe-
rience that we don’t know exactly what these modifications will be.
Programming by Intention gives us a way to set up our code for modifi-
cation while paying virtually no price for doing so.

Seeing Patterns in Your Code

We do a lot of design patterns training at Net Objectives, and we rou-
tinely write and speak about them at conferences. Invariably, once we
are seen to be “pattern guys,” someone will say, “The patterns are cool,
but how do you know which one to use in a given circumstance?”

The answer to this question leads to a very long and (we think) inter-
esting conversation, but sometimes you can see the pattern in your
implementing code if you program by intention.

Let’s alter our example slightly.
Let’s say there are two completely different transaction types that go

through the same steps (tokenize, normalize, update, process), but they
implement all these steps differently, not just the processing step. If you
programmed each of them by intention, although their implementing
“helper” methods would all be different, the commit() method would
look essentially the same. This would make the Template Method Pat-
tern13 sort of stand up and wave its hands at you (see Figure 1.3).

13. If you don’t know the Template Method, pay a visit to www.netobjectivesrepository.com/
TheTemplateMethodPattern.

LargeTransaction
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

SmallTransaction
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

Transaction
+commit(String):Boolean
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

Figure 1.3 The Template Method Pattern

www.netobjectivesrepository.com/TheTemplateMethodPattern
www.netobjectivesrepository.com/TheTemplateMethodPattern

ptg6843614

Advantages 17

Taking it a bit further and going back to the testability issue, we
might start pulling one or more of these behaviors out, to make them
testable, and in so doing discover opportunities for the Strategy Pattern.
As before, we’ll pull out normalization (see Figure 1.4).

Movable Methods

As we pointed out, the cohesion of a class is related to the notion that a
class should, ideally, have a single responsibility. It may require many
methods, member variables, and relationships to other objects to ful-
fill that responsibility, but there should be only one reason it exists or
would have to be changed.14

Programming by Intention helps you create cohesive methods,
through the simple expedient of creating those methods based on your
own ability to do functional decomposition, but it does not, directly, do
very much about class cohesion. Indeed, you could easily suggest that
our Transaction class, as we initially coded it, was not very cohesive.

One way to improve class cohesion is to move methods and other
members that it really should not have to other classes, perhaps new
classes, and thus focus the class more narrowly. So, although Program-
ming by Intention does not address class cohesion directly, it makes it
easier for the developer to do so, through refactoring, as cohesion issues
arise.

Why?
One reason is something we’ve already seen; Programming by Inten-

tion produces methods that have a single function. It’s easier to move

14. This is also often called the Single Responsibility principle.

uses

SmallTokenNormalizer
+normalize(String[]):String[]

LargeTokenNormalizer
+normalize(String[]):String[]

TokenNormalizer
+normalize(String[]):String[]

SmallTransaction
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

LargeTransaction
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

Transaction
+commit(String):Boolean
#tokenize(String):String[]
#normalizeTokens(String[])
#updateTokens(String[])
#processTransaction(String[]):Boolean

Figure 1.4 The Template Method and Strategy Patterns

ptg6843614

18 Chapter 1 • Programming by Intention

such a method because it avoids the problem of moving a method that
contains some aspects that should not move. If a method does one thing,
then if part of it needs to move, all of it needs to move.

However, there is another reason as well. Sometimes a method is
hard to move because it directly relates to the state members that exist
on the class. In moving the method, we have to move the state as well
or find some way of making it available to the method in its new home,
which can sometimes create an odd and confusing coupling.

We have noted that when we program by intention, we tend to pass
the method whatever it is we want it to use and take the result as a
return, rather than having the method work directly on the object’s
state. These methods move more easily because they are not coupled to
the object they are in.

Going back to our example, we could have done the following:

public class Transaction {
 private String[] tokens;
 public Boolean commit(String command){
 Boolean result = true;
 tokenize(command);
 normalizeTokens();
 if(isALargeTransaction()){
 result = processLargeTransaction();
 } else {
 result = processSmallTransaction();
 }
 return result;
 }
}

We have made the token array a member of the class, and all the
methods that used to take it as a parameter will now simply refer to it
directly. There is nothing in Programming by Intention that forces you
not to do this (any more than it forces you to refrain from naming your
methods m1() and go()), but it’s a more natural fit to your mind to pass
parameters and take returns, and we have noticed this strong tendency
in developers who adopt the practice.

Summary

One of the critical aspects of bringing any complex human activity to
maturity is the discovery of important practices that improve the success
of those engaged in it. Such practices should ideally do the following:

ptg6843614

Summary 19

• Deliver a lot of value

• Be relatively easy to do

• Be relatively easy to promote and teach others to do

• Be low risk

• Be universal (you should not have to decide whether to follow
them, in each given circumstance)

Programming by Intention is just such a practice. Give it a try! For
most people, it takes only a few hours to realize that it’s easy, it’s fun,
and it makes their code better without extra work.

ptg6843614

This page intentionally left blank

ptg6843614

21

Moving from a procedural approach to an object-oriented one, with all its
assumed benefits, tends to add an additional issue: instantiation. Whereas a pro-
cedural program or script tends to load, run, and then unload, the creation of
object instances can be much more involved and can continue throughout the
runtime life cycle of the software. Given this, developers often feel that solving
“the instantiation” problem is job one. It is decidedly not. Also, typically instances
will be created by the same code that uses them, often proximate to their use. This
would seem to make the code more readable and easier to work with, but it often
has a negative effect.

We will examine these issues, among others, that arise when we fail to sepa-
rate the use of an instance from its construction.

An Important Question to Ask

In our technical classes, we usually ask the question, “When working
on a system that is one to two years old and you need to add a new func-
tion, there is effort to write the function and then effort to integrate it
into the system. Where do you spend most of your time? Writing the
function or integrating it in?” About 95 percent of the time, the answer
is “integrating it in.”1

In our classes, we typically speculate that the integration process
looks like this: “In my code that is using the new functionality, I have to
go through it and see, ah, do I have this case? Yes, then I do this; else,

1. We base this on the answers we’ve gotten from our students over the past several years.
Unfortunately, this ratio does not seem to be improving. The main exceptions to this are
when the developers are properly using design patterns, when a complete set of automated
unit tests is present, and when the function being written is amazingly complex.

CHAPTER 2

Separate Use from Construction

ptg6843614

22 Chapter 2 • Separate Use from Construction

I do that. Now here, I have to remember in this case I have this data
to use, but in that case, this data means something else.” Most of the
people in the audience are nodding their heads in woeful agreement. A
key problem with this approach is that adding features to your system
requires you to change your client code to manage these features, all
the while making the code more complex. Although it may not be a
problem at the start, it can quickly decay into one.

If this seems familiar, you may have come to feel this is inevitable.
You may have even been taught that this is an example of “entropy” and
that there’s really nothing you can do about it.

You may also notice that the cause of this is that while writing/
changing/managing client code, you have to be paying attention to the
specific, concrete types of the objects you’re dealing with. One promise
of object-orientated programming is that we shouldn’t necessarily have
to be referring to objects by type, except in an abstract sense. In other
words, we want to hide (encapsulate) the implementing object we are
using at any given point in time.

People know that hiding implementation is important; it enables us
to change implementations without changing the client code. But if you
take a moment to reflect on this, you might realize that it is equally
valuable to hide type as well. In other words, if you have two objects
that conceptually do the same thing but whose type is exposed when
they are used, then the client code couples to those particular objects
when it should not. If we can hide the objects’ concrete types, we’ll
make the calling code simpler and the system more maintainable.

Perspectives

A very simple, common bit of code that tends to appear throughout a
system looks something like the following:

public class BusinessObject {
 public void actionMethod() {
 // Other things
 Service myServiceObject = new Service();
 myServiceObject.doService();
 // Other things
 }
}

There’s nothing too surprising here. The BusinessObject class uses
an instance of Service for part of its implementation. Perhaps it is a

ptg6843614

Perspectives 23

Service object that is needed in several places in the system, and so
it is implemented in an object. BusinessObject builds an instance of
Service and then delegates to it for the needed behavior.

As natural and simple as this may seem, it is a mistake to be avoided. It
creates two different relationships between the BusinessObject class
and the Service class. BusinessObject is the creator of Service,
but it is also the user of Service. There are significant advantages to be
found in breaking these relationships apart.

Perspective of Creation

When one object creates an instance of another in languages like Java
and C#, it by necessity must use the new keyword to do it. In modern
languages, especially those that have automatic garbage collection, new
is usually not something you can override. In other words, when the
code in one object contains new Widget(), the object that is created
as a result is precisely that, an instance of Widget, and no other class.

Also, in order for new Widget() to be a legal statement, Widget
must be a concrete type, in other words, not an abstract class or inter-
face. This means that any entity A that instantiates any other entity B
using the new keyword directly is coupled to

• The actual type that is being instantiated

• The fact that the type is concrete

We say “coupled” because if either of these things were to change,
then the entity doing the creation would have to be altered as well. Going
back to our code example, if the class Service were to be changed to
an interface, with a single implementing class called Service_Impl,
then our code would no longer compile until we changed it to the fol-
lowing (the change is in bold, italic type).

public class BusinessObject {
 public void actionMethod() {
 // Other things
 Service myServiceObject = new Service_Impl();
 myServiceObject.doService();
 // Other things
 }
}

ptg6843614

24 Chapter 2 • Separate Use from Construction

Note, also, that we get little or no value from upcasting the refer-
ence of Service_Impl to Service; since the code mentions the class
Service_Impl anyway, the coupling is unavoidable. Let’s contrast this
with the perspective that one object has when it uses another object.

Perspective of Use

Let’s alter our code example slightly. Rather than having Business-
Object build its instance directly, we’ll hand it one via its constructor.

You’re probably thinking, “But wait, something had to create it.” Yes,
but for our purposes here, we’ll leave that as an open issue for now and
focus just on this class and its relationship to Service when we limit
it to “use.”

public class BusinessObject {
 private Service myServiceObject;
 public BusnessObject(Service aService) {
 myServiceObject = aService();
 }

 public void actionMethod() {
 // Other things
 myServiceObject.doService();
 // Other things
 }
}

If Service began as a concrete type and then later we changed it to
an abstract type with a separate implementing class but no change was
made to its interface (the doService() method), what would happen
to this code? The answer is, nothing at all. Whatever implementing class
was created, it would be implicitly upcast to Service and used as such.

If, on the other hand, we changed the method doService() in some
way, say, changed its name or what parameters it takes, then this code
would again fail to compile until we changed it to call the method in the
altered way, whatever that might be.

In other words, if entity A calls methods on entity B but does not
create entity B, then it is neither coupled to the specific concrete imple-
mentation that entity B happens to be nor to the fact that it is (or is not)
a concrete type. Either of these things can changed without affecting
entity A.

ptg6843614

Perspectives 25

What You Hide You Can Change

Table 2.1 summarizes our points here.
Creators are coupled to type, while users are coupled to interface.

Creators are coupled to what something is, while users are coupled to
how something operates. These should be considered separate concerns,
because they will often change for different reasons.

The problem with our initial code example is that BusinessObject
establishes both of these perspectives relative to Service. It is the cre-
ator and the user of the Service and therefore is coupled to it very
tightly. If Service changes in any way other than its internal imple-
mentation, BusinessObject will have to change as well.

The more we do this, the more work is required to alter an existing
system, and the more likely we are to make mistakes.

“What you hide you can change” is a fairly common mantra among
developers who favor encapsulated systems, but this really makes sense
only when we define “can change” correctly. Otherwise, a developer
reading such a statement might rightly think, “I can change anything I
have the source code for.”

When we say “can change,” we really mean “can freely change”:
can change without having to be hesitant, without having to do exten-
sive investigation of possible side effects, without stress and concern.
Another way to say this is, “We can change it here, and we don’t have to
change it anywhere else.”

Also, we must consider the likely motivations for change.
Why do interfaces change? Ideally, we’d like to create our interfaces

from the point of view of those entities that consume their services,
rather than from the point of view of any specific implantation code
they contain. Thus, an interface will tend to change when the clients of
that interface develop a new need.

Why do classes change from concrete to abstract? This usually hap-
pens when the design of the solution changes, arguably by adding some

Table 2.1 Coupling by Perspective

Perspective Coupled to

Creation The type being created and the fact that it is a concrete type

Use The public method signature(s) being called

ptg6843614

26 Chapter 2 • Separate Use from Construction

form of indirection in order to achieve polymorphism and/or to break a
direct dependency for testing purposes or for reuse.

These are very different motivations and would tend to happen at
different times in a product’s development life cycle. Also, if we are cir-
cumspect about our interfaces, they will not change very frequently.2

On the other hand, if we want to avoid overdesign in the early stages of
development, we will frequently have to accommodate changing/add-
ing/eliminating types later, without creating waste or risk.

Let’s consider another approach.

public class BusinessObject {
 private Service myServiceObject;
 public BusnessObject() {
 myServiceObject = ServiceFactory.getService();
 }

 public void actionMethod() {
 // Other things
 myServiceObject.doService();
 // Other things
 }
}

class ServiceFactory{
 public static Service getService(){
 return new Service();
}

If the methods of Service change, this will affect the code in
Business Object but not in ServiceFactory (they are not called by
the factory). On the other hand, if the Service class itself changes, if
it becomes an abstract class or interface, and if there may even be more
than one implementing class, this will change ServiceFactory but
not BusinessObject.

A design change is now possible, without changing Business-
Object at all.

public class BusinessObject {
 private Service myServiceObject;
 public BusnessObject() {
 myServiceObject = ServiceFactory.getService();
 }

2. ...and even if they do, this likely can be accomplished using an Adapter or Façade Pattern;
see our pattern repository at www.netobjectivesrepository.com if you are not familiar
with these patterns.

www.netobjectivesrepository.com

ptg6843614

Perspectives 27

 public void actionMethod() {
 // Other things
 myServiceObject.doService();
 // Other things
 }
}

class ServiceFactory{
 public static Service getService(){
 if (someCondition) {
 return new Service_Impl1();
 } else {
 return new Service_Impl2()
 }
 }
}

interface Service {
 void doService();
}

Service_Impl1 : Service {
 void doService() { // one implementation }
}

Service_Impl2 : Service
 void doService() { // different implementation }
}

What’s the advantage? Are we simply not moving a problem from
one place to another? Yes, but consider this: Today, software is becom-
ing increasingly service-oriented (in fact, the term “Service-Oriented
Architecture” represents a major movement in most large organizations).
Thus, a service may develop many clients over time, creating economies
of scale through reuse. In fact, you could reasonably say that the more
clients a service serves, the more valuable it has proven itself to be.

However, it is far less common for us to create more than one fac-
tory for a given service. What we have done is moved our one and only
change of existing code into a single, encapsulated place. Also, if the
factory does nothing else except create instances, this will be a place
with typically less complexity than other objects will tend to have.

Realistic Approach

The point here is that the entity that uses a service should not also create
it, with the clear implication that “something else” will do so. What that
something else is will vary.

ptg6843614

28 Chapter 2 • Separate Use from Construction

In the previous example, we used a separate factory. Sometimes that
is warranted. There are other ways.

• Objects can be created by a tool. Object-Relational mappers, store-
retrieve persistence tools, and so on, separate the creation of the
object(s) from their consumer(s).

• Objects can be created in one place, serialized, and then deserial-
ized in another place by different entities. Again, the two opera-
tions are separated.

• Objects can be created outside the class and passed in via construc-
tors or using setter() methods. This is often termed “depen-
dency injection.”

...and so on. The work required to use these methods is not always
justified, however. If we are to do minimal designs, adding complexity
only where it is actually warranted, we cannot decide to do any of these
things with the anticipation that a class may change in the future. After
all, anything could change.

Overdesign often comes from the desire to reduce risk in an environ-
ment where change is difficult to predict and where accommodating
change by altering a design is perceived as dangerous and leading to
decay. However, we want to reduce these concerns about change while
adding the least complexity necessary.

What is needed is a bare-minimum practice that we can always
engage in, when there is no justification for anything more complex.
The following is what we3 recommend.

public class BusinessObject {
 public void actionMethod() {
 // Other things
 Service myServiceObject = Service.getInstance();
 myServiceObject.doService();
 // Other things
 }
}

class Service {
private Service(){

 //any needed construction behavior
 }

3. The origin of this idea is hard to determine, but we learned it here: Bloch, Joshua. Effective
Java Programming Language Guide. Upper Saddle River, NJ: Prentice Hall, 2001.

ptg6843614

Perspectives 29

 public static Service getInstance() {
 return new Service();
 }
 public void doService() {
 //implementation here
 }
}

We have added a few lines of code in Service and simply changed
the new Service() that used to be in BusinessObject to Service.
getInstance().

This is simple and essentially no additional work, but it enables a clean
transition to the following design, only when and if it ever becomes
needed and even under that circumstance where many other clients
besides BusinessObject are also using Service in this same way.

public class BusinessObject {
 public void actionMethod() {
 // Other things

 //No Change!
 Servicec myServiceObject = Service.getInstance();
 myServiceObject.doService();
 // Other things
 }
}

abstract class Service {
 private Service(){ //any needed construction behavior }
 public static Service getInstance() {
 return ServiceFactory.getService()
 }
 abstract void doService();
}

class ServiceFactory{
 public static Service getService(){
 if (someCondition) {
 return new Service_Impl1();
 } else {
 return new Service_Impl2()
 }
 }
}

Service_Impl1 : Service {
 void doService() { // one implementation }
}

ptg6843614

30 Chapter 2 • Separate Use from Construction

Service_Impl2 : Service
 void doService() { // different implementation
}

Other Practical Considerations

In implementing this practice, or any practice, we have to keep prag-
matic concerns in mind. Doctors always wash their hands, but they cer-
tainly would not refuse to give first aid to someone in an emergency
without doing so. We always have to keep the real world in perspective
when we apply a practice.

Here are some examples:

• We cannot always afford to make a constructor literally private.
We have done so here in our examples to make it clear that new
is not to appear in any of the client objects. If you remote objects,
serialize them, and so on, you cannot make your constructors pri-
vate and thus need to rely on the convention of using only get-
Instance() in client objects as a best practice.

• Our factory uses a static method to build the object. We did this to
keep the code brief and because we wanted to make a single, sim-
ple point. However, static methods are not recommended (except
for getInstance()), and in practice we tend to make such fac-
tories singletons instead. See www.netobjectivesrepository.com/
TheSingletonPattern for information on this pattern.

• Sometimes a separate factory is overkill for a simple conditional,
and the object creation implementation can be left directly in the
getInstance() method. However, this does weaken the object’s
cohesion.

• Sometimes the creation of the service object is a complex issue in
and of itself. In this case, a separate factory is almost certainly war-
ranted and may in fact be an implementation of a design pattern.

Timing Your Decisions

Even when we separate the use and construction issues, each is still
a design consideration to be determined. We have to determine the
proper objects and relationships for the desired behavior of the system
and how to best get our instances created and “wired together.” In each

www.netobjectivesrepository.com/TheSingletonPattern
www.netobjectivesrepository.com/TheSingletonPattern

ptg6843614

Overloading and C++ 31

case, we are making design decisions that proceed from our analysis of
the problem to be solved.

One question that often arises is, which decisions should we make
first: our systemic design (for behavior) or how we will solve the instan-
tiation problems.

It is very important that you hold off on committing to any particular
instantiation scheme until you have a good idea of the design of your
system. Determining your objects and their relationships must always
come first, and not until you are fairly far along in making these deter-
minations should the topic of object creation be addressed in any way.

Why? There are many different ways to solve the creational problems
in object orientation; in fact, there are a number of well-established pat-
terns, such as the Abstract Factory, Prototype, Singleton, Builder, and
so forth. How do we pick the right one?

As in all pattern-oriented design, we must proceed from and be
informed by the context of the problem we are solving, and in the case
of instantiation, the objects and relationships in the design define this
context. You cannot know which creational pattern is best before you
know the nature of what is to be built.

Worse, if you do happen to select a pattern creation, perhaps capri-
ciously (“I like Builders”), then almost certainly your system design
will be whatever that creational pattern happens to build well and not
the design that is uniquely appropriate to your problem domain.

Those of us who began as procedural programmers often have a hard
time accepting this and adhering to it. We have a hard time resisting the
instantiation issue, because it is an issue that did not really exist in the
more straightforward load-and-run world of procedural programming.

Nevertheless, we need to be disciplined on this issue, and here is
where colleagues can really help. In initial discussions about system
design, we must always remind each other not to leap too quickly to
instantiation/creation issues.

Using getInstance() in favor of the direct use of the constructor
can help. Once this method is in place, it can delegate (in the future)
to any sort of factory we might decide upon, with little or no change to
the system.

Overloading and C++

If you are wondering what to do when you need to have overloaded con-
structors, the answer is simple: Create overloaded getInstance methods.

ptg6843614

32 Chapter 2 • Separate Use from Construction

Those of you who are C++ programmers may notice the serious mem-
ory leaks here (if you are not a C++ programmer, please skip the rest
of this paragraph). To solve this, you must add a corresponding static
releaseInstance() method that you call where you would have
called delete on the object. The releaseInstance object must take
a pointer to the object being released, and it calls delete on the object.
Note, however, that by shielding the creation and destruction of the
objects, you may find you can get performance improvements by having
the getInstance() and releaseInstance() methods control when
things are constructed and deleted. For example, you can convert a reg-
ular object to a singleton without the using objects ever noticing (you’d
change the getInstance() method to as needed for a singleton, and
you’d have the releaseInstance() not do anything).

Validating This for Yourself

In our classes, we often pose the following situation and correspond-
ing question to our students: “Imagine we divide this class so those on
the left will decide what objects are needed and how they will be used.
But, when using them, they don’t have to worry about which particular
objects they will use in a particular situation. Those people on the right
side of the room will write factories that will give those people on the
left the proper objects when asked for.” That is, those on the left will
have the perspective of use while those on the right will have the per-
spective of creation. “Which side of the room has the easier problem?”

Virtually everyone agrees that merely figuring out the rules for cre-
ation is much easier than figuring out which objects are needed, figur-
ing out how to use them, and then implementing them. However, now
consider how much work the side on the left has to do compared to
what they would have to do without this division. It’s almost certainly
well less than half the work they had before. In other words, if you
don’t have to consider the particular objects you are using (the side on
the right is doing that), your problem becomes significantly easier. Also,
notice what happens when you get new functionality; you only have to
write it and have the right side change the creating entities. Our biggest
problem has just disappeared (integration of new code).

You should notice that this process—just considering the abstract
type you have and not the specific implementation—encourages the
thinking that “While I am implementing this now, I have other types

ptg6843614

Summary 33

that may be implemented later.” This distinction between an implemen-
tation and the concept that it is an implementation of is very useful.

Summary

As consultants, we are often called in to help teams that are in trouble.
In fact, if a team is “doing great,” there would seem little reason to ask
for help. Because of this, we see a lot of software systems that have sig-
nificant challenges.

In your first day on-site as a consultant, you have to quickly find a
way to make some kind of positive impact, but you are probably the
least knowledgeable person about the system in question at that point,
having just been introduced to it. To deliver value quickly, you need to
know certain things to look for that a team in trouble will likely have
failed to do.

One of the most common mistakes we see is the failure to separate
the use of objects from their creation. This happens not because the
development team is lazy or foolish. Most likely this is simply an issue
they have not considered, and once they do, they can begin to introduce
this practice and gain immense benefit from this single change.

There is a lesson in this. Value often flows from aligning ourselves
with the essential nature, or truth, of something. The relationship “I use
X” is very different from “I make X,” and it is actually more natural to
handle them in different places and in different ways.

I never make soup while bathing the baby or I’m likely to end up
with onions in the shampoo.

ptg6843614

This page intentionally left blank

ptg6843614

35

With the advent of agile methods, Test-Driven Development (TDD) has been
gaining momentum. A mantra of agile is that stories are completed, not merely
written, every iteration. This means they have to go through testing to be con-
sidered “done, done, done.” Many teams have experienced the productivity gains
and value of TDD. Many teams have, unfortunately, shied away from it as well.
We believe that the value and reason that TDD works are not fully appreciated.
This chapter begins by defining testing and then discusses both why TDD works
and why it isn’t really testing up front.

A Trim Tab: Testing and Testability

As mentioned in the preface, this book represents the set of trim tabs1

we, at Net Objectives, consider to be most useful for enhancing the pro-
ductivity of software developers. We consider the issue of testability (the
focus of this chapter) to be, perhaps, the greatest of these. Hence, we
could say this chapter is about the trim tabs of trim tabs.

What Is Testing?

Merriam Webster’s dictionary defines test as “the procedure of submit-
ting a statement to such conditions or operations as will lead to its proof
or disproof or to its acceptance or rejection.” This is testing as an action.
However, a test can also be a noun, something that is “a basis of evalu-
ation.” We’re sure you recollect a time someone put a “test” on your
desk and then you had to take it. The test you were given in this case

1. If you haven’t read the preface, please do so now, even if you understand what a trim tab is.

CHAPTER 3

Define Tests Up Front

ptg6843614

36 Chapter 3 • Define Tests Up Front

specified what you needed to know in order to get a good grade. The
action of taking the test is something different altogether.

In the same way, tests in software are about what the software needs
to do in order to be considered successfully implemented. This is why
we can write tests before we have code to test. We are specifying what
the software needs to do. We suggest this insight leads to the observa-
tion that test-first is really analysis-first using tests. In other words, we
use the tests to determine the behavior we want of the functionality we
are testing. This is a form of analysis.

 But it is actually more than that; it is also a type of design using tests
to accomplish the design. That is, simultaneously with the analysis, we
are figuring out how to implement the interfaces of the functionality.
We are splitting up the classes into their methods. We are, in essence,
doing design.

Testability and Code Quality

Why is this useful? We suggest it’s because testability is highly corre-
lated to the code qualities we want to manifest, in particular, loose cou-
pling, strong cohesion, and no redundancy. We can recollect times that
at the start of testing our code we have remarked the following:

“I can’t test this code; it does too many things that are so intertwined.”
(weak cohesion)

“I can’t test this code without access to dozens of other things.” (exces-
sive coupling)

“I can’t test this code; it’s been copied all over the place, and my tests
will have to be duplicated over and over again.” (redundancy)

“I can’t test this code; there are too many ways for external objects to
change its internal state.” (lack of encapsulation)

We’ve often summed it up by saying, “Gee, I wish they had thought
of how this code was going to be tested while they were writing it!”

I’m (comment by Alan) kind of slow sometimes because it took me
quite some time to realize the following:

I should consider how my code is going to be tested before writing it!

The reason is clear: Testability is related to loose coupling, strong
cohesion, no redundancy, and proper encapsulation. Another way to

ptg6843614

Case Study: Testability 37

say this is that the tighter your coupling, the weaker your cohesion; the
more your redundancy and the weaker your encapsulation, the harder
it will be to test your code. Therefore, making your code easier to test
will result in looser coupling, strong cohesion, less redundancy, and
better encapsulation.

This leads to a new principle like the following:

Considering how to test your code before you write it is a kind of design.

Since testability results in so many good code qualities and since it
is done before you write your code, it is a very highly leveraged action.
That is, a little work goes a long way; it’s a great trim tab.

Case Study: Testability

Let’s look at a case study. Let’s say we have a piece of hardware whose
status we need to detect (in other words, see whether it is functioning
properly). After detecting the status, we need to send an encrypted mes-
sage via TCP/IP to some monitoring device. If we were to ask you how
to design the system, one of four choices probably comes to mind:

• Case 1: One class, one method that does it all (get status, encrypt,
and transmit)

• Case 2: One class, four methods

° Control method that calls the other three methods that follow

° getStatus()

° encrypt()

° transmit()

• Case 3: Three classes, one or two methods in each

° Hardware.getStatus()

° Encrypt.encrypt()

° Transmit.transmit()

° Hardware.getEncryptSendStatus() calls the prior three
methods

• Case 4: Four classes (a variant on the prior case where we have
the control program in a separate class)

ptg6843614

38 Chapter 3 • Define Tests Up Front

We can get into several “religious” conversations here as to which one
is better. Note that the first one has poor cohesion and the likelihood of
coupling the methods. If we start with that and need to modify the code
(for example, use another encrypter), it may be difficult to do so.

Let’s look at what happens if we design our code here with the simple
mandate of making it as testable as possible. In this case, most people
will select cases 2 to 4. Actually, most will pick 3 with a handful picking
2 or 4. Now, from a testability point of view, we would say 3 or 4 is the
easiest. Why? What easier way of testing encryption is there than if it is
in its own class? The same is true for the hardware and the transmitter.
Some will say that as long as each function is in its own method and
each method uses variables local to the method only, then it would be
easy enough to extract the method when needed. It’s kind of hard to
win an argument for separate classes here if the person you are arguing
with doesn’t like lots of classes (or has misunderstood XP’s mandate of
fewest number of methods and classes). They can always say, “Look, the
code is easy enough to see—why add the extra classes?”

This may not be a problem at this point. However, when methods like
this are lumped together, we often take advantage of the fact that even
private members are public to the classes’ members. Hence, refactoring
out the methods may or may not be easy. We also point out that you
must instantiate the entire object, which may or may not be simple. For
example, you may have to provide a valid TCP/IP connection to instan-
tiate it. However, with the understanding that lumping all the methods
together is acceptable only until one of the methods starts to vary (and
then we’ll have to pull it out), we wouldn’t argue too long here. You
should readily observe that considering the testability of the code here
creates a better design.

By the way, it is worth noting that we are not suggesting that we have
only one method per class. We are suggesting you have highly cohesive
classes. In this example, each entity type didn’t have a lot of functional-
ity, so that’s how things worked out.

Setting Ourselves Up for Change

You should note that the results we’ll get with this approach will be code
that is highly modularized, cohesive, and loosely coupled. This means
we should be prepared for changes in the future. We’ll take this a step
further in Chapter 11, Refactor to the Open-Closed, which shows how

ptg6843614

A Reflection on Up-Front Testing 39

design from test specifications such as we’ve done here sets the stage for
extending our designs in an efficient manner.

Programmer as Frog

This brings up an interesting point. Why are programmers like frogs? In
our classes we’ve gotten some pretty interesting answers to this ques-
tion. They include we like finding bugs, we have warts, and you have
to kiss a lot of programmers before you find your Prince Charming. But
we’re not looking for any of these answers.

It turns out, what we are referring to is actually an urban legend (we
looked it up; we didn’t try it, so don’t report us to the ASPCA). It used
to be believed that if you put a frog in hot water it’d immediately jump
out. However, if you put it in a pot of room-temperature water and place
the pot on the stove and heat it up, the frog will stay in the pot until it
boiled to death. Now we know we would hop out of a pot that was on a
stove (probably even before it got too hot!). So, why are we like frogs?
It’s because as developers we don’t notice the slow degradation of our
code.

We’ve all seen this in something we call “switch creep.” The first
switch we have isn’t bad. The second one isn’t bad either. But some-
where around the 57th switch, the water temperature is pretty up there!

This leads to a habit developers should get into: Don’t degrade your
code! Or, at least if you must, do it intentionally! That is, do it only when
you know you are doing it. This takes discipline as well as team buy-in.
But if you can do that, it also enables you to avoid slowly degrading your
code.

We heard Ward Cunningham once say, “Spend as much time as you
need to build the best-quality code you can, but don’t add any function-
ality that you don’t need right now.”2

A Reflection on Up-Front Testing

As we were saying, up-front testing really isn’t testing at all. It is really
up-front design through the analysis of our tests. Can we take this test-
ing even further? When XP came out and suggested doing unit tests,
many of us realized that if we combined a series of unit tests together,
we could get the equivalent of automated acceptance testing.

2. Said at an eXtreme Programming Seattle User Group meeting circa 2006.

ptg6843614

40 Chapter 3 • Define Tests Up Front

However, there was a better way. With the invention of the Frame-
work for Integrated Testing (FIT), defining acceptance tests became a
separate process from combining unit tests. We now had an easy method
to have nonprogrammers define and (virtually) implement acceptance
tests. These two testing practices were still often practiced separately.

Eventually we came across Rick Mugridge’s FIT for Developing Software
(the first 50 pages of which are a must-read for all developers regardless
of your testing practices). He eloquently states how defining acceptance
tests up front improves the quality of the conversation between QAs,
BAs, and devs. Given that these people will (or at least should) reflect
on acceptance test definitions at some point, this implies we should pick
the most beneficial time to do this—and that’d be up front (for a full
exploration of this, please look at Chapter 7, Acceptance Test–Driven
Development (ATDD)).

This creates value (better conversation, better understanding, clearer
scope) without creating extra work. This leads to the insight that we
should not drive our acceptance tests from our unit tests but rather do it
the other way around since we need to be creating our acceptance tests
first. In other words, our unit tests need to be created within the con-
text of manifesting the behavior our acceptance tests dictate.

As a disciple of Christopher Alexander,3 this makes sense in another
way. Alexander’s work proposes that designing from context (the big
picture) creates better designs. However, we believe this is a broader
principle than just a design principle. In general, we suggest that keep-
ing in mind why you are doing something (the context) improves what-
ever it is you are doing (whether it is design or something else).

A big part of agile software development is discovering what the cus-
tomer wants or needs. In doing this, one writes stories. Following Alex-
ander’s ideas here would mean that we should start with the big picture
of the behavior we want and then go into the details. Again, this means
driving unit tests within the context of the desired behavior. Hence,
TDD is not even design-first as much as it is analysis and then design.
So, perhaps we have Test Driven Analysis and Design and then Develop-
ment (TDADD?).

But are we really testing first? We don’t think so. Let’s look at another
activity: making and using plans. We can talk about planning in three
ways.

3. Alexander, Christopher. The Timeless Way of Building. New York: Oxford University Press,
1979.

ptg6843614

A Reflection on Up-Front Testing 41

• Planning (the action of making the plan)

• Plan (a description of steps we intend to perform)

• Following the plan (doing these steps)

Now in testing, we have words for the second two steps but not for
the first one. For example, the equivalent of a plan is a test specification.
The equivalent of following the plan is running the tests. But what is
the equivalent of planning? We would say it is creating the test specifi-
cation. In other words, we have the following:

Plans Tests

Planning Creating the test specification

Plan Test specification

Following the plan Running the test

So, what we actually do is up-front Test Specification (OK, so we’re
being picky, but a test specification is different from running the test).
Test specifications, of course, are another way of stating what the sys-
tem needs to do; that is, it is analysis. We guess you could say we do
TSDADD (Test-Specification Driven Analysis and Design and Develop-
ment). No wonder they shortened it to TDD! Funny, however, that it
wasn’t given an intention-revealing name!

The challenge now with the term TDD is that it has a lot of latitude
on what it means. Are we starting from the functional level (unit tests,
TSDD)? Or the behavior of the system level (acceptance tests, TSDADD)?
To avoid confusion in the rest of this chapter, we are going to refer to
what we’ve been calling TSDADD (tongue-in-cheek) as Acceptance Test–
Driven Development (or ATDD, which is described in detail in Chapter
7).4 We will refer to the practice of writing unit tests first as UTDD. As
stated earlier, starting from the behavioral level (the big picture) creates
better conversations and context. Let’s look at the advantages of doing so.

• Better design

• Improving the clarity of scope and avoiding excess work

• Reducing complexity

4. ATDD is very similar to Dan North’s BDD but has some differences that we will not review
here.

ptg6843614

42 Chapter 3 • Define Tests Up Front

Better Design

Let’s get back to Alexander’s hypothesis. Alexander states that design-
ing from context provides insights into what the functionality you are
creating needs to do. Designing from the whole enables you to see how
the smaller pieces should fit together. This is a fundamental design
principle that works in other industries besides his (building construc-
tion). Although software development is not at all like building build-
ings, design patterns are somewhat based on this concept. One aspect
of this is the Dependency Inversion principle. We should expect, then,
that doing ATDD should result in better designs than the classic UTDD
where we specified the pieces first and put them together.

Improving Clarity of Scope: Avoiding Excess Work

By providing our acceptance tests up front, we help the developer under-
stand what is in the scope of the requirement. This prevents developers
from overbuilding the system. This, of course, helps avoid excess work.

You might be concerned that this minimalistic design will not pre-
pare us for future changes. But just the opposite is true. By having an
automated test suite, high-quality code, and an understanding of qual-
ity design (design patterns), you set yourself up to be able to add design
changes later, when you know they are needed and you know how to
implement them. This is much more efficient than designing ahead of
time.

Another way acceptance tests can help us avoid work is they can give
us an indication of how far down we have to go in specifying unit tests.
UTDD somewhat requires every function to be tested because the unit
tests are your safety net. But in ATDD, the acceptance tests are your
safety net; the unit tests are there to help you design your functions and
to find errors faster (both good things but not always necessary).

Reducing Complexity

Overbuilding systems is one of the greatest causes of waste in software
development. A function that isn’t used doesn’t just waste the time it
took to write it, it makes the system more complex. This makes adding
other functionality or fixing existing errors much more time-consum-
ing, not to mention that the system is likely to have more errors in it.
By clarifying the scope of work in a clearer way, we can help avoid this.

ptg6843614

A Reflection on Up-Front Testing 43

Other Advantages

If you are building software that must meet government testing specifi-
cations (for example, health-care instrumentation), it is easier to prove
the software is doing what it needs to if you have a full set of automated
acceptance tests. If you just have a set of unit tests (even a complete
set), you will still have to demonstrate that your unit tests demonstrate
acceptance test criteria. If you are going to have to specify these accep-
tance tests anyway, you might as well do them first for all the reasons
we’ve been mentioning.

A Comment on Paired Programming
by Alan Shalloway

I have always liked paired programming. I had done things like it
but not in a disciplined manner years before I heard of eXtreme
Programming. Most people who haven’t done it, however, have
difficulties seeing why (or how) it would be useful. As an edu-
cator (trainer/coach), my work requires not just understanding
why something works but knowing how to inform others about
why things work. Actually, this is true of all educators but is some-
thing we particularly ascribe to at Net Objectives. People readily
see the advantage of having several people involved in a conver-
sation about acceptance tests (again, see Chapter 7, Acceptance
Test–Driven Development (ATDD)). Paired programming provides
somewhat the same advantage at the coding (unit-testing) level.

No Excuses

By the way, there may be certain arguments for not writing and main-
taining a set of automated tests. We don’t think we would agree with
them, or at least, in virtually all cases we are fairly sure we wouldn’t.
However, there is little argument that can be made for not at least speci-
fying the tests first. This is because you are going to have to specify
them at some time. You might as well do it at the time it provides the
greatest value.

ptg6843614

44 Chapter 3 • Define Tests Up Front

Summary

There are two kinds of Test-Driven Development: the classic style of
writing unit tests first (often called TDD but what we are now calling
UTDD) and the more productive method of writing acceptance tests first
and then your unit tests (which we are calling ATDD). Both are really
about specifying your tests first and then writing the tests, then writing
your code, and then running the tests. This creates many advantages.
By creating unit tests from the context of your acceptance tests, you
will get a better definition of your scope, avoid doing extra work, reduce
complexity, and achieve better designs.

ptg6843614

45

A few years ago someone in one of my1 design patterns classes mentioned I should
name something after myself since I had written a successful book on design pat-
terns. I, of course, liked this person and his idea immediately. So, I went about
thinking about what would be appropriate. The best I could come up with was
the following:

When N things need to change and N>1, Shalloway will find at most N-1 of
these things.

Although I had hoped to find something complimentary, this was the most
appropriate thing I could come up with. I point out that I didn’t ask for this when
I was born; I was given this “ability.” Most people also have this trait. In other
words, this isn’t choice; it’s how we are. This means we had better pay attention
to it. Otherwise, we’ll find that if we write code that requires finding more than
one thing, we won’t find them all, but our customers (or if we’re lucky, someone
else on our team) will.

Although I am not particularly proud of Shalloway’s law, I am proud of Shal-
loway’s principle, which I came up with to deal with it. Shalloway’s principle
states the following:

Avoid situations where Shalloway’s law applies.

Kent Beck’s famous “once and only once rule” is one approach to this—in
other words, keep N at 1—but not the only one. Although avoiding redundancy
is perhaps the best way to follow Shalloway’s principle, it is not always possible.
Let’s begin by looking at different types of redundancy and see how we might
avoid them, or if not, how we can still follow Shalloway’s principle.

1. Since this chapter is about Shalloway’s law, it is written by Shalloway and therefore is in
the first person.

CHAPTER 4

Shalloway’s Law

and Shalloway’s Principle

ptg6843614

46 Chapter 4 • Shalloway’s Law and Shalloway’s Principle

Types of Redundancy

If we look at two particular types of redundancy, we can see that
although some forms of this pathology are easy to see, others are more
subtle. This is important because all forms of redundancy violate Shallo-
way’s principle and create maintenance problems.

Copy and Paste

This is the most obvious type of redundancy and probably the easiest
to avoid. Using functions is a common way to avoid this. Rather than
copying code from one place to another, we move the code into a func-
tion or service class where it can be reused from both places.

Magic Numbers2

Using magic numbers as redundancy is not quite as obvious as copy
and paste, but it is redundancy. Basically, the redundancy comes from
the fact that the meaning of the magic number must be known every-
where the magic number is used. How to avoid magic numbers is well-
known—just use #defines or consts or their equivalent, depending
upon your language of choice.

Other Types

There are, of course, many other types of redundancy. These include
redundant behavior (for example, “save to file” or “save to database”),
redundant information, and redundant implementations. We’re not
going to list them all here. It is important to realize that any time a con-
cept (data, algorithm, code, and so on) appears in more than one place,
there is redundancy.

Redefining Redundancy

Redundancy can be much more intricate than what people initially
think. The definition of redundancy I am referring to here is “character-
ized by similarity or repetition.”

2. Magic numbers are numbers inserted into code that have specific meanings that are not
explicitly stated. For example, if the most you can have of something is currently 5 and
you have the test refer to “5” explicitly, then 5 is a magic number.

ptg6843614

Other Types of Redundancy 47

I suggest redundancy can be fairly subtle, and defining it as dupli-
cation or repetition is not sufficient. Defining it as similarity, unfor-
tunately, can be a bit vague—so perhaps it isn’t that useful either. I
propose a definition of redundancy in code that I believe is very useful.

Redundancy is present if when you make a change in one place in
your code, you must make a corresponding change in another place.

A little reflection will tell us that redundancy, at least defined this way,
is almost impossible to avoid. For example, a function call has redun-
dancy in it. Both the calling and defined statement must be changed
if either change. From this we can also see the relationship between
redundancy and coupling. And, as with coupling, not all redundancy
is bad or even avoidable. I would say the type of redundancy you must
avoid is that redundancy that violates Shalloway’s principle.

Redundancy that doesn’t violate Shalloway’s principle is likely to be
a nuisance at most. For example, in the earlier case, I can have a func-
tion called from any number of places. Doing so makes my system have
a significant amount of redundancy. However, this doesn’t violate Shal-
loway’s principle. Why? If I change the defining statement, the compiler
will generate a to-do3 list for me to change my calling statements. I still,
of course, have work to make my changes, but that is considerably dif-
ferent from the dangerous situation I would be in if I had to also find the
changes that were required.

Other Types of Redundancy

Given our new definition of redundancy, what are other common forms
of it (and how do we avoid them)? Implementations are often redundant
even if the code making them up are not duplicates of each other. For
example, if a developer takes a function and copies it (clearly redundant
at this point) but then changes all the code (presumably removing the
redundancy) because the implementation of the new function is differ-
ent, do you still have redundancy? I would suggest you do—not of the
implementation but most likely the algorithm you are implementing.
The second function was copied from the first one presumably because
the flow of both algorithms was the same; only their implementations
were different.

3. The technical term for this to-do list is compilation errors. But I just treat them as a to-do
list so I don’t have to find them, thereby following Shalloway’s principle.

ptg6843614

48 Chapter 4 • Shalloway’s Law and Shalloway’s Principle

How do you remove this type of redundancy? I’ll refer to Chapter 19,
The Template Method Pattern, from Design Patterns Explained: A New Per-
spective on Object-Oriented Design. Basically, it involves putting the algo-
rithm in a base (abstract) class and having the implementations of each
step be in derived (extended) classes.

The Role of Design Patterns in Reducing
Redundancy

We often say that the purpose of design with patterns is to handle varia-
tion. Many patterns are readily identified as doing this:

• Strategy handles multiple algorithms.

• Bridge handles multiple implementations.

• Template Method handles multiple implementations of a process.

• Decorator allows for various additional steps in a process.

Most of the design patterns in the seminal work Design Patterns: Ele-
ments of Reusable Object-Oriented Software (Gamma, Erich, et al. Boston:
Addison-Wesley, 1994) are about handling variations directly, or they
enable the handling of variations.

Another way to think of design patterns is that they eliminate the
redundancy of having to know which implementation is being used.

Because design patterns handle variations in a common manner, they
can often be used to eliminate redundant relationships that often exist
in a problem domain. For example, a purchasing/selling system will
have several types of documents and payment types. Each document
type may have a special payment type, but the relationship between
them is probably similar to the relationship between any other pair.
This sets up redundant relationships. By using abstract classes and inter-
faces, redundancies can be made explicit and allow the compiler to find
things for you. For example, when an interface is used, the compiler
will ensure that any new method be defined in all cases—you won’t
have to go looking for them.

Few Developers Spend a Lot of Time Fixing Bugs

A common misconception among software developers is that they spend
a lot of time fixing bugs. But on reflection, most realize that most of

ptg6843614

Few Developers Spend a Lot of Time Fixing Bugs 49

their time is spent finding the bugs. Actually fixing them takes relatively
little time. One of the reasons people spend a lot of time finding bugs is
that they have violated Shalloway’s principle. If you can’t find the cases
easily, bugs will result.

A key to avoiding this problem is to be aware of when you are violat-
ing Shalloway’s principle. Here’s an interesting case. Let’s say you’ve
been using an Encrypter class in your code. If you’ve been following
our suggestion of separating use from construction, you may have code
that looks something like the following:

public class BusinessObject {
 public void actionMethod() {
 AnotherObject aAnotherObject= AnotherObject.getInstance()
 String aString;
 String aString2;

 // Other things
 Encrypter myEncrypter= Encrypter.getEncrypter();

 //
 myEncrypter.doYourStuff(aString);

 //
 aAnotherObject(myEncrypter);

 //
 myEncrypter.doYourStuff(aString2);

 }
}

public class AnotherBusinessObject {
 public void actionMethod(Encrypter encrypterToUse) {
 // Other things
 //
 //
 encrypterToUse.doYourStuff(aString);
 }
}

Now let’s say a case comes up where we don’t need to use the
Encrypter. We might change the code from

// Other things
 Encrypter myEncrypter= Encrypter.getEncrypter();

ptg6843614

50 Chapter 4 • Shalloway’s Law and Shalloway’s Principle

to the following:

 Encrypter myEncrypter;
 If (<<need an encrypter>>)
 myEncrypter= Encrypter.getEncrypter();

Then, of course, we have to go through our code and see when we
don’t have an encrypter.

 if (myEncrypter != null)
 myEncrypter.doYourStuff(aString);

At some point we’ll hit the second case of this. This means Shallo-
way’s law is in effect. By the way, a corollary to Shalloway’s law is that
“If you find two cases, know you won’t find all of the cases.” At this
point, we should figure out a way not to have to test for the null case.
An easy way is to put the logic in the getEncrypter method in the
first place. In other words, have Encrypter’s getEncrypter method
consist of the following:

 If (<<don’t need an encrypter>>)
 Return null;

This, first of all, keeps all the knowledge about the construction of the
encrypter out of the calling class. It also eliminates the need to check for
the null condition—both avoiding Shalloway’s law and decoupling the
client code from the Encrypter object.

This, by the way, is the Null Object Pattern. I suggest that any time
you find you are doing a test for null more than once, you should see
whether you can use this properly.

I suspect that many readers will think this example is somewhat
contrived because with a factory making the Encrypter object, it is
pretty clear that the test for a null case should be handled there. But
this is also my point—when you separate use from construction, you
are more likely to make better decisions later. If getEncrypter wasn’t
being used and the client code had the rules of construction, setting the
myEncrypter reference would likely never occur.

Redundancy and Other Code Qualities

It’s useful to note how redundancy is related to other code qualities, in
particular, coupling and testability. Any time you have redundancy, it

ptg6843614

Redundancy and Other Code Qualities 51

is likely that if one of the occurrences changes, the other one will need
to change. If this is the case, these two cases are coupled. Coupling and
redundancy are often different flavors of the same thing.

Note that redundancy also raises the cost of testing. Test cases can
often be reduced if redundant relationships are avoided. Let’s consider
the case shown in Figure 4.1. Note that each of the service objects is
doing conceptually the same thing but is doing it in a different way (for
example, different kinds of encrypting).

Bain’s Corollary and Shalloway’s Corollary
to Shalloway’s Law

When I came up with Shalloway’s law, I got some grief from Scott
Bain, my friend, compatriot, and critic. I came up with Bain’s cor-
ollary as an act of vengeance. Bain’s corollary says, “When N is
large, Bain will find at most N/2!” Unfortunately, I follow Bain’s
corollary as well. Shalloway’s corollary is “When Shalloway is
looking for things he has to change and he finds the second case,
he knows he won’t find them all.” (If there are two cases, then
N>1.)

Note that we need to have the following for a full set of tests:

• Test of Service1

• Test of Service2

• Test of Service3

• Client using Service1

Service2

Service3

Client

Service1

Figure 4.1 Testing in a one-to-many relationship

ptg6843614

52 Chapter 4 • Shalloway’s Law and Shalloway’s Principle

• Client using Service2

• Client using Service3

The need for testing Client using the services is because we have
no assurance that we’ve abstracted out the service code. There may be
coupling taking place, especially since each service interface may be dif-
ferent. Notice what happens when more clients become involved—this
gets worse and worse.

Now, consider what happens if we make sure that all the service
objects work in the same way. In this case, we basically abstract out the
service objects. If we put in an abstraction layer (either an abstract class
or an interface that the services implement), we get what is shown in
Figure 4.2.

Although we still need to test each Service, we now need to test
only the Client to Service relationship. Note that as we get more cli-
ent objects the savings are even greater.

Summary

Shalloway’s law is both a humorous attempt at saying avoid redundancy
and some guidance for developers in how to do so—or at least to make it
less costly not to do so. Understanding redundancy is key to Shalloway’s
law, and avoiding the cost of it is the essence of Shalloway’s principle.

A powerful question when programming that can be deduced from
all of this is “If this changes, how many places will I have to change
things, and can the compiler find those for me?” If you can’t see a
way to make it so the answer is either “1” or “yes,” then you have to
acknowledge that you have a less than ideal design. At this point, you
should consider an alternative—or, heaven help you—ask someone else
to suggest an alternative.

Service3

Service

Service2Service1

Client

Figure 4.2 Creating a one-to-one relationship

ptg6843614

53

“Encapsulation” is a word that’s been with us in software development for a
long time, but if you asked people what it means, many would say something like
“hiding data.” In fact, there are quite a few books and websites that would use
that as the definition of the word. However, we have found that an examination
of the true meaning of encapsulation can be enormously beneficial and can make
many other aspects of object-oriented (OO) design (design patterns, for instance)
easier to understand and to use.

We begin simply, by showing encapsulation in its most obvious and straight-
forward forms, and then expand these concepts into the patterns and all the qual-
ities of code that make it fundamentally easier to maintain, debug, enhance, and
scale. What you will see is that encapsulation, given its more useful definition, is
a fundamental, first principle of OO.

Unencapsulated Code: The Sabotage of the
Global Variable

The following is the lowest degree of encapsulation possible in a pure-
OO language like Java or C#.

public class Foo {
 public static int x;
}

Any class in the system can access x, either to use its value in a calcu-
lation or other process (and thus become dependent upon it) or to alter
its value (and thus cause a side effect in those classes that depend on
it). Foo.x might as well be thought of as Global.x (and in fact there
are many developers who have done just this), and in one fell swoop

CHAPTER 5

Encapsulate That!

ptg6843614

54 Chapter 5 • Encapsulate That!

the efforts of the Java and C# creators to prevent global variables are
thwarted.

Global variables are ineffective because they create tight coupling.
They are rather like a doorknob that everyone in the household touches
and, thus, during the cold and flu season becomes the vector for sharing
germs. If any class in the system can depend on Foo.x and if any other
class can change it, then in theory every class is potentially coupled to
every other class, and unless your memory is perfect, you’re likely to
forget some of these links when maintaining the code. The errors that
creep in over time will often be devilishly difficult to find. We’d like to
prevent things that carry such obvious potential for pain.

What most OO developers would naturally think of as the lowest
degree of encapsulation is the following:

public class Foo{
 public int x;
}

That x in this case is an instance variable is, in fact, a kind of encap-
sulation. Now, for any class in the system to depend on x, it must have
a reference to an instance of Foo, and for two classes to be coupled
to each other through x, they must both have a reference to the same
instance of Foo.

A number of techniques can prevent this from happening, so whereas
a public static variable cannot be encapsulated, here we have at least a
chance of preventing unintended side effects. There are weakly typed
languages that posit this level of encapsulation to be enough in and of
itself.

Also note that Foo is a public class. Another encapsulating action
would be to remove the public keyword, which would mean that only
classes in the same package (Java) or assembly (C#) would be able to
access Foo in any way at all.

Encapsulation of Member Identity

Although putting x into an instance does create some degree of encap-
sulation, it fails to create an encapsulation of identity.

Identity is the principle of existence. Identity coupling is usually
thought of in terms of class A “knowing” that class B exists (usually by
having a member of its type, taking a parameter of its type, or returning
its type from a method), but instance variables have identity, too.

ptg6843614

Encapsulation of Member Identity 55

The following puts it another way:

public class Foo {
 public int x;
}

public class Bar {
 private Foo myFoo = new Foo();
 public int process(){
 int intialValue = myFoo.x;
 return initialValue * 4;
 }
}

Ignoring that this particular implementation of Bar’s process()
method would consistently produce a zero, note that not only is Bar
coupled to the value of x in the instance pointed to by myFoo, but it is
also coupled to the fact that x is an integer (or, at minimum, a type that
can be implicitly cast to one) and that it is an instance member of the
Foo class. It is coupled to x’s nature.

If a future revision of Foo requires that x be stored as, for instance, a
String, that it be obtained from a database or remote connection dynam-
ically at runtime, or that it be calculated from other values whenever it
is asked for, then Bar’s method of accessing it will have to change. Bar
will have to change because Foo changed (and so will every other class
that accesses x in a Foo instance). This is unnecessary coupling.

Encapsulating the identity of x requires that we create a method or
methods that encapsulate x’s nature.

public class Foo {
 private int x;
 public int getX() {
 return x;
 }
 public void setX(int anInt){
 x = anInt;
 }
}

public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

ptg6843614

56 Chapter 5 • Encapsulate That!

The new way of accessing Foo’s x in Bar (highlighted in bold) now
creates an encapsulation of x’s identity, or nature. Bar is coupled only
to the fact that getX() in Foo takes no parameters and returns an inte-
ger, not that x is actually stored as a integer, or that it’s actually stored in
Foo, or that it’s stored anywhere at all (it could be a random number).

Now the developers are free to change Foo without affecting Bar,
or any other class that calls getX(), so long as they don’t change the
method signature.

public class Foo {
 public String x = "0"; // x no longer an int
 public int getX() {
 // convert when needed
 return Integer.parseInt(x);
 }
 public void setX(int anInt){
 // convert back
 x = new Integer(anInt).toString();
 }
}

public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 // none the wiser
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

Here x is now stored as a String (though this is just one of any num-
ber of changes that could be made to the way x is maintained in Foo),
but Bar need not be touched at all.

Why?
What you hide, you can change. The fact that x was an integer in

Foo was hidden, so it could be changed. Envisioning this over and over
again throughout a system leads to the conclusion that the power to
make changes, to make extensions, and to fix bugs is made much easier
when you encapsulate as much and as often as possible.

Self-Encapsulating Members

Although many developers might find it quite natural to encapsulate a
data member behind a set of accessor methods (another word for get()

ptg6843614

Self-Encapsulating Members 57

and set() methods), the standard practice for accessing a data member
from within the class itself is generally to refer to it directly.

public class Foo{
 private int x;
 public int getX(){
 return x;
 }
 public void setX(int anInt){
 x = anInt;
 }
 public boolean isPrime(){
 boolean rval = true;
 for(int i=2; i<(x/2); i++){
 if(Math.mod(i, x) == 0)
 rval = false;
 }
 return rval;
 }
}

Here, isPrime() calculates a true/false condition on x, which is
local to Foo(), so even though x is private, it can be accessed directly in
the method.

For the most part it’s a matter of convenience, but consider the ear-
lier scenario where Foo was changed to the effect that x is no longer
stored as an int or is no longer stored as a local data member at all (per-
haps it’s stored in a database, serialized to the disk, obtained from some
other class, or calculated from other values). Now isPrime(), and any
other local method that directly refers to x, will have to be rewritten to
account for the new situation. In fact, the new code in local methods
that converts whatever x has become into the integer it used to be will
likely be highly redundant. And we know we don’t want redundancy.

However, for the most part it’s a matter of convenience, but if the pos-
sibility of x changing in this way seems likely (what Bruce Eckel calls
“the anticipated vector of change”), then using getX() even within
Foo’s own methods would reduce the maintenance headaches consider-
ably when the change is made.

You have to weigh the syntactic inconvenience of writing getX()
instead of x in these algorithms against the need to make extensive
changes when and if the nature of x needs to change. Generally, it’s
found to be worth the extra typing.

ptg6843614

58 Chapter 5 • Encapsulate That!

Preventing Changes

Another advantage of the accessor methods shown earlier is the capa-
bility to make a member of a class “read-only.” If we simply remove
the setX() method in Foo earlier, then the value is readable but not
changeable. This eliminates the potential that Foo may serve to couple
two other classes, since although one class may depend on the return
value of getX(), no other class may change this value.

Alternately, we could eliminate the getX() method but leave setX(),
meaning that another class could change the state of a Foo instance, but
none could depend on it.

.NET has instituted an alternative way of accomplishing this, called
a property:

// C#
public class Foo {
 private int myX;
 public int x {
 get { return myX; }
 // 'value' is an implicit variable
 set { myX = value; }
 }
}

This is a bit of syntactic sugar that allows the programmer to embed
the gets and sets as part of the data-member definition. Bar, however,
would still access it like it would any public variable.

// C#
public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 // actually calls the get
 int intialValue = myFoo.x;
 return initialValue * 4;
 }
}

The theory here is that x could have begun its life as a public member
and then later could be changed to a property without changing Bar. In
Foo, you could eliminate the set{} code like before to make the prop-
erty read-only (or the get{} to make it write-only) or could write them
to fetch/send/calculate x and thus gain similar beneficial encapsulation
as was possible with the getX() and setX() methods.

ptg6843614

The Difficulty of Encapsulating Reference Objects 59

There are arguments to be made for and against this. We won’t engage
in them here, but the good news is that, in C#, you can use either tech-
nique easily. Note that self-encapsulating a data member is a simpler
issue in C#, because the syntax for referencing the member locally
would not have to be changed when the member became a property.

The Difficulty of Encapsulating Reference
Objects

One common practice in OO is the use of constructors to guarantee the
proper creation of contained objects. Consider the following code.

public Foo{
 private int x;
 // Constructor requires an int be passed in
 Foo (int anInt){
 x = anInt;
 }
 public int getX() {
 return x;
 }
 public void setX(int newInt) {
 x = newInt;
 }
}

public Bar{
 private Foo myFoo;
 // Constructor requires an instance of Foo
 public Bar(Foo aFoo){
 myFoo = aFoo;
 }
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}
public class Client{
 public static void main(String[] args){
 int x = 5; // Make needed int for Foo instance
 Foo f = new Foo(x); // Made Foo instance using x
 Bar b = new Bar(f); // Make Bar instance using f
 int i = b.process();// Use Bar instance
 }
}

ptg6843614

60 Chapter 5 • Encapsulate That!

Here Client creates an instance of Foo (initializing the value of x by
passing an int into the constructor) and then hands this instance to the
Bar constructor, which the instance of Bar will now hold as a private
member.

Is myFoo in Bar encapsulated? It’s private. It has no set() method
to allow changes to it (it does not even have a get() method). Isn’t
the concept of a private member with no accessors the very definition
of member encapsulation? The assumption most developers would
make is that myFoo is fully encapsulated, and this could be a disastrous
assumption.

Consider the following version of the Client class.

public class Client{
 public static void main(String[] args){
 int x = 5;
 Foo f = new Foo(x);
 Bar b = new Bar(f);
 int i = b.process();
 f.setX(10); // Still holding the Foo reference!
 i = b.process();
 }
}

b.process() will produce an entirely different value in the second
call, because Client still holds a reference to f (the instance of Foo it
created to hand over to Bar’s constructor) and thus can still change its
state. We call this effect “aliasing.” Since Bar’s behavior depends upon
the state of this Foo reference, Client can break the encapsulation if it
retains this Foo reference for its own purposes, and Bar cannot prevent
it from doing so. If Client passes this Foo reference to another class,
then it, too, will be able to break the encapsulation of myFoo in Bar.

This is because myFoo is a reference to an object on the heap. When
Client calls new Bar(f), f is indeed passed by copy, but it’s a copy of a
reference, and it therefore points to the same instance that the original
did, so the copying neither hides nor protects it from future manipula-
tion. Contrast this with the call to new Foo(x). Since x is a value, not
a reference, the copying of x completely removes any possibility that
Client can change it by changing the original. In the following code
fragment

int x = 5;
Foo f = new Foo(x);
x = 10;

ptg6843614

The Difficulty of Encapsulating Reference Objects 61

the code x = 10 will have no effect on the state of f, because the inte-
ger it holds is a different integer than the one Client has. It’s a copy.

So, this problem of altering-after-the-fact is unique to references (at
least in Java) and can be tricky to deal with. One way of solving the
problem is by having Bar make a defensive copy of the Foo reference
it takes in its constructor, assuring that it holds a different reference of
Foo (with the same state) than any other object holds. This requires
that Foo be cloneable or that it exposes its state so that Bar can make
another Foo with the same state. Let’s examine two versions of Bar’s
constructor that could ensure good encapsulation of its myFoo member.

public Bar(Foo aFoo){
 myFoo = new Foo(aFoo.getX());
}

This will work as the code is written because aFoo allows Bar, an
outside class, to access its x member, and so Bar can make a new, pri-
vate, separate Foo for its own use. Now Client can manipulate the
original Foo all it wants and will not affect Bar.

If Foo did not allow this access (if it had no getX() method), then
Foo could be made cloneable:

public class Foo{
 private int x;
 public Foo(int anInt){
 x = anInt;
 }
 public Foo clone(){
 return new Foo(x);
 }
}

and so Bar’s constructor could make its defensive copy in the following
way:

public Bar(Foo aFoo){
 myFoo = aFoo.clone();
}

Either way, Bar’s myFoo reference will point to a different object on
the heap than any other class in the system, and thus myFoo is once
again completely encapsulated.

ptg6843614

62 Chapter 5 • Encapsulate That!

Breaking Encapsulation with Get()

Making members private and then providing get() methods but no
set() methods is often thought to be strong encapsulation.

We saw earlier how this is not the case with reference objects. How-
ever, if we take the step of making a defensive copy of any reference
held by a particular class, then can we still say that set() methods
break encapsulation but get() methods do not? A set() allows an out-
side class to make a change, but a get() does not, right?

Not with references. Consider the following:

public Bar{
 private Foo myFoo;
 public Bar(Foo aFoo){
 myFoo = aFoo.clone(); // Make a private instance
 }
 public Foo getFoo(){
 return myFoo;
 }
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

public class Client{
 public static void main(String[] args){
 int x = 5;
 Foo f = new Foo(x);
 // Bar will make a defensive copy
 Bar b = new Bar(f);
 int i = b.process();
 // Client gets Bar’s new Foo.
 Foo fFromBar = b.getFoo();
 fFromBar.setX(10); // ...and changes it
 i = b.process(); // effecting Bar again.
 }
}

Here Client makes a Foo, and Bar clones it to defend against sub-
sequent manipulation by Client. However, Client is able to get Bar’s
newly made, private Foo reference by calling the getFoo() method
provided, so encapsulation is broken again. The only way around this
is to have Bar clone myFoo again and then return this object from its
getFoo() method.

ptg6843614

Breaking Encapsulation with Get() 63

public Bar{
 private Foo myFoo;
 public Bar(Foo aFoo){
 myFoo = aFoo.clone();
 }
 public Foo getFoo(){
 // Return a clone, not the member
 return myFoo.clone();
 }
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

If a setFoo() method is provided, it would have to work like the
constructor does to ensure the encapsulation is maintained. So, the
game is completely different when dealing with value objects (which
are themselves passed by copy) and reference objects (which are refer-
ences passed by copy).

Put another way, an entity that appears to be strongly encapsulated
but that contains references that are not encapsulated really isn’t as
encapsulated as it appears. We always need to ask ourselves how changes
from the outside can affect a given class and see encapsulation as a pro-
tection against those changes. Table 5.1 shows the different degrees of
encapsulation achieved with value and reference types.

C# makes this issue both simpler and more complex.
For instance, although the only value objects in Java are the primi-

tives (int, float, boolean, and the like), in C# it is possible to create value
objects with both complex state and functional members (methods),

Table 5.1 Encapsulation of Value and Reference Types

Activity
Value Object
Encapsulation?

Reference Object
Encapsulation?

State passed into
constructor

Yes No, unless a defensive copy is
made

Get() method
provided

Yes No, unless a defensive copy is
returned

Set() method
provided

No No, unless a defensive copy is
made

ptg6843614

64 Chapter 5 • Encapsulate That!

called “structs.” Structs work very much like classes do (you can instan-
tiate them, and they can implement interfaces), but they are passed
by making complete copies of the object, not by copying a reference
to an instance, so these particular encapsulation issues can be largely
alleviated.

However, C# also makes value objects passable by reference, using
ref and out keywords in method signatures, so it’s possible to break
encapsulation on any member, value, or reference, if they are used.
Therefore, ref and out should be used very carefully.

A pragmatic point is that with all these issues, the main danger comes
when you break encapsulation unknowingly. Many approaches to
design might take advantage of the fact that a reference passed into a
constructor could subsequently be used to change state on a contained
object or that a value object in C# could be externalized through a ref
or an out parameter. If this is intentional and well-documented, then
the danger is minimal.

However, these subtle issues can easily escape notice and create situ-
ations where members seem to be well-encapsulated and yet are not.
Understanding how and why this happens is the best defense.

Even When Done Correctly, Getters
and Setters Break Encapsulation

So far we’ve talked about how getters and setters can inadvertently
break encapsulation. But there is a subtle way they violate encap-
sulation even when used properly. This is that they expose that the
concept is part of the containing class. In other words, if there is a
getX in Foo, even if it does not expose how x is implemented in
Foo, entities will become coupled to the fact that Foo has a con-
cept called x (and how to use it). It’s better to hide the concept
entirely if possible.

Encapsulation of Object Type

Encapsulation is often thought of as data hiding. There are even refer-
ences that define it as precisely that. However, encapsulation is a broader
notion; as we’ve already seen, it’s meaningful to think of encapsulating
the identity of a data member, not just the value that it holds.

ptg6843614

Encapsulation of Object Type 65

Taken further, it’s possible to think of the hiding of entire object types
as encapsulation as well. The following is an example.

public abstract class Calculator{
 public abstract int calc(int x, int y);
}

public class Adder extends Calculator{
 public int calc(int x, int y) {
 return x + y;
 }
}

public class Multiplier extends Calculator{
 public int calc(int x, int y){
 return x * y;
 }
}

Here, Adder and Multiplier extend the abstract base class
Calculator. Because of this, any instance of Adder or Multiplier
can be held by a reference of Calculator type (this is called an
“implicit cast”), and the class that holds the reference need not “know”
what is “really” being held. The following is an example.

public class CalcUser{
 private Calculator myCalculator;
 public CalcUser(Calculator aCalculator){
 myCalculator = aCalculator;
 }
 public void process(){
 int i1 = 4;
 int i2 = 5;
 int r = myCalculator.calc(i1, i2);
 }
}

Note that CalcUser contains no mention whatsoever of Adder or
Multiplier, yet Calculator itself is abstract (cannot be instanti-
ated), so whatever instance is passed into the constructor will have to
be either an instance of Adder or an instance of Multiplier (these are
the only classes that can be cast to Calculator, so the type checking in
the compiler will allow only these instances to be passed in).

Since they share a common interface, CalcUser can use either
Adder or Multiplier instances in exactly the same way (this is an
example of polymorphism) without any knowledge of which subclass

ptg6843614

66 Chapter 5 • Encapsulate That!

it has, even what subclasses are possible, or even that Calculator is
abstract in the first place.

This is the encapsulation of object type. Calculator, an abstract
base class (although this is equally true if an interface is used), encap-
sulates its subclasses if other classes hold their references to them as an
upcast to the base type. Most of the popular design patterns make use of
this, and it is just what the “Gang of Four” had in mind when they made
the recommendation1 that good designers should “design to interfaces.”

It’s a tad more complicated in C# because, unlike Java, methods in C#
are not automatically virtual (late-bound). This means a method called
on a subclass reference that was cast back to the superclass type may
revert to the superclass method unless the override keyword is used
in the subclass method.

public abstract class Calculator{
 // abstract methods are inherently virtual
 public abstract int calc(int x, int y);
}

public class Adder : Calculator{
 public override int calc(int x, int y) {
 return x + y;
 }
}
public class Multiplier : Calculator{
 public override int calc(int x, int y){
 return x * y;
 }
}

Note that calc() is abstract in Calculator, and so it is inherently/
automatically virtual. Sometimes base classes provide default imple-
mentations of methods, and if these are present, they must be declared
virtual, or they may not be overridden like the following:

public abstract class Calculator{
 // default implementation must be 'virtual'
 public virtual int calc(int x, int y){
 return System.Math.Max(x, y);
 }
}

1. Gamma, Erich, Richard Helm, Robert Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.

ptg6843614

Encapsulation of Design 67

Encapsulation of Design

In the previous example, the Calculator abstraction made it possible
to hide the specific kinds of calculator subclasses that exist from other
parts of the application.

The virtue of this is maintainability and flexibility; we can add new
types of calculators to the system without changing the client objects
that use them.

However, whereas we can hide the specific classes Adder and
Multiplier from most of the rest of the system, certainly we cannot
hide them entirely. Something, somewhere, will have to contain the
code new Adder() and new Multiplier() in order for these classes
to be instantiated. And, something will have to make the decision as to
which one to build in a given circumstance. If the client objects that use
these classes are given this responsibility, then we must break the encap-
sulation of type, and we lose the modularity that seemed so attractive.

The obvious answer is to use another object to build the Calculator
subclasses.

Such an object is usually called an “object factory.”

public class CalculatorFactory {
 public Calculator getCalculator() {
 if(someDecision()) {
 return new Adder();
 } else {
 return new Multiplier();
 }
 }
}

If all other objects that require a Calculator implementation use
this factory to get it, then we have one single place to maintain when a
new class, say, Subtractor, comes into being.

In Design Patterns: Elements of Reusable Object-Oriented Software, the
authors2 illustrate the encapsulation of type in many of their patterns,
such as the Strategy Pattern.

public class Client {
 public static void main(String[] args) {
 Context c = new context();
 Strategy s = StrategyFactory.getStrategy();

2. Gamma, Erich, Richard Helm, Robert Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994

ptg6843614

68 Chapter 5 • Encapsulate That!

 c.takeAction(s);
 }
}
public class Context {
 public void takeAction(Strategy myStrategy) {
 // Whatever else
 myStrategy.varyingAction();
 // Whatever else
 }
}
pubic abstract class Strategy {
 public abstract void varyingAction;
}

StrategyFactory (not shown) clearly makes an implementing
subclass (also not shown) of Strategy and provides this to Client.
Then Client hands this to the Context object to use. Context is
“unaware” of which actual Strategy implementation it has, and so is
Client, since it obtained it from the StrategyFactory blindly.

But there is still an opportunity for encapsulation here that we’re not
taking advantage of. The Strategy implementations are hidden from
everything except StrategyFactory, but Client does have “aware-
ness” of the fact that the Context object requires a Strategy imple-
mentation to be “handed in” in order to function properly. What is not
encapsulated, therefore, is the Strategy Pattern itself, the design we’re
using to handle the variation. If at some point in the future we decide
to change this design to one where no such delegation takes place or
where the delegation is accomplished in some other way, then we’ll
have to change the way Client interacts with Context. The design is
not encapsulated.

Sometimes this is necessary. If, for instance, we need a high degree of
dynamism in the way Context operates (perhaps every time it is used
we need to be able to give it a different Strategy implementation),
then this implementation of the pattern would be appropriate. Where it
is not necessary, however, it’s better to hide the design.

How? The most common techniques to either

• Have the Context object request the Strategy implementa-
tion from StrategyFactory, instead of having Client do so.
Thereby, Client can simply call the method on Context without
handing anything in.

• Have a factory build the Context object in the first place and while
doing so hand in the proper Strategy object via its constructor.

ptg6843614

Practical Advice: Encapsulate Your Impediments 69

Or we can do both. Let a factory establish the initial Strategy to
use but let the Context object (or the Client) change this when/as
needed. Either way, the Client object would now have no coupling to
the fact that the Strategy Pattern was in use, which would make it much
easier to change this design when/if the issues involved became more
complex and this design was no longer adequate.

Encapsulation on All Levels

We should strive to encapsulate everything that can be encapsulated,
because it simplifies maintenance every time we do so. Also, it is always
easy to break encapsulation after the fact than to encapsulate something
later. When something is encapsulated and a need arises that requires
the hidden thing to be revealed, we simply provide access. When some-
thing was not encapsulated and now needs to be hidden, then every
part of the application that has become coupled to it must be reworked.

To achieve maximum encapsulation, you must do the following:

• Encapsulate by policy, reveal by need. When in doubt, hide it, and
then reveal it when this becomes necessary.

• Broaden your view of what can be hidden. Using an object factory,
for instance, encapsulates the construction issue and can even
encapsulate an entire design, if all the players in the solution are
built by the factory. We don’t normally think of this as “encapsu-
lation,” but it is, and it brings the same value that other types of
encapsulation bring: ease of change later.

Practical Advice: Encapsulate Your
Impediments

We are, among other things, consultants and coaches at Net Objectives.
Very often, our role is to help people find a good solution to a problem
they are having, and often that solution will be one of the many well-
known design patterns that have been documented in our industry.

In other words, sometimes it is a matter of selecting a good pattern to
use, at least as a starting point, to reveal a natural and powerful solution
to the problem before us.

ptg6843614

70 Chapter 5 • Encapsulate That!

What we noticed, over time, was that the interaction between the
coach and the customer had a certain repetition to it. It would often go
something like the following:

Customer: I have problem so and so, and I’m not sure what to do.

Coach: Describe the problem, and I’ll see whether I can help.

Customer: (long description)

Coach: Can you boil that down a bit? What’s the aspect of this that
really is causing you the problem?

Customer: (shorter description, still hard to see)

Coach: Focus your description a little more. Try to get to the one big
thing that you’re concerned about.

Customer: (one or two sentences that describe the major impediment)

Coach: Encapsulate that!

Of course, the conversation never literally goes this way, but in one
form or another, as a coach, we always seem to be suggesting that some-
thing be encapsulated.

How does this help?
Many, many things can be encapsulated, and in each case, the tech-

nique used to encapsulate a given thing is almost always a design pat-
tern. In our simple example earlier about the various calculators, the
“thing being encapsulated” is the calculation algorithm. The Strategy
Pattern does that; it encapsulates a single varying algorithm.

The other patterns encapsulate things like the following:

• Sequences

• Relationships

• Multiple varying algorithms

• Dependent varying algorithms

• Creation of complex objects

• Structures of objects

So, if you can figure out what your problem is and where your big-
gest risks and concerns are, you might not be able to solve them, but you
may be able to limit their impact by encapsulating them.

ptg6843614

Practical Advice: Encapsulate Your Impediments 71

See www.netobjectivesrepository.com/PatternsByEncapsulation for a
cross-index at our Design Patterns Repository, listing patterns by what
they encapsulate.

Encapsulate That! in Practice

Seeking to encapsulate is something that many developers have
learned from their experiences, in different ways and under dif-
ferent circumstances. Here is one such experience, as related by Al
Shalloway.

I have learned that asking good questions is often a very good
design technique. One of my favorite questions when I am design-
ing code is the following: “If I knew that however I was going to
figure this out now was going to need to change in an unexpected
way in the future, how would I design it?”

This is a subtle question. I am somewhat acting as if no matter
what I do will be wrong. This is not pessimistic as much as it is
realistic. I am what I call “precognitive impaired.” I don’t do pre-
cognition. However, I can take advantage of experience. Although I
don’t know how my requirements are going to change (this would
require precognition), I do know that they will change (this is expe-
rience). I also know, from experience, that if I design for something
to occur, it may not. If I added things to my design that are now not
needed, I have added complexity to my code for likely no gain.

I am asking the question, how do we design when we know that
we don’t yet know all we need to make a good design? My answer
is to encapsulate the concept that we have uncertainty about. This
follows our general mantra of encapsulating by policy, reveal by
need. Let’s see an example of how this works.

I was talking to a client once who was working on a system
that had several processors in it. Each of these processors often had
events that other processors needed to know about. The question
was, how should they communicate with each other? The need for
a Messaging class was clear, but how should it be implemented?
First in line for consideration was a Messenger class that used
TCP/IP. There were other candidates as well. The concern was that
performance was going to be critical, but at the start of the project,
without complete software to measure, it was difficult to tell what
the performance problem really was going to be.

continues

www.netobjectivesrepository.com/PatternsByEncapsulation

ptg6843614

72 Chapter 5 • Encapsulate That!

I was being asked to solve a problem that required knowledge
that wasn’t available now. I, of course, could guess or use my expe-
rience, but in fact, my experience told me that this was an approach
that hadn’t led to a lot of success for me. Stated another way, my
experience was that whatever I decided upon now was going to be
discovered to be wrong in the future.

The approach to take, of course, is to encapsulate the Messen-
ger class. That is, build a class to do messaging knowing we are
going to have to rewrite it after we discover how we should have
built it. Now this may seem like a lot of waste, but it actually isn’t.
If we take the attitude that we are going to rewrite this messaging
object, it’s probable that we can find a really simple one to write at
first. It’s also possible we can mock the object. If our messaging is
merely used to tell other objects on different processors things and
we are not getting messages back, then a write-only mock works
quite well and is trivial to write.

In any event, I suggest that a real message object would not be
that difficult to write. Bear in mind that while we are working on
our code and haven’t delivered it yet, we can take several short-
cuts as long as we have prepared for them. For example, we might
write a TCP/IP message handler without full error handling. We
can throw exceptions when an error occurs, intending to write the
error handling later (if we, indeed, keep TCP/IP at all).

Summary

In writing their groundbreaking book on patterns, the “Gang of Four”
had several pieces of general design advice for us. Among these was a
phrase that is sometimes dismissed as “old thinking” because of the way
it is worded.

Consider what should be variable in your design and encapsulate the concept
that varies.

Perhaps because of the word “should,” this can be interpreted as a
“big design up-front” point of view; indeed, it likely was written to
mean that, given that the book was written in 1994 at a time when this
was the predominant way of thinking about software design.

ptg6843614

Summary 73

However, we have learned to see design as a constant process, and
we do not expect to be able to anticipate every design element we will
need before we begin to create a product. In other words, we don’t trust
our ability to know, consistently and reliably, what “should” be variable.
So, the advice we would give is very similar, with just a small change
of focus.

Consider what is now, or about to become, varying, and encapsulate it
conceptually.

In the past it was seen as dangerous to wait on such decisions, but
if we follow good practices such as “Programming by Intention” and
encapsulating construction and if we define our tests early, we find that
the risks of waiting are largely removed, and we can work in a more
responsive, reality-based way.

That said, it is good to discover what you can, especially mission-
critical issues, as early as you can. This also can help us avoid/remove
the risk of deferring commitment to a specific design. One practice that
can help you here is “Commonality-Variability Analysis,” which is the
subject of Chapter 10.

ptg6843614

This page intentionally left blank

ptg6843614

75

Interface-oriented design (IOD) concentrates on the services and responsibilities
of objects or modules, rather than their implementation. It cleanly separates the
specification perspective from the implementation perspective. IOD is applicable
to both object-oriented systems and non-object-oriented systems.1

Design to Interfaces

The Gang of Four2 recommends that you should “design to interfaces, not
implementations.” Many patterns, such as the Adapter, Façade, Strategy,
and Proxy deal with interfaces. Martin Fowler3 repeats this in his rec-
ommendation of separating the specification perspective (the interface)
from the implementation perspective. Interfaces are the key to making
decoupled designs that simplify testing and promote maintainability.

Definition of Interface

What is an interface? In common terms, it is the way to interact with
another entity—a method, a class, a module, or a program. Common
forms of interfaces are the following:

• An object’s set of accessible methods

• A protocol, such as File Transfer Protocol (FTP) or Simple Mail
Transfer Protocol (SMTP)

• A programmatic interface, such as a web service

1. Pugh, Ken. Interface-Oriented Design. Raleigh, NC: Pragmatic Bookshelf, 2006.
2. Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.
3. See http://martinfowler.com.

CHAPTER 6

Interface-Oriented Design

http://martinfowler.com

ptg6843614

76 Chapter 6 • Interface-Oriented Design

The public methods of an object are deemed its interface. An interface
can also be specifically defined in language-specific terms. For example,
in Java and C#, you can declare an interface construct using the key-
word interface. The interface consists of a set of method signatures
(name, parameters, return type, and exceptions that may be thrown).
Interfaces do not have data members (attributes), because that would
imply an implementation.4

 An interface can be a set of textual commands, rather than method
calls. For example, with FTP, you ask for a listing of a directory by using
the LIST command. You get a particular file with the RETR (retrieve)
command.5 You can write an adapter that converts this textual interface
to the method calls in a particular language.

A web service has an interface defined in Web Services Description
Language (WSDL). It describes the operations performed by a web ser-
vice, the type (for example, one-way or request-response), and the data
types involved.

Interface Contracts

Every interface should have an explicit contract such as Bertrand Mey-
er’s “Design by Contract.”6 The contract includes the preconditions
and postconditions. Preconditions are things that must be true when
an operation is invoked, such as a file being open. Postconditions are
that which will be true after the operation is finished, such as data
being written to a file. The contract also encompasses the protocol—the
sequence in which various operations in an interface are called to per-
form a particular behavior.

The tests for an interface clarify its contract. The tests may be sequen-
tially developed in conjunction with developing an implementation (as
in Test-Driven Development) or created prior to any implementation (as
in Acceptance Test–Driven Development). If you are requesting another
group to develop an implementation for an interface, it is your responsi-
bility to provide the acceptance tests for that interface.

4. C# allows interfaces to have properties. In C++, a class with all pure virtual methods and
no data members is equivalent to an interface. The template method construct in C++ can
also be considered equivalent to an interface.

5. User-level FTP programs let you type ls to get the list or get followed by the name of the
file to retrieve the file. These user commands are translated into these FTP commands.

6. Meyer, Bertrand. Object-Oriented Software Construction. Upper Saddle River, NJ: Prentice
Hall, 1997.

ptg6843614

Separating Perspectives 77

Passing the tests indicates that an implementation fulfills its con-
tracts. Functional contract tests are usually automated to ensure that
implementation changes (for example, refactoring) do not affect its con-
tract. Other contract tests may be manual or automated. For example,
an implementation may need to pass the “ility” tests, such as reliability,
scalability, or performance tests as well.

Ken Pugh’s book Interface-Oriented Design describes three laws of
interfaces (adapted from Asimov’s I Robot). The first is that an inter-
face’s implementation shall do what its methods say it does. This law
is related to Programming by Intention as well as having intention-
revealing names (see Chapter 1, Programming by Intention). The law is
enforced by the functional tests for an implementation. The second law
is that an interface implementation must do no harm. This corresponds
to the “ility” tests. For example, it should not consume large amounts
of resources unless absolutely essential to its operation. The third is that
if an implementation is unable to perform its responsibilities, it must
notify its caller. This relates to negative functional testing in that you set
up conditions for failure and check that the operation actually reports
failure. It doesn’t matter the form of the failure report—an error code or
a thrown exception.

Separating Perspectives

Martin Fowler suggests that you separate the specification (interface)
perspective from the implementation perspective. Using interfaces in
your design forces that separation. For example, suppose you need to
look up a customer. You could put some SQL code into a module and
execute that code on the server. Or you could create an interface, such
as the following:7

interface CustomerLookup {
 Customer getCustomerByID(ID anID);
}

Following the third law, you need to specify (preferably with tests)
what should occur if a customer is not found with anID. Is the return
value going to be NULL, or is some type of exception (say Customer-
NotFound) going to be thrown?

7. C# uses the convention of having an I before the name of an interface. So, this would be
called ICustomerLookup. If that is prevalent in your development environment, then be
consistent with that convention.

ptg6843614

78 Chapter 6 • Interface-Oriented Design

The interface can be fulfilled by going to a server-provided database
and getting the information. Alternatively, it could be an in-memory
database. It also could be implemented by reading an XML file whose
name indicated that it contained information on the customer with
anID. You might even have an implementation send a request to a
human clerk to look up the information in a paper file, type it in, and
transmit it back.8

class DataBaseCustomerLookup implements CustomerLookup {
 Customer getCustomerByID(ID anID){
 // create SQL for lookup
 }
}
class XMLCustomerLookup implements CustomerLookup {
 Customer getCustomerByID(ID anID){
 // open and read file with name <anID>.data
 }
}

Separating perspectives allows easy substitutions of implementations
during testing. For interfaces whose production implementation may
take a relatively long time to execute (for example, databases), create a
mock implementation for testing. Based on the testing needs, the mock
could act as a simple returner of fixed values or an in-memory replica
that can insert and delete records.

Another separation of perspective is decoupling the external repre-
sentation from the internal implementation. Internal logic should not
be dependent upon external format. For data interfaces, create a class
that represents the data.9 Then provide methods to export and import
externally formatted data to and from that class. For interfaces that are
textual, create an adapter that allows programmatic control. For exam-
ple, the FTP protocol could have an adapter such as the following:

class FTP {
 Boolean connect(String host, String username,
 String password) {
 // Connects to host with username and password
 }
 String [] list() {
 // issues the LIST command and returns list of files
 }

8. This might have an impact on the application’s performance.
9. This is sometimes termed a data transfer object (DTO).

ptg6843614

Keep Interfaces Simple 79

 Boolean get(String filename) {
 // issues RETR <filename> command
 // creates file
 // returns false if file not found
 }
}

Along the same lines, you can separate your programmatic internal
interface from an API that is supplied by an external vendor or develop-
ment group. Create the interface you want and then adapt it (through
the Adapter or Façade Pattern) to the actual interface.

Mock Implementations of Interfaces

Interfaces provide a distinct point where a mock or test double can be
inserted for unit testing.10 The mock can be controlled by the test to pro-
vide appropriate responses, to check that the unit under test makes the
appropriate calls, or to do both.

If an implementation of an API is not available or is relatively slow,
then you can develop a mock implementation of the interface you cre-
ated for it, as in the previous section. This will probably be easier than
mocking out the entire API. You often use only a small portion of an
API, and the contract tests will be much smaller in number.11

Keep Interfaces Simple

Keep interfaces simple. They should have the minimum number of
methods needed to get the job done. If you need more complex opera-
tions, implement them by delegating to simple interfaces. This cuts
down on testing for each interface. The FTP interface described previ-
ously handles getting files one at a time. If you need to get multiple files
that match a wildcard pattern, do not add that as a method in the FTP
interface. Instead, create a class, such as the one shown here, that uses
the FTP interface. This is a practical variation of the Open-Closed prin-
ciple (see Chapter 11). The original interface is closed for modification
but open for extension by delegating to it.

10. See Mackinnon, Tim, Steve Freeman, and Philip Craig. “EndoTesting: Unit Testing
with Mock Objects.” www.mockobjects.com/files/endotesting.pdf, as well as Meszaros,
Gerard. xUnit Test Patterns: Refactoring Test Code. Boston, MA: Addison-Wesley, 2007.

11. See Chapter 12, Needs versus Capabilities Interfaces.

www.mockobjects.com/files/endotesting.pdf

ptg6843614

80 Chapter 6 • Interface-Oriented Design

class ExtendedFTP {
 void multiple_get(String wildcard_pattern) {
 // calls FTP.list() to obtain list of files
 // calls FTP.get() for each file in list
 // that matches the pattern
 }
}

Avoids Premature Hierarchies

Polymorphism is a key principle in object-oriented design. You often
need multiple classes that implement the same interface. Often the ini-
tial decision is to have the classes inherit from a base class.

Inheritance can be used for providing a common interface for poly-
morphic behavior as well as for sharing common code. However, inheri-
tance couples the base classes to the derived classes. You need to be sure
that changes to the shared code do not adversely affect the behavior of
the derived classes. To avoid this, you can provide a common interface,
but follow the Gang of Four recommendation that states “Favor delega-
tion over inheritance.”

Create an interface, and have the classes implement that interface. If
you find yourself starting to copy and paste the code from one imple-
menting class into another, stop. Create a helper class, and extract the
code into a method in that class. Delegate the behavior to the helper
class. The following is an example:

interface CustomerLookup {
 Customer getCustomerByID(ID anID);
 Customer getCustomerByName(String name);
}
class MyCustomerLookup implements CustomerLookup {
 Customer getCustomerByName(String name){
 if (CustomerLookupHelper.checkValidName(name))
 // Do lookup
 }
}
class YourCustomerLookup implements CustomerLookup {
 Customer getCustomerByName(String name) {
 if (CustomerLookupHelper.checkValidName (name))
 // Do lookup
 }
}
class CustomerLookupHelper {
 static boolean checkValidName (String name) {
 // Do check

ptg6843614

Interfaces and Abstract Classes 81

 }
}

MyCustomerLookup and YourCustomerLookup are related by the
fact they perform the same behavior as designated by the Customer-
Lookup interface. That they use common code (checkValidName) is
little reason to have them inherit from the same class. The following is
what it might look like if you use inheritance.

class CustomerLookup {
 abstract Customer getCustomerByID(ID anID);
 abstract Customer getCustomerByName(String name);
 boolean checkValidName (String name) {
 // Do check
 }
class MyCustomerLookup extends CustomerLookup {
 Customer getCustomerByName(String name){
 if (checkValidName(name))
 // Do lookup
 }
}
class YourCustomerLookup extends CustomerLookup {
 Customer getCustomerByName(String name) {
 if (checkValidName (name))
 // Do lookup
 }
}

The code is only a small amount shorter by eliminating the refer-
ence to the helper class. But the fact MyCustomerLookup and Your-
CustomerLookup are derived from the same class can imply that there
is more of a common implementation. Later you may find that Your-
CustomerLookup and YourVendorLookup have much more in com-
mon than YourCustomerLookup and MyCustomerLookup. If you
avoid establishing an initial hierarchy, you can let your design emerge
when you have determined the relevant relationships between types of
CustomerLookups. This practice follows the lean principle of deferring
commitment. Otherwise, you may wind up having to undo one hierar-
chy before creating a more relevant one.

Interfaces and Abstract Classes

Often there is a question as to the differences between an interface
and an abstract class. From the language aspect, some languages that

ptg6843614

82 Chapter 6 • Interface-Oriented Design

support the interface concept such as Java and C# allow a class to inherit
from only one base class. If you use an abstract class to define the inter-
face (for example, the methods and signature), then the derived classes
will use up that one inheritance opportunity to achieve polymorphism.
However, you can share any common implementation by making it part
of the abstract class. Instead, if you have an interface, then the classes
implementing it are still polymorphic, but you have not committed to
using up the one chance for inheritance. However, if you have common
methods, the implementations need to delegate that to a helper class, as
previously shown, to avoid code duplication.

Interfaces and abstract classes both represent commonality of speci-
fication. Abstract classes also include commonality of implementation.
This commonality can include both data attributes and methods. So,
abstract classes couple the specification perspective and the implemen-
tation perspective.

It’s possible you may find that as your code evolves, you have mul-
tiple implementations of an interface where each uses the same helper
class to which they delegate. In that case, you might create an abstract
class that implements the interface and that contains these helper func-
tions. When the redundancy of always delegating to a helper class out-
weighs the effects of the coupling, then the change is justified. This is an
example of emergent design.

Abstract classes are often used in frameworks and libraries but usu-
ally in the context of a well-examined area, such as graphic user inter-
faces and input/output. The design issues have already emerged.

Dependency Inversion Principle

Using interfaces makes your program conform to the Dependency Inver-
sion principle.12 This principle states that upper-level modules should
not depend on lower-level modules. Both should depend upon abstrac-
tions. The interfaces represent these abstractions. In addition, abstractions
should not depend upon the details; the details should depend upon
the abstractions. Since an interface contains no implementation infor-
mation, the details of the implementation cannot depend upon it. It is
coupled only to the abstraction that the interface represents.

12. See www.objectmentor.com/resources/articles/dip.pdf.

www.objectmentor.com/resources/articles/dip.pdf

ptg6843614

Polymorphism in General 83

Polymorphism in General

You do not need to use language constructs such as “interface” and
“implements” to achieve polymorphism. Polymorphism is not in the
form but in the intent. The term implies “multiple bodies” that provide
the same behavior. For example, simply connecting to a different server
that provides the same web service is employing polymorphism.

You can employ polymorphism at other times in the development
cycle. For example, you could have two different source files that con-
tained the same class that was implemented in two different ways. The
following is an example.

// Desired Interface:

CustomerLookup {
 Customer getCustomerByID(ID anID);
}

// Source File: MyCustomerLookup

class CustomerLookup {
 Customer getCustomerByID(ID anID){
 // my code
 }
}
// Source File: YourCustomerLookup

class CustomerLookup {
 Customer getCustomerByID(ID anID) {
 // your code
 }
}

You compile them in separate modules. At load time or link time,
you select which module to use. You get polymorphic behavior without
involving a language construct.13 This may be particularly useful if you
are trying to mock a module that you do not have control over, so you
cannot introduce interfaces into the module.

Using the UML syntax for an interface and implementing that
interface clarifies that the polymorphism may be manifested in ways
other than language constructs. As shown in Figure 6.1, the attribute
<<interface>> denotes an interface, and a dashed line with a triangle
indicates that the class implements that interface.14

13. In some languages such as C# and C++, you could place both versions into a single source
file and use conditional compilation to select which one to use at compile time.

14. There is also a UML “lollipop” version of interfaces.

ptg6843614

84 Chapter 6 • Interface-Oriented Design

Not for Every Class

You don’t have to have a separate interface declaration for every class.
You simply have to think in those terms. Languages such as Java and C#
mix implementation with the interface, as opposed to C++, which has
a separate header file that allows for separation between interface and
implementation. You can use the automatic documentation programs
to create an interface description in Java and C# (the set of methods
and their signatures). The operations should be understandable from
the names on the documentation (Programming by Intention).

Summary

“Design to interfaces, not implementations,” as the Gang of Four sug-
gests. This ensures a separation of the specification perspective from the
implementation perspective. This separation creates code that is easier
to maintain. Apply tests to every interface to ensure that its imple-
mentation fulfills its contract including its protocol. Use test doubles or
mocks to provide implementations of interfaces for testing purposes.
“Favor delegation over inheritance” to avoid premature hierarchies and
let your design emerge. Avoid coupling of specification and implemen-
tation perspectives by implementing interfaces rather than inheriting
from an abstract class. An interface represents an abstract data type.
Using abstract types creates more readable code.

«interface»
CustomerLookup

+getCustomerByID(anID:ID):Customer

MyCustomerLookup

+getCustomerByID(anID:ID):Customer

YourCustomerLookup

+getCustomerByID(anID:ID):Customer

Figure 6.1 Class implementing interface

ptg6843614

85

Acceptance tests ensure that a software system meets the requirements of a cus-
tomer. Developing acceptance tests before starting to implement minimizes
delays in development and the chances for miscommunication and misunder-
standing. ATDD is as much the conversations about the tests as it is the tests
themselves. These conversations are used to create common understanding of the
requirements.1

Two Flows for Development

Building software requires people with three different focuses to col-
laborate: customers, developers, and testers. The customer facet (often
represented by the “product owner” or “business analyst”) determines
the requirements, develops acceptance tests, and sets priorities. The
developer centers on implementing the requirements and ensuring the
implementation meets the acceptance tests. The tester focuses on help-
ing the customer and developer to create acceptance tests and to pass
those tests. Customer, developer, and tester focus often relates to titles.
But in many agile shops, anyone on the team may take on these roles.
This chapter describes some approaches you can employ in this three-
way collaboration between the roles, regardless of titles.

Figure 7.1 shows a fairly traditional software-development process.
It starts with a customer role eliciting a requirement and then analyz-
ing it to see whether it is consistent and understandable. Based on the
analysis, the developers create a design to describe how to implement
the requirement. Next, they write the software code to implement the

1. Pugh, Ken. Lean-Agile Acceptance Test–Driven Development: Better Software Through Collabora-
tion. Boston, MA: Addison-Wesley, 2011.

CHAPTER 7

Acceptance Test–Driven Development

(ATDD)

ptg6843614

86 Chapter 7 • Acceptance Test–Driven Development (ATDD)

design and turn the executable code over to testers. The testers read the
requirement and then create some functional tests that will verify that
the program meets the requirement or needs further work. When the
program finally meets the expected results and passes other tests, such
as performance and usability tests, it is ready to be deployed.

 In a perfect world, the system would pass through these stages in a
linear fashion, one to the next. But perfection occurs only in fairy tales.
In the real world of software development, there are misunderstandings
that require loopbacks to correct—lots of misunderstandings! That dis-
tance between what you said and what we heard is very great indeed.
When you said, “always,” did you really mean “usually”? Did you mean
to leave out the case when the user answers “no,” or was that just an
oversight? You failed to mention that the software would have to work
at 98 percent reliability, across three continents, on and on. We humans
are very good at not communicating very well.

Errors happen. And when they do, they must be corrected. But what
was the error? Was it an error in implementation, or was it an error
rising from an unclear requirement? Did the coder simply make a mis-
take? Did the customer forget to mention something?

That is why there are loopback lines in Figure 7.1. The tester informs
the developer about an issue discovered in the code, and the developer
must correct it. Or the tester and developer might end up revisiting the
requirement to see whether there was a problem in interpretation, and
that requires a loopback to the customer. Or after the customer has
seen the system, something requires a change. Or there could even be a
problem with the test itself. It is complicated and messy!

This cycling between the people playing the roles of tester, developer,
and customer causes delay in deploying the product. And that adds to

Elicit
Requirement

Analyze
Requirement

Design

Code Test Deploy

Why go back?

Figure 7.1 A traditional software development process

ptg6843614

Two Flows for Development 87

the cost of the product. Even worse, it can result in functionality being
added to the code that is not needed, and that makes the system just
that much more complex to maintain because it is rarely ever removed.

In his book FIT for Developing Software, Rick Mugridge makes the case
for describing requirements in the form of tests. The process of defining
the tests helps developers and testers validate their understanding of the
requirements and helps customers assess whether what they are ask-
ing for is really what they want. It results in much greater clarity than
merely asking lots of questions. The problem with asking questions is
you are never sure that you have asked enough questions or even the
right ones. It is the question that we don’t know to ask that ends up caus-
ing us the most problems!

It is much better to use a process that results in quick feedback and
clearer understanding. Figure 7.2 shows an alternative. As requirements
are elicited, testers, developers, and the customer work out acceptance
tests for the requirements.2 These are specific examples of the require-
ment in action. The developer uses these tests when coding to ensure
that the implementation meets the tests. When it does, the developer
turns it over to the tester for the other types of tests, such as exploratory
and usability testing.

The tests provide a center for collaboration between customer, devel-
oper, and tester that stands a better chance of understanding what the
customer needs and what is required by the software to meet that need.
The tests guarantee that the system does what the three parties wanted
it to do.

2. Sometimes customers have limited availability. In that case, the developer and tester may
develop the acceptance tests and then validate them with the customer.

Elicit
Requirement

Analyze
Requirement

with Tests
Design

Code with
Tests

Deploy

Figure 7.2 Acceptance Test–Driven Development flow

ptg6843614

88 Chapter 7 • Acceptance Test–Driven Development (ATDD)

Acceptance Tests

Acceptance tests and requirements are linked. You can’t have one with-
out the other. The tests clarify and amplify the requirements.3 A test
that fails shows that the system does not properly implement a require-
ment. A test that passes is a specification of how the system works.

Acceptance tests as described in this chapter are not the traditional
user acceptance tests, which are performed after implementation “by
the end user to determine if the system is working according to the
specification in the contract.”4 They are also not system tests that are
usually independently written by testers by reading the requirements to
ensure that the system meets those requirements.5 However, all three
types of tests are related in that they are all black-box tests; that is, they
are independent of the implementation.

An Example Test

A customer role presents to the developer and tester roles a business rule
for giving discounts. The stakeholder who created the rule wants to give
discounts to the firm’s customers. The discount will vary based on the
type of customer.

The following is the business rule.6

If Customer Type is Good and the Item Total is less than or equal
$10,

Then do not give a discount,

Otherwise, give a 1 percent discount.

If Customer Type is Excellent,

Then give a discount of 1 percent for any order.

If the Item Total is greater than $50,

Then give a discount of 5 percent.

3. See Martin, Robert C., and Grigori Melnik. “Tests and Requirements, Requirements and
Tests: A Möbius Strip.” IEEE_Software Vol. 25, No. 1. January/February 2008 (http://
www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf).

4. See http://www.answers.com/topic/acceptance-test.
5. See http://www.answers.com/topic/system-test.
6. The rule is deliberately ambiguous for pedagogical purposes.

http://www.answers.com/topic/acceptance-test
http://www.answers.com/topic/system-test
http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf
http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf

ptg6843614

An Example Test 89

What is the discount for a customer who is Good and who has an
order total greater than $50? What if the developer interpreted the rule
to mean 1 percent and the tester interpreted the rule to mean 5 per-
cent? Then there would be a defect that would need to be corrected. On
the other hand, what if they both interpreted the rule to mean 5 per-
cent? There might still be a defect, but it might escape into production
and cost the company money in excessive discounts. And suppose they
thought that both rules applied. It would cost even more!

A set of example calculations can clear up things. Table 7.1 shows
examples of what the discount percentage should be for various values
of Item Total and Discount Rating.

The first two rows show that the limit between giving a Good cus-
tomer a discount or a 1 percent discount is $10. The “less than or equal”
in the business rule is pretty clear. These two cases ensure that the
implementation produced exactly that result. The third case shows that
the interpretation was 1 percent for a Good customer with an Item Total
greater than $50. The fourth example shows that the discount for an
Excellent customer starts at the smallest possible Item Total. The fifth
and sixth entries test that the discount increases just after the $50 point.

The customer was quite relieved when he worked through this table.
Indeed, he did not want to give a 5 percent discount to Good customers!

Table 7.1 Examples of Discount Percentages

Item
Total

Customer
Rating

Discount
Percentage

10.00 Good 0

10.01 Good 1

50.01 Good 1

 .01 Excellent 1

50.00 Excellent 1

50.01 Excellent 5

ptg6843614

90 Chapter 7 • Acceptance Test–Driven Development (ATDD)

Implementing the Acceptance Tests

There are at least four common ways to test the implementation.

• The tester role could create a test script that operates at the user
interface level.

• The developer role could create a test user interface that allows
checking the appropriate discount percentages.

• The tests could be performed with a unit testing framework.

• The tests could be implemented with an acceptance test framework.

User Interface Test Script

Suppose the program has a user interface that allows a customer to
enter an order. The flow through the program is much like any appli-
cation that processes orders. The user enters an order, and a summary
screen appears, such as that shown in Figure 7.3.

The tester role creates a script to test each of the six examples. The
tests might involve computing what the actual discount should be for
each case. Unless the order summary screen shows this percentage, this
is the only output that can be checked to make sure the calculation is
correct.

Table 7.2 adds additional columns for the table that show the discount
amount that should be applied.

Figure 7.3 Acceptance test through the user interface

ptg6843614

Implementing the Acceptance Tests 91

The script would go something like this:

1. Log on as a Customer who has the Rating listed in the table.

2. Start an order and put items in it until the total is the specified
amount in the Item Total column on the test.

3. Check that the discount on the Order Summary screen matches
the Discount Amount in the table.

4. The test would be repeated five more times for all six cases.

User Interface for Testing

To simplify the testing, the developer could create a user interface that
is connected to the discount calculation module in the code. Although
this interface would be used only during testing, it would cut down on
the work required to show that the percentage was correctly determined.
The user interface could be either a command-line interface or a graphi-
cal user interface. The graphical user interface might look like Figure 7.4.

With this user interface, a tester could enter all the combinations that
are shown in the test table. The command-line interface might look like
the following:

 RunDiscountCalculatorTests <item_total> <customer_type>

Table 7.2 Additional Examples of Discount Percentages

Item
Total

Customer
Rating

Discount
Percentage

Discount
Amount

10.00 Good 0 0.00

10.01 Good 1 0.10

50.01 Good 1 0.50

 .01 Excellent 1 0.00

50.00 Excellent 1 0.50

50.01 Excellent 5 2.50

ptg6843614

92 Chapter 7 • Acceptance Test–Driven Development (ATDD)

When it is run for a case, such as

 RunDiscountCalculatorTests 10.00 Good

it would output the following result:

 0

What these additional interfaces do is penetrate the normal user
interface. The Order Summary screen connects to the system through
the standard user interface layer. The Discount Percentage screen or
RunDiscountCalculatorTests connects to some module inside the
system, as shown in Figure 7.5. Let’s call that module the Discount Cal-
culator. By having a connection to the inside, a tester can check whether
the internal behavior by itself is correct.

Figure 7.4 Acceptance test through the user interface

Order
Summary

Discount Percentage
User Interface

User Interface

Interior of
Application,

Discount
Calculator

Figure 7.5 Acceptance test through the user interface

ptg6843614

Implementing the Acceptance Tests 93

XUnit Testing

Another way is to use a unit testing framework to implement the tests
for the discount calculator. The following is a sample of what these tests
look like in the JUnit test framework.

class DiscountCalculatorTest {
 @Test
 public void testDiscountPercentageForCustomer() {
 DiscountCalculator dc = new DiscountCalculator();
 assertEquals(0, dc.computeDiscountPercentage(10.0,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage (10.01,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage (50.01,
 Customer.Good));
 assertEquals(1, dc.computeDiscountPercentage(.01,
 Customer.Excellent));
 assertEquals(1, dc.computeDiscountPercentage(50.0,
 Customer.Excellent));
 assertEquals(5, dc.computeDiscountPercentage(50.01,
 Customer.Excellent));
 }
}

Acceptance Test Framework

It is possible to automate a table such as this to execute the tests. Several
test frameworks, such as Cucumber, Slim, and Robot Framework, allow
you to describe tests with a table similar to the original table. Table 7.3
shows an example using FIT.7

When the test is run, FIT executes code that connects to the Discount
Calculator. It gives the Discount Calculator the values in Item Total and
Customer Rating. The Discount Calculator returns the Discount Per-
centage. FIT compares the returned value to the value in the table. If
it agrees, the column shows up in green. If it does not, it shows up as
red. You can’t see the colors in black-and-white, so light gray represents
green, and dark gray represents red. Table 7.4 shows that the implemen-
tation did not calculate the percentage correctly in the one case.

7. FIT was developed by Ward Cunningham. See http:// fit.c2.com, as well as Mugridge,
R. and W. Cunningham. Fit for Developing Software: Framework for Integrated Tests. Upper
Saddle River, NJ: Prentice Hall, 2005.

http://fit.c2.com

ptg6843614

94 Chapter 7 • Acceptance Test–Driven Development (ATDD)

Connection

In the last three test forms, the order interface is not tested. The original
script (User Interface Test Script) for the order interface should be run to
make sure that the user interface is properly connected to the discount

Table 7.3 FIT fixture.Discount Example

Item
Total

Customer
Rating

Discount
Percentage()

10.00 Good 0

10.01 Good 1

50.01 Good 1

 .01 Excellent 1

50.00 Excellent 1

50.01 Excellent 5

Table 7.4 FIT fixture.Discount Example

Item
Total

Customer
Rating

Discount
Percentage()

10.00 Good 0

10.01 Good 1

50.01 Good Expected 1, Actual 5

 .01 Excellent 1

50.00 Excellent 1

50.01 Excellent 5

ptg6843614

What to Do If the Customer Won’t Tell You 95

percentage module. But unless there was a large risk factor involved, you
might just run the script for a few cases such as that shown in Table 7.5.

An Exercise

In most of our classes we have people do an exercise to reflect on what
happens when they don’t write tests up front. It’s worth the 5 to 10
minutes it’ll take you to do this on your own. Doing the exercise is con-
siderably different than thinking about doing the exercise. Do it on your
own or with another co-worker.

1. Consider a time when you or your team wrote code without get-
ting specific answers to the question “How will I know I’ve done
that?” (referring to what has been asked of you) and where the
customer later said, “That’s not what I meant.”

2. Now, consider what you think may have happened had you asked
that question.

3. Repeat once or twice for full effect.

Our experience is that most people who don’t ask the question “How
will I know I’ve done that?” in response to a requirement usually have
significant misunderstandings about the requirement.

What to Do If the Customer Won’t Tell You

We often hear the lament that “Our customers won’t talk to us to
answer the question ‘How will we know we’ve done that?’” Although
this may be true, it doesn’t lower the impact of proceeding without get-
ting that question answered. Our suggestion is to figure out the answers

Table 7.5 Discount Example

Item
Total

Customer
Rating

Discount
Percentage

Discount
Amount

10.01 Good 1 0.10

50.01 Excellent 5 2.50

ptg6843614

96 Chapter 7 • Acceptance Test–Driven Development (ATDD)

yourself and then validate them with the customer. This isn’t as good,
but it accomplishes more or less the same need. Customers will often
agree to review a set of answers that they wouldn’t commit to coming
up with themselves because it takes considerably less time to review
than to create. Our recommendation is to never proceed without getting
this question answered.

Summary

Acceptance Test–Driven Development is collaborating and improving
our understanding through the development of acceptance tests. By
having these conversations up front, we save a lot of rework later. Accep-
tance tests clarify understanding because they require both concepts
(the requirement) and examples (the test specification). By actually
implementing the test, we ensure our understanding as well increase
our efficiency.

Tests for business logic can be executed in many ways.

• Creation through the user interface of a transaction that invokes
the business rule

• Developing a user interface that invokes the business rule directly

• A test implemented in a language’s unit testing framework

• An automated test that communicates to the business rule module

Our experience has shown that ATDD is perhaps the most impact-
ful practice that development teams can do. Much of the value is in the
conversations and definitions of the tests—something that all teams do.
Hence, we strongly recommend it as a practice to adopt as early as pos-
sible. The added cost is not much since it’s more about when you do your
work, rather than adding new work.

ptg6843614

PART II

General Attitudes

ptg6843614

This page intentionally left blank

ptg6843614

99

Developers tend to take one of two approaches to programming. Many think they
need to plan ahead to ensure that their system can handle new requirements
that come their way. Unfortunately, this planning ahead often involves adding
code to handle situations that never come up. The end result is code that is more
complex than it needs to be and therefore harder to change—the exact situation
they were trying to avoid. The alternative, of course, seems equally bad. That is,
they just jump in, code with no forethought, and hope for the best. But this hack-
ing also typically results in code that is hard to modify. What are we supposed to
do that doesn’t cause extra complexity but leaves our code easy to change? The
middle ground can be summed up by something Ward Cunningham said at a
user group: “Take as much time as you need to make your code quality as high
as it can be, but don’t spend a second adding functionality that you don’t need
now!” In other words, write high-quality code, but don’t write extra code.

This chapter is admittedly more of a new mantra than it is a detailed descrip-
tion of a technique to implement. This chapter takes advantage of what we
learned in Chapter 5, Encapsulate That!, and sets the groundwork for Chapter
11, Refactor to the Open-Closed.

A Mantra for Development

We believe developers should have a particular attitude when writing
code. There are actually several we’ve come up with over time—all
being somewhat consistent with each other but saying things a different
way. The following are the ones we’ve held to date:

• Avoid over- and under-design.

• Minimize complexity and rework.

CHAPTER 8

Avoid Over- and Under-Design

ptg6843614

100 Chapter 8 • Avoid Over- and Under-Design

• Never make your code worse (the Hippocratic Oath of coding).

• Only degrade your code intentionally.

• Keep your code easy to change, robust, and safe to change.

Before we can discuss these mantras, we need to be clear what we
mean by quality code. Appendix B, Code Qualities, provides a thorough
explanation of the specific qualities referred to in this chapter. We’ll
give a brief summary of code quality here, but interested readers may
want to read the more extensive narrative in the appendix.

The Pathologies of Code Qualities

It’s often easier to see code qualities by discussing examples of when the
qualities aren’t present. Let’s look at five common code qualities: cohe-
sion, coupling, redundancy, readability, and encapsulation.

• Cohesion. Strongly cohesive classes are classes whose functions are
all related to each other. Strongly cohesive methods are methods
that do only one thing. The pathology of weak cohesion is classes or
methods that do unrelated things. We’ve heard very weakly cohe-
sive classes called “god objects” presumably because they are some-
what omniscient in that everything takes place in them.1

• Proper coupling. Having well-defined relationships between
objects makes them easier to understand and likely to inadvertently
cause problems when changing code. The pathology of improper
coupling is the occurrence of side effects—that is, unexpected
errors due to making changes elsewhere.

• No redundancy. No redundancy is difficult to achieve. The more
redundancy you have, the more time it will take to make changes.
As we discussed in Chapter 4, Shalloway’s Law and Shalloway’s
Principle, no redundancy is virtually impossible to achieve—but at
least you want to make it so you don’t have to find the duplication.
Essentially, the pathology of redundancy is that when you make a
change in one place, you have to make a change in another place.

1. We’ve also thought they may be called this because when you first look at them you mut-
ter to yourself “Oh my god!” and the fact that it looks like only god could figure them out.

ptg6843614

Avoid Over- and Under-Design 101

• Readability. Readable code means you can understand what has
been written. It requires intention-revealing names and is best
achieved by using Programming by Intention (see Chapter 1, Pro-
gramming by Intention). Unreadable code, of course, is code you
can’t understand when you read it. Poor names, tight coupling, and
big methods/classes contribute greatly to the unreadability of code.

• Encapsulation. Encapsulation is more than mere data hiding.
The type of an object is one of the most important things to hide.
Design patterns are really about hiding: object type, cardinality,
which function is being used, order, optional behavior, construc-
tion, and more. The pathology of encapsulation is when you must
know how the code you are using is implanted in order to use it
properly. This often means you know the implementation type of
the object being used or know something about cardinality, order,
and so on.

Avoid Over- and Under-Design

This essentially means you should put in the correct amount of design.
Overdesign is putting in things that add complexity to the code that
may or may not be needed. Note that the key word here is “complexity.”
We’re not as worried about the time you take as much as we are about
how you leave the state of the code. If the work you’ve done does not
raise the complexity of the code you have, then no worries. In other
words, putting in an interface where one may or may not be needed is
not necessarily a bad thing if everyone understands interfaces. Inter-
faces aren’t really complexity-adders in our mind. They are a holder for
an idea. However, putting in a complex parameter list (or using a value
object to hold a parameter, say, when one isn’t needed) would be raising
complexity.

Under-design is actually a euphemism for “poor code quality.” We
view under-design as having taken place when high coupling or weak
cohesion is present. Typically, proper encapsulation is also not present.
So, avoiding overdesign means make your code changeable, but don’t
add things you don’t need now. If you need them later, the change-
ability of the code will enable you to do that with less, if any, extra
cost. Avoiding under-design mostly means making sure your code is
changeable.

ptg6843614

102 Chapter 8 • Avoid Over- and Under-Design

Minimize Complexity and Rework

Many people only partly understand the true nature of refactoring.
Martin Fowler, in his excellent Refactoring: Improving the Design of Existing
Code,2 describes refactoring in the following way.

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of intro-
ducing bugs. In essence when you refactor you are improving the design of the
code after it has been written.

In the book, Fowler talks about refactoring as a method of cleaning
up messy/poor code. However, there is another side to refactoring that
Fowler doesn’t talk about. This is refactoring code that is of high quality,
when it comes to the code qualities we’ve been talking about, but that
no longer has sufficient design because of new requirements. In other
words, the book talks about how to clean up poorly written code (a
good thing to know) but mostly ignores how to refactor good code that
now must be changed to accommodate new requirements.3

We strongly suggest that refactoring good code when new require-
ments come so that the code is better able to accommodate the changes
is a way to minimize complexity because you are deferring adding
complexity until it is needed, but your code quality is high so there is
no rework. We would contend that delaying extensions to code is not
rework but a kind of just-in-time design. We’ll talk explicitly about how
to do this in Chapter 11, Refactor to the Open-Closed.

Never Make Your Code Worse/Only Degrade
Your Code Intentionally

Existing code degrades one bit at a time (no pun intended). We suggest
that team members do their best to not take shortcuts that makes their
code worse. Sometimes this is difficult, however. It may be that legacy
code makes it very difficult to add functionality properly without harm-
ing your code. To be realistic, we restate “Never make your code worse”

2. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston, MA: Addison-Wesley,
1999.

3. Alan Shalloway had a private conversation with Martin about this once. After suggesting
that the refactoring concepts Martin presented would work equally well for both types of
code, Martin responded by agreeing and saying, “My book was long enough as it was!”

ptg6843614

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System 103

to “Only degrade your code intentionally.” Although this may sound
funny, the alternative would be to make your code worse unintentionally.

One way to only degrade your code intentionally is to ensure you
consider alternatives. One way to do this is to make a teamwide agree-
ment that if developers can’t figure out how to make a change without
degrading code, they will tell another team member of the change they
are thinking of making before they make the change. Note that we are
not requiring getting permission or even getting a better result. We’re
just suggesting you tell someone. This forces you to at least reflect a little.
Our experience has shown us that a person will stop just short of a good
solution because he or she is willing to do the first thing that comes
to mind. Our approach forces people to think about things a bit more
(sometimes a lot more because they don’t want to admit to coworkers
that they don’t have good solutions).

Keep Your Code Easy to Change, Robust, and
Safe to Change

Code should not be viscous. That means the effort to make changes
should not be excessive. Viscosity can be avoided by having easy-to-
understand, nonredundant code. Code should also not be brittle. That
is, changes in one place should not break code in other places. This
requires loosely coupled code, following Shalloway’s principle (see
Chapter 4, Shalloway’s Law and Shalloway’s Principle) and proper
encapsulation. It is not sufficient to follow these two mantras alone,
however. Although doing so may make it easy to change your code with
less likelihood of breaking it, there are no guarantees. The only way to
be assured that you can safely change your code is to have a full set of
automated acceptance tests available.

A Strategy for Writing Modifiable Code in a
Non-Object-Oriented or Legacy System

Many of the approaches we’ve discussed here are often met with this
attitude: “That’s a great idea, but I can’t do it where I work because I’m
using C.” A variant of this is “That’s a great idea, but I can’t do it where
I work because there is so much monolithic legacy code that I can’t take
advantage of object-oriented methods.” There are other variants as well,
but you get the idea. Although it is true that your existing software and

ptg6843614

104 Chapter 8 • Avoid Over- and Under-Design

the languages you are using provide certain constraints on what you
can do, there are certain approaches you can always take. One of these is
to consider the separation of concerns in a different way.

The idea is to separate the code that is particular to the application
from the code that defines the application’s architecture (or even system
architecture).

One can think of a program as essentially an overall flow detailing
the steps to be undertaken. For example, a sales-order system can have
a variety of actions needed to work:

• Select customer.

• Get customer information.

• Select products to be sold.

• Get prices.

• Apply appropriate discounts.

• Total cost of sales order.

• Specify shipping.

Object orientation attempts to simplify this by creating objects that
group responsibilities for the different implementing steps. These objects
collaborate with each other and avoid coupling by having well-defined
interfaces that hide their implementations. Unfortunately, if you can’t
(properly) use an object-oriented language, how can you get at least
some of the value that comes from separating concerns? One way is to
have each method in your code deal with only one of the following:

• The system architecture

• The application architecture

• The implementation of a step

For example, let’s say you are writing embedded software that takes
its input from a special bus in the form of string from which it extracts
required parameters via a specialized method. Applications like this
often take the following approach:

public function someAction () {
 string inputString;

ptg6843614

inputString= getInputFromBus();
 if (getParameter(inputString, PARAM1)> SOMEVALUE) {
 // bunches of code
 } else {
 if (getParameter(inputString, PARAM2)< SOMEOTHERVALUE) {
 // more bunches of code
 // …
 } else {
 // even more bunches of code
 // …
 }
 }
}

The problem with this is lack of cohesion. As you try to figure out
what the code does, you are also confronted with detailed specifics
about how the information is obtained. Although this might be clear
to the person who first wrote this, this will be difficult to change in
the future (not counting the confusion that happens now). This gets
much worse if one never makes the distinction between the system one
is embedded in (which is determining the input method) and the logic
inside the routine. For example, consider what happens when a differ-
ent method of getting the string is used as well as a different method of
extracting the information. In this case, the parameters are returned in
an array:

public function someAction () {
 string inputString;
 int values[MAX_VALUES];

 if (COMMUNICATION_TYPE== TYPE1) {
 inputString= getInputFromBus();
 } else {
 values= getValues();
 }

 if ((COMMUNICATION_TYPE== TYPE1 ?
 getParameter(inputString, PARAM1) :
 values[PARAMETER1]) > SOMEVALUE) {
 // bunches of code
 } else {
 if (COMMUNICATIONS_TYPE== TYPE1 ?
 getParameter(inputString, PARAM2) :
 values(PARAMETER2])
 < SOMEOTHERVALUE) {
 // more bunches of code
 // …

A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System 105

ptg6843614

106 Chapter 8 • Avoid Over- and Under-Design

 } else {
 // even more bunches of code
 // …
 }
 }
}

Pretty confusing? Well, have no fears, it’ll only get worse. If, instead,
we separated the “getting of the values” from the “using of the values,”
things would be much clearer.

public function someAction () {
 string inputString;
 int values[MAX_VALUES];

 int value1;
 int value2;

 if (COMMUNICATION_TYPE== TYPE1) {
 inputString= getInputFromBus();
 } else {
 values= getValues();
 }

 value1= (COMMUNICATION_TYPE== TYPE1 ?
 getParameter(inputString, PARAM1) :
 values[PARAMETER1]);
 value2= (COMMUNICATIONS_TYPE== TYPE1 ?
 getParameter(inputString, PARAM2) :
 values(PARAMETER2]);

 someAction2(value1, value2);
}

public function someAction2 (int value1, int value2) {

 if (value1 > SOMEVALUE) {
 // bunches of code
 } else {
 if (value2 < SOMEOTHERVALUE) {
 // more bunches of code
 // …
 } else {
 // even more bunches of code
 // …
 }
 }
}

ptg6843614

Summary 107

You must remember that complexity is usually the result of an
increase in the communication between the concepts involved, not the
concepts themselves. Therefore, complexity can be lowered by separat-
ing different aspects of the code. This does not require object orienta-
tion. It simply requires putting things in different methods.

Summary

Developers must always be aware of doing too much or too little. When
you anticipate what is needed and put in functionality to handle it, you
are very likely to be adding complexity that may not be needed. If you
don’t pay attention to your code quality, however, you are setting your-
self up for rework and problems later. Code quality is a guide. Design
patterns can help you maintain it because they give you examples of
how others have solved the problem in the past in similar situations.

ptg6843614

This page intentionally left blank

ptg6843614

109

The creation of developer tools is often guided by the needs of developers as they
are discovered over time. Tools, however, can have an influence on process, which
in turn can create challenges for the very developers who asked for the tools in the
first place. An example of this is version control. Version control has been widely
adopted as a way of ensuring that code can be returned to a previous state when
the team realizes it has gone down a bad path or when the customer decides
against developing a given feature. Version control creates a feeling of “safety”
but also brings along another concept, namely, source code branching. This chap-
ter will examine the reasons for, and negative effects of, branching the code base,
and how, through continuous integration (CI) and good design, we might elimi-
nate the need for branching in the first place.

Branching the Source Code

Why do virtually all version control systems allow for the source code
to be branched? By “branching,” we mean the ability to fork off a spe-
cialized version of the source code, into its own storage space, to be
worked on separately from the latest version of the code, often called
the “trunk.”

The addition of this capability came from development needs that can
be categorized into two general cases.

• Specialization branching. The team needs to create a spe-
cialized version of the code for a given customer. They take the
“generic” form of the code as a starting-off point and then modify,
expand, scale up, add features, performance tune, and so on, all
based on the needs of the given customer. They may do this repeat-
edly for various customers. These specialized branches will never

CHAPTER 9

Continuous Integration

ptg6843614

110 Chapter 9 • Continuous Integration

be merged back into the main trunk, because they are appropriate
only for the customers they were created for.

Branch

Trunk

• Development branching. One developer or group of developers
needs to be able to work on one part of the system without con-
cern that the work of other developers will break their changes,
or vice versa. In other words, they want to work in isolation for a
while, in their own development sandbox. Eventually, the work
they do will be “merged” back into the main trunk.

Branch Trunk

Merge

Multiple Versions: Specialization Branching

Specialization branching is better handled by improving the design of
the system in order to make the key shared functionality more modu-
lar and thus reusable without having to create special versions of it.
Design patterns, and good design in general, can make this much easier
to achieve.

In a sense, when the team “specializes a branch,” it is very much
akin to using object inheritance to create specialized classes, with all
the downfalls of this approach (see Chapter 13, When and How to Use
Inheritance).

In Figure 9.1 we see a trunk with versions V1, V2, and V3 specialized
from it; V3a is specialized from V3. All five versions are maintained at all
times.

This works, but it creates coupling and redundancies that can make
maintenance very problematic in the future.

For example, when there are many specialized versions of a system,
what happens when a bug is discovered? Each special version must be
debugged on its own, even though the bug may be essentially the same
in all cases. Similarly, what if there is a change that affects all these

ptg6843614

Branching the Source Code 111

special versions? Here again, the effort needed to implement the change
will have to be expended in each special case.

In good design, the main core capabilities are developed separately
from the various subsystems that need them and are then reused
through strongly encapsulating interfaces. Much of the rest of this book
is about achieving just this quality of design.

For example, consider one capability of a banking system. At its core,
it will likely have a mechanism for transferring funds from one account
to another. This core capability will show up differently when we con-
sider different needs.

• At the ATM, a given customer can use this capability but only for
that customer’s own accounts.

• At the teller workstation, the teller can transfer money from any
account to any other account, but perhaps the amount is limited
to a particular maximum.

• At the bank manager workstation, the manager can transfer any
amount from any account to any other account.

• At the online banking website, the ATM functionality is made
available through a web interface but obviously without the abil-
ity to deposit or withdraw.

Separating the needs of the clients as they are reflected by the sys-
tem capabilities from their encapsulating the specific implementations
removes the need for specialization branching. Even if we can achieve
this, however, the second motivation for branching will still exist.

V2

Trunk

V1

V3

V3a

Figure 9.1 Specialization branches coexist indefinitely.

ptg6843614

112 Chapter 9 • Continuous Integration

Working in Isolation: Development Branching

The fact that the actions of one developer or team can affect the work of
another developer or team is a force driving the branching capabilities
of version-control systems. In essence, we need to protect the integrity
of the trunk and to prevent developers from interfering with each oth-
er’s work. In essence, by branching we encapsulate our work. Even in
systems with well-designed componentization, this can happen within
a given component or by changes made to cross-component concerns
(such as changes to the interfaces of core capabilities).

This encapsulation, however, must not last, and the safety provided
by it of branching carries with it a potentially high cost: the need to
merge the branch(es) back into the main trunk (see Figure 9.2) when
we are done developing our new feature or making a given change.

It is the day most developers have come to dread: the code freeze and
the merge. The only real winner on this day is the developer or team
who checks in first. Everyone else is going to have to suffer with merging
with an ever-diverging trunk.

The cost of the merging process is directly relative to the complexity
of the merge. The complexity of the merge is determined by several fac-
tors, such as the following:

• The number of files involved

• The number of changes to each file

• The nature and scope of the changes, whether they are local or
systemwide

Trunk
A1 A2

B1 B2

Merge4

Merge2

Merge1

Merge3

Figure 9.2 Development branches merged back into the trunk

ptg6843614

Branching the Source Code 113

This relationship is not linear (see Figure 9.3). The more complex the
merge is, the longer it will take and the more difficult it will be. This
pain will not only be felt by the development team but also by the busi-
ness that must pay the cost of delaying the introduction of this and sub-
sequent features.

Two related factors influence the amount of complexity surrounding
any given merge: the time elapsed since the previous merge and the
number (and size) of changes made in that time (that is, complexity)
(see Figure 9.4). We can focus on time, of course, since in general we
would expect changes made in a shorter time to be less numerous and
smaller.

The conclusion is straightforward: The longer we wait between
merges, the more expensive the merge process will be (see Figure 9.5).
By reducing the time between merges, we reduce the cost of change. If

Merge Complexity

Merge Cost

Figure 9.3 Complexity leads to increased cost.

Time Between Merges

Complexity

Figure 9.4 Having infrequent merges leads to increased complexity.

ptg6843614

114 Chapter 9 • Continuous Integration

the time is short enough, most merges can be handled automatically by
automated tools.

We have the ability to influence the time between merges simply by
dictating that we will merge more often, but here we fall into a com-
mon syndrome: A new solution we arrive at causes a new problem to be
addressed.

Problem, Solution, Problem

Let’s examine the chain of thought in this chapter thus far.

• Problem. We want to make sure that our work will not affect the
existing functionality and others’ work.

• Solution. We will branch the code and work on our own branch.

• Problem. But if we branch, we must merge, and merging is pain-
ful, especially if the time between merges is large.

• Solution. Make the time between merges small.

Now we have a new problem. Every time we merge the code, we have
to ensure that the merge does not create instability in the system. This is
the overhead that accompanies each and every merge and does not have
to do with the complexity of the merge per se.

If we decide to commit more frequently, we will most likely reduce
the complexity of the merge, but we will also increase the frequency of
merging and thus increase the amount of time spent on the overhead
that accompanies each merge.

Time Between Merges

Cost of
Merge

Figure 9.5 Having less frequent merges leads to increased cost.

ptg6843614

The Merge-Back 115

The “Nightly Build”

Many teams employ the practice of a nightly build. Because it
happens only at night, it is a relatively infrequent opportunity to
merge and therefore carries a higher cost.

If the cost of verifying the entire system is high, it does not
necessarily have to deter the team from engaging in continuous
integration. If the system is well-componentized and each com-
ponent is comprehensively tested on its own, then the team may
decide that the risk of breaking another component is low enough
to allow for a nightly build process to discover any intercomponent
problems.

The Merge-Back

A question remains unanswered. What should the rest of the team do
when someone else has merged their code into the trunk?

Two options are available:

• Ignore the new version of the code until it is their time to check
in, in which case they need to merge their code with the new ver-
sion (see Figure 9.6).

• Grab the latest version and integrate it with their work in prog-
ress, incorporating the latest changes into their code immediately.

Option 2 can appear a bit tedious when we note that every time
someone checks their code into the system, a merge is mandated. If we

A1

B1

Merge2

Trunknew

Trunkold

Merge1

Figure 9.6 Ignoring another team’s merge means you will have to incorporate
their changes later.

ptg6843614

116 Chapter 9 • Continuous Integration

do not do this, however, we end up with a second merge every time we
commit.

If we decide to incorporate another team’s change when it is commit-
ted, we call this a “merge-back” because it merges from the trunk back
to your code (see Figure 9.7).

“I will never get any work done; I’ll be constantly merging” may be
your response.

 The upside is that the code you’re working on is always up-to-date,
and any changes made by others present themselves as soon as they are
done. This minimizes the risk of your code diverging from the current
state of the trunk and hence the risk of rework. Also, keep in mind that
if this is done frequently, the cost of merge becomes trivial and in most
cases is done automatically when you get the latest version. In fact, any
conflicts that ensue are things you have to address immediately because
they indicate that your code has just become significantly different from
the trunk.

Option 1 seems to solve the problem of constant merge-backs because
there are none. You merge your code only before you check it in. But
this presents us with the same problem we are trying to solve, which is
the complexity of merging code after a long period of time.

This overhead increases as the time between merges increases, and
not just because of the complexity of each merge. Let’s say that we have
a trunk version of the code, which we’ll call A. I go off and start work-
ing on a branch “A with B added.” You, at the same time, create your
own branch “A with C added.” I get done first, so I check my code in,
requiring that I validate that my changes do not negatively affect the
main version. You are still working on A with C added, but at some
point you will have to incorporate B into what you are doing, because it
may well affect A (which you are working with) or may mean you need
to do something different with C than you originally thought.

Now consider the situation with three, four, or five different teams.
Each team will have to consider this decision, and its impact, each

A1

B1

Merge2

Mergeback

TrunkMerge1

Figure 9.7 Merging back immediately

ptg6843614

Test-Driven Development and Merge Cost 117

time another team commits their changes to the main trunk. If we can
ensure that each team knows, as soon as possible, that a change needs
to be incorporated into the work they are currently engaging, we can
drastically reduce this cost.

Test-Driven Development and Merge Cost

Part of the cost of merging is verifying the correctness of the code after
it has been merged. Properly coordinating the merge and merge-back
ensures that the system will compile (there are no breaking changes)
but not that it has the correct behavior as indicated by the requirements.
That the behavior is still correct must be verified as well.

So, the cost of a merge is the merge itself, the merge-back, and the
verification of each (see Figure 9.8).

If this verification requires developer effort, then reducing the time
between merges (which increases the frequency of merging) may even-
tually create more cost than it saves. Most development teams realize
this and seek out a sweet spot (see Figure 9.9): the balance between the
size of the merge (too big, too expensive) and the number of merges in
a given time frame (too many, too expensive).

Cost of a single merge = (Merge + VerifyMerge + MergeBack + VerifyMergeBack)

Cost of change = (Merge + VerifyMerge + MergeBack + VerifyMergeBack)

 = (Merge + MergeBack) + (VerifyMerge + VerifyMergeBack)

TDD can fundamentally change this equation. We promote TDD in
this book as a way of creating a verifiable functional specification of the

A

B VerifyMerge

Mergeback

Trunk

Merge

VerifyBackMerge

Figure 9.8 Merging, back-merging, and verification

ptg6843614

118 Chapter 9 • Continuous Integration

system, one that will not lose value over time. However, the value of
TDD does not stop there. We note that it also provides the code coverage
that makes refactoring less dangerous, and here we see that it also can
reduce the overhead of merging (see Figure 9.10).

Frequency of Merges

Cost Total

Verification

Merge

Figure 9.9 Attempting to reduce the total cost of changes, where the dashed
line is the “sweet spot”

Frequency of Merges

Cost

Total

Verification
Merge

Figure 9.10 TDD reduces the cost of verification and therefore the total cost of
change. How sweet it is!

ptg6843614

Continuous Integration 119

With an automated test suite, we can reduce the cost of this verifi-
cation to essentially zero, especially if the tests we write were done in
the TDD style (that is, focused on specifying the proper behavior of the
system).

In TDD we typically write tests first, allow them to fail, and then
write the code that is needed to get them to pass. Thus, all code is writ-
ten to turn some given red test into a green test, and as a result each
piece of code is covered (by the very test it turned green). This code
coverage can be used to verify the correctness of the code by simply
running the tests as part of the merging process.

With the overhead of merging reduced, we can reexamine the bal-
ance between the merge’s size and frequency and in so doing can mini-
mize the total cost of change. You’ll note that the cost of change can still
rise if our merge frequency increases too much; integrating on every
keystroke is not quite the best of ideas.

Continuous Integration

Continuous integration means that each time a change to the code has
been completed, we immediately commit this change into the main
trunk and inform everyone that this has happened so they can merge
back.

In a well-factored system (with plenty of encapsulation and open-
closedness), we expect that this will, under most circumstances, have
no effect on other teams working on other aspects of the system.

Automated tests have two roles here:

• When the code turns a red test green, the change is “completed,”
and this should trigger an immediate commit. It essentially defines
the notion of “complete.”

• However, even if all code compiles after a change is committed,
it is possible that one of the tests that another team has not yet
checked in will start to fail. This is our indication that the behavior
of the system has changed in such a way that the work of another
team is now no longer correct; and the failing test, in this case,
informs us quickly of this fact.

Naturally we want this process to be as efficient as possible, and to this
end a number of tools have been created to automate the notification of

ptg6843614

120 Chapter 9 • Continuous Integration

committed changes across the team and the running of all tests when
this happens. Regardless of the preferred tool, however, the process is
essentially the same. Note that the size of the changes and therefore the
costs remain low and consistent.

In continuous integration (see Figure 9.11), when you are ready to
commit, you do the following:

• You get the latest version.

• You merge back any changes in it into your code.

• You check in the result (the version-control system ensures that
you are working on the latest version or requires you to get the
latest version and merge back again).

• Each merge must include running all tests, and if any of them
break, it is the responsibility of the developer currently checking
to correct the problem (even if it is not this developer’s area).

Automated tools are crucial for the success of a continuous integra-
tion effort. We need to consider the source-control system and the build
system.

The following are some required features of a source-control system
that supports continuous integration.

• Does not require explicit checkouts but rather performs silent,
automatic merges

• Ensures atomic commits—if one file fails to check in, all other
files in the same check-in will be unaltered.

• Deals efficiently with small changes

• Has a notification mechanism when a check in succeeds—this is
important to kick off the build process

• Tracks all changes through filename changes

An example of such a system is Subversion.

Trunk
A

B

Figure 9.11 Continuous integration

ptg6843614

Continuous Integration Servers 121

Continuous Integration Servers

Many teams like to use continuous integration servers to reinforce the
soundness and correctness of the build. The continuous integration
server is responsible for triggering the build and postbuild activities
when a change is detected in the source-control system.

At a minimum, it should be able to do the following:

• Detect changes to the source tree

• Kick off a build

• Run automated tests

• Report failures in either build or tests

• Report successful builds so that the team members can merge
back the latest version

The following are examples of tools that work this way (stated in no
particular order).

• CruiseControl (open source, via SourceForge)

• TeamCity (JetBrains)

• FinalBuilder (VSoft)

• Team Foundation Server (Microsoft)

• Cabie (open source, via Tigris.org)

Some systems actually run the build and then only if the build is suc-
cessful (including tests) will check the code, on behalf of the developer,
into the source-control system.

As good as the CI server concept is, it introduces a major bottleneck.
The time it takes to go through a complete merge cycle on the CI server
limits the merge frequency for the entire team. Several approaches can
be taken to solve this problem.

• Do not run a CI server. During the workday, rely on the merge
and validation done by the individual developers’ machines, and
delegate a complete system build and verification to a nightly build.

• Start a CI server build only when it is idle. This means that
as the system is built and verified, multiple merges will occur on

ptg6843614

122 Chapter 9 • Continuous Integration

the trunk and will be tested when the current run completes. An
alternative to this approach is to have the CI server work on a
schedule, say, every half an hour, pursuant on a merge having
occurred since the last build.

• Beef up the CI server. The CI server should be a powerful
machine or a collection of machines capable of running multiple
builds concurrently as well as distributing the execution of the
tests in a single build. Running the tests in parallel is possible
since good tests are independent of each other and running them
in parallel can significantly reduce the CI server bottleneck.

Note that it is crucial for the developers’ environments and the CI
server environment to be identical. If you find that it is not, because the
merge succeeds on the developer machine and fails on the CI server,
steps must be taken to investigate and correct the causes for the failure.

Summary

Continuous integration is a crucial practice that can improve the devel-
opment team’s efficiency by doing the following:

• Reducing the time spent on merging changes into the main source
tree.

• Improving intrateam communication by making the work done
by the team members visible early. This gives the team a chance to
observe and comment on changes done to the code base—both in
content and in organization as soon as they occur.

• Limiting the impact of design changes as they take effect imme-
diately after they are introduced. This allows quick integration of
the changes into the work in progress as well as an early opportu-
nity to discuss them in case disagreements arise within the team
as to their correctness.

Every time a merge occurs, a cost is incurred. This cost is usually low
but must still be kept in mind. Every merge requires a series of merge-
backs by other team members as well as the verification that no exist-
ing functionality or work in progress is broken. Whereas the cost of the
merge and merge-backs drops as the merge frequency (and hence size)

ptg6843614

Summary 123

drops, the cost of verification is usually a constant. This means you can
merge too often.

Identifying the appropriate frequency of merge is crucial for a suc-
cessful continuous integration practice. One way of attenuating these
diminishing returns is to throttle the frequency of merge-backs to an
acceptable level. The team members may decide to merge back every
certain amount of time or after a set amount of merges has occurred
rather than after each one.

TDD is very instrumental in reducing the verification time and rais-
ing the accuracy of the verification process. It also allows partial work to
be merged because there is no risk in breaking the existing functional-
ity or any of the partial functionality merged into the system. There are
always tests to protect it.

Choosing a suitable source-control system is crucial for continuous
integration to succeed. The system should be low ceremony, be atomic,
and allow files to be worked on concurrently. It should have a powerful
automatic merge capability and the notification mechanism to notify
team members that a new version is available for merge-back.

The team may choose to use a CI server to further reinforce the
soundness of the merges. This introduces a process bottleneck that will
need to be resolved. The more developers who work on the system, the
more restricting this bottleneck will be. Several strategies exist for deal-
ing with this bottleneck.

ptg6843614

This page intentionally left blank

ptg6843614

PART III

Design Issues

ptg6843614

This page intentionally left blank

ptg6843614

127

Most people were taught to do object-oriented analysis and design by finding the
nouns and verbs in their problem domain, converting the nouns to classes and
the verbs to functions. Unfortunately, this approach does not work well in the
real world. It inherently leads to tall class hierarchies or embedded switches/if
statements.1 When building software in an iterative manner, you must learn
to create and organize objects in a different manner, around the concepts that
are present in your problem domain. Design patterns offer examples for doing
this. Commonality-Variability Analysis offers a straightforward way to find these
concepts.

In this chapter, we explore a technique that will help you identify the entities
in a problem domain and identify what they have in common in order to define
their abstractions. We will see how to separate related abstractions from each
other in order to create a more elegant model of our problem domain. We’ll see
how this model can guide our implementations. We will also illustrate a tech-
nique, or tool, called the Analysis Matrix2 that can be used to facilitate the conver-
sation between customers (or their proxies), designers/coders, and testers.

Using Nouns and Verbs as a Guide: Warning,
Danger Ahead!

If object-oriented designs are supposed to reflect the problem domain,
then defining objects from what we find in the problem domain seems
to be a reasonable approach. The trouble is that being guided by what

1. This phenomenon is described in great detail in Shalloway and Trott’s Design Patterns
Explained: A New Perspective on Object-Oriented Design, Second Edition.

2. The Analysis Matrix was first described in Design Patterns Explained: A New Perspective on
Object-Oriented Design.

CHAPTER 10

Commonality and Variability

Analysis

ptg6843614

128 Chapter 10 • Commonality and Variability Analysis

you know about now is very specific. It does not prepare you for what
you will have in the future. In fact, it can lock you in with assump-
tions about the domain—assumptions that aren’t always verified and
assumptions that, after they are made, make the code hard to change.

Here is an example: Suppose you are developing an application
for a college. In this application, there is a class named Student. At
some point, you discover you need to handle students from other
countries. You decide to model these foreign students by creating
a specialized class. Now, your application has a Student and a spe-
cial kind of student: ForeignStudent. Later, the college decides to
start a f oreign-exchange program, so you add another special kind of
Foreign Student: ForeignExchangeStudent. And right there,
you have built an unexamined assumption into your system. You have
assumed that all foreign-exchange students are foreign, but that is not
always the case. What about someone who had studied abroad and then
decided to join the college’s foreign-exchange program to study for one
quarter because she was homesick? She isn’t a foreign student, just a
member of the Foreign Exchange Student Program. Now what? Before
too long, you have an application with highly coupled objects and very
tall class hierarchies.3

Your software must serve the real world, and the real world is more
complex than what we assume.

Creating good, decoupled hierarchies is hard, especially when you
have to create new variants of entities you have already modeled. And it
is worse because you often have to add to several hierarchies simultane-
ously. It is even harder because these variations are often embedded into
the context of their use. Although it looks like you just need to tweak
the system a little, the reality is far different. It takes far more time to
integrate new features than it does to write them in the first place.

Let’s look at an example to see what the problem is, and then let’s
look for an alternative path.

Suppose you are writing the controller software for a disk drive and
you currently have to support two drives:

• C4DD_XYZ: 4 heads, 20 tracks, encrypting Algorithm A

• C4DD_UVW: 2 heads, 40 tracks, encrypting Algorithm B

3. It is interesting to note that biologists have given up trying to create hierarchies of living
things. Plants and animals have overlapping characteristics.

ptg6843614

Using Nouns and Verbs as a Guide: Warning, Danger Ahead! 129

The different number of heads and tracks requires different algo-
rithms for placing data on the drives themselves.

Using the “nouns and verbs” approach to design the classes, you might
represent the two different disk drives by defining two different classes,
named C4DD_XYZ and C4DD_UVW. At a minimum, you will have to
come up with a set of methods that implement the needed behavior of
these such as Read() and Write().

Since we are trying to be object-oriented, we notice that since both
C4DD_XYZ and C4DD_UVW are controllers, they should have a com-
mon base class, as shown in Figure 10.1.

Now, suppose a new, faster model gets introduced. Model C4DD_
UVW2 is like the original model C4DD_UVW. It has 2 heads and 40
tracks and uses Algorithm B for encryption just as the others do; how-
ever, because it is a faster drive, its tracking algorithm needs to change.
We might insert an if statement in the code to specify which track-
ing algorithm to use based on which model is currently installed. Or,
taking a more object-oriented approach, we might create a C4DD_UVW
base class and then extend two classes from it: C4DD_UVW1 (the original
model) and C4DD_UVW2 (the new model), as shown in Figure 10.2.

So far, so good. Extending classes in this way does work, at least for
now; however, with more and more models, this approach will break
down. For example, what if a few of the specialized classes need to use
the same service? If you have been very disciplined and if you have
been doing Programming by Intention (see Chapter 1, Programming by
Intention), you might be able to refactor your code and move the service
up a level. But accounting for the exceptions might make it hard. We
created this problem for ourselves when we started down the path of
specialization by refining nouns. Or consider what happens if there is a
third variation of C4DD_UVW that needs to use Algorithm A, the encryp-
tion algorithm from C4DD_XYZ. The right thing might be to extract
Algorithm A from C4DD_XYZ, but you don’t have time: Someone else
wrote C4DD_XYZ, and maybe extracting Algorithm A would mean

Controller

C4DD_UVWC4DD_XYZ

Figure 10.1 The controllers

ptg6843614

130 Chapter 10 • Commonality and Variability Analysis

having to retest the C4DD_XYZ code. If the team that wrote it is unwill-
ing to do that, it may not be feasible to break out the algorithm. What
should you do? It is tempting just to copy Algorithm A from C4DD_XYZ
and then paste it into the new C4DD_UVW3. It is tempting, but it would
be wrong. Inevitably, there will come a need to change Algorithm A.
Then you are stuck having to find every place you have done the copy
and paste. Heaven help you if you miss one! And Shalloway’s law4 guar-
antees you will.

What Is the Real Problem?

In this example, the problem is not using inheritance. It is the improper
use of inheritance. It is using if statements or switches to handle special
cases (such as “regular” and “foreign” students) or treating special cases
in special ways. You end up with weakly cohesive code that is very dif-
ficult to change. This is exacerbated by certain “agile” approaches that
tell developers not to look ahead, not to anticipate. That is bad advice.
Do look ahead! Just be sure to look ahead at the right things. Don’t look
at the special cases, but rather look at the concepts they represent.

The problem with the nouns-and-verbs approach to modeling is that
it does not address the real problem, which is identifying the entities in
the problem domain in a way that keeps each of them separate from the
other. If you cannot keep them separate, you end up with classes that
have unrelated behaviors in them, resulting in weak cohesion and tight

4. When N things need to change and N>1, Shalloway will find at most N-1 of the things.
See Chapter 4.

Controller

C4DD_UVWC4DD_XYZ

C4DD_UVW2C4DD_UVW1

Figure 10.2 UML model describing the new design

ptg6843614

What We Need to Know 131

coupling. The bigger and more complex the code gets, the greater the
coupling and the weaker the cohesion.

What is needed is an approach that helps keep separate those concepts
that just happen to be discovered at the same time but have no other log-
ical connection and to do this with a minimum of anticipation. Remem-
ber that in agile projects, even if we have the full problem in front of us,
we want to spend only a short amount of time on the initial model.

What We Need to Know

What if we told you that we know a concept that would solve more than
half of the problems you encounter when changing code? What if we
told you that you, also, already know this concept but that you act like
you don’t? How would you feel? It’s true! We know it and so do you.
Here it is.

An example of something represents a concept of the thing, but the thing itself
should not be taken for the concept.

Here is a simple example. At the start of many DVDs there is a mes-
sage that says, “This movie has been formatted to fit your screen.”
Really? My screen? How did they even know the format of my screen?
Oh, that’s right, they meant screens like mine. My screen is one TV, but
they were using “my screen” to represent the concept “TVs owned by
the public.” But you knew that.

Now, did you notice that we are not really talking about DVDs but
rather about home video? They had this message on video tapes, too.
So, our use of “DVD” actually stood for a broader concept: video media
being played in the home.

Here is another example: On computers running Microsoft Windows
(prior to Vista), that little “shut down” button at the lower left was used
to shut down your computer. Click it, and you would find that it actu-
ally offers a number of choices, such as sleep, hibernate, and shut down.
Perhaps it behaved this way because in the early of Windows, the only
option to “change the power state of your computer” was to “shut down”
the computer and so the option was labeled “Shut down.” As new varia-
tions to “change the power state of your computer” were added, the
label didn’t change. It caused confusion in the user interface and maybe
confusion in the code. How much confusion would have been avoided
had they paid attention to the concept “change the power state” rather
than the one example, “shut down.”

ptg6843614

132 Chapter 10 • Commonality and Variability Analysis

We do this all the time in our speaking. We switch back and forth
effortlessly between the example of a concept and the concept itself
without noticing what we are doing. But in software, once something is
modeled as an example or a concept, the code doesn’t switch. We need
a method that enables us to make this distinction clear. Otherwise, our
code will become brittle and viscous.

Handling Variation

Let’s step back for a minute. At the beginning of a project, you have
only a cursory view of the problem. You know that you want to defer
implementation details, but those details are mostly what you know. Is
there a way to create an overall view that can do this without taking up
too much time or requiring up-front design?

Begin by discovering the concepts that are present in the problem
domain. Then find the implementations (or variations) of these concepts.
And plan to handle variations of these concepts by encapsulating them.5

We need to be able to do this quickly and to be able to cope with min-
imal and incomplete information. The approach to use is called Com-
monality and Variability Analysis.

Commonality and Variability Analysis

Jim Coplien’s work6 describes an approach to finding variations in the
problem domain and identifying what is common across the domain.
Identify where things vary (“Commonality Analysis”) and then identify
how they vary (“Variability Analysis”).

Commonality Analysis

According to Coplien, “Commonality Analysis is the search for com-
mon elements that helps us understand how family members are the
same.”7 By “family members,” Coplien means elements that are related
to each other by the situation in which they appear or the function they

5. Encapsulating variation simply means hiding the implementation details behind an inter-
face (either a literal interface type or a set of methods that establish its use). The code
using this interface must treat everything that is behind the interface as if it were not
varying; that is, the interface will describe the concept, and each of the implementations
behind the interface will vary the implementation of that concept.

6. Coplien, James O. Multi-Paradigm Design for C++. Boston, MA: Addison -Wesley, 1998.
7. ibid, p. 63.

ptg6843614

Commonality and Variability Analysis 133

perform. The process of finding out how things are common defines the
family in which these elements belong (and hence, where things vary).

For example, if I showed you a whiteboard marker, a pencil, and a
ballpoint pen, you might say that what they all have in common is that
they make marks on things, they have tips, they fit well in the hand,
and so on. You may suggest the name “writing instruments” for any-
thing that has these characteristics. The process you performed to iden-
tify them all in a common manner is Commonality Analysis.

Variability Analysis

These commonalities also make it easier to discuss how they are dif-
ferent. One difference is what these writing instruments can write on:
a whiteboard or paper. Another difference is the materials that can be
used for writing: erasable, permanent, graphite. Variability Analysis
reveals how family members vary. Variability only makes sense within
a given commonality.

Commonality analysis seeks structure that is unlikely to change over time,
while variability analysis captures structure that is likely to change. Variability
analysis makes sense only in terms of the context defined by the associated com-
monality analysis ... From an architectural perspective, commonality analysis
gives the architecture its longevity; variability analysis drives its fitness for use.8

In other words, variations are the specific concrete cases from the
domain. Commonalities define the concepts in the domain that these
variations are examples of. These common concepts will be represented
by abstract type (abstract classes, interfaces, and so on). The variations
found by Variability Analysis will be implemented by the concrete type,
that is, entities implementing these abstract classes or interfaces.

Object-Oriented Design Captures All Three
Perspectives

Consider Figure 10.3. It shows the relationship between the following:

• Commonality and Variability Analysis

• The conceptual, specification, and implementation perspectives

• An abstract class, its interface, and its derived classes

8. ibid, pp. 60, 64.

ptg6843614

134 Chapter 10 • Commonality and Variability Analysis

As you can see in Figure 10.3, Commonality Analysis relates to the
conceptual view of the problem domain, and Variability Analysis relates
to the implementation, that is, to specific cases.

Specification gives a better understanding of abstract classes.

The specification perspective lies in the middle. Both Commonality
and Variability Analysis are involved in this perspective. The specifica-
tion defines how to communicate with a set of objects that are conceptu-
ally similar. Each of these objects represents a variation of the common
concept. This specification becomes an abstract type at the implementa-
tion level.

Note that the previous relationships hold true for Java/C# type inter-
faces as well. In fact, there are many ways to implement a concept.
A commonality could be an attribute that varies by value, a regular
expression that varies by specific string, and so on. Abstract base type
and concrete derived types are only one way of modeling commonality
Variability Analysis.

A New Paradigm for Finding Objects

Commonality-Variability Analysis offers a different way of decomposing
the domain, resulting in decoupled concepts. Each of these concepts can
be represented by an interface. The variations that are present can be

Commonality
Analysis

Variability
Analysis

Conceptual
Perspective

Specification
Perspective

Implementation
Perspective

By looking at what these objects must do
(conceptual perspective), we determine how to
call them (specification perspective).

When implementing these classes, ensure that
the API provides sufficient information to enable
proper implementation and decoupling.

AbstractClass

+Operations()

ConcreteClass

+Operations()

ConcreteClass

+Operations()

Figure 10.3 The relationship between Commonality and Variability Analysis, perspectives,
and abstract classes

ptg6843614

A New Paradigm for Finding Objects 135

implementations of this interface. The advantage of this approach is that
we can provide more and more specializations while keeping classes
decoupled and our class hierarchies relatively flat.

Note: For the remainder of this chapter, we will use the term “interface”
to mean any of the methods of representing abstractions available in
the different programming languages. This can be an abstract class or
interface in Java or C# or a class with all pure virtual functions and no
data members in C++. It could even be an interface that a template
in C++ defines.9 Decomposing the problem domain into concepts and
implementations provides a three-step procedure for creating an
overall, high-level map of your problem domain. The first is to identify
the concepts, and the second is to see which variations of those con-
cepts exist. Once these have been identified, the specification for the
interfaces can be determined. This specification identifies the inter-
face needed to handle all the cases of a concept (that is, the common-
ality defined by the conceptual perspective).

The relationship between the specification perspective and the imple-
mentation perspective is this: Given this specification, how can I imple-
ment this particular case (this variation)?

Tips for Finding Your Concepts and Variations with an
Example

We have found two simple questions can be used to find concepts and
variations. Pick anything in the problem domain. Now ask the follow-
ing questions.

• Is this a concept or an implementation?

• If it is a concept, what are the variations of it? If it’s an implemen-
tation, what is it a variation of?

For example, in the disk drive example discussed earlier, you might
pick the C4DD_XYZ controller. Going through the two questions, you
would get that the C4DD is an implementation of the concept “control-
ler.” And you would already have identified two classes: Controller

9. In Multiparadigm Design for C++, Jim Coplien discusses how template methods effectively
define an interface since the class template has to implement the methods used in the
template. One is effectively defining the behavior that a class has to support in order to be
used by the template.

ptg6843614

136 Chapter 10 • Commonality and Variability Analysis

and C4DD. Now, pick something else. There are different encrypting
algorithms. Ask the two questions, and you will realize that “encrypting
algorithm” is a concept that has two implementations, Algorithm A and
Algorithm B.

The Analysis Matrix: A Case Study

The notion of Commonality-Variability Analysis is easy to describe. To
make it scale to the challenges we face in software development, you
need one more tool. It is a simple and powerful tool called the “Analy-
sis Matrix.” The Analysis Matrix is a method of tracking requirements
where one case can be specified at a time, each case adding more infor-
mation to the understanding of the problem domain to be implemented.
However, it is done in such a manner as to create greater clarity on the
concepts in the problem domain while keeping track of each specific
implementation method used for each case.

The matrix is built as follows:

1. Select a specific example to be described.

2. List the steps required to be implemented for this case with the
first step at the top and with each subsequent step underneath the
prior step.

3. Create a column to the left of the step being described.

4. As you list each step, put the concept that the step relates to its left.

Table 10.1 illustrates this first sequence of steps for a sales-order sys-
tem in the United States.

Table 10.1 Steps in a Sales-Order System

Concept
Case 1: Sales Processing in the
United States

Create a record. Create a new sales order record.

Find customer. Enter the customer for which this sales order
is for.

Update customer. Provide an option to update information on
the selected customer.

ptg6843614

The Analysis Matrix: A Case Study 137

Table 10.2 Adding Steps to Process a Sales Order in Canada

Concept

Case 1:
Sales Processing in the
United States

Case 2:
Sales Processing in
Canada

Create a record. Create a new sales order record. "

Find customer. Enter the customer that this
sales order is for.

"

Update customer. Provide an option to update
information on the selected
customer.

"

Select items. Select items to be purchased. "

Select shipment. Select how to ship. "

continues

Table 10.1 Steps in a Sales-Order System (Continued)

Concept
Case 1: Sales Processing in the
United States

Select items. Select items to be purchased.

Select shipment. Select how to ship.

Calculate tax. Use local tax codes to calculate tax.

Select payment. Select payment type.

Process. Process sales order.

Each case (column) can be a story that implements some functional-
ity. In this example, the first case is for processing a sales order in the
United States.

Now, find another case, add a column to the right, and do the same
thing. Each entry should specify how the concept in the leftmost col-
umn is implemented. For an example, see Table 10.2.

ptg6843614

138 Chapter 10 • Commonality and Variability Analysis

Notice how entries that are the same as the entry in the left column
(for example, creating a new sales-order record) can be marked with a "
to make it clear that that is the case. However, one should ask whether
this is really the case. The “Update customer” row will actually be dif-
ferent because customer information for the United States is different
from customer information in Canada (the address being one example).
You may also have different shipping methods in Canada. In that case,
you would modify Table 10.2 to be what is shown in Table 10.3 (italics
highlighting the changes).

Note that two things are happening here. First, as you gain clarity on
one case, it reflects on the other cases. Second, you will start seeing the

Table 10.3 Adding Steps to Show New Shipping Methods

Concept

Case 1:
Sales Processing in the
United States

Case 2:
Sales Processing in
Canada

Create a record. Create a new sales order record. "

Find customer. Enter the customer that this
sales order is for.

"

Update customer. Provide an option to update
information on the selected U.S.
customer.

Provide an option to update
information on the selected
Canadian customer.

continues

Concept

Case 1:
Sales Processing in the
United States

Case 2:
Sales Processing in
Canada

Calculate tax. Use local tax codes to calculate
tax.

Use GST and PST.

Select payment. Select payment type. "

Process. Process sales order. "

Table 10.2 Adding Steps to Process a Sales Order in Canada (Continued)

ptg6843614

The Analysis Matrix: A Case Study 139

differences in implementation between the cases. As you discover new
concepts, add them as new rows in the table.

Table 10.4 shows what happens when you add another case, a sales
order in Germany.

Notice the two additional rows: one for date formats and one for a
maximum shipping weight.

• The date format is something we should have noticed before but
didn’t. This is one of the powers of the matrix: As you add more
columns to the right, you will get more rows as each specific case
uncovers more concepts.

• “Specify maximum shipping weight” shows something we dis-
covered that was missing. Discovering missing concepts by merely
talking to customers (or their proxies) is often difficult because it
is hard to know what you’ve left out. In any event, once one has
been discovered, it is easy enough to ask: “What are the maximum
weights allowed for shipping in the United States and in Canada?”

Using the matrix, you will find that as you add more cases, you will
find more concepts. So, when do you stop? Do you really need all of the
cases? Actually, you don’t. What you want to find is the concepts that
are present. So, once you stop adding rows (concepts) as you add more

Concept

Case 1:
Sales Processing in the
United States

Case 2:
Sales Processing in
Canada

Select items. Select items to be purchased. "

Select shipment. Select how to ship using list of
U.S. freight carriers.

Select how to ship using list of
Canadian freight carriers.

Calculate tax. Use local tax codes to calculate
tax.

Use GST and PST.

Select payment. Select payment type. "

Process. Process sales order. "

Table 10.3 Adding Steps to Show New Shipping Methods (Continued)

ptg6843614

14
0 Table 10.4 Adding Another Case

Concept
Case: Sales Processing
in the United States

Case 2: Sales
Processing in Canada

Case 3: Sales
Processing in Germany

Create a record. Create a new sales order record. " "

Find customer. Enter the customer that this sales
order is for.

" "

Update customer. Provide an option to update
information on the selected U.S.
customer.

Provide an option to update
information on the selected
Canadian customer.

Provide an option to update
information on the selected
German customer.

Select items. Select items to be purchased. " "

Select shipment. Select how to ship using list of
U.S. freight carriers.

Select how to ship using list of
Canadian freight carriers.

Select how to ship using list of
German freight carriers.

Calculate tax. Use local tax codes to calculate
tax.

Use GST and PST. VAT.

Select payment. Select payment type. " "

Specify date
formats.

mm/dd/yyyy. dd/mm/yyyy. dd/mm/yyyy.

Specify maximum
shipping weight.

?? ?? 30 kg.

Process. Process sales order. " "

ptg6843614

The Analysis Matrix: A Case Study 141

cases (columns), you can feel reasonably assured that you have found
most of the concepts.

Selecting the Stories to Analyze

When it comes to picking stories to analyze, do it intentionally, not ran-
domly. Select stories that will give a good representation of the con-
cepts involved. For example, here is an example of the analysis matrix
I (Alan) created while consulting at Boeing.10 McDonnell Douglas, a
domestic airline, had requested that Boeing create a method of pull-
ing up all of the information needed to do maintenance on a particular
plane when the airline’s system indicated maintenance was needed. To
do this, the system would need to be able to integrate the following
document-retrieval systems.

• Plane Manufacturers

° Boeing

° McDonnell Douglas

• Engine Manufacturers

° GE

° Rolls Royce

° Pratt & Whitney

• Domestic Airlines

° Continental

° American Airlines

° Southwest Airlines

° Alaska Airlines

° Delta

• European Airlines

° British Airways

° Easy Jet

10. Note: We can talk about this because this problem was in the public since it involved
many different airlines. That is, no NDA is being breached here.

ptg6843614

142 Chapter 10 • Commonality and Variability Analysis

• Asian Carriers

° China Airlines

° Japan Airlines

° Korean Airlines

• Other Carriers

° Egypt Air

° El Al

° Emirates

• Aircraft Component Makers

° Galley Mfr 1

° Galley Mfr 2

° Galley Mfr 3

° Toilet Mfr 1

° Toilet Mfr 2

° Water closet Mfr 1

° Water closet Mfr 2

° Water closet Mfr 3

° Vendor X

° Vendor Y

As you can see, there are many different cases to consider! Which
ones would you select? Would we need to consider them all? Or just a
selected set? If we decided just to do a selected set, how would we select
them? We could just go down the list—that is, do Boeing, McDonnell
Douglas, GE, Rolls Royce, and so on—until we stop adding new rows.
Or, we could just pick them randomly until we stop adding new rows.
Or, we can think about it a little first.11

11. At this point, the authors are reminded of a favorite Deming quote—“Don’t just do some-
thing, stand there”—whereupon he meant it is often worth considering one’s course of
action before undertaking it.

ptg6843614

The Analysis Matrix: A Case Study 143

Notice that a document-control system for a domestic carrier is more
likely to be similar to another domestic carrier than it is, say, to an
engine manufacturer or even a foreign carrier. Hence, when selecting
cases, I decided to select them based on the type of company for which
the document-control system was written. These are shown in italics in
the following list.

• Plane Manufacturers

° Boeing

° McDonnell Douglas12

• Engine Manufacturers

° GE

° Rolls Royce

° Pratt & Whitney

• Domestic Airlines

° Continental

° American Airlines

° Southwest Airlines

° Alaska Airlines

° Delta

• European Airlines

° British Airways

° Easy Jet

• Asian Carriers

° China Airlines

° Japan Airlines

° Korean Airlines

12. Note the exception here in that we’re doing both Boeing and McDonnell Douglas since
we’ll be needing to handle these two systems and these are most likely the biggest ones
present.

ptg6843614

144 Chapter 10 • Commonality and Variability Analysis

• Other Carriers

° Egypt Air

° El Al

° Emirates

• Aircraft Component Makers

° Galley Mfr 1

° Galley Mfr 2

° Galley Mfr 3

° Toilet Mfr 1

° Toilet Mfr 2

° Water closet Mfr 1

° Water closet Mfr 2

° Water closet Mfr 3

° Vendor X

° Vendor Y

Work through the list for each category (for example, engine manu-
facturers, domestic airlines) and pick one. When a selected case doesn’t
add a new concept, skip that category in the next pass. Although this
is not an exact method, it should help us identify most of the concepts
relatively quickly.

The Analysis Matrix has several uses. First, it helps us gain greater
clarity about the problem domain while illustrating gaps and inconsis-
tencies. Second, it helps developers realize that although the customer
may be talking specifics, there will be other cases, and they need to pre-
pare for them.13 Finally, it illustrates the differences between the cases.

13. Doing this does not require a lot of extra code. The methods we’ve been discussing
throughout this book (encapsulation, encapsulating construction, Programming by
Intention) are more than sufficient to enable us to implement the specific cases while
keeping the code easily modifiable for additional cases. This provides us with a way to
write emergent code. That is, we can implement one case only paying attention to it but
encapsulating the actual implementation in preparation for the next. This typically does
not take any extra time; it merely requires avoiding coupling the calling routines from
the implementations through a well-defined interface.

ptg6843614

Summary 145

This can help determine the order in which to implement each of the
cases (or stories).

 The Analysis Matrix is quick to do, on the order of one to two days
for a three- or six-month project with a team of ten people. The time
required is more than paid back by the clarity it provides the team as
well as the general application architecture it provides. In other words,
the Analysis Matrix enables a quick conceptual design of the problem
domain model.

Summary

Many developers tend to use a “noun-and-verb” approach to modeling
objects in the problem domain because it is how they were taught and it
is pretty easy to do. Unfortunately, the method does not work very well
for long. Soon it couples together essentially unrelated concepts, mak-
ing adding any new ones very difficult.

Commonality-Variability Analysis helps developers avoid coupling
between objectives by making it clear that our implementations are spe-
cial cases and that new special cases will arrive shortly. By treating our
objects as special cases of a more general concept that may not be clear
yet, we decouple these known implementations from the objects that
use them. The best approach is to encapsulate implementations and let
the architecture handle more and more special cases as they emerge
over time.

The Analysis Matrix is a quick, easy tool that supports Commonality-
Variability Analysis. It enables a quick conceptual design of the problem
domain model.

ptg6843614

This page intentionally left blank

ptg6843614

147

Solving tricky problems can often involve changing your point of view. In this
chapter, we’ll examine one particularly tricky problem: how to avoid overdesign
without suffering the problems that often accompany an insufficient or naïve
design. In the process, we’ll rethink two, hopefully well-known, aspects of devel-
opment: the Open-Closed principle and the discipline of refactoring. We’ll begin
by examining these aspects as they are traditionally understood and then repur-
pose them in a more agile way.

The Open-Closed Principle

The notion that systems have to accommodate change is not a new one.
At the birth of objects and OO, Ivar Jacobsen said, “All systems change
during their life cycles. This must be borne in mind when developing
systems expected to last longer than the first version.”1 Of course, since
this was before the invention of object-oriented languages and systems,
he was focused on the particular nature of procedural code and how
one can make code more or less “changeable” depending on what one
focused upon when writing it.

Jacobsen was one of many who promoted the idea of breaking up
programming functionality into multiple, “helper” functions, called
from a central location in the code, with the idea that change would
be fundamentally easier to deal with if code was not written in large
“blobs.” Without this, code would be hard to understand, hard to con-
trol in terms of side effects, and difficult to debug—hard to change, in
other words.

1. Jacobson, Ivar, et al. Object-Oriented Software Engineering: A Use Case Driven Approach. Read-
ing, MA: Addison-Wesley, 1993.

CHAPTER 11

Refactor to the Open-Closed

ptg6843614

148 Chapter 11 • Refactor to the Open-Closed

We still believe in this notion, and in fact it has become known today
as the practice of Programming by Intention (see Chapter 1, Program-
ming by Intention, for more details). Personally, we never write code
any other way.

With the advent of OO, the same notion, namely, that we should
expect our systems to change, took on a potentially different meaning.
Bertrand Meyer, an early OO thinker and the creator of one of the most
object-oriented languages of the time, Eiffel, rephrased Jacobsen this
way:

Software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification.

Initially this was seen as a natural outgrowth of inheritance. If we
have an existing class, let’s call it ClassA, and we want to change some
aspect of its behavior, it was pointed out that rather than making code
changes to ClassA, we could instead create a new class based on it,
through inheritance, and make the change(s) in the new class (see Fig-
ure 11.1).

Initial Design Accommodating New
Requirement, No
Change to ClassA

ClassA
+M1()
+M2()

ClassA
+M1()
+M2()

ClassB
+M2()

Figure 11.1 Open-closed through direct inheritance

ptg6843614

The Open-Closed Principle 149

ClassA, here, is an existing class with existing behavior. Now, we
need something similar but with a variation in method M2(), so we’ve
used inheritance to make a new class (ClassB) based on the existing
one.

This was thought to be “reusing” the object and seemed to be an
admirable aspect of OO. Leave ClassA alone, and you’re not very likely
to break it. A new class, ClassB, will contain only what is different and
new (in this case, by overriding the M2() method) and will therefore
also be simpler and safer to work with. This is most likely what caused
the creators of Java to use the word “extends” to indicate inheritance,
because Java was created in the early- to mid-1990s when just this sort
of thinking was prevalent.

There were problems with this once developers started to see “inheri-
tance for reuse” as the solution to essentially everything (see Chapter
13, When and How to Use Inheritance, for more details on this). Pat-
terns, and the general design advice they contain, tended to make us
reconsider what it meant to be “closed for modification” and to use class
polymorphism to achieve it, as shown in Figure 11.2.

Now we can accommodate a new version of the M2_Service by add-
ing another class, M2_Service_V2, and make no changes to the exist-
ing code in ClassA or in M2_Service_V1. This means we are “open
to extension” (adding a new class, in this case) and “closed to modifica-
tion” (all the things we are not changing).

But even in the initial design, we have added a class (the abstract
class M2_Service), and this is without considering how the initial M2_
Service_V1 class will be instantiated.

If ClassA contains the code new M2_Service_V1() within it, then
we would not be able to add M2_Service_V2 without changing that bit
of code, and thus we would not be “closed to modification” of ClassA,
which was our goal. In other words, the M2_Service abstract type
does not really buy us much if client classes build concrete instances
themselves. See Chapter 2, Separate Use from Construction, for a more
detailed treatment of this topic.

To fix that problem, we’d have to add yet another entity, one that
was solely responsible for creating the instance in the first place, and
we would thereby know that was the one and only place where a code
change would have to be made (see Figure 11.3). ClassA and all other
clients of this service (reuse being another primary goal here) would
not change when the V2 version came along.

ptg6843614

15
0

M2_Service_V2
+M2_Impl()

M2_Service_V1
+M2_Impl()

Accommodating New Requirement, No
Change to ClassA

Initial Design

M2_Service
+M2_Impl()

ClassA
+M1()
+M2()

M2_Service_V1
+M2_Impl()

uses

M2() {
 myM2Service.M2_Impl();
}

ClassA
+M1()
+M2()

uses

M2() {
 myM2Service.M2_Impl();
}

M2_Service
+M2_Impl()

Figure 11.2 Open-closed through class polymorphism

ptg6843614

The Open-Closed Principle 151

This would seem to be adding complexity for something that may or
may not happen. In the past, we would often say to add this sort of antici-
patory infrastructure when the issue was “likely to change,” but there are
few developers indeed who would claim to be able to make that estima-
tion with any degree of confidence. Anticipatory guessing is not very reli-
able and not repeatable over time. We need something more than luck.

Open-Closed to Other Things

Furthermore, people often focus on the Open-Closed principle in terms
of adding a new behavior to an existing system. The truth is that the
principle can apply to any change at all.

• An object may start out using a single instance of a service object
and then later require more than one for load balancing or where
there are different versions of a service and more than one version
is needed. One one versus one many is a potential change.

• An object may use a set of service objects in a given order today
and then alter the order tomorrow. The sequence of a workflow is
a potential change.

• An object may be responsible for cleaning up the memory of the
service object it holds, and then later it may no longer be. Memory
management is a potential change.

• An object may use the same service object it was initially given
throughout its life cycle and then later must have the ability to

creates

uses

uses

M2_ServiceFactory
+MakeM2_Service(): M2_Service

M2_Service_V1
+M2_Impl()

ClassA
+M1()
+M2()

M2_Service
+M2_Impl()

Figure 11.3 Adding an instantiation entity (“factory”) to build the right instance

ptg6843614

152 Chapter 11 • Refactor to the Open-Closed

change the service object later. Static versus dynamic relationships
is a potential change.

These are just a few examples. We should consider the Open-Closed
principle as potentially applying to all of these circumstances. When
any of these potential changes occurs, we’d like to be able to accom-
modate it by adding something new and leaving as much of the existing
system as is.

But as before, the question is how can we know when any of these
changes are likely enough that it is worth putting in the extra abstrac-
tions, factories, and so forth up front?

Open-Closed Is a “Principle”

Principles can be thought of either being rules of nature (or program-
ming in our case) or guidance to follow to best take advantage of these
rules. Principles are always true, but how to use them depends upon the
context in which you find yourself. The principle does not specify a spe-
cific tactic for achieving this, because there are many that could work,
depending on circumstance.

Remember that the Open-Closed principle comes from Jacobsen’s
notion that all systems will have to be changed and that this was before
the creation of objects and object-oriented languages and tools. So, what
he was referring to was the basic way code is structured, using the finer-
grained functions mentioned earlier.

For a concrete example of what Jacobsen was recommending, we can
turn to something fun.

Several years ago, when IBM was trying to encourage some of their
older, quite experienced developers to switch to an object-oriented
point of view (in this case, by learning Java), they ran into some resis-
tance. These guys felt that they could do what they needed to do with-
out OO and really didn’t want to have to abandon their tried-and-true
techniques in procedural code. This is understandable; good procedural
code required a lot of discipline and experience, and so these guys had
invested a lot of themselves into it.

So, IBM tapped into the generally competitive nature of most soft-
ware developers. They came up with a game, called “Robocode,”2 which
allowed developers to write Java classes that would actually fight each

2. Robocode is more complex than we are intimating here, but this makes our point. For
more, visit their site! It’s wicked fun: http://robocode.sourceforge.net/.

http://robocode.sourceforge.net/

ptg6843614

The Open-Closed Principle 153

other, with explosions and all, in a graphical framework. The devs write
the classes; the game lets them fight each other.

The following is an example of a very simple Robocode robot class.

import robocode.*;
public class Robbie extends Robot {
 public void run() {
 ahead(100);
 turnGunRight(360);
 back(100);
 turnGunRight(360);
 }

 public void onScannedRobot(RobotEvent re) {
 if(isNotMyTeam(re)) fire(1);
 }
}

By extending Robot, Robbie can be upcast to that type, and the game
will be able to call methods like run() when it’s Robbie’s turn to move
and onScannedRobot() when Robbie sees an enemy, and so on.

You might have noticed that neither of these methods really does much
in and of itself. run() called other methods like ahead(), turnGun-
Right(), and so forth. onScannedRobot() delegates to other methods
as well. Jacobsen and others of the time called these subordinate meth-
ods “helper methods,” and they suggested that this was a good practice
to follow.

It’s good because adding more helper methods, removing existing
ones, or changing the implementation of a helper method, and so on,
can have very limited impact on the rest of the system. Contrast this
to how such changes would play out if run() had all the code in it, in
a large, complicated structure. Such structures will work, but they are
very hard to change later.

Would this design be more open-closed if these behaviors, like
fire(), were in separate objects? Sure. But how far do you go?

One extreme would be to pull everything out into its own object.
This would create vast numbers of small objects, creating a lot of com-
plexity and coupling. The other extreme is to code all behavior into a
single method in a single object. Neither seems very attractive, so how
do we find the best middle ground? One adds flexibility at the expense
of complexity; the other loses code quality. How can we add flexibility
when we need it? That’s what refactoring to the open-closed will allow
us to do.

ptg6843614

154 Chapter 11 • Refactor to the Open-Closed

Refactoring

It’s not uncommon for developers to make changes to code that make
no difference or cause no changes in the behavior of a system. Some-
times, for instance, we may change the name of a variable, clean up
the indentation in nest logic, give a method a more intention-revealing
name, or change a code structure to make it easier to read (a for loop
replaced with foreach loop), and so on.

Sometimes these changes can actually alter a design or architecture,
but again, they may not change the outward-facing functionality of the
system from the stakeholder’s point of view or in the way it interacts
with or affects other systems.

When we make such a change, we are refactoring. We make this
distinct from enhancing a system, debugging it, or taking any other action
that would change its resulting behavior (including, of course breaking it).

In his ground-breaking book Refactoring,3 Martin Fowler defined a
specific set of disciplines around what had up to that point been indi-
vidual, ad hoc practices. He defined his “refactoring moves” in a way
quite similar to design patterns; take things we do repeatedly, give them
specific names, and capture what we as a community know about them
so this knowledge becomes shared. We often think of refactoring moves
as “patterns of change.” They establish a shared language that commu-
nicates our plans and expectations with a higher degree of fidelity.

Extract Method, for example, would be the refactoring move that
we’d use to convert a “single method blob” of code into the “helper
method” approach used in our Robot earlier. If we realized that one
of those helper methods actually should be in its own class, we could
do Extract Class if the class was a new one or Move Method if we were
moving it to an existing class. In each case, a clearly defined series of
steps is defined, making sure that we don’t miss anything critical and
enabling us to improve the code aggressively and with high confidence.
It’s an enormously useful book.

That said, refactoring has gotten something of a bad reputation among
those who pay for software to be developed.

If a development team is “refactoring the system” business owners
know that they can expect no new functionality or improved perfor-
mance from the system while this is going on. In fact, every refactor-
ing move includes running a suite of tests to ensure that nothing has

3. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-
Wesley, 1999.

ptg6843614

Refactoring 155

changed in the way the system behaves. The same tests must pass after
the refactoring that passed before it.

This reputation is understandable. Refactoring improves the design of
a system, in terms of its source code. Only the developers encounter the
source code, so obviously refactoring is a developer-centric activity and
delivers value only to developers...or so it would seem.

Also, there is no end to refactoring, per se. No system design is ever
perfect, and therefore any system could be refactored to improve its
design. Making these improvements can be a very rewarding, satisfy-
ing, and intellectually stimulating thing for a developer to do, so it is
possible to fall into the trap of obsessively refactoring a system.

Why Refactor?

As part of the discipline, Fowler included a set of “code smells” to help
us to see where refactoring improvements are called for.

If we find that we’re making the same change in many different
places, he calls this “shotgun surgery.” If we find that a method in Class
A is referring to the state or functionality of Class B to an excessive
degree, he calls this “feature envy.” A class that has no functionality but
does contain state is called “lazy,” and so on. These smells do not neces-
sarily indicate a problem but rather a potential problem that should be
investigated and refactored if appropriate.

These smells, in other words, help us target parts of the system that
could be refactored and, arguably, improved, but what they do not tell is
if the system should be refactored now. When is it worth it, and when are
we, in fact, falling into the trap that has given refactoring a bad reputa-
tion among those who pay for software to be developed?

Debt versus Investment

Let’s make a distinction about this decision. Do we fix something in the
design of the code, even though the code is working?

If we see something we know is “not good code” and we decide not to
fix it, we know two things:

• If we do not fix it, we save time and can move on to adding new
functionality to the system. However, this new functionality will
be achieved at the cost of leaving the poor code in place.

ptg6843614

156 Chapter 11 • Refactor to the Open-Closed

• If we fix the code at a later point in time, it will likely cost more. It
will probably have gotten worse, more things will be coupled to it
the way it is now, and it will be less fresh in our minds (requiring
more time to reinvestigate the issue).

Doing something that avoids payment now at the cost of a higher
payment later is essentially “debt.” It’s like buying something on your
credit card. It is not that you don’t ever have to pay for it; you just don’t
have to pay for it now. Later, when you do, there will be interest added,
and it will cost you more.

If, on the other hand, we fix the bad code without adding any out-
ward business value to the system, we must acknowledge that this is not
“free”; it costs money (our customer’s money). However, we also know
the following:

• Cleaner code is easier to change. Therefore, changes we are asked
to make later will be easier to do, take less time, and therefore
save money.

• This can pay off over and over again, as one change leads to
another or as the business continually requires new functionality
from the system.

In other words, this constitutes an investment. Pay now, and then get
paid back over and over again in the future. It’s a little like the notion of
the “money tree.” When you plant the tree, initially you don’t get any-
thing for your effort. Once the tree grows into blossom, however, it pays
off over and over again.

Businesses understand these concepts very well. They will accept debt
consciously, but they know that holding a valuable investment is pref-
erable. Sometimes it helps to speak the language of the person you’re
trying to influence.

Refactoring and Legacy Systems

Most people think of refactoring in terms of “cleaning up” legacy code.
Such code was often written with a focus on making the system as
small and fast as possible. Computers in the earlier days often made this
a necessity; sure, the code is incomprehensible and impossible to main-
tain when we come back to it later, but it was easier for the slower com-
puters to deal with, and computers were the critical resource in those
days, not developers.

ptg6843614

Refactoring 157

Legacy systems that have remained in place, however, have probably
proved their value by the very fact that they are still here. Fowler’s ini-
tial purpose was to take this code that has value in one sense (what it
does) and to reshape it into code that is valuable in the more modern
sense (we can work with it efficiently), without removing any of that
exiting value, that is, without harming it.

Refactoring to the Open-Closed

So, refactoring is often thought of in terms of bad code, untested code,
and code that has decayed over time and that we have to suffer with
now.

This is true as far as it goes. However, we also know that it’s very
difficult to predict what changes will come along, and that change can
appear almost anywhere in our process.

• Requirements can change.

• Technology can change.

• The marketplace can change.

• Our organization/team can change.

• We change (ideally, we get smarter).

These are just a few examples. So, another role for refactoring skills
to play is when we have code that was fine yesterday but it is not easy
to modify in the light of a particular changing circumstance. In other
words, we have something new that we need to add now to the code,
but we cannot add it in an open-closed fashion as it stands.

Let’s use our Robocode Robot as a concrete example. The design so far
is a simple, single class that extends a type called Robot (see Figure 11.4).

This is not open-closed in terms of adding new classes to change
behaviors. If we come up with more than one way of “firing,” for
instance (maybe we’ll have more than one kind of gun in the future),
we’ll have to change the code in the fire() method, perhaps adding a
switch or other logic to accommodate the variation in behavior. Simi-
larly, if we get new ways of turning, moving, or determining whether
another Robot is on “my team,” we’ll have to make code changes, and
we’ll add complexity when we do.

To make it open-closed in the senses that we usually mean today,
we’d introduce polymorphism for all of these behaviors. The design
would probably look something like what is presented in Figure 11.5.

ptg6843614

158 Chapter 11 • Refactor to the Open-Closed

Robot
+run()
+onScannedRobot()

Robbie
+run()
+onScannedRobot()
-ahead(int amt)
-back(int amt)
-turnGunRight(int degrees)
-turnGunLeft(int degrees)
-isNotMyTeam(RobotEvent re):bool
-Fire(int rounds)

Figure 11.4 Robbie the Robot

SimpleTeamPolicy
-myTeamMembers:Robot[]
+isMyTeam(RobotEvent):bool

TeamPolicy
+isMyTeam(RobotEvent):bool

Turret
+rotateLeft(int degrees)
+rotateRight(int degrees)

Robbie
+run()
+onScannedRobot()
-ahead(int amt)
-back(int amt)
-turnGunRight(int degrees)
-turnGunLeft(int degrees)
-isNotMyTeam(RobotEvent re):bool
-fire(int rounds)

BasicTurret
+rotateLeft(int degrees)
+rotateRight(int degrees)

Cannon
-int:ammunition
+fire(int rounds)

Weapon
+fire()

StandardMover
+moveAhead(int amt)
+moveBack(int amt)

RobotMover
+moveAhead(int amt)
+moveBack(int amt)

Robot
+run()
+onScannedRobot()

Figure 11.5 Everything is open-closed.

ptg6843614

Refactoring 159

This would make it possible for us to add a different kind of weapon,
turret, movement mechanism, or team structure without having to
alter the code in Robot. But, given that none of these things is varying
right now, this is far more complex than we need, especially when you
consider that we have not added those factories yet!

If you feel, given that none of these behaviors are varying at the
moment, that this approach is overdoing it, we’d agree. If we pull out
all possible variations, as a rote practice, we will tend to produce designs
that are overly complex.

Some would say that we should pull out issues that are not varying
today but are likely to vary in the future. The problem with this predic-
tive approach is that we’re likely to be wrong too often, and when we
are, we will have pulled something out that never varies (overdesign)
and fail to pull the thing out that needs to be variable (failing to be
open-closed).

In studying refactoring, we are learning how to make changes in a
disciplined way. Each refactoring, though it may have been originally
intended as a way to clean up bad code, can also be used to change code
just enough to allow it to be changed in an open-closed way, once we
know this change is necessary.

We call this “refactoring to the open-closed.”

Just-in-Time Design

Refactoring to the open-closed allows us to introduce design elements
as they are needed but not before. It allows design to emerge in a just-
in-time way, which means we can proceed based on what we know and
when we know it, rather than through prediction.

Look back at the version of Robbie in Figure 11.4. Let’s say we designed
and coded it that way and then later a new requirement emerged: We
need to be able to accommodate a new kind of “fire” mechanism (a new
weapon or a new way of firing in general). We could put a switch into
the fire() method of Robbie, but this is not an open-closed change.

In the light of this new requirement (which is not a guess but is actu-
ally being requested), we can do this in stages, using our refactoring
skills. First, we do Extract Class,4 as shown in Figure 11.6.

4. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-
Wesley, 1999.

ptg6843614

160 Chapter 11 • Refactor to the Open-Closed

(You’ll note that we’ve used a static getInstance() method to cre-
ate the instance of Cannon. See Chapter 2, Separate Use from Con-
struction, for more on this technique.)

The fire() method in Robbie now contains a call to the fire()
method in Cannon. This is still not open-closed, but we’re getting closer.
Next, we do Extract Interface, as shown in Figure 11.7.5

5. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-
Wesley, 1999.

Cannon
+getInstance():Cannon
+fire()

Robot
+run()
+onScannedRobot()

Robbie
+run()
+onScannedRobot()
-ahead(int amt)
-back(int amt)
-turnGunRight(int degrees)
-turnGunLeft(int degrees)
-isNotMyTeam(RobotEvent re):bool
-fire(int rounds)

Figure 11.6 Extract Class

Weapon
+getInstance():Weapon
+fire()

Cannon
+fire()

Robot
+run()
+onScannedRobot()

Robbie
+run()
+onScannedRobot()
-ahead(int amt)
-back(int amt)
-turnGunRight(int degrees)
-turnGunLeft(int degrees)
-isNotMyTeam(RobotEvent re):bool
-fire(int rounds)

Figure 11.7 Extract Interface

ptg6843614

Summary 161

 We have not changed the behavior of the Robot, and if we had tests
running, they would still all pass in the same way. This is one nice thing
about automated tests; they confirm that we are, in fact, refactoring, not
enhancing or introducing bugs.

This is now open-closed to the new weapon, and we are done refac-
toring. Now we can enhance the system with the new requirement in
an open-closed way, as shown in Figure 11.8.

Summary

Basing your decisions on prediction is setting yourself up to fail. Trying
to design for every possible future change will lead to overdesign, which
is also setting yourself up to fail.

The refactoring discipline, used to enable this just-in-time response to
changes, allows you to make your decision based on what actually hap-
pens, not what you predict will happen, and also allows you to intro-
duce design elements as you need them, avoiding overdesign.

So, what’s missing? Tests. Refactoring requires automated testing,
because it is the tests that tell you whether you are, in fact, refactoring.
See Chapter 3, Define Tests Up Front, for more on testing.

BFG-9000
+fire()

Cannon
+fire()

Weapon
+getInstance():Weapon
+fire()

Robot
+run()
+onScannedRobot()

Robbie
+run()
+onScannedRobot()
-ahead(int amt)
-back(int amt)
-turnGunRight(int degrees)
-turnGunLeft(int degrees)
-isNotMyTeam(RobotEvent re):bool
-fire(int rounds)

Figure 11.8 Extract Interface

ptg6843614

This page intentionally left blank

ptg6843614

163

One challenge facing development is the creation of strongly encapsulating inter-
faces. Even if the argument “design to interfaces” is accepted as common wisdom
by a team, still the exact nature and placement of those interfaces can be hard to
get “right.” In this chapter, we will examine the notion of the interface and show
how our desire to control dependencies can give us the right point of view from
which to discover strong interfaces.

The Law of Demeter

Controlling dependencies is not a new problem. System maintenance has
always been critical, and dependencies can make changes very difficult
when a change to one part of a system may ripple through other parts
through the coupling that exists between them. In 19821 Karl Lieberherr
began experimenting with language constructs that might assist us in limit-
ing dependencies, and this led eventually to a project at Northwestern Uni-
versity called Project Demeter, which focuses on adaptive languages.

While working on the project, Lieberherr and Ian Holland noticed a
problem in object models that can be illustrated fairly simply. Consider
the model of a typical city grid shown in Figure 12.1.

1. http://en.wikipedia.org/wiki/Law_of_Demeter

CHAPTER 12

Needs versus Capabilities Interfaces

1 *1 *
House

number:Int
color:Color

Street
name:String
houses:House[]

City
name:String
twinCity:City
streets:Street[]

Figure 12.1 Model of a city grid

http://en.wikipedia.org/wiki/Law_of_Demeter

ptg6843614

164 Chapter 12 • Needs versus Capabilities Interfaces

public class City {
 public string name{};
 public City twinCity{};
 public Street[] streets{};
}
public class Street {
 public string name{};
 public House[] houses{};
}
public class House {
 public int number{};
 public Color color{};
}

Simply put, a City has a name and a twin city reference and consists
of a collection of Streets. A Street has a name and consists of a col-
lection of Houses. A House has a number and a color.

Models like this encourage us to expose rather than to encapsu-
late. If your code has a reference to a particular City instance, say one
that maps Seattle, and you wanted the color of the house at 1374 Main
Street, then you might do something like the following:

public Foo() {
 Color c = Seattle.streets()[“Main”].
 houses()[1374].
 color();
}

The problem, if this is done as a general practice, is that the system
develops dependencies everywhere, and a change to any part of this
model can have effects up and down the chain of these dependencies.

That’s where the Law of Demeter, which states2 “Don’t talk to strang-
ers,” comes in. This is formalized in object systems as the Law of Deme-
ter for Functions/Methods.

A method M of an object O may only invoke the methods of the fol-
lowing kinds of objects:

1. O’s

2. M’s parameters

3. Any objects instantiated within M

4. O’s direct component objects

5. Any global variables accessible by O

2. http://en.wikipedia.org/wiki/Law_of_Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter

ptg6843614

The Law of Demeter 165

So, for example, the following code complies with the Law of Demeter
for functions/methods.

public City theCapital;

public class CityUser {
 public City aCityFooKnows;

 public string Foo(City aCityFooIsGiven){
 City aCityFooInstantiated = instantiateCity();

 return + cityName() + // case 1
 aCityFooIsGiven.name() + // case 2
 aCityFooInstantiated.name() + // case 3
 aCityFooKnows.name() + // case 4
 theCapital.name; // Case 5
 }
 public string cityName() {/*…*/}
}

Foo() follows the law in that it interacts only with state on its class
(aCityFooKnows), state that was passed to it by the caller (aCityFoo-
IsGiven), or state that it created (aCityFooCreates).

Our previous Foo implementation interacted with state (color) that
belonged to another entity (house), which itself was not our state but
state on another entity (street) that was state on Foo’s class. It is a cas-
cading dependency.

The Law of Demeter would suggest something like the following:

public Foo() {
 Color c = Seattle.ColorOfHouseInStreet("Main",1374);
}

The City’s interface is now hiding the implementation that allows
for access to the color of a given house. Foo is interacting only with
a state member of its own class. Sometimes people summarize this as
“play only with your own toys.”

Although this would seem to be a wise policy initially, it can quickly
get out of hand as the interface of any given entity can be expected to
provide literally anything it relates to. These interfaces tend to bloat over
time, and in fact there would seem to be almost no end to the number
of public methods a given glass may eventually support.

The Law of Demeter actually is a sound principle, but we need to dig
into the issues that motivate it a bit more. It really has to do with the
nature of coupling and dependencies.

ptg6843614

166 Chapter 12 • Needs versus Capabilities Interfaces

Coupling, Damned Coupling, and Dependencies

Coupling is required for systems to operate. In one sense, a system is
coupling. In object systems, this is reflected in the relationship where
one object messages another. We usually think of them as the Client
and Service objects in this relationship, as shown in Figure 12.2.

The vulnerability here is that any change to the Service’s public
access points can cause a needed change in the Client. We often call
this “tight” coupling because of this fact.

Coupling and Testability

Another hint that this can be problematic arises when we attempt to test
Client. A test for Client requires the presence of Service, so knowl-
edge on how to create, initialize, and bring Service to the needed state
for the test to commence is required. Moreover, said test can fail when
Client is working just fine but Service has a bug. Just as bad, assum-
ing Service has its own test, then when Service has a bug, you will
see at least two tests failing: the test of Service and the test of Client.
We prefer tests that fail singly, leading us immediately to the location of
the defect.

This leads us to create a separate interface for the relationship (see
Figure 12.3).

Both Client and ServiceImpl are vulnerable to a change in
Service (Client because it would have to use Service differently,
ServiceImpl because it would have to implement Service differ-
ently), but since Service is only an interface (and would not be tested
in and of itself), then we can create the isolation we’re seeking.

ServiceClient

Figure 12.2 The typical Client-Service relationship

Service

ServiceImpl

implements

Client

Figure 12.3 Client coupled to the interface of Service only

ptg6843614

Coupling, Damned Coupling, and Dependencies 167

A test of ServiceImpl does not require Client. A test of Client
can be conducted without the actual ServiceImpl as well, by using a
simple mock object (see Figure 12.4).

Here again, Client, ServiceImpl, and MockService are only
vulnerable to changes in the interface Service, which has no imple-
mentation in it. There is another vulnerability, however, that is often
not immediately clear but that will become clear later when a second
Client for the same service is created.

Needs versus Capabilities

We expect this. In fact, one could say that the day a second Client
appears for the same Service, we have just doubled the value of the
Service and the effort it took to create it (see Figure 12.5). The more
Clients, the more value is harvested from that effort.

The vulnerability we may have missed is this: If this new Client2

requires something different in Service, perhaps access to a new
return, the ability to pass it a new parameter, or an entirely new service
method, then this need can cause/require a change in Client1.

We seem to have simply pushed our vulnerability around and hidden
it in a more subtle place. However, if we add one more idea to our model
here, we can solve this, too.

implements
implements

ServiceImplMockService

ServiceClient

Figure 12.4 Loose coupling creates opportunities to isolate entities for testing.

Client2

Client1

implements
implements

ServiceImplMockService

Service

Figure 12.5 A second client validates the value of the service but illustrates our
hidden vulnerability.

ptg6843614

168 Chapter 12 • Needs versus Capabilities Interfaces

Service is a capabilities interface. It reflects what Service can do.
However, in this model it is also a needs interface, in that it reflects what
Client1 needs. Client2 may have a different need or view of the same
need, and therein lies the rub.

By creating separate interfaces for needs and capabilities, we can
essentially eliminate all coupling to implementations.

The Ideal Separation: Needs Interfaces and
Capabilities Interfaces

If we return to the single client model, we can instead create a more
complete separation using the Adapter pattern, as shown in Figure 12.6.
Service reflects everything ServiceImpl can do. Needs1 reflects

what Client1 wants, with an adapter (ServiceAdapter1) making
the translation. Note that Needs1 can be mocked to test Client1, and
Service1 can be mocked to test ServiceAdapter1. No entity requires
a concrete implementation of another entity when testing it, which sim-
ply reflects that there is no concrete coupling in this design.

The vulnerabilities are, therefore, the following:

• Needs1 will change if Client1’s needs changes. This makes sense:
It reflects his needs.

• ServiceAdapter1 will change if Needs 1 changes, or Service
changes, but neither of these are implementations.

• ServiceImpl will change if Service changes, but this is
unlikely since Clients do not couple to it.

• Client1 is vulnerable to nothing, including a second Client’s
appearance in the future, as shown in Figure 12.7.

implements

ServiceAdapter1
adapts

Needs1Client1

Service

ServiceImpl

implements

Figure 12.6 An adapter is used to separate needs from capabilities.

ptg6843614

Back to the Law of Demeter 169

You may be thinking that this seems like a lot of complexity to cre-
ate just in case Client2 might arrive later, and you’d be right. But if you
add the notion that you can take our initial design (Figure 12.4), which
would be a minimal design for testability, and refactor it to the open-closed
once Client2 arrives, this seems much more realistic.

Back to the Law of Demeter

Now the Law of Demeter can be seen in a different, more practical way.
Let’s return to the code that violated this law and was the sort of code
that suggested the law in the first place (see Figure 12.8).

adapts

adapts

implements

implements

ServiceAdapter2

ServiceAdapter1

Needs2Client2

Needs1Client1

Service

ServiceImpl

implements

Figure 12.7 Complete separation of needs from capabilities

Color c = city.streets["Raineer Avenue”].houses[1374].color;

Client

1

*

1

*

Houses

Street

City

Figure 12.8 Violation of the Law of Demeter

ptg6843614

170 Chapter 12 • Needs versus Capabilities Interfaces

If we attempt to create “needs interfaces” and the adapters that separate
them from capabilities, this starts to get quickly out of hand (Figure 12.9).

Note that once we try to test this, we find that the complexity and
coupling in the design will increase our mocking burden in testing (see
Figure 12.10).

People who start testing and mocking who have designs like this
often raise a complaint after doing TDD for a while. “It seems like my
job now is to create mock objects” is a common way to phrase it. Note
that if we follow the Law of Demeter and separate needs interfaces from
capabilities interfaces (see Figure 12.11), this need not happen.

Client

HouseCapabilityAdapter

StreetCapabilityAdapter

NeedsHouse

NeedsStreet

Houses

Street

CityCapabilityAdapterNeedsCity City

Color c = city.streets["Raineer Avenue"].houses[1374].color;

1

*

1
*

Figure 12.9 Needs interfaces reveal the coupling and complexity.

MockHouseCapability

MockStreetCapability

MockCityCapability

Client

NeedsHouse

NeedsStreet

NeedsCity

Color c = city.streets["Raineer Avenue"].houses[1374].color;

Figure 12.10 Multiple mocks needed

ptg6843614

Summary 171

This, in turn, means the mocking is limited to the single interface
that reflects the needs of the Client (see Figure 12.12).

Summary

Interfaces are often thought to apply to what services offer, making
known their capabilities. There is another type of interface: the inter-
face that specifies what a client needs. This is the Façade Pattern or, in
simple cases, the Adapter Pattern.

Focusing on the Needs interfaces rather than the capabilities inter-
faces allows for a complete encapsulation of the client’s development.
This has the immediate value of addressing three very common devel-
opment concerns:

• “We cannot continue with our client’s development because the
server team does not have time for us to sit with them and finalize
the interfaces.”

• “We cannot continue with the client’s development because the
server team is not ready.”

CityMapFacade

Houses

Street

City

ClientNeeds

Color c =colorOfCouseInStreet("Raineer Avenue",1374);

Client

1
*

1
*

Figure 12.11 Law of Demeter with separation of needs from capabilities

MockClientNeedsClientNeeds

Color c =colorOfCouseInStreet("Raineer Avenue",1374);

Client

Figure 12.12 Mocking simplified because of the proper separation

ptg6843614

172 Chapter 12 • Needs versus Capabilities Interfaces

• “Now that we’re trying to integrate, we have to do a lot of rework
because the interface changed without our knowledge, or it
doesn’t behave the way we agreed it would.”

Since the client is not aware of any specific server interface, it cannot
couple to it and must therefore focus on what it needs the server to do
for it. This is an example of Programming by Intention and adherence to
the design to interfaces design rule.

A client developed that way is designed to be decoupled from any
server. It makes it clear what the client needs, thus providing a check-
list to the suitability of existing servers and guides the development of
future servers by making the client’s need explicit.

By focusing on the client’s needs, the interface can return simple
objects that the client understands rather than forcing the client to deal
with complex server structures. This significantly simplifies the devel-
opment of mocks, because all the mocks need to do is to return the
simple object. No knowledge of the server structures is required, and
possible changes to these structures will not affect the client.

The client becomes more cohesive as well. It is now focused on per-
forming its duties; the details on how to communicate with a specific
server are delegated to the façade or adapter.

Finally, if there is only one client and the server is tailored for it,
there is no need for two interfaces. The needs are the capabilities. When
a second client emerges, we will refactor to the Open-Closed principle.
We will introduce a capabilities interface on the client, which initially is
a copy of the needs interface but may change as the other client’s needs
evolve.

ptg6843614

173

The mechanism of inheritance is provided in some form by most modern pro-
gramming languages. However, its improper use can lead to brittle, unnecessar-
ily inflexible architectures that sacrifice encapsulation for little or no gain. This
should not, however, lead a developer to conclude that inheritance is bad, or even
that it should be used in a minimal, last-resort way. The real question is, what is
inheritance good for, and when should it be used?

The Gang of Four

In their seminal book on design patterns,1 Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides (who are often affection-
ately referred to as the “Gang of Four”) issued several important pieces
of general advice on software design. In a sense, each pattern can be
thought of as, among other things, examples of following this advice
when presented with a particular sort of problem or problem domain.

One such piece of advice was “favor aggregation over inheritance.”
Sometimes the word “aggregation” is replaced with “composition” or
even “delegation,” but the implication is pretty clear: Don’t inherit.
Instead, delegate from one object to another.

As an example, let’s consider the following design decision: We have
a class that represents a bank account. We’ll leave out most of the imple-
mentation, but you can imagine the likely interface of such an entity
(debit, credit, transfer, and so on). As part of its responsibility, however,
it must apply an algorithm for calculating the interest to be paid on the
account.

1. Gamma, Erich, Richard Helm, Robert Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.

CHAPTER 13

When and How to Use Inheritance

ptg6843614

174 Chapter 13 • When and How to Use Inheritance

Let’s say the actual algorithm varies, depending on whether this is
a standard bank account or one that belongs to a “preferred customer.”
Most likely, the preferred customer is given a higher rate.

A fairly traditional approach would be to take the Account class
and add a method to it, called calcInterest() or something simi-
lar. In the very early days of object orientation, we would have consid-
ered it reasonable to then “reuse”2 the Account class by subclassing it
as PreferredAccount and overriding the calcInterest() method
with the preferred Algorithm, as shown in Figure 13.1.

This is what is often termed “direct inheritance” or “inheritance for
specialization.” It violates the advice of the Gang of Four. The problem
is that any change one might make to Account can affect Preferred-
Account, even if this is not desired, because they are coupled through
inheritance.

Interestingly, the tendency to use inheritance this way comes from
the original notion of open-closed. Even today we’d say, as a principle,
that we would like our systems to be “open for extension but closed to
modification” because we much prefer accommodating change by writ-
ing new code, rather than changing existing code. This notion of direct
inheritance would seem to follow this principle, because we’ve cre-
ated this new PreferredAccount and have left the existing code in
Account alone entirely. Furthermore, if we upcast Preferred Account

2. In fact, there are many who have said that the value of OO is precisely this form of reusing
existing objects.

PreferredAccount
+calcInterest()

Account
+credit()
+debit()
+transfer()
+calcInterest()

Figure 13.1 Use of direct inheritance

ptg6843614

The Gang of Four 175

to Account wherever it is used, we won’t have to change that using
code either.3

Nevertheless, this approach can give us problems.
What if we need to make some sort of code change to Account that

is not intended to also change PreferredAccount? The structure in
Figure 13.1 requires care and investigation to ensure that Preferred-
Account does not accept the unwanted change but rather overrides
or shadows it. This issue of “unwanted side effects” can be even more
complicated if the language makes a distinction between virtual (late-
bound) and nonvirtual (early-bound) methods. Therefore, the more
often inheritance is used in this way, the more difficult and dangerous it
is to make changes. However, inheritance can be used in a slightly dif-
ferent way to avoid much of this, as shown in Figure 13.2.

The advantage here is one of control. If a developer wants to make a
change that could only affect StandardAccount, the change is made to
that class, and we note there is no coupling between it and Preferred-
Account. The same is true in the reverse; a change to Preferred-
Account can only affect that one single class.

If, on the other hand, the developer in fact wants to make a change
that affects them both, then the change would be made to Account.
The developer is in the driver’s seat, and it’s much clearer to everyone
which changes will affect which entities.

3. It is also interesting to note that the keyword for inheritance in Java, which was invented
in 1995 when this form of inheritance was quite popular, is “extends.”

StandardAccount
+calcInterest()

Account
+credit()
+debit()
+transfer()
+calcInterest()

PreferredAccount
+calcInterest()

Figure 13.2 Use of abstract inheritance

ptg6843614

176 Chapter 13 • When and How to Use Inheritance

Still, although this is certainly better, is it good enough? If we want
the effort we make to create software (which is the major cost of soft-
ware in most cases) to continue to deliver value for a long time into the
future, we have to pay attention not only to what a design is but also
what it is likely to become.

Initial Vectors, Eventual Results

The way you begin can have a big influence on where you end up. In
space flight, they call this “the initial vector,” and engineers are very
circumspect about it. When a spacecraft is leaving Earth’s orbit and
heading to the moon, for instance, if the angle of thrust is off by a frac-
tion of a percent, you will find yourself hundreds of miles off-target by
the time you reach your destination. The initial vector change is small,
but the difference in the eventual result is large and significant.

Design decisions can be like this.
In other words, the larger point here is about what we do now versus

what we will be able to do later and how well early solutions scale into
later ones.

For example, the design in Figure 13.2 is not very dynamic. If we instan-
tiate StandardAccount, we are committed to the calcInterest-
Rate() implementation it contains. If we wanted, at runtime, to
switch to the preferred algorithm, we will have to build an instance
of PreferredAccount and transfer all the state that is currently held
by our instance of StandardAccount into it. That means the state of
StandardAccount will have to be exposed (breaking encapsulation),
or we’ll have to give StandardAccount a way to create an instance of
PreferredAccount (and vice versa), passing the needed state through
its constructor. These would be known as “cloning methods” and would
couple these subtypes to each other, which we were trying to avoid in
the first place.

The business rules before us today might say “Standard accounts
never change into preferred accounts,” and so we might think we’re
OK. Then tomorrow the bank holds an unexpected marketing promotion
that requires this very capability. This sort of thing happens all the time.

Here’s another example: In the problem currently before us, we have
a single varying algorithm, the one that calculates interest. What if, at
some point in the future, some other aspect of Account starts to vary?

ptg6843614

Initial Vectors, Eventual Results 177

This is an unpredictable4 thing, and so it’s certainly credible that a non-
varying issue today could be a varying one tomorrow.

For instance, let’s say the transfer mechanism also contains a varia-
tion. The rules have changed, and now there are two versions: imme-
diate transfer and delayed transfer. If we try to scale the nonpreferred
solution, we’d likely do something like what is shown in Figure 13.3.

All of the problems we had initially have become worse. We can-
not make either varying issue dynamic (runtime-changeable) without
degrading coupling or encapsulation issues, we’ve created more cou-
pling through all the inheritance, and so forth.

Furthermore, given the notion of the separation of concerns, we note
that the farther down the inheritance hierarchy we go, the more con-
cerns are becoming coupled together inside single classes. When we
began, Account was about one thing: modeling a bank account. Then,
PreferredAccount and StandardAccount were each about two
things: modeling a bank account and varying the interest calculation in
a particular way. Now, all these various accounts are about three things:
modeling an account, varying the interest, and varying the transfer
mechanism. At each stage along the way, we are putting more concerns
into a single place in each class.

4. Generally, most approaches to software development that require prediction are destined
to fail. The world is too complex, the future is too hard to envision, and changes are too
rapid for prediction to be in any sense reliable.

PreferredAccount
+transfer()
+calcInterest()

StandardAccount
+transfer()
+calcInterest()

Not Very Scalable

DelayedPrefferedAccount
+transfer()

DelayedStandardAccount
+transfer()

ImmediatePreferredAccount
+transfer()

ImmediateStandardAccount
+transfer()

Account
+credit()
+debit()
+transfer()
+calcInterest()

Figure 13.3 Attempting to scale the solution

ptg6843614

178 Chapter 13 • When and How to Use Inheritance

A Pragmatic Comment on This Example

The previous example may look contrived, but the authors have
seen this result in many ways.

Imagine that we started with the delayed transfer, but now it is
determined PreferredAccounts need to have an option to trans-
fer immediately. It would not be unusual for someone using direct
inheritance to just make a derivation of PreferredAccount with
this type of calculation. If later we need to add this calculation for
standard accounts, it will become clear that we should pull out the
calculator. But consider the situation developers will find them-
selves in if they didn’t write the code for PreferredAccount or if
the code doesn’t have a full set of tests.

In this case, there is some danger to refactoring and retesting
the code, and the developer may just choose to copy and paste the
calculator into a new subclass of StandardAccount.

It’s just too easy to fall into this trap.

Favoring Delegation

The Gang of Four’s advice about favoring delegation would seem to
argue for something more like what is shown in Figure 13.4.

Note that the calcInterest() method is still implemented
(not abstract), but its implementation consists merely of calling the

calcInterest() {
 myInterestCalculator.calculate();
}

Account
-myInterestCalculator
+credit()
+debit()
+transfer()
+calcInterest()

uses InterestCalculator
+calculate()

Figure 13.4 Delegating through a pointer

ptg6843614

Favoring Delegation 179

calculate() method on the service object InterestCalculator.
This “passing the buck” behavior is what we mean by delegation.

The very act of pulling the interest calculation out of Account feels
right, in terms of the separation of concerns, because it removes one
concern from the Account.

Almost immediately, however, in seeking to create a variation in
what we’re delegating to, we end up putting inheritance back in again.
Almost all the patterns do this in various ways, and it would seem at
first glance that the Gang of Four is warning against inheritance and
then using it repeatedly throughout the patterns they illustrate.

In this case, the variation is of a single algorithm and would likely
be enabled through the use of the Strategy Pattern (see http://www
.netobjectivesrepository.com/TheStrategyPattern), as shown in Figure 13.5.

So, what’s the real recommendation? What are we favoring over
what? Comparing Figures 13.2 and 13.5, we see inheritance at work in
both cases, and in fact it is abstract inheritance each time.

But notice that from Account’s “point of view,” the Gang of Four
approach uses delegation to handle the variation of the interest calcu-
lation, while in the older approach inheritance is directly used on the
Account class to achieve this variation. The difference is not whether
inheritance is used; inheritance is just a mechanism, and it can be used
advantageously and disadvantageously just as any mechanism can be.
The difference is in what we’re using inheritance for.

We sometimes forget that the code is not the software. It’s an abstract
representation that gets converted, by the compiler, into the actual soft-
ware, which exists at runtime, not when we’re writing it. All our work
is at some abstract level, whether it is UML, code, or whatever represen-
tation we use.

Examining inheritance versus delegation at runtime can be very
revealing.

Account
+credit()
+debit()
+transfer()
+calcInterest(InterestCalculator)

uses

PreferredCalculator
+calculate()

InterestCalculator
+calculate()

StandardCalculator
+calculate()

Figure 13.5 The Strategy Pattern

http://www.netobjectivesrepository.com/TheStrategyPattern
http://www.netobjectivesrepository.com/TheStrategyPattern

ptg6843614

180 Chapter 13 • When and How to Use Inheritance

The Use of Inheritance versus Delegation

Let’s step back and consider these two mechanisms, delegation and
inheritance, in and of themselves (see Figure 13.6).

An interesting thing to note is that the relationships are in some ways
more similar than they seem at first glance, when you examine them at
runtime, as shown in Figure 13.7.

In Case 1, when ClassB gets loaded by the class loader and an
instance is created, in fact ClassA will also load, and an instance of it
will be created as well (this will happen first, in fact). This is to allow
the instance of B to access the instance of A through an inherent pointer
(or accessible via a keyword such as “super” or “base,” and so on).

In Case 2, very similarly, an instance of ClassB will be accompanied
by an instance of ClassA, which it can access via a pointer. The imme-
diately obvious difference is how and when the instances get created
and how the pointer is provided and accessed.

Case 2:
B uses A
B “is not an” A

Case 1:
B derives from A
B “is an” A

ClassA ClassAClassB

ClassB

Figure 13.6 Inheritance and delegation

super.m()
ClassA

ClassA
myClassA.m()

ClassB

ClassB

Case 2:
B uses A
B “is not an” A

Case 1:
B derives from A
B “is an” A

Figure 13.7 Runtime similarities

ptg6843614

Uses of Inheritance 181

These two cases, in other words, have a very similar, seemingly
almost identical runtime relationship. So, why should we favor one over
the other? Table 13.1 highlights some of the differences.

Uses of Inheritance

Let’s examine the two options for containing our interest variation in
Account, side by side (see Figure 13.8).

What the Gang of Four was recommending was to use inheritance to
hide variation, not to achieve reuse of code.

Table 13.1 Inheritance versus Delegation

Inheritance Delegation

A reference of ClassB can be cast to
ClassA. There is an implied substitutability
between them.

ClassB and ClassA are distinct; there is
no implication of sameness.

Any change to ClassA can potentially affect
ClassB. Care must be taken to ensure that
unwanted side effects in ClassB are
overridden. Also, in some languages the
issue of virtual/nonvirtual methods must be
considered, as well as whether an
overridden method replaces or shadows the
original and whether casting can change the
method implementation being bound to at
runtime.

Changes to ClassA can affect ClassB
only insofar as those changes propagate
through ClassB’s interface. It is much
easier to control the potential for unwanted
side effects from a change, because we
have stronger encapsulation.

The instance of ClassA that ClassB has
access to cannot be changed after the
object is created. Also, the inherent instance
will always be of type ClassA, concretely.

The addition of a setter() method in
ClassB would allow us to change the
instance of ClassA that ClassB uses and
in fact can give ClassB an instance of
something other than ClassA (a subclass,
for example), so long as it passes
type-check.

The instance of ClassA that ClassB uses
cannot be shared.

The instance of ClassA that ClassB uses
can be shared.

ptg6843614

182 Chapter 13 • When and How to Use Inheritance

In their preferred solution (the one on the left), inheritance is used
to create a category, or substitutability/pluggability, around the concept
InterestCalculator. InterestCalculator itself is not “a thing”
but rather “an idea.” The “real” things are StandardCalculator
and PreferredCalculator, which have been made interchangeable
through this use of inheritance.5

What the Gang of Four is recommending against is the approach on
the right, where Account (which is a “real” thing) is being specialized
through the inheritance mechanism.

One clue for us that this is perhaps not a natural fit to the problem is
in the actual code for the design on the right.

abstract class Account {
 public void credit() { //some implementing code }
 public void debit() { //some implementing code }
 public void transfer() { //some implementing code }
 public abstract void calcInterest();
}

To make this work, we’ve had to give Account an abstract method
(calcInterest()), and therefore Account itself must be made
abstract. But Account is not an abstract idea; it’s a real thing. Compare
this to InterestCalculator, which is conceptual and would there-
fore seem to be a more natural, logical thing to make abstract.

5. If you’re familiar with .NET delegates, you know that a very similar end could be achieved
using them, or with “interface” types in (.NET, Java, and other languages), which could
have multiple implementations. The point is the pluggability; the way you get it will vary
depending on the language and platform you are using and other forces operating on your
decision.

Account
+credit()
+debit()
+transfer()
+calcInterest(InterestCalculator)

PreferredAccount
+calcInterest()

Inheritance to
specialize

Delegation:
Inheritance to
categorize

uses

StandardAccount
+calcInterest()

Account
+credit()
+debit()
+transfer()
+calcInterest()

PreferredCalculator
+calculate()

InterestCalculator
+calculate()

StandardCalculator
+calculate()

Figure 13.8 Side-by-side comparison

ptg6843614

Scalability 183

This is just a clue, of course. We could artificially implement
calcInterest() in Account to avoid being forced to make it abstract,
but we’d be chasing our tails a bit (revisit Table 13.1 to see all the advan-
tages we’d be giving up).

Pay particular attention to the third point in the table. If we need
to change the calculation algorithm at runtime, the preferred solu-
tion is much easier on us. In the solution on the right, if we had built
Standard Account, the only way to switch to the preferred algorithm
is to build an instance of PreferredAccount and somehow transfer
any state from one to the other. This would require us to do either of the
following:

• Break encapsulation on the state, so we could retrieve it from the
old instance to give it to the new one

• Create a “cloning” method that allows each to remake itself as the
other

This is the “dynamism problem” we encountered earlier. In the first
case, we give up encapsulation; in the second, we create unnecessary
coupling between these two classes.

On the other hand, if we choose to follow the Gang of Four’s recom-
mendation and use the preferred solution (the Strategy Pattern we men-
tioned earlier), then we need only add a method like setCalculator(
InterestCalculator aCalculator) to the Account class, and
voila, we can change the interest algorithm whenever we like, without
rebuilding the Account object.

This also means we don’t have to add that method now, if there is no
such requirement. Good design often does this: We know it will be easy
to add this capability later if we ever need it, and so we don’t overdesign
the initial solution now. See Chapter 8, Avoid Over- and Under-Design,
for more details on the virtues of this.

Scalability

We saw earlier that scaling the design, where inheritance was used
to specialize the Account object, led to ever-decreasing quality and a
resulting increase in the difficulty to accommodate changes.

On the other hand, if we try to scale the Strategy Pattern solution,
we can simply do what we did before: pull the new variation (transfer
speed) out (see Figure 13.9).

ptg6843614

184 Chapter 13 • When and How to Use Inheritance

Note how many aspects of the design are actually improved by this
change.

For instance, many (perhaps yourself) would have argued initially
that the account had too many responsibilities. Some would say that
interest calculation and transfer from account to account really were
always separate responsibilities, even before they started to vary. It’s a
fair point, but it’s difficult to know how far to go6 with the instinct to
“pull stuff apart.”

But note how the evolution of our design gets us to this realization,
by its very nature. Our design is neither fighting us in terms of being
able to accommodate change nor leading us down the primrose path
in terms of overall quality. We don’t have to “get everything right” in
the beginning, because our initial attention to good design gives us the
power to make changes efficiently, with low risk and very little waste.

Applying the Lessons from the Gang of Four to
Agile Development

People often think of design patterns as a kind of design up front. One
needs to remember that the design patterns came into vogue when that
was mostly how you did things. However, if you explore the thought
process under the patterns, you can apply that thought process to agile
development just as well as you can when you are doing a big design up
front—perhaps better, because the lessons of patterns tell us what to be
looking at, not so much what to do.

6. We do have more to say on this, however. Please read Chapter 3, Define Tests Up Front,
for a discussion of how tests can help us to see how far to go in separating behaviors into
objects.

Quite Scalable

uses uses

ImmediateTransfer
+transferAmount()

DelayedTransfer
+transferAmount()

TransferType
+transferAmount()

InterestCalculator
+calculate()

Account
+credit()
+debit()
+transfer()
+calcInterest()

PreferredCalculator
+calculate()

StandardCalculator
+calculate()

Figure 13.9 Much more scalable

ptg6843614

Testing Issues 185

Let’s look at the possible states you can be in at the start of the project:

• You know of multiple behaviors you need to have, and you need
them right away.

• You know of multiple behaviors you need to have, but you need
only the first one at the start.

• You know of only one behavior you will need to have.

Agile development tells us we should actually deal with all three of
these items in a similar manner. In other words, even if we know of
more than one case, we should build only the first one anyway and then
go on to the second. In other words, YAGNI (You Ain’t Gonna Need
It) becomes YAGNIBALYW (You Are Gonna Need It But Act Like You
Won’t). The second case is actually how we’re saying to handle the first
case. The third case, of course, becomes the second case when some-
thing new comes up. Thus, we can say, in the agile world, the Gang of
Four’s advice to “pull out what is varying and encapsulate it” becomes
“when something starts to vary, pull it out into its own class and encap-
sulate it.” This complements the ideas expressed in Chapter 11, Refactor
to the Open-Closed.

This approach allows us to follow another powerful principle of soft-
ware design: A class should have only one reason to vary. Although this
too has often been used as a principle for up-front designs, we can now
see that it tells us to extract variation from classes as it starts to occur.

Testing Issues

We have another chapter on testing, but it’s interesting to note here that
the use of inheritance in the way the Gang of Four is recommending
plays well into testing scenarios.

In short, our definition of a good test is one that fails for a single,
reliable reason. Our definition of a good test suite is one where a single
change or bug can only ever break a single test. These are ideals, of
course, and cannot be perfectly achieved, but it is always our goal to get
as close as we can. Taken together, these bits of guidance make our tests
more useful and keep our suites from become maintenance problems in
and of themselves.

We note that the use of a mock object in our Strategy Pattern achieves
these goals perfectly (see Figure 13.10).

ptg6843614

186 Chapter 13 • When and How to Use Inheritance

The test for Account would instantiate MockCalculator and hold
it as MockCalculator, which gives it access to setReturnValue()
and any other for-testing-only method we care to add (there are many
possibilities; this is an intentionally simple example). In handing it to
Account, however, note it will be upcast to InterestCalculator
(because of the parameter type), and thus Account cannot become
coupled to the testing methods, or the existence of the mock at all.

Testing each calculator requires a single test per implementation,
which can fail only if the calculator is broken or changed.

Testing Account is done in the context of MockCalculator, so
breaking or changing either of the “real” calculators will not cause the
test for Account to fail. The Account test can fail only if Account is
actually broken or changed.

testCalcInterest() {
 MockCalculator mc = new MockCalculator();
 mc.setReturnValue(100);
 testValue = myAccount.calcInterest(mc);
 /* can now assert against testValue */
}

tests

creates

uses

AccountTest
+testCalcInterest()

Account
+credit()
+debit()
+transfer()
+calcInterest(InterestCalculator)

MockCalculator
-returnValue
+calculate()
+setReturnValue(val)

PreferredCalculator
+calculate()

InterestCalculator
+calculate()

StandardCalculator
+calculate()

Figure 13.10 Mocking for testing separation

ptg6843614

There’s More 187

There’s More

This example is simple, intentionally so to make the point clear. Many,
many more examples are available that show how inheritance can be
used in this preferred way (to create categories for pluggability).

They are all design patterns.
Visit http://www.netobjectives.com/PatternRepository for more exam-

ples of how inheritance can be used to create pluggability and dynamism.

http://www.netobjectives.com/PatternRepository

ptg6843614

This page intentionally left blank

ptg6843614

PART IV

Appendixes

ptg6843614

This page intentionally left blank

ptg6843614

191

This appendix1 gives a brief overview of the Unified Modeling Language (UML),
which is the modeling language of the object-oriented community. If you do not
already know the UML, this appendix will give you the minimal understanding
you will need to be able to read the diagrams contained in this book.

• We describe what the UML is and why to use it.

• We discuss the UML diagrams that are essential to this book.

° The class diagram

° The sequence diagram

What Is the UML?

The UML is a visual language (meaning a drawing notation with
semantics) used to create models of programs. By models of programs,
we mean a diagrammatic representation of the programs in which one
can see the relationships between the objects in the code.

The UML has several different diagrams—some for analysis, others
for design, and still others for implementation (or more accurately, for
the deployment). For the purposes of reading this book, you will need
to understand class and sequence diagrams, so we will focus specifically
on them.

1. This appendix is based on Chapter 2 of Design Patterns Explained by Shalloway and Trott.

APPENDIX A

Overview of the Unified Modeling

Language (UML)

ptg6843614

192 Appendix A • Overview of the Unified Modeling Language (UML)

Why Use the UML?

There are three reasons to use the UML:

• Principally for communication. The UML is used primarily for
communication—with oneself, with team members, and with our
customers. Poor requirements (incomplete, inaccurate, or misun-
derstood) are ubiquitous in the field of software development. The
UML gives us tools to elicit better requirements.

• For clarity. The UML gives a way to help determine whether our
understanding of the system is the same as others’ understand-
ing of it. Because systems are complex and have different types
of information that must be conveyed, it offers different diagrams
specializing in the different types of information.

• For precision. One easy way to see the value of the UML is to
recall your last several design reviews. If you have ever been in
a review where someone starts talking about his or her code and
describes it without a modeling language like the UML, almost
certainly his or her talk was both confusing and much longer than
necessary. Not only is the UML a better way of describing object-
oriented designs, but it also forces designers to think through the
relationships between classes in his or her approach (since they
must be written down).

The Class Diagram

The most basic of UML diagrams is the class diagram. It both describes
classes and shows the relationships among them. The types of relation-
ships that are possible are the following:

• When one class is a “kind of” another class: the “is-a” relationship

• When there are associations between two classes

° One class “contains” another class: the “has-a” relationship

° One class “uses” another class: the “uses-a” relationship

• One class “creates” another class

There are variations on these themes. For example, to say something
contains something else can mean the following:

ptg6843614

The Class Diagram 193

• The contained item is part of the containing item (like an engine
in a car).

• The containing item holds a collection of things that can exist on
their own (like airplanes at an airport).

The first example is called composition, while the second is called
aggregation.

Figure A.1 illustrates several important things. First, each rectangle
represents a class. In the UML, we can represent up to three aspects of
a class:

• The name of the class

• The data members of the class

• The methods (functions) of the class

There are three different ways of showing this information.

• The leftmost rectangle shows just the class’s name. We use this type
of class representation when more detailed information is not
needed.

• The middle rectangle shows both the name and the methods of the
class. In this case, Square has the method display(). The plus
sign (+) in front of display() (the name of the method) means
that this method is public—that is, objects other than objects of
this class can call it.

• The rightmost rectangle shows what we had before (the name and
methods of the class) as well as data members of the class. In this
case, the minus sign (–) before the data member length (which
is of type double) indicates that this data member’s value is pri-
vate, which means it is unavailable to anything other than the
object to which it belongs.

Square Square
+display()

Square
-length:double
+display()

Figure A.1 Three variations on the class diagram

ptg6843614

194 Appendix A • Overview of the Unified Modeling Language (UML)

UML Notation for Access

You can control the accessibility of a class’s data and method members.
You can use the UML to notate which accessibility you want each mem-
ber to have. The three most common types of accessibility available in
most object-oriented languages are as follows.

• Public. Notated with a plus sign (+).This means all objects can
access this data or method.

• Protected. Notated with a number sign (#). This means only this
class and all of its derivations (including derivations from its deri-
vations) can access this data or method.

• Private. Notated with a minus sign (–). This means that only
methods of this class can access this data or method. (Note: Most
languages further restrict this to the particular instance of the
class in question.)

Class Diagrams Also Show Relationships

Class diagrams can also show relationships between different classes.
Figure A.2 shows the relationship between the Shape class and several
classes that derive from it.

Figure A.2 represents several things. First, the arrowhead under the
Shape class means that those classes pointing to Shape derive from
Shape. Furthermore, Shape is italicized, which means it is an abstract
class. An abstract class is a class that is used to define the interface2 for
the classes that derive from it as well as being a place to put any common

2. It is unfortunate that the term “interface” really has two meanings these days: It means
“the defined way to communicate with an entity,” but it is also a key word in many lan-
guages to mean “a type that defines an interface only.” We can use the interface type or
an abstract class type to define an interface in the first sense of the word.

SquarePoint Line

Shape

Figure A.2 The class diagram showing an “is-a” relationship

ptg6843614

The Class Diagram 195

data and methods of these derived classes. An interface can be thought
of as an abstract class that has no common data or methods—it merely
serves as a way of defining the methods of the classes that implement it.

Showing the “has-a” Relationship

There are actually two different kinds of “has-a” relationships. One
object can have another object where the contained object is part of the
containing object—or not. In Figure A.3, we show Airport “having”
Aircraft. Aircraft are not part of Airport, but we can still say
Airport has them. This type of relationship is called aggregation.

In this diagram, we also show that an Aircraft is either a Jet or
a Helicopter. One can see that Aircraft is an abstract class or an
interface because its name is shown in italics. That means that an Air-
port will have either Jet or Helicopter but can treat them the same
(as Aircraft). The open (unfilled) diamond on the right of the Air-
port class indicates the aggregation relationship.

An airport is still an airport even if no aircraft are present. Also other
airports may “have” a given aircraft at different times. This is a good
example of the aggregation relationship.

The other type of “has-a” relationship is where the containment
means the contained object is part of the containing object. This type of
relationship is also called composition.

A Car is really not a complete thing without an Engine. Where the
car goes, so goes the engine, and a given engine is bound to a given car.
This is an example of a composition relationship.

Composition and Uses

Figure A.4 also shows that a Car uses a GasStation. The “uses” rela-
tionship is depicted by a dashed line with an arrow. This is also called a
“dependency relationship.”

HelicopterJet

AircraftAirport

Figure A.3 The class diagram showing the “has-a” relationship called “aggregation”

ptg6843614

196 Appendix A • Overview of the Unified Modeling Language (UML)

Composition versus Aggregation

Both composition and aggregation involve one object containing one
or more objects. Composition, however, implies the contained object is
part of the containing object, whereas aggregation means the contained
objects are a collection of entities. We can consider composition to be
an unshared association, with the contained object’s lifetime being con-
trolled by its containing object. The appropriate use of constructors and
destructors is useful here to help facilitate object creation and destruc-
tion. This distinction is more important in unmanaged code (like C++)
because in composition the destruction of the containing object should
be accompanied by the destruction of the contained object(s), whereas
in aggregation it should not.

If one is working in managed code (like Java or C#), this issue is a
matter for the garbage collector anyway.

Notes in the UML

In Figure A.5, there is a new symbol: the note. The box containing the
message “open diamond means aggregation” is a note. They are meant
to look like pieces of paper with the right corner folded back. You often
see them with a line connecting them to a particular symbol indicating
they relate just to that symbol.

EngineCar

GasStation

Figure A.4 The class diagram showing the “has-a” relationship called “compo-
sition” and also a “uses” relationship to GasStation

HelicopterJet

AircraftAirport

Open diamond means
aggregation

Figure A.5 A class diagram with a note included

ptg6843614

The Class Diagram 197

Indicating the Number of Things Another Object Has

Class diagrams show the relationships among classes. With composition
and aggregation, however, the relationship is more specifically about
objects of that type of class. For example, it is true Airports have Air-
craft, but more specifically, specific airports have specific aircraft. The
question may arise—“How many aircraft does an airport have?” This
is called the cardinality of the relationship. This is shown in Figures A-6
and A-7.

Figure A.6 tells us that when an Airport exists, it has from 0 to
any number (represented by an asterisk here, but sometimes by the let-
ter “n”) of Aircraft. The “0..1” on the Airport side means that when
an Aircraft exists, it can be contained by either 0 or 1 Airport (it
may be in the air). However, an aircraft cannot be contained by more
than one Airport at any given point in time.

Figure A.7 tells us that when a Car exists, it has either four or five
wheels (it may or may not have a spare). Wheels are on exactly one
car. We have heard some people assume no specification of cardinality
assumes that there is one object. That may not be true and should not be
assumed. If cardinality is not specified, there is no assumption made as
to how many objects there are.

HelicopterJet

AircraftAirport
0..1 0..*

Figure A.6 The cardinality of the Airport-Aircraft relationship

WheelCar
1 4..5

GasStation

Figure A.7 The cardinality of the Car-Tire relationship

ptg6843614

198 Appendix A • Overview of the Unified Modeling Language (UML)

Dashes Show Dependence

As before, the dashed line between Car and GasStation in Figure A.7
shows that there is a dependency between the two. The UML uses a
dashed arrow to indicate semantic relationships (meanings) between
two model elements.

Sequence Diagram

Class diagrams show static (design-time) relationships between classes.
In other words, they do not show us any activity. Although very useful,
sometimes we need to show how the objects instantiated from these
classes actually work together (at runtime).

The UML diagrams that show how objects interact with each other
are called “interaction diagrams.” The most common type of interaction
diagram is the sequence diagram, such as shown in Figure A.8.

For example, in Figure A.8, at the top of the diagram you can see
that Main sends a “get shapes” message to the ShapeFactory object
(which isn’t named). After being asked to “get shapes,” the ShapeFac-
tory does the following:

• Instantiates a collection

• Instantiates a square

• Adds the square to the collection

• Instantiates a circle

• Adds the circle to the collection

• Returns the collection to the calling routine (the Main)

We read the rest of the diagram in this top-down fashion to see the
rest of the action. This diagram is called a sequence diagram because it
depicts the sequence of operations.

Object:Class Notation

In some UML diagrams, you want to refer to an object with the class
from which it is derived. This is done by connecting them with a colon.
Figure A.8 shows shape1:Square refers to the shape1 object, which
is instantiated from the Square class.

ptg6843614

19
9

 Shape-Drawing Program

Figure A.8 Sequence diagram for a shape-drawing program

ptg6843614

200 Appendix A • Overview of the Unified Modeling Language (UML)

Summary

The purpose of the UML is both to flesh out your designs and to com-
municate them. Do not worry so much about creating diagrams the
“right” way. Think about the best way to communicate the concepts in
your design. In other words,

• If you think something needs to be said, use a note to say it.

• If you aren’t sure about an icon or a symbol and you have to look
it up to find out its meaning, include a note to explain it since oth-
ers may be unclear about its meaning, too.

• Go for clarity.

Of course, this means you should not use the UML in nonstandard
ways; that does not communicate properly either. Just consider what
you are trying to communicate as your draw your diagrams.

For a more complete discussion of the UML, the authors recommend
Martin Fowler’s excellent UML Distilled, which not only focuses on the
aspects of the UML that are most commonly used but also provides
much wisdom about effective modeling using this tool.

ptg6843614

201

Good design, up-front testing, and practices such as Programming by Intention
and encapsulating constructors (all topics covered in this book) are things we
think will help you create better software. At the root of all these practices, princi-
ples, and disciplines are the qualities of code that make software easier to change,
debug, enhance, and tune. If you’ve read any of the books we produce, you are
familiar with these, because they are always an important part of any engineer-
ing practice we promote.

This is meant to be a summary for those who have not read our books, or a
review if desired.

For each quality, we will describe it generally, mention any principles that it
adheres to or promotes, suggest practices that will help you enhance the quality,
note any indicators that might tell you that your code is lacking in the quality
(pathologies), and note any testing issues that might help you to see how well you
are achieving them.

First, however, we’ll start with an analogy.

Christmas-Tree Lights: An Analogy

When the holidays come, many of us head up to the attic to retrieve
the boxes of decorations that have been waiting all year to be called
into service again. In my (Scott’s) family, we put up and decorate a
Christmas tree each year, but I suspect Hanukah and Kwanza and other
holidays have their festive ornaments, too, and probably electric lights
are involved.

One thing I’ll do this year, as I do every year, is lay out the strings
of lights on my coffee table and plug them all in, to see whether any of
them fails to illuminate.

APPENDIX B

Code Qualities

ptg6843614

202 Appendix B • Code Qualities

My parents did this, too, but they had a different kind of light set
than I do. The lights in those days used a screw-in connection, like a
typical light bulb, and were wired in simple series. Because of this, if
one light burned out, the entire string would go dark, and you’d have to
check each bulb to find the bad one. Luckily, this did not happen that
often, and we used the same strings for years on end.

Modern strings, the ones I have, are usually different. They have a
simple, push-in connection for each bulb, and the design includes a
bypass mechanism in the sockets such that even if one bulb goes out,
the rest of the string will stay lit, making the bad bulb obvious. It was
a good idea, because the bulbs are smaller and there are many more of
them (my strings have 150 lights per string; my father’s had maybe 15).

So, with this modern design, the entire string should never go out.
In theory.

I’m often reminded of a quote Al likes to use in class, alternately
attributed to Yogi Berra or Jan L. A. van de Snepscheut: “In theory,
there is no difference between theory and practice. But, in practice,
there is.” I almost always have a light string or two that is dead.

Why? There are a number of possibilities. These modern strings are
also made much more cheaply than the ones my parents owned. Some-
times, because of the simple, push-in connection and the soft plastic of
the socket, a bulb gets in only partway or gets twisted slightly. Some-
times the cheap little bent-back wires sticking out of the bulb, which are
supposed to make the connection, will break or bend the wrong way.
The wiring between the sockets is also lower quality and can develop
breaks. The pass-through mechanisms in the sockets are also cheaply
made and can fail. The plug at the end of the cord, cheap plastic again,
can fail, or the fuse inside it could be blown.

What do I do with such a string? The same thing I suspect you do; I
throw it away. Finding the problem would take too much of my time to
be worth it, especially given how low in cost a new string will be any-
way. I might check the fuse, but beyond that, I toss it. Wouldn’t you like
to do that with some of the legacy systems you deal with?

So, this is the first part of my analogy: Even a “better” design idea will
not produce greater value if quality is allowed to suffer. You can code an
Abstract Factory as a single class with a set of methods that each has a
switch-case statement, all based on a control variable, but the fact that
you “used a pattern” does not mean your code is good quality (or vice
versa). This can really matter when you have to debug, enhance, or oth-
erwise maintain it—in other words, pretty much always.

But let’s take this further. Each of these failure possibilities is a lesson.

ptg6843614

Christmas-Tree Lights: An Analogy 203

Each socket is dependent on the wiring that leads to it and away from
it and upon the proper behavior of each socket those wires connect to,
to the sockets they are connected to, and so on. This coupling means
that a failure of anything in any socket can affect other sockets, causing
them to fail. And, all sockets are coupled to the plug, the fuse inside the
plug, the electrical system in your house, and so on.

Each socket has a number of reasons to fail because each one actually
does multiple things. It supplies energy to the bulb, it ensures the bulb
is properly positioned in the socket to receive it, and it passes energy
through to the next socket. This lack of cohesion in the sockets means it
is hard for us to know which of these aspects is failing when the string
goes dark.

Finally, worst of all, every socket is a repeat of every other socket.
This redundancy of design means that it is impossible to know which one
of them is failing, since they are all candidates for all the same failures.
What if two or more of them are failing? It will not be enough to swap
out each bulb in turn, because if many of them have badly bent wires or
many are twisted in their sockets...what a nightmare.

What if I had a device that I could plug my string of lights into that,
with a simple press of a button, would test every individual aspect of my
string and tell me exactly what was wrong immediately? That would be
wonderful! I’d never throw a string away again. This is very much like
an automated suite of unit tests.

But, we’ll probably never have such a device. The manifold coupling,
weak cohesion, and multiple redundancies would make it too hard to
achieve. That’s why legacy code almost never has tests. The lack of qual-
ity usually makes them too difficult to implement.

We can follow this analogy yet further.
Let’s say I discard and replace any bad strings and so now all my

strings light properly. Now I put them all on the tree and then add orna-
ments, garland, tinsel, popcorn strings, and so on...beautiful!

On Christmas Eve, just as my friends and extended family are about
to arrive for our celebration, one string in the middle of the tree goes
out. Big dark spot, right in front. It looks terrible and will spoil things.

Now, throwing it away and replacing it is not an option; it has become
too entangled with everything else on the tree. That laborious socket-
by-socket, wire-by-wire, arduous inspection of the string (which was
not worth it to me before) is now my only option. It will actually be
made more difficult (and much more unpleasant) because the string is
in place on the tree. It’ll be several hours of pine needles in my eyes and
broken ornaments before I solve this problem, if I ever do. Everyone is

ptg6843614

204 Appendix B • Code Qualities

due in four hours, the deadline approaches, and Andrea wants to know
when I’ll have it working and when I’ll be available to help with the
hors d’oeuvres.

Our software, and its quality, does not affect us alone, because
increasingly software is being created from other software; we create
services that may well end up in the center of a system or systems that
we did not anticipate. We depend upon the good work of other develop-
ers, and they depend on us.

Quality is worth it; if we want to be able to create software with per-
sistent value rather than systems, we simply rewrite and throw away on
a regular basis. As software becomes more important in the world and
as there is more and more of it to enhance and maintain, focus on qual-
ity becomes increasingly important.

Good-quality software is understandable, is testable, and can be
changed to meet the ever-changing needs of business and individuals. It
is a timeless way of building, so to speak.

Now, if you’ll excuse me, I need to get the ladder and climb into the
attic.

Cohesion

Description

All the elements in a class or method are related to each other. Classes
and methods do not contain any unrelated or “red herring” elements.

Poor cohesion is termed “weak.” Good cohesion is termed “strong.”
Cohesion is fractal; it can be considered at many levels: statement,

method, class, namespace, package, subsystem, application, and so on.
In design, we find it most valuable to concentrate on the cohesion of
classes and methods primarily.

A “strongly” cohesive class is one where all of its internal aspects
(state, functions, relationships, and so on) are about fulfilling the same,
single “responsibility.”

A “strongly” cohesive method is about implementing a single “func-
tional” aspect of a class’s responsibility.

Principles

• Single Responsibility principle

• Separation of concerns

ptg6843614

Coupling 205

Practices

• Programming by Intention

• Up-front testing

• Commonality-Variability Analysis

Pathologies

• Large classes. A large class may be large because it has more than
one responsibility.

• Long methods. A long method may contain more than one function.

• Difficulty naming. It is hard to give a class or method an intention-
revealing name if it does many unrelated things. Or, such a name
would have to be very long, perhaps containing underscores or “ands.”
This is an indication that the entity may not be strongly cohesive.

Indications in Testing

• Large tests. If a class contains more than one responsibility, the
test for that class must test them all, and all of their possible com-
binations, because of possible side effects. This often results in tests
that are significantly longer than the classes they test. When each
responsibility of the system is in a separate class, then we know
that side effects are much more limited, and thus the classes can
largely be tested in isolation from one another. These tests tend to
be smaller and simpler.

• Tests that fail for multiple reasons. Another way to express
that a class is cohesive is to say there is only one reason it could
fail. Tests reveal this insofar as they will fail for any reason that
the class can fail.

Coupling

Description

The dependencies between a given entity and other entities are logical,
obvious, and minimal.

ptg6843614

206 Appendix B • Code Qualities

Good coupling is often termed “loose,” but we prefer “intentional.”
Bad coupling is often termed “tight,” but we prefer “accidental.”
There are many kinds of coupling, but the following are the primary

types that concern us:

• Identity coupling. This exists when one type couples to the exis-
tence of another type. Usually this occurs when ClassA has a
member of type ClassB, takes a parameter of type ClassB in one
of its methods, or returns a reference of type ClassB from one of
its methods. If ClassA will not compile when ClassB is removed
from the system (yielding a “class not found” error), this indicates
identity coupling.

• Representational coupling. This exists when one type couples
to the interface of another type. If ClassA will not compile when
the public interface of ClassB is changed, this indicates represen-
tational coupling.

• Inheritance coupling. This is the coupling that is created
between a derived class and its base class. A subclass may be
changed when its base type is changed, and so this must be taken
into account when some changes are made. When inheritance
is used extensively throughout a design, especially when it is
allowed to cascade in large hierarchies, the inheritance coupling
can get out of hand.

• Subclass coupling. This exists when one type is coupled to the
fact that another type is polymorphic, not simple. Classes that
have no subclass coupling have no special indications in their
code that a class they depend upon is either concrete or really one
of many classes that have been upcast to an abstract type. When
subclass coupling is present, a class depending on subtype X will
have to change when it must depend instead on subtype Y.

Principles

• The Open-Closed principle

ptg6843614

Redundancy 207

Practices

• Encapsulate by policy, reveal by need

• Design to interfaces

• Using inheritance for pluggability, not specialization

• Up-front testing

Pathologies

• Unexpected side effects when changes are made

Indications in Testing

• Slow, complex tests. These indicate that a class may have many
dependencies that must be present when the class is tested. Instan-
tiating these dependencies can take time and thus slow down the
testing. Also, direct coupling to external entities, such as data-
bases and user interfaces, can also require actions that slow the
tests (populating the database with test data, for example).

• Large test fixtures. These also can indicate this coupling. The
“fixture” of a test consists of all the instances it must create to
accomplish the testing. If there are many objects, this may indi-
cate more coupling in the system than is desirable.

Redundancy

Description

Anything that could change (read: anything) should be in a single place
in the system, including the following:

• State

• Function

• Rules

• Object creation (memory allocation)

• Relationships

ptg6843614

208 Appendix B • Code Qualities

Principles

• One rule, one place

• Don’t Repeat Yourself (DRY)

• Shalloway’s law

Practices

• Refactor redundancies immediately.

• When two entities require the same service, state, relationship,
behavior, and so on, design for any number. Consider 0 and 1 to
be unique, whereas 2 represents all other numbers.

• Up-front testing

Pathologies

• Duplication in client objects

• When searching for a bug or integration point, uncertainty that
you can stop once you find it

Indications in Testing

• Duplication in tests. Often issues that are subtly redundant in
the production code are more obviously redundant in tests, and so
testing represents an additional opportunity to notice them. The
upshot can be this: If a test has redundancies that cannot be refac-
tored out, then this probably indicates there are redundancies in
the system.

Encapsulation

Description

While encapsulation is often defined as “data hiding,” in truth it is the
hiding of anything. Any time one part of the system becomes shielded
from another part of the system, we consider it encapsulated. This can
include the following:

ptg6843614

Encapsulation 209

• Data/state

• Behavior

• Type

• Construction/memory allocation

• The number of service objects being used

• The order that multiple service objects are used in

• Interface

• Entity

• Subsystems

Anything that can be encapsulated without impeding the behavior of
the system should be, because this will fundamentally affect the previ-
ous qualities listed in this appendix.

• Cohesion. The more cohesive entities are, the more encapsula-
tion is possible. A single class with all behavior in it would be very
weakly cohesive, and there would be essentially no encapsulation
(“private” means nothing within a class). Therefore, the desire to
encapsulate requires cohesive design.

• Coupling. That which cannot be seen cannot be coupled to.

• Redundancy. The desire to eliminate redundancy often requires
the use of reusable service objects. These objects add encapsula-
tion that is not present when clients contain service code within
them.

Principles

• Encapsulate all variation

Practices

• Encapsulate by policy; reveal only with a clearly defined need

ptg6843614

210 Appendix B • Code Qualities

Pathologies

• Unmaintainable systems. Because encapsulation relates to the
core qualities of maintainable code, severely unmaintainable sys-
tems usually lack fundamental encapsulation.

Indications in Testing

• Coarse-grained tests. These tell you very little when they fail
(often termed “pinning tests”); they are usually the only tests
that can be written for a system that has very poor encapsula-
tion. Attempting to test all the variations in a system where side
effects are unknown and unpredictable is usually too difficult to
be attempted, so developers or testers will record the output of the
system given a set of inputs and test against this overall expecta-
tion. Such a test can fail if anything in the system is broken, and
therefore when they fail, they do not give any indication as to
what is wrong. In refactoring legacy systems, we often start by
adding these tests, which are better than nothing, and then by
improving them as the encapsulation is added to the system.

ptg6843614

211

Encapsulation in object-oriented programming is often interpreted as making
sure classes do not expose their implementation. You can go beyond this interpre-
tation and encapsulate all the concepts in your program. Encapsulating imple-
mentations in abstract data types provides benefits in code readability, testability,
and quality.1

Encapsulating Primitives in Abstract Data Types

Let’s start with a typical method.

double getDiscount(double orderTotal) {}

With encapsulation, we are not concerned with the implementa-
tion of getDiscount(), only its interface: the signature of the method.
Looking just at the signature, it’s easy to envision what the method
does. It receives the total for an order and returns the discount. How-
ever, it’s harder to determine what the meaning is of that discount. Is
it in percent, or is it in dollars or another currency? Now the method
could be named.

double getDiscountPercentage(double orderTotal) {}

//or

double getDiscountAmount(double orderTotal) {}

1. Pugh, Ken. Prefactoring: Extreme Abstraction, Extreme Separation, Extreme Readability. Sebas-
topol, CA: O’Reilly Media, 2005.

APPENDIX C

Encapsulating Primitives

ptg6843614

212 Appendix C • Encapsulating Primitives

If you use an abstract data type, such as Percentage or Dollar, the
intent of the method can be clearer. The following is an example:

Percentage getDiscount(double orderTotal) {}
Dollar getDiscount(double orderTotal) {}

Of course, as soon as you have a Dollar data type, you can and
should use it everywhere. So, the methods would look like the following:

Percentage getDiscount(Dollar orderTotal) {}
Dollar getDiscount(Dollar orderTotal) {}

Principles

Several principles underlie the use of abstract data types (ADTs). Gerry
Weinberg states that one should not throw away information. If you
already know that orderTotal is a dollar, then declaring it as a double
throws away that information. Lean software development states you
should defer decisions to the last responsible moment. If you declare
orderTotal as a Dollar, you can defer any decision to use a particu-
lar implementation such as a double, a long, or a BigInteger.

The amount of effort to transform code from one form to another is
not always the same in both directions. You can change the name of a
method and its references back and forth by performing a search and
replace or using a refactoring tool. So, switching getDiscount() to
getDiscountPercentage() or back is easy. Of course, if you attempt
to switch getDiscountPercentage() to getDiscount(), you will
get a “method already defined” compile error if a getDiscount()
method already exists in the same scope.

On the other hand, the transformations from Dollar to double and
back again are not equal. A search and replace can change Dollar to
double everywhere. To reverse the transformation, you can search for
double. But you need to examine every instance to see whether Dollar
is the appropriate replacement.

Having an ADT can help you create more cohesive classes. If you
need to round off a dollar, it is fairly apparent that the rounding imple-
mentation belongs in the Dollar class, rather than in the method that
is using Dollar.

ptg6843614

Narrow the Contract 213

Narrow the Contract

An abstract data type can narrow the contract for a concept and often
simplify the testing required. For example, an int can contain val-
ues ranging from negative 2 billion to positive 2 billion. Declaring
outside Temperature to be an int suggests that it could take on any
value within that range. For example, the method

void adjustAirConditioning(int outsideTemperature){}

should be tested for the limits in the realm of possibility for a particular
application. You normally do this by testing for values just within and
just outside the low and high limit, a total of four tests. If you create a
Fahrenheit type, you need to test that class for the limits. But any
method to which you pass a Fahrenheit object, such as

void adjustAirConditioning(Fahrenheit outsideTemperature){}

need only be tested at the limits of Fahrenheit. The method cannot be
tested for values beyond the limits, since it is impossible to pass it those
values.

The narrowing of the contract also applies to available operations on
a data type. An int or a double has a plethora of operations that can be
performed on them (arithmetic, logical, and so on). Most ADTs have
a very limited set of functions. Limiting the operations to just those
required provides further delineation of the meaning of that type.

If you need to perform operations on abstract data types, you can
either overload operators in languages that permit it or create named
methods in languages such as Java that do not have overloaded opera-
tors. Using named methods, you might create the following:

class Dollar {
 Dollar add(Dollar other);
 Dollar subtract(Dollar other);
 Percentage divide(Dollar other, RoundOff rounding);
 Dollar multiply(Percentage other, RoundOff rounding);
}

The auxiliary enum RoundOff would have values such as RoundUp
and RoundDown.

ptg6843614

214 Appendix C • Encapsulating Primitives

Expanding Abstract Data Types

You can readily change from simple measurements to a more com-
plex data type. For example, you can change Dollar to Currency or
Fahrenheit to Temperature. In either case, you add an additional
attribute to the class that identifies the measurement (for example,
Dollar, Euro, Yen, or Fahrenheit, Celsius). The class becomes the
focus for conversion between the different measures. The following is
an example:

enum TemperatureMeasure {Fahrenheit, Celsius};
class Temperature{
 Temperature getAs(TemperatureMeasure tm) {}
 Boolean greaterThan(Temperature other) {}
}

getAs(TemperatureMeasure tm) either returns the temperature
if it is already in the requested units or converts it if it is not. Boolean
greaterThan(Temperature other) compares the two tempera-
tures, regardless of their measure.

You can make abstract data types for variables that might typically
be declared as strings. Strings are classes in almost every language. By
having an ADT, you can narrow the contract for what the string can
contain, as well as having a cohesive class that also incorporates format-
ting. For example, you can have the following:

PhoneNumber phoneNumber;
ZIPCode zipCode;
EmailAddress emailAddress;

Each of those classes can ensure that the objects contain only a
valid formatted series of characters. You could also have classes that
represented more general concepts. For example, you might have the
following:

StringWithoutSpecialChars name;
StringWithoutSpecialChars street;

The StringWithoutSpecialChars class would ensure that no
special characters (such as { or & or =) could be inside an object.

ptg6843614

Use Text as External Values 215

Use Text as External Values

You have to be able to read the output of a program. You need to be able
to input values into a program without specifying 1s and 0s. A program
may need to communicate values with a program written in a different
language or running on a different machine with a different processor
or operating system. Text is the common mode of communication. How-
ever, values should be converted from text to the abstract data type on
input from the user interface or another system as soon as possible. The
abstract data type being sent to the display or another system should be
converted to text at the last possible moment. This decouples the pro-
gram’s internal manifestation from the external representation of data.

For example, a user interface might look like Figure C.1.
Now the submit button is clicked. The text is transmitted either

directly to a program or via an HTTP link to another system. For exam-
ple, the HTTP might look like the following:

http:// samscdrental.com/enter_user?name=SAM+phone_number
=123-456-789+zipcode=12345+email=ken.pugh@netobjectives.com

In either case, the receiving program should convert the text to an
internal representation as soon as it receives it. In this example, the rep-
resentation could appear as follows:

class UserEntry{
 StringWithoutSpecialChars name;
 PhoneNumber phoneNumber;
 ZIPCode zipCode;
 EmailAddress emailAddress;
}

Figure C.1 Typical user interface

ptg6843614

216 Appendix C • Encapsulating Primitives

If there is an error in conversion, it is immediately reported, and
no further processing takes place on the input. Now each of the fields
has the proper format. Further validation of values, such as ensuring
that the emailAddress is a real one, can then take place. This would
involve further processing such as sending a mail message and checking
for a response.

Here’s another example of how separating the external representa-
tion from internal representation gives separation of concerns. If you
used the value of a character directly to determine an action to perform,
you might have a method that looks like the following:

void someMethod(char typeCharacter){
 switch(typeCharacter){
 case 'A':
 doSomething();
 break;

 case ‘B’:
 doSomethingElse();
 break;

 //...
 default:
 throw BadInputCharacter("SomeMethod "
 + Character);
 }

The preceding method does two things: It verifies that typeCharacter
is a valid character and performs the corresponding operation. We could
break that method into two methods.

 enum CharacterState {AState, BState,};
 CharacterState determineState(char typeCharacter) {
 switch(typeCharacter){
 case 'A':
 return AState;
 case 'B':
 return BState;
 default:
 throw new BadInputCharacter("determineState "
 + Character);
 }
 }
 void actOnState(CharacterState state){
 switch(state){
 case AState:
 doSomething();

ptg6843614

Enumerations Instead of Magic Values 217

 break;
 case BState:
 do SomethingElse();
 break;
 }
}

Now determineState() and actOnState() each has a simple
purpose. The first determines what state the input character represents
and whether there is a valid state for it. The second performs an action
based on that state. Now the first method could easily be converted to
a table form or to one that does a database lookup. The second method
would not have to change regardless of the change in the first method.

Enumerations Instead of Magic Values

Enumerations are the way to encapsulate magic values, such as those
used to designate different choices, such as economy class, business
class, and first class or any other fixed set of values. Instead of using
either numbers (for example, EconomyClass is 1, BusinessClass is
2, and FirstClass is 3) or letters (for example, EconomyClass is E,
BusinessClass is B, and FirstClass is F), in almost any language
you can declare an enumeration.

enum TicketClass {EconomyClass, BusinessClass, FirstClass};

The compiler assigns unique values to each of the three symbols. In
many languages, you can designate your own values for each of the
symbols. That’s a shortcut that could be used, but it mixes external
representation in with the abstraction. If you need to convert between
external representation and the internal value, you can either make up
a conversion class or create class methods. The following is an example:

class TicketClassHelper {
 static TicketClass parse(String input);
 // Throws argument exception if unable to convert
 static String toString(TicketClass in);
 static String [] getTicketClassStrings();
}

The method parse(String input) converts a string to a Ticket-
Class value; toString(TicketClass in) does the reverse; and
getTicketClassStrings() gives an array of strings corresponding to

ptg6843614

218 Appendix C • Encapsulating Primitives

every value in TicketClass. You can use this array to create a drop-
down list in your user interface.2

Disadvantages

There are disadvantages to using abstract data types for all concepts. It
does increase the number of classes in a program. In some languages,
such as Java, there may be a performance penalty, since primitives are
passed by value on the stack and objects must be allocated and deallo-
cated. In other languages, such as C++ and C#, the abstract data types
can be passed by value on the stack.

If there are numerous combinations of operations (such as Dollar
divided by Percentage and Fahrenheit multiplied by Percentage),
then there will be many overloaded operations that will need to be cre-
ated. This may be the case more frequently in scientific applications
than in business applications. In languages that do not support over-
loaded operators, the method names for the operations will lengthen
the source code.3

What Could Abstract Data Types Save?

What could be the cost of not using abstract data types? On Sep-
tember 23, 1999, NASA lost the Mars Climate Orbiter at a cost
of $125 million. One engineering team used metric units while
another used English units for a key spacecraft operation. How-
ever, instead of storing them in meter and feet, they were stored in
something like double, thereby losing the information that would
have discovered the error.

2. You might also have a byIndex(int index) that returns the TicketClass value cor-
responding to the location in the array of strings. You can use the selected index from the
drop-down list to get the corresponding TicketClass value.

3. In the current version of C# and the .NET runtime, structs up to 16 bytes long are allo-
cated on the stack and passed by value. An abstract data type declared as a struct contains
just the same primitive that would have been used without encapsulation and takes no
more time to pass than the primitive.

ptg6843614

Summary 219

Summary

Abstract data types can make your code more readable and testable.
They encapsulate the representation of a concept and allow the imple-
mentation to easily change.

ADTs classes provide a common location for conversions between
external representations and internal representations of value. This
common location can help ensure that input representations are prop-
erly formatted.

In some languages, extensive use of ADTs may cause performance
issues. In languages that do not allow operator overloading, there can
be an increase in the size of the code because of longer method names.

ptg6843614

This page intentionally left blank

ptg6843614

221

A
Abstract classes

creating one-to-one relation-
ship, 52

definition of, 194–195
in encapsulation of object type,

65
interfaces as, 81–82, 195
reducing redundancy using, 48
specification giving better

understanding of, 134
in Variability Analysis, 133–134

Abstract data types (ADTs)
cost of not using, 219
disadvantages of, 219
encapsulating primitives in,

211–212
enumerations instead of magic

values, 218–219
expanding, 214
narrowing contract for concept,

213
underlying principles of, 212
using text as external values,

215–217
Abstract inheritance, 175–176, 179
Acceptance Test-Driven Develop-

ment (ATDD)

Index

acceptance test framework,
93–94

acceptance tests, 88
benefits of, 40
combining unit tests for auto-

mated, 39
connection, 94–95
creating unit tests from, 40, 44
defined, 41, 85
example test, 88–89
exercise, 95
flows for development, 85–87
implementing with FIT, 40
improving clarity of scope, 42
no excuses for avoiding, 43
other advantages, 43
reducing complexity, 42
role in continuous integration,

119–120
summary review, 96
testing interface to clarify con-

tract, 76–77
user interface for testing, 91–92
user interface test script, 90–91
UTDD vs., 42
what to do if customer won't tell

you, 95–96
XUnit testing, 93

ptg6843614

222 Index

Accessibility, UML notation for, 194
Accessor methods

encapsulating data members behind
set of, 56–57

preventing changes, 58–59
Accidental coupling, 206
Adapter Pattern, 168, 171
ADTs. See Abstract data types (ADTs)
Aggregation, UML

composition vs., 196
example of, 193
showing "has-a" relationship, 195

Agile Software Development (Martin),
xxiv

Alexander, Christopher, 40, 42
Aliasing, 60
Analysis Matrix

adding another case, 139–140
adding new concepts as rows in

table, 139–141
adding steps, 137–139
building, 136–137
defined, 136
selecting stories to analyze, 141–144
uses of, 144–145

"Anticipated vector of change," 57
ATDD. See Acceptance Test-Driven

Development (ATDD)
Attributes, abstract data type, 214
Automated tests, in continuous inte-

gration, 119–120

B
Bain, Scott, xxv–xxvi
Bain's corollary, 51
Behavior

delegating to helper class, 80–81
designing from context of, 40–42
determining functionality using

tests, 36
enhancing by adding or changing, 11
preserving in refactoring, 11

redundant, 46
timing decisions and, 30–31
unit testing of, 13–15

Branching source code
development branching, 112–114
merge-back and, 115–117
overview of, 109–110
problem, solution, problem and, 114
specialization branching, 110–111
version control and, 109

C
C++

abstract data types in, 218
Commonality-Variability Analysis

and, 135
composition vs. aggregation in, 196
overloading and, 31–32
separating implementation from

interface, 84
testing private methods, 14

C#
abstract data types in, 218
breaking encapsulation with get(),

63–64
Commonality-Variability Analysis

and, 134–135
composition vs. aggregation in, 196
declaring interface in, 76
encapsulation of object type in, 66
global variables in, 53–54
interfaces and abstract classes in, 82
mixing implementation with inter-

face in, 84
new keyword in, 23
self-encapsulating data members in,

59
Cabie, continuous integration server,

121
Capabilities interface

defined, 168
following Law of Demeter, 169–171

ptg6843614

Index 223

needs vs. capabilities and, 167–168
separating from needs interface,

168–169
Cardinality of relationship, UML, 197
Case studies

Analysis Matrix. See Analysis
Matrix

testability, 37–38
Christmas-tree light analogy, of code

quality, 201–204
CI. See Continuous integration (CI)
Clarity, using UML for, 192
Class diagrams, UML

indicating number of things another
object has, 197

overview of, 192–193
showing composition and uses rela-

tionship, 195–196
showing "has-a" relationship,

195–196
showing relationships, 194–195
using notes, 196

Classes
abstract data types increasing num-

ber of, 219
changing from concrete to abstract,

25–26
cohesion of, 6–7
designing in object-oriented analy-

sis, 127
improving cohesion with movable

methods, 17–18
interfaces and abstract, 81–82
keeping interfaces simple, 79–80
pathologies of cohesion and, 205
separate interface declarations and,

84
showing relationships, in UML dia-

grams, 194–195
testability case study, 37–38
warning about nouns and, 129–130

Classes, cohesive, 204–205

Clients
breaking encapsulation with get(),

62–64
coupling and testability, 166–167
encapsulating reference objects,

59–61
Law of Demeter and, 169–171
separate needs/capabilities inter-

faces, 167–169
Code qualities

avoiding slow degradation of, 39
Christmas-tree light analogy,

201–204
cohesion, 100, 204–205
coupling, 100, 205–207
encapsulation, 101, 208–210
overview of, 201
readability, 101
redundancy, 50–52, 100, 207–208
testability, 36–37

Code smells
comments as, 8–9
identifying need for refactoring, 155

Cohesion
Christmas-tree light analogy, 203
as code quality, 100, 204–205
creating with abstract data types, 212
under-design creating weak, 101
encapsulation and, 209
method, 6–8
movable methods and, 17–18
nouns-and-verbs approach causing

weak, 130–131
testability related to, 36–38
writing modifiable code for legacy

systems and, 105
Comments

as code smell, 8–10
Programming by Intention vs.

using, 7–8
commit() method, 13–14, 16–17
Commonality Analysis, 132–133

ptg6843614

224 Index

Commonality-Variability Analysis
case study: The Analysis Matrix,

136–141
of cohesion, 205
Commonality Analysis, 132–133
finding objects, 134–136
handling variation, 132
nouns and verbs and, 127–130
overview of, 127
perspectives, 133–134
the real problem, 130–131
selecting stories to analyze, 141–145
summary review, 145
Variability Analysis, 133
what we need to know, 131–132

Communication, UML for, 192
Complexity

lowering by separating aspects of
code, 107

of merge process in development
branching, 112–113

minimizing rework and, 99, 102
overdesign creating, 101
reducing with ATDD, 42–43
refactoring and enhancing to add,

11–12
Composition, UML

example of, 193
showing "has-a" relationship, 195
showing uses relationship, 195–196
and uses, 195–196
vs. aggregation, 196

Construction, separating use from
approach to, 27–30
coupling and, 25–27
debugging and, 48–50
perspective of, 23–24
question to ask, 21–22
realistic approach to, 27–30
timing decisions, 30–31
validating concept, 32–33

Constructors
C++ and overloaded, 31–32

difficulty of encapsulating reference
objects, 59–61

private, 30
Context object, encapsulation of

design, 68–69
Continuous integration (CI)

branching source code, 109–110
development branching, 112–114
merge-back, 115–117
"nightly build," 115
overview of, 109
problem, solution, problem, 114–115
servers, 121–122
specialization branching, 110–111
summary review, 122–123
text-driven development and merge

cost, 117–119
understanding, 119–120

Contracts, interface, 76–77
Copy and paste, as redundancy, 46
Cost of merge

in development branching, 112–114
merge-backs decreasing, 116–117
"nightly builds" increasing, 115
problem, solution, problem and, 114
test-driven development and,

117–119
Coupling

Christmas-tree light analogy and,
203

as code quality, 100, 205–207
under-design creating high, 101
eliminating to implementations,

166–168
encapsulation and, 54–56, 209
global variables creating tight, 54
identity, 54, 206
inheritance, 206
misuse of inheritance and, 176–178
nouns-and-verbs approach causing

tight, 130–131
by perspective, 23–26
redundancy related to, 47, 50–52

ptg6843614

Index 225

representational, 206
specialization branching and,

110–111
subclass, 206
testability and, 36–38, 166–167

CruiseControl, continuous integration
server, 121

D
Dashes, showing dependence in UML,

198
Data hiding. See Encapsulation
Debt vs. investment, refactoring, 156
Debugging

finding bugs, 48–50
Programming by Intention and, 10
refactoring vs., 154

Degrade code intentionally, 100,
102–103

Delegation
avoiding premature hierarchies,

80–81
favoring, 178–179
Gang of Four and, 173–176
inheritance vs., 180–181

Dependence, using dashes in UML, 198
Dependencies

controlling with strong interfaces, 163
coupling and, 205–207
Law of Demeter and, 163–165

Dependency injection, 28
Dependency Inversion principle, 42, 82
Deserialization, 28
Design

of code for testability, 37
encapsulation of, 67–69
lessons from Gang of Four, 184–185
starting with big picture of wanted

behavior, 40
testability case study, 38
up-front testing as up-front, 39–40
using tests to accomplish, 36

Design, avoid over- and under-
code qualities and, 100–101
degrading code intentionally,

102–103
development mantras, 99–100
keeping code robust and easy/safe to

change, 102–103
minimizing complexity and rework,

102
modifying code for non-object-

oriented or legacy system,
103–107

overview of, 101
Design patterns

concept of, 42
encapsulating using, 70–71
reducing redundancy with, 48
seeing in code, 16–17

Design Patterns: Elements of Reusable
Object-Oriented Software (Gamma.
Erich, et al.), 48, 173, xxiv

Design Patterns Explained: A New Per-
spective on Object-Oriented Design
(Shalloway and Trott), 48, 67–68,
100, xxv

Design Patterns Repository, 71
Development branching, 110, 112–114
Diagrams, UML

class, overview of, 192–193
class, showing relationships,

194–195
defined, 191
sequence, 198

Direct inheritance, 174–176

E
Emergent Design: The Evolutionary Nature

of Professional Software Development
(Bain), xxv–xxvi

Encapsulation
on all levels, 69
breaking, with get(), 62–64

ptg6843614

226 Index

Encapsulation (continued)
as code quality, 101, 208–210
coupling from perspective of, 25–27
of design, 67–69
in development branching, 112
importance of, 22
of member identity, 54–56
of object type, 64–66
overview of, 53
in practice, 69–72
preventing changes, 58–59
of reference objects, 59–61
removing need for specialization

branching, 111
for robust and easy/safe to change

code, 103
self-encapsulating members, 56–57
summary review, 72–73
testability related to proper, 36–37
unencapsulated code, 53–54

Encapsulation of primitives
in abstract data types, 211–212
disadvantages of, 219
enumerations instead of magic val-

ues, 218–219
expanding abstract data types, 214
narrowing contract for concept, 213
overview of, 211
principles, 212
using text as external values, 215–217

Enhancing systems
with Programming by Intention, 12
refactoring vs., 154

Enumerations, encapsulating magic
values with, 218–219

Expressiveness, in Programming by
Intention, 7–10

Extensions, code
delaying, 102
Programming by Intention and,

15–16
External values, using text as, 215–217
Extract Method, of refactoring, 11

F
Façade Pattern, 79, 171
Factory

adding to build instance, 150–151
encapsulation of design, 67–69
practical considerations, 30
separating use from construction,

26–28
Failure, Christmas-tree light analogy,

201–204
Failure report, interfaces, 77
Feature envy, refactoring, 155
FinalBuilder, continuous integration

server, 121
FIT for Developing Software (Mugridge),

40
FIT (Framework for Integrated Test-

ing), 40
Framework for Integrated Testing

(FIT), 40
Frogs, programmers as, 39
Fuller, Buckminster, xxi–xxiii
Functional steps, of programming lan-

guages, 4–5
Functions

designing in object-oriented analy-
sis, 127

Law of Demeter for, 164–165
limited in ADTs, 213
warning about verbs, 129–130

G
Gang of Four

applying lessons to agile develop-
ment, 184–185

big design up-front, 72
favoring delegation over inheri-

tance, 80, 178–179
favoring design to interface, 66, 75
on inheritance, 173–176
on using inheritance to hide varia-

tion, 181–182

ptg6843614

Index 227

getInstance()method, 28–32
get()method

breaking encapsulation with, 62–64
difficulty of encapsulating reference

objects, 59–61
encapsulating data members behind,

56–57
preventing changes, 58–59

getX()method
difficulty of encapsulating reference

objects, 59–61
encapsulation of member identity,

56
preventing changes, 58
self-encapsulating data members, 57

Global variables, unencapsulated code
and, 53–54

H
"Has-a" relationship, UML class dia-

gram, 192, 195–196
Helper methods

debugging by examining, 10
defined, 5
development of, 147
enhancing system by changing, 12
Open-Closed principle and, 153
seeing patterns in code, 16–17
unit testing behavior of, 13–14

Hierarchies
avoiding premature, 80–81
causes of tall class, 127–128
creating good, decoupled, 128
inheritance, 177

I
Identity coupling, 54, 206
Identity, encapsulation of data mem-

ber, 54–56, 64–66
if statement, 127, 129–130
"Ility" tests, for interfaces, 77

Impediments, encapsulating your,
69–71

Implementation perspective
abstract classes and, 82
in interface-oriented design, 75
separating specification perspective

from, 77–79, 84
Implementations

eliminating coupling to, 168
encapsulating in abstract data types.

See Encapsulation of primitives
redundant, 46, 47
removing redundant, 48

Implementing Lean Software Development:
From Concept to Cash (Poppendi-
eck), xviii

Inheritance
delegation vs., 80–81, 178–181
Gang of Four and, 173–176, 184–185
improper use of, 130–131, 173
initial vectors and eventual results,

176–178
open-closed through direct,

148–149
scalability and, 183–184
specialization branching similar to,

110
testing issues, 185–186
uses of, 181–183
when and how to use, 173

Inheritance coupling, 206
Initial vectors, eventual results and,

176–178
Instances. See Construction, separating

use from; Use, separating con-
struction from

Intention-revealing names
and cohesion, 205
defined, 8
for interfaces, 77
for readability, 101

Intentional coupling, 206
Interaction diagrams, UML, 198–199

ptg6843614

228 Index

Interface contracts, 76–77
interface keyword, 76
Interface-oriented design (IOD)

abstract classes and, 81–82
definition of interface, 75–76
Dependency Inversion principle, 82
design to interface and, 75
favoring delegation over inheri-

tance, 80–81
interface contracts, 76–77
keeping simple, 79–80
mock implementations of interfaces,

79
not for every class, 84
polymorphism and, 83–84
separating perspectives in, 77–79
summary review, 84

Interface-Oriented Design (Pugh), 77
Interfaces

Commonality-Variability Analysis
and, 134–136

coupling and testability of, 166–167
defining prior to implementing

code, 13–14
definition of, 75–76
Law of Demeter and, 163–165,

169–171
laws of, 77
needs and capabilities, 168–169
needs vs. capabilities, 167–168
summary review, 171–172
users coupled to, 25

Investment vs. debt, refactoring, 156
"Is-a" relationship, UML class diagram,

192

J
Jacobsen, Ivar, 147–148
Java

abstract data types, 218
breaking encapsulation with get(),

63

Commonality-Variability Analysis
in, 134–135

composition vs. aggregation in, 196
declaring interface in, 76
encapsulation of object type in, 66
global variables in, 53–54
interfaces and abstract classes in, 82
mixing implementation with inter-

face in, 84
new keyword in, 23

Just-in-time design
avoiding code duplication with, 15
as delaying extensions to code, 102
enabling by refactoring to the open-

closed, 159–161

K
Kolsky, Amir, xxvi

L
Language constructs, polymorphic

behavior without, 83
Law of Demeter, 164–165, 169
Laws of interfaces, 77
Lazy class, refactoring, 155
Lean-Agile Acceptance Test Driven Develop-

ment.(Pugh), xxvi
Lean-Agile Pocket Guide for Scrum Teams

(Shalloway), xxv
Lean principles, xvii–xix
Legacy systems

degrading code intentionally on,
102–103

difficulty of debugging, 10
refactoring and, 156–157
writing modifiable code for, 103–107

Loose coupling
as intentional coupling, 206
for robust and easy/safe to change

code, 103
testability related to, 36–37

ptg6843614

Index 229

M
Magic numbers, as redundancy, 46
Magic values, encapsulating with enu-

merations, 218–219
Member identity, encapsulation of,

54–56
Merging process

continuous integration and, 119–120
development branching and, 110,

112–114
merge-back in, 115–117
merge cost in test-driven develop-

ment, 117–119
"nightly build" and, 115
problem, solution and problem in,

114
summary review, 122–123
workarounds for CI server bottle-

neck, 121–122
Methods

cohesion of, 6–7, 204–205
as functional steps, 4–5
intention-revealing names of, 8
Law of Demeter for, 164–165
minimizing in interfaces, 79–80
as movable, 17–18
in testability case study, 37–38
unit testing of, 13–15

Minus sign (-), UML notation, 194
Mock implementations of interfaces,

79
Models of programs, creating with

UML, 191
Modifications, code, 15–16
Movable methods, 17–18
Moves, refactoring, 11–12
"Multi-Paradigm Design" (Coplien),

xxiv

N
Naming conventions, intention-

revealing, 8

Needs interface
capabilities vs., 167–168
defined, 168
following Law of Demeter for,

169–171
separating from capabilities inter-

face, 168–169
summary review, 171–172

Net Objectives Product Development
Series

goals of, xvii–xix
how to design software in stages,

xxi–xxii
role of this book in, xix–xx

.NET, properties, 58
new keyword, 23–24
Nightly build process, 115
Notation for accessibility, UML, 194
Notes, UML, 196
Nouns

in object-oriented analysis, 127
problem with, 130–131
warning about using, 127–130

Null Object Pattern, in debugging, 50
Number sign (#), UML notation, 194

O
Object: class notation, UML, 198–199
Object factory, 67–69
Object-oriented design. See also Open-

Closed principle
Commonality-Variability Analysis

in, 127, 132–133
handling variation in, 132–133
nouns and verbs in, 127–130
perspectives, 133–134
polymorphism in, 80
real problem of, 130–131

Object type, encapsulation of, 64–66
"Once and only once rule" (Beck), 52
One rule, one place principle, redun-

dancy, 208

ptg6843614

230 Index

Online references
Buckminster Fuller Institute, xxiii
inheritance for pluggability and

dynamism, 187
listing patterns by what they encap-

sulate, 71
Singleton Pattern, 30

Open-Closed principle
applying to any change, 151–152
of coupling, 206
misuse of inheritance in, 174
overview of, 147–151
principles and, 152–153
refactoring to, 157–159
for simple interfaces, 79–80

out keyword, 63
Overdesign

avoiding, 101
avoiding using Open-Closed princi-

ple. See Open-Closed principle
avoiding using refactoring. See

Refactoring
causes of, 28

Overloaded constructors, and C++, 31–32
Overloaded operations, abstract data

classes, 219–220
override keyword, 66

P
Paired programming, 43
Patterns. See Design patterns
Performance, and abstract data classes,

219–220
Perspectives

in Commonality-Variability Analy-
sis, 133–134

of creation, 23–24
overview of, 22–23
practical considerations, 30
separating for interface, 77–79
separating use from construction,

27–30
of use, 24

Planning
avoiding over- and under-design

when, 99
up-front testing vs., 40–41

Plus sign (+), UML notation, 194
Policy, encapsulating by, 69
Polymorphism

avoiding premature hierarchies,
80–81

in general, 83–84
interfaces and abstract classes in,

81–82
open-closed through class, 149–150

Postconditions, interface contracts, 76
Precision, UML for, 192
Preconditions, interface contracts, 76
Prefactoring (Pugh), 12, xxvi
Primitives. See Encapsulation of

primitives
Principles

of abstract data types, 212
of cohesion, 204
of coupling, 206
defined, 152
of encapsulation, 209
of redundancy, 208

Private accessibility, UML notation,
194

Private methods, unit testing behavior,
13–15

Programming by Intention
advantages of, 6
debugging and, 10
demonstration of, 3–5
development of helper methods in,

147–148
method cohesion and, 6–7
modifications and extensions using,

15–16
movable methods and, 17–18
overview of, 3
readability achieved with, 101
readability and expressiveness

using, 7–10

ptg6843614

Index 231

refactoring and enhancing using,
11–12

seeing patterns in code and, 16–17
unit testing and, 13–15

Properties, .NET, 58
Protected accessibility, UML notation,

194
Protocol, interface contract, 76
Public accessibility, UML notation, 194
public keyword, 53–54
Public methods, interfaces as sets of, 76
Pugh, Ken, xxvi

Q
Quality, code. See Code qualities

R
Readability

as code quality, 101
Programming by Intention and,

7–10
Redundancy

Christmas-tree light analogy of, 203
as code quality, 100, 207–208
design patterns reducing, 48
encapsulation and, 209
redefining, 46–47
Shalloway's principle avoiding, 45
specialization branching and,

110–111
testability related to, 36–37
types of, 46

ref keyword, 63
Refactoring

debt vs. investment and, 155–156
definition of, 154
just-in-time design using, 159–161
legacy systems and, 156–157
for new requirements, 102
to the open-closed, 157–159
overview of, 154–155

Programming by Intention and,
11–12

reasons for, 155
redundancies, 208
unit testing and, 14

Refactoring: Improving the Design of Exist-
ing Code (Fowler)

about author, xxiv
cleaning up messy/poor code, 11,

102
on refactoring moves, 154–155

Reference objects
breaking encapsulation with get(),

62–64
encapsulation of, 59–61

Relationships, in UML
class diagrams showing, 192–195
"has-a" relationship showing,

195–196
indicating number of things of other

object, 197
releaseInstance() method, 32
Representational coupling, 206
Rework

avoiding in merge-back process, 116
minimizing complexity and, 99, 102

Robocode example, 152–153, 157–159
Runtime, inheritance vs. delegation at,

180–181

S
Scalability, inheritance and, 183–184
Scope, ATDD improving clarity of, 42
Self-encapsulating data members

overview of, 56–57
preventing changes, 58–59

Separation of concerns
in cohesion, 204
in delegation vs. inheritance, 179
and inheritance, 177

Separation of Use from Construction, 21
Sequence diagrams, UML, 198–199

ptg6843614

232 Index

Serialization, separating use from con-
struction, 28

Servers
continuous integration of, 121–122
coupling and testability of, 166–167
Law of Demeter and, 169–171
separating needs/capabilities inter-

faces, 168–169
summary review, 171–172

Service-Oriented Architecture, 27
Service_Impl class, 23–24
Services

coupling and testability of, 166–167
Law of Demeter and, 169–171
needs vs. capabilities and, 167–168
perspectives and, 22–24
separating use from construction,

27–30
what you hide you can change and,

25–27
set()method

breaking encapsulation with, 62–64
difficulty of encapsulating reference

objects, 59–61
encapsulating data members behind,

56–57
preventing changes, 58–59

setter() methods, 28
setX()method, preventing changes,

58
Shalloway, Alan, 71–72, xxv
Shalloway's law and Shalloway's

principle
corollaries to, 51
defining, 45
design patterns reducing redun-

dancy, 48
redundancy and other code quali-

ties, 50–52
refining redundancy, 46–47
time spent finding bugs, 48–50
as trim tab, xxii

types of redundancy, 46–48
Shotgun surgery, refactoring, 155
Single Responsibility principle

cohesion of class and, 204
defined, 17

Singleton pattern, 30
Source code branching

development branching, 112–114
merge-back, 115–117
overview of, 109–110
problem, solution, problem, 114
specialization branching, 110–111
version control creating, 109

Specialization branching, 109–111
Specification perspective

abstract classes and, 82
in interface-oriented design, 75
separating from implementation

perspective, 77–79, 84
Static methods, 30
Static relationships, showing in class

diagrams, 198
Strategy Pattern

delegation vs. inheritance and, 179
encapsulating single varying algo-

rithm with, 70–71
encapsulation of type in, 67–68
inheritance and, 183
scalability of, 183–184
seeing patterns in, 17
testing issues, 185–186

Strings, and abstract data types, 214
Strong cohesion, 204
Subclass coupling, 206
Switch creep, 39

T
TDADD (Test Driven Analysis and

Design and Development), 40
TDD. See Test-Driven Development

(TDD)

ptg6843614

Index 233

Team Foundation Server, 121
TeamCity, 121
Template Method Pattern

removing redundant implementa-
tions with, 48

seeing patterns in code, 16
and Strategy Pattern, 17

Test Driven Analysis and Design and
Development (TDADD), 40

Test-Driven Development (TDD)
better design, 42
defining testing, 35–36
improving clarity of scope, 42
and merge cost, 117–119, 123
other advantages, 43
overview of, 35
paired programming and, 43
programmers as frogs and, 39
reducing complexity with, 42
testability and code quality, 36–37
testability case study, 37–38
testing interface to clarify contract,

76–77
up-front testing vs., 39–41

Testing and testability. See also Unit
testing; Up-front testing

clarifying interface contract
through, 76–77

cohesion, 205
coupling, 166–167, 207
encapsulation, 210
redundancy, 51, 208
simplifying in ADTs by narrowing

of contract, 213
use of inheritance in, 185–186

Text, using as external values, 215–217
Textual commands, interface as set of,

76
Tight coupling, 206
Time between merges, development

branching
merge-backs and, 116–117
overview of, 113–114

test-driven development and merge
cost, 117–119

The Timeless Way of Building (Alexan-
der), 40, xxiv

Trim tabs. See also Testing and testabil-
ity, xxi–xxii

Trunk
in continuous integration, 119–120
in development branching, 110, 112
in merge-back process, 115–117
in specialization branching, 109–111

Types, creators coupled to, 25

U
UML Distilled (Fowler), 200, xxiv
Under-design, avoiding, 101
Unencapsulated code, global variables

and, 53–54
Unified Modeling Language (UML)

class diagrams and, 192–193
class diagrams showing relation-

ships, 194–195
composition and uses, 195–196
composition vs. aggregation, 196
definition of, 191
indicating number of things another

object has, 197
notation for accessibility, 194
notes in, 196
object: class notation, 198–199
polymorphism in, 83
reasons to use, 192
sequence diagram, 198
showing dependence using dashes, 198
showing "has-a" relationship, 195
summary review, 200

Unit Test-Driven Development
(UTDD), 41–42

Unit testing
creating automated acceptance tests

with, 39
creating from acceptance tests, 40, 44

ptg6843614

234 Index

Unit testing (continued)
inserting mock test into interface

for, 79
in Programming by Intention, 13–15
Unit Test-Driven Development, 41–42

Up-front testing. See also Testing and
testability

of cohesion, 205
of coupling, 207
no excuses for avoiding, 43
overview of, 35
of redundancy, 208
reflection on, 39–41

Use, separating construction from
approach to, 27–30
coupling from perspective of, 25–27
debugging and, 48–50
perspective of, 24
question to ask, 21–22
realistic approach to, 27–30
timing your decisions, 30–31
validating concept for yourself,

32–33
"Uses-a" relationship, UML class dia-

gram, 192

V
Validation

Acceptance Test-Driven Develop-
ment and customer, 95–96

defining requirements using tests
for, 87

of separation of use from construc-
tion, 32–33

using text as external values, 216
Values

breaking encapsulation with get(),
63

encapsulating magic, 218–219
using text as external, 215–217

Variability Analysis, 133
Variations. See also Commonality-

Variability Analysis
encapsulating all, 209
handling in problem domain, 132
hiding with inheritance, 179,

181–182
in Variability Analysis, 133

Verbs
in object-oriented analysis, 127
problem with, 130–131
warning about using, 127–130

Version control. See also Continuous
integration (CI), 109

Viscosity, avoiding code, 103

W
Weak cohesion, 204
Web Services Description Language

(WSDL), 76

ptg6843614

This page intentionally left blank

ptg6843614

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

InformIt
AffiliAte teAm!

	Contents
	Series Foreword
	Preface
	Acknowledgments
	About the Authors
	Part I: The Core Trim Tabs
	Chapter 1 Programming by Intention
	Advantages
	Summary

	Chapter 2 Separate Use from Construction
	An Important Question to Ask
	Perspectives
	Timing Your Decisions
	Overloading and C++
	Validating This for Yourself
	Summary

	Chapter 3 Define Tests Up Front
	A Trim Tab: Testing and Testability
	What Is Testing?
	Testability and Code Quality
	Case Study: Testability
	A Reflection on Up-Front Testing
	Summary

	Chapter 4 Shalloway’s Law and Shalloway’s Principle
	Types of Redundancy
	Redefining Redundancy
	Other Types of Redundancy
	The Role of Design Patterns in Reducing Redundancy
	Few Developers Spend a Lot of Time Fixing Bugs
	Redundancy and Other Code Qualities
	Summary

	Chapter 5 Encapsulate That!
	Unencapsulated Code: The Sabotage of the Global Variable
	Encapsulation of Member Identity
	Self-Encapsulating Members
	Preventing Changes
	The Difficulty of Encapsulating Reference Objects
	Breaking Encapsulation with Get()
	Encapsulation of Object Type
	Encapsulation of Design
	Encapsulation on All Levels
	Practical Advice: Encapsulate Your Impediments
	Summary

	Chapter 6 Interface-Oriented Design
	Design to Interfaces
	Definition of Interface
	Interface Contracts
	Separating Perspectives
	Mock Implementations of Interfaces
	Keep Interfaces Simple
	Avoids Premature Hierarchies
	Interfaces and Abstract Classes
	Dependency Inversion Principle
	Polymorphism in General
	Not for Every Class
	Summary

	Chapter 7 Acceptance Test–Driven Development (ATDD)
	Two Flows for Development
	Acceptance Tests
	An Example Test
	Implementing the Acceptance Tests
	An Exercise
	What to Do If the Customer Won’t Tell You
	Summary

	Part II: General Attitudes
	Chapter 8 Avoid Over- and Under-Design
	A Mantra for Development
	The Pathologies of Code Qualities
	Avoid Over- and Under-Design
	Minimize Complexity and Rework
	Never Make Your Code Worse/Only Degrade Your Code Intentionally
	Keep Your Code Easy to Change, Robust, and Safe to Change
	A Strategy for Writing Modifiable Code in a Non-Object-Oriented or Legacy System
	Summary

	Chapter 9 Continuous Integration
	Branching the Source Code
	The Merge-Back
	Test-Driven Development and Merge Cost
	Continuous Integration
	Continuous Integration Servers
	Summary

	Part III: Design Issues
	Chapter 10 Commonality and Variability Analysis
	Using Nouns and Verbs as a Guide: Warning, Danger Ahead!
	What Is the Real Problem?
	What We Need to Know
	Commonality and Variability Analysis
	A New Paradigm for Finding Objects
	The Analysis Matrix: A Case Study
	Summary

	Chapter 11 Refactor to the Open-Closed
	The Open-Closed Principle
	Refactoring
	Summary

	Chapter 12 Needs versus Capabilities Interfaces
	The Law of Demeter
	Coupling, Damned Coupling, and Dependencies
	The Ideal Separation: Needs Interfaces and Capabilities Interfaces
	Back to the Law of Demeter
	Summary

	Chapter 13 When and How to Use Inheritance
	The Gang of Four
	Initial Vectors, Eventual Results
	Favoring Delegation
	The Use of Inheritance versus Delegation
	Uses of Inheritance
	Scalability
	Applying the Lessons from the Gang of Four to Agile Development
	Testing Issues
	There’s More

	Part IV: Appendixes
	Appendix A: Overview of the Unified Modeling Language (UML)
	What Is the UML?
	The Class Diagram
	Sequence Diagram
	Summary

	Appendix B: Code Qualities
	Christmas-Tree Lights: An Analogy
	Cohesion
	Coupling
	Redundancy
	Encapsulation

	Appendix C: Encapsulating Primitives
	Encapsulating Primitives in Abstract Data Types
	Principles
	Narrow the Contract
	Expanding Abstract Data Types
	Use Text as External Values
	Enumerations Instead of Magic Values
	Disadvantages
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

