
ptg

From the Library of Wow! eBook

ptg

Praise for Agile Game Development with Scrum

“ If you’ve ever felt that gaps exist between ‘traditional’ software development using
Scrum and video game development using Scrum, this book is for you. Clinton effec-
tively bridges those gaps by covering the adjustments necessary for disciplines, individ-
ual roles, and processes and project phases unique to game development, thoroughly
supporting it with explicit examples and practical advice. Simply put, a must-read for
game developers that are currently using or plan to implement Scrum or other agile
processes within their company.”

—Jeff Lindsey, Producer, Longtail Studios

“ I wish Clinton Keith could go back and write this book 15 years ago—it would have
helped me see things a lot differently. Agile Game Development with SCRUM is a one-
stop-shop for game teams interested in using scrum techniques.”

—CJ Connoy, Game Producer, Treyarch

“ By the time you wake up and realize that you really need this book, your project will
probably be too far gone. Dive into agile before it’s too late and let Clinton be your
guide. Tested under the fires of true game production, everyone involved in game
development will gain from reading Clinton’s wisdom.”

—Jason Della Rocca, Founder, Perimeter Partners, and
former Executive Director of the International Game Developers Association

“ Clinton Keith has written an excellent book for both practitioners and students. He
combines an in-depth analysis of the challenges of large scale game development with
hands-on advice on the use of Scrum. His often funny anecdotes illustrate that this
guy has really experienced the heat of large computer games projects.”

—Bendik Bygstad, Professor of Information Systems, The Norwegian School of IT

“ Clinton Keith combines his experience as both video game developer and agile prac-
titioner to apply Scrum philosophy to the unique challenges of video game develop-
ment. Clint clearly explains the philosophy behind Scrum, going beyond theory and
sharing his experiences and stories about its successful application at living, breathing
development studios.”

—Erik Theisz, Senior Producer, 38 Studios

“ Clinton has combined his extensive game and software development experiences
with agile methodologies. The result is a thoughtful, clear, and, most importantly, real-
istic application of agile to game development.”

—Senta Jakobsen, Senior Development Director, DICE

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

Agile gAme
DeveloPment
with Scrum

From the Library of Wow! eBook

ptg

The Addison-Wesley Signature Series provides readers with

practical and authoritative information on the latest trends in modern

technology for computer professionals. The series is based on one simple

premise: Great books come from great authors. Books in the series are

personally chosen by expert advisors, world-class authors in their own

right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely

with authors to define topic coverage, book scope, critical content, and

overall uniqueness. The expert signatures also symbolize a promise to

our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley

Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

From the Library of Wow! eBook

ptg

Agile gAme
DeveloPment
with Scrum

clinton Keith

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of Wow! eBook

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Keith, Clinton.
 Agile game development with Scrum / Clinton Keith.
 p. cm.
 Includes index.
 ISBN 0-321-61852-1 (pbk. : alk. paper) 1. Computer games—Programming. 2. Agile soft-
ware development. 3. Scrum (Computer software development) I. Title.
 QA76.76.C672K45 2010
 005.1—dc22
 2010006513

Copyright © 2010 Clinton Keith

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-61852-8
ISBN-10: 0-321-61852-1
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, May 2010

From the Library of Wow! eBook

ptg

To Sherry, Bryson, and Nathan—I love you
with all of my heart.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

ix

Contents

Foreword . xvii

PreFace . xix

acknowledgments . xxiii

about the author . xxv

Part I The Problem and the Solution 1

1 The Crisis Facing Game Development . 3
A Brief History of Game Development . 4

Iterating on Arcade Games .5
Early Methodologies .6
The Death of the Hit-or-Miss Model .7

The Crisis . 10
Less Innovation .10
Less Value .10
Deteriorating Work Environment .10

A Silver Lining . 11
Additional Reading . 12

2 Agile Development . 13
Why Projects Are Hard . 14

Learning from Postmortems .14
The Problems .17

Why Use Agile for Game Development? . 20
Knowledge Is Key .21
Cost and Quality .22
Finding the Fun First .22
Eliminating Waste .24
Agile Values Applied to Game Development .24

What an Agile Project Looks Like . 28
Agile Development .31
The Entire Project .31

The Challenge of Agile . 32
Additional Reading . 32

From the Library of Wow! eBook

ptg

Contents x

Part II Scrum and Agile Planning 33

3 Scrum . 35
The History of Scrum . 36

The Big Picture .38
The Principles of Scrum .40

Scrum Parts . 41
The Product Backlog .41
Sprints .42
Releases .43

Scrum Roles . 44
The Scrum Team .44
The Team .46
ScrumMaster .46
Product Owner .51

Customers and Stakeholders . 54
Chickens and Pigs . 55
Scaling Scrum . 56
Summary . 56
Additional Reading . 57

4 Sprints . 59
The Big Picture . 59
Planning . 59

Sprint Prioritization .60
Sprint Planning .61
Length .65

Tracking Progress . 68
Task Cards .69
Burndown Chart .69
Daily Sprint Backlog Trend .70
Task Board .72
War Room .73

The Daily Scrum Meeting . 74
The Practice .74

Sprint Reviews . 75
Single-Team Reviews .76
Multiteam Reviews .76
Publisher Stakeholders .77
Studio Stakeholders .78
Honest Feedback .78

From the Library of Wow! eBook

ptg

Contents xi

Retrospectives . 78
The Meeting .79
Posting and Tracking Results .80

Sprint Failures . 80
Sprint Interrupted .80
Sprint Resets .81
When Teams Fail .81
Running Out of Work .84

Summary . 84
Additional Reading . 84

5 User Stories . 85
A Fateful Meeting . 85
What Are User Stories? . 87
Levels of Detail . 88
Conditions of Satisfaction . 90
Using Index Cards for User Stories . 92
INVEST in User Stories . 92

Independent .92
Negotiable .93
Valuable .95
Estimatable .95
Sized Appropriately .96
Testable .97

User Roles . 97
Defining Done . 99
Collecting Stories . 100
Advantages of User Stories . 103

Face-to-Face Communication .103
Everyone Can Understand User Stories .104

Summary . 105
Additional Reading . 105

6 Agile Planning . 107
Why Agile Planning? . 107
The Product Backlog . 108

Prioritizing the Product Backlog .109
Continual Planning .110
Forecasting the Future .110

From the Library of Wow! eBook

ptg

Contents xii

Estimating Story Size . 112
How Much Effort Should We Spend Estimating? .112
Where Are Story Sizes Estimated? .113
Story Points .114
Planning Poker .115
Story Point Sizes and the Fibonacci Series .116
Ideal Days .117

Release Planning . 117
Release Planning Meetings .117
Rolling Out the Plan .120
Updating the Release Plan .120
Magazine Demos and Hardening Sprints .122

Summary . 124
Additional Reading . 124

Part III Agile Game Development 125

7 Video Game Project Planning . 127
Midnight Club Story . 127
Minimum Required Feature Sets . 128
The Need for Stages . 130
The Development Stages . 130
Mixing the Stages . 132
Managing Stages with Releases . 132
Production on an Agile Project . 134

Production Debt .134
The Challenge of Scrum in Production .136
Lean Production .139
Working with Scrum .153
Transitioning Scrum Teams .155

Summary . 155
Additional Reading . 155

8 Teams . 157
Great Teams . 158
A Scrum Approach to Teams . 159

Cross-Discipline Teams .160
Self-Management .161
Self-Organization .161
Team Size .164
Leadership .165

From the Library of Wow! eBook

ptg

Contents xiii

Game Teams and Collaboration . 168
Feature Teams .169
Functional Teams .170
Production Teams .171
Shared Infrastructure Teams .171
Tool Teams .172
Pool Teams .172
Integration Teams .173

Scaling and Distributing Scrum . 173
The Problem with Large Teams .174
The Scrum of Scrums .175
A Hierarchy of Product Owners .177
Aligning Sprint Dates .178
Communities of Practice .180
Avoiding Dependencies .181
Distributed Teams .183

Summary . 188
Additional Reading . 188

9 Faster Iterations . 189
Where Does Iteration Overhead Come From? . 190
Measuring and Displaying Iteration Time . 191

Measuring Iteration Times .191
Displaying Iteration Times .191

Personal and Build Iteration . 193
Personal Iteration .193
Build Iteration .194

Summary . 201
Additional Reading . 201

Part IV Agile Disciplines .203

10 Agile Technology . 205
The Problems . 205

Uncertainty .206
Change Causes Problems .207
Cost of Late Change .207
Too Much Architecture Up Front .209

An Agile Approach . 210
Extreme Programming .210
Debugging .216
Optimization .217

Summary . 220
Additional Reading . 221

From the Library of Wow! eBook

ptg

Contents xiv

11 Agile Art and Audio . 223
The Problems We Are Solving with Agile . 223
Concerns About Agile . 225
Art Leadership . 226
Art on a Cross-Discipline Team . 227

Creative Tension .227
Art QA .228
Building Art Knowledge .229
Overcoming the “Not Done Yet” Syndrome .230
Budgets .231
Audio at the “End of the Chain” .232
Collaboration in Production .232

Summary . 232
Additional Reading . 233

12 Agile Design . 235
The Problems . 236

Designs Do Not Create Knowledge .236
The Game Emerges at the End .236

Designing with Scrum . 237
A Designer for Every Team? .237
The Role of Documentation .238
Parts on the Garage Floor .239
Set-Based Design .242
Lead Designer Role .246
Designer as Product Owner? .246

Summary . 247
Additional Reading . 247

13 Agile QA and Production . 249
Agile QA . 249

The Problem with QA .250
Agile Testing Is Not a Phase .251

The Role of QA on an Agile Game Team . 252
QA, Embedded or in Pools? .254
How Many Testers per Team? .255
Using a Bug Database .256
Play-Testing .256
The Future of QA .258

Agile Production . 259
The Role of a Producer on an Agile Project .259
Producer as ScrumMaster .260

From the Library of Wow! eBook

ptg

Contents xv

Producer as Product Owner Support .261
Producer as Product Owner .261
The Future of Production .262

Summary . 262
Additional Reading . 263

Part V Getting Started .265

14 The Myths and Challenges of Scrum . 267
Silver Bullet Myths . 267

Scrum Will Solve All of Your Problems for You .268
Projects Using Scrum Can Always Ship on Time .268

Fear, Uncertainty, and Doubt . 269
Endless Development .269
Management Fad .270
The Double Standard .270
Change Is Bad .271
Endless Meetings .272

Scrum Challenges . 273
Scrum as a Tool for Process and Culture Change .274
Scrum Is About Adding Value, Not Task Tracking .275
Status Quo versus Continual Improvement .276
Cargo Cult Scrum .277
Scrum Is Not for Everyone .278
Overtime .279
Crunch .279

Summary . 281
Additional Reading . 282

15 Working with a Publisher . 283
The Challenges . 284

Focus Comes Too Late .285
Milestone Payments and Collaboration .285
Limited Iteration .287
First-Party Problems .287
Portfolios Drive Dates .287

Building Trust, Allaying Fear . 288
The Fears .288
Understanding Agile .289
Publisher-Side Product Owners .289
Meeting Project Challenges Early .291
Managing the Production Plan .292
Allaying the Fears .292

From the Library of Wow! eBook

ptg

Contents xvi

Agile Contracts . 293
Iterating Against a Plan .294
Fixed Ship Dates .295
Agile Pre-Production .298
The Stage-Gate Model .298

Summary . 300
Additional Reading . 300

16 Launching Scrum . 301
The Three Stages of Adoption . 301

The Apprentice Stage .302
The Journeyman Stage .307
The Master Stage .314

Adoption Strategies . 317
Beachhead Teams .317
Full-Scale Deployment .321

Summary . 324
Additional Reading . 324

conclusion . 325

bibliograPhy . 327

index . 329

From the Library of Wow! eBook

ptg

xvii

Foreword

the insight that Scrum (indeed, agile software development in general) and
game development were a near-perfect match was no surprise to Clinton Keith.
As the CTO of his studio, he was a pioneer in the pairing of Scrum and game
development. Though some were skeptical, Clint saw the possibilities, and as
a result, he not only created the first game developed using Scrum but also
helped his teams put the fun back into game development.

And why shouldn’t game development be fun as well as profitable? It’s true
that the game industry is well known for aggressive deadlines and that teams
are working with ambiguous requirements in a very fluid marketplace, but that
is exactly the kind of environment where Scrum can help the most. Because
Scrum is iterative and incremental and forces a team to put the game into a
playable state at least every two to four weeks, the team members can see new
features and scenarios develop right before their eyes.

In Agile Game Development with Scrum, Clint shares his experience and
insights with us. He tells us everything we need to know to successfully use
Scrum in the challenging field of game development. In doing so, he provides
an introduction to agile and Scrum and tells us how they can help manage the
increasing complexity facing most game development efforts. He explains how
something as large and integrated as “AAA” console games can be developed
incrementally. Along the way, Clint offers invaluable guidance on getting all
of the specialists who are necessary on a game project to work together in an
agile manner. He even delves into how to use Scrum when working with a
publisher. In providing all of this guidance, Clint doesn’t shy away from the
challenges. Instead, he generously shares his advice so that we can perhaps avoid
some of them.

There is little doubt in my mind that the book you are holding can have
a profound effect on any game project and studio. Once introduced to and
accustomed to Scrum, team members will not want to work any other way.
They will have learned what Clint knew long ago—that Scrum is the best way
to handle the complexity and uncertainty of game development.

— Mike Cohn
Cofounder, Scrum Alliance
and Agile Alliance

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

xix

Preface

this book was written for game developers who either are using agile meth-
odologies or are curious about what it all means. It condenses much informa-
tion from a number of fields of agile product development and applies it to the
game industry’s unique ecosystem. It’s based on the experiences of dozens of
studios that have shipped games using agile over the past six years.

If you are not in the game industry but curious about it or agile, you should
enjoy this book. Since the book needs to communicate to every discipline,
it doesn’t get bogged down in the specifics of any one of them because, for
example, artists need to understand the challenges and solutions faced by pro-
grammers for cross-discipline teams to work well.

As you can tell from the title, this book focuses on Scrum more than any
other area of agile. Scrum is a discipline-agnostic framework to build an agile
game development process. It doesn’t have any defined art, design, or program-
ming practices. It’s a foundation that allows you and your teams to inspect every
aspect of how you make games and adapt practices to do what works best.

How did agile and game development meet? For me, it started in 2002 at
Sammy Studios. Like many studios, our path to agile came by way of impending
disaster. Sammy Studios was founded in 2002 by a Japanese Pachinko manufac-
turing company. Their goal was to rapidly establish a dominant presence in the
Western game industry. To that end, Sammy Studios was funded and authorized
to do whatever was needed to achieve that goal.

As seasoned project managers, we quickly established a project management
structure that included a license of Microsoft Project Server to help us manage
all the necessary details for our flagship game project called Darkwatch.

The plan for Darkwatch was ambitious. It was meant to rival Halo as the
preeminent first-person console shooter. At the time, we thought that as long
as we had the resources and planning software, little could go wrong that we
couldn’t manage.

It didn’t take long for many things to go wrong. Within a year we were
six months behind schedule and slipping further every day. How was this
happening?

●● Disciplines were working on separate plans: Each discipline had
goals that permitted them to work separately much of the time. For
example, the animation technology was being developed according

From the Library of Wow! eBook

ptg

Preface xx

to a plan that called for many unique features to be developed before
any were proven. This resulted in the animation programmer working
on limbs that could be severed while the animators were still trying
to make simple transitions work. Correcting these problems required
major overhauls of the schedule on a regular basis.

●● The build was always broken: It took exceptional effort to get
the latest version of the game working. The Electronic Entertainment
Expo (E3) demos took more than a month of debugging and hacking
to produce a build that was acceptable. Even then, the game had to be
run by a developer who had to frequently reboot the demo machine.

●● Estimates and schedules were always too optimistic: Every
scheduled item, from small tasks to major milestone deliverables,
seemed to be late. Unanticipated work was either completed on
personal time or put off for the future. This led to many nights and
weekends of overtime work.

●● Management was constantly “putting out fires” and never
had time to address the larger picture: We managers selected
one of the many problems to fix each week and organized large
meetings that lasted most of a day in an attempt to solve it. Our list of
problems grew faster than our ability to solve them. We never had the
time to look to the future and guide the project.

The list goes on, and the problems continued to grow. Most problems were
caused by our inability to foresee many of the project details necessary to justify
our comprehensive plan’s assumptions beyond even a month. The bottom line
was that our planning methodology was wrong.

Eventually our Japanese parent company interceded with major staff
changes. The message was clear: Since management was given every possible
resource we wanted, any problems were our own fault, and we were given short
notice to correct them. Not only our jobs but also the existence of the studio
hung in the balance.

It was in these desperate times that I began researching alternative project
management methods. Agile practices such as Scrum and Extreme Program-
ming (XP) were not unknown to us. The original CTO of Sammy had us try
XP, and a project lead was experimenting with some Scrum practices. After
reading a book about Scrum (Schwaber and Beedle 2002), I became convinced
that it could be used in our environment.

Upon discovering Scrum, we felt that we had found a framework to lever-
age the talent and passion of game development teams. It was challenging. The

From the Library of Wow! eBook

ptg

Preface xxi

rules of Scrum were biased toward teams of programmers creating IT projects.
Some things didn’t work.

This began an endless series of discoveries about what agile meant and
what worked for game developers. I began speaking about agile game develop-
ment in 2005. This was around the time that studios were developing titles for
Xbox 360 and PlayStation 3. Teams of more than 100 people were becoming
the norm, and project failures cost in the tens of millions. Unfortunately, many
took the agile message too far and perceived it as a silver bullet for some.

In 2008, after speaking with hundreds of developers at dozens of studios, I
decided that I enjoyed helping game developers adopt agile enough to become
a full-time independent coach. I now coach many studio teams a year and teach
developers how to be ScrumMasters in public classes. My experiences working
with and learning from these developers have led to this book.

organization
Part I, “The Problem and the Solution,” begins with the history of the game in-
dustry. How have the industry’s products and methodologies for development
changed? What has led us to bloated budgets, schedules that are never met, and
project overtime death marches? It concludes with an overview of agile and
how the problems of managing the development of games can benefit from
agile’s values.

Part II, “Scrum and Agile Planning,” describes Scrum, its roles and prac-
tices, and how it’s applied to game development. It describes how a game’s
vision, features, and progress are communicated, planned, and iterated over the
short and long term.

Part III, “Agile Game Development,” describes how agile is used over the
full course of a game development project, including where some of the Scrum
practices can be supplemented with lean principles and kanban practices for
production. It explores agile teams and how Scrum can be scaled to large staffs,
which might be distributed across the globe. Part III concludes by examining
how teams continuously improve their velocity by decreasing the time required
to iterate on every aspect of building a game.

Part IV, “Agile Disciplines,” explains how each of the widely diverse dis-
ciplines work together on an agile team. It describes the role of leadership for
each discipline and how each one maps to Scrum roles.

Part V, “Getting Started,” details the challenges and solutions of introducing
agile practices to your studio and publisher. Overcoming cultural inertia and

From the Library of Wow! eBook

ptg

Preface xxii

integrating agile principles into a studio’s unique processes—without destroy-
ing the benefits—can take time, and there many challenges along the way. The
chapters in this part are a guide to meeting these challenges.

Although this is a starting place for agile game development, it is by no
means the end. There are great books about Scrum, Extreme Programming,
lean, kanban, user stories, agile planning, and game development. These books
will provide all the detail desired on the path of continual improvement.

Developers for iPhone, PC, and massively multiplayer online games use
the practices described here. I share many stories based on my technical back-
ground, and indeed there are more existing practices for the agile programmer,
but the book applies to the entire industry. There are stories and experiences
shared from many people from every discipline, genre, and platform.

From the Library of Wow! eBook

ptg

xxiii

Acknowledgments

to my colleagues for sharing your stories, knowledge, and feedback over the
years.

To my manuscript reviewers: Bendik Bygstad, CJ Connoy, Jeff Lindsey,
Erik Theiz and all of 38 Studios, Jason Della Rocca, and Senta Jakobsen. Their
level of detailed feedback was tremendous and added a great deal of value to
the book.

This book took almost two years to write. During this time, I received
much feedback and advice from those who downloaded draft chapters and
helped steer the direction the book took: Bas Vodde, Chris Oltyan, Diogo
Neves, George Somaru, Heather Maxwell Chandler, Jamie Briant, Julian
Gollop, Karen Clark, Lia Siojo, Lyssa Clark Adkins, Martin Keywood, Paul
Evans, Philip Borgnes, Robert Bacon, Ron Artigues, Rose Hunt, Scott Blinn,
Sheldon Brown, Steve Sargent, Wanda Meloni, LaRae Brim, Keith Boesky,
Aðalsteinn “Alli” Óttarsson, and Barbara Chamberlin. Extra thanks to Justin
Woodward for all his artistic help and advice!

To Bruce Rennie, Michael Riccio, Rory McGuire, Stephane Etienne,
Caroline Esmurdoc, Shelly Warmuth, Chris Ulm, and Alistair Doulin. I thank
them for letting me use their words.

Many thanks to everyone from Pearson including Chris Guzikowski for his
persistence, vision, and support seeing this book through; Chris Zahn for his
patient editing; and Raina Chrobak, Molly Sharp, and Kim Wimpsett for the
great production support.

To everyone at High Moon Studios and at my client studios for allowing
me to work with and learn from them.

I’d like to acknowledge the inestimable debt to my mentor and friend
Mike Cohn. Mike visited High Moon Studios as a coach. Seeing the impact
of his teaching inspired me to want to do the same. I couldn’t have taken this
major step without his support and encouragement.

Finally, I can’t thank my family enough for their loving support and
encouragement.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

xxv

About the Author

clinton Keith is an independent agile coach and Certified Scrum Trainer who
helps game developers and nongame developers alike adopt Scrum, Extreme
Programming, kanban, and other agile practices to greatly improve their pro-
ductivity, workplace, and product quality.

Over the course of 25 years, Clint has gone from programming avionics
for advanced fighter jets and underwater robots to overseeing programming for
hit video games such as Midtown Madness and Midnight Club. Clint has been
a programmer, project director, CTO, and director of product development at
several studios. Through a series of presentations and his popular blog, Clint
introduced the video game industry to Scrum in 2005. As CTO, Clint helped
High Moon Studios achieve a place on IT Week Magazine’s Top 50 Technology
Innovators list in 2005 and 2006 and win several of San Diego Society for HR
Management’s Workplace Excellence Awards in 2005, 2006, and 2007.

For more information, visit www.ClintonKeith.com.

From the Library of Wow! eBook

www.ClintonKeith.com

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

Part I
The Problem and the Solution

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

3

chapter 1
The Crisis Facing Game

Development

The pioneer days of video game development have all but disappeared. The
sole programmer—who designed, programmed, and rendered the art on their
own—has been replaced by armies of specialists. An industry that sold its goods
in Ziploc bags now rakes in more cash than the Hollywood box office. As an
industry, we’ve matured a bit.

However, in our rush to grow up, we’ve made some mistakes. We’ve inherited
some discredited methodologies for making games from other industries. Like
children wearing their parents’ old clothes, we’ve frocked ourselves in ill-fitting
practices. We’ve met uncertainty and complexity of our projects with planning
tools and prescriptive practices that are more likely to leave a “pretty corpse” at
the end of the project than a hit game on the shelves. We’ve created a monster that
has removed much of the fun from making fun products. This monster eats the
enthusiasm of extremely talented people who enter the game development indus-
try with hopes of entertaining millions. Projects capped with months of overtime
(aka crunch) feed it. A high proportion of developers are leaving the industry and
taking years of experience with them. It doesn’t need to be this way.

In this chapter, we’ll look at the history of game development and how
it has evolved from individuals making games every few months to multiyear
projects that require more than 100 developers. We will see how the business
model is headed down the wrong path. We will set the stage for why agile
development methods are a way of changing the course that game develop-
ment has taken over the past decade. The goals are to ensure that game devel-
opment remains a viable business and to ensure that the creation of games is as
fun as it should be.

note This chapter will use “AAA” arcade or console games as the
main examples of cost, because they’ve been around the
longest.

From the Library of Wow! eBook

ptg

Chapter 1 The Crisis Facing Game Development4

A Brief history of game Development
In the beginning, video game development didn’t require artists, designers, or
even programmers. In the early seventies, games were dedicated boxes of com-
ponents that were hardwired together by electrical engineers for a specific
game. These games first showed up in arcades and later in home television
consoles that played only one game, such as Pong.

As the technology progressed, game manufacturers discovered that new
low-cost microprocessors offered a way to create more sophisticated games;
programmable hardware platforms could run a variety of games rather than
being hardwired for just one. This led to common motherboards for arcade
machines and eventually to popular home consoles with cartridges.1 The spe-
cific logic of each game moved from hardware to software. With this change,
the game developers turned to programmers to implement games. Back then, a
single programmer could create a game in a few months.

In 1965, Gordon Moore, the cofounder of Intel, defined a law that pre-
dicted that the number of transistors that could fit on a chip would continue
to double every two years. His law has persevered for the past four decades (see
Figure 1.1).

500,000,000

450,000,000

400,000,000

350,000,000

300,000,000

250,000,000

200,000,000

150,000,000

100,000,000

50,000,000

0

1980 1982 1988 1991 1993 1997 1999 2002 2006

Microprocessor
Transistor Counts

Transistor Count Moores’ Law

Figure 1.1 The number of transistors in PC microprocessors
Moore’s law: www .intel .com/technology/mooreslaw/index .htm

1. Circa 1977 with the release of the Atari 2600 console

From the Library of Wow! eBook

www.intel.com/technology/mooreslaw/index.htm

ptg

A Brief History of Game Development 5

The home computer and console market have been driven by this law.
Every several years a new generation of processors rolls off the fabrication lines,
the performance of which dwarfs that of the previous generation. Consumers
have an insatiable thirst for the features2 this power provides, while developers
rush to quench those thirsts with power-hungry applications. To game devel-
opers, the power and capability of home game consoles were doubling every
two years—processor speeds increased, graphics power increased, and memory
size increased—all at the pace predicted by Moore.

Each generation of hardware brought new capabilities and capacities. 3D
rendering, CD-quality sound, and high-definition graphics bring greater real-
ism and cost to each game. Memory and storage have increased as fast. Thirty
years ago, the Atari 2600 had less than 1,000 bytes of memory and 4,000 bytes
of cartridge space. Today a PlayStation 3 has 500,000 times the memory and
10,000,000 times the storage! Processor speeds and capabilities have grown just
as dramatically.

iterating on Arcade games
The model first used to develop games was a good match for the hardware’s
capabilities and the market. In the golden age of the video arcade, during the
late seventies and early eighties, games like Pac-Man, Asteroids, Space Invaders,
and Defender were gold mines. A single $3,000 arcade machine could col-
lect more than $1,000 in quarters per weekend. This new gold rush attracted
quite a few prospectors. Many of these “wanna-be” arcade game creators went
bankrupt in their rush to release games. A manufacturing run of 1,000 arcade
machines required a considerable investment—an investment that was easily
destroyed if the machines shipped with a poor game.

With millions of dollars of investment at stake, arcade game developers
sought the best possible game software. Developing the game software was a
tiny fraction of the overall cost, so it was highly effective to throw bad games
out and try again—and again—before committing to manufacturing hardware
dedicated to a game. As a result, game software development was highly itera-
tive. Executives funded a game idea for a month of development. At the end of
the month, they played the game and decided whether to fund another month,
move to field-testing, or simply cancel the game.

Companies such as Atari field-tested a game idea by placing a mocked-up
production machine in an arcade alongside other games. Several days later Atari
would count the quarters in the machine and decide whether to mass-produce

2. Realistic physics, graphics, audio, and so on

From the Library of Wow! eBook

ptg

Chapter 1 The Crisis Facing Game Development6

it, tweak it, or cancel it outright. Some early prototypes, such as Pong, were so
successful that their coin collection boxes overflowed and led to failure of the
hardware even before the end of the field-test (Kent 2001)!

This iterative approach helped fuel the release of consistently high-quality
games from companies like Atari. The market decline in the mid-eighties was
caused by the increased proportion of inferior games released because of fall-
ing hardware costs. The cartridge-based home consoles allowed almost anyone
to create and mass-produce games cheaply. The financial barrier of high-
distribution cost disappeared, as did much of the disciplined iteration, which
previously ensured only better games were released. When the market became
flooded with poor-quality games, consumers spent their money elsewhere.

early methodologies
In the dawn of video game development, a single person working on a game
didn’t need much in the way of a “development methodology.” A game could
be quickly developed in mere months. As the video game hardware became
more complex, the cost to create games rose. A lone programmer could no
longer write a game that leveraged the full power of evolving consoles. Those
lone programmers needed help. This help came increasingly from bigger proj-
ect teams and specialists. For example, the increase in power in the graphics
hardware allowed more detailed and colorful images on the screen; it created a
canvas that needed true artists to exploit. Software and art production became
the greater part of the cost of releasing a game to market.

Within a decade, instead of taking three or four people-months to create a
game, a game might take thirty or forty people-months.

To reduce the increasing risk, many companies adopted waterfall-style
methodologies used by other industries. Waterfall is forever associated with a
famous 1970 paper by Winston Royce.3 The waterfall methodology employed
the idea of developing a large software project through a series of phases. Each
phase led to a subsequent phase more expensive than the previous. The initial
phases consisted of writing plans about how to build the software. The software
was written in the middle phase. The final phase was integrating all the software
components and testing the software. Each phase was intended to reduce risk
before moving on to more expensive phases.

Many game development projects use a waterfall approach to development.
Figure 1.2 shows typical waterfall phases for a game project.

3. http://en.wikipedia.org/wiki/Waterfall_model#CITEREFRoyce1970

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Waterfall_model#CITEREFRoyce1970

ptg

A Brief History of Game Development 7

Concept

Design

Code

Assets

Test and
Debug

Figure 1.2 Waterfall game development

Waterfall describes a flow of phases; once design is done, a project moves to
the analysis phase and so on. Royce described an iterative behavior in waterfall
development, which allowed earlier phases to be revisited. Game development
projects also employ this behavior, often returning to redesign a feature later in
development when testing shows a problem. However, on a waterfall project, a
majority of design is performed early in the project, and a majority of testing
is performed late.

Ironically, Royce’s famous paper illustrated how this process leads to proj-
ect failure. In fact, he never used the term waterfall; unfortunately, the associa-
tion stuck.

the Death of the hit-or-miss model
In the early days of the game industry, a hit game could pull in tens of millions
of dollars for a game maker. This was a fantastic return on investment for a few
months of effort. Profits like these created a gold rush. Many people tried their
hand at creating games with dreams of making millions. Unfortunately, a very
small percentage of games made such profits. With the minimal cost of making
games, however, game developers could afford to gamble on many new innova-
tive titles in hopes of hitting the big time. One hit could pay for many failures.
This is called the hit-or-miss publishing model.

From the Library of Wow! eBook

ptg

Chapter 1 The Crisis Facing Game Development8

Sales have continued to grow steadily over the 30 years of the industry’s
existence.4 Figure 1.3 shows the sales growth for the total video game market
from 1996 to 2008. This represents a steady growth of about 10% a year. Few
markets can boast such consistent and steady growth.

Although hardware capabilities followed Moore’s law, the tools and pro-
cesses employed to create the games did not. By the nineties, small teams of
people were now required to create games, and they often took longer than
several months to finish. This raised the cost of creating games proportionally,
and they’ve continued to rise, roughly following Moore’s law. This growth of
effort (measured in people-years) has grown to this day (see Figure 1.4).

Bi
lli
on
s
of
 D

oll
ar

s
(U

S)

Total Worldwide Video Gaming Market

$50

$45

$40

$35

$30

$25

$20

$15

$10

$5

$-

1998 2001 2003 2006 2007 2008 2009

Figure 1.3 Market sales for video games
Source: Multiple, M2R, NPD, CEA, DFC

4. Except for the occasional market crashes every decade!

From the Library of Wow! eBook

ptg

A Brief History of Game Development 9

140

120

100

80

60

40

20

0

1980 1985 1990 1995 2000 2005

People-Years

Figure 1.4 People-years to make “AAA” games
Electronic Entertainment Design and Research

The growth in effort to create a game has been much greater than the
market’s growth market. The number of games released each year hasn’t dimin-
ished significantly, and the price of a game for the consumer has risen only 25%
(adjusted for inflation).5 This has greatly reduced the margin of the hit-or-miss
model. Now a hit pays for fewer misses because the misses cost hundreds of
times more than they did 30 years ago. If the trend continues, soon every major
title released will have to be a hit just for a publisher to break even.

note According to Laramee (2005), of the games released to the
market, only 20% will produce a significant profit.

PeoPle-yeArS It’s almost impossible to compare the cost of making games
through the decades. I use the phrases people-years and
people-months to compare effort across time. “Ten people-
years” equals the effort of five people for two years or ten
people for one year.

5. Electronic Entertainment Design and Research

From the Library of Wow! eBook

ptg

Chapter 1 The Crisis Facing Game Development10

the crisis
Projects with more than 100 developers, with costs exceeding tens of millions
of dollars to develop, are now common. Many of these projects go over budget
and/or fail to stay on schedule. Most games developed are not profitable. The
rising cost of game development and the impending death of the hit-or-miss
model has created a crisis for game development in three main areas: less inno-
vation, less game value, and a deteriorating work environment for developers.

less innovation
We will never create hit games every time, so we need to find ways to reduce
the cost of making games and to catch big “misses” long before they hit the
market. One unfortunate trend today is to attempt to avoid failure by taking
less risk. Taking less risk means pursuing less innovation. A larger proportion of
games are now sequels and license-based “safe bets” that attempt to ride on the
success of previous titles or popular movies.

Innovation is the engine of the game industry. We cannot afford to “throw
out the baby with the bath water.”

less value
Reducing cost has also led to providing less content for games. This reveals itself
in the reduction in average gameplay time consumers are provided by today’s
games. In the eighties, a typical game often provided more than forty hours of
gameplay. These days, games can often be completed in less than ten hours.

This reduction in value has had a significant impact on the market. Con-
sumers are far less willing to pay $60 for a game that provides only ten hours of
entertainment. As a result, the game rental and secondhand sales markets have
blossomed (see Figure 1.5). Each rental represents the potential loss of a sale.

Deteriorating work environment
With predictability in schedules slipping and development costs skyrocketing,
developers are bearing a greater burden. They are asked to work extended over-
time hours in an effort to offset poor game development methods. Developers
often work twelve hours a day seven days a week for months at a time to hit
a critical date; lawsuits concerning excessive overtime are not uncommon (for
example, see http://en.wikipedia.org/wiki/Ea_Spouse).

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Ea_Spouse

ptg

A Silver Lining 11

Total Worldwide Used Video Game Software Sales

$4,500,000,000

$4,000,000,000

$3,500,000,000

$3,000,000,000

$2,500,000,000

$2,000,000,000

$1,500,000,000

$1,000,000,000

$500,000,000

$-

2005 2006 2007 2008 2009

Figure 1.5 The growth of the used-games market
Source: M2Research

Talented developers are leaving the industry because they are faced with
choosing between making games or having a life outside of work. The average
developer leaves the industry before their ten-year anniversary.6 This prevents
the industry from building the experience and leadership necessary to provide
innovative new methods to manage game development.

A Silver lining
There is a silver lining. The market is forcing us to face reality. Other industries
have faced a similar crisis and improved themselves.

6. www.igda.org/quality-life-white-paper-info

From the Library of Wow! eBook

www.igda.org/quality-life-white-paper-info

ptg

Chapter 1 The Crisis Facing Game Development12

We need to transition as well. The game market is healthy. New gam-
ing platforms such as the iPhone and online content distribution models, to
name a few, offer new markets for smaller projects. The industry is still in its
infancy and looks to change itself completely in the next ten years. It makes
sense that we explore new ways for people to work together to overcome
this growing crisis.

This book is about different ways to develop games. It’s about ways people
work together in environments that focus talent, creativity, and commitment in
small teams. It’s about “finding the fun” in our games every month—throwing
out what isn’t fun and doubling down on what is. It’s not about avoiding plans
but about creating flexible plans that react to what is on the screen.

This book applies agile methodologies, mainly Scrum but also Extreme
Programming (XP) and lean, to game development. It shows how to apply
agile practices to the unique environment of game development; these are
practices that have been proven in numerous game studios. In doing this, we
are setting the clock back to a time when making a game was more a pas-
sionate hobby than a job. We are also setting the clock forward to be ready
for the new markets we are starting to see now, such as the iPhone and more
downloadable content.

Additional reading
Bagnall, B. 2005. On the Edge: The Spectacular Rise and Fall of Commodore. Win-

nipeg, Manitoba: Variant Press.

Cohen, S. 1984. Zap: The Rise and Fall of Atari. New York: McGraw-Hill.

From the Library of Wow! eBook

ptg

13

chapter 2
Agile Development

in the eighties, the backlash against waterfall methodologies was growing.
Large defense and IT projects were failing with growing frequency. This led to
numerous books and articles defining better practices. Some of these method-
ologies, such as evolutionary delivery, promoted incremental development of
products using iterations. Each iteration contained a slice of all the phases of
development instead of development being spread out over an entire waterfall
cycle. The iterations could be as short as a week but included analysis, design,
coding, integration, and testing within that time frame rather than spreading
each of them out over years as they could be on a waterfall project.

Many emerging iterative and incremental methodologies were referred to
as lightweight methods until 2001 when a group of experts gathered and
decided to refer to them as agile methodologies. The result of this gathering
was to create the “agile manifesto,”1 which summarizes the values and prin-
ciples of these lightweight methods.

The agile manifesto reads as follows:

We are uncovering better ways of developing software by
doing it and helping others do it.

Through this work we have come to value:

●● Individuals and interactions over processes and tools

●● Working software over comprehensive documentation

●● Customer collaboration over contract negotiation

●● Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

1. www.agilemanifesto.org

From the Library of Wow! eBook

www.agilemanifesto.org

ptg

Chapter 2 Agile Development14

These simple values have enabled agile frameworks such as Scrum, Lean,
and XP to share a common philosophy and principles. This book is about
applying these frameworks, mainly Scrum, to game development.

In this chapter, we’ll look at some of the typical problems that face game
development projects, as illustrated by a hypothetical game postmortem. We’ll
see how agile helps meet the challenges faced by this game.

why Projects Are hard
This section uses the postmortems from game projects to help establish why
projects are so hard. We’ll begin by looking at a hypothetical but typical post-
mortem and then extrapolate from it the three most typical areas into which
game project problems fall.

learning from Postmortems
I’ve been a fan of Game Developer Magazine since it started publishing in 1994.
My favorite articles are the postmortems of game projects. Not only do they
show how different studios work, but they also show that none of us is facing
such challenges alone. Some postmortems are brutally honest about the over-
whelming challenges developers face. Reading these postmortems feels like
passing a car wreck; you shouldn’t look, but you do anyway.

These postmortems are a good starting place to reveal the reasons for
adopting an agile framework for game development, so I’ve concocted a short
postmortem based on a hypothetical game called Quintessential. It encom-
passes the more common issues seen in published postmortems and my own
project experiences.

the Quintessential Postmortem
Quintessential is a sci-fi shooter released by Hypothetical Studios. Although
the project tested the endurance of everyone—from quality assurance (QA)
to publisher—it shipped to critical acclaim. This postmortem describes what
went right with the development of the game and what went wrong.

what went right?
The things that went right had to do with the studio’s culture and employ-
ees, the prototypes, and the license.

From the Library of Wow! eBook

ptg

Why Projects Are Hard 15

Studio Culture
Hypothetical Studios is a great place to work. The studio was founded
by game development veterans who wanted to create the best possible
environment in which to develop games. Everyone has their own office, a
convenience for those late nights when you need a little peace and quiet.
The kitchen is stocked with free beverages and snacks. Our game room
has pool tables, foosball tables, and classic arcade machines for blowing off
steam. No one works late alone. The entire team commits to working hard
together. Hypothetical promotes teamwork. We’re all “in it” together.

Talented Employees
Hypothetical Studios hires the best people for every discipline. Our
programmers are top-notch; they are constantly exploring new areas of
technology. Hypothetical doesn’t rely on any middleware; we exert full
control over every aspect of our engine. Our creative group has lofty goals
and the talent to match.

Great Prototypes
The early prototypes of Quintessential demonstrated a great deal of
promise for the game, and we were able to develop them very quickly.
For example, we demonstrated a system that allowed every part of the vis-
ible world to be destroyed. Although this feature wasn’t shipped with the
game, it showed the capabilities of the technology early on.

Great License
Quintessential was based on the popular movie that was a summer block-
buster six months before the game shipped. This drove considerable inter-
est in the game, especially considering that the DVD was released around
the same time the game hit the shelves.

what went wrong?
The things that went wrong had to do with the ship date, the timing of
going into production, when people were added to the project, and the
technical challenges.

Unachievable Ship Date
Quintessential was supposed to ship simultaneously with the movie.
Hypothetical, a small studio with only two projects, was under a great

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development16

deal of pressure to meet the original ship date, but in the end, we were
unable to do so. Part of the reason was that the game’s features continued
to change during development. These changes were not accounted for in
the schedule, and they added time.

Going into Production Too Soon
The project was originally scheduled to start level production 12 months
before the release date. Unfortunately, when the time arrived, we weren’t far
enough along with the game mechanics to lay out the levels properly. For
example, the player was given a jet pack that allowed them to fly through
the air after production started. This required us to add more vertical spaces
than we had planned. Nonetheless, the schedule forced us into production
on the originally scheduled date; launching the game on the same date as
the movie was considered very important. As a result, many of the levels had
to be reworked when the game mechanics were figured out.

Adding People Late to the Project
As we fell behind in production, the studio brought more people over
from the other project to increase the pace. These new additions to the
project team needed a lot of handholding to come up to speed, however.
When they did come up to speed, they merely created more assets that
had to be reworked later. In the final tally, merging the two project teams
actually slowed us down.

Underestimating the Technical Challenges
The original destructible prototype showed so much promise that it was
added to the design with few questions asked. It was going to be the killer
feature that would make the game a hit. Unfortunately, the programmers
discovered—too late—that the destructible system required a major overhaul
to work on the Xbox 360 and PlayStation 3. We were forced to make the
painful decision to drop the feature and replace all the destructible geometry
in the production levels with the static geometry as originally planned.

conclusion
We are proud of our efforts to produce a good game that is worthy of the
license. Although we had some challenging times at the end of the project,
that’s the nature of making games. The lesson we learned is to plan a little
better at the start of the project. Had we planned the destructible system a
bit better, we could have delivered it in the final game on schedule.

From the Library of Wow! eBook

ptg

Why Projects Are Hard 17

the Problems
This postmortem tells a story familiar to many experienced developers. Why
do projects start out so full of hope and end up in a spirit-numbing crunch of
overtime and wasted effort? Is this the best way to make games? I hope not.

So, why do projects run into trouble? There are three major reasons: feature
creep, overoptimistic schedules, and the challenges of production.

Feature Creep
Feature creep is the term given to features being added to a project after the
original scope is defined. There are two main reasons for feature creep; the first
is when the stakeholders see the game in progress and request new features.
This is referred to as emergent requirements. The second is when the fea-
ture doesn’t live up to its expectations so more work is added.

Feature creep isn’t a bad thing unless the budget and/or schedule remain
unchanged as work is added. It happens so gradually that management accepts
it without much question. Why do they allow this? It’s usually because they
have little choice; troubled projects often agree to changes that the customer
requests to avoid cancellation.

Opportunities to add value to the game are identified throughout the
project, but with a tight schedule and workload, they either have to be ignored
or have to be added at great peril to the deadline. Unfortunately, swapping out
planned features for new ones that require the same amount of effort is not an
option. Feature creep tends to expand the total scope.

Feature creep and change are inevitable. Have you ever gone back and
read the original game design document for a game you just shipped? Often it
seems that the title page is the only thing that doesn’t change.

This is often the main problem with writing big designs up front (BDUF):
The goal is to answer all questions about the game. In reality, we can’t really
know everything about a game at the start. Knowledge comes only when we
have the controller in hand and are playing the game at a decent frame rate on
the target machine. The only way to recognize fun is to play it.

In the early stages of the game, we have the greatest range of uncertainty.
We may be certain that we’re making a first-person shooter, but knowledge of
exactly what types of weapons are best is lacking. We learn more when we can
shoot characters in the game.

Figure 2.1 demonstrates how uncertainty diminishes over the phases of a
game or feature’s development. Uncertainty is highest at concept definition
and slowly drops as a product or feature set is testable on the target machine.

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development18

Tune and DebugImplementDesignConcept

Uncertainty

High

Low

Figure 2.1 Reducing uncertainty

A waterfall project carries hundreds of uncertain features forward to the
testing phases—called alpha and beta—just before shipping. An agile proj-
ect eliminates the uncertainty in small iterations that include every part of
development.

Overoptimistic Schedules
Task estimation is not an exact science. Even when we estimate simple things
in daily life, such as running an errand at the store, unanticipated problems crop
up and throw off our estimates. Traffic will jam, or the lines at the store will be
long. The accuracy of estimates drops when more complex tasks are estimated,
such as those for making games. Many things throw off the estimated time to
complete a task:

●● The difference in experience and productivity between two people
who have a task assigned to them. Studies have shown that the range
of productivity will vary by a factor of ten.

●● How many other tasks a person is working on at a single time
(multitasking).

●●

●

The stability of the build and tools used to complete the task.

● The iterative nature of a task: It’s never certain how many iterations
are going to be necessary for tuning and polishing a feature to “find
the fun.”

From the Library of Wow! eBook

ptg

Why Projects Are Hard 19

The Challenge of Production
The challenges for pre-production and production are quite different.
Pre- production is the exploration of what the game is. The challenge of pre-
production is to find the fun of the game that drives the goals of production.
Production is the stage where the team builds a dozen or so hours of content,
such as characters and levels. Production fleshes out the story and surroundings
to leverage the mechanics created in pre-production. The challenge of produc-
tion is to maximize efficiency, minimize waste, and create predictability.

Predictability is more important during production. Production represents
a great deal of work. Dozens of characters and levels have to be built before
a game is shipped. Production often accompanies a major staffing increase or
engagement of an outsource company. Mass-producing assets such as characters
and levels shouldn’t start early. The game mechanics and asset budgets must be
established to create proper assets on the first pass to avoid expensive rework.

Production should begin when the uncertainty about the game mechanics
and the uncertainty of the technology and tools to make the game have been
reduced. Figure 2.2 shows how a project should pass through the prototype,
pre-production, and production phases based on the level of certainty about
technical solutions, asset budgets, and quality and design knowledge.

Prototype

Preproduction

Production

Technical
Uncertainty

Game
Design

Uncertainty

Figure 2.2 Uncertainty of design and technology

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development20

Scheduled pre-production and production

Pre-Production Production

Actual pre-production and production

Pre-Production Production

 Figure 2.3 Scheduled vs . actual production transition

Most game projects cannot afford the luxury of entering production when
they are ready, but pre-production is difficult to predict. The exploration of
what is fun and the range of mechanics to mass-produce are difficult to sched-
ule. When pre-production takes longer than expected, projects are often forced
to enter production by the demands of a schedule. Figure 2.3 shows how the
transition from pre-production to production should happen.

Some assets are ready for production earlier than others. Our knowledge of
the budgets and quality of what the game should ship determines the timing of
when an asset enters production. If these things are unknown, the asset should
not be in production.

When teams enter production too soon, they do so without the proper
knowledge of what to build. By the time the team discovers the true require-
ments, they may have created a good chunk of production assets based on false
assumptions. If the requirements have changed—for example, removing the
destructible geometry or adding the jet pack in Quintessential—then those
assets need to be reworked. This creates a lot of wasted effort and time.

why use Agile for game Development?
What is driving the industry toward agile? Primarily, market forces for higher
quality and lower cost are driving us. As we saw in Chapter 1, “The Crisis Fac-
ing Game Development,” the cost of creating games is growing much faster
than the market for games. We’re coming to a crossroads that will determine
the future of the industry. Are we facing another fallout such as 1983, or will we
discover new markets and new demographics of people we’ve never reached?

From the Library of Wow! eBook

ptg

Why Use Agile for Game Development? 21

Knowledge is Key
Imagine that after two years of effort, you have just shipped the gold master ver-
sion of your game. The project was challenging; it was a genre new to the studio,
so a lot of technology had to be created. It was the first title that the studio has
shipped on the PlayStation 3. There were a lot of false starts and dead ends.

Now imagine that you and the entire project team could go back in time
to the beginning of the project and start all over again. Would you do anything
differently? Of course you would! You wouldn’t repeat all the mistakes you
made the first time. You would work far more effectively to reimplement code
you knew would work or build levels you know are fun. With this increased
knowledge, you would ship a better game far earlier.

This thought experiment demonstrates four things about knowledge:

●●

●

Its creation is something that occurs during the project.

●

●

It has a great deal of value.

●

Knowledge is the greatest asset your studio can create.●

Creating knowledge has a high cost.

●

A fundamental problem with the waterfall approach to games is that our
crystal ball BDUFs are not entirely clear. As we develop a game, we are learning.
We learn what plays well with the controller, what looks good on the target plat-
form, and how to make the game run fast enough with enough artificial intel-
ligence (AI) characters to make it challenging. We create knowledge every day.

This knowledge is impossible to fully embed in a BDUF or schedule.
Game development is primarily about learning what to make and how to
make it. It’s about reducing uncertainty over time. Agile development focuses
on building knowledge about value, cost, and schedule and adjusting the plan
to match reality.

exPerIenCe
“I’ve never subscribed to the style of documentation that attempts to predict
the future, mostly because my crystal ball has long been out for repair. Having
said this, I do end up writing a lot. I find it useful as a thinking tool. Trying to
share an idea with a large team is difficult to do and even more so if that idea
hasn’t been fully thought through. Writing it down helps me to not only real-
ize where the gaps are but also to work out the details. The result is clearer
communication.”

—Senta Jakobsen, COO, EA DICE

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development22

cost and Quality
Let’s take a quick look at the economics of the game market for “AAA” console
or PC games. With a retail cost of $60, a game that sells half a million cop-
ies grosses $30 million. After licensing, distribution, marketing, and publishing
costs are subtracted, about one-fourth of the gross sales, or $7.5 million, is left
to pay for the development of a game. Many game development projects cost
more than $7.5 million, and the largest majority of games don’t approach sales
of half a million units. Most games fail to break even!

Publishers and developers are trying to keep costs down on development
by doing the following:

●● Seeking opportunities to outsource asset creation and code
development

●●

●

Relying on middleware2 solutions

● Reducing the amount of content (releasing a game with eight hours
of gameplay rather than sixteen)

Publishers are also trying to reduce the number of games that lose money
for them by doing the following:

●● Relying on a greater proportion of licensed properties such as movie-
based games

●● Relying more on sequels and older franchises that have been success-
ful in the past

Taking fewer chances on new ideas●●

These seem to be logical steps to take, but they also reduce the quality of
games on the market.

 Now let’s look at how agile addresses quality and cost issues. We’ll see how
agile helps us “find the fun” and eliminate some of the most notorious sources
of wasted work common to game development.

Finding the Fun First
A benefit of iterative development is to develop a product in small steps and
incrementally add features that satisfy the customer in the fastest and most eco-
nomical way. For video games, our customers are the people who purchase and
play our games. A fun game is more appealing to players and results in more

2. Middleware is technology purchased from a vendor or another developer.

From the Library of Wow! eBook

ptg

Why Use Agile for Game Development? 23

sales. “Find the fun” is the mantra of any iterative and incremental game devel-
opment project. Fun is only found with the controller in your hand.

Figure 2.4 shows a notional representation of when the fun or value was
discovered during a waterfall-developed game. Waterfall projects typically show
minimal progress in finding the fun in the first two-thirds of the project. Except
for occasional prototype or E3 demos, much of the work is spent executing to
a plan and not demonstrating value. It’s not until the end of the project—when
all the pieces come together and the game is being tuned and debugged—that
the project team has a clear idea of what the game is and can identify improve-
ments. Unfortunately, the end of the project is the worst time for this to occur.
The project is facing an impending deadline, and any significant change for the
sake of increased value is often rejected out of consideration for the schedule.

QueStion How many times have you been in alpha or beta and wished
for a few extra months to improve the game?

100

80

60

40

20

0

Agile

Waterfall

Figure 2.4 Finding the fun

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development24

The agile project value curve approaches development in a value-first
approach. This happens when the project iterates on bringing features to a
near-shippable state in a value-prioritized order. The publisher expects value to
be demonstrated early unless the core idea is not good or the developers are not
up to the task of making a great game. This enables the stakeholders and project
team to avoid wasting years of effort and cost on projects that won’t be fun. The
“find the fun” mantra forces us to focus our efforts on making the game better
every iteration. A game that is not fun must be questioned at every step.

eliminating waste
 Agile practices focus the project on eliminating waste in many ways.

By “finding the fun” first, the project team finds the value early in the
project rather than trying to retrofit it at the end. The same principle applies to
the development of assets and technology within a game. Making changes at
the end of a production cycle that affects every production asset is a lot more
expensive than discovering the change before most of the assets are created. On
the technology side, fixing a bug minutes after it is created can be magnitudes
less expensive than fixing it in an alpha/beta phase.

Simple iteration enables game developers to explore more ideas. By deliv-
ering working software iteratively, a project can prove whether an idea is via-
ble earlier in development. This makes it possible to enact the kill-gate model
where a dozen ideas are launched and narrowed down until the best remain.

note A kill-gate model of development is where a number of pro-
totypes are started with the intention of funding only one to
completion. The prototypes are narrowed down as they dem-
onstrate their value. The ones that are not proving their value
are stopped at the “gate” and are “killed” rather than allowed
to continue.

Iteration enables the project team to easily measure the cost of develop-
ment and improve the efficiency of how groups of people work together. It
creates a culture of continual improvement that can reduce the cost of develop-
ing games.

Agile values Applied to game Development
Let’s look at the agile values from the agile manifesto and see how they apply
to video game development.

From the Library of Wow! eBook

ptg

Why Use Agile for Game Development? 25

Individuals and Interactions Over Processes and Tools
Our processes and tools to manage ever-growing projects have grown dramati-
cally. Large teams have driven the creation of management hierarchies. Project
schedules and design documents—which attempt to predict every requirement
and task necessary to make a fun game—require expensive databases to manage.
All of these are considered necessary to tackle the complexity that arises from
having upward of 100 people working on a multiyear project.

Game development requires developers from widely different disciplines.
Take, for example, a cutting-edge AI character who needs to walk around an
environment and challenge the player in the game. The creation of this charac-
ter requires the participation of animators, designers, character modelers, tex-
ture artists, programmers, and audio composers, among others.

It’s important that these disciplines collaborate as much as possible to
be effective. For example, it is important for an animator who discovers a
bug in the animation technology to work with an animation programmer as
quickly as possible. Processes and organization can add delay. In this example,
the programmer may be working on a series of tasks that were assigned by a
lead. This may prevent that programmer from helping the animator without
permission from their lead. This leads to a chain of communication, as shown
in Figure 2.5

Project Lead

Lead Animator Lead Programmer

Animator Programmer

Figure 2.5 A chain of communication

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development26

The animator has to pass the request up through the chain of command;
the request then has to make it back down to a programmer who can solve the
problem. In this example, the request involves five people and four requests!
This flow is prone to failure and delay.

So, what is happening in the big picture?

●●

●

More than 100 people from various disciplines on one team

● Thousands of unpredictable problems that can introduce wasted time
and effort

●● Inflexible plans and tools to manage people who can’t predict and
quickly react to these problems

Hierarchies of management that can lead to further waste●●

Agile methodologies address these issues from the bottom up. One way is
by promoting teams able to solve many of these problems on their own. They
manage the smallest level of details but not the highest levels. They unburden
leadership of the role of managing minor details. They enable leadership to
focus on the big picture.

Teams start taking on larger problems as they discover they can take a small
amount of ownership to solve the smallest problems. They begin asking for
more ownership in other areas:

●● In creating better team structures that can solve more problems by reduc-
ing external dependencies and improving focus on problem solving

●● By identifying risks early and addressing them before they become
problems

By identifying and growing leaders among themselves●●

Agile values are preferences and not binary decisions. We still need process
and tools to support the agile team, but having individuals solving problems
with their colleagues on a daily basis is more valuable.

CreATInG VALUe
“It is not just problem solving that agile helps—it also creates an environment
of creating value that would not otherwise be created if the direct communica-
tion between developers was not there. An example is a programmer exposing
some unrequested values of a feature of their own volition (and communicating
this) because they better understood what the designer was trying to do—
making a better product for it. This is some of the ‘magic’ that happens with the
top game teams in the business.”

—Scott Blinn, Vexigon, Inc.

From the Library of Wow! eBook

ptg

Why Use Agile for Game Development? 27

Working Software Over Comprehensive Documentation
For game development, we’ll use the following redefinition for the second
value:

Working game over comprehensive design

I’ve substituted game for software since a game is more than software.
Some form of design documentation is necessary. Publishers, licensors,

and other stakeholders want a clear idea of the project goals and vision. Port-
folio planning and franchise or licensing requirements may create constraints
on the project. Communicating what is known about the project up front
has great value.

note I’ve seen a game design document for a fantasy shooter game
that contained details such as the number of bullets per maga-
zine! How can we really know how many bullets per clip we
should have in the design phase? Why do we need to plan for
that detail before we have the knowledge of what we need?
This is an example of the problem that detailed plans can cre-
ate; they can create work that is not necessary. If all the
assumptions about the weapon system were implemented
before discovering what was fun about it, much of that work
is wasted. If the project sticks to the detailed plan, then it
won’t be the best game possible.

Customer Collaboration Over Contract Negotiation
The typical game development contract has a series of defined milestones. Each
milestone is associated with a specific date and features that need to be deliv-
ered on that date. If the developer delivers those features on schedule, they are
paid for the milestone. Milestone payments are the lifeblood for most inde-
pendent developers; they will do almost anything to avoid missing a milestone.
This includes avoiding change that would improve the game if it threatens the
milestone with additional work. Who can blame them? Many developers who
miss a milestone payment miss payroll; that is a very bad thing for them to do.
The contract is an impediment to change.

On the other side, a publisher doesn’t have the full freedom to add fea-
tures or change the milestone definition when they think the game would
benefit from the change. The contract impedes working with the developer
to fix the game.

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development28

Fixed-milestone deliverables have led to an adversarial relationship between
developers and publishers. Both recognize the need for change to improve the
game but lack the necessary level of trust to allow the change to occur.

Collaboration between developer and publisher should be valued more
than a fixed contract. However, very few publishers allow a developer to work
without a detailed contract. Outside our industry, many contracts in an agile
environment follow the time and materials form, which is where the client
pays for the cost of the last iteration. This style of contract requires greater trust
between both parties. The client has to trust that the developer is spending
money wisely. The developer has to trust that the client won’t cancel the ongo-
ing contract without good reason.

Although most Western publishers don’t support this model, many have
adopted flexible milestone definitions that allow some level of collabora-
tion with developers every few months. As the use of agile spreads, we will
see more collaborative business arrangements as trust is built through greater
collaboration.

Responding to Change Over Following a Plan
Was there a detailed schedule on your last project? Did development follow
that schedule? If development departed from the plan, was the detailed sched-
ule updated to reflect the changes? The agile approach is to plan for what is
known and to iterate against what is not known.

Expanding project teams and ever-increasing feature and hardware com-
plexities have driven managers to turn to increasingly detailed planning. As we
saw in Figure 2.1, defined processes are best applied when we have certainty
about the technology required by a project and well-understood requirements
we know will develop into a hit game. These two criteria are rarely seen. Not
only do our platforms change frequently, but creating a fun, innovative game is
always challenging.

what an Agile Project looks like
An agile project is composed of a series of iterations of development. Iterations
are short intervals of time, usually two to four weeks, during which the game
makes progress. Developers implement individual features that have value to cus-
tomers every iteration. These features are called user stories. Iterations include
every element of game development that takes place in an entire game project:

From the Library of Wow! eBook

ptg

What an Agile Project Looks Like 29

●●

●

Concept

●

●

Design

●

●

Coding

●

●

Asset creation

●

●

Debugging

●

Tuning and polishing●

Optimizing

●

The game is reviewed at the end of every iteration, and the results influ-
ence the goals of future iterations. This is an example of using the “inspect and
adapt” principle. Every four to eight iterations, the game is brought to a release
state, which means that major goals are accomplished (like online gameplay)
and the game is brought to a near-shippable level.

note Releases will be described in Chapter 3, “Scrum.” User sto-
ries are described in Chapter 5, “User Stories.”

The “inspect and adapt” principle is the cornerstone of agile practices.
Teams and customers inspect the progress of a game every iteration and adapt
the plan to address what is valuable and what is not. Teams inspect how they
are working together every iteration and adapt their practices to improve their
effectiveness.

note The first iterations of a project will often focus on building the
minimum necessary infrastructure, if one does not exist,
before any valuable gameplay is seen.

Agile projects don’t avoid planning. They adopt planning practices that
allow for change as the project is developed. In most waterfall projects, mile-
stones lead the project toward the goal defined in the BDUF, as illustrated in
Figure 2.6.

Once the project has achieved the goals foreseen in the BDUF, everyone
realizes that they really want to be somewhere else. Unfortunately, as we’ve
seen, the project is usually out of time and money here.

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development30

Milestone Milestone Milestone Milestone
Goal?

Goal

Figure 2.6 Milestone steps toward a goal

Agile projects also make steps toward a goal. However, using the “inspect
and adapt” cycle, they achieve better results sooner through the ability to steer
the plan toward a more desirable goal, as shown in Figure 2.7.

The constraints on the project sets limits on how much the goal can change.
A driving game won’t slowly morph into a golf game over time.

Iteration Iteration
Iteration

Iteration

Original
Goal

Goal

Figure 2.7 Iterations toward a goal

From the Library of Wow! eBook

ptg

What an Agile Project Looks Like 31

Team

Team

Inspect and Adapt

Improved
Game

Features User
Stories

Iterations/
Sprints

Potential
Players

Studio
Management

Publisher

Product Owner

Product
Backlog

Team

Figure 2.8 Agile development flow

Agile Development
Figure 2.8 shows the high-level flow of an agile game project.

Starting on the left, customers and stakeholders (see Chapter 3) identify
features and other requirements (such as tools and infrastructure needs) for
the game. These features are placed on a list called the product backlog
(Chapter 3) that is prioritized by the product owner (Chapter 3). These prod-
uct backlog items (PBIs) (Chapter 3) are expressed as user stories (Chapter 5)
that communicate the value of each PBI to the customers and stakeholders.
Small Scrum teams of developers (Chapter 3) commit to completing one
or more user stories from the product backlog every iteration (or sprint in
Scrum; see Chapter 4, “Sprints”) and demonstrating them in an improved ver-
sion of the game. A ScrumMaster (Chapter 3) assists each Scrum team, helping
them remove impediments to progress and ensuring that they are following
the agreed-upon process.

the entire Project
Many agile developers outside the game industry ship versions of their products
every several months. To do this, they use releases, which are sets of sprints, to
produce shippable versions of their products.

Agile game projects use releases, but most don’t ship a version of a game
every three months. For them, releases are like milestone deliverables that
bring the game to a “near-shippable” state (Chapter 6, “Agile Planning”).

From the Library of Wow! eBook

ptg

Chapter 2 Agile Development32

Re
le
as
e

Post-
Production

Re
le
as
e

Concept

Re
le
as
e

Pre-Production

Re
le
as
e

Re
le
as
e

Re
le
as
e

Production

Re
le
as
e

Re
le
as
e

Re
le
as
e

Figure 2.9 Agile project flow

Most larger-scale agile game projects execute a series of releases through con-
cept, pre-production, production, and post-production stages of development, as
shown in Figure 2.9. The need for these stages and how agile practices are modi-
fied for them are described in Chapter 7, “Video Game Project Planning.”

the challenge of Agile
The challenge of applying agile isn’t in merely adopting the practices. The
practices are simple. The real challenge arises in the collision between the cul-
ture of a studio, their publisher, and agile. Agile methodologies such as Scrum
create transparency. Every deficiency that obstructs the best flow of work is
singled out for examination. Rather than putting faith in a design document, a
game needs to stand on its own merit every iteration.

Acting on transparency is the key to the success of applying an agile meth-
odology. Scrum will merely show where and what the problems are. It is up
to the individuals, teams, and leaders to solve those problems and thereby real-
ize the benefits of Scrum. The remainder of this book addresses how agile is
applied to game development. The next chapter will provide an overview of
Scrum, which is the core set of practices for an agile game team.

Additional reading
DeMarco, T., and T. Lister. 1985. Programmer performance and the effects of the

workplace. Proceedings of the 8th International Conference on Software Engineer-
ing in Washington, D.C. Los Alamitos, CA: IEEE Computer Society Press.

Taylor, F. W. 1911. The Principles of Scientific Management. New York: Harper Bros.

From the Library of Wow! eBook

ptg

Part II
Scrum and Agile Planning

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

35

chapter 3
Scrum

in 1990, I was a member of the team developing the avionics test bed for an
experimental fighter jet called the YF-23. This work required me to stay at a
McDonnell Douglas facility in St. Louis, Missouri, for almost a year. Members
of the team had gathered from all around the company to prepare the avionics
for demonstration to the Air Force. We faced many imposing challenges—most
caused because the various components of hardware and software had been
separately developed, and they were resisting integration. The avionics were
designed to survive destruction of up to half of their components and still per-
form their function. Unfortunately, the actual hardware could barely tolerate
being installed. One key component, a fiber-optic communication interface,
was so sensitive that 29 out of 30 initial boards produced failed before our final
demonstration!

The team was led by a former F-14 pilot. He was an outstanding leader
who didn’t need to understand every detail of how each of us did our jobs.
What he excelled at was removing obstacles from our paths.

We were guaranteed to see him every morning at the daily stand-up meet-
ing. Scrum was largely unknown to the world in 1990, but F-14 pilots knew
how to have a stand-up meeting. Each of us, in turn, told of our progress, what
we were working on next, and what problems we were having.

Our pilot-lead had an interesting habit that I will never forget: He always
trimmed his nails during this meeting. He focused on his nail clipper, but we
knew he was listening. I didn’t realize it at the time, but my inability to make
eye contact with him forced me to speak to the group instead. If a discussion
got too involved, he cut it short.

One day I reported that the McDonnell Douglas system administrator was
not giving us access to a computer that he had promised to a week earlier. It
was cutting into our efforts to test the avionics, and the administrator was being
rude to the contractors. As soon as I said it, our lead’s head snapped up. With
a steady, steely glare he repeated what he heard me say. I verified that he had
heard me right; the administrator was messing with his team.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum36

Five minutes after the conclusion of the meeting, we heard our lead swear-
ing at the top of his lungs at the administrator. They must have a class for F-14
pilots on the creative application of profanity. It was impressive to hear. It was
even more impressive to realize that our pilot-lead had our back. He was our
“wingman,” and as Tom Cruise’s character learned in Top Gun, you never leave
your wingman.

We received access immediately and never had another problem with the
administrator. It was a pivotal moment for the team. We had started the day as a
collection of contractors from around the country. By noon, we were the team
you didn’t mess with. Did it affect our work? You bet. We didn’t have any excuses
not to solve our own problems with the dedication demonstrated by our lead.

Our lead demonstrated many of the values and practices of Scrum long
before any of us had heard of it. Was he prescient? No, he was merely applying
good practices known to many good leaders. Scrum does the same thing. Its
practices derive from those who have worked in many high-performing orga-
nizations or teams for decades.

Scrum is a framework for creating complex products. It’s not a process or
a methodology; its practices aren’t specific enough to tell programmers, artists,
designers, producers, QA, and so on, how to do their jobs. A studio adopting
Scrum merges its own practices into the Scrum framework to form its own
methodology.

Scrum compels a studio to create an incremental and iterative develop-
ment process with self-managing, cross-disciplined teams. The rules of Scrum
are simple, but from these simple rules emerge vast improvements in how teams
work together. They increase their productivity and enjoy their work more. It’s
like chess; from the simple rules of chess emerge complex tactics and strategy
that take a lifetime to master. Scrum is also a never-ending pursuit for continual
improvement, especially in the rapidly changing game development industry.

This chapter introduces Scrum. First, we have a rundown of Scrum and
look at some of its components and practices in more detail. Next, we examine
the various roles involved with Scrum. We finish up discussing customers and
stakeholders and how Scrum scales.

the history of Scrum
Product development methods—from the industrial revolution through the
information age—have undergone a slow evolution. It’s an evolution of how
people work together to create products.

From the Library of Wow! eBook

ptg

The History of Scrum 37

The industrial revolution arose from the limitations of craftsmanship.
The limited supply of craftspeople kept the supply of products low and their
cost high. The assembly line transferred product creation to workers on the
assembly line who were considered replaceable cogs performing only simple
tasks. It removed the value of knowledge at every stage to a centralized few
called managers.

With the introduction of the assembly line, everyone could afford a prod-
uct like the Model T car. The cost in doing this was the loss of customization
and variety that the craftsperson supplied.1

The weakness of Henry Ford’s assembly line, which was optimized by
Taylor (1911), was that it didn’t leverage the knowledge and creativity of the
people on the assembly line. Working in a factory became synonymous with the
loss of humanity to the large machine of society that seemed to be emerging.2

Two world wars created demand for large amounts of material from a lim-
ited workforce. This drove innovation at the factory level. Millions of “Rosie
the Riveters” had to be trained and made productive. This required more than
mindless assembly-line workers. Leadership was required to train and guide this
new workforce. Knowledge and skill at every level of the assembly line became
recognized as a critical asset as valuable as the capital equipment in the factories
themselves.

As the war ended, the soldiers returned to their jobs, and America found
itself with the only intact industrial base. This led to a languid attitude toward
the wartime lessons, many of which were forgotten in the factories. Addition-
ally, the people who filled the roles in the factories of the departed soldiers (the
“Rosie the Riveters” of America) left the factories and took much of the new
knowledge tools with them.

Overseas the lessons were embraced. For example, as America occupied
Japan, many of the industrial consultants who helped American industry ramp
up production during the war were brought over to help Japan rebuild its dev-
astated manufacturing industries. Companies such as Toyota merged some of
these principles with their own. These companies were able to elevate produc-
tivity as American industry had done during the war.

These changes in Japan continued to restore the value of individuals in the
workplace and decentralize many of the day-to-day decisions about quality and

1. Henry Ford’s famous quote “Any customer can have a car painted any color that
he wants so long as it is black” highlights this lack of variety of choice.

2. Read Orwell’s novel 1984 to get a sense of this attitude toward the future.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum38

efficiency. As a result, Toyota, and companies like it, has leveraged the lower cost
and higher quality of its products to dominate the world automobile market.

In the mid-eighties, the differences in product development were researched
and described in a groundbreaking article titled “The new new product devel-
opment game” (Takeuchi and Nonaka 1986). This study described how some
companies consistently and rapidly released new highly successful and innova-
tive products into the market. What made these companies different was their
process for developing products.

These companies didn’t develop products using a traditional “relay-race”
model of sequential development, such as the waterfall approach in the software
industry. Instead, handpicked cross-discipline teams collaboratively iterated on
the development of their products to a much higher degree. This approach to
development was compared to the scrum formation of rugby teams that move
the ball up and down the field together.

Scrum was first identified as a model for software development in the book
Wicked Problems, Righteous Solutions (DeGrace and Stahl, 1990). This model was
first applied at the Easel Corporation in the early nineties by Jeff Sutherland
(2004) and Ken Schwaber at Advanced Development Methods. Then, Ken
Schwaber and Mike Beedle (2002) teamed up to write a book, which popular-
ized Scrum to a broad audience.

Although Sutherland and Schwaber were the first to use and define Scrum,
Scrum integrates ideas from many sources. Teams meeting daily, owning the
problem, putting the work to be done on a wall, and graphing the amount of
work to be done are not novel ideas. What was novel about the earliest Scrum
implementations was putting all of these ideas together.

the Big Picture
Figure 3.1 shows the major components of Scrum.

A game developed with Scrum makes progress in two- to four-week itera-
tions, or sprints, using cross-discipline teams of six to ten people. At the start
of a sprint, during the sprint planning meeting, the team selects a number
of features from a prioritized list of them called the product backlog. Each
feature on the product backlog is called a product backlog item (PBI). The
team then estimates the tasks required to implement each PBI into a sprint
backlog. Figure 3.2 shows a simple player jump feature and a sprint backlog
of tasks to implement it.

The team only commits to features in a sprint that they judge to be
achievable.

From the Library of Wow! eBook

ptg

The History of Scrum 39

The player
can jump

Programmer:
Implement jump

physics
16 hours

Designer:
Tune jumping

6 hours

Programmer:
Implement
jumping
control
5 hours

Animator:
Create
jumping

animations
10 hours

Sprint Backlog
Product

Backlog Item

 Figure 3.2 An example of breaking a PBI into tasks for the sprint backlog

Product
Backlog 24

Hours

2-4
Weeks

Sprint
Backlog

Daily
Scrum

Sprint

Potentially
Shippable
Game

Figure 3.1 The big picture
Source: Mountain Goat Software

From the Library of Wow! eBook

ptg

Chapter 3 Scrum40

The team meets daily during the sprint in a 15-minute timeboxed meeting
called the daily scrum. During this meeting, they share their progress and any
impediments to their work.

DeFinition A timebox is a fixed amount of time given to a meeting, task,
or work. This sets a limit on the amount of time spent. For
example, a 15-minute timeboxed meeting will end at the
15-minute mark regardless of whether all the agenda items
are addressed.

By the end of the sprint, the team has created a potentially shippable
version of the game: a playable game, which won’t necessarily pass all the tests
necessary to ship. The stakeholders (managers, directors, and publisher staff)
of the game gather in a sprint review meeting to evaluate whether the goals
of the sprint were met and to update the product backlog for the next sprint
based on what they’ve learned.

One other practice is the sprint retrospective. This is a brief meeting
held by the team following the sprint review to reflect on how effectively the
team worked together over the last sprint and to find ways of improving their
practices.

note Think of a potentially shippable version of the game as some-
thing you could run an informal focus test with.

the Principles of Scrum
Scrum has a small number of simple practices that teams can use to develop
games. These practices are not all-encompassing or perfect for every product.
As a framework, Scrum is meant to have practices added and changed as teams
and products evolve.

It is important to preserve the principles of Scrum:

●● Empiricism: Scrum uses an “inspect and adapt” cycle that enables
the team and stakeholders to respond to emerging knowledge and
changing conditions in real time using actual data. An example of this
can be seen in the daily scrum practice, which enables the team to
react to daily issues.

●● Emergence: As we develop a game, we learn more about what
makes it fun, what is possible, and how to create it. Scrum practices
don’t ban designs from being developed up front. They acknowledge

From the Library of Wow! eBook

ptg

Scrum Parts 41

that we can’t know everything about a game from the start. The
sprint review and planning cycle is designed to maximize emergence
of features as seen in a working game.

●● Timeboxing: Scrum is iterative. It delivers value on a regular basis
and enables stakeholders and developers to synchronize and micro-
steer the project as value emerges. Sprints are an example of a time-
boxed practice.

●● Prioritization: Some features are more important to the stake-
holders than others. Rather than approaching the development of a
game by “implementing everything in the design document,” Scrum
projects develop features for a game based on their value to the player
who will buy the game. The product backlog is an expression of this
principle.

●● Self-organization: Small, cross-discipline teams are empowered to
organize their membership, manage their process, and create the best
possible product within the timeboxes. They use the “inspect and
adapt” cycle to continually improve how they work together, often
through the sprint retrospective meeting.

By preserving these principles, Scrum teams can alter their practices and
improve the benefits of Scrum.

Scrum Parts
In this section we look at some of the parts of Scrum identified in Figure 3.1
in detail as well as some additional practices.

the Product Backlog
The product backlog is a prioritized list of the requirements or features (called
PBIs) for a game, a tool set, or the pipeline for making the game.

The following are examples of these requirements:

●●

●

Add a filtering function to the animation exporter.

●

Add online gameplay.●

Add a particle effect to the game.

●

The product backlog is allowed to change after a sprint. PBIs that weren’t
anticipated are added. PBIs that are no longer necessary are removed, and the
priorities are changed as necessary.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum42

In-Game
Map Editor

Online

Fly

Crawl

Jump

 Figure 3.3 A backlog of features/PBIs

The value of each feature to the player is used to prioritize the backlog.
The product backlog is not meant to be a detailed list of every feature we may
need; that makes it too cumbersome to manipulate. Instead, the PBIs on the
top of the list—in other words, the PBIs of highest value—are disaggregated,
or broken down into small enough features for the team to work on over one
sprint. Figure 3.3 demonstrates some PBIs for an example platform game.

Jump, crawl, and fly are the most valuable PBIs to implement right now and
are at the top of the list. These PBIs are small enough to complete in a single
sprint. PBIs such as online or in-game map editor are lower priority and are not dis-
aggregated into smaller PBIs until the team is closer to implementing them.

Sprints
A Scrum-developed project makes progress in sprints. These iterations are the
heartbeat of the project.

Sprints have a fixed duration (timebox) of two to four weeks. Teams com-
mit to PBIs they can complete within the sprint. The overall objective of the

From the Library of Wow! eBook

ptg

Scrum Parts 43

sprint is called the sprint goal. A sprint goal is the overall theme of the sprint
to which the team commits.

The sprint goal remains unchanged. At the end of the sprint, the team
shows a new version of the game to the stakeholders, such as the publisher,
which demonstrates the sprint goal.

DeFinition A stakeholder is someone who has a stake in the outcome of
the game project. These include people on the publishing side,
other members of the project, and studio management.

Sprints produce vertical slices of functionality; they are like mini-projects
themselves. A sprint contains design, coding, asset creation, tuning, debugging, and
optimization—everything necessary to produce a potentially shippable game.

Many features require multiple sprints to develop. Sprints still need to dem-
onstrate value at every review. Sometimes the customer wants to see some of the
uncertainty or risk removed from the project as early as possible. Take, for example,
a team delivering AI features: One of the most difficult challenges of AI behavior
is navigation in a complex environment. The AI system has to identify obstacles
that prevent an AI character from moving and calculate a path around them. With
the addition of moving characters and objects, the problem can become intrac-
table. Navigation is one the riskiest problems to solve for the entire game.

We want to solve the navigation problem as early as possible. Other related
systems—such as character animation and physics—might not be mature enough
to support the sprint goal of having a polished AI character walk through a com-
plex environment. In this case, a sprint goal for the team could be to demonstrate
simple capsules navigating a complex test environment. This goal doesn’t demon-
strate a complete feature, but it does represent value in reducing risk.

Does this remove all the risk associated with AI characters navigating com-
plex environments? No. It addresses a big part of the problem. There still may
be other problems that crop up when progress is made with the animation and
physics. We want to minimize work built on assumptions. For example, the next
sprint goal for the AI team could be to demonstrate the test capsule “climbing”
stairs. Discovering that AI characters can’t climb stairs during production could
be a disaster if a number of levels and animations were built assuming it worked.

releases
Releases are a set of sprints meant to bring a game with major new features to
a near-shippable state. A typical release lasts between two to four months. The
pace of releases is similar to those of milestones on a typical project.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum44

Near-shippable state means “playable by potential buyers of the game but
not necessarily ready to package with full content or pass all first-party require-
ments tests.” On a two-year project, releases leading up to the shipped game
should have a “magazine on downloadable demo quality.” Games ship follow-
ing the release that ensure first-party hardware (technical certification require-
ment [TCR] or technical requirements checklist [TRC]) or broad hardware
compatibility tests are completed.

Releases establish longer-term goals for the team and stakeholders. They
require an elevated level of polish and debugging that reduces a great deal of
uncertainty about the work left to do to ship the game.

Releases start with a planning session that establishes major goals for the
game. A release plan drives the goals for each sprint. Figure 3.4 shows how
the release plan is a subset of features from the product backlog and how each
sprint goal is a subset of the release plan.

note Chapter 6, “Agile Planning,” describes the release plan in
detail.

Scrum roles
Scrum gains much of its benefit from sprints and teams that make commit-
ments to goals and own their work. There is a distinct separation in the roles
and responsibilities between Scrum teams and the customers. Scrum teams and
customers agree on goals, which satisfy clearly defined needs of the customer.
Figure 3.5 shows the various roles described in this section.

the Scrum team
A Scrum team consists of a ScrumMaster, a product owner, and a team of
developers.

The ScrumMaster is responsible for educating the team about Scrum,
ensuring the members follow the practices established for themselves. The
ScrumMaster facilitates problem solving and runs interference for the team
against the chickens (or invading pirates) when necessary (see the section
“Chickens and Pigs” and the sidebar “Renaming Chickens and Pigs”). This was
what our F-14 pilot did for us.

From the Library of Wow! eBook

ptg

Scrum Roles 45

Product Backlog

Release Plan

Sprint Goal

Feature

Feature

Feature

Feature

Feature

Feature

Figure 3.4 Subsets of planning

The
Team

Animator
Tester

AudioProgrammer

Programmer
Modeller

Designer

Product
Owner

Studio
Executive

Publisher
Producer

ScrumMaster

Customers

Scrum Team

Stakeholders

Figure 3.5 The Scrum roles

From the Library of Wow! eBook

ptg

Chapter 3 Scrum46

The product owner is responsible for communicating the vision of the
game and maximizing the return on investment (ROI). The product owner
maximizes ROI by establishing and prioritizing the desirable features in the
product backlog.

The team delivers sets of features from the product backlog every sprint.
Developers are self-organizing and self-managing; they determine how much
work they can commit to at the start of a sprint and take responsibility to
deliver the completed work by the end.

In coming sections, we’ll cover the roles on a project that uses Scrum.

the team
The team includes everyone from every discipline necessary to complete the
goals that the team commits to for a sprint. For example, a team committing to
a goal that required a walking, talking AI character should have animators, AI
programmers, character modelers, and even QA to help the team ensure that
the goal is done.

note The term teams often refers to everyone on a project. In the
book, we’ll call that group the project staff. Therefore, a proj-
ect staff of eighty people might contain seven to nine teams.

terminology There has been a lot of debate about these terms in the Scrum
community. The community has settled on these terms for the
benefit of consistency. Personally I prefer calling the team the
developers to avoid multiple uses of the word team in the official
definitions, but I’ll stick with calling them the team for the book.

Scrummaster
The ScrumMaster role is pivotal for the success of Scrum, yet it is the most
misunderstood role. It is neither a traditional lead nor a management role. The
ScrumMaster improves the use of Scrum through coaching, facilitation, and the
rapid elimination of anything that distracts the team from delivering value.

Responsibilities
The job of the ScrumMaster is to ensure that Scrum is a success. The Scrum-
Master must apply the principles of Scrum and deftly guide the team through
the practices.

When a team starts using Scrum, they should rigorously apply a subset of
Scrum practices “by the book.” Over time, those practices gradually change as

From the Library of Wow! eBook

ptg

Scrum Roles 47

the team finds better ways of working together. The ScrumMaster’s role is to
ensure that the principles behind Scrum remain intact and that the team sticks
to the practices they agree to follow.

note Chapter 16, “Launching Scrum,” discusses such adoption
strategies in greater detail.

The ScrumMaster is the conscience of the team in a sense; the principles
of Scrum are inconvenient at times. For example, a team may be ignoring bugs
or unpolished assets in their rush to deliver on a sprint. The ScrumMaster must
remind them that each sprint delivers a vertical slice of the game and must not
defer bug fixing or asset polishing to a future sprint.

One of the main responsibilities of the ScrumMaster is to nurture the
sense of ownership within the team. Ownership has great value (see the sidebar
“Ownership”). The ScrumMaster knows when to let teams occasionally falter
and when to lend support. Much like a good parent, the ScrumMaster knows
that protecting the team too much does not lead to growth and independence
of thought and action.

The specific responsibilities of the ScrumMaster are as follows:

●●

●

Ensures impediments are addressed

●

●

Monitors progress

●

●

Facilitates planning, reviews, and retrospectives

●

Helps stakeholders and teams communicate●

Encourages continual improvement

●

OWnerShIP
A sense of ownership leads teams to solve impediments a bit faster than teams
that take little control over their work. Ownership leads to more passion about
their efforts. I’ve seen teams with a sense of ownership work overnight to
implement something they felt strongly about. The goal, however, isn’t to have
teams work overnight but to engage in and enjoy the work. Making games
should be a creative and fun process. If it isn’t, how can we expect the game
itself to be creative and fun?

Teams take ownership of their work during the sprint. This is an important
feature of Scrum since it enables the team to truly commit to the work they
estimated they could complete. Teams committed to their work far outperform
teams that are not. If sprint goal changes are imposed on the team, they lose
this sense of ownership and the commitment that comes with it.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum48

ensures impediments Are Addressed
There is seldom a single event that causes a project to be late; there are usu-
ally many hundreds or thousands of problems. Losing just a couple of hours
a day can extend the time required to finish a one-year project by several
months!

Scrum refers to every problem that interferes with progress as an impedi-
ment. Impediments take various forms:

●●

●

Bugs that crash the game or tools

●

●

Excessive or long meetings that don’t produce results

● Constant distractions or interruptions from, for example, a frequently
used intercom system

●● Waiting for someone to finish something you need to make progress
on your task

The list goes on. Scrum focuses the team on solving many of these impedi-
ments through the creation of cross-discipline teams and the daily scrum. A
programmer who needs a test asset can turn to a team artist for help. A designer
who shares the same sprint goal with a programmer finds that the programmer
is easily motivated to help them solve a bug.

A cross-discipline team will rapidly solve most impediments identified
throughout the day on their own. The ScrumMaster’s role is to ensure that vis-
ibility of impediments is raised to the proper level so they are addressed.

Some impediments cannot be solved by the team. For example, if an ani-
mator needs a tool purchased, the team probably does not have the authority
to issue a purchase order directly. Much like my former F-14 boss did, the
ScrumMaster takes ownership of this problem and raises it to the necessary
level for the purchase to be authorized. Without this daily support, the tool
purchase could take weeks to resolve.

Sometimes impediments take time to be resolved. The ScrumMaster tracks
these to ensure that they are not forgotten.

monitors Progress
The ScrumMaster ensures that the team remains aware of how well they are
performing against their goal. A Scrum team monitors its progress every day
and projects progress against the goal. If the team is slipping behind, they must
be aware of it as soon as possible.

From the Library of Wow! eBook

ptg

Scrum Roles 49

Facilitates Planning, reviews, and retrospectives
The ScrumMaster ensures that all team meetings are prepared for and facili-
tated. Facilitating a meeting includes scheduling the time, preparing the space,
and ensuring that the meeting occurs within the time limits to which every-
one agreed.

Ensuring that a meeting runs well is a deep skill that ScrumMasters need to
continually develop and help teams learn to execute well on their own.

encourages continual improvement
The ScrumMaster encourages the team to seek ways to improve their per-
formance as a team. This never ceases. Even with the most productive teams,
the ScrumMaster encourages them to seek even a single percentage point of
improvement. This promotes a culture of continuous improvement. Improve-
ments could be as simple as moving desks closer to improve communication
or as hard as requesting new technology that improves the efficiency of the
production pipeline.

The ScrumMaster role is mainly a facilitative one. The ScrumMaster might
recognize problems before the team and identify a favored solution, but they
should never lead by implementing the solution. Instead, a ScrumMaster will
help a team recognize problems and own the solution. This teaches them the
invaluable skill of identifying and solving problems on their own. In many ways,
the role of the ScrumMaster is to coach the team to eliminate the need for a
ScrumMaster.

helps Stakeholders and teams communicate
Stakeholders and development teams speak different languages. Stakeholders
speak about return on investment, profit/loss calculations, sales projections,
and budgets. Development teams talk about technology, gameplay, and artis-
tic vision. This divide of language prevents real communication from occur-
ring between the two groups. It’s the job of the ScrumMaster to facilitate this
communication, primarily through teaching the team the necessary amount
of business language and focusing much of the communication bandwidth
through the product backlog.

Attributes
A ScrumMaster’s role on the team is compared to a sheepdog. They guide the
team toward the goal by enforcing boundaries, chasing off predators, and giving

From the Library of Wow! eBook

ptg

Chapter 3 Scrum50

the occasional bark. The role of a ScrumMaster requires a proper attitude. An
overbearing sheepdog stresses out the flock. A passive sheepdog lets the preda-
tors in among them.

The ScrumMaster trusts the team. The ScrumMaster guides the team
to do their best work through coaching and facilitation. The ScrumMaster
role is not easy, but it is rewarding. A ScrumMaster has to be stubborn and
persistent. Many issues facing a team require intervention at a personal level
with people who may not want to change their behaviors. For example,
take a manager of considerable authority and many years of experience in a
command and control environment who does not believe self-organization
works. This manager repeatedly interferes with a team in ways that distract
the team by assigning new work in the middle of a sprint. The ScrumMaster
needs to persistently remind the manager about the purpose of Scrum and
the reciprocal commitments between the team and the stakeholders. This
needs to be done in a way that does not offend and raise barriers. It’s a coach-
ing role. Not everyone can do it.

There is a formal course meant to introduce Scrum. This “Certified Scrum-
Master Training Course” is an immersion in the practices and principles of
Scrum given by a Scrum trainer who is certified by the Scrum Alliance.3,4

This course is highly recommended for anyone new to Scrum, and it will
also benefit members of an experienced team by reinforcing the principles and
practices of Scrum.

ShOULD The SCrUMMASTer ALSO Be A MeMBer OF
The TeAM?
A ScrumMaster is usually not a developer on the team. A ScrumMaster can han-
dle two to four teams before their role starts becoming a full-time job. It depends
on how many organization impediments exist that the ScrumMaster needs to
address. This limitation may mean that there are not enough ScrumMasters
to go around.

note Sprint lengths are usually set between two to four
weeks and don’t change much. The best sprint length is
discussed in Chapter 4, “Sprints.”

3. www.ScrumAlliance.org
4. I also provide a Certified ScrumMaster (CSM) class specifically tailored for game

development. Visit www.ClintonKeith.com for more details.

From the Library of Wow! eBook

www.ScrumAlliance.org
www.ClintonKeith.com

ptg

Scrum Roles 51

Teams often ask, “Should the ScrumMaster stay as a developer on the
team?” I prefer that a ScrumMaster not be a developer on the team. The
“ScrumMaster as a member of the team” role can cause some problems if any
of the following occurs:

They focus on their own tasks more than on the ScrumMaster role.●●

They prioritize their own impediments over those of other teammates.●●

●● The team assumes the role is a leadership one, but they defer owner-
ship to the ScrumMaster.

Sometimes there is no choice but to have the ScrumMaster be recruited
from the developers on the team. When this happens, everyone on the team
needs to watch out for these problems.

weAring the
ScrumASter

hAt

Sometimes when a developer on the team takes on the role of
the ScrumMaster, they carry a hat around with them. They
don the hat when they are in the ScrumMaster role and take it
off when they are in the developer role. It helps the team
know who is speaking to them.

Product owner
The product owner establishes and communicates the vision of the game and
prioritizes its features.

The product owner is responsible for the following:

●●

●

Managing the ROI for the game

● Establishing a shared vision for the game among the customers and
developers

●●

●

Knowing what to build and in what order

●

●

Creating release plans and establishing delivery dates

●

Representing the customers, including the player who buys the game●

Supporting sprint planning and reviews

●

Most video game projects have one true release to get things right. Most of
our games can’t slowly grow their feature sets and a market simultaneously like
other products. This requires great vision; it makes the role of a product owner
on an agile video game project critical.

From the Library of Wow! eBook

ptg

Chapter 3 Scrum52

Manages the ROI
The product owner is responsible for ensuring that the investment in the game
is returned with a profit. This requires the product owner to know what the
market wants, even years in advance of the release.

The product owner is responsible for other metrics of a project’s success.
These include the performance of the game on the target platforms, the final
cost of the game, and the ship date. Forecasts, such as average game rankings and
profit/loss (P&L) calculations, can be applied, but these are marketing projec-
tions that can’t guide projects very well. The product owner creates a bridge
between marketing, sales, and the Scrum team by demonstrating the emerging
game and collaborating on the direction the game is heading.

Creates a Shared Vision
The product owner is a single voice for the vision that is shared with the team.
They ignite creativity and ownership with the team and collaborate with them
as the vision evolves with the emerging game.

Having a shared vision is critical for the success of any game. Lacking
vision, a large team of developers will go off in separate directions, creating a
Frankenstein game of parts that don’t mesh. We’ve all seen these games—the
ones that have beautiful art but no great gameplay, the games that have a great
mechanic but too many performance problems to be playable, or the games
that have dozens of mechanics but not one of them done well.

Sharing a project vision is not easy. It was easier when a game had a few
less-specialized developers, but many games being developed today require a
small army of specialists. Large development teams allow people to become
isolated by discipline. This isolation creates further barriers to a shared vision;
programmers sitting together start to see a game project as a computer sci-
ence project. Artists produce art that satisfy other artists. Designers create
baroque control schemes that only other designers can appreciate. Each
group focuses on the challenges for their own discipline and loses sight of
the business side.

The product owner’s role in creating the vision for a video game project
is comparable to the role played by key visionaries such as Shigeru Miyamoto,5

5. Creator of Donkey Kong, Mario, Zelda, and so on

From the Library of Wow! eBook

ptg

Scrum Roles 53

Will Wright,6 Tim Schafer,7 Warren Spector,8 and Sid Meier9 on their projects.
A product owner represents the ultimate customer during development: the
player. The product owner has to foresee what the market will embrace up to
three years in advance. They have to know the mind and emotional responses
of the player.

Owns the Product Backlog
The product owner owns the product backlog and determines the order of
features on the backlog. This order reflects the order of when those features are
developed.

The product owner usually cannot manage a product backlog alone. The
backlog may have features that require a technical, artistic, or design under-
standing to create or prioritize. Some features support the efforts of sales and
marketing to help promote the game, such as in-game advertisements. The
product owner needs to work with the various customers and stakeholders of
the game to understand all of their needs.

Manages Releases
The product owner manages the releases and calls for release plans and the
delivery date. The product owner revises the release plan based on changes to
the goals or the progress from the teams during sprints. The product owner
guides the various release activities. We’ll cover these activities in more detail
in Chapter 6.

Sprint Planning and Review
The product owner has the following major duties during a sprint:

●●

●

Establishing and updating the features on the backlog and their priorities

●

●

Participating in sprint planning

● Participating in the sprint review and accepting or rejecting the
results of the sprints

Figure 3.6 summarizes the role of the product owner regarding the product
backlog and sprints.

6. Creator of The Sims and Spore
7. Creator of Full Throttle and Physchonauts
8. Creator of Deus Ex
9. Creator of the Civilization series

From the Library of Wow! eBook

ptg

Chapter 3 Scrum54

Accepts or rejects
sprint results

Partcipates in sprint
planning sessions

with Scrum teams

Attends sprint
review

Updates backlog
features and
priorities

 Figure 3.6 The product owner role

customers and Stakeholders
The relationship of customers and stakeholders to the Scrum team is impor-
tant. They define many of the items on the backlog. They work with the
product owner to help prioritize the backlog. Although the product owner is
a member of a Scrum team, the product owner is considered the “lead cus-
tomer.” This person determines the priority of features on the backlog. The
product owner provides a service to the team by being the one voice of all the
customers and stakeholders.

The ultimate customer is the player who will buy the game. Although the
player doesn’t directly define the requirements of the game, all stakeholders
represent them. The stakeholders are people outside the team that have a stake
in the game being made.

The following are some common stakeholder roles:

●● Publisher-producer: The publisher-producer communicates the prog-
ress and goals between publisher and the studio. One of the main values
of this role is to ensure that both sides have the same vision about the
game and that there is transparency about the progress of a game.

From the Library of Wow! eBook

ptg

Chickens and Pigs 55

●● Marketing: Marketing provides input on the relative importance
of features in the backlog and, by understanding the backlog, more
effectively communicates the key features of the game to the market.

●● Studio leadership: Studio art, design, and technology leadership
help the product owner prioritize work, especially with respect to
cost and risk of feature development. For example, as a former chief
technical officer, my role was to work with the product owner and
the project staff to address areas of technical risk through the product
backlog.

Each of these stakeholders can introduce feature requests to the product
backlog. For example, when I was a CTO, I was mostly concerned with the
technical risk in implementing various features in the game and the pipeline. As
a result, I introduced requirements that helped the team gain knowledge about
risk or helped everyone understand the cost of implementing a feature.

note Many agile books will combine the roles of stakeholders and
customers into the customer role. However, with many games
taking years to develop that are externally financed, the distinc-
tion is important to game developers. Stakeholders are the
proxies for the true customers who do not have a voice to com-
municate their wants and needs about the game every sprint.

chickens and Pigs
A book describing Scrum can’t avoid telling the story about “the pig and the
chicken,” so here goes:

Once upon a time, a pig and chicken were talking. “I have an
idea,” the chicken exclaimed, “let’s open a restaurant; we’ll call it
Ham and Eggs.” The pig thought about it for a moment and said,
“No thanks…you’d only be involved, but I’d be committed.”

This is how the labels of pigs and chickens got their start (see the sidebar
“Renaming Pigs and Chickens”). Pigs are the members of a Scrum team who
commit to the work in the sprint. Chickens are the customers and stakeholders
outside the team who do not make the personal commitment to the work.

Chickens influence the direction of the project between sprints. Chick-
ens and pigs discuss the goals of an upcoming sprint and prioritize the prod-
uct backlog. The pigs (teams) commit to implementing features. The chickens
commit to allowing the team to achieve those goals without interference. This

From the Library of Wow! eBook

ptg

Chapter 3 Scrum56

reciprocal commitment between the pigs and chickens enables Scrum to work.
If the chickens are allowed to change a sprint goal, then it is not possible for the
pigs to truly commit to it at the start of the sprint.

renAMInG PIGS AnD ChICkenS
The distinction between the pig and chicken roles is important in Scrum. Com-
panies that adopt Scrum are very conscious of the distinction when working
out the practices. Some teams come up with new terms to replace the terms
chicken and pig because no one enjoys being called those names.

A good example of replacement terms was coined by the developers at
Swordfish Studios in the United Kingdom. They decided to refer to themselves
as pirates and ninjas.

These terms are more acceptable, but I was uncertain what they meant,
so I asked them about it. “To us, pirates are the chickens; they invade, pillage,
cause all sorts of mayhem, and then leave,” I was told. “OK,” I said, “that makes
sense, but what about ninjas?” The reply was, “Oh, well we called ourselves
ninjas because ninjas are cool.”

As it turns out ninjas and pirates are natural enemies. An Internet meme
has grown up around this.10

Scaling Scrum
Scrum teams have less than a dozen developers, but most game projects require
more developers to create. Scrum supports these larger teams through scaling.
This is done by having a num ber of Scrum teams work in parallel and coor-
dinating their work through practices such as the scrum of scrums, which the
book will address in great detail in Chapter 8, “Teams.”

Summary
Scrum practices and roles are simple and easy to start using. So, why read
an entire book dedicated to using agile practices, such as Scrum, for game
development? The reason is that the practices previously described are only
a starting point.

Scrum creates the opportunity for you to measure and question every
practice you use to make games (inspect) and enables you to introduce change

10. http://en.wikipedia.org/wiki/Pirates_versus_Ninjas

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Pirates_versus_Ninjas

ptg

Additional Reading 57

to improve them (adapt). Scrum gives you empirical tools to measure the effec-
tiveness of your team. These measurements give you feedback about the ben-
efits and drawbacks of every change and enable you to enter the endless cycle
of continually improving your practices. The challenge in adopting Scrum is
to learn how and why it works and then modify your practices to leverage the
transparency that Scrum creates.

The next chapter rounds out the basics of Scrum by detailing the activities
involved in sprints. The remainder of the book addresses how game developers
inspect and adapt the basic practices for developing their games.

Additional reading
Schwaber, K. 2004. Agile Project Management with Scrum. Redmond, WA:

Microsoft Press.

Takeuchi, H., Nonaka, I. 1986. The new new product development game,
Harvard Business Review, pp. 137-146, January-February.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

59

chapter 4
Sprints

in the previous chapter, we introduced Scrum practices and roles. In this chap-
ter, we’ll go into more detail about sprints. We’ll see how they are planned, how
they are conducted on a day-to-day basis, and how the team and stakeholders
review the progress at the end and reflect on how well they worked together.
Finally, we’ll see how sprints might fail to achieve their full goals and how the
teams and stakeholders deal with that.

the Big Picture
Sprints have the following basic rules:

●●

●

They are timeboxed, usually between two to four weeks in length.

●

No additions or changes are made by anyone outside the team.●

The team commits to completing a sprint goal.

●

Figure 4.1 shows the flow of meetings in a sprint.
The team and stakeholders establish a goal in the sprint planning meeting

at the start of a sprint. The progress of the team’s work is shared in the daily
scrum meetings. At the end of the sprint, the team demonstrates their progress
to the stakeholders in a sprint review meeting. Following the review, the team
conducts a retrospective, where they discuss how the team worked together
during the sprint and to seek improvements for the coming sprints.

Planning
At the start of a sprint, teams meet with the stakeholders of the project to plan
the next sprint. Planning a sprint requires two meetings: the sprint prioritiza-
tion meeting and the sprint planning meeting. The prioritization meeting

From the Library of Wow! eBook

ptg

Chapter 4 Sprints60

prepares, or “grooms,” the product backlog and identifies a potential sprint goal.
The sprint planning meeting creates the sprint backlog that defines the work
that the team commits to completing by the next sprint review.

note The product owner and ScrumMaster are part of the Scrum
team and attend these meetings.

Sprint Prioritization
The goal of the sprint prioritization meeting is to review the high-priority
items on the product backlog and to select a potential sprint goal. The meet-
ing begins with the product owner describing the highest-priority features
on the product backlog. The team needs to understand each PBI. This is the
team’s opportunity to raise any design (game design, technical, art, and so
on) questions. For example, if a feature requires the main character to jump,
there may be some questions about how the current animation and physics
technology is applied. This discussion identifies design and high-level imple-
mentation details such as whether a physics-only, animation-only, or blended
solution is best.

Sometimes high-priority PBIs on the product backlog are too large for a
team to tackle in a single sprint. These features are broken down into smaller
PBIs that are expected to fit.

The team next discusses the potential goal for the coming sprint. The team
selects the top PBIs from the product backlog they think they might accomplish
given the current composition of the team. It’s best to end the prioritization

Sprint
Planning

Daily
Scrums

Sprint
Review Retrospective

Figure 4.1 The flow of sprint meetings

From the Library of Wow! eBook

ptg

Planning 61

meeting when approximately two sprints worth of PBIs have been discussed
because some PBIs may not be accomplished by the team. For example, if a
particular feature requires animation but no animators are on the team, then
the team cannot commit to completing that feature unless they find one to
join them.

Another reason to skip a particular PBI is because of a dependency from
another team. For example, a feature that requires engine work to be completed
first should be postponed if the engine team has not addressed that dependency.
The organization of the product backlog and teams reflect the need to avoid
such dependencies, but sometimes they do occur. We want to discuss enough
PBIs during this meeting that the team has some leeway in which they choose
to work on during the next meeting, all while working generally within prod-
uct owner priorities.

At this point, the team hasn’t committed to any work. They’ve identified the
PBIs they may be able to complete, but until they’ve broken these PBIs down
into individual estimated tasks—which they do in the planning meeting—they
aren’t yet ready to commit.

Sprint Planning
After identifying potential product backlog items for the sprint, the team breaks
down the tasks from each PBI, one at a time, to build the sprint backlog.
This occurs in the sprint planning meeting. The participants in this meeting
include the entire team (including the ScrumMaster and product owner) and
any domain expert who may be needed to answer questions or help the team
estimate their work better (such as an online programmer, motion capture
technician, and so on).

At the start of the meeting, the ScrumMaster helps the team identify con-
straints that might impact the team’s ability to commit to the sprint goal. Here
are some examples of these constraints:

●●

●

Holidays that reduce the amount of time available

●

●

Team member commitments to work away from the team

● Potential impacts from other areas, such as the integration of a major
engine change that has caused problems in the past

The team’s ability to commit to work is based primarily on their past per-
formance. This is best determined by examining what the team has been able to
accomplish in past sprints. For example, if the team was able to finish an average

From the Library of Wow! eBook

ptg

Chapter 4 Sprints62

of 400 hours of estimated work in the last few sprints, then it’s probably a safe
bet for them to commit to 400 hours of estimated work for the coming sprint.
This becomes the limit of the sprint backlog, or task bucket, that they have to
fill in the planning meeting.

note The team doesn’t track actual time spent; the team tracks the
estimated time remaining to accomplish tasks. When first
starting Scrum, actual time spent may be double that of the
estimated time because the team isn’t used to including
debugging and tuning time. This is consistent across all tasks
and so is predictable, but it will improve over time.

The team then discusses design and implementation details for every PBI
that is potentially part of the sprint goal. The attendance of the product owner
is important for this discussion since there are many subjective aspects to what
needs to be implemented. For example, the team might want to discuss poten-
tial trade-offs on character motion that looks realistic vs. motion that is respon-
sive to player input but more jarring in appearance.

The team then starts breaking the PBIs into tasks. Figure 4.2 shows the
flow of how PBIs are taken from the product backlog and employed to build
the sprint backlog.

The team starts creating a sprint backlog by taking the highest-priority PBI
from the product backlog and breaking it into tasks. Everyone on the team is
involved at first since design questions are raised. Once the requirements of the
feature are agreed upon, the team starts writing individual tasks and estimating
the amount of time each one takes to complete.

Task estimation takes place within discipline groups. For example, if the
team has four programmers, they estimate the programming tasks together. If
only one programmer is on the team, the programmer estimates all the pro-
gramming tasks on their own.

Tasks are estimated in hours. The team estimate is in ideal time, which is
the amount of time a task should take without interruption or any problems.
This means that an eight-hour task is not the same as a one-day task. An eight-
hour task usually takes more than one calendar day to accomplish. The reason
is that our days are filled with interruptions, problems, and conversations that
vary from day to day.

From the Library of Wow! eBook

ptg

Planning 63

Product
Backlog Start

Done

Sprint
Backlog

Do the task hours
added to the Sprint backlog exceed

team capacity?

Is the sprint backlog full?

Take the next highest
PBI from the backlog

Split/return PBI
to backlog

Add tasks to
Sprint backlog

Identify and estimate
all tasks needed to
complete the PBI

No

NoYes

Yes

Figure 4.2 The flow of creating a sprint backlog

From the Library of Wow! eBook

ptg

Chapter 4 Sprints64

Estimates for large tasks are less accurate than estimates for small tasks. I
can estimate how long a trip to the local store takes to within a few minutes,
but a cross-country drive estimate might be off by a day or two. The limit of
task size is arbitrary, but 16 hours is a reasonable limit as a size before it needs
to be broken down into smaller tasks. Sometimes a team might not have
enough information to break down a task larger than 16 hours into smaller
tasks. Instead, they will create a placeholder task with a larger estimate until
they are ready to work on the task and know more.

After each PBI is broken down into tasks, the total estimated hours are
added up. This total is then compared with the remaining hours available in the
sprint backlog. If the sprint backlog has room for the hours the new PBI adds,
then the team commits to completing that PBI. Of course, each specialty on
the project needs to be within its capacity.

note Even though we got 400 hours of combined work done last
sprint, we can’t commit to 400 hours of animations this
sprint if half the team are programmers. Apply common
sense. Make sure each discipline (specialty or skill group) is
within its capacity, and use the amount of work done during
the last sprint as a guide to what can be completed this
sprint. Part III, “Agile Game Development,” discusses the
disciplines in more detail.

If the new PBI would overflow the sprint backlog, then the team does
not commit to the work. One of three options is available when this happens.
First, the PBI is returned to the product backlog, and another smaller PBI
takes its place. A second option is to break the original PBI into two or more
smaller PBIs. A subset of the original PBI might be identified that fits into
the sprint. As an example, a PBI for creating a level could be broken down
into two PBIs, each for one half of the level. A third option is to drop an item
already pulled in to enable the new item to fit. The product owner can help
the team decide which is the best solution.

The sprint backlog should not be completely filled to the last hour. There
are usually forgotten tasks that show up during the sprint. If the hours remain-
ing are small (a day or two worth of work), then the team doesn’t have to
worry about adding another feature to bring the remaining hours down to
zero. A few hours of additional polishing work is never hard to find!

From the Library of Wow! eBook

ptg

Planning 65

hOW TO eSTIMATe YOUr FIrST SPrInT
While planning a sprint, the team considers the amount of work accomplished
over previous sprints to judge the approximate number of hours they commit to
in the coming sprint. A natural question that comes up is, “How do we estimate
our capacity for our first sprint?” I recommend that the team aim for one-third
fewer hours than they initially estimate. The reason for this is that teams new
to Scrum underestimate the effort to create potentially shippable features at
first. This includes time for bug fixing and polishing, activities not traditionally
included in waterfall task estimates.

If the team runs out of work during the sprint, they conduct a mini-planning
meeting and pick another PBI or two to fit into the remainder of the sprint.
They’ll have a better feel for and be able to more accurately measure the work
they can commit to with every successive sprint.

length
What is the ideal length of a sprint? Sprints typically last two to four weeks, but
many factors influence this:

●●

●

The frequency of customer feedback and change

●

●

The experience level of the team

●

●

The time overhead for planning and reviews

●

The intensity of the team over the sprint●

The ability to plan the entire sprint

●

Over the course of a project, these factors will change, and the length of a
sprint may change as well.

Customer Feedback
The duration of a sprint depends on the amount of time the stakeholders can
go without seeing progress and providing direction on the game. Some core
mechanics require frequent feedback in the early stages of development, so a
shorter sprint is required to be sure the game is headed in the right direction.
For example, the motion of the character, behavior of the camera, and layout
of the controls may require frequent feedback. Some teams don’t need such a
rapid cycle of feedback (such as production teams), so a longer sprint is more
appropriate for them.

From the Library of Wow! eBook

ptg

Chapter 4 Sprints66

The team must not have the goal changed within the sprint. If four weeks
is unbearably long for stakeholders to wait for a review, then they need a
shorter sprint.

Team Experience
Teams new to game development, agile, or working together should start with
shorter sprints. This enables them to iterate on the practices and learn how to
develop more iteratively and incrementally. Teams new to Scrum should be dis-
couraged from practicing longer sprints because they tend to approach a sprint
like a mini-waterfall project (see the top part of Figure 4.3). They’ll spend a
couple of days exclusively in design, spend a few weeks creating code and assets,
and finally integrate, test, and tune during the last few days of the sprint and end
up crunching at the end of the sprint to reach the finish line. This doesn’t give
them the opportunity to achieve the best possible result because there is little
time left to iterate and polish their work.

Experienced teams will perform these activities more in parallel, design-
ing, coding, creating assets, testing, and debugging every day. Working this way
creates better results and enables the team to iterate more during the sprint and
increase the value of their work.

Design

The Sequential Development Model

The Parallel Development Model

Design
Code and Assets

Commit and Integrate
Test and Tune

Code and
Assets

Commit and
Integrate

Test and
Tune

Figure 4.3 Sequential vs . parallel development models

From the Library of Wow! eBook

ptg

Planning 67

Planning and Review Overhead
Shorter sprints often require a larger portion of a team’s time for planning and
review meetings. Review and planning usually require a good portion of a day
regardless of the length of the sprint. Even though planning for a shorter sprint
may take less time, the remainder of the day following the meeting is never
100% effective. Imagine that you had a sprint that lasted one week. You’d prob-
ably spend one day that week in review and planning. That’s 20% of the team’s
time spent in planning!

PlAn to
PArty

Allow the team to have a little celebration between sprints.
Don’t disrupt the cycle of the sprint for it. Set a little time
aside as part of the sprint for people to play the game and
relax. Besides, game developers don’t need much excuse
for a party!

Ability to Plan the Sprint
If the team is uncertain about how to achieve the sprint goal or if experi-
mentation or prototypes need to be done, then the sprint should be shorter.
Uncertainty implies that the work eventually required for the sprint might be
significantly different from what was anticipated at the start. If this is the case,
it’s better to change direction after two weeks than four.

PrototyPe
SPrinting

Some prototype teams have chosen extremely short sprint
times of days!

Balanced Intensity
Sometimes four weeks is too long for a sprint because it leads to a low-intensity
mini-design phase up front and a high-intensity debug mini-crunch phase at
the end. Although the mini-crunch phase isn’t going to kill anyone, it’s not the
most efficient way to work.

chooSing A
SPrint

DurAtion

On my last team, a two-week sprint felt too short. It was as
though the review was too soon to “do anything too challeng-
ing.” A four-week sprint was too long to create a sense of
urgency. We compromised and chose a three-week sprint
because “it felt right.”

From the Library of Wow! eBook

ptg

Chapter 4 Sprints68

When Is the Sprint Too Long?
A product owner usually limits a sprint’s length to four weeks as the longest
amount of time they let pass to direct the goals of the game. Some may argue
that some technical areas (such as engine or pipeline development) cannot
achieve any significant progress in as little as four weeks. The need for lon-
ger sprints to show value usually indicates that the technical practices need to
improve. Any development practice that can’t demonstrate progress at least once
a month should be addressed. Interim goals should demonstrate a reduction in
risk and have value. For example, if a team is implementing the infrastructure
for online gameplay, they might demonstrate simple object messaging across a
local area network after the first sprint. The longer a team goes without proving
or disproving architectural assumptions, the greater the potential waste.

note We’ll discuss this in more detail in Chapter 10, “Agile Technol-
ogy.” Hold on to your tomatoes!

Who Selects the Sprint Duration and When?
The stakeholders and the Scrum team need to determine the duration of a
sprint. If there is a disagreement, the product owner has the final say. The length
of the sprint must be changed only between sprints, and it shouldn’t be changed
too frequently. Frequent changes to the length of sprints are disruptive. It takes
some time for the team to adjust to the rhythm and pace of a particular sprint
length and refine their ability to estimate the appropriate sprint backlog.

tracking Progress
During a sprint, the team needs to share information about their progress and
identify any impediments to their sprint goal. The team needs to have the
proper information to make the best decisions. They need easy access to the
sprint backlog of tasks. They need to understand where they stand in terms of
achieving their goals. They need to recognize as early as possible when they
won’t achieve their goal.

Scrum has a number of low-tech practices and artifacts for providing this
information to teams. Task cards, burndown charts, task boards, and war rooms
have proven their value for tracking progress throughout the sprint. This sec-
tion describes these in detail.

From the Library of Wow! eBook

ptg

Tracking Progress 69

task cards
Tasks can be recorded and tracked in many ways. The most useful form to
store tasks are on 3-by-5 index cards, called task cards. These cards have many
advantages that no tool can match. The major benefit is that they enable every-
one on the team to participate in task creation and management. The task
card enables easy customization using various color cards and markings. For
example, a cinematics team decided to categorize the order of asset creation
tasks by using stamps with pictures of fruit to help them better prioritize their
tasks. The “low-hanging” fruit were picked off the board first. Try doing that as
easily with a tool!

Burndown chart
During the planning meeting, the team commits to accomplishing the sprint
goal based on the sum of the estimated tasks expected to complete it. The
team updates the estimate of work remaining daily to help them track progress
toward their goal. The team plots this day-to-day measurement on a graph,
called a burndown chart (see Figure 4.4). The burndown chart is a tool for
the team to use to gauge how well their efforts are leading to achieving their
goal by the end of the sprint.

Ho
ur

s

700

600

500

400

300

200

100

0

Sprint Days

Hours Remaining

Figure 4.4 An example burndown chart

From the Library of Wow! eBook

ptg

Chapter 4 Sprints70

Daily Sprint Backlog trend
As described in the planning section, tasks are estimated in actual “ideal” hours
of work. An ideal hour is an hour of work accomplished without interruptions,
bugs, tool problems, questions, coffee breaks, friends on the phone, and so on.
We’re lucky if we accomplish four ideal hours of work per eight-hour workday
with all this competition for our time and attention.

The burndown chart tracks ideal hours remaining to accomplish the sprint
goal. The rate that ideal hours decrease per day is called the burndown trend.
Measuring this trend is a powerful tool for Scrum teams.

The burndown trend is for the team to track their progress toward accom-
plishing the sprint goal. Figure 4.5 shows the burndown chart of a team a little
more than halfway through their sprint. Using this chart, the team, in midsprint,
projects their trend (the dotted line) to the end of the sprint. The trend line is a
warning that the team is falling behind and won’t achieve their goal.

Ho
ur

s

700

600

500

400

300

200

100

0

Sprint Days

Trend Hours Remaining

Warning Sign!
Must hit zero

hours at the end
of the Sprint!

Figure 4.5 Projecting the sprint backlog rate by adding a trend line

From the Library of Wow! eBook

ptg

Tracking Progress 71

note The sprint backlog trend is a valuable empirical tool for exam-
ining the impact of any change that the team makes to how
they work.

Some teams will draw an ideal line of progress from estimated hours
remaining at the start of the sprint to zero hours on the last day. Figure 4.6
shows this trend line. This shows the team how far they are above the ideal
projection of remaining time.

It’s important for the team to understand that the goal isn’t to have their
burndown line match the ideal line. The goal is to use the burndown to show
how they are progressing daily.

note We’ll discuss the options available when the team is running
out of time later in this chapter.

700

600

500

400

300

200

100

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ideal Time Hours Remaining

Ho
ur

s

Sprint Days

Figure 4.6 An ideal trend line

From the Library of Wow! eBook

ptg

Chapter 4 Sprints72

BUrnDOWn ChArTS Are nOT neW
Long before I learned about Scrum, I encountered the power of burndown
charts. When our team entered alpha, the publisher threw a couple dozen tes-
ters on the project, and all of us fixed bugs.

Once a week, we triaged the bug database to prioritize the bug “backlog.”
We tracked the total bug count and used a “burndown chart” to measure bug
resolution velocity, bug discovery velocity, and the projected “zero bug” date
that we were trying to reach. All I had to do was fix bugs and achieve the best
possible resolution velocity.

Does this sound familiar? It’s no coincidence that many of the Scrum prac-
tices reflect these practices. Given clear goals, discrete tasks, and an empirical
measurement of progress toward a goal, teams achieve a high level of focus
and effectiveness.

task Board
A task board displays the goal, burndown chart, and tasks for a sprint. The
team gathers around it daily and pulls the work that they need to accomplish
from it. The task board often occupies a large section of a wall. Figure 4.7 shows
an example task board.

Task cards move from the “not started” column to the “done” column as
the work for each card is started and completed. A benefit of this movement,
with the addition of the burndown chart on the board, is that the task board
provides an immediate view of the progress of the sprint.

Task boards have at least four columns. The first column contains the priori-
tized list of PBIs that the team has committed to completing. The second column
contains all the tasks that have yet to be started. Following the sprint planning
meeting, all of the PBIs and tasks are placed in these two columns. The third
column contains all the tasks in progress. As team members decide what they
will “work on next,” they move the associated task card from the second column
to the third column. The last column contains all the tasks that have been com-
pleted. Cards are moved into this column when team members finish tasks.

Tasks are usually lined up in rows with their associated PBIs. This enables
the team to quickly see the overall progress of work for each feature.

Teams might add columns to task boards to represent additional task states.
For example, they could add a “pending” column, between the in-progress and
completed columns, for tasks that need external approval before being moved
to the “tasks completed” column. For example, tasks to complete models or
animations that require aesthetic approval from an art director are placed in a
pending column.

Keith_Book.indb 72 4/21/10 9:31:28 PM

From the Library of Wow! eBook

ptg

Tracking Progress 73

Tasks Not StartedUser
Stories

Tasks in
Progress

Tasks
Completed

Burndown

Figure 4.7 An example task board

tASK BoArDS
AnD grocery

StoreS

Scrum practices were not merely derived from practices
used to develop past products. Sometimes they came from
unusual sources. The use of the practices that guide task
boards was influenced by observing how the grocers
restocked shelves daily!

war room
Many agile teams set aside a small space or room called the war room. The
war room is where the team has their daily scrum meetings and where the tasks
board is displayed. A war room is an austere place. Chairs or other furniture for
people to sit on during the daily scrum are not allowed. Depending on the wall
space, a half dozen teams can share a war room.

Some teams prefer to have the task board in their local team area and have
their daily scrum meetings there.

From the Library of Wow! eBook

ptg

Chapter 4 Sprints74

the Daily Scrum meeting
Each day, teams gather for the daily scrum meeting. Many teams new to
Scrum underestimate the purpose and value of the daily scrum. There are
three purposes for the daily scrum meeting:

●●

●

To synchronize effort among all team members.

● To commit to the work to be accomplished in the next day and reaf-
firm the team’s commitment to the sprint goal.

●●

●

To identify any impediments to be addressed by the team.

● To ensure the team members are “on the same page.” The full team
needs to hear about the problems facing each member so that solu-
tions can be addressed after the meeting. The daily scrum enables
them to micro-steer their progress toward their goal together.

the Practice
A daily scrum is a 15-minute timeboxed meeting that every member of the
team attends. No one is allowed to sit down in the meeting, which reinforces
the idea that this is a quick huddle and not an open-ended laboriously long
meeting. Daily scrums get to the point.

As the team gathers in a circle, each member of the team answers these
three questions:

●● “What have I done since the previous daily scrum?” This
should relate to anything done for the sprint goal or what may have
impeded progress (for example, “I spent the entire day trying to get
the game to run on my PC!”).

●● “What am I going to accomplish between now and the next
daily scrum?” Each team member describes what they plan to
accomplish by the next daily scrum. If there is any work not related
to the goal, the team member should mention it (for example, “I
need to interview a candidate this afternoon”).

●● “What are the problems or impediments slowing me down?”
Impediments are anything that gets in the way of delivering what was
promised during the previous daily scrum (for example, “It takes two
hours to bake assets for the PS3”).

From the Library of Wow! eBook

ptg

Sprint Reviews 75

The daily scrum is not for solving problems. It’s the ScrumMaster’s job to
ensure that all side conversations are kept to a minimum so that the daily scrum
doesn’t become protracted and ineffective. Solving problems is part of what
occurs throughout the entire day.

The daily scrum is probably the most frequently modified Scrum practice,
so this definition of the practice is just a starting point. As a team takes more
ownership of how they work, they are free to modify the practice as long as
the purpose of the meeting (status, commitment, and improvement) remains
intact. For example, some teams will answer the questions one member at a
time, while others will address the progress of each PBI.

Sprint reviews
The sprint review occurs on the last day of the sprint. The review brings the
team and stakeholders together to play the game and discuss the work accom-
plished. During the review, the product owner accepts or declines the results of
the sprint. If the results for a particular feature are declined, then the product
owner decides whether it returns to the product backlog or is deleted.

Sprint reviews should be structured to enable the best level of commu-
nication between the stakeholders and the teams. This is the opportunity for
the stakeholders to inspect the game and communicate with the Scrum team.
If this communication doesn’t occur, the project can go off in directions that
won’t return the best results for the stakeholders.

For larger projects, with more than one Scrum team, reviews can take place
with each team, with groups of teams, or as a single large review. Scrum team
reviews enable a more informal conversation between the team and the stake-
holders. They help communicate the progress of the game more directly. A large
single review has the benefit of unifying vision and shared purpose across all the
teams. This section describes some possible formats for each type of review.

note Chapter 8, “Teams,” will describe using Scrum on large
projects.

Projects and teams are encouraged to vary their review formats, possibly
combining elements of each approach for what works best for the teams and
stakeholders.

From the Library of Wow! eBook

ptg

Chapter 4 Sprints76

Single-team reviews
Team sprint reviews take place with each of the Scrum teams on the project.
The stakeholders visit the team area and review the sprint results. This creates a
casual and comfortable environment for the review.

The meeting starts with a member of the team explaining the sprint
goal and the overall results. If any of the PBIs were dropped, the reasons are
discussed here. Then one or more team members play the game and demon-
strate where each goal has been achieved. The controller is often passed to a
customer to play.

There are numerous benefits from team reviews:

●● It fosters high-bandwidth communication between the customer and
the team. Individual team members and stakeholders directly com-
municate in depth, which creates an improved vision for the game.

It enables more hands-on time for the stakeholders. ●●

However, there are some drawbacks to small reviews:

●● If other people on the project want to see the team reviews, it creates
a roaming crowd that moves around a studio. This might interfere
with some of the benefits previously listed.

●● It inhibits cross-team collaboration. Teams might see their work as iso-
lated products, which creates integration issues (among other problems).

●● The review, for a large game made up of a dozen Scrum teams, is
very time-consuming for the stakeholders.

multiteam reviews
A large sprint review meeting is held in an area that accommodates the entire
project staff and all the stakeholders. This can require a large space. On projects
with more than one team, one of the ScrumMasters or the lead product owner
becomes the emcee and describes the results of the past sprint. These results
include the overall goals and the major impediments of the sprint. The meeting
is handed over, in turn, to a member of each team that contributed features.
Each person describes their team’s progress and shows an aspect of the build
that demonstrates where the team added value.

note A build consists of the current executables and exported
assets that make up the running game. The source code and
assets for the current build are also considered part of the
build as they are used to create it.

From the Library of Wow! eBook

ptg

Sprint Reviews 77

A Q&A session follows the presentations to allow comments about the
game and discussion about its future direction. If the project staff is large (more
than 50 people), then a smaller follow-up meeting may take place between
the stakeholders, the leads, and the ScrumMasters. The reason for this meeting
is that larger reviews inhibit some of the critical feedback and detailed con-
versations that need to occur. For example, conversations about the quality of
animation across the entire game need to include the animation and technical
leads for the project. In a large team setting, this conversation might be muted
to avoid coming across as too critical of the animators when the problem could
be caused by the animation technology.

The leads and ScrumMasters are strongly encouraged to discuss the results
and decisions with their teams immediately following this meeting.

The benefits of a full project review are as follows:

●●

●

The entire project staff is able to see the progress of the entire game.

● Showing only one build encourages cross-team integration and
improved build practices.

●● The overhead in time for the stakeholders is minimized. The entire
review should take place in an hour or two.

The drawbacks of a project review are as follows:

●● The teams often require more time to prepare. Large reviews are
often treated more as ceremonies rather than quick demonstrations
for the customer.

●● The one-on-one customer-to-developer communication that occurs
in team reviews is diminished.

Publisher Stakeholders
One of the biggest challenges for game projects using Scrum is having the
publisher’s voice represented in the sprint reviews. We’ve all worked on games
where the publisher ignores the progress for the first 80% of the project and
then overwhelms the project with feedback during the last 20%, when the
opportunities for change are at a minimum. If your project has a publisher, they
must be included to avoid late course corrections.

If the publisher is thousands of miles distant, it’s usually impossible to have
a representative from them visit for every sprint review. This doesn’t mean they
cannot provide useful feedback, however. Every effort should be made to have
the publisher play builds and have their feedback incorporated into the next

From the Library of Wow! eBook

ptg

Chapter 4 Sprints78

sprint. We always demand that the publisher visit at least for release planning
and reviews. These are just too critical to ignore.

note When a publisher is present during a review, it has a big impact
on the project. Have them speak to all Scrum teams about the
progress made. There is nothing like hearing feedback directly
from the publisher!

Studio Stakeholders
Studio executives and managers need to attend reviews as well. Reviews pro-
vide a very concise and transparent view into the progress and challenges of a
project.

honest Feedback
It’s critical that stakeholders provide honest feedback to the team. Too often,
they see the progress but don’t always insist that sprints need to deliver vertical
slices of functionality. If the team has committed to delivering a character that
walks and runs but has a few transition bugs, the stakeholders need to call them
on it. Many stakeholders don’t want to discourage teams by criticizing any-
thing, especially when the team has worked hard and delivered value. However,
allowing debt, such as bugs, to accumulate does the team a disservice later by
creating further debt. Honesty is the best policy in reviews.

retrospectives
Throughout the agile development of a game, we apply the “inspect and adapt”
philosophy. We inspect the progress of the game and adapt our plans to the
value of the emerging game. We inspect the progress of the team daily and
adapt our tasks to maximize progress. This philosophy also applies to how team
members work together and apply Scrum. This is one purpose of the sprint
retrospective meeting.

The sprint retrospective meeting is possibly the most important, yet most
neglected, practice. The goal of the meeting is to continually improve how the
team creates value for the game. This is accomplished in the retrospective by
identifying beneficial practices, stopping detrimental practices, and identifying
new practices to be tried in the next sprint.

From the Library of Wow! eBook

ptg

Retrospectives 79

The retrospective is where much of the improvement of development prac-
tices occurs. Changes don’t necessarily have to be large ones; a 1% improvement
in the effectiveness of the team every sprint compounds into huge improve-
ments over the long term.

the meeting
The retrospective meeting occurs after the sprint review. The entire Scrum
team attends. It’s facilitated by the ScrumMaster and is a timeboxed meeting.
The team selects a time limit for the meeting before it starts. Teams will select
times from thirty minutes to three hours depending on how much needs to
be addressed.

The following three questions are raised at the meeting:

●● “What things should we stop doing?” The team identifies
detrimental practices identified during the last sprint that they want
to stop.

●● “What should we start doing?” The team identifies practices that
help them improve how they work together.

●● “What is working well that we should continue to do?” The
team identifies the beneficial practices that should be continued.
Usually these are changes introduced at recent retrospectives.

It’s up to the team whether they want to invite people from outside the
team. If a team interacts with people outside the team during the sprint, then
including these people in the retrospective is valuable.

A lot of discussion should occur during the retrospective. The ScrumMaster
should facilitate these discussions to help keep the pace of the meeting within
its timebox.

The purpose of the retrospective meeting is to identify changes in the
ways the Scrum team works together, usually in the form of action items. The
answers to the questions asked result in action items. These action items aren’t
always assigned to individuals during the meeting; it depends on the action item
itself. The following are examples of answers to the question “What should we
start doing?” and some potential actions that could result:

●● “Start having QA approve all tasks marked ‘done,’ if possible.”
This doesn’t require an action item; it is a working agreement for all of
QA to adopt.

From the Library of Wow! eBook

ptg

Chapter 4 Sprints80

●● “Make sure Joe tests his animations before committing them.”
Clearly, Joe has to follow up on his animation testing, but since this has
to happen daily, there doesn’t need to be a specific action item.

●● “Have the build server send an e-mail when the build is
broken.” If the team has programmers who can implement this
change, then they could implement it themselves. If not, this gener-
ates an action item to pass along this request to the team that main-
tains the build server.

Posting and tracking results
The ScrumMaster records all the answers given for each question. Follow-
ing the retrospective, they post the results of the meeting in the team area
and check off all the items on the list that have been fulfilled during the next
sprint. Any items left unchecked from the last retrospective are discussed at the
next retrospective. These items are either carried forward to the next sprint or
removed from the list based on what the team decides.

Retrospectives help the team become more effective over time. Ignoring this
critical practice prevents the benefits of agile adoption from being realized.

Sprint Failures
The goal of a sprint is to advance the value of a game within a fixed amount
of time. The team meets with the stakeholders and negotiates to find a goal
that they commit to achieve. The team then implements the code, assets, and
behaviors. What could be simpler?

Sometimes things don’t work out quite so simply. Unforeseen roadblocks
slow progress. Stakeholders change their mind. Our process has to accommo-
date the vagaries of life and development.

Scrum handles these problems in a number of ways. Small and large impacts
to the sprint are quickly exposed. The Scrum team addresses these and works
with the stakeholders to react to the problems. Sometimes these problems can’t
be handled through daily fixes and result in the team failing to achieve the
sprint goal. This section looks at what they are able to do when this occurs.

Sprint interrupted
In the fall of 2007, following an unusually warm weekend, we woke up to a dif-
ferent world in San Diego. The southern sky was different; a horizontal column

From the Library of Wow! eBook

ptg

Sprint Failures 81

of dark orange sky fell across it like a wall. Blown from the east by a Santa Ana
(desert) wind, it could only mean that there was a wildfire out of control again.

A quick check of the news assured me that the fire was distant and no
immediate threat to our town, so I decided to head into work. The studio was
like a ghost town; many employees had distant commutes, and they decided not
to press their luck that day.

Shortly after lunch, our fortunes changed. The main fire had spawned a
number of other fires, some of which were a direct threat to the studio and
surrounding homes. This happened so suddenly that we found ourselves in an
evacuation zone. I faced the imminent threat of being cut off from my family
by closed roads, so I raced for the door.

On the way out, I was met by one of our ScrumMasters. Although he was
just as determined to escape, he paused to ask, “What do you think this means
to Friday’s sprint review?” I initially thought he was joking, but his expression
was one of concern. I had to admire the tenacity of his ScrumMaster training. I
told him that all bets were off and wished him and his family the best of luck.

Fortunately, none of the studio employees lost their homes (or worse) this
time around, and the studio was spared. People trickled back in over the next
week, and the sprints resumed. The studio probably lost close to two weeks
of work.

We discussed restarting a new sprint or finishing the remainder of the
sprint in progress, but we decided to finish. Work picked up smoothly where
we had left off, and we had a successful sprint.

Sprint resets
One of the most drastic practices in Scrum is called the sprint reset (also
called an abnormal termination). A sprint reset allows the team or the stake-
holders to declare that the sprint goal needs to change or that the team is
unable to complete that goal by the end of the sprint. When a sprint is reset, all
of the incomplete PBIs are returned to the product backlog. Code and assets
in development are regressed, and the team and stakeholders return to sprint
planning.

Sprint resets are costly. Much of the work in progress is potentially lost.
Resets should be rare. They must always lead to ways the stakeholders and team
improve communication and their ability to plan.

when teams Fail
Although you may not have wildfires and earthquakes, there are a few more
common reasons for sprints to fail. The two main reasons are when the sprint

From the Library of Wow! eBook

ptg

Chapter 4 Sprints82

goal changes or the team realizes it will not achieve its sprint goal because it
has run out of time.

Goals Change
Imagine a team is working on their jump feature when the CEO runs in with
an emergency; he’s agreed to demonstrate an online feature in two weeks! This
new feature is suddenly more important to him than any other feature. What
does the team do?

First, the team does nothing. The ScrumMaster must intervene at this
point. The first thing that the ScrumMaster does is separate the CEO from the
team area and firmly remind them that interrupting a sprint has great costs. The
CEO needs to understand the cost of a sprint reset. Next, the product owner
is brought into the discussion. The three of them then discuss the feature in
more detail. The product owner then brings in domain experts to discuss the
feature if necessary. For example, if the CEO wants an online feature, an online
programmer may be consulted.

If the group decides the online feature should be pursued (or if the CEO
sticks to his guns), then a proper PBI encompassing the feature is written. The
team best suited to accomplish this feature is gathered to perform a preliminary
sprint planning session to evaluate the scope of this new feature and whether it
could possibly be finished in a two-week sprint.

If the team determines that the goal cannot be accomplished, then the
CEO must be told “no.” Perhaps a smaller portion of the original feature is
discussed, but the team must not commit to the work. If the team determines
that it is possible to complete the feature within a new sprint, then the sprint
is reset, and a new sprint is fully planned to deliver the online feature within
two weeks.

oBjection:
my ceo

DoeSn’t tAKe
“no” AS An

AnSwer

There is a saying that “a dead ScrumMaster is a useless
ScrumMaster” (Schwaber 2004). If you are fired for stand-
ing up to the CEO because he is not following the “Scrum
rules,” you aren’t helping your team. Live to fight the battle
another day and to influence stakeholders to do these
things less often.

Running Out of Time
Estimating work for even a two-week sprint isn’t 100% certain. Problems can
blindside the team; tasks that seemed minimal can balloon into large challenges.

From the Library of Wow! eBook

ptg

Sprint Failures 83

Sprint teams sometimes find themselves approaching the end of the sprint with
too much work and not enough time left to accomplish it.

The first tool in evaluating the progress of a sprint is the burndown chart.
As previously described, the burndown chart is a tool to monitor the work
remaining. In some cases (see Figure 4.5), the burndown chart shows that the
team will not hit zero hours by the end of the sprint. Projecting the burndown
trend clearly shows this. The rules for a sprint are that teams must hit zero hours
of work remaining by the end of the sprint and that the end date for a sprint
must never change.

In this situation, the team then has one of three choices:

Work some overtime to make up the difference.1.

Negotiate with the product owner to remove one or more of the 2.
lower-priority PBIs or remove part of a PBI.

Request a sprint reset. Set a new sprint with more achievable goals.3.

The team explores the solution to the problem in this order; they com-
mitted to the work and should do their reasonable best to accomplish it.
If the debt of work remaining exceeds what can be accomplished with a
reasonable amount of effort, they should approach the product owner and
request that some PBIs be dropped from their list of goals for the sprint. If
the product owner agrees to drop some PBIs, they are usually one of the
lower-priority ones. Dropping individual PBIs may not be possible if they
are highly interrelated. In this case, the team and product owner should call
for a sprint reset.

note For teams I have been on, we commit to work evenings dur-
ing the week if we need to catch up, but we never work any
weekend hours. After the sprint we will discuss the reasons
for why this extra work was necessary and try to find ways to
avoid it in the future. Chapter 14, “The Myths and Challenges
of Scrum,” will talk about overtime and crunch more.

The question is often raised about how much overtime the team should
put in before they request that some of the work be dropped. There is no
specific answer to this. Teams typically abhor dropping goals. They prefer to
work some overtime but not crunch hours. Overtime should not be invoked
very often. If teams experience overtime every sprint, they need to reduce the
amount of work to which they are committing.

From the Library of Wow! eBook

ptg

Chapter 4 Sprints84

note This is a balancing act; as a customer and coach, I expect a
team to not deliver all committed PBIs in perhaps one out of
every five of their sprints. If the team never fails, I suspect that
the team fears “overcommitment.” If the failure rate is signifi-
cantly higher, I suspect that the team is not taking their sprint
commitments seriously enough. It’s a fine line and one of the
biggest challenges that ScrumMasters and coaches encoun-
ter with teams.

Whatever the cause, when teams need to drop PBIs during a sprint, the
reasons should be discussed in the retrospective following the review.

running out of work
Occasionally a team accomplishes their goal well before the end of the sprint.
If it’s a day or two away from the end of the sprint, the team can come up with
useful work to fill the time; the team can usually identify enough housekeep-
ing and polishing tasks. If they run out of work sooner than that, they can meet
with the product owner to find a small PBI on the product backlog to estimate
and complete.

note If teams encounter this problem a few times, I encourage them
to commit to more work during the sprint planning meeting.

Summary
Sprints provide the heartbeat of iteration on an agile game project. They are a
contract between the customer and the team to provide value demonstrated
with a controller rather than promised in a document. However, a game project
isn’t made of a series of sprints that all look the same. We start many projects
by iteratively exploring the possibility and end them by creating many assets to
provide hours of entertainment. The next part of the book examines practices
that help with longer development cycles, called releases, and how we plan in
an agile way over the entire duration of the project.

Additional reading
Derby, E., and D. Larsen. 2006. Agile Retrospectives: Making Good Teams Great.

Raleigh, NC: Pragmatic Bookshelf.

From the Library of Wow! eBook

ptg

85

chapter 5
User Stories

communication is one of the biggest challenges for developing games, and
one of the largest communication problems is language. Stakeholders often
speak the language of business. To them, cost and consumer value influence
how they see the world and communicate.

Developers speak a different language. Their language pivots around their
specialty. Programmers speak the language of math, code, and algorithms.
Designers speak the language of pacing and reward. Artists speak the language
of polygon color, texture, and lighting. These languages are not exclusive of one
another, but they present communication challenges when everyone on the
team needs to understand the same vision of the game.

The solution is for developers to speak the language of the stakeholders. We
can’t expect stakeholders to learn the language of development (although many
stakeholders are often familiar with the jargon). As a business, the language of
the customer must be the universal language of development. To this end, we
need to be sure that the critical lines of communication between the stakehold-
ers and developers—and even between developers of separate disciplines—are
made and kept open using this universal language.

This is where user stories come in. A user story is a short description of
a game, tool, or pipeline feature that has a clear value to a user. If the feature
is a tool or pipeline change, the user can be a developer who uses the tool or
pipeline to make the game.

Up to this point, we’ve used the terms feature, requirement, and PBI to define
what is developed. This chapter introduces user stories as a replacement for all
those terms and describes how good user stories are created.

A Fateful meeting
I recall a certain meeting years ago on a game project called Smuggler’s Run.
Although I’ve attended hundreds of meetings like it, none other would change
the focus and course of my career as this one did.

From the Library of Wow! eBook

ptg

Chapter 5 User Stories86

The purpose of the meeting was to review the work remaining to achieve
the alpha milestone, which was two weeks away. Alpha was the cutoff date for
incomplete features; features planned for but not fully implemented were to
be cut from the game. You could sense how close alpha was. Smuggler’s Run
needed to be out for Christmas. It was also a launch title for the PlayStation 2.
Everything rested on this game being on time. No one really wanted to be at
this meeting; there was much to do, but the meeting was critical and, as the
director of product development for the studio, I had to know whether we
would achieve alpha.

All the leads attended. I had to keep an eye on the lead programmer and
lead designer; they often clashed over the ideals of design and the feasibility of
what our technology could accomplish. They approached their roles perfectly,
and the natural tension between them benefitted the game. I just had to make
sure it didn’t go too far.

That day tested that tension. The lead designer had brought a big concern
to the meeting. “When are the animals going to be added to the game?” he
asked. The lead programmer didn’t have a clue about this feature. So, the lead
designer pulled out the game design document and pointed to a paragraph on
page 97, which described the feature. The game was to have animals wandering
about the levels in herds that avoided the player vehicles. The feature had been
added to the game design document partway through the project, and the lead
programmer had not read it.

The lead programmer didn’t know whether to laugh or explode in anger.
“How am I expected to know when a new paragraph was added to the design
document?” he demanded. “I barely read it the first time!”

We spent some time calming everyone down and were finally able to dis-
cuss options for the feature. In the end, a simplified version of the feature was
added. Rather than herds of animals avoiding the vehicles, lone animals wan-
dered about ignoring the vehicles and, when hit, turned into tumbling rag dolls.
As it turned out, this was a popular feature in the game. Players spent hours
hunting down the entire populations of animals. Had this feature been more
exploited, the game would have met with even more commercial success.1

As the project director, that meeting was a wake-up call about the issues
of documentation and communication. I saw the futility of trying to know
everything about a game up front and using monolithic documents to capture
change and knowledge. This started my path to agile.

1. And the ire of animal rights groups everywhere

From the Library of Wow! eBook

ptg

What Are User Stories? 87

The Smuggler’s Run game design document was well maintained by the
designers, but it still failed in a few basic ways:

●● It failed to communicate the priority of features: Each team
member evaluated the priority of each feature on their own.

●● It failed to communicate changes to the rest of the team:
Few team members reread the document on a regular basis to keep
up with the frequent changes.

The conversation that occurred two weeks before alpha was very fortu-
itous, but requirements that make it into the game shouldn’t be left to chance.
What we had was a failure to communicate. The information in the document
was valuable, but the document itself was a poor medium for communicating
change and priority.

This underscores some problems with traditional requirements gathering
and tracking. What we need is a method that does the following:

●● Communicates the priority and value of the features: The
team needs to focus on delivering the highest-value features ahead of
the lower-value ones.

●● Enables change and communication of change: Change is
going to occur, and discussions about those changes need to happen
regularly and frequently.

●● Is a placeholder for future communication: Documentation
can’t replace conversation.

●● Enables details to emerge as more information is learned: It
shouldn’t require all design details up front or impose a great deal of
effort to spread knowledge or change.

●● Enables continuing refinement of the work estimated for each
feature as the team learns more: Uncertain features can’t have pre-
cise estimates. Accuracy can grow as the feature requirements are refined.

User stories were designed to address these needs. The rest of this chapter
defines what they are and how they are used.

what Are user Stories?
User stories were created (Beck 2000) to express the value of features to a cus-
tomer and elicit conversation. Identifying the value of individual features cou-
pled with the benefit of agile development demonstrating value throughout

From the Library of Wow! eBook

ptg

Chapter 5 User Stories88

a project is a powerful combination. User stories represent the requirements
of the game from the point of view of the user, not the developer. They don’t
fully describe design details. Stories are placeholders for conversation about the
details. User stories follow a template determined together by the team and
stakeholders. Mike Cohn (2004) recommends the following:

As a <user role>, I want <goal> [so that <reason>].

This template includes the following:

●● User role: A customer of the game or a user of the pipeline who
benefits from this story.

●● Goal: The goal of the story. This is a feature or function in the game,
tool, or pipeline.

●● Reason: The benefit to the customer or user when this feature or
function is used.

The last portion of the story template, “so that <reason>,” is optional. It’s
often left out when the reason is apparent.

Examples of user stories follow:

As a player, I want a player mute button so that I stop being
distracted by some of the other players online.

As an animator, I want to change animations directly in the game
without restarting it so that I can iterate faster on animations.

As a prop modeler, I want the exporter to check the naming
conventions of the props to ensure that they are correct so a
poorly named prop does not crash the game.

As a player, I want to see my health level.2

levels of Detail
Teams complete one or more user stories per sprint. These user stories have to
be small enough to fit into a sprint. Had we used stories on Smuggler’s Run, we
may have had an initial story something like the following:

As a player, I want to see herds of animals running around the
environment so that it seems more realistic and alive.

2. It’s apparent why I want to see my health level, so we don’t need to state the reason.

From the Library of Wow! eBook

ptg

Levels of Detail 89

As it increased in priority and approached implementation, it could have
been disaggregated into smaller stories such as the following:

As an animal in the game, I want to run away from vehicles.

We don’t want to break down every large feature into sprint-sized stories at
the start of the project. That creates too many stories to be practically managed
by the product owner. Instead, priority determines when features are broken
down. Higher-priority stories are worked on sooner, so they are broken down
into smaller stories in a planning meeting. User stories that are too large to be
accomplished in a single sprint are called epics, such as the animal herd story.
Sometimes a number of related user stories are gathered together in a theme.
Themes are beneficial for aggregating user stories together for estimating.

note Some projects have required an even higher level of scope
than an epic and have introduced what they call the saga!

User stories, epics, and themes can be decomposed into smaller user sto-
ries. Figure 5.1 shows an example of an online epic broken down into smaller
stories.

As a player, I can
join an online game
and play against

other players also
playing online

As an online player,
I can see a list of
games that I can
join in a lobby

As a player,
I can play in

an online team
death-match game

As a player,
I can play in an

online free-for-all
death-match game

As a player, I can
play online against
multiple online

opponents

User Stories

Epic Epic ?

Figure 5.1 Breaking down an epic into smaller stories

From the Library of Wow! eBook

ptg

Chapter 5 User Stories90

In this example, the stakeholders identify the lobby and online game as two
online epics. They break down the gameplay story further into death-match
stories. This decomposition of stories occurs throughout the project. A product
backlog can be considered as a hierarchy of user stories that change. Branches
grow in detail or are pruned as we learn more about what is fun.

conditions of Satisfaction
Sometimes we want to add some specific details to a small story.

Take the following example story:

As a player, I want to shoot an enemy character and see it react
so that I know when it is hit.

If this leaves a bit of uncertainty in the details, the stakeholders and team decom-
pose the story into smaller stories, as shown in Figure 5.2, to add those details.

As a player, I want
to see an enemy
react when I

shoot it so that
I know when they

are hit

As a player, I want
to see the enemy

stumble back
when they are
shot in the head

As a player, I want
to see the enemy
twist left when
they are shot on
the left side

As a player, I want
to see the enemy
twist right when
they are shot on
the right side

Figure 5.2 Disaggregating a story to add details

From the Library of Wow! eBook

ptg

Conditions of Satisfaction 91

Conditions of Satisfaction

When the enemy is shot in the head,
they stumble back

When the enemy is shot in the left
side, they twist left

When the enemy is shot in the right
side, they twist right

Figure 5.3 Adding details as conditions of satisfaction

However, if the initial story is small enough to fit in a sprint, then this
decomposition is not necessary. Another approach is to list these substories as
conditions of satisfaction (CoS), as shown in Figure 5.3.

This is a very powerful tool. CoS help the team understand the ultimate
goal for every user story and avoid delivering the wrong feature at the sprint
review.

CoS have to be testable. The team should verify whether the CoS are met
by running the game and ensuring that behaviors described exist.

exPerIenCe
“I really thought user stories worked well in the development of our game.
It forced the designers to really think out what they wanted. On my last proj-
ect, programmers worked closely with the designers on the conditions of sat-
isfaction so that everyone knew what was expected. It was critical that the
programmers found out as much detail as possible. It kept any creeping seat-of-
the-pants design to the planning session where all the interested parties were
present. Programmers debated the merits of some of the design decisions, and
designers came to understand the technical effort involved. Programmers with
design skills had an opportunity to get their input heard.”

—Mike Riccio, lead programmer, High Moon Studios

From the Library of Wow! eBook

ptg

Chapter 5 User Stories92

using index cards for user Stories
As with tasks, user stories are often represented in the form of a 3-by-5 index card.
These cards are a great medium for handling user stories for a number of reasons:

●● The size of the card constrains the amount of detail in a story. We
don’t want stories to be large documents that include every necessary
design detail. A small card prevents this from happening.

●● Cards can be physically manipulated (sorted, edited, replaced, and
passed) by many hands in collaborative settings (daily scrums and
planning meetings).

●● The backside of the card is an ideal location and size for listing CoS.
Once again, the constraint imposed by the size of the card prevents
pages of CoS from being listed, which interferes with the story being
negotiable.

inveSt in user Stories
What makes a good story? Mike Cohn and Bill Wake (2003) suggested the
acronym INVEST, which stands for the following attributes of a good story:

●●

●

Independent

●

●

Negotiable

●

●

Valuable

●

●

Estimatable

●

Testable●

Sized appropriately

●

independent
Stories should be independent from other stories in the order they are imple-
mented. Dependencies create problems that make them hard to prioritize and
estimate. For example, suppose we have the following two stories:

As a player, when I shoot a door, it splinters into hundreds of
pieces of wood.

As a player, when I shoot a window, it shatters into hundreds
of shards of glass.

From the Library of Wow! eBook

ptg

INVEST in User Stories 93

If the technology for creating this effect does not exist, then the first of
these stories to be implemented requires underlying technology to be devel-
oped as well. Because these stories appear almost identical, they should not have
such a discrepancy of work to implement. The dependency inherent in the first
story implemented does not make this possible. There are two solutions to this.
The first is to combine these into one larger story:

As a player, I want to shoot certain objects and have them
break into many pieces.

The door and windows could be handled as two conditions of satisfaction.
This works when the larger story fits within a sprint. If the aggregated story
takes longer, we break the story into the one that creates the base technology:

As a designer, I want to shoot certain objects and have them
break into many pieces.

and into two others, which allow the window and door instances of this effect:

As a player, when I shoot a door, it splinters into hundreds of
pieces of wood.

As a player, when I shoot a window, it shatters into hundreds
of shards of glass.

These stories aren’t truly independent because the first story must be com-
pleted before the others, but dependency is now clear, where it wasn’t in the
first place.

note One key difference to note is that the customer for the first
story is the designer who uses the system to finish the sec-
ond story. This enables the team implementing the first story
to focus on the needs of the designer, including an interface
to tune the system, which the player does not need. Beware
of the “parts on the garage floor” problem described in
Chapter 12, “Agile Design.”

negotiable
Stories are not contracts or detailed requirements. They are placeholders for
conversation between the stakeholders and the team. A story that is too detailed
and specific shortcuts those conversations by creating the illusion that all details
are known and don’t require any dialogue. For example, consider the story in
Figure 5.4.

From the Library of Wow! eBook

ptg

Chapter 5 User Stories94

As a driver, I want to see
water being sprayed when
driving through a puddle

and grass flying when driving
through a park

Figure 5.4 A story that doesn’t allow much negotiation

The detail in the story may not be as comprehensive as it implies. Did the
customer forget about sound effects of the tires on these surfaces? Do they want
more effects in the future? Would they like wheel friction to change depending
on the surface? Figure 5.5 shows a better version of this story.

This story is a better placeholder for the conversation. It drives conversa-
tion. The requirements of the water spray and grass particles could be added as
conditions of satisfaction on the backside of the card if the stakeholders want
to ensure that these things are demonstrated.

note A missing requirement in an overly detailed story is more likely
to lead to that requirement being overlooked by a team focused
on fulfilling the “letter of the law.” Negotiable stories serve
the “spirit of the law” better.

hArneSS the
creAtivity oF

teAmS!

Negotiable stories raise questions on purpose. They enable any-
one on the team to suggest ideas. Talk about being motivated
when millions of people love a feature that you thought up!

As a driver, I want
wheel effects

 when driving over
various surfaces

Figure 5.5 A more negotiable story

From the Library of Wow! eBook

ptg

INVEST in User Stories 95

valuable
Stories need to communicate value not only to the player but also to the team
developing and marketing the game. The product owner adjusts the priority of
user stories on the product backlog by judging their value. Stories not expressed
in terms of value are difficult to prioritize. Consider the following story:

Sort rigid bodies in the environment into islands of objects
local to one another.

This story does not communicate value to the player or pipeline users,
but it may be a story that has a great deal of value. In this example, a physics
programmer may request that these changes be made so that the game runs at
30 frames per second (fps). If this is the case, the story can be written to express
this value to the player:

Sort rigid bodies in the environment into islands of objects
local to one another so that we maintain 30 fps.

Note that the expression of the user role is missing in this story. The player
and the developers all benefit from the game running at 30 fps, which is far
more enjoyable than a game running at half that rate.

estimatable
Stories need to be estimated. This requires knowledge about what we are build-
ing and how we are going to build it. If not enough is known or the scope of
the story is too large, then we cannot estimate it well enough.

Sometimes stories push the boundaries of knowledge about what our
technology can do or the level of effort required. For example, suppose the
following story was introduced:

As a player, I want to knock over stacks of boxes to block the
AI players from approaching me and to allow me to escape
tight situations.

This story could present a number of problems to the programmers:

●●

●

The physics engine might not support a stable stacking of objects.

● The AI navigation system may not “see” dynamic objects such as
boxes in the environment.

Implementing this story may be simple or require months of effort. To
mitigate this risk, a story is introduced to explore these risks. This story is time-
boxed, or limited in the amount of effort spent on investigating these risks; we

From the Library of Wow! eBook

ptg

Chapter 5 User Stories96

don’t want to sign a blank check. This type of story is called a spike, and its
purpose is to add knowledge about the cost of implementing the main story.
After the spike, the product owner and the team should better understand the
cost of implementing the full feature.

SPIkeS
Spikes are important for video game development. Spikes are timeboxed sto-
ries. The reason for this importance is that spikes address areas of great uncer-
tainty, and their only goal is to create knowledge that helps the product owner
evaluate the cost of other stories. For example, the product owner may have a
spike defined that says the following:

As a product owner, I want to see a mock-up video of how our fighting
mechanic might look on an iPhone.

The product owner may only be willing to spend a sprint or less of the team’s
time investigating something. In this case, they want to know what a mechanic
might look like on the iPhone before they develop the iPhone technology. At the
end of the sprint, the team shares what they have learned so far. If the product
owner decides to investigate further, they can create another spike.

Spikes are also called tracer bullets. In warfare, tracer bullets are special
bullets that glow when they are fired from a machine gun. There is usually one
tracer bullet every 10 or 20 normal bullets. These tracer bullets allow the gun-
ner to see where the other bullets are headed. Spikes are called tracer bullets
because they “show the way” for subsequent work, or they “show the way”
not to go if it’s a bad path to pursue.

Sized Appropriately
Stories need to eventually be made small enough to fit into a sprint when
implemented. If they are too large, they are disaggregated.

A group of small stories can be combined into a larger story more easily
managed as a theme. Examples of this are minor bug fixes and polishing tasks
placed on the product backlog. We don’t need to track and estimate small one-
hour fixes within separate stories.

tiP One trick teams do is to collect all their small polishing tasks
into a single spike each sprint and dedicate a fixed and predict-
able amount of time polishing the game. Over time these tasks
are included at the start of the sprint, and the spike becomes
unnecessary.

From the Library of Wow! eBook

ptg

User Roles 97

testable
The story should be written so that it is verified before the end of the sprint.
Without this, the team cannot determine whether they satisfied the stakehold-
ers. It’s best to use the conditions of satisfaction on the back of the card to
define those tests. Some stories require approval to check off.

Consider the following stories:

The prototype shooting level is fun.

The boss character model is complete.

Both of these stories are subject to interpretation. In this case, the team had
a lead designer or lead artist to sign off on the level or model, respectively. The
CoS should identify when these approvals are needed. Sometimes a team adds a
column on the task board between the “in progress” and “done” columns called
“needs verification.” This is a holding stage for all the stories that are considered
complete only when a lead signs off on them. If a team has many subjective
stories or tasks, this is a good solution.

user roles
Many games provide difficulty levels for the players who buy the game. They
usually implement several levels of difficulty as a means of adding replayability
and accommodating a range of player skills. The levels are differentiated by
scaling challenges in the game such as the number of opponents and damage
from weapons hits.

Games benefit from considering a broader range of players and placing
more emphasis on their roles. As an example, consider the popular Battlefield
games, which enable players to adopt specific roles. If you are not familiar with
the games or the specialties, they are divided across these roles:

●● Assault specialist: Is equipped with an assault weapon and grenades
for close quarter combat

●● Sniper: Carries a high-power sniper rifle and a targeting device used
to call in precision strikes

●●

●

Engineer: Has a bazooka and mines and can repair vehicles

● Special forces: Carries a light automatic weapon and C4 explosives
for sneaking around behind enemy lines disrupting opponents

●● Support: Totes a heavy automatic weapon and a radio to call in
mortar strikes

From the Library of Wow! eBook

ptg

Chapter 5 User Stories98

These specialties require different behavior from the player. It’s difficult to
insert these roles at the end of a project. They need to be developed in parallel
during pre-production because they have an impact on level design and should
be added before production starts.

User stories allow roles and their associated features to be clearly defined.
A good method for differentiating roles is to use them in the story template.
Instead of saying this:

As a player, I want a bazooka so I can blow up tanks.

the story becomes this:

As an engineer, I want a bazooka so I can blow up tanks.

What’s the difference? It’s mainly one of value and priority. For a generic
player, the bazooka is one of a host of important weapons. However, for the
engineer, the bazooka is probably the most valuable weapon because the engi-
neer role exists to counteract tanks. There’s nothing more gratifying than tak-
ing out a tank with a well-placed shot. The bazooka is useless for a sniper to
carry because snipers maintain a distance from the fight that is greater than
the bazooka’s range and firing it leaves a trail of smoke that reveals the sniper’s
position.

Even if your game isn’t going to use such specialties, there is a lot of value
in brainstorming the various types of players early in development. Who is
buying your game? Do you hope to attract casual and hardcore players to your
game? If you do, it benefits you to identify the “casual player” role in some of
your stories. It may lead to many small decisions such as offering an option to
simplify the controls or adding more checkpoints so the casual gamer doesn’t
become frustrated.

User roles also apply to developers who use the pipeline and tools to make
the game. Pipeline and tool stories have to express value as well as gameplay
stories. This enables the product owner to better prioritize the order in which
these stories are implemented. For example, if animation creation is a bottle-
neck for a project, the product owner elevates the priority of stories that address
the animation pipeline. This is best accomplished by having those stories start
with the phrase “As an animator….” Here’s an example:

As an animator, I want the animation exporter optimized so I
can create and test more animations.

From the Library of Wow! eBook

ptg

Defining Done 99

Defining Done
The team commits to completing a number of stories from the product backlog
and demonstrates that these are done in the sprint review. However, defining
what done means can be challenging. If the team assumes a feature only needs
stand-in assets and the stakeholders think they’ll see shippable-quality assets,
the stakeholders will not be happy with the results. An agreement of what done
means has to occur before each story is broken down into tasks.

There are standard and additional definitions of done. The standard definition
of done applies to every story. For example, done might mean that every feature
implemented runs on a development PC without any crash bugs. The following
list is a collection of standard definitions of done that teams might adopt:

●●

●

The game runs on a development machine.

●

●

The game runs on one or all target platforms.

●

●

The game runs at a shippable or target frame rate.

●

The game runs within the memory budget and has no memory leaks.●

The assets all conform to naming and budget conventions.

●

Teams expand the standard definition of done by improving their practices.
This enables the team to continually improve their effectiveness. Each addi-
tional element in our definitions of done reduced debt carried forward. Debt
represents work that must be done in the future before we ship a feature. Debt,
or undone work, also represents risk. We don’t want to discover shortly before
we ship a game that a key feature causes the frame rate on the PlayStation 3 to
drop to 10 fps; we may have built hundreds of assets based on the assumption
that 30 fps is possible. The sooner we address debt, the less it costs to address it.
Increasingly stringent definitions of done prevent debt.

note It’s useful to have the definitions of done posted for everyone
to see and for the ScrumMaster to remind the team, during
planning, what the standard definition of done is for every
story.

Additional definitions of done are created for specific stories and defined
in the CoS:

As a designer, I want to have my character jump across a gap
to determine whether the mechanic is fun.

CoS: Poses will be used in place of any animation.

From the Library of Wow! eBook

ptg

Chapter 5 User Stories100

A LexICOn OF DOne
Some studios create a “lexicon of done” to label done definitions. These are
useful for stories completed at various stages of feature development such as
prototyping with stand-in assets or in production with polished assets. These
labels are assigned to each story during planning to identify what the stakehold-
ers are expecting from the story. Here are some examples:

●● Prototype done: Demonstrates potential value. Assets are for demon-
stration purposes, and the game only runs on development PCs.

●● Pre-production done: Demonstrates feature value and identifies areas
that need to be polished before the feature is shippable. It runs on target
debug platforms and lower than shippable frame rates.

●● Demo done: Demonstrates demo quality (90% assets, not all TRC/
TCR requirements). The target frame rate and hardware resource
budgets are met.

●● Shippable done: Ready to be shipped. It passes all TRC/TCR tests and
has no memory leaks.

collecting Stories
Collecting stories in the product backlog is an ongoing process that occurs
throughout development. At the start of an agile project, the team and stake-
holders collect enough stories to encompass all the major requirements (epics)
known and enough detailed stories to enable the team to start iterating.

The collection of stories for an agile project isn’t the sole responsibility of
a few leads. Instead, there are many ways to gather stories including market-
ing studies and focus group questionnaires, but the most beneficial method for
game developers is the story-gathering workshop.

The story-gathering workshop brings stakeholders and teams together to
brainstorm user stories for the game. The product owner facilitates the work-
shop and invites everyone who can contribute ideas.

Attendees discuss the goals and constraints for the game. This is especially
important if it’s the first workshop. For example, if the title is to be tied to
a license, then the customer who represents the licensor describes what is
allowed in the game, such as not allowing a licensed car to catch fire. The
publisher shares the major goals of the game including the product’s position
in their portfolio, release date options, and targeted demographics. User roles
are explored. Domain experts discuss risks and opportunities. For example, the

From the Library of Wow! eBook

ptg

Collecting Stories 101

design leadership may identify areas of strength and weaknesses in the level
design feature set related to delivering on requested mechanics.

note Many of these points do not directly lead to the creation of
stories right away but are placed in a “parking lot” of topics to
be discussed in detail as time permits.

At the first workshop, the major epics are identified. An example of an ini-
tial summary of epics for a first-person shooter might resemble Figure 5.6.

The story-gathering workshop identifies enough detailed stories to fill the
next release. This requires the product owner to identify story priorities and
discuss the capacity and capabilities with the teams. For our first-person shooter
project, the product owner identifies that the player control and artificial intel-
ligence epics are the most valuable areas to focus on for the next three or so
months. If the teams confirm that they have the necessary specialists to accom-
plish work in these areas, then the workshop focuses on breaking out stories
sized appropriately. As the workshop drills down on smaller epics, then the
subtrees become populated with stories that fit into sprints. Figure 5.7 shows
some of the smaller epics identified for player control.

First-Person Shooter

MultiplayerSingle player

Missions

Artificial
Intelligence

Cooperative
Gameplay

Split
Screen

Death Match

Online

Story Line

Tutorial Player
Control

Figure 5.6 Identifying a hierarchy of epics is valuable in communicating the
big picture .

From the Library of Wow! eBook

ptg

Chapter 5 User Stories102

Player Control

Camera
Controller

Player Physics
Controller

Input
Control

Player
Motion

Weapons
Control

Figure 5.7 Smaller epics

The team and domain experts are critical in contributing their ideas here.
If, for example, the physics engine causes problems with player controller
development, they should discuss it in this meeting. This may lead to work that
investigates the potential issues with physics.

PLAnnInG A hAnD-TO-hAnD COMBAT SYSTeM
I’ve worked on two projects that have included hand-to-hand combat. The first
game was a sequel to a popular fighting game developed by another studio. The
hardship the original project suffered—it took more than four grueling years to
develop—was due to the complexity of its hand-to-hand combat system.

The challenge of hand-to-hand combat systems is to create a proper blend
of responsive player control and smooth, seamless animation. The approach
chosen for the original game was entirely physics based. Animations drove
the motion until a collision occurred. The force of a collision then controlled the
motion of the character. It was an ambitious system that promised flexibility
and a great degree of player control. Unfortunately, it didn’t allow for very good-
looking character movement. Much of the contact between characters was
resolved incorrectly. After wasting enormous amounts of effort trying to make
this system work, the team reworked the system, eventually settling with an
entirely animation-driven solution. The publisher wanted the sequel to imple-
ment the physical solution, but after several months of experiments, we could
offer no good solution, and the project was abandoned.

Based on this previous experience, I had some opinions about the tech-
nical approach when I attended the story workshop for another game with a

From the Library of Wow! eBook

ptg

Advantages of User Stories 103

hand-to-hand combat system. The product owner introduced the feature and
told us that the most important value of this feature was that it be fun and look
good. The discussion eventually touched on a physics-driven solution. Given
my experiences from the past project, I was able to give a detailed description
of the problems this created. When the animators, programmers, and product
owner heard this, they decided that the risk and cost potential did not justify
the physics approach, and attention turned to an animation-driven solution.

This small example demonstrates how story workshops address the vision
of each feature and the potential design impacts with a cross-discipline group.
Too often projects don’t discuss this impact, which leads to decisions that take
the project down a bad path.

Advantages of user Stories
User stories have many advantages over the traditional practice of written
requirements. This section emphasizes the face-to-face communication advan-
tages and ease of comprehension.

Face-to-Face communication
At the start of this chapter I told the story about a misunderstood feature in
Smuggler’s Run. This misunderstanding was driven mainly by a lack of ongo-
ing communication between the designers and the rest of the team. User stories
encourage an ongoing face-to-face conversation between separate disciplines
that must happen for game development teams to be effective.

Consider the following requirement:

As a player driving a vehicle, I want a rearview mirror to see
behind my vehicle.

On the surface, this requirement seems clear. However, there may be a
number of issues with delivering this function to the player:

●● Do we show a mirror in the third-person camera view? Wouldn’t a
mirror floating above the vehicle look a little odd?

●● If the AI opponents cheat by using “rubber banding” or other tricks
to catch up with the player, wouldn’t the mirror reveal these tricks?

●● Does the second view of the environment reduce the overall render-
ing budget?

From the Library of Wow! eBook

ptg

Chapter 5 User Stories104

Many of us have seen issues like these crop up during implementation that
impact the schedule by adding work not foreseen at the start of the project. By hav-
ing these conversations at the start of every sprint, we create opportunities to address
such issues when we know far more about the immediate value they provide.

everyone can understand user Stories
Mike Cohn writes, “Because stories are terse and are always written to show
customer or user value, they are always readily comprehensible by business-
people and developers.”3 Consider an actual story I’ve seen:

As a programmer, I want a checkbox in the audio objects
menu to control the bLooping boolean flag.

Although this story follows the template, it fails to communicate value. It’s
a task, not a story. Does the programmer benefit from this change? Perhaps they
don’t have to write separate looping audio object code, but that is not com-
municated here. More than likely, the audio designers wanted looping sounds
in the game. If this is the case, the story should be written as follows:

As an audio designer, I want to set a looping flag on a sound object
so that I control looping environmental sounds in the game.

This story represents real value that the product owner understands. Alter-
natively, we could have expressed the story in terms of the player. The average
player does not understand looping sounds but certainly would miss the depth
of the sound environment if the designers didn’t include the capability to loop
sounds in the background such as a babbling brook or the sounds of combat
off in the distance.

whAt
hAPPenS to
the DeSign

 DocumentS?

User stories collected on a product backlog are meant to replace
much of the design documentation. However, external stake-
holders, such as publishers, may demand to see design docu-
ment in a traditional format, and many tools that manage product
backlogs will output the backlog in a single document.

Personally, I would still maintain a technical design docu-
ment that listed technical risks and strategies for handling those
risks, but I would use that document to help prioritize the back-
log, which is where all work done by the team originates.

3. Cohn, M. 2004. User Stories Applied: For Agile Software Development. Boston:
Addison-Wesley. Reproduced by permission of Pearson Education, Inc.

From the Library of Wow! eBook

ptg

Additional Reading 105

Summary
This chapter has covered the creation of stories and explained how they
clearly communicate intent between the stakeholders and developers. Stories
encompass what have been called features, PBIs, and requirements. Now that
we have this powerful tool, we’ll examine how to use it for planning over the
longer term.

Additional reading
Cohn, Mike. 2004. User Stories Applied. Boston, MA: Addison-Wesley.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

107

chapter 6
Agile Planning

Agile planning is a commonly misunderstood part of agile project manage-
ment. Many consider agile planning to be an oxymoron—that agile teams plan
very little and iterate with no end in sight.

This chapter introduces what agile planning really is and corrects this mis-
conception. It describes how user stories are prioritized and managed in the
product backlog. It introduces the concept of separating the size of user stories
from the time it takes to implement them so that teams and stakeholders can
easily measure and forecast a project’s progress. It then unites these ideas to
describe releases, the longer iterations where major project goals are planned
and managed.

why Agile Planning?
In preparing for battle I have always found that plans are
useless, but planning is indispensable.

 —Dwight D. Eisenhower

Agile planning does not call for a complete plan up front but spreads the work
of planning throughout the entire project. In fact, agile teams spend more time
planning than traditional teams; it’s just not concentrated at the start of a project.

Agile planning avoids the typical planning pitfalls—like those seen on
Darkwatch—by the following means:

Deliver potentially shippable features in value-first order: ●●

Features are built in the order of the value they add for the consumers
who buy the game. Delivering the highest-value playable features ahead
of lower-value ones drives the development of the game rather than a
preset ordered list of work. This enables the true value of the game to
emerge earlier, when we can make better decisions about its direction.

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning108

●● Plan by feature, which creates cross-discipline behavior:
Delivering features every sprint encourages separate disciplines to
collaborate to produce results that matter to the stakeholders. Prob-
lems that impact one discipline impact the rest and are likely to be
solved more quickly, rather than ignored for the sake of a schedule.

●● Avoid debt to allow better measurement of progress: Sprints
combine the full cycle of feature development. This reduces the debt
of debugging, tuning, polishing, and optimization and makes the pace
of development easier to forecast.

●● Plan continually: Plans created at the start of a project are very good
at telling us when the project has failed. Agile planning continually
fine-tunes the course of the project to avoid pitfalls and to double
down on valuable practices and features. They help teams find success.

●● Work with clear objectives: The ongoing communication
between the team and the stakeholders enables clear objectives to
be created. Establishing a definition of done with the product owner
enables the team to understand each sprint goal and accurately esti-
mate the work required to achieve it.

●● Prioritize scope to control the budget and delivery date: Many
projects that run into trouble first choose to add people or slip the
ship date. This is usually done because many key features are developed
in parallel and need continuing development to produce any value.
Sprints and releases implement features in order of value. This gives the
project the option of meeting a ship date by allowing the stakeholders
to draw the line and ship with a set of the highest-valued features.

the Product Backlog
The product backlog is a prioritized collection of user stories. Its goals are to
do the following:

●● Enable stories to be prioritized so that the team is always working
on the most important features

●● Support continual planning as the game emerges so the plan
matches reality

●● Improve forecasts so that the stakeholders make the best decisions
about the project goals

From the Library of Wow! eBook

ptg

The Product Backlog 109

This section describes these goals.

Prioritizing the Product Backlog
The product owner has the chance to prioritize the product backlog prior to
the start of each sprint. It’s done with the input of stakeholders, team members,
and domain experts. The following guides help determine the priority of each
story in the product backlog:

●● Value: The value that a story adds for the player who buys the game
is the main criteria in determining the priority of that story on the
product backlog. By focusing the team’s effort on adding the highest
value every sprint, the product owner is generating the best possible
ROI. They measure value using their own judgment, feedback from
focus testing, and feedback from stakeholders. Value applies to the
“nonfunctional requirements” as well. Tool and pipeline stories that
improve productivity have a place in the product backlog because
improving productivity also improves ROI.

●● Cost: Cost is a key factor in the product owner’s ROI calculation.
Some highly desirable features might cost too much to implement.
An example of this is implementing fully destructible geometry for
a shooter. Although this feature may add a great deal of value to
the game, the product owner must weigh its value against the cost
of developing the technology and producing level assets that lever-
age it. Two equally valuable features are often prioritized by cost; the
lowest-cost feature is given a higher priority.

●● Risk: Risk implies uncertainty about value and cost. As a team
refines its knowledge in these areas, the product backlog becomes a
better tool for the product owner. Stories with higher risk are often
prioritized higher to refine a product owner’s understanding of value
and cost. If they are not, then potentially valuable stories might be
left at the bottom of the product backlog and potentially dropped
because of schedule or budgetary limitations.

●● Knowledge: Sometimes the product owner doesn’t know the value,
risk, or cost of a feature. They simply need more information. In this
case, they could introduce a timeboxed story for a prototype or experi-
ment to the product backlog. Such a timeboxed story, called a spike,
limits how much time the team spends working on it and is intended
to produce information alone. An example of this is a two-week

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning110

prototype to determine whether the physics engine supports destructi-
ble geometry. If this spike demonstrates that the cost and risk of imple-
menting the system and tool set is not too great, the product owner is
more likely to raise the priority of a story to develop the feature.

continual Planning
The work done by a Scrum team is determined by the priority of stories on the
product backlog and what the team is capable of accomplishing. Every sprint
they take stories off the top of the product backlog and break them down into
small tasks that they estimate in hours. For this to happen, each story they con-
sider must be small enough to be accomplished in a single sprint and detailed
enough to support task creation. Therefore, defining the details of the highest-
priority stories is where most of the planning effort needs to take place.

Not every story on the product backlog should be small enough to fit into
a sprint. If they were, then the product backlog might contain thousands of
user stories, which is too cumbersome to maintain. Instead, the lower-priority
stories are not broken down until the higher-priority stories are finished. This
is an advantage because the lower-priority stories, which are more distant from
implementation, are expected to change as the team and stakeholders learn
more about what is possible and what is fun.

A useful metaphor for the product backlog is an iceberg (Cohn 2008), as
shown in Figure 6.1. The highest-priority stories are represented by snowballs at
the top of the iceberg, which are small enough to be completed in a single sprint.
Below them are the lower-priority stories, or larger chunks of ice, called epics.

Everything above the waterline represents the work we want to complete
in the current release. Each sprint sweeps off the snowballs (stories) from the
top of the iceberg. The stakeholders and team break down the larger chucks of
ice (epics) into snowballs for the next sprint.

Forecasting the Future
As we’ll see in the next section, the size of user stories is estimated with units
called story points. The rate at which teams implement the stories and remove
them from the product backlog is measured in story points per sprint, called
the velocity.

This isn’t an abstract practice. It’s the same method we use to calculate
velocity in other areas of life. For example, imagine you plan to drive 3,000
miles across the United States in five days. This predicts an average velocity of

From the Library of Wow! eBook

ptg

The Product Backlog 111

600 miles per day. You could use this velocity to forecast, even after the first day,
whether you are on track to achieving your goal or not. If, after the first day or
two, you discover that your actual velocity is 500 miles a day, you have a num-
ber of options available. You can adjust the number of days you plan to drive,
alter your destination, or even try to adjust your driving habits (drive longer
each day or drive faster). If you’ve placed all your faith in the plan and discover,
at the end of the fifth day, that you’re 500 miles short of your destination, your
options are far more limited.

Agile planning uses frequent measurements of velocity to forecast the
accomplishment of the goals of the project (either knowing what will be
accomplished by a given date or when the project will achieve all given goals).
This is in contrast to traditional project management practices that place more
faith in a plan and are only able to reliably measure location near the end of the
project, closer to the testing phase.

By measuring the story points accomplished each sprint, an agile project
measures its velocity. The velocity is used to predict how much scope can be

Release Plan

Sprint Goal

Future
Releases

Figure 6.1 The product-planning iceberg

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning112

implemented by a specific date or to predict a date for a fixed amount of scope
to be implemented.

estimating Story Size
To measure the velocity of anything (a car driving or a ship sailing), you need to
measure the size of something changing over the passage of time (such as miles
driven per hour or nautical miles per day). Similarly, for measuring velocity on
an agile project, we use the size of user stories completed per sprint.

Measuring the size of features has been a product management challenge
for decades. Project managers have tried measures such as “lines of code,” which
turned out to have very little to do with the actual progress made on the proj-
ect.1 This section describes proven methods for estimating user story sizes to be
used for measuring velocity.

A BeneFIT OF MeASUrInG VeLOCITY
A major benefit of measuring velocity is to measure the effectiveness of change.
Positive changes to practices improve velocity. For example, teams that collo-
cate often see up to a 20% improvement in velocity. This is mainly because
of the improvement of communication within the team. Most changes create
smaller increases in velocity, but their impact accumulates and compounds over
time. Without measuring velocity, many small changes might be overlooked.

how much effort Should we Spend estimating?
How much time should we spend estimating stories? We could spend any-
where from a few minutes to a few hours. In a few minutes, we could discuss a
broad outline and come up with a guess. In a few hours, we could break a story
down into the detailed tasks required to implement it.

We want to spend our planning time wisely. One assumption of planning
is that the more time we spend planning, the more accurate our plan becomes.
This is, in fact, not true. Figure 6.2 shows that beyond a certain amount of
effort, our accuracy decreases (Cohn 2006).

Planning provides an initial spike of accuracy with little effort spent. As more
effort is spent, the accuracy of estimates actually starts to decline! This is sur-
prising at first glance, but it makes sense. Say we spend an entire day estimating

1. In fact, it only led to more lines of code.

From the Library of Wow! eBook

ptg

Estimating Story Size 113

a single story. Given this time, we would eventually create very detailed tasks.
These define work creating classes and functions, creating art assets, and tuning
variables. As it turns out, this level of detail is too speculative. By the time we
start defining functions and variables, chances are we are defining things that
won’t be needed or will be changed during implementation.

The purpose of story estimation is meant to be efficient and to occupy the
left side of the curve in Figure 6.2. It’s a quick, low-effort estimating practice
that provides accuracy valuable enough for forecasting but not enough for a
team to commit to the work.

where Are Story Sizes estimated?
Chapter 5, “User Stories,” described a story workshop where a hand-to-hand
combat system was debated. The debate included not only my technical per-
spective and experience but also those of the animators and the lead designer.
As a result, we had good cross-discipline agreement about the story before we
estimated the work.

This is a benefit of story workshops. When teams estimate the size of sto-
ries, it drives the discussion of vision, design assumptions, and challenges of
implementation. As a colleague once remarked, “It helps remove the fuzziness
and hand-waving when you have to come up with a number.”

These cross-discipline discussions refine a team’s understanding of what they
are trying to achieve. An estimate for a story needs to reflect this cross-discipline

Accuracy

Effort

Figure 6.2 Accuracy vs . effort for estimating
Source: Cohn, M . 2006 . Agile Estimating and Planning . Upper Saddle River, NJ: Prentice Hall .
Reprinted by permission of Pearson Education, Inc .

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning114

understanding and produce a value that everyone agrees with, regardless of the
skills required to implement it. It’s challenging to create a universal scale for all
stories. For example, a story about a procedural physics effect and a story about
animating a character are difficult to directly compare. However, over time, as a
team builds a repository of estimated stories and the experience of implement-
ing them, it becomes easier to find comparable stories.

Estimating user stories should be a quick process that involves the
following:

●● Expert opinion: Inviting domain experts to story workshops helps
inform the group about the issues and effort of implementing some-
thing the expert is familiar with. For example, if a story includes an
online component, a network programmer would provide value to
the discussion about it.

●● Analogy: Analogy is used to estimate story size. When stories are
compared to each other, a far more accurate estimate can be achieved
than estimating stories on their own. Using triangulation, a story is
compared to one larger in complexity or size and one smaller to pro-
duce the best results. To provide the best results, a story that requires
significant specialization, such as a weapon creation story, is best com-
pared to other weapon creation stories.

●● Disaggregation: Large user stories are more difficult to accurately
estimate than smaller ones, so often these stories are disaggregated
into smaller ones, which are more accurately estimated. However, sto-
ries shouldn’t be broken down into a pile of tiny ones because a false
sense of detail emerges, as described previously.

Story Points
User stories are typically estimated using story points, which are a relative mea-
sure of a feature’s size or complexity. For example, modeling two vehicles is
estimated at twice the points of modeling one vehicle and possibly the same
as modeling a character. This relative measure of story points allows for a more
accurate measure of size, as explained later in this chapter.

note Although points are not durations, it can be impossible to keep
durations out of your mind when estimating points. For exam-
ple, I mountain bike a lot, but I take downhill sections very
slowly. Some of the people I ride with bomb down these rocky

From the Library of Wow! eBook

ptg

Estimating Story Size 115

sections. I might estimate two different downhill sections to
myself in time and say the first took 20 minutes and the sec-
ond took 40 minutes. My friends would argue that the first
was 10 minutes and the second was 20. We’d never agree on
the times between us, but we’d agree that one was half the
“size,” or length, of the other. As long as we keep the time
estimates to ourselves, they can work.

A story point estimate is not a commitment to when a story will be com-
pleted. There are two reasons for this. First, a story point estimate takes only a
few minutes. A team’s commitment to completing a story requires a more pre-
cise and time-consuming estimation process. This happens when they break a
story down into individual tasks in sprint planning. Second, different teams have
different velocities. For example, one team might implement a 10-point story
twice as fast as another team based on their membership and experience.

note Story point estimation is a bit like estimating the price of a car
to within $5,000 to $10,000. I don’t need to know the exact
price of a Porsche to know that I can’t afford one, but if I know
that the small truck that can carry my surfboard is around
$20,000, I’ll go to the lot to learn more.

Planning Poker
A favorite technique for estimating user stories is the Planning Poker game
(Grenning 2002). Planning Poker combines expert opinion, disaggregation, and
analogy in a fun and efficient practice. Planning Poker should be part of release
planning meetings and story workshops. It should be used whenever new sto-
ries are introduced that need an estimate.

In Planning Poker, attendees discuss stories that have not yet been estimated.
After a story is discussed, each person estimates the points they think should be
assigned to the story by simultaneously raising a card with their estimate on it
for all to see. The first vote often reveals a wide disparity of estimates. The group
discusses the range, first by asking the outlying voters to describe the reasoning
behind their estimate. This exposes the uncertainties and assumptions of the
story. As a result, the vision, design, and implementation details are discussed
and refined. These discussions often lead to adding conditions of satisfaction for
a story or defining new stories that were not previously considered.

This practice is repeated until everyone produces the same estimate. If a
couple of people have different but close estimates, they may concede to the
group’s estimated points and allow the meeting to move to the next story.

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning116

note Don’t average the votes. The different point estimates often
hide what needs to be discussed! Assigning an average
doesn’t solve potential problems with the story.

Estimating an entire release plan can take four to eight hours. Often teams
won’t tackle all stories for a release in one sitting. They disaggregate and esti-
mate the highest-priority stories and then meet once a sprint to estimate lower-
priority or new stories for upcoming sprints.

Story Point Sizes and the Fibonacci Series
Story points provide a quick and relative estimate of size and complexity for a
story. Alone they are not perfectly precise, but with a mass of stories, they aver-
age out well enough for planning.

Projects need to define a set of numbers that they use for story point esti-
mates. The two rules of thumb for selecting a set of story points are that the
entire scale be within two orders of magnitude. For example, a range of 1 to
100 or a range of 1,000 to 100,000 works. Second, the numbers used should
be closely spaced out at the small end and widely spaced out at the high end of
the scale. The reason is that our ability to judge the difference between stories
with sizes of 20 and 21 points, for example, is not the same as our ability to tell
the difference between two stories with sizes of 1 and 2 points.

A useful set of story points that follows these two rules is derived from the
Fibonacci numbers. In a sequence of Fibonacci numbers, each number is the
sum of the two preceding numbers. An example set of Fibonacci numbers use-
ful for story point estimation follows:

0, 1, 2, 3, 5, 8, 13, 20, 40, 100

The numbers at the high and low ends of the set depart from the Fibonacci
sequence. We use zero-point estimates for trivial stories that require very little
effort, such as changing a user interface (UI) font color.2 Be careful not to accu-
mulate too many zero-point stories…zeros add up with this math! The upper
range of these numbers departs from the Fibonacci series rule, but they exist to
allow a couple of rounded-out values in the high range.

The team should constrain themselves to use only numbers within the
set and not use values between them to create averages or compromises. This
creates a false sense of precision with story point estimation and slows down a
Planning Poker session!

2. Be careful not to accumulate too many zero-point stories…zeros add up with
this math!

From the Library of Wow! eBook

ptg

Release Planning 117

tiP If Planning Poker encounters a story whose estimate exceeds
the highest point value, it’s best to disaggregate that story into
smaller stories before estimating each.

ideal Days
The concept of story points is difficult to introduce. Teams accustomed to time
estimates often find story points too abstract and instead use ideal days as a
benchmark to begin estimating. An ideal day is the measure of work accom-
plished in a single day with no interruptions (phone calls, questions, broken
builds, and so on). Because of this association with something real, the team
more readily embraces ideal days.

Ideal days are still measures of size alone. A story estimated to be one ideal
day in size doesn’t mean it takes one day of actual work to complete. We want
to avoid any translation of ideal days to actual days of effort. Ideal days, like
story points, are valuable measures for quick relative forecasts of effort but not
precise enough to use for making commitments.

release Planning
Release planning is different from sprint planning. A release plan has more flex-
ibility as features emerge from the sprints and team velocity is demonstrated.

note Chapter 3, “Scrum,” described releases as major goals that
occur every several months, comparable to milestones or E3
or magazine demos in the level they are polished.

Releases begin with a planning meeting that establishes major release goals,
a release plan, potential sprint goals, and a completion date. A release makes
progress through a series of sprints. As each sprint implements user stories, the
burndown of story points measures the velocity of work. This is used to inspect
progress and adapt the plan.

release Planning meetings
A release planning meeting uses the steps shown in Figure 6.3.

The product owner, stakeholders, team members, and domain experts
attend the meeting. It begins with a review of the progress made in the last

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning118

release and the product backlog. The group then deliberates on the major goals
for the release. These goals, often referred to as big hairy audacious goals
(BHAGs),3 represent a challenge for the entire team and establish a vision to aid
story prioritization. For example, a BHAG to “fight other players online” might
raise the priority of spikes to demonstrate that the animation system works in
an online setting.

tiP A release planning meeting can take most of a day. It’s useful
to find a location with minimum disruptions. A conference
room at a local hotel is a good option.

3. http://en.wikipedia.org/wiki/Big_Hairy_Audacious_Goal

Last BuildProduct backlog Stakeholders,
Product Owner,

and Team

Discuss epics,
themes, and
release goals

Diasaggregate,
prioritize, and
estimate stories

Select the
release date

Select sprint
length and potential

sprint goals

Figure 6.3 The flow of a release planning meeting

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Big_Hairy_Audacious_Goal

ptg

Release Planning 119

After BHAGs for the release are agreed upon, user stories needed to imple-
ment them are identified, prioritized, and estimated using story points. The
group uses the estimated story size and priorities to create a release plan, based
on the velocity teams have demonstrated in past sprints, to lay out the sprint
goals for the release. This is called the release plan.

The release plan identifies potential sprint goals for the release. Figure 6.4
shows a release plan based on a historical velocity of 15 story points per sprint.

As a player... 5

Sprint 1

Sprint 2

Sprint 3

Sprints 4-6

As a player... 5

As a player... 5

As a designer... 5

As an animator... 7

As a player... 10

As a player... 6

As a player... 3

As a player... 6

As a player... 5

As a player... 8

As a player... 4

As a player... 9

As a player... 5

As a player... 6

Figure 6.4 Splitting the release plan across future sprints

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning120

The goals for sprints 1 through 3 each contain stories that add up to 15 points.
The stories for the more distant sprints in the release are lumped together. In
this example, the product owner has called for six sprints in the release because
the release plan and projected velocity tells them that this is how many sprints
are needed (for example, 89 points at 15 points of velocity every sprint tells
them they need six sprints).4

As sprints are finished, the goals and stories for the subsequent sprints
are refined. For example, after sprint 1 is completed, the goal for sprint 4 is
identified.

It’s important to understand that the sprint goals identified in the meeting
are a forecast of work that can potentially be accomplished by the team; they’re
not a commitment. They are useful benchmarks for measuring progress.

why not
creAte A
releASe

 BAcKlog?

People often refer to a release backlog instead of a release
plan. It’s best not to create a different backlog for the release.
The release plan is a subset of the product backlog that
changes during the release. Having separate backlogs creates
a lot of extra work and confusion over what backlog we are
talking about.

rolling out the Plan
On larger projects, it’s sometimes impractical to have the entire project staff
attend the release planning meeting. In this case, only the product owner,
domain experts, and discipline leads attend.

After release planning, the product owner presents, or rolls out, the release
plan to the entire project staff. The owner describes the BHAGs and release
plan and answers any questions raised. The project staff is then given the oppor-
tunity to organize themselves into Scrum teams that would best achieve the
initial sprint goals in the plan.

Teams are usually organized around the BHAGS. For example, in a release
that has single-player and online gameplay BHAGS, teams are organized around
each. After the teams form, they can each hold a release planning meeting to
further refine their area of the release plan.

updating the release Plan
Following each sprint review, the release plan is reexamined. Sometimes the
sprint has identified new stories to be added. These are stories that were

4. We always round up.

From the Library of Wow! eBook

ptg

Release Planning 121

either overlooked or not anticipated in release planning. Other times, stories
are removed. These stories are considered unnecessary, or their priority was
reduced enough to push them into a future release. As with the product back-
log, the product owner makes the final decision on the addition, deletion, or
reprioritization of any story in the release plan.

The release plan may also need refinement based on the team’s actual
velocity. Figure 6.5 shows an example of an original release plan on the left,
which forecasted 16 user story points of velocity per sprint. However, the first
sprint accomplished only 13. As a result, the product owner updated the new
release plan—shown on the right—which dropped the last two (lowest-prior-
ity) stories.

The product owner also had the option of adding another sprint to the
release if they didn’t want to drop those stories.

As a player... 5

As a player... 3

As a player... 5

As a designer... 5

As an animator... 5

As a player... 3

As a player... 5

As a player... 3

As a player... 3

As a player... 2

As a player... 5

As a player... 3

As a player... 5

As a player... 3

As a player... 5

As a designer... 5

As an animator... 5

As a player... 3

As a player... 5

As a player... 3

As a player... 3

As a player... 2

As a player... 5

As a player... 3

Figure 6.5 Updating the release plan based on velocity

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning122

note In practice, the release plan isn’t dependent on the results of
a single sprint. The velocity used to forecast the sprint goals
for the release is usually based on the average velocity of the
past several sprints.

magazine Demos and hardening Sprints
Scrum describes sprints as delivering a potentially shippable version of a prod-
uct at the end of every sprint. This allows the product owner to decide to ship
the product on short notice. This is a challenging goal for many large-scale
game projects for three reasons:

●● There is only one true release at the end of two or more years of
development.

●● Many features and assets require a number of sprints to implement
(for example, production levels).

●● To be shippable, games must often pass rigorous tests for hardware
and first-party compliance. These tests can take weeks to conduct and
cannot be done every sprint.

Nevertheless, sprints should achieve a minimum definition of done as
defined by the product owner.

A release build should approach the potentially shippable goal more closely.
Its definition of done should be higher than a sprint’s. Still, a release build can-
not always be expected to pass all shipping criteria unless it is the final release
of the game. For all previous releases, a good example of a definition of done is
the magazine demo.

A magazine demo has certain expectations:

●● It has no major memory leaks preventing it from being played for an
hour or two.

●● There are no major missing assets. All stand-in assets are clearly iden-
tified as such.

●●

The player has a clear objective and experiences the fun of the game.●

The game has a clean and usable user interface.

●

These are typical requirements for a demo version of a game in any publi-
cation, so they are easy to communicate.

As a result of the different completion bars for releases and sprints, release
builds require additional testing beyond what is tested for every sprint. If this
testing identifies issues with the game that aren’t found in sprint testing, the

From the Library of Wow! eBook

ptg

Release Planning 123

additional work created to address them creates the need for a special sprint at
the end of the release called a hardening sprint.

Work for the hardening sprint is derived from the difference between the
definition of done for sprint builds and release builds. If the definition of done is
the same for both, there should be no reason for a hardening sprint.

note The need for a hardening sprint is often driven by testing prac-
tices considered too time-consuming to be done every sprint.
For example, testing a magazine demo requires many hours of
“burn-in” testing to ensure that there are no significant mem-
ory leaks.

Hardening sprints are often run using a list of bugs and polishing tasks that
need to be worked on. They are not used to complete stories from the product
backlog (see the sidebar “How to Run a Hardening Sprint”).

hOW TO rUn A hArDenInG SPrInT
At High Moon Studios, we created simple practices for planning and managing
the work for a hardening sprint.

A hardening sprint was shorter than our typical three-week sprint; it was
usually one week long. The sprint planning session started with a simple triage.
The sprint backlog emerged from a play-through of the game during the meet-
ing with the team, stakeholders, and product owner in attendance. During the
play-through, anyone in the room could identify a potential fix for the sprint. If
the product owner agreed with the value of the fix, it was written down on a
whiteboard.

Following the review, the product owner roughly prioritized the bugs. This
consisted of labeling each bug with an A, B, or C. The A bugs were the most
important to fix, the B bugs were medium priority, and the C bugs were not
considered very important to fix. This prioritization raised much discussion;
some A bugs were considered too challenging to fix in a single week and were
demoted, while some C bugs were judged trivial to fix and were promoted.

The team then identified and estimated the tasks to fix all the A bugs and
as many of the B bugs as they could within the coming week.

Unlike normal sprints, changes to the hardening sprint priorities were
allowed. It was important for the product owner to be involved in evaluating the
daily build during the hardening sprint. Sometimes new bugs caused the prod-
uct owner to change the items or priorities of the bug list. As a result, teams
weren’t able to commit to a fixed set of tasks.

Not all fixes on the list were completed in the hardening sprint, but the pri-
oritization helped the team accomplish work in the best order. For us, the hard-
ening sprint was more like a series of one-day sprints to improve the game.

From the Library of Wow! eBook

ptg

Chapter 6 Agile Planning124

Summary
Agile planning is not an oxymoron. Agile teams plan in ways that allow itera-
tion, transparency, and change. They adjust planning to match reality rather
than trying to make reality match a plan.

Agile planning requires a product backlog that prioritizes the user stories
that the stakeholders want in the game. The product backlog prioritization and
team membership determine which stories might be completed every sprint.
These stories, measured in size by story points, allow the measurement of
work accomplished per sprint, which is the velocity. Velocity is used to exam-
ine the rate of development and predict future progress. Measuring velocity
early and frequently allows the project to be steered when many options are
available to it.

Release cycles allow major goals to be achieved over a longer time frame.
Because of the longer time frame, releases have flexibility in planning that does
not exist with sprints. Release plans can be altered in duration or in scope.
Releases also demand a more refined definition of done (see Chapter 5) to bring
an almost shippable level of polish, stability, and tuning to the game, rather than
postponing it to near the end of the project.

For many projects, this is enough. The release cycle is sufficient to release
versions of the product to consumers on a regular basis. Most video game proj-
ects don’t have this luxury. They have pre-production and production phases
that have a different focus and challenges. The next chapter describes these
phases and how Scrum, agile planning, and lean practices can be combined for
planning over the entire development life cycle.

Additional reading
Cohn, Mike. 2006. Agile Estimating and Planning. Upper Saddle River, NJ:

Prentice Hall.

From the Library of Wow! eBook

ptg

Part III
Agile Game Development

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

127

chapter 7
Video Game Project Planning

in Chapter 2, “Agile Development,” a major challenge identified with adopting
agile for game development was matching phase-less agile practices with the
needs of game development stages, such as pre-production and production.

A typical Scrum project is always kept in a near-shippable state. The reason
for this is that the work traditionally separated across multiple phases (design,
coding, testing, optimization) is part of every sprint. By doing this, agile projects
keep the debt of late project work, such as fixing bugs, to a minimum.

Agile game development follows the same model of combining all phases
into each sprint. However, game project stages create a different form of debt,
or necessary work that must be accomplished, such as production assets, which
requires some new practices to be introduced over the course of the project.

This chapter addresses the needs for stages and the challenges they create.
It focuses on production—the most expensive stage that derails many Scrum
teams. By introducing lean ideas, Scrum teams manage complex asset pro-
duction pipelines while maintaining the benefits over traditional preplanned
methods.

midnight club Story
Of the score of games that I have worked on, only a few have shipped on time
and within budget. Of these, Midnight Club was the most successful. Mid-
night Club was a PlayStation 2 (PS2) launch title where players illegally race
in the large open cities of London and New York. The project was a grueling
18-month struggle with a new platform and new publisher.

The game was originally designed to include six cities. We considered two
major risks to delivering a good game in time for the launch of the console.
First was the uncertainty of developing for the PS2. Early on, its capabilities
were compared to those of supercomputers, but over time we learned that it

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning128

was a challenging platform that had some significant performance bottlenecks.
Second, we were uncertain about the effort to produce six large cities in the
time we had before launch.

We focused pre-production on creating one city that would run well on
the PS2. This effort took four times longer than we anticipated. Armed with
this knowledge, we were forced to scale our plans down to three cities. Our
publisher, Rockstar Games, took these cuts in stride. They knew how hard we
were working.

During production, we slowly realized that we had a crucial decision to
make. The time to create the necessary polish for shippable cities was taking
even longer than we had planned. We had to choose between shipping three
low-quality cities or two polished ones. After much teeth gnashing, Rockstar
Games decided to ship with two cities.

In the end, it was the best decision and contributed to the game shipping as
a PS2 launch title that sold millions of copies. A major reason for maintaining
the schedule was the constant attention to the production costs of creating and
polishing the cities. For many game projects—especially those with fixed ship
dates—the production costs and schedule pressures create the greatest risks.

minimum required Feature Sets
Many projects outside the game industry are challenged with an obligation
of delivering on certain expectations from the start. For example, a word pro-
cessor would have to have undo, printing, font management, and so on. This
minimum feature set might require a year or more of effort before a product
can be released.

Similarly, video games are challenged with a minimum set of requirements,
including the following:

●●

●

About eight to twelve hours of single-player gameplay content

● Fixed ship dates such as the Christmas season or movie corelease
dates

●● Minimum required feature sets—such as online multiplayer for a
first-person shooter—that must be shipped with the game

These requirements require budget and staff planning for the long term,
beyond releases. For example, production costs are refined over the course of
pre-production releases to identify the number of content creators and the time
needed to produce eight to twelve hours of gameplay.

From the Library of Wow! eBook

ptg

Minimum Required Feature Sets 129

Minimum required features sets necessitate similar long-term plans. For the
first-person shooter example, the following is a minimum required feature set:

●● Single-player gameplay

AI

●

●●

●

Online multiplayer gameplay●

Weapons

●

These features create a debt of work, much like the production debt, that
takes multiple releases to deliver. Often, stakeholders demand that resource
management plans be developed to support a predicted ship date for these
features.

How does resource management planning work with agile planning? A
proven approach is to identify a range of resource needs to implement epic-
level stories and continually refine both through sprints and releases.

This is a balancing act of cost and value. Imagine you are buying yourself a
new PC, but you have only $2,000 to spend, not a cent more. You’d start with
a breakdown of the parts of the PC and the cost of each:

Component Cost

CPU, motherboard, and memory $800

Graphics card $500

Monitor $400

Case, mouse, and keyboard $200

Hard drive $100

You might decide later to buy the latest graphics card that costs $100 more.
This money has to come from another part of the computer. This is how long-
term planning works with epics. Large epics are defined and thought about to
produce a cost of time and resources. If any budget item is wrong, the time has
to come from another bucket. That needs to be a deliberate and visible decision
and needs to be publicly proclaimed.

For each item, the first estimate might be largely based on experience with
previous games, which is not very accurate. For the first-person shooter exam-
ple, a product owner identifies the large online multiplayer epics that a team of
eight might complete in six to eight months. Some of these epics are not disag-
gregated until more is known. For example, cooperative online gameplay with
AI may or may not be valuable or even possible within this resource plan until
more is known, so the epic that might contain that feature is not disaggregated
until more is known and a team is available to work on it.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning130

This provides the flexibility necessary as more is discovered about the chal-
lenges, velocity, and opportunities for online as the game emerges. It does not
ensure that every minimum required feature will be completed within budget
and schedule—no planning process does that—but it enables decisions to be
made earlier that help steer the project in the right direction.

the need for Stages
For many games developed using agile, there is still a need to separate some of
the development activities. There are three major reasons for this:

●● Publishers require concepts: To gain publisher approval (which
includes marketing and often franchise or license owner approval),
developers need to create a detailed concept treatment at the start of
a project. They are unable to stray too far from this vision throughout
the project.

●● Games need to deliver eight-plus hours of gameplay: Games
typically deliver eight to twelve hours of single-player gameplay.
Games tell stories that need a great deal of production content to be
created using mechanics discovered during pre-production.

●● One ship date: For large-scale games, there is only one ship date
at the end of a 24+ month development cycle. Intensive hardware
compliance testing is often delayed until the end.

reAL reLeASeS
Massively multiplayer online games (MMOs), such as World of Warcraft or Eve
Online, which regularly deliver expansion packs to existing customers, balance
the pressures of schedule and scope to determine ship dates on a release-by-
release basis. Other games, such as iPhone or casual online games, have simi-
lar release cycles. This model is emerging more and more through expansion
packs and episodic content as gaming platforms become more connected and
embed more storage space.

the Development Stages
Agile game projects spread activities such as concept, design, coding, asset
creation, optimizing, and debugging more evenly throughout their life. This
doesn’t mean that the project is a homogenous string of sprints.

From the Library of Wow! eBook

ptg

The Development Stages 131

Most game development projects have stages regardless of whether they are
agile or not. These stages change how teams develop the game:

●● Concept: This stage occurs before pre-production. Concept devel-
opment is almost purely iterative. Ideas are generated, possibly
prototyped, and thrown away on a regular basis. This stage is usually
timeboxed to deliver one or more concept development plans to a
green-light approval process required by the publisher or a license
holder.

●● Pre-production: Teams explore what is fun and how they are going
to build assets to support it during production. They also create levels
and other assets that represent production quality. This stage is fully
iterative and incremental. Teams iteratively discover what is fun and
incrementally adapt development planning with this knowledge.

●● Production: The team focuses on creating an eight- to twelve-
hour experience using the core mechanics and processes discovered
during pre-production. This stage focuses on efficiency and incre-
mental improvements. Teams iterate less on core mechanics discov-
ered during pre-production because they are building a great deal of
assets based on them. Changing those mechanics during production
is usually very wasteful and expensive. For example, consider a team
in production on a platformer genre game. Platformer games chal-
lenge the player to develop skills to navigate treacherous environ-
ments (such as Nintendo’s Mario series). The production team creates
hundreds of assets that depend on character movement metrics such
as “how high the character can jump” or “the minimum height that
the player can crawl under.” If these metrics are changed in the midst
of production, it wreaks havoc. For example, if a designer changes the
jump height of the character, hundreds of ledges or barriers would
have to be retrofitted. This creates a great deal of wasted effort during
the most expensive phase of development. It’s critical to discover and
lock down such metrics during pre-production.

●● Post-production: With the content brought to shippable quality,
the team focuses on polishing the whole eight- to twelve-hour game
experience. This stage improves the game incrementally. Following
this, the game is submitted to hardware testing. Although much of
this testing is spread throughout the entire project, some of it cannot
be. For example, Microsoft and Sony hardware testing is expensive
and only occurs in the months prior to shipping the game.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning132

Concept

Pre-
Production

Post-
ProductionProduction

Figure 7.1 Overlapping stages

mixing the Stages
Stages aren’t isolated to distinct periods of time. For example, although a great
deal of concept work is done up front, concept development needs to be refined
as the game emerges over the entire project.

Figure 7.1 shows a typical distribution of efforts on an agile game project.
Note that although more design and concept is done up front and more tun-
ing, debugging, and optimization is done at the end, many overlap with one
another. For example, rather than an official “production start date,” teams see a
gradual buildup of production activities and a drop-off of pre-production work
in the middle of the project.

managing Stages with releases
Releases are a series of sprints linked together to deliver major features and
assets. Similarly, a game project is a series of releases that deliver a finished game
to the consumer. Figure 7.2 shows a typical series of two- to three-month
releases that make up a two-year project.

Re
le
as
e

Post-
Production

Re
le
as
e

Concept

Re
le
as
e

Pre-Production

Re
le
as
e

Re
le
as
e

Re
le
as
e

Production

Re
le
as
e

Re
le
as
e

Re
le
as
e

Figure 7.2 Releases in a multiyear project

From the Library of Wow! eBook

ptg

Managing Stages with Releases 133

Anarchy

Complex

Concept

Simple

Complicated

Technology

Re
qu
ire

me
nt

s

Close to
Certainty

Far from
Certainty

Far From
Agreement

Close to
Agreement

Pre-
Production

Post-
Production

Production

Figure 7.3 Stages of decreasing uncertainty
Source: Schwaber, K ., and M . Beedle . 2002 . Agile Software Development with Scrum . Upper Saddle
River, NJ: Prentice Hall . Reprinted by permission of Pearson Education, Inc .

Each of these stages requires a different emphasis on the practices used.
The transition between stages such as pre-production and production can be
gradual, with various asset types transitioning at different times.

The reasons for the change in practices are illustrated by an enhanced ver-
sion of the Stacey diagram shown in Figure 7.3. As the game progresses from
concept to post-production, the level of technical and requirements uncer-
tainty drops. As the Stacey diagram indicates, the practices should reflect these
levels of uncertainty.

The framework used is still Scrum, but teams adjust the practices for the
current stage:

●● Concept: Sprints are shorter, and most of the stories in the very
small backlog are spikes. The main goal of the conceptual stage is to
create knowledge for the team and stakeholders, not value for the
consumers. Release goals are concept treatments and perhaps a proto-
type to demonstrate to stakeholders.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning134

●● Pre-production: Scrum is used to discover the fun of the game and
incrementally and iteratively build value and knowledge about pro-
duction costs. Development is paced by sprints and releases. Release
goals are major features.

●● Production: Teams produce assets that were identified in pre-
production and incrementally improve the asset pipelines. Although
sprints and releases are still used, the pace of asset production
becomes the metric for measuring velocity.

●● Post-production: Teams focus on tuning, polishing, and bug fixing
tasks they identify daily. Although sprint and release reviews are held,
the goals are driven more by the daily backlog (which includes bug
fixes and polishing tasks) and upcoming key dates such as submission.
Post-production starts on the alpha date and includes the beta and
shipping dates.

Production on an Agile Project
Production is the most challenging and expensive stage. It represents a large
debt of work that is dependent on pre-production decisions and timing.

For Scrum teams, the complex pipelines of asset creation don’t fit perfectly
with the iterative flow of work in a sprint. Because of this, many teams enter-
ing production abandon Scrum in favor of waterfall practices. The problem in
doing this is that they abandon many of the agile benefits.

This section addresses the issues with production for an agile team. It
introduces some lean concepts that allow teams to continually improve their
production rate and the quality of the assets they produce.

Production Debt
Have you ever seen a schedule for a game project that picks a day for produc-
tion to begin? A date is chosen, a year or so in advance, that predicts when the
team is to begin creating production assets (usually levels).

Where does this date come from? How do we know how much time is
needed for pre-production and production? How do we know whether the
time given is enough? How many times have you entered a nine-month pro-
duction stage with twelve months of work? Many games enter production too
early because the schedule says they need to do so. The problem is that the core
mechanics and budgets that production depends on are still being iterated. This

From the Library of Wow! eBook

ptg

Production on an Agile Project 135

creates wasted work, because large numbers of assets must be reworked as this
information emerges.

The work that needs to be done in production to create the eight to twelve
hours of content many games need is called production debt.

Measuring Production Debt in Pre-Production
One of the goals of pre-production releases should be to measure and

refine knowledge about the size of the production debt. During the first few
releases, that debt is uncertain. For example, a project early in development
might estimate its production debt to be 1,000 people-months of work, plus or
minus 20%. Changes to the feature set may impact those ranges as well. Toward
the end of pre-production, it should be more accurate, such as 1,050 people-
months, plus or minus 5%. Figure 7.4 shows how this range of estimates will
change over time. Although this estimate will never be perfect, it is always bet-
ter than the first guess made at the start of the project.

These estimates are refined with sprint and release goals that call for assets
with increasingly higher quality. By developing these assets, the team learns
more about the actual cost required to create them. These estimates aren’t fro-
zen in production either. During production, the team should be finding ways
to improve how assets are created to further reduce costs.

A new feature was introduced here that increased production cost

Production
Cost Estimate

in People-
Months

Pre-Production Production

We should find ways to improve
production costs during production

1200

1100

1000

900

800

Figure 7.4 Production cost estimates over time

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning136

Why Measure Production Debt?
Measuring the cost of production during pre-production is important to help
make decisions about the features that impact that cost. If the product owner
does not know the cost impact of such features, they are inclined to accept
them on face value.

Imagine you are working on a first-person shooter game that has twelve
months of production scheduled to build ten levels. During development,
the team implements technology that enables every part of the world to be
destroyed or have holes blown in it. This is a great new addition, but it doubles
the amount of work required to build a level.

If the product owner knows this, they can make an early decision. The fol-
lowing are some choices:

●●

●

Drop the feature because the project can’t afford it.

●

●

Drop half the levels.

●

●

Start production earlier.

●

Scale up the production resources.●

Extend production and the ship date.

●

Some of these choices are better than others, but they are all better than
the one taken if production debt isn’t measured: trying to stuff 24 months of
production effort into 12 months of schedule.

the challenge of Scrum in Production
Production is dominated by an assembly-line approach to asset creation charac-
terized by sequential steps of specialized work. These asset production streams
are easily stalled or starved of work at various points within by impediments.

When Scrum teams fit asset production streams into sprints, they discover
that some of the benefits they’ve enjoyed in pre-production, such as ad hoc
iteration and transparency, are somewhat reduced.

Scrum Task Boards and Production Streams
At the start of a sprint, a team commits to completing the tasks they estimated
they could complete by the end of the sprint. Those tasks are placed on a
task board that is reviewed every day. Many of the tasks are worked on out of
sequence or in parallel. If someone is held up waiting for another task to com-
plete, then they work on something else. This organic flow of task execution
fosters communication among the team and prevents impediments from stop-
ping them cold. Scrum task boards are great for supporting this.

From the Library of Wow! eBook

ptg

Production on an Agile Project 137

However, for a long series of asset production steps that must be completed
in order, the team loses much of this benefit. Tasks must flow in an ordered and
steady pace to ensure that the specialists on a production team are not waiting
for work. Scrum task boards don’t clearly show this flow.

For example, consider the asset production stream for a single character to
be produced in a sprint in Figure 7.5. The team estimates they will complete
this work before the end of the sprint. As this stream shows, each task has to
occur in order before it is handed off to the next one.

When this stream of work is placed on a task board, it looks like Figure 7.6.

Model Rig

Start
of

Sprint

End
of

Sprint

Animate Audio

Figure 7.5 A production stream in a sprint

Not StartedGoal In Progress Done

Add
Character Model

Rig

Animate

Audio

Figure 7.6 A character production stream visualized on a task board

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning138

This task board shows that the character model is being created first. One
problem with displaying streams on a task board is that the flow rate of the
stream is not sufficiently visualized. This lack of visualization fails to alert a team
to problems.

For example, what happens if modeling takes longer than estimated?
Figure 7.7 shows the likely result. The modeler, rigger, and animator are able
to finish their work, but the last person in the chain, the audio designer, does
not have enough time to do their work before the end of the sprint.

The team needs to see the impact of delays within the stream while they
are occurring at any time.

Keeping Everyone Busy
Another problem with fitting asset production streams into sprints is keeping
all the specialists busy. In the previous character production stream example,
what is the audio designer doing before the animation is completed?

Scrum teams address this problem in a number of ways. One way is to
share the composer with another team that needs audio. The other is to pool
the audio designers into a team that has its own backlog. Another is to batch
up the audio work for a number of characters until the audio designer joins
the team for a sprint. None of these solutions is ideal because each increases
the separation between an asset’s creation and its appearance in the game. For
example, suppose modelers are pooled together where they create a dozen
character models ahead of time. If a problem is revealed the first time one of
the characters appears in the game, it might require major rework of all 12,
which is a big waste of effort. Shortening the time between a model’s creation
and its appearance on the screen creates more opportunities to “do it right”
the first time.

End
of

Sprint

Model Rig

Start
of

Sprint

Animate Audio

Figure 7.7 What happens if modeling is delayed

From the Library of Wow! eBook

ptg

Production on an Agile Project 139

Less Use of Iteration
Asset production pipelines are similar to assembly lines. In this sense, a Scrum
team completely empties the assembly line by the end of every sprint, which
doesn’t make sense for assembly lines. They have to be continuously filled
because each step in the line only works on what was passed from the previous
step. An assembly-line run like a sprint creates many gaps in the line that leave
team members waiting.

This is the reason that many Scrum teams abandon agile when they enter
production. However, production is never 100% efficient. The team cannot
foresee every potential problem. They need to seek improvements in pipelines
right up until the game is shipped. For this reason, the agile values should be
maintained in production. If production is driven by fixed schedules and dead-
lines, the best the team can hope for is to meet those deadlines, but unplanned
problems will continue to appear and threaten them. Practices that are still
agile are needed—practices that anticipate change, that encourage continuous
efficient flow, and that focus attention on continually improving how assets are
produced.

This is where “lean” thinking can help. Lean is a set of principles applied
to production environments that have more certainty about what is being cre-
ated but still want to introduce improvements continually. The remainder of
this chapter will describe what lean is and how it and practices like kanban can
help a team remain agile during production.

lean Production
Discovering what lean means is challenging. It seems that every month some-
one is branding their own version of lean. Still, some common threads run
through most of these lean brands, which I refer to as lean thinking.

The origins of lean thinking precede World War II. Large-scale manu-
facturing industries were beginning to understand that the greatest untapped
resource was the brains of the assembly-line worker. Encouraging them to take
more ownership for improving workflow and quality paid dividends.

Since then, lean thinking has found its way into every industry. It helps
teams focus on continual improvement, deliver fast, and improve the entire flow
of product creation.

Lean thinking lends itself to the challenges of production (refer to
Figure 7.3). Its practices, like XP programming practices, are a good comple-
ment to Scrum. They help teams create transparency within asset production
streams and wring out the highest amount of quality and efficiency.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning140

It’s outside the scope of this book to explain every lean principle (see the
“Additional Reading” section at the end of the chapter). Instead, the chapter
introduces some lean thinking concepts and practices through a level produc-
tion example.

A LeAn ThInkInG MeTAPhOr
“Lean thinking is a proven system that applies to product development and pro-
duction, as evidenced by Toyota and others. And although most often applied
to products, it is also used in service areas—both within Toyota and in domains
such as health care. The image and metaphor we like to convey a key thinking
mistake—and opportunity—is the sport of relay racing.

“Consider the relay racers standing around waiting for the baton from their
running colleague. The accountant in the finance department, looking aghast at
this terrible underutilization ‘waste’ indicated in some report, would probably
mandate a policy goal of “95% utilization of resources” to ensure all the racers
are busy and ‘productive.’ Maybe—he suggests—the runners could run three
races at the same time to increase ‘resource utilization’ or run up a mountain
while waiting. Funny…but this kind of thinking lies behind much of traditional
management and processes in development and other domains. Of course, in
contrast, here is a central idea in lean thinking:

“‘Watch the baton, not the runners’”1

Visualizing Flow with Kanban
A kanban board is a bit similar to a Scrum task board.2 In Japanese the word
kan means “card,” and ban means “signal,” so kanban refers to “signal cards.”
Kanban represents a “pull system” for work. A kanban card is a signal meant to
trigger action, such as “work on this next” or “I need an animation.”

A team employs a kanban board to visualize an asset production stream and
provide the transparency that a Scrum task board cannot.

We’ll use an example level production stream to demonstrate how kanban
and lean thinking are applied to production. Figure 7.8 shows a simplified level
production stream, from concept to tuning.

1. Larman, C., and B. Vodde. 2009. Scaling Lean and Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum. Boston: Addison-Wesley. Reproduced by
permission of Pearson Education, Inc.

2. Some call this board the Heijunka board.

From the Library of Wow! eBook

ptg

Production on an Agile Project 141

Concept Level
Design

High-
Resolution

Art
Audio
Design

Tuning
Pass

Figure 7.8 A simplified production stream for levels

The first step is to represent the stream on a kanban board, which uses
columns to represent individual workflow steps and capacity. Figure 7.9 shows
a simplified kanban for the level production stream.

There are six columns, which representing the steps of this production
stream, including the product backlog. The cards within the columns represent
individual levels in production. As the work for each step of a level is completed,
a card for the next level to work on is pulled from the column immediately to
its left, if that level is ready.

ConceptBacklog Level
Design

High-
Resolution

Art
Audio
Design

Tuning
Pass

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

 Figure 7.9 A simple kanban board

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning142

Leveling Production Flow
Now that the team has a kanban board representing the level production stream,
the team members can start applying lean tools to smooth out the fluctuations
of production. This allows them to create production assets at a more constant
and predictable rate.

There are two basic tools for leveling production flow. The first is establish-
ing timeboxes for each step of the production stream. Following this, the flow
is leveled by balancing the resources supporting every step.

timeboxing Every developer who uses Scrum recognizes that a sprint is a
two- to four-week timebox. Teams don’t change that timebox. The benefit is to
create a measurable cadence of value being added to the game.

In lean production, this is taken a step further. Each step of a production
stream is timeboxed. For example, audio design for a level might be timeboxed
to ten days. This is different from a similar Scrum task in pre-production that
the audio designer independently estimates and commits to. This changes for
production because the team has established, during pre-production, the ideal
timebox for a level’s audio design. This timebox is based on the trade-off of
time (cost) of creation and quality desired by the product owner.

Timeboxing does not mean content creators are forced to meet a set qual-
ity within a fixed amount of time. The quality is determined by what the con-
tent creator is able to provide within the time limit.

The key to timeboxing assets is balancing quality and cost, measured in
time. If the timebox chosen is too short, then the quality of the asset will be
too low. For example, if the timebox for a section of high-resolution level
geometry is set to one day, an artist might only be able to create a section
filled with untextured cubes! On the other hand, if the timebox selected
were two months, the artist might deliver a section with too much detailed
geometry. It would be absolutely beautiful, but that beauty would come at
too great of a cost to the stakeholder compared to the value it provides to
the player.

Balancing asset quality and cost is the job of the product owner. They have
to judge what the player values. Figure 7.10 demonstrates a notional curve of
the trade-off between cost and value to the player.

It’s not a straight line, because of diminishing returns; a player driving past
a 10,000-polygon fire hydrant does not experience 50 times the value of a
200-polygon fire hydrant.

From the Library of Wow! eBook

ptg

Production on an Agile Project 143

Value
to

Customer

Cost

Value Too Low

Diminishing
Return

 Figure 7.10 The cost/trade-off curve of assets

note As the product owner of a driving game, I asked the artists to
create “95-mile-per-hour art.” This quality bar depends on
what the player cares about when they play the game; the
player doesn’t care about a high-resolution fire hydrant they
pass at 95 miles per hour!

Figure 7.11 shows the area of the trade-off curve where the timebox selec-
tion is made. Pre-production refines the shape of this curve and the best range
for a production timebox.

Value
to

Customer

Cost

Timebox
should keep
us here

Figure 7.11 Selecting a timebox for an asset

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning144

Timeboxes are not absolutely precise. Some levels take more time than
others. The timebox chosen is an average of best- and worst-case times. The
team uses small buffers, described next, to avoid underflow or overflow of work
that this might cause.

note The timebox changes during production; it shrinks as it is
refined and moves to the left as the team improves how it
performs.

leveling Flow Each step in the stream usually requires a different-length
timebox. This causes gaps and pileups of work, which is to be avoided. For
example, in Figure 7.12, if level design takes a week but the high-resolution
geometry takes two, then the design work piles up. Conversely, if conceptual-
ization requires two weeks for each level, the level designer eventually runs out
of work and has to wait.

ConceptBacklog Level
Design

High-
Resolution

Art
Audio
Design

Tuning
Pass

Level 1

Level 2

Level 3

Level 4
Not

Enough
Work!

Too
Much
Work!

Level 5

Level 6

Level 7

Level 8

Figure 7.12 A kanban board showing starvation and overflow

From the Library of Wow! eBook

ptg

Production on an Agile Project 145

Workflow needs to be balanced so that everyone always has work to do and
that large amounts of work in progress don’t pile up at any step. One way of doing
this is to balance the amount of time each step takes, called its cycle time.

For example, if the team wants a ten-day cycle time for each step, they
start by examining the timeboxes for each person working on the stream (see
Table 7.1).

Concept art and audio design already have a cycle time of ten days. How-
ever, the other steps have different cycle times. For example, tuning takes less
than ten days per level. This means the designer who tunes levels runs out of
work from time to time and has to find other things to do. This could mean
helping out another team, level design, or QA.

For steps that require more than ten days per level, the team needs to
add people or find improvements to the process. For example, since the high-
resolution artists require thirty days per level, the team could dedicate three
high-resolution artists to balance the flow. Artists can work together in a num-
ber of ways, but each has challenges:

●● Have all high-resolution artists work on the same level. This may not
be an option if the editing tools do not support simultaneous editing
on the same level.

●● Break up the high-resolution step into a specialized flow (for exam-
ple, texture artist, prop artist, static geometry artist). It may be hard to
balance these specialties.

●● Have the high-resolution artists working on multiple levels in parallel.
This solution might pose challenges with creating consistent quality
and pace.

tABle 7.1 The Starting Cycle Times for an Unbalanced Stream

Step timebox per Person

Concept 10 days

Level design 20 days

High-resolution art* 30 days

Audio design 10 days

Tuning pass 7 days

* High-resolution art is the creation of detailed geometry, textures, and lighting .

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning146

Each member of the team adds capacity, represented by a kanban limit
for each column as shown in Figure 7.13. This number defines how many
cards (levels) should reside in each column. When the number of cards in a
column does not match its limit, it signals to the team that there is a potential
problem.

Our kanban board now looks like Figure 7.13.
The team has now balanced the level production stream and established

the rate at which levels are completed, called the takt time (see the sidebar
“Takt Time and Cycle Time”), which is also ten days. They apply lean tools
to maintain and even reduce takt time so to continually improve the cost and
quality of the levels.

ConceptBacklog

(5) (1) (2) (3) (1) (1)

Level
Design

High-
Resolution

Art
Audio
Design

Tuning
Pass

Level

Level

Level

Level

Level

Level

Level

Level

Level

 Figure 7.13 A kanban board showing balanced flow

From the Library of Wow! eBook

ptg

Production on an Agile Project 147

TAkT TIMe AnD CYCLe TIMe
Lean uses two measures of time for asset production streams. One is takt time,
which is the rate of external demand for completed assets to be delivered. For
video game production, this is determined by a schedule established in pre-
production. One goal of lean practices is to continually put pressure on reducing
takt time—increasing the rate at which finished assets are delivered—by finding
improvements in the pipeline.

Cycle time is used to measure the interval of time between the start and
finish of a step or an entire stream.

Ideally, the cycle time of each step is less than or equal to the takt time.
This is the goal of leveling flow. In the level creation example stream, the high-
resolution art step required a 15-day cycle time. This could not be reduced to
the takt time goal of five days by simply improving the pipeline. The solution
was to create three high-resolution art stations working in parallel to meet the
demand for one level of high-resolution art to be completed every five days.

Continual Improvement
One of the main advantages of using lean production is that teams maintain the
drive to continually improve what they are making and how they are making it.
This is a benefit over fixed production schedules, where teams concentrate on
keeping pace with deadlines.

In production, teams apply the same agile planning paradigm of using
velocity measurements to forecast the pace toward achieving a goal. This allows
fixes and improvements to be quickly appraised.

This section uses the level production example to describe some of the ways
lean thinking enables teams to continually improve how they work together to
increase the quality and production pace of assets.

improving cycle time The pace of iteration has a direct impact on quality. For
example, if the iteration time on changing a texture and seeing it in the game
is reduced from ten minutes to ten seconds, an artist iterates on textures more,
and the game looks better.

The same principle applies to asset production streams. We want to shorten
a stream’s iteration time to allow improvements to be introduced as quickly as
possible. These include pipeline, tool, workflow, and teamwork improvements.
Shortening the iteration time of such changes enables more of them to be
implemented and seen.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning148

In lean production, we focus on improving the iteration time, or cycle
time, for the entire stream rather than the individual steps. The following fac-
tors influence a stream’s cycle time:

●● Asset size: Large assets, such as full levels, have large cycle times.
If a team completes portions of a large asset, they reduce its
cycle time.

●● Batch size: This is the number of assets processed at one time at
any individual step. The larger the batch size, the longer the cycle
time. An example of this is completing a dozen character models
before handing them all off to the rigger.

●● Waste: This is the effort spent on things that don’t add value to the
final asset. For example, the time spent waiting for an approval is
non-value-added time, or waste.

●● Knowledge, skill, and empowerment: The greatest factor in
determining cycle time is the knowledge and skill of everyone who
adds value along the stream and their ability to influence change.
For example, knowing when and where to reuse an asset rather
than building one from scratch has a large impact on cycle time.

Smaller Assets By breaking large assets into smaller ones, teams receive
faster feedback. There are three types of feedback:

●● Gameplay feedback: Very large assets, such as levels, can have
monthlong cycle times and, despite how detailed their design,
deliver uncertain gameplay. This long cycle time provides little
opportunity for feedback to influence the asset. As a result, levels
are shipped based on their initial design assumptions. By breaking
levels into smaller areas, teams are given valuable feedback about the
gameplay emerging and use this knowledge to influence subsequent
portions of the level.

●● Production feedback: Improvements to the production flow are
applied more quickly and cheaply. For example, if the team discov-
ers that a particular piece of static geometry interferes with charac-
ter motion in the first section of the level, they fix that section and
change their standards of work to apply the improvement on every
subsequent section. This is a big time-saver.

From the Library of Wow! eBook

ptg

Production on an Agile Project 149

●● Velocity feedback: It’s very difficult to gauge the effectiveness of
individual practice changes or tool improvements when the cycle
time is measured in months. If the cycle time is reduced to weeks,
then changes to the pace of work from improvements are more
apparent.

One level production team I was working with did this by breaking up
their levels into seven smaller “zones.” Zones were the sections of levels that
were streamed in and out of memory as the player moved.

Once they began building zones, their cycle times became one seventh
of what they were before. Zones were completed every few weeks, and each
one added improvements in quality and production that fed into subsequent
zones. This team eventually reduced their cycle time by more than 50%.

Smaller Batches Traditional production pipelines focus on the efficient uti-
lization of resources, rather than the flow of asset production streams. The
imbalance of disciplines often causes project managers to level resources so
that nobody runs out of work to do. Since “resource leveling” predictions are
never too precise, large inventories of works in progress are built in, between
the steps.

For example, if a project has dozens of levels to ship, it may start producing
batches of concept art or level props well before the end of pre-production.
To a certain degree, this is necessary, but it often goes too far. For example, a
half dozen levels of concept art created before gameplay is fully understood
leads to waste if the concepts have to be redone or, worse, levels are produced
using these obsolete concepts.

With lean thinking, teams try to reduce or eliminate batches of work.
Because of the uncertainties within the timeboxes for each step, they often
need to create small buffers of works in progress between the steps of an
asset production stream. They choose the smallest possible buffer size, because
buffers increase the cycle time. The buffers should prevent waiting but not
excessive pileups of work between each stage of work.

Figure 7.14 shows how buffers are represented on a kanban board. Buf-
fers have limits, like every other step, that signal when the buffer is overflow-
ing or underflowing.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning150

Backlog

(1) (1) (2) (2) (3) (1) (1) (1) (1)

Concept Buffer Buffer Buffer BufferLevel
Design

High-
Resolution
Art

Audio
Design

Tuning
Pass

Level

Level

Level

Level

Level
Level

Level
Level

Level

Level

Level

Level

Figure 7.14 A kanban board with buffers

reducing waste A good portion of the time spent in production is wasted on
work or activities that don’t add value to the final product. Examples of this are
the time waiting for exports, waiting for asset approvals, or syncing with the lat-
est assets. Reducing these wastes greatly benefits productivity and cycle times.

Many of these wastes are identified and corrected by the team itself. The
subtle pressures of takt time and timeboxing largely drive this. Timeboxes exert
a pressure on the content creators to use their time wisely. As a result, it encour-
ages them to seek ways to be more effective in how they work and point out
the problems that were not so impactful when they had more time (see the
sidebar “Lean Thinking and Boats”).

limiting
creAtivity?

One concern about lean is that it limits the creativity of artists
in production. I have found that the opposite is the case. A
quote from TS Eliot seems to apply: “When forced to work
within a strict framework, the imagination is taxed to its utmost
and will produce richest ideas. Given total freedom the work is
likely to sprawl.”

From the Library of Wow! eBook

ptg

Production on an Agile Project 151

One production team I was working with had a ten-day takt time for level
sections. This pace was challenging and exposed many problems with the flow
of work. The biggest problem was with the concept art step. The team had only
one concept artist available who was sitting with the other concept artists in
another part of the studio. It often took more than ten days to create a dozen
drawings for each section. The team recognized this as a bottleneck.

In team discussions, it turned out that the level designers and high-resolution
artists didn’t really need all the drawings created. Because the concept artist was
separate from the team, much of the concept art was based on poor assumptions
about the level and gameplay. For example, gameplay was linear, but much of the
concept art represented open areas. The concept artist was surprised to hear that
much of his work was useless. The solution the team created was to move the
concept artist next to the level designer and high-resolution artists. This enabled
them to discuss the layout of levels as concept art was created. As a result, far fewer
drawings needed to be created, and the quality of the levels improved.

This is an example of reducing the waste of handoffs. By applying this
practice to other handoffs, the team was able to create similar improvements
across the entire production stream.

This is one example of dozens of changes the team made. By the end of
production, they had improved takt time by more than 50% while significantly
improving quality.

LeAn ThInkInG AnD BOATS
A useful metaphor for how lean thinking encourages continual improvement is
that of a boat traveling down a river. The river is filled with boulders of various
sizes, which impede the flow of water. When the water level of the river is high,
the crew piloting the boat doesn’t encounter the boulders and isn’t concerned
about how they are slowing them down.

However, when the water level in the river drops, the boulders begin to
appear. They are then recognized not only as impediments to the flow of the
river but also as real danger! Now the crew reacts to the boulders and steers
around them.

In this metaphor, the boat is the project, and the flow of water represents
the flow of money or time being spent on it. The boulders stand for the things
that slow development down like unreliable build systems or asset pipelines
that take hours to create a build.

Lean thinking not only causes the water level to be lowered but gives
teams the equivalent of a cannon, through transparency and practices, to start
blowing the boulders away. This makes it possible for the boat to go faster and
straighter with less water.

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning152

Knowledge, Skill, and empowerment Like Scrum practices, lean practices
create transparency in the production pipeline, which makes quality, velocity,
and waste visible. One of the first things revealed is the variation of quality and
velocity between separate teams. This visibility enables leads to know where to
focus mentoring. In many cases, all that is required is to help a struggling con-
tent creator use a tool correctly or understand how they reuse assets to improve
their effectiveness.

Lean thinking focuses skills on the final product, rather than on individual
steps. Part IV, “Agile Disciplines,” discusses this in greater detail.

Many of the lean tools described require the team to be empowered to
make decisions and take ownership of their practices. In the previous example,
the team decided to move the concept artist with the rest of the team. In many
studios, teams are not allowed to make such decisions. It comes back to the
lack of transparency. With transparency, teams are entrusted to make greater
and greater decisions because of the performance metrics that ensure their
decisions demonstrate higher productivity and quality. The difference in the
number, quality, and frequency of beneficial changes increases as ownership
of them is spread. Leaders might be skilled and insightful, but they can’t be
everywhere. They need to rely on empowered teams to recognize and solve
issues daily.

Outsourcing
Outsourcing has established its benefits for asset production. However, many
studios have found that outsourcing limits the amount of iteration that takes
place in the creation of large assets such as key characters or levels. This limited
iteration impacts quality or introduces expensive rework that limits outsourc-
ing’s cost benefits.

Lean production outside the game industry evolved to work with external
suppliers. Suppliers to lean companies need to become lean themselves. Lean
suppliers deliver smaller batches of parts to the main production line. This is
done to allow quality improvements to be introduced more frequently and at
lower cost.

How does this translate to game asset production? With our example, we
don’t want to outsource the entire level production stream. The key is to out-
source parts of the production stream that don’t require larger iterative cycles that
should remain in the studio. For level production, studio teams retain large layout
tasks and outsource the component assets used in these layouts. An example of
this is environment sets, or collections of assets, common throughout a level. If

From the Library of Wow! eBook

ptg

Production on an Agile Project 153

a project needs a large city level, they outsource all the props such as light posts,
mailboxes, vehicles, building components, ambient sounds, and so on. These envi-
ronmental sets are brought into the layout steps (high-resolution art and audio
layout). This enables continued iteration of the layouts at the studio.

Figure 7.15 shows a production stream with the environmental art
outsourced.

The outsourced assets are identified in level concept and design to give
sufficient lead time. These assets are delivered as they are developed, rather than
in a single batch.

note Many layout tools support late introduction of outsourced
components. An example is the Unreal Engine 3 editor. The
packaging system allows for levels to be laid out with proxy
assets that are automatically replaced as the high-quality out-
sourced assets are delivered. For example, the studio artists
could use blue rectangles in place of doors, and when the out-
sourced doors are delivered, a single instance change replaces
them all.

working with Scrum
When the project enters production, asset production teams may not use prac-
tices such as sprint planning and tracking. However, these practices are still used
by other teams to continue innovating new features.

Sprints are still valuable in production. Asset production teams demonstrate
the assets that have been completed since the last sprint review. Production
teams don’t plan sprints. Instead, they periodically fill a backlog buffer with a

ConceptScript Level
Design

Environmental
Art Set

High-
Resolution

Art

Audio
Design

Turning
Pass

Figure 7.15 Outsourcing a portion of the stream

From the Library of Wow! eBook

ptg

Chapter 7 Video Game Project Planning154

set of prioritized assets to work on next. The team selects a backlog buffer size
limit and fills it to that limit every time it is emptied.

Teams might also mix production and feature development work. For
example, consider a level production team that has a few programmers add-
ing effects, enhancing AI, and improving tools. The programmers plan typical
sprints with user stories and a sprint backlog, while the level creators use a kan-
ban workflow. Figure 7.16 shows how the two task boards are combined using
a Scrum “swim lane” added to a kanban board.

Retrospectives and daily scrums are still essential practices for produc-
tion teams to address impediments and to improve how the team performs
together.

Backlog

Backlog DoneNot
Started

In
Progress

(5) (1) (2) (3) (1) (1)

Concept Level
Design

User
Story

Task Task
Task Task

TaskTask
Task

Task

High-
Resolution
Art

Level
Production

Sprint

Audio
Design

Turning
Pass

Level

Level

Level

Level

Level Level

Level

Level

Level

Level

Level Level

 Figure 7.16 A kanban board with a sprint swim lane

From the Library of Wow! eBook

ptg

Additional Reading 155

transitioning Scrum teams
Scrum teams exploring gameplay in pre-production don’t instantly reorganize
their workflow into asset streams overnight. They gradually build up to them
by iterating on assets that approach production quality and refining each stage
or workflow. Each team approaches this transition differently, but the common
set of steps is as follows:

Explore what is correct (fun and cost).1.

Refine the timeboxes.2.

Understand how much content is needed and who is needed to 3.
create it, and refine the production budget.

Establish the asset streams.4.

Start adding columns to task boards with kanban limits.5.

Level the flow. Adjust the teams.6.

As the teams level the flow of an asset stream, their size might far exceed
ten members. Some teams might break the team into two, but more often they
maintain themselves as a single team. This allows them to “see the whole” asset
stream as one continuous flow. The downside is that it makes team meetings,
such as daily scrums and retrospectives, less productive because of the commu-
nication overhead.

Summary
The additional challenge of stages with game projects doesn’t diminish the
value of agile or require complex plans or project management structures. It
requires product owners to be aware of impacts that features have on produc-
tion costs and for teams to adapt their practices as they enter production.

Additional reading
Poppendieck, M., and T. Poppendieck. 2006. Implementing Lean Software

Development: From Concept to Cash. Boston: Addison-Wesley.

Ladas, C. 2009. Scrumban: Essays on Kanban Systems for Lean Software Develop-
ment. Seattle: Modus Cooperandi Press.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

157

chapter 8
Teams

i’ve worked on creating various products, from the F-22 fighters to games, for
more than 20 years. The highlights of my career are clearly marked in my mind
by the project teams I was working with. These teams were more consequential
to enjoyment and productivity than the company or project we were working
for at the time.

Working with the project team on the first Midtown Madness game was
a highlight. The team was largely composed of developers who had never
worked on a game before. Microsoft, our publisher, and the studio we worked
at, Angel Studios, left us largely alone to develop the game. As a result, many
of the smaller details of the game were left to us to discover. We were never far
away from being canceled either…in some cases hours away. We had to prove
ourselves.

What emerged was a team with a shared vision, a sense of ownership, and
pride. We worked hard on the game. For example, we started a LAN party with
the game every day at 6 p.m., and at 8 p.m. we met in a conference room to
talk about improving the experience. I’d often have an idea pop into my head
during the night, and I’d rush back in during the early hours of the day to
try it, often finding teammates who had arrived earlier or had even spent the
night working on their own idea. Although we spent long hours on the game,
it seemed more like a hobby we were passionate about than a job, but it never
felt like a “crunch.”

The game we shipped was a success, but the real reward was the experience
of working with that team. Much of the chemistry of that team is a mystery
to me. There doesn’t seem to be a formula for how such teams can be created,
but I’ve found that it’s quite easy to prevent such teams from forming. Scrum’s
focus is on allowing such teams to form, if possible, and nurturing them to grow.
This chapter will explore some of the basic Scrum principles and practices that

From the Library of Wow! eBook

ptg

Chapter 8 Teams158

support such teams and how large projects of more than 100 people can use
these practices and allow individuals on teams to still have a shared vision, sense
of ownership, and pride. It will also explore various team structures that have
been formed on large game projects.

This chapter describes the central role of teams in Scrum, the role of lead-
ership, and how small Scrum teams scale for large projects.

great teams
Great teams are one of the most influential factors for creating a successful
game. Great teams are also the most difficult teams to foster. They cannot be
created through the application of rules or practices alone. Studio and project
leadership are required to facilitate them.

Great teams share the following characteristics:

●● Follow a shared vision and purpose: Everyone on the team
understands the goal of what they are working on.

●● Complement other team members’ skills: Team members
depend on each other to achieve their goals by applying their unique
skills to a shared goal.

●● Exhibit open and safe communication: Team members feel safe
to communicate anything to one another.

●● Share decision making, responsibility, and accountability: The
team succeeds or fails together, not as individuals. Everyone earns
their spot on the team daily. There is no room for titles or egos.

●● Have fun together: They spend time together and enjoy each
other’s company. They care for one another.

●● Deliver value: Great teams take pride in their work and deliver high
value consistently.

●● Demonstrate shared commitment: Great teams have a unified
cause. When one member has a problem, the entire team will pitch in
to help them out. As a result, great teams deliver value because they
focus on the whole rather on their own parts. Great teams are com-
mitted to their goals. They’ll go the “extra mile” to achieve a goal that
they believe in.

From the Library of Wow! eBook

ptg

A Scrum Approach to Teams 159

Scrum creates a framework, through its practices and roles, to support these
teams. They require facilitation and support of leadership and management to
evolve. Great teams are uncommon. They create experiences—like the one I
mentioned in the chapter introduction—that people strive to be a part of over
their entire career.

When baking a cake, a few ingredients are needed before you start. If you
are missing any of these, such as eggs, flour, and so on, you can’t make a cake.
However, just how these ingredients are prepared together and baked into the
cake is the main difference between a memorable wedding cake and something
that might taste like it that came from an Easy-Bake oven.

Leadership and talent are the required ingredients for a great game, but like
the cake, how these ingredients are brought together, such as in a team, is the
main determinant of the quality of the game. Scrum doesn’t provide the ingre-
dients for great teams but helps them “mix and bake” what’s there to achieve
that goal.

A Scrum Approach to teams
Scrum creates conditions that enable such teams to achieve greatness through
its practices and principles:

●● Cross-discipline teams: Enables teams to deliver features and
mechanics that have clear value to customers and stakeholders

●● Self-management: Enables teams to select the amount of work
they can commit to every sprint and complete that work through
whatever means they find appropriate

●● Self-organization: Enables teams to have a degree of authority and
responsibility to select their membership

●● True leadership: Provides leadership focused on mentoring and
facilitation to free the best performance possible from the team

The rest of this section will examine the principles and practices in greater
detail.

From the Library of Wow! eBook

ptg

Chapter 8 Teams160

exPerIenCe
“At the heart of scrum is the interaction of the team. A daily meeting around the
task board is interactive, vibrant, collaborative, visual, and tactile. It is a visual
way of showing the goal the team is striving toward and the progress they are
making. They, each and every member of the team, are peers.

“They own the goal. It’s a team effort. They gather around the board to
align themselves with each other, to honor others’ contribution to the effort,
and to course-correct when they are missing the mark. They argue, discuss,
share, learn, continually improve, celebrate, boost each other up, and create
solutions.

“There is another thing that Scrum does for the team: It creates transpar-
ency. Since Scrum depends on collaboration and continual forward progress,
problems are addressed by the team as they crop up instead of dealing with
them later or covering the problem under a layer of ‘spin.’

“A structured, militant environment will never create a team. A team
works together toward a shared goal. A group works together toward a goal
given to them. Scrum is messy and noisy. It lives, it breathes, it stretches,
it morphs, and it expands. Interaction is the heart of the team. The heart of
Scrum is the team.”

—Shelly Warmuth, freelance writer and game designer

cross-Discipline teams
When the various documents are written and schedules are created, the priori-
ties of each discipline’s schedules don’t often mesh. Programmers often read
the design document and architect a number of systems based on the goals
established in the document. Complexity and risk prioritize this work, not
feature value.

For example, if the design identifies characters that walk on walls, then they
architect that requirement into the character system. This requires a great deal
of work to alter the physics system and the camera system. The programmers
consider these changes as high priority, since they affect core systems at a fun-
damental level. As a result, they begin working on these changes from the start.
The problem is that the “walking on walls” feature may not be very important
to the designers. The feature may even be dropped when it is seen.

 This lack of synchronized prioritization between disciplines leads to delays
in building knowledge about the game: knowledge that comes only from using
each mechanic in a working game.

Scrum requires a synchronization of the disciplines every sprint. This forces
change in how each developer works daily regardless of their discipline. A cross-
discipline team uses value to explore a solution, which addresses the needs for

From the Library of Wow! eBook

ptg

A Scrum Approach to Teams 161

technology, design, and animation. This drives changes in the way each disci-
pline works to avoid one discipline getting too far ahead of the others, such as
creating speculative architectures. Programmers on a Scrum team may eventu-
ally adopt test-driven development practices, discussed in Chapter 10, “Agile
Technology,” to enable value-prioritized development without the cost of late
changes that up-front architectures attempt to avoid.

Cross-discipline Scrum teams minimize the delays and costs that are
incurred by large discipline-focused hierarchies. Team members share the same
goal and therefore the same priorities, which encourage collaboration. Practices
such as the daily scrum reinforce a team’s commitment to the sprint goal and to
solving the problems that ordinarily would “fall between the cracks” between
the disciplines on a daily basis.

Self-management
Scrum addresses the problems of communication on large teams not by adding
management layers but by dividing the project staff into small teams. Scrum teams
are usually composed of five to nine cross-disciplined developers who take on
major game features and create vertical slices of those features every sprint. Teams
take on an increasing level of self-management by doing the following:

●● Choosing the amount of work to accomplish for the coming sprint
and committing to its completion

●●

●

Deciding the best way to work together

● Estimating their own work and monitoring progress toward their
committed goal daily

●●

●

Demonstrating sprint goals achieved to the stakeholders every sprint

● Taking responsibility for their performance and finding ways to
improve it

Team self-management doesn’t happen overnight. It requires mentoring and
practice to achieve. It requires trust to be built between management and the
teams and the clear definition of the dividing line of responsibilities.

Self-organization
Team self-organization is the most challenging practice for teams trying to
achieve self-management. Self-organizing teams select their own members
whom they believe can help them achieve the best results.

The benefits of self-organization are an essential part of a self-managing
team. When teams “own” their membership, then they treat team commitments

From the Library of Wow! eBook

ptg

Chapter 8 Teams162

with a great deal more ownership. When people are assigned to a team built by
management, it’s something that they have no control over, and, as we’ve seen,
a lack of control prevents full commitment.

Teams are allowed to change their membership between sprints, but most
often they only make changes before the first sprint of a new release. Shortly
after a release plan is discussed with the project staff, they negotiate among
themselves to exchange members. The teams take the following into account
when self-organizing:

●● What are the release goals and initial release plan? Sometimes
release goals require a complete reorganization of the teams. For
example, a game that has focused on single-player mechanics might
work on online gameplay during the next release. This might require
a new distribution of skills.

●● What disciplines and skills are required to implement the
release goals? For example, if a team that has been implementing a
shooting mechanic is now being called upon to create AI characters
that shoot back, they need to bring an AI programmer on board. If
some simple changes need to be made to the codebase, perhaps a
junior programmer is the best fit.

●● What are the priorities of the release goals? If teams compete
for people, the higher-priority release goal determines where people
go. For example, if both a shooting and driving team need AI and
there is only one experienced AI programmer, the higher-priority
goal determines that the AI programmer first goes to the shooting
mechanic team.

●● Do the team members have chemistry? Although it is often
ignored, the chemistry of people working together on a team has as
much impact as any of the practices. For example, teams often benefit
from having one outspoken member but suffer from having two.
Both might be equally talented, but together they just don’t work
well. Teams recognize this and should be able to control their mem-
bership to avoid it.

Like many other Scrum practices, a team isn’t expected to master self-
organization from the start. Most studios starting Scrum avoid this practice at
first and slowly over time allow the team a greater degree of influence over
who is added and removed from the team. Eventually the team will make the
decisions on their own, with leadership influencing their decisions and pro-
viding help with conflicts and problems that exceed the team’s authority. The

From the Library of Wow! eBook

ptg

A Scrum Approach to Teams 163

rewards are profound. Self-organizing teams deliver unequalled levels of per-
formance and enjoy their work far more than conventionally managed teams
(Takeuchi and Nonaka 1986).

When people first hear about self-organization, they are skeptical. It
reminds them of painful childhood memories of not being chosen for a sports
team. Inexperienced teams treat this practice as a popularity contest. They will
need the assistance of management to help them make the best choices (see
Chapter 16, “Launching Scrum”). Experienced agile teams, which understand
team commitment, end up making better choices that benefit their velocity.

Occasionally, teams “self-organize people off ” between sprints. The team
removes poor performers or poor team players (see the sidebar “When Some-
one Is Kicked Off a Team”). This is necessary to allow teams to truly take own-
ership and commit to their work.

When SOMeOne IS kICkeD OFF A TeAM
It’s pretty rare for a team to unanimously eject someone from their team. Usu-
ally the person ejected has ignored months of team and leadership feedback
about their poor performance or teamwork. However, being ejected from a
team cannot be ignored. It is a strong statement from a group of your peers.

After this occurs, another team willing to take this person has to be found.
They have to be made aware of the issues that led to their ejection from the last
team. Teams cannot be forced to accept people they don’t want.

If it’s the first time this person has been ejected and several other teams
are around, the person will be able to join another team easily. Most of time this
person corrects the issues and becomes a valuable member of another team,
or the person simply finds a team where the chemistry is better.

On rare occasions, they don’t work well on the next team either. After a
few ejections, it’s common to find that no other team will accept this person.
It then becomes management’s duty to release this person from the company.
Sometimes the person gets the message and leaves before this happens.

I’ve only seen this happen a few times. It’s unfortunate, but it makes a
statement to the teams: They control their destiny. They are responsible and
have the necessary authority to make changes to improve their performance.
When this authority doesn’t exist, it doesn’t allow a team to achieve its poten-
tial. Teams that can’t self-organize will feel that they are stuck with the mem-
bers on their team and there is nothing they can do about it. They feel helpless
to make the change they need and don’t make the same level of commitment
they possibly could.

When you see the performance of teams that achieves their potential, you
stop questioning the value of these practices. It does take a leap of faith to allow
them into your studios. Unfortunately, some don’t reach this point and don’t see
the potential of great teams realized.

From the Library of Wow! eBook

ptg

Chapter 8 Teams164

team Size
Scrum literature recommends teams have sizes of seven to nine members
(Schwaber 2004). This is based on studies (Steiner 1972) and firsthand experi-
ence that shows that team productivity peaks at these sizes.

A challenge for agile game development is to build cross-discipline teams
that don’t exceed this range. For some teams, the number of disciplines desired
to achieve a goal can be large. For example, a level prototyping team may need
the following:

●●

●

Two level artists

●

●

One prop artist

●

●

One texture artist

●

●

One animator

●

●

One sound designer

●

●

One concept artist

●

●

One level designer

●

●

One gameplay designer

●

●

One graphics programmer

●

One AI programmer●

One gameplay programmer

●

This is a 12-member team that begins to exhibit some of the problems seen
on larger teams. For example, some members are more likely than others to not
speak up and be heard. This inhibits the team from raising their performance
through commitment and shared accountability.

Another problem with larger teams is that subteams or cliques tend to
form. I was on a team such as the previous one. The designers and artists formed
separate cabals that raised communication barriers. Whenever I visited one of
these cliques, they would criticize the other. These criticisms weren’t shared
between the two factions, so problems lingered. This had a major impact on
the quality of the prototype levels and the speed at which they were created.
ScrumMaster intervention eventually resolved this, but a smaller team would
have self-corrected this problem sooner.

A team like this might consider separating into two teams with smaller goals
that “stage” the development of prototype levels, but that introduces depen-
dency and accountability issues. I encourage teams to try different arrangements

From the Library of Wow! eBook

ptg

A Scrum Approach to Teams 165

for a few sprints, and if that doesn’t address the problems, they can reform into
a larger team again.

note Some studios have used teams of three to five people in size
and report that it worked very well.

DrAWInG The LIne
At High Moon Studios, we established some “laws” that were meant to
describe the practices and rules that projects and their teams had the author-
ity over and others that they did not. We referred to these laws as the “state
laws” that defined project and team authority and “federal laws” that defined
decisions that were made for them.

For international readers, in the United States federal laws govern the
entire country, while state laws govern those within a state. If the two conflict,
federal laws take precedence.

One example of a federal law was the use of a studiowide engine and
pipeline technology. Studio management didn’t want the teams creating sig-
nificantly different engine and pipelines for their own games. We wanted the
benefits that came from individuals understanding a shared technology as they
moved from one project to another. An example of a state law was how the
project organized themselves into individual teams and implemented items
from the product backlog.

leadership
When I was a child, my father decided to teach me to swim, as his father had
taught him, by tossing me into a lake where the water was over my head. After
watching the bubbles come up for half a minute, he dove in and pulled me out.
I didn’t learn to swim that day. In fact, I learned to avoid even trying for the rest
of the summer. With my children, we have adopted a more gradual approach of
coaching them to take on greater swimming challenges from a few seconds of
dog paddling through the point where they can swim back and forth across an
Olympic-sized swimming pool.

Leadership in an agile organization has a similar challenge. Agile organiza-
tions need to grow leadership at every level but find the approach between
micromanaging teams and throwing them in over their head that will bring
about success. Both of those extremes will lead to failure.

From the Library of Wow! eBook

ptg

Chapter 8 Teams166

Project Leadership
The responsibilities of project leaders (lead programmers, lead artists, lead
designers, and so on) may change as teams adopt agile:

●● Design and planning: Leads still define the design (gameplay,
technical, concept, and so on) for their discipline in concert with
the other disciplines and oversee how the design is implemented.

●● Resource allocation: Leads will estimate how many people in
their discipline are needed on the project, what areas they will work
on, and approximately when they will work on them, but these will
only be estimates. The teams will slowly take over the responsibility
of identifying areas of need on a per-sprint and even release basis.

●● Task creation and management: Leads no longer break down
work into tasks that they estimate, assign, and track. Teams manage
this themselves. Leads still participate in sprint planning and helping
members of their discipline improve their task identification and
estimating skills.

●● Review and promotion: Although leads may continue to review
every member of their discipline on a regular, usually annual, basis,
the performance of the team becomes a more important part of
their the information for the review (see the “Reviews” section).

●● Mentoring: Leads work with less experienced developers to
improve their productivity. The lead role shifts from managing
primarily through project management tools to one where they
“go and see” what is occurring with each developer as frequently as
possible (see the “Mentoring” section).

Team self-management challenges the lead role definition. It’s difficult
for many leads to give up making detailed decisions for teams on a daily
basis and allow them to risk failure, even for smaller challenges. However, the
benefits of growing self-management behaviors become apparent as some
of the more mundane management duties of a lead, such as task creation,
estimation, and tracking, are taken over by the team. For example, a project
staff of 80 developers generates and tracks approximately 1,600 tasks during
a four-week sprint.1 This is an overwhelming volume of detail for any lead

1. 10 teams × 8 people × one task per day × 20 days per sprint

From the Library of Wow! eBook

ptg

A Scrum Approach to Teams 167

group to manage and draws their time away from the more valuable leader-
ship duties of their role.

Mentoring
The most important role of the lead is to mentor developers to improve how
they work. An example is when lead programmers pair with associate program-
mers to teach them how to improve their coding and design practices.

note Junior programmers often implement simulation solutions that
are far too expensive in the CPU resources they consume. I
recall one new programmer who was tasked with implement-
ing a wind effect. They started implementing a complex fluid
dynamic engine that used 90% of the CPU time to simulate
thousands of air particles. A lead programmer intervened and
showed them a few tricks to introduce a good effect in a few
hours that required hardly any CPU time.

Scrum creates opportunities for leads to continue working on games and
lead by way of example instead of through a spreadsheet. Rather than spending
half their day with a tool creating and tracking tasks, they interact with people
working one on one.

Reviews
Another critical role of leadership is to provide career support for the developers
in their discipline. In companies that employ a matrix management structure,
this takes the form of a yearly management and salary review. This reinforces
discipline-centric performance over team-centric performance.

For example, if an artist is evaluated on how productive they were creating
assets over the past year, then they focus on faster asset creation to improve this
metric. As a result, when a teammate interrupts the artist about a game prob-
lem, it reduces the number of assets they create; the artist then tries to isolate
him or herself to reduce these interruptions for the benefit of a better review.
This is not a good cycle.

Leads in agile environments have introduced frequent team-based peer
reviews to supplement, if not replace, the yearly review process. This allows
feedback about teamwork and cross-discipline collaboration to be introduced.
Individual lead roles for each discipline will be described in greater detail in
coming chapters.

From the Library of Wow! eBook

ptg

Chapter 8 Teams168

DIreCTOr rOLeS
The game industry is filled with director roles, such as art directors, technical
directors, and so on. Usually these roles are given to members of a discipline
who show the greatest level of craftsmanship but who also have authority over
the work, rather than a group of people. Often these roles exist to oversee and
approve or disapprove of the work being done in their area. Scrum teams need
to adjust their practices to meet the needs of these roles, such as described in
Chapter 11, “Agile Art and Audio.”

game teams and collaboration
Game development requires a high level of collaboration between diverse dis-
ciplines. For example, a character in a game has animation, physics, textures,
models, sounds, and behaviors that need to work seamlessly together to pro-
duce the whole. A single discipline cannot accomplish all of these functions
alone. They need to work closely with other disciplines to create features.

Unfortunately, as team sizes grow, disciplines tend to pool together. This
delays integration of their work and leads to many problems. Scrum focuses
development on frequently integrated features that drive close cross-discipline
collaboration. Daily cross-discipline collaboration leads developers to think of
themselves as game developers first and as programmers, designers, arts, QA,
producers, and so on, second.

In this section, we’ll examine various team structures that are used by agile
game teams to promote collaboration across the project and across disciplines.

COLLABOrATIOn, InTerrUPTeD
There is no shortage of ways in which companies try to build morale with large
cross-discipline teams. I’ve been involved in a few of these potentially danger-
ous exercises myself in the past.

I still recall the day that a team-building exercise nearly maimed me. It was
on a paintball field located in high chaparral land east of San Diego. I was lying
flat on my back, nearly out of ammunition, while nearly 30 electrical engineers
were trying to shoot me.

I was a young software engineer working for a military avionics company.
During my career in the defense industry, I witnessed the animosity between
electrical engineers and software engineers. To the electrical engineers, we
lacked true engineering discipline and were overpaid. They often considered our

From the Library of Wow! eBook

ptg

Game Teams and Collaboration 169

code as a “necessary evil.” We saw the electrical engineers as elitist in attitude
and outdated in their technical philosophy.

Personally I believed the electrical engineers hated us because we were
often the heroes of a project. The software we wrote often worked around the
flaws in their hardware that threatened a project in its final hours.

It started with a division into two teams. Naturally, one team consisted of
the electrical engineers, and the other consisted of us software engineers.

I won’t lie and say we were better fighters that day. We weren’t. I won’t
make excuses and accuse them of cheating, although they brought some sus-
picious-looking tools with them. The plain fact was that the software team lost
most games, and we lost them badly.

I faced the greatest challenge during the last game of the day. We were
playing an elimination match in a small plywood “village.” The goal of the game
was for one team to eliminate every player on the opposing team to win.

It was another bloodbath for the software team. We were quickly deci-
mated. I survived by hiding, with several other programmers, on the roof of a
plywood hut. The partial cover of three walls protected us, and the only way to
enter the roof was through a hole in the floor from the room below.

One by one, my roof mates were killed off in heroic displays of gallantry
and ignorance of the value of cover. I was content to hunch low and survive.

Suddenly the referees blew their whistles signaling the end of the game.
They believed that all the software engineers were dead! I jumped up, roaring
in defiance at what I hoped was one or two remaining enemies. My roar was
quickly choked when I saw that nearly the entire enemy team of 30 electrical
engineers was still alive. Endless seconds seemed to pass as we considered
each other. Then one of the referees announced, “Game on!” and blew his
whistle. I will never forget the sight of all those electrical engineers, shouting
with gleeful nerd rage, running toward me as I ducked back into cover.

I held out for a while. I even managed to kill a few of the enemy engineers.
I would love to say that I was a hero that day, but it was not to be. Someone
eventually shot me. The electrical engineers completed their victory over us,
and we went back to work with renewed feelings of antagonism.

Feature teams
Features teams are cross-discipline teams that develop core game features. For
example, the small cross-disciplined team shown in Figure 8.1 could take full
responsibility for a driving mechanic.

A major benefit of feature teams is the sense of ownership they experience.
Participating in the full development of a few mechanics is far more satisfying
to most developers than participating part-time on many. For many developers,
this gives a greater sense of accomplishment.

From the Library of Wow! eBook

ptg

Chapter 8 Teams170

DISCIPLINE

Designer
Designer
Artist
Artist
Programmer
Programmer
Programmer

Audio Designer

ROLE

Tune driving controls
and layout test levels

Create vehicles and props
and test level geometry

Sound support for
vehicales, level, and

gameplay

Program vehicle drive-
train, physics, and

artificial intelligence
for opponent vehicles

Figure 8.1 An example driving mechanics team

A feature team should have everyone they need to build the mechan-
ics. In practice, this is difficult to accomplish. Sometimes teams need to share
disciplines in short supply. An example of this is an effects (FX) artist who is
utilized 25% of the time by any single team. Often this person is shared among
multiple teams.

Functional teams
Functional teams are composed of developers who are mostly of the same
discipline yet still work on a key feature. Although less common than feature
teams, functional teams have their benefits. One example is a platform team
comprised of mostly programmers. These programmers are experts in optimiz-
ing performance for a particular platform such as the PlayStation 3 (PS3) or
Xbox 360. Concentrating these individuals on a single team focuses effort on
challenging problems that are wasteful for feature teams to solve on their own.
For example, if the PS3 programmers are spread across multiple teams, then
their efforts creating a working PS3 build are diluted.

Functional teams are typically used only for foundational or infrastructure
work. Using functional teams for higher-level, cross-discipline work often leads
to solutions that are more suitable for the discipline than the game.

An example of a poorly conceived functional team was one formed to cre-
ate the character AI for a game. This team consisted of AI programmers who
wanted to create the best-architected AI possible. Unfortunately, their efforts

From the Library of Wow! eBook

ptg

Game Teams and Collaboration 171

led to AI functionality that was handed off to other teams that neither under-
stood how the AI worked nor benefitted from many of the features designed
into it. Ultimately this team broke up, and the AI programmers were scattered
around the project to implement AI needed by various teams.

Production teams
Production teams are cross-discipline teams that are used for game develop-
ment projects that have a production phase. These teams have a more defined
pipeline of work for creating content and applying some of the lean and kan-
ban practices described in Chapter 7, “Video Game Project Planning.”

Production teams may exchange members as needed with other produc-
tion teams to maintain a steady flow of asset creation. Production teams often
form from feature teams as a mechanic transitions from pre-production to pro-
duction. For example, most of the programmers might leave the level pre-
production team as it enters production, to be replaced with more modelers,
texture artists, and audio designers.

Shared infrastructure teams
Shared infrastructure teams provide shared support services such as engine
development and cinematic and audio services that multiple games rely on.
These teams are dominated by one discipline, such as composers on the audio
team, but also have other disciplines on the team, such as programmers, to sup-
port their pipelines and tools.

A frequently asked question is how shared infrastructure (SI) teams
should organize themselves in an agile project environment. Since they sup-
port multiple teams, they receive requests for features that cannot be as eas-
ily prioritized as they are for a single team. This can create confusion and
conflict between the SI team and their “customers,” the games that depend
upon them.

There are a number of valuable practices for these teams:

●● SI teams require their own backlog and product owner. Having more
than one backlog and one product owner is a recipe for disaster. The
team should have every benefit that other agile teams have in an
understandable backlog and single vision.

●● Customer teams should identify priorities during release planning
and include the SI team (or at least their lead and product owner) in
their release planning. SI teams usually need a longer planning hori-
zon than a single sprint.

From the Library of Wow! eBook

ptg

Chapter 8 Teams172

●● SI teams should factor support into their velocity whether it is identi-
fied for tasks or not. Setting aside a certain percentage of your band-
width for unexpected maintenance is critical.

●● Loaning SI team members out to another team for a sprint is OK,
but it should be identified in release planning. It’s very valuable to
have SI team members see how their “product” is being used.

●● The SI product owner should ideally be at the executive level (or in
frequent contact with them) to arbitrate conflicting product priori-
ties. Deciding to support one game over the other is a company-level
(strategic) decision and should have the input from the people who
run the studio. For example, the CTO should be the product owner
for the SI team.

●● With their own product owner and backlog, an SI team can feel like
a real team and take ownership of their work.

●● SI teams are also the model for “live support teams” that support one
or more games that have been shipped. An example of this is a team
that supports MMOGs and their large player communities.

tool teams
A tool team consists of a number of tool creators (programmers, technical art-
ists, QA) whose customers are users of a common tool set and pipeline.

Like a shared infrastructure team, a tool team often supports multiple proj-
ects and has their own product backlog.

Tool teams have the added benefit of releasing tools to customers who are
in the same building, not just stakeholders who represent them. Having tool
users who can participate in backlog definition, prioritization, planning, and
reviews is a major benefit to the tool developers. Tool development can be even
more exploratory than game development and benefits greatly from using an
agile approach.

Pool teams
A pool team is a collection of developers from a single discipline. Unlike other
teams, they don’t have their own sprint goals. They exist to support teams that
do. Examples of this are a pool of animators that could support a feature team
that needs a large number of animations in a single sprint.

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 173

Another benefit of a pool team is to provide a service center for art pro-
duction. This is also referred to as in sourcing. Environment artists and anima-
tors are in greater demand during production, and pool teams help level the
resource requirements in a larger development studio.

Pool teams require more planning and management during a release to
ensure that they are fully utilized. Pool teams are more commonly used in late
pre-production or production.

integration teams
It’s challenging to share a common vision with larger projects with more than
40 developers. The vision among separate teams can drift, even with a hier-
archy of product owners. As a result, some projects have “integration teams”
that integrate mechanics, developed initially by feature teams, into a unified
experience.

These teams are similar in structure to feature teams. The difference is
that they are responsible for the overall theme of the game. For example, in an
action-racing game, eventually the core team takes over the driving mechanics
from the team that developed it once it is mature enough. From this point for-
ward, they modify and maintain both mechanics to seamlessly work together.

oBjection: Pool
teAmS AnD core
teAmS—theSe
Don’t SounD

very “Scrum”
At All

Ideally, every team should be a functional team, but the
sheer number of specialties required for game develop-
ment leads to pool and core teams. Scrum is more about
teams finding ways to perform best rather than “follow-
ing the rules out of the book.”

Scaling and Distributing Scrum
Although the ideal Scrum teams size is five to nine people, modern game
development projects typically require more developers. Sometimes the devel-
opers are separated across multiple locations. Scrum has practices that allow it
to scale and distribute multiple Scrum teams.

This section will examine the practices commonly used to scale up Scrum:
holding the Scrum of Scrums meeting, creating a hierarchy of product owners,

From the Library of Wow! eBook

ptg

Chapter 8 Teams174

aligning sprint dates, creating communities of practice, and avoiding dependen-
cies. It will conclude with discussing the challenges and solutions of distributed
development.

the Problem with large teams
Project staff sizes for many console and PC games have grown steadily from the
“good old days” of the lone developer who designed, coded, illustrated, scored,
and tested the game on their own to project team sizes that now often exceed
100 people. Unfortunately, the effectiveness of a 100-person project is usually
not 100 times that of a one-person project. This loss of effectiveness has many
sources, the main one being the overhead of communication.

Consider the combinations of any two people who may need to commu-
nicate on a project. These “lines of communication” grow much faster than the
number of people on the project (see Figure 8.2). For example, a project with
100 people has 4,950 possible lines of communication between members.2 This
is far too many for everyone on the team to grasp in order to know who to talk
to when a question or issue arises. As a result, hierarchies of management were
created to oversee this complexity.

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
4 8 16 32 64 128

Lines of Communication for Team Size

Figure 8.2 Team size and lines of communication

2. The formula for lines of communication is n*(n – 1)/2, where n is the number of
people on the project.

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 175

Such hierarchies create barriers between any two people who need to
solve problems quickly. For example, if an animator needs a fix in the anima-
tion code, they have to send a request for their change to their lead. That lead,
in turn, passes the request to a project manager. The project manager sends the
request to the lead programmer who then communicates the change to a pro-
grammer to make the change. This entire process depends highly on every link
in the communication chain working quickly and on the information being
passed accurately. Unfortunately, this doesn’t usually happen.

the Scrum of Scrums
The central practice for scaling Scrum is the Scrum of Scrums meeting.
Figure 8.3 shows how a larger project could divide into subteams and how
each team sends a member of their team to the Scrum of Scrums.

This meeting enables one or more representatives from every team to gather
to inform other teams about their progress and impediments. Who attends the
meeting often depends on what needs to be reported. It’s very effective for iden-
tifying shared or potential problems that one team can solve for all the others.

Scrum
of

Scrums

Scrum
Team

Scrum
Team

Scrum
Team

Scrum
Team

Figure 8.3 The Scrum of Scrums meeting

From the Library of Wow! eBook

ptg

Chapter 8 Teams176

For example, an engine technology team often works with multiple teams
to improve the engine technology. Changes to this technology often create
impediments for teams when rolled out because of unforeseen bugs. Imminent
changes to the shared technology are described at the Scrum of Scrums so any
resulting problems are quickly identified and resolved. In this case, a technical
lead from the shared technology team attends the meeting to report the pend-
ing changes.

The Scrum of Scrums is different from a team’s daily scrum meetings:

●● It doesn’t have to be daily: It can be weekly or semiweekly.
The group that meets should decide on the best frequency for it.

●● It is for problem solving: The meeting is not timeboxed to
15 minutes. Potential solutions are addressed in the meeting. This
meeting may be the only time when these individuals meet during
the week, and the problems they discuss have larger impact on the
project.

●● The questions are different: The meeting starts with everyone
answering slightly different questions:

●■ What did the team do since we last met? Each team’s
representative describes, in general terms, what their team has
accomplished since the last Scrum of Scrums meetings.

●■ What will the team do next? The representatives discuss
what their team will accomplish next.

●■ What is getting in the team’s way? What impediments are
causing problems for each team? These are usually issues that the
team cannot solve on their own or communicate to other teams.

●■ What is a team about to throw in the other team’s way?
Like the previous engine example, teams often commit changes
that may impact other teams. Perhaps a team is committing a
change to the animation engine, which every other team uses,
later that day. If characters start moving strangely shortly after
this commit, then having knowledge of the change can save a
lot of time tracking down the problem.

Don’t nAme
inDiviDuAlS

It’s important to discuss a whole team’s progress and not the
progress of each individual on each team when answering the
first two questions at the Scrum of Scrums. Otherwise, the
meeting takes far longer!

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 177

The Scrum of Scrums doesn’t have a product backlog, but it creates a short
backlog of shared impediments that are addressed at every meeting. An example
of a shared impediment is when the one FX artist for the studio is out sick and
it impacts multiple teams. Many impediments that are identified take days to
resolve, so tracking them is beneficial.

A ScrumMaster for the Scrum of Scrums isn’t necessary, but teams often
assign one of their members to the role to help keep the meeting on track.

A hierarchy of Product owners
The demand for a product owner’s time on game teams can be greater than
the demand for product owners in other industries. The reason is that teams are
challenged with knowing if the “fun” they are creating is the “fun” the product
owner wanted. Questions such as how “bouncy” a physics response should be
or how “snappy” an animation transition needs to be are subjective and may
need daily feedback from the person who owns the vision for the game: the
product owner.

For large projects, with a dozen or more teams, this creates a problem. The
product owner’s time becomes spread too thin, and they cannot effectively
maintain a shared vision for the game across all teams. Without a shared vision,
each mechanic will drift from the original vision as it evolves, and the game
becomes less consistent and appealing.

An effective practice is for the product owner for a large project to delegate
some ownership. One way of doing this is to establish a hierarchy of product
owners. A lead product owner guides the project, and each core mechanic
has a product owner. Figure 8.4 shows an example of such a product owner
hierarchy.

The lead product owner oversees the two product owners who work
with one or two Scrum teams. The lead product owner continues to work
with teams directly, such as the user interface team, but they delegate “prod-
uct owner as pig” responsibility to the teams that have their own product
owner.

Each product owner works with their teams during the sprint, helping
them plan the sprint and working with them daily to ensure that they achieve
the sprint goal. For example, as a product owner on a team implementing
a driving mechanic, my role included educating the team about the shared
vision for the mechanic. This often required conversations about the balance
between a “sim” vs. “arcade” feel for the controls, vehicle physics, and the
environment.

From the Library of Wow! eBook

ptg

Chapter 8 Teams178

Lead Product
Owner

Game Project

Driving Physics
Team

Online Team User Interface
Team

Driving Al
Team

Product
Owner

Product
Owner

Figure 8.4 An example product owner hierarchy

The product owners need to ensure that there is a shared vision for the
entire project. This includes frequent meetings among them all, including the
Scrum of Scrums meetings, to address any questions about the game’s vision.

Product owners take direction from the lead product owner between
sprints and release planning. There is often a difference of opinion on the best
path to achieve release goals between the product owners. The insight of a
team’s product owner is invaluable in finding the best path, but the lead product
owner is responsible for safeguarding a consistent vision for the game across all
mechanics and features.

A product owner team creates a shared vision on a large project and ensures
consistency of vision everywhere.

note Integration teams are a type of team that helps ensure a shared
vision on a large project is maintained as the features and
mechanics are integrated.

Aligning Sprint Dates
Separate Scrum teams working on a project may align their sprint planning and
review dates or have independent schedules. Figure 8.5 shows the difference
between the two dispositions.

For teams with independent schedules, there are some benefits. The biggest
one is that each team doesn’t have to vie for time with the product owner. For

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 179

multiple teams with aligned dates, it can be challenging to schedule the product
owner’s time, especially for planning the next sprint.

Nonetheless, it’s usually best to align the sprints (Cohn 2009). The benefits
to the game are as follows:

●● Teams can exchange members: Following the sprint review,
nobody has a commitment to any sprint goal, so it is easy for teams
to trade members for the next sprint.

●● An integrated view of the game is encouraged: Teams with the
same sprint review date can integrate all work into a single build so
that the entire game is reviewed. This encourages more cross-team
collaboration and an integrated view of the game.

A hierarchy of product owners on larger teams eliminates the problem of the
lead product owner being spread too thin when teams using synchronized
sprints need to plan the next sprint.

Multiplayer Team

Multiplayer Team

Driving Team

Shooting Team

Multiplayer Team

Driving Team

Shooting Team

Driving Team

Shooting Team

Multiplayer Team

Driving Team

Shooting Team

Synchronized sprints

Start

Staggered sprints

StartEnd End

Figure 8.5 Independent and synchronized sprints

From the Library of Wow! eBook

ptg

Chapter 8 Teams180

communities of Practice
Another challenge created by large Scrum projects is the potential loss of com-
munication caused by the separation of discipline, or functional expertise, across
multiple cross-discipline teams. For example, if all the graphics programmers
are spread across multiple teams, what is to prevent them from solving the same
graphics problems in different ways?

note We had this problem when all the AI programmers were split
up across three feature teams. Each team implemented a
unique AI state machine. One team implemented a script-
based system, another implemented a C++-based system,
and the third team developed one that was manipulated with
a graphical interface.

The solution is to establish communities of practice that can share
knowledge and eliminate the duplication of effort. Figure 8.6 shows how the
AI programmers from across multiple Scrum teams can form an AI community
of practice.

Mutiplayer
Team

Driving
Team

Shooting
Team

Al
Community

of
Practice

Figure 8.6 An AI community of practice

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 181

Each community can decide how frequently they need to meet and address
the issues they are facing. The AI community might discuss common solutions
they could each implement. The ScrumMasters can form a community to share
improvements to their team’s practices. The designers could form a community
to complain about everyone else.3

Communities of practice do not have their own sprint goals or assign work
outside their own teams. Their only purpose is to share information.

Avoiding Dependencies
Interteam dependencies inside a sprint can prevent teams from achieving their
goals. Consider a team whose sprint goal is to implement a wall-climbing
mechanic but has to rely on another team to provide the animation. Because of
the separation of teams and goals, it’s likely that the mechanic team will hand
off their work to the animation team near the end of the sprint rather than
collaborating daily. At best, this limits the number of iterations that can occur
with the mechanic. At worst, the goals that the animation team has for their
own sprint might prevent them from handing back the wall-climbing anima-
tion in time.

When projects begin using Scrum, these dependencies are quite common,
and they are the source of many impediments and sprint failures. Over time,
teams change their membership to reduce dependencies and establish other
practices to prevent their impact.

Changing membership to create more self-contained, cross-discipline teams
is the easiest solution. If the team implementing mechanics needs full-time ani-
mation work throughout the sprint, having an animator join them is best.

In many cases, there isn’t enough work to justify a specialist joining one
team full-time. In these situations, teams can share specialists within a sprint or
trade them between sprints. Doing this requires a bit more planning and fore-
sight to avoid overlapping demands for a specialist’s time. There are two places
where this is done: at release planning meetings and at lookahead meetings.

Release Planning
In release planning, teams identify potential sprint goals for the next several
sprints. Using these goals, they identify sprints where part-time specialists or
a concentration of disciplines (such as a bunch of texture artists) might be

3. One design group I knew actually did this…they were able to keep it mostly con-
structive!

From the Library of Wow! eBook

ptg

Chapter 8 Teams182

needed. Often these will uncover conflicting needs among teams. The best
way to resolve these is to raise or lower the priorities of stories creating the
conflicts. For example, if two teams require the same FX artist full-time dur-
ing the same sprint, then the product owner changes the priority of one of the
stories requiring FX work enough to shift the sprint for one team to remove
the overlap.

Lookahead Planning
Release planning does not identify specific goals for more than several sprints
because change is more likely. As a result, regular lookahead planning meetings
are held during the release to update the goals for approaching sprints.

Lookahead planning takes an hour or two during each sprint. It can be
combined with prioritization meetings. It identifies changes to team member-
ship that may be necessary and any pending conflicts that the product owner
and teams need to navigate around.

BOrrOWInG An AUDIO enGIneer
Our team was working on a driving mechanic. We were able to implement
much of the simple audio ourselves. However, the sprint goal of adding complex
audio behavior for the drivetrain was approaching. This required engine sounds
that would be realistic throughout the entire RPM range and blend between
gears. This was a difficult problem to solve, especially since our vehicle was
licensed, and the drivetrain physics (revolutions per minute [RPM] and torque
curve) didn’t match those of the actual vehicle. We asked the audio pool team
if we could borrow one of their audio engineers for the sprint. We moved our
goals around a bit with the product owner to accommodate a sprint where that
team could free him up. This worked out well for both teams.

Problems occur with little warning on a day-to-day basis that require a
specialist on another team to help out. For example, one of our projects had
one UI scripter that could implement UI changes rapidly. Almost every day he
was requested to help another team for an hour or so. Because of the demand
for his time, his team would allow him to commit to only half the available
hours during a sprint.

Requests like these can be handled in the Scrum of Scrums meeting
described earlier. Whether or not a specialist can help another team within a
sprint lies with the current team to which the specialist belongs.

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 183

note Scrum doesn’t solve the problem of specialists who become
bottlenecks, but it makes such problems transparent and
therefore easier to solve. In the case of the UI scripter, the
solution might be to hire more people who can script or cross-
train others to be able to write UI scripts. The ideal solution
depends on the project and the studio’s needs.

Distributed teams
To reduce costs and help balance staffing demands, studios frequently distribute
the development of games. With this model, teams distributed across two or
more locations develop core mechanics and features of a game in parallel. This
is different from outsourcing, which typically focuses on distributing certain
types of production work, such as asset creation or technical support.

The challenges of distributed development are mainly those of communi-
cation, which are much more likely to impact distributed teams.

This section examines the challenges that face distributed teams and some
of the agile tools available to overcome them.

Challenges
Three common challenges affect distributed teams:

●● They lack a shared vision: It’s more common for distributed
teams to experience their visions “drifting apart” because of physi-
cal separation. This divergence leads to conflicting or incompatible
efforts from the teams.

●● They have a less collaboration: Physically separated teams can-
not collaborate as closely as colocated teams. If the differences in time
zones is great enough, a single question can take a day to answer.

●● Iteration and dependencies can destroy the benefits: The
potential savings in cost for distributed teams is easily lost when
time and effort is wasted through iteration delays and dependencies
between teams.

Agile Tools
Many of the agile practices discussed help distributed teams overcome these
challenges. They give teams the opportunity to maintain a shared vision, increase
collaboration, and avoid going down separate paths.

From the Library of Wow! eBook

ptg

Chapter 8 Teams184

Scrum teams Align with location Usually each distributed team is a sepa-
rate Scrum team. There are occasions when it’s beneficial to have members of
a Scrum team distributed to share knowledge and create bonds between loca-
tions (Cohn 2009), but for the most part having each Scrum team colocated
is best.

When each Scrum team is colocated, they can more effectively collaborate
on a shared sprint goal. Such teams need a local product owner but should find
ways to hold sprint review and planning meetings with other teams and the
lead product owner either in person or through a video-conferencing system.

Shared Scrum of Scrums A video- or phone-conferenced Scrum of Scrums
meeting is essential for distributed teams. These don’t have to occur every day,
but they should be held at least once a week. If teams are spread across many
time zones, the time of the conference call should not be fixed so as to impose
a constant burden on one team more than the others. The meeting time is
changed on a regular basis so that attendees from different locations have to
come in early or stay late.

Shared release Planning It’s critical for a release plan to be developed and
shared to the greatest degree possible among the teams. Often this will include
flying one or more members from each location to a central place where the
meeting is held. It’s often a necessary cost that cannot be avoided with distrib-
uted teams. You either spend money on airfares and hotels or spend much more
on the costs incurred by divergent goals.

There are many ways to organize depending on the how the teams are
distributed. The sidebar “A Global Game Development Story” tells the story of
how one company organizes their releases across three continents and sixteen
time zones.

improved Sharing of Builds, Assets, and code A problem with large projects
is how to share the large number of changes that occur. Frequent small changes
can perpetually break the build, and bulk changes committed weeks apart can
bring teams to a halt for days at a time. With colocated teams, this problem is
bad enough. With distributed teams, defects passed across in shared builds, assets,
and code can be disastrous. When a single question can take a day for an answer,
tracking down a problem and the necessary expertise to solve it consumes days
rather than hours or minutes. Extra care must be taken to protect distributed
teams from external defects. This requires a focus on improved commit prac-
tices and testing described in Chapter 9, “Faster Iterations.”

From the Library of Wow! eBook

ptg

Scaling and Distributing Scrum 185

Processes and tools Agile methods value “individuals and interactions over
processes and tools.” A wider team distribution can impede interactions and
place more weight on processes and tools. Distributed teams often use more
tools to track and display sprint progress and product backlogs and share knowl-
edge. Wikis and other documentation tools are beneficial and are used more
with colocated teams.

A GLOBAL GAMe DeVeLOPMenT STOrY
CCP games, the developer and publisher of EVE Online, was founded in 1997
with development split between studios in Reykjavik, Iceland; Atlanta, United
States; and Shanghai, China. It has grown to have more than 400 employees
and to host more than 300,000 active subscribers in a single online world.

In the fall of 2008, CCP undertook the development of its tenth expansion
pack called Apocrypha. Apocrypha was the most ambitious expansion of the EVE
universe. It added major technical features and significantly extended the size
of the EVE world. The goal of the company was to release the expansion pack
within six months following a four-month development cycle (see Figure 8.7).

Sprint Sprint Sprint Sprint

November
2008

January
2009

Launch
March
2009Release

Sprint Sprint Sprint Sprint

Release

Release
Planning

Figure 8.7 The Apocrypha timeline

This ambitious goal required CCP’s worldwide development studios to
work in parallel. Features and content developed simultaneously across three
continents had to seamlessly come together to achieve their goal. Normally
this would be the introduction to a disaster story, but CCP pulled it off. CCP is a
longtime adopter of agile methods, specifically Scrum.

In the case of Apocrypha, with more than 120 developers in 13 Scrum
teams spread across three continents, 9 product owners were required. These
product owners took their direction for the game from a project management
group in Iceland.

From the Library of Wow! eBook

ptg

Chapter 8 Teams186

Release Planning
The stakeholders identified two release cycles of development to release the
expansion pack in March 2009. Ideally, release planning should gather every
developer, but it was nearly impossible to collect 120 people from around the
world in one location, so CCP had to create some innovative practices to per-
form release planning.

Apocrypha release planning meetings took place over a single 12-hour
period. A high-definition video conferencing network facilitated this meeting
and allowed every developer to take part.

Since most of the development staff, including the project management
group, was in Reykjavík, the meeting was focused there. It started at 9 a.m.
Because of the time difference, it was far too early for the developers in Atlanta
to attend. It was the end of the day for the developers in Shanghai, so they and
the Reykjavík group met first. Hours later the Shanghai team would leave, and
the Atlanta team would join to discuss the release (see Figure 8.8).

Reykjavík (12 Hours)

Reykjavík Time

Shanghai (3 Hours)

9am 9pm

Atlanta (8 Hours)

Figure 8.8 Overlapping meeting times

You can see a time-lapse video of this amazing meeting in Reykjavik on
YouTube at www.youtube.com/watch?v=gMtv1zDUxvo.

It’s important to note that the time zone limitations and the limitations of
video conferencing allowed only two teams to meet at one time. In this case,
Atlanta and Shanghai could not attend together. To avoid potential problems,
two developers from Shanghai flew to Reykjavík to participate at the core meet-
ing and to represent the Shanghai teams.

Each pair of locations would discuss the release goals and begin breaking
them down into smaller goals that were reasonably sized to fit into a sprint. The
conferencing network enabled multiple simultaneous meetings to occur. This
was necessary since many questions raised during this process required a great
deal of live conversation among the entire staff or individual teams.

From the Library of Wow! eBook

www.youtube.com/watch?v=gMtv1zDUxvo

ptg

Scaling and Distributing Scrum 187

The goal of the release planning meeting was to generate a set of potential
sprint goals for each of the 13 teams that would fulfill the release BHAGS. This
wouldn’t be the last time that the teams would communicate. Daily issues were
communicated, and a build of the game was demonstrated every sprint, which
were two weeks long. Changes to the release plan were made every sprint to
adjust for the realities of development.

After two releases, Apocrypha was ready to do final testing and polishing,
and on March 10, 2009, it shipped on schedule.

Solving the Problems
A globally distributed development team can be successful in creating a high-
quality product within budget and within the schedule limits. The raw ingredi-
ents for this success can be summarized in several points:

●● Local vision and ownership: Scrum enables individual cross-
disciplined teams to take ownership of their sprint goal and achieve
it independently. Having a product owner on-site who is responsible
for the vision of what the team is creating is essential.

●● Iterative development methodology: Creating an integrated,
potentially shippable version of the game every two weeks from
work done around the world forces problems to the surface and
demonstrates real progress. Without this, critical problems can remain
submerged until late in the project, when it is too late to avoid delays
and cost overruns.

●● High-bandwidth communication: Communication on large
colocated teams is difficult enough. On large distributed teams, it can
be the main challenge. Teams must have the tools to communicate
effectively, such as a networked conferencing system, that are reliable
and ubiquitous, as well as a methodology that creates transparency,
such as Scrum.

Distributed teams will never be as effective as colocated teams, how-
ever. What is lost from daily face-to-face communication cannot be made up
through conference calls. But it can come close enough to ensure that the
teams are productive.

From the Library of Wow! eBook

ptg

Chapter 8 Teams188

Summary
There is no single formula for creating the best teams on a game project. The
teams and practices described here result from adapting the existing Scrum
roles and team to improve how people work together and how a vision is
unified and shared. Exploring roles and team structures is an ongoing process.
Teams must use the retrospective practice to find ways to improve how they
work together and with the stakeholders of the game. By allowing teams to
take ownership and authority over some of the daily aspects of their life, they
are more likely to take responsibility for their work. This doesn’t happen over-
night. It takes years in many cases and will create head-on collisions with studio
leadership culture. The results are worth the effort.

Scrum scales up to projects of any size but drives changes in team structure,
the project owner role, and practices such as the Scrum of Scrums.

Scrum also drives changes across disciplines, focusing the team on changing
how they work day to day to improve communication and the pace of itera-
tion. It also drives changes in how each discipline works. The remainder of this
part of the book will address these changes.

The goal is to create teams that can take more ownership of development
and have greater purpose in what they do.

Additional reading
DeMarco, T., and T. Lister. 1999. Peopleware: Productive Projects and Teams, Second

Edition. New York: Dorset House Publishing.

Katzenbach, J. R., and D. K. Smith. 2003. The Wisdom of Teams: Creating the
High-Performance Organization. Cambridge, MA: Harvard Business School
Press.

Larman, C., and B. Vodde. 2009. Scaling Lean and Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum. Boston: Addison-Wesley.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large Enterprises.
Boston: Addison-Wesley.

Schwaber, K. 2007. The Enterprise and Scrum. Redmond, WA: Microsoft Press.

From the Library of Wow! eBook

ptg

189

chapter 9
Faster Iterations

in agile circles, iteration means one thing: It’s the timebox in which product
increments are made. For Scrum, the iteration is a sprint. For game developers,
the term iteration means something more. It refers to the practice of creating an
initial version of something (artwork, code, or a design), examining it, and then
revising it until it’s sufficiently improved.

Unfortunately, iterating isn’t free. It takes time to revisit a past bit of art,
code, design, audio, or other game element. The challenge facing all teams is
to find ways to reduce the cost of iteration. A team that reduces the cost of
iteration benefits in two ways: They iterate over gameplay elements more often,
and they do so more frequently. These benefits result in an increase in their
velocity.

Scrum focuses game developers on improving iteration time everywhere.
The benefits of doing this are reinforced daily among cross-discipline teams and
over the course of sprints through the measurement of velocity. As described
in Chapter 6, “Agile Planning,” velocity is measured as the number of story
points accomplished every sprint. Stories not only require coding and asset
creation but also debugging, tuning, and a degree of polishing to be considered
done. These additional requirements drive the need for more iterations, and
the longer the iteration time, the slower the velocity. Faster iteration improves
velocity.

This chapter examines where the overhead of iterating code, assets, and
tuning comes from and ways that a team and a project can reduce it and greatly
increase their velocity.

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations190

A SeA STOrY
One of the best things about developing games is that mistakes don’t kill people
or cost tens of thousands of dollars. The pace of development can be slowed
under these conditions.

My last job before I joined the game development industry was develop-
ing autonomous underwater vehicles. These vehicles were meant to perform
dangerous operations such as searching for underwater mines. Once launched,
these multimillion-dollar vehicles were counted on to conduct their mission and
return to us.

No matter how much we tested the software and hardware before a mis-
sion, some problems always surfaced at sea (no pun intended). Often these
problems resulted in the vehicle not returning at the appointed time or location.
When this happens, you realize how big the ocean really is.

As a result, changes to the vehicle were very carefully tested over the
course of weeks. Even the smallest mishap would “scrub” a day at sea. This
long iteration cycle slowed development progress to a crawl.

where Does iteration overhead come From?
Iteration overhead comes from many places:

●● Compile and link times: How long does it take to make a code
change and see the change in the game?

●● Tuning changes: How long does it take to change a tuning param-
eter, such as bullet damage?

●● Asset changes: How many steps does it take to change an anima-
tion and see it in the game?

●● Approvals: What are the delays in receiving art direction approval
for a texture change?

●● Integrating change from other teams: How long do changes (new
features and bug fixes) from other teams take to reach your team?

●● Defects: How much time is lost to crashes or just trying to create a
stable build?

These time delays between iterations last seconds to weeks in duration.
Generally, the longer the time between the iterations, the more time is wasted
either waiting or having to find lower-priority work to do before another
iteration is attempted.

From the Library of Wow! eBook

ptg

Measuring and Displaying Iteration Time 191

measuring and Displaying iteration time
The complexity of a game, asset database, build environment, and pipeline
grows over time. While this happens, iteration times tend to grow—there is
more code to execute, and more assets in the database to sort through. Itera-
tions are rapid at the start of a project but grow unacceptable over time. Before
you know it, half your day is spent waiting for compiles, exports, baking,1 or
game loads.

The key to reducing iteration overhead is to measure, display, and address
ways of reducing iterations continually.

measuring iteration times
Iteration times should be measured frequently. To ensure that such measure-
ments are performed frequently, the measurement process should be automated.
A simple automated tool2 should do this on a build server with a test asset, for
example. A nice feature to add to this tool is to have it alert someone when this
time spikes.

note One time a bug nearly doubled the bake time for a game, yet
no one reported it during any of the daily scrums for a week. It
seemed that people became immune to long iterations, which
was more worrying than the bug itself.

Displaying iteration times
An iteration time trend chart displays the amount of time that an individual
iteration time, such as build time, is taking and shows its trend over time. Like
the sprint burndown, this chart displays a metric and its recent trend. Figure 9.1
shows an example iteration trend chart.

Showing a longer-term trend of iteration time is important since it is often
hidden in daily noise. How frequently the chart is updated depends on how
often a particular iteration time is measured and the need for updating it. Sig-
nificant iteration metrics (based on how many people execute the iteration
and how often) should be calculated daily, and the charts should be updated
weekly.

1. Baking refers to the process of translating exported assets into a particular plat-
form’s native format.

2. If not automated, it is easily skipped or forgotten.

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations192

Se
co

nd
s
to
 B

uil
d

th
e

G
am

e

Samples (One a Day)

Trend Seconds

Figure 9.1 Recent iteration times and trend line

note A tool that automatically measures iteration time should also
alert someone immediately when that time spikes.

exPerIenCe: PS3 ASSeT BAkInG
When iterating on art assets, the largest amount of the time it takes to iterate
on changes typically comes from baking or exporting an asset to a target plat-
form’s native format. On a PS3 project I worked on, every asset change required a
30- minute bake. Since the actual game executable was used to perform the baking,
this time continued to creep up as features were added. It reached the point where
everyone working with the PS3 spent half the day waiting for this process!

The team began by plotting asset iteration time on a daily basis. Over time,
they dedicated a portion of their sprint backlog toward optimizing the baking
tools and process. During a release, the team saw the trend of bake times
slowly declining (33% in three months).

Without this regular measurement and display, it would have been easy for
the team to lose track of the overall trend. Without keeping an eye on the metric,
the bake times would have crept up gradually. Equally important was the value
of introducing a large number of very small optimizations and seeing the effect
over time. Often the “one big fix” simply doesn’t exist, and nothing else is done
because a significant benefit isn’t immediately visible. The burndown demon-
strates the value of “a lot of small fixes.”

From the Library of Wow! eBook

ptg

Personal and Build Iteration 193

Personal and Build iteration
It’s useful to consider two types of iteration: personal iterations for each devel-
oper iterating at their own development station and the build iterations when
code and asset changes are shared across the entire project. Both require con-
stant monitoring and improvement.

Improving personal iteration is mainly a matter of improving tools and
skills. Build iteration requires not only tool improvements but attention to
the practices shared across teams to reduce the overhead inherent in sharing
changes with many developers.

Personal iteration
Personal iteration time includes the time it takes to do the following:

●● Exporting and baking assets for a target platform a developer is iterat-
ing on

●● Changing a design parameter (for example, bullet damage level) and
trying it in the game

Changing a line of code and testing it in the game●●

These are the smallest iteration times, but since they happen most fre-
quently, they represent the greatest iteration overhead. Removing even five
minutes from an export process used a dozen times a day improves velocity by
more than 20%!3

 Some common improvements can speed up personal iteration times:

●● Upgrade development machines: More memory, faster CPUs,
and more cores increase the speed of tools. This is usually a short-
term solution since it hides the real causes of delay.

●● Distributed build tools: Distributed code-building packages
reduce code iteration time by recompiling large amounts of code
across many PCs. Tools also exist for distributed asset baking.

●● Parameter editing built into the game: Many developers build a
simple developer user interface into the game for altering parameters
that need to be iterated.

●● Asset hot-loading: Changed assets are loaded directly into a run-
ning game without requiring a restart or level reload.

3. This is based on four to five hours of useful work done per day.

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations194

note The ideal iteration is instantaneous! It’s far more difficult to
achieve this ideal after a game engine has been created. For a
new engine in development, I consider zero iteration time and
hot loading to be necessary parts of the engine that must be
maintained from the start of development.

Build iteration
Build iteration is the process that spreads changes from one developer to all the
other developers on the team. Sometimes this cycle is weeks long, but since
members of the team do other things while waiting for a new build, it is not
given as much attention as personal iteration times. However, the larger the
team, the more impact the build iteration has on the team’s effectiveness. It
often results in a near disaster when there is a rush to get a working build out
for a sprint or release. Bottlenecks and conflicts inevitably occur when every-
one is trying to commit changes at the same time. The solution is to reduce this
overhead so builds are safely iterated more frequently.

Figure 9.2 shows the build iteration cycle discussed.

Personal
Iteration,

Changes, and
Tests

Failure
Notification CommitsDeployment

Testing

Developer

Figure 9.2 A build iteration cycle

From the Library of Wow! eBook

ptg

Personal and Build Iteration 195

Following personal iteration, a developer commits changes to a repository
or revision control system. This is followed by a battery of tests. If these tests
find a problem, the developer is notified and asked to fix the problem. Other-
wise, if the tests pass, the build is deployed to the team.4

Commits
Commits are changes made to a project repository for the rest of the team to
access. For example, an animator commits a new set of animations for a char-
acter to the repository, and subsequent builds show characters using those new
animations.

There are two main concerns regarding commits:

●●

●

The commits should be safe and not break the build.

● The build is in a working condition so that any failure is more likely
to be tied to the last commit and quickly fixed.

The developer must first synchronize with the latest build and test their
changes with it. This is done to avoid any conflicts that arise with other recent
commits. If the latest build is broken, it must be fixed before any commit
is made.

When builds are chronically broken, they slow the frequency of commits,
which means that larger commits are made. Since larger commits are more
likely to break the build, they create a vicious cycle that dramatically impacts
a team’s velocity.

note Chapter 10, “Agile Technology,” discusses continuous inte-
gration strategies to minimize the size of code changes
commits.

Testing
Once changes are committed, there should be a flurry of more extensive tests
made to ensure that those commits haven’t broken anything in the build. There
are two competing factors to consider. First, we want to ensure that the build is
solidly tested before it is released to the team. Second, a full suite of tests often
takes the better portion of a day to run, which is too long. We need to balance
testing needs with the need to iterate quickly on build changes.

4. If your project is not doing this, stop reading and implement it now!

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations196

test Strategies A multifaceted approach to testing is best. A combination of
automated and QA-run testing catches a broad range of defects.

Figure 9.3 shows a pyramid of tests run in order from bottom to top. The
tests at the bottom of the pyramid run quickly and catch the more common
defects. As each test passes, the next higher test is run until we get to the top
where QA approves the build by playing it.

QA Play-Throughs

Automated Play-Throughs

Level Loads

Platform Smoke Tests

Unit Tests and Asset Validation

Build Configurations

Figure 9.3 A testing pyramid

The tests are as follows:

●● Build configurations: This testing simply creates a build (execut-
able and assets) for each platform. This discovers whether the code
compiles on all your target platforms with multiple build configura-
tions (for example, debug, beta, and final). This could cover dozens of
platforms for a mobile game.

●● Unit tests and asset validation: This includes some of the unit
tests (if they exist) and any asset validation tests. Asset validation tests
individual assets before they are baked and/or loaded in the game.
These are examples of asset validation tools:

●■

●

Naming convention checks

■

●

Construction checks, such as testing for degenerate triangles

■ Platform resource budget checks (for example, polygon count
or memory size)

From the Library of Wow! eBook

ptg

Personal and Build Iteration 197

note Unit tests are described in more detail in Chapter 10.

●

The list of validation tests should be built up as problems are discovered.

● Platform smoke tests: These tests ensure that the build loads and
starts running on all the platforms without any crashes.

●● Level loads: One or more of the levels are loaded to ensure that
they run on all the platforms and stay within their resource budgets.
Usually only the levels affected by change are loaded, but all of them
are tested overnight.

●● Automated play-throughs: A game that “plays itself ” through
scripting or a replay mechanism benefits testing. In fact, implement-
ing this type of feature into the game from the start is worth the
investment. If conditions at the end of the play-through do not meet
expectations (such as all the AI cars in a racing game crossing the fin-
ish line in a preset range of time), an error is flagged.

●● QA play-throughs: If the build passes all previous tests, then QA
plays through portions of the game. QA is not only looking for prob-
lems that were missed in the previous tests but also looking for prob-
lems that tests could not catch such as unlit portions of the geometry
or AI characters that are behaving strangely.

test Frequency As development progresses, the time required for running
all of these tests grows to the point where it is impossible to keep up with
every commit. At this point, the scope of build approval needs to be tiered.
The following list shows three tiers of build tests that apply increasing levels of
testing:

●● Continuous build tests: These builds have passed the unit and asset
tests for the committed modules or assets. These tests take minutes.

●● Hourly build tests: These builds have passed every test up to the
level load test.

●● Semidaily build tests: Two or three times a day, QA selects the lat-
est hourly build and plays through them for 30 minutes.

●● Daily build tests: These are builds that have been completely rebuilt
(code and asset cooking) and for which every possible automated test
has been run. These take hours to run and are usually done overnight.

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations198

As each build is approved, it is flagged (or renamed, and so on) to reflect
the testing tier it passed. This lets the team know how extensively the build was
tested and to what degree they should trust it.

note Sprint review builds should pass all the daily build tests!

Failure Notification
When a commit is made that breaks the build, two things must happen:

●● The person(s) who made the last commit must be notified imme-
diately in a way they can’t ignore. This can take the form of a dialog
box that pops up on top of all other windows.

●● The rest of the team should be notified that the build is broken and
that they shouldn’t “get the latest” code and assets until the problem
is fixed. This notification requires less intrusive means to communi-
cate. An example of a notification is an icon in the system tray that
turns red.

note At High Moon, whenever the build was broken, every develop-
ment machine warned their user by playing a sound bite. One
time I broke the build and 100 PCs started playing the Swedish
Chef’s theme song from the Muppet Show.

The LOAF OF QUeSTIOnABLe FreShneSS
Most of the time when a commit is broken, it is because of someone ignoring
the established testing practices. Teams often devise “motivational tools” to
help ensure that teammates remember to perform these practices. An example
of this took place on the Midtown Madness team in the late nineties at Angel
Studios. We didn’t have extensive build testing automation then. We had a
dedicated PC, the “build monkey,” where any change committed had to be
tested separately following every commit. Verifying the build on the build mon-
key could be a tedious task. Some people occasionally found excuses to skip it,
sometimes to the detriment of the team.

After a while, I thought of a cure. I purchased a loaf of Wonder bread, and
we instituted a new practice: If you broke the build monkey, you had to host
the loaf of bread on top of your monitor (everyone had CRT monitors back then,
with plenty of warm space on top) until someone else broke the monkey and
took ownership of the loaf.

From the Library of Wow! eBook

ptg

Personal and Build Iteration 199

At first things didn’t change. At first, no one seemed to mind a loaf of bread
on their monitor. However, as time passed, this changed; the bread became stale
and then moldy. Someone on the team started calling it “the loaf of questionable
freshness.” Eventually, we all desperately wanted to avoid being the owner of
the loaf. As a result, build discipline improved, the monkey stayed unbroken, and
eventually the loaf of questionable freshness was given a proper burial.

Technology has changed these practices a bit (in other words, we can’t
fit a loaf of bread on top of an LCD monitor). These days automated test tools
play embarrassing music, or the team holds impromptu ceremonies for team
members who break the build (have you ever come back to your workspace
to find it completely wrapped in Saran wrap?). It’s all done with a sense of fun,
but it works.

Deployment
The last step in build iteration is to deploy a working build back to the devel-
opers. There are two main considerations here: communicating stability and
reducing transfer time.

communicate Stability Communicate the level of testing performed on
working builds to reflect the testing tier each one passed.

In the past, we’ve used a simple homegrown tool that shows all the builds
available on the server, their build date, and the test status. The developer selects
a build to download based on their needs. Usually, the developer downloads
the latest build that was fully tested (usually the daily build). When a developer
wants very recent changes, they select the hourly build.

note It’s useful to keep a few weeks’ history of builds around in
case a subtle bug needs to be regressed to discover which
commit introduced it.

reduce transfer time Reduce the amount of time to transfer the build from
the servers to personal development machines.

Games require many gigabytes of space, and when 100 developers transfer
builds daily, it challenges the company network. It’s common for a new build
to take 30+ minutes to transfer from a server to a personal machine. Reducing
this time is crucial. There are a number of ways to attack this problem:

●● Server/client compression/decompression: There are a number
of tools to improve the transfer speed of large amounts of data over a
network.

From the Library of Wow! eBook

ptg

Chapter 9 Faster Iterations200

●● Partial transfer: Does everyone need to transfer every asset? Do
some developers need just a new executable? Make it possible to do
selective transfers.

●● Overnight transfer: Set up a tool for pushing daily builds (if work-
ing!) to all the developer stations overnight.

●● Upgrade your network: Move to higher-bandwidth switches and
mirrored servers. This is costly, but a simple return-on-investment
calculation usually shows that the improved deployment time pays for
itself in productivity gains.

Focusing a Team on Build Iteration
When I was a child, I desperately avoided cleaning my room. As I became
older, my mother told me that “she was not put on Earth to clean up after me.”
Imagine my surprise! However, when I had to clean up after myself, I quickly
learned that it was better to avoid making the mess in the first place. At the very
least, I learned to clean up a mess before it dried on the carpet!

Improving build iteration and debugging is the responsibility of every
team. Making it the responsibility of one group of people removes some
of that sense of responsibility. However, creating a better build system to
catch problems and deploy builds requires specialists and expertise beyond
the capabilities of any one team. It isn’t efficient for every team to create
their own system. They are better off adopting a studio-maintained system
and focusing on their game.

The role of creating and maintaining the build system is often the respon-
sibility of an engine or tools team. These teams have a sprint goal but also set
aside a certain percentage of time to handle problems that occur on a day-to-
day basis. Members of this team see patterns of failure and work to plug any
holes that enable problems to slip through. Additional build server tests are the
easiest remedy, but often teams need to improve their practices to avoid com-
mit failures. An example of this is to show individuals how to write better unit
tests or improve their unit test coverage or to work with an artist to avoid using
nonstandard texture sizes or formats.

The team that supports the build servers and tools also needs a metric that
shows their progress. A useful metric used for measuring build stability and
availability is to record the percentage of time a working build is available to
everyone on the team. The ideal is 100%. A perfect level of stability will not be
maintained forever, but it is a powerful goal.

From the Library of Wow! eBook

ptg

Additional Reading 201

note On one team, the “working build availability percentage” started
at 25%. They recorded this metric daily and plotted it on a burn-
up chart. After a year, it averaged 95%. Some weeks after a
major middleware integration, the availability rate dropped back
to near zero, but the burn-up chart enabled the teams to see the
long-term picture and slowly improve the trend.

A worD
ABout

reviSion
control

A detailed discussion of revision control is outside the scope
of this book; for a detailed discussion, see Lakos (1996). How-
ever, an agile approach to development influences what sys-
tem you use and how you use it.

Summary
The source of iteration overhead comes from many factors. These sources must
be relentlessly tracked down and reduced. Left unattended, they will grow to
consume more time and bring velocity to a crawl.

Faster iteration time is a big win. It improves velocity and quality by
enabling more iterations of features and assets. Faster iterations improve the
life of a developer and the quality of the game. When a designer has to wait
10 minutes to test the effects of a wheel friction tweak on a vehicle, they’ll
likely find a value that is “good enough” and move on. When the iteration time
is instantaneous, they’ll tweak the value until it’s “just right.”

Additional reading
Crispen, L., and J. Gregory. 2009. Agile Testing: A Practical Guide for Testers and

Agile Teams. Boston: Addison-Wesley.

Lakos, J. 1996. Large-Scale C++ Software Design, Reading, MA: Addison-
Wesley.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

Part IV
Agile Disciplines

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

205

chapter 10
Agile Technology

Software developers have been battling the challenge of creating complex
software projects since the first program was written.1 Even in the infancy of
computers, the challenge of programming with primitive tools pushed the lim-
its of what people could accomplish. Seminal books on project management
such as Mythical Man Month, written in the sixties, address challenges that are
seen to this day.

comPlexity
iS not new

The complex Apollo program was almost undone by unantici-
pated glitches in the Lunar Module’s navigation and guidance
computer in the final seconds before the historic landing. That
computer had only 4,000 words of memory2 (one-millionth of
the memory in a typical desktop computer).

This chapter will begin with a description of some of the major problems
encountered when creating technology for games. The remainder of the part
discusses some of the agile practices—including the XP methodology—used
to address these problems.

I’ve avoided low-level technical discussion and code examples in this chap-
ter on purpose. The goal is to communicate the issues and solutions that people
in every discipline can understand.

the Problems
Technology creation is the greatest area of risk for many video game projects.
Video games compete on the basis of technical prowess as much as gameplay
and visual quality. Consumers want to experience the latest graphics, physics,
audio effects, artificial intelligence, and so on. Even if a game isn’t using the

1. http://en.wikipedia.org/wiki/Bernoulli_number
2. http://en.wikipedia.org/wiki/Apollo_Guidance_Computer

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Bernoulli_number
http://en.wikipedia.org/wiki/Apollo_Guidance_Computer

ptg

Chapter 10 Agile Technology206

next-generation hardware, it’s usually pushing the current generation to new
limits.

This section addresses the typical technical problems that often impact
development. These problems impact all disciplines and lead projects down
dead-end paths.

uncertainty
In 2002 I joined Sammy Studios as the lead tools programmer. What intrigued
me about Sammy was the vision for the studio’s technology. It was to give the
artists and designers the best possible control over the game through custom-
ized tools, while engine technology was to be largely middleware-based. This
was in stark contrast to my previous job where engine technology was the
main focus and tools meant to help artists and designers were considered far
less important.

The first tool I was tasked with developing was meant to tune charac-
ter movement and animation. This tool was meant to integrate animation and
physics behavior and allow animators to directly construct and tune character
motion. The tool effort was launched with an extensive 80-page requirements
document authored by the animators. This document had mock-ups of the
user interface and detailed descriptions of every control necessary for them to
fully manipulate the system. I had never seen this level of detail in a tool design
before, least of all one created by an artist. At my last company, the programmers
developed what they thought the artists and designers needed. This resulted in
tools that didn’t produce the best results.

Another programmer and I worked on this tool for several months and
delivered what was defined in the design document the animators wrote. I
looked forward to seeing the amazing character motion that resulted from
this tool.

Unfortunately, the effort was a failure. The tool did what it was supposed
to, but apparently the animators really couldn’t foresee what they needed, and
none of us truly understood what the underlying technology would eventually
do. This was shocking.

We reflected on what else could have been done to create a better tool.
What we decided was that we should have evolved the tool. We should have
started by releasing a version with a single control—perhaps a slider that blended
two animations (such as walking and running). Had this tool evolved with the
animators’ understanding of their needs and the capabilities of the emerging
animation and physics technology, we would have created a far better tool.

From the Library of Wow! eBook

ptg

The Problems 207

We had developed the wrong tool on schedule. This suggested to us that a
more incremental and iterative approach was necessary to develop even tech-
nology that had minimum technical and schedule risk.

exPerIenCe: A MOVInG TArGeT
Years ago we signed a game project with a Japanese publisher. They didn’t
want any design documentation at all. They wanted us to explore gameplay for
an idea they had. The idea was to create a SWAT game with squad-based AI.
The team developed technology and gameplay for six months. Then the pub-
lisher changed their mind and wanted it to be a first-person sci-fi shooter that
didn’t have squad behavior. The team pursued this for several more months.
Other changes came and went. The team eventually shipped as a third-person
cowboy-based shooter.

During development, progress slowed to a crawl. One of the main reasons
for the lack of progress was that the codebase had become so convoluted from
all the changes in direction. It was only through the heroics of a few program-
mers refactoring major portions of the code that any progress was made.

change causes Problems
At the core of any game’s requirements is the need to “find the fun.” Fun can-
not be found solely on the basis of what we predict in a game design document.
Likewise, technical design and architecture driven by a game design document
are unlikely to reflect what we may ultimately need in the game. If we want
flexibility in the design of the game, then the technology we create needs to
exhibit equal flexibility, but often it does not.

cost of late change
The curve in Figure 10.1 shows how the cost of changing something in a proj-
ect grows over time (Boehm 1981). Changes made late in a project can result
in costs that are a magnitude or more greater than if those changes had been
made early. Many reasons for this exist:

●● Design details are forgotten by the programmer who wrote the code.
It takes time to recall the details and be as effective as when the code
was written.

●● The original author of the code may not be around to make the
change. Someone else has to learn the design and architecture.

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology208

●● Changing assets that were created based on the original code’s behav-
ior can take a lot of time and effort.

●● A lot of code may have been built on top of the original design and
code. Not only does the original code have to be changed, but all the
other code built upon the expected behavior of the original code has
to be changed as well.

So, it’s important to identify and make changes as early as possible.
Both uncertainty and the cost of change point to the benefits of short

iterations of development. Short iterations test features quickly, which reduces
uncertainty for those features. Uncertainty implies the potential for change.
Since the cost of change increases as time passes, carrying uncertainty for-
ward also carries the potential for increased cost. For example, some projects
implement online functionality late in development and discover that much of
their core technology (such as animation and physics) does not work across a
network. Had they discovered this earlier in the project, the cost of fixing the
problem could have been far less.

note This potential cost of change being carried forward is also
referred to as technical debt. The concept of debt is used for
many elements of game development in this book.

Time

Cost

Figure 10.1 The cost of change

From the Library of Wow! eBook

ptg

The Problems 209

too much Architecture up Front
One approach to the problem of creating technology for changing require-
ments is to “overarchitect” a solution. This means implementing a solution that
encompasses all the potential solutions. An example is a camera system for a game
initially designed to be a first-person shooter. A programmer might architect a
camera system that includes general-purpose tools and camera management that
handles a variety of other potential cameras, including third-person cameras and
others. The goal is that if and when the designers change their minds about the
game (such as going from a first-person view to a third-person view), then the
changes to the camera can be accommodated through the architected system.

There are two problems with this approach:

●● It slows the introduction of new features up front: At the start
of the game, the designer wants a simple first-person camera to begin
prototyping gameplay. They have to wait for the baseline architecture
to be created (or brought in from an existing codebase) before the
camera is introduced.

●● Architectures designed up front often need to be changed:
The assumptions built into the architecture are often proven wrong
during development and need to be changed anyway. Changing
larger systems takes more time than smaller systems.

exPerIenCe: BUILD WhAT YOU neeD, nOT WhAT YOU
ThInk YOU MIGhT neeD
“Too many developers spend months working on the technology for their next
game before starting the game itself. Sometimes, they never make it to devel-
oping the game! The most pragmatic solution to this is using preexisting tech-
nology. However, if custom technology is required, then only create what is
needed as you go.

“A trap many developers fall into is thinking ‘We’ll be using this feature in
the next five games, so it’s worth putting a lot of time into it now.’ If this is done
for all features, the first game will never be finished, let alone the next five. My
rule of thumb is that until I’ve solved a problem at least a couple of times, I don’t
have enough information to make a generalized solution.

“A great way of achieving these goals is adopting an agile development
practice. We are using Scrum for our current game, keeping us focused on cre-
ating just enough infrastructure to reach our current sprint/milestone.”

—Alistair Doulin, blogger3

3. www.doolwind.com/blog

From the Library of Wow! eBook

www.doolwind.com/blog

ptg

Chapter 10 Agile Technology210

An Agile Approach
This section describes agile solutions to these problems. These solutions
focus on an iterative and incremental approach to delivering value and
knowledge early.

extreme Programming
Scrum, by design, has no engineering practices. Many teams using Scrum soon
find that their original engineering practices can’t keep up with the changing
requirements. These teams often turn to the practices of Extreme Programming
for help.

XP was a methodology developed after Scrum that adopted many of the
Scrum practices. XP iterations and customer reviews, though slightly different,
aren’t hard to integrate into Scrum teams used to these concepts. XP intro-
duced new practices for programmers. Among them are the practices of test-
driven development (TDD) and pair programming.

It’s outside the scope of this book to cover the concepts and practices of
XP in great detail. There are great books that already do that (see the “Addi-
tional Reading” section at the end of this chapter). Numerous studies have
shown that XP increases the velocity of code creation and its quality (Jeffries
and Melnik 2007).

Programmers pair up to work on tasks. They apply the TDD practices,
described next, to implement technology in small, functional increments. This
enables functionality to emerge incrementally that remains stable in the face
of change. The goal is to create higher-quality code that can be changed with
minimum cost.

Test-Driven Development
TDD practices include writing a number of unit tests for every function intro-
duced. Each unit test will exercise the function to be written a single way by
passing in data and testing what the function returns or changes. An example of
this is a function that sets the health of the player in a game. If your game design
defines 100 as full health and 0 as being dead, your unit tests would each set and
test valid and min/max parameters and check to make sure those values were
assigned by the function. Other unit tests would try to assign invalid numbers
(greater than 100 or less than 0) and test to make sure the function handled
those bad values correctly.

From the Library of Wow! eBook

ptg

An Agile Approach 211

If you follow the strict TDD practices, the tests are written before you
write the logic of the function that will allow those tests to pass, so the tests
actually fail at first.

Unit tests and their associated code are built in parallel. When all the tests
pass, the code is checked in. This happens quite frequently when the team is
using TDD, sometimes every hour or two. This requires a server that acquires
all changes as they are checked in and runs all the unit tests to ensure that none
of them has broken the code. This server is called a continuous integration
server (CIS). By running all the unit tests, it catches a majority of the prob-
lems usually caused by commits. When a build passes all the unit tests, then the
CIS informs all the developers that it is safe to synchronize with the changes.
When a submission breaks a unit test, the CIS lets everyone know that it is
broken. It then becomes the team’s job to fix that problem. Since the culprit
who checked in the error is easily identified, they are usually the one who gets
to fix the problem.

This provides big benefits to the team and project. As a project grows, the
number of unit tests expands, often into the thousands. These tests continue
to catch a great deal of errors automatically that would otherwise have to be
caught by QA much later. These tests also create a safety net for refactoring and
for other large changes that an emerging design will require.

One of the philosophical foundations of XP is that the programmers cre-
ate the absolute minimal amount of functionality to satisfy customer requests
every iteration. For example, suppose a customer wants to see one AI character
walking around the environment. Many programmers want to architect an AI
management system that handles dozens of AI characters because they “know
that the game will need it sometime in the future.” With XP, you don’t do this.
You write the code as if the user story needs only one AI character. When a
story asks for more than one AI character in a future sprint, you then introduce
a simple AI manager and refactor the original code. This leads to an AI manager
that is a better fit for the emerging requirements.

A major benefit of TDD is that it requires “constant refactoring” of the
codebase to support this behavior. There are a number of reasons for this, but
here are two of them:

●● Systems created from refactoring, coupled with implementing the
absolute minimum needed, often match final requirements more
closely and quickly.

●● Refactored code has much higher quality. Each refactoring pass
creates the opportunity to improve it.

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology212

The barriers to TDD are as follows:

●● There is an immediate slowing of new features introduced into the
game. Writing tests take time, and it can be hard to argue that the
time gained back in reduced debugging time is greater.

●● Programmers take their practices very personally. Rolling out a prac-
tice like TDD has to be done slowly and in a way that clearly dem-
onstrates its value (see Chapter 16, “Launching Scrum”).

note Personally I don’t fully agree with the purist approach that XP
programmers should always do the absolute minimum. I
believe that knowledge and experience factor into how much
architecture should be preplanned. It’s very easy to plan too
much ahead and “overarchitect,” but I believe there is a sweet
spot found between the two extremes.

TDD is very useful and is not a difficult practice for programmers to adopt.
In my experience, if a programmer tries TDD for a while, the practice of writ-
ing unit tests becomes second-nature. The practice of refactoring takes longer
to adjust to. Programmers resist refactoring unless it is necessary. This practice
reinforces the mind-set of writing code “the right way, the first time,” which
leads to a more brittle codebase that cannot support iteration as easily. Lead
programmers should ensure that refactoring is a constant part of their work.

exPerIenCe: When xP GOeS TOO FAr
“There is a danger that implementing the simplest solution and evolving the
design may produce an architecture that makes extensions difficult. Experience
enables a programmer to avoid choosing an implementation that will make later
extensions difficult.

“Using XP I once implemented what seemed a perfectly valid and simple
system. But when the problem being tackled became too complex, I realized
that a different architecture would have been more appropriate. I felt that doing
the refactoring was too much work, however, so I decided to limp along with
the current architecture.”

 —Stephane Etienne, CTO, High Moon Studios

Pair Programming
Pair programming is a simple practice in principle. Two programmers sit at a
workstation. One types in code while the other watches and provides input on
the problem they are both tasked with solving.

From the Library of Wow! eBook

ptg

An Agile Approach 213

This practice often creates a great deal of concern:

●●

●

“Our programmers will get half the work done.”

●

“Code ownership will be destroyed, which is bad.”●

“I do my best work when I am focused and not interrupted.”

●

Changing personal workspaces and habits can generate a lot of fear, uncer-
tainty, and doubt. This section will examine how the benefits of pair program-
ming outweigh or invalidate these concerns.

Benefits of Pair Programming Let’s look at the benefits of pair programming:

●● Spreads knowledge: Pair programming isn’t about one person typ-
ing and the other watching. It’s an ongoing conversation about the
problem the pair is trying to solve and the best way to solve it.

Two separate programmers solve problems differently. If you were to
compare these results, you’d find that each solution had strengths and
weaknesses. This is because the knowledge of each programmer does
not entirely overlap with that of the other. The dialogue that occurs
with pair programming helps to share knowledge and experience
widely and quickly. It results in solutions that contain the “best of
both worlds.”

Although this is good for experienced programmers, it is an out-
standing benefit for bringing new programmers up to speed and
mentoring entry-level programmers. Pairing brings a new program-
mer up to speed much more quickly and therefore rapidly improves
their coding practices.

●● Assures that you’ll get the best out of TDD: TDD requires that
comprehensive tests be written for every function. The discipline
required for this is made easier by pairing. First, it’s in our nature to
occasionally slack off on writing the tests. From time to time, the
partner reminds you to write the proper test or takes over the key-
board if you are not fully motivated. Second, it’s common to have
one programmer write the tests and the other write the function that
causes the tests to pass. Although this doesn’t need to become a com-
petition between the two, it usually ensures better test coverage. When
the same programmer writes both the test and function, they may
overlook the same problem in the function and tests. The saying “two
heads are better than one” definitely applies to pair programming!

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology214

●● Eliminates many bottlenecks caused by code ownership:
How many times have you been concerned about a key programmer
leaving the company in midproject or getting hit by the proverbial
bus that drives around hunting down good programmers? Pairing
solves some of this by having two programmers on every problem.
Even if you are lucky enough not to lose key programmers, they are
often too busy on other tasks to quickly solve a critical problem that
arrives. Shared knowledge that comes from pair programming solves
these problems.

●● Creates good standards and practices automatically: Have you
ever been faced with the problem, late in a project, that one of your
programmers has written thousands of lines of poor-quality code that
you depend on and it is causing major problems? Management often
tries to solve this problem by defining “coding standards” and con-
ducting peer reviews.

The problem with coding standards is that they are often hard to
enforce and are usually ignored over time. Peer reviews of code are a
great practice, but they usually suffer from not being applied consis-
tently and often occur too late to head off the problem.

Pair programming can be thought of as a continuous peer review. It
catches many bad coding practices early. As pairs mix, a company
coding standard emerges and is improved daily. It doesn’t need to be
written down because it is documented in the code and embedded in
the heads of every programmer.

●● Focuses programmers on programming: When programmers
start pairing, it takes several days to adjust to the unrelenting pace.
The reason is that they do nothing but focus on the problem the
entire day. Mail isn’t read at the pair station. The Web isn’t surfed.
Shared e-mail stations can be set up for when a programmer wants
to take a break and catch up on mail. E-mail clients and web brows-
ers are a major distraction from the focus that needs to occur for
programming.

exPerience At High Moon Studios, we didn’t enforce pair programming
100% of the time. For example, programmers didn’t always
pair up to solve simple bugs. However, it was done long enough
to become second-nature. Had we abandoned pair program-
ming, I would have wanted to make sure that we retained the
same benefits with whatever practices replaced it.

From the Library of Wow! eBook

ptg

An Agile Approach 215

Problems with Pairing There are some problems to watch out for with pair
programming:

●● Poor pair chemistry: Some pair combinations should be avoided,
namely, when the chemistry does not work and cannot be forced. If
pairings are self-selected, it works out better. In rare cases, some pro-
grammers cannot be paired with anyone. Any large team switching to
pair programming will have some programmers who refuse to pair.
It’s OK to make exceptions for these people to program outside of
pairs, but they still need a peer review of their work before they com-
mit. As time passes, they will often do some pairing and may even
switch to it. You just need to give them time and not force it.

●● Pairing very junior people with very senior people: Pairing
between the most experienced programmers and junior programmers
is not ideal. The senior programmer ends up doing all the work at
a pace the junior programmer cannot learn from. Matching junior-
level programmers with mid-level programmers is better.

●● Hiring issues: Make sure that every programming candidate for hire
knows they are interviewing for a job that includes XP practices and
what that entails. Consider a one-hour pair programming exercise
with each candidate in the later stages of a hiring process. This does
two things: First, it’s a great tool for evaluating how well the candi-
date does in a pair situation where communication is critical. Second,
it gives the candidate exposure to what they are in for if they accept
an offer. A small percentage of candidates admit that pairing is not for
them and opt out of consideration for the job. This is best for them
and for you.

Are XP Practices Better Than Non-XP Practices?
It’s difficult to measure the benefit of XP practices when the team first starts
using them because the pace of new features immediately slows down. This
corresponds to studies (Jeffries and Melnik 2007) that show that a pair of pro-
grammers using TDD is about 1.5 times as fast as one separate programmer
introducing new features. The additional benefits we’ve seen with XP/TDD
more than offset the initial loss of productivity:

●● Very high stability in builds at all times: It adds to the produc-
tivity of designers and artists as well as programmers when the build
is not constantly crashing or behaving incorrectly.

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology216

●● Post-production debugging demands vastly reduced: More
time is spent tuning and improving gameplay rather than fixing bugs
that have been postponed.

●● Better practices required in Scrum: Iterative practices in Scrum
have a higher level of change. TDD helps retain stability through this
change.

●● Less wasted effort: A project wastes less time reworking large sys-
tems by avoiding large architectures written before the requirements
are fully known.

BrAnChInG VS . COnTInUOUS InTeGrATIOn
Branch and merge commit strategies often result in weekly commits that bun-
dle hundreds of lines of changes together in a big lump that causes problems
that can require days to fix.

This is the reasoning behind continuous integration; it enables frequent
commits that—coupled with unit testing—work well to ensure that the changes
are testable, small, and safe. They also make the commit process quick and
usually painless.

Debugging
One of the biggest differences between an agile game development project and
a traditional game development project has to do with how bugs are addressed.
In many projects, finding and fixing bugs does not happen until the end when
QA focuses on the game. The resulting rush to fix defects usually leads to
crunch.

One of the ideals of agile game development is to eliminate the “post-alpha
bug-fixing crunch.” By adding QA early in the project and addressing bugs as
we find them, we significantly reduce the amount of time and risk during the
alpha and beta portions of a project.

Debugging in Agile
An agile project approaches bugs differently. Fixing bugs is part of the work
that needs to happen before a feature is completed each sprint. In an agile
project, we are trying to minimize debt, especially the debt of defects, since
the cost of fixing those bugs increases over time. Although QA is part of an

From the Library of Wow! eBook

ptg

An Agile Approach 217

agile team, this doesn’t relieve the other developers from the responsibility of
testing their own work.

When a bug is identified, we either add a task to fix it in the sprint backlog
or a story to fix it in the product backlog.

Adding a task to Fix a Bug to the Sprint Backlog When a bug is found that
relates to a sprint goal and it’s small enough to fix, a task to do so is added to
the sprint backlog. Fixing bugs is part of development velocity. Adopting better
practices to avoid defects increases velocity.

In some cases, if enough bugs arise during a sprint, then the team may miss
achieving all the user stories.

Adding a Bug to the Product Backlog Sometimes a problem is uncovered that
does not impact a sprint goal, cannot be solved by the team, or is too large to fix
in the remaining time of the sprint. For example, if a level production team that
contains no programmers uncovers a flaw with AI pathfinding on a new level,
a user story to fix this is created, added to the product backlog, and prioritized
by the product owner. Often such bugs are addressed in a hardening sprint if the
product owner decides to call for one (see Chapter 6, “Agile Planning”).

If the team is uncertain about which backlog the bug belongs on, they
should discuss it with the product owner.

A Word About Bug Databases
One rule I strongly encourage on every agile team is to avoid bug-tracking
tools and databases before the “feature complete” goals (often called alpha).
It’s not that the tools are bad, but tools encourage the attitude that identifying
a bug and entering it in a database is “good enough for now.” It’s not. In many
cases it’s a root of the evil that creates crunch at the end of a project.

When a team enters alpha and the publisher ramps up their off-site QA
staff, then a bug database may become necessary.

optimization
Like debugging, optimization is often left for the end of a project. Agile game
development projects spread optimization across the project as much as pos-
sible. Unfortunately for projects that have large production phases and single
true releases, much of the optimization must be left to the end of the project
when the entire game is playable.

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology218

Knowledge is the key element that helps decide between what is optimized
early in the project and what is optimized in post-production. Projects opti-
mize early to gain knowledge about the following:

●● Is the game (feature, mechanic, and so on) fun? It’s difficult to
know what is fun when the game is playing at 10 fps. There must be
an ongoing effort to avoid a debt of badly written code or bloated
test assets that need to be redone in post-production.

●● What are the technical and asset budgets for production?
Projects shouldn’t enter production unless the team is certain about
the limitations of the engine and tool sets. Knowing these limitations
will vastly decrease rework waste. The following are examples:

●■ How many AI characters can be in the scene at any
one time? Often this variable depends on other parameters.
For example, a game may afford more AI characters in a sim-
pler scene that frees up some of the rendering budget for AI.

●■ What is the static geometry budget? This should be
established early, and it should be very conservative. As the
game experience is polished with special effects and improved
textures, the budget often shrinks. In post-production, it’s
easier to add static geometry detail than to remove it from
scenes.

●■ What work will be necessary to get the game working
on the weakest platform? Sometimes the weakest platform
is the most difficult to iterate on. It’s better to know as early
as possible if separate assets need to be created for another
platform!

●■ Does the graphics-partitioning technology work? Don’t
count on some “future technical miracle” to occur that enables
levels to fit in memory or render at an acceptable frame rate.
How much work needs to be done to make a culling system
work? Make sure the level artists and designers know how a
culling system works before they lay out the levels.

So, what optimizations are left until post-production? These include
lower-risk optimizations such as those made to the assets created in produc-
tion to reduce their resource footprint. Such optimizations are best made after

From the Library of Wow! eBook

ptg

An Agile Approach 219

the entire game is fully playable. Here are some examples of post-production
optimization:

●● Disc-streaming optimization: Organize the data on the hard
drive and disc to stream in effectively. This is always prototyped to
some degree in pre-production.

●● AI spawn optimization: Spread out the loading and density of AI
characters to balance their use of resources.

●● Audio mixing: Simplify the audio streams, and premix multiple
streams when possible.

A project can’t discount the benefits from engine improvements made
during production. At the same time, they can’t be counted on. It’s a judgment
call about where to draw the line. As a technical customer, I set the goal of a
project to achieve a measurable bar of performance throughout development
as a definition of done for releases. An example of a release definition of done
is as follows:

●●

●

30 frames per second (or better) for 50% of the frames

●

●

15 to 30 frames per second for 48% of the frames

●

Loading time on the development station of less than 45 seconds●

Less than 15 frames per second for 2% of the frames

●

These standards are measurable and are caught quickly by test automation.
They might not be stringent enough to ship with, but they are acceptable for
the “magazine demo” quality releases.

Staying Within Technical and Asset Budgets Throughout the Project
The benefits of having the game run at shippable frame rates throughout devel-
opment are vast. We get a much more true experience of the game emerging
when it runs “within its means” at all times. However, there is an ongoing
give-and-take between iterative discovery and incremental value. For example,
developers may want to experiment with having 24 AI characters rush the
player in an “AI wave” to find out whether it’s fun. Do they have to optimize
the entire AI system to handle 24 characters in the experiment? Of course not.
If the experiment has shown that the feature would add a lot of value to the
game, we have only improved our understanding, not the game. We have iter-
ated to improve our knowledge, but we haven’t yet incremented the value of
the game.

From the Library of Wow! eBook

ptg

Chapter 10 Agile Technology220

Too often we’ll add such a scene to the game without enough optimiza-
tion. We have created a bit of debt that we have to pay back later. This payback
cost could be large. It could be so large that we can’t afford it and have to
eliminate the mechanic altogether. This could occur for many reasons; here are
some examples:

●●

●

The AI character models are too complex to afford 24 in the scene.

● Spawning a wave of 24 AI characters causes a one-second pause,
which violates a first-party technical requirement (for example,
TCR/TRC).

The list could go on. What can we do to reduce this debt and truly incre-
ment the value of the game? We need to do some spikes to determine the
optimization debt and influence the product backlog to account for it. If a spike
reveals these two problems, we could address them in the following ways:

●● Plan for simple models with a smaller number of bones to populate
characters in the wave.

●● Implement an interleaved spawning system (like a round-robin) to
spawn the characters one per frame over a second.

Both of these backlog items enable the product owner to measure the cost
of the AI wave against the value we learned in the test. This enables cost and
value to be their deciding factor rather than the need to ship a game on time.

There are many examples of this type of decision that need to be made
early. When these decisions are not made, the optimization debt often becomes
overwhelming. This requires an objective eye to watch out for. Too many times
we view these features with the “developer’s eye.” We overlook the flaws that
cause frustration to our stakeholders.

Summary
This chapter explored the XP practices of test-driven development and pair
programming and the principles behind them. These practices support agil-
ity because they move programmers away from separate design, code, and test
phases of development into iterative daily practices where these activities are
mixed. They create code that matches emergent requirements, is more main-
tainable, and is of higher quality.

The next several chapters will explore the other game team disciplines and
how their practices can be adapted for more agility as well.

From the Library of Wow! eBook

ptg

Additional Reading 221

Additional reading
Beck, K. 2004. Extreme Programming Explained, Second Edition. Boston: Addison-

Wesley.

Brooks, F. 1995. Mythical Man Month, Second Edition. Boston: Addison-Wesley.

McConnell, S. 2004. Code Complete, Second Edition. Redmond, WA: Microsoft
Press.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

223

chapter 11
Agile Art and Audio

computer-based artwork is dynamic and evolving. Art styles transform, and
artists explore new meaning in what they create. The medium that they use has
undergone as much change in the past few decades, with the advent of pow-
erful and cheap computers, as it had since the caves in Lascaux, France, were
painted 16,000 years ago.

Cell animation and pre-rendered computer graphics have enabled art-
ists to add more motion to their work. This has made it possible for the wild
imaginations of artists and storytellers to be more deeply shared such as in
the movie Fantasia.

Video games have added a whole new dimension. Now art has to be inter-
active, which enables it to be used in ways its creators didn’t imagine. The
medium is complex and requires the artist to collaborate with designers and
programmers to bring their work to life.

This chapter will explore the benefits, concerns, and common practices of
artists on cross-discipline agile teams. This chapter covers principles and prac-
tices that cover many artistic disciplines including modeling, texturing, anima-
tion, audio, and so on. It refers to the members of every discipline as artists.

the Problems we Are Solving with Agile
Why use agile for art? When Michelangelo painted the ceiling
of the Sistine Chapel, he wasn’t using agile. He had a plan to
paint the entire ceiling.

—A former artist co-worker

In reality, Michelangelo may have been better off using a more agile approach
to painting the Sistine Chapel. There was a great deal of trial and error and false
starts. He had no idea about how to paint images on a curved and segmented
ceiling. He signed a fixed-price contract calling for 12 figures to be painted.

From the Library of Wow! eBook

ptg

Chapter 11 Agile Art and Audio224

Four years later he had painted 300. It’s no wonder he referred to it as one of
the worst experiences of his life.

Video game artists face similar challenges. Translating their vision into real-
ity runs headlong into the challenges of the medium, whether it is fresco or
graphics processors. Overcoming these challenges and understanding the limi-
tations of the medium before creating the final product are necessary.

The following are some of the main problems artists encounter:

●● Artists need to know whether they are creating the right
thing and not wasting effort: Parallel development of assets and
technology that the assets depend on is a traditional source of wasted
effort. Engine development is often started with optimistic feature
sets, performance goals, and schedules. Unfortunately, projects fall
short of these goals, and the assets created cannot be used as built and
have to be rebuilt. Technical iteration requires an ongoing conversa-
tion and experimentation with what looks and works best. Every art-
ist knows that the quality of a complex asset, such as a level, depends
on a trade-off between polygon count, texture quality, lighting com-
plexity, and the palette of effects available. None of these is indepen-
dent of each other. Some levels require more effects than others and
require trade-offs. We want to build the knowledge of these trade-offs
during engine development before we commit to production. This
requires frequent collaboration between the technology creators and
the artists who leverage their work.

●● Artists need a stable, working build: Nothing impacts progress
more than a broken build. Graphical defects that impact visual quality
prevent an artist from developing the best possible assets. Relying on
a separate technology team to solve these problems adds delay. Cross-
discipline teams are more likely to have a team member who quickly
solves these problems or is able to communicate with someone who
can help.

●● Artists need faster tools and pipelines: Artists are often lim-
ited by slow iteration times and therefore can’t iterate as much as
they like. Less iteration translates to lower-quality art. A common
problem is that programming team members, who have control
over improving tools and pipelines, are not impacted by the same
problems. They don’t experience how slow it is to change a texture
on a game. They are focused on the tasks that are important to

From the Library of Wow! eBook

ptg

Concerns About Agile 225

their team. Cross-discipline teams share common goals. Problems
that impact individual progress impact the entire team. When this
happens, then such problems receive the level of attention they
deserve.

concerns About Agile
Artists have several common concerns about agile and Scrum:

●● Scrum is for programmers: Scrum is used to a great extent on
software development projects, but it wasn’t created for programmers.
In fact, it purposefully has no specific practices for any one discipline.
It’s as applicable for artists as it is for any other discipline.

●● Art production runs on a schedule. We can’t be iterative:
With video games, art and technology have to integrate with
the gameplay mechanics to create a fun experience. Teams have
to explore how all these components work together. Once they
discover this, they can schedule the creation of ten to twelve hours
of production content. Exploring in pre-production is necessary.
Cross-discipline pre- production teams using by-the-book Scrum
thrive. During production, many practices will change but remain
agile. Production issues continue to create unexpected challenges.
These challenges wreak havoc on the best-planned schedules. Artists
creating assets still need rapid response to technical problems. They
need to continually find ways to collaborate (see Chapter 7, “Video
Game Project Planning”).

●● Cross-discipline teams don’t work: On large projects, artists
have traditionally been pooled with members of their own discipline,
and they’ve learned to work that way. Once they try cross-discipline
teams and experience day-to-day responsiveness from teammates
who help them solve problems, they change their minds. Scrum
doesn’t prevent artists from communicating outside of a sprint. They
can form communities of practice (see Chapter 8, “Teams”) and still
share ideas and practices with one another.

Like almost any developer, artists need to experience Scrum practices
before they’ll agree with the benefits. A sense of skepticism is healthy as long as
it is paired with an openness to accept what works.

From the Library of Wow! eBook

ptg

Chapter 11 Agile Art and Audio226

COnVInCInG The ArTISTS TO JOIn
When High Moon Studios started experimenting with Scrum, our artists were
very skeptical of it. Some thought it was a “management fad” or a covert form of
micromanagement. They wanted no part of it, and we didn’t force it on them.

The programmers decided to try it and formed teams. Their daily scrums
quickly identified impediments that impacted their progress. Many of these
addressed the lack of proper assets to work with. The producers, recruited to
be the ScrumMasters, spent much of their time pestering the artists to produce
the assets the teams demanded.

Once the artists saw the producers focusing their effort on solving Scrum-
raised impediments, they wanted to start using Scrum too.

Art leadership
As with all leadership roles, agile shifts the responsibility of art leadership from
daily command and control to mentoring and facilitation. The role of art lead-
ership is to improve the quality of the art being created and to help artists
improve their ability to create art. These two must constantly be balanced.

To improve the quality of art, the art lead (or art director) reviews new art
in-game and provides feedback. This creates the opportunity to work with the
artists directly within a sprint. This influences some of the daily practices. For
example, art assets may need a sign-off or approval by a lead artist or art direc-
tor, so some teams add a column on their task board called “Pending Approval”
before the “Done” column to hold an art task to be approved before it is con-
sidered done.

A challenge for many agile game teams is how to avoid having art direction
approval become a bottleneck for progress. Since art directors are usually not
members of any one team, they do not have the same level of commitment to
a sprint as teams who depend on their feedback. Delayed feedback is often a
source of impediments for these teams. Studios develop unique practices, such
as highly visible approval backlogs, to address this.

In addition to asset approval, art leaders must mentor less-experienced art-
ists to improve their art creation workflow. Art cost is as critical as art quality.
Without experience or familiarity with all the tools, new artists can waste a lot
of time creating assets the hard way.

As the art lead works with artists to improve quality and reduce cost, they
will see patterns for improvement that can be shared among all artists or oppor-
tunities for improvement that can be championed with the team that supports
the pipeline and tools.

From the Library of Wow! eBook

ptg

Art on a Cross-Discipline Team 227

exPerIenCe
In the mid-nineties, many 3D games were a mix of 2D and 3D. One (canceled)
game I was working on at Angel Studios took place outdoors. In these outdoor
levels, there were trees in the distance that, because of the limited rendering
budgets, were tree pictures on billboards (2D cards that always rotate to face
the player). One artist made beautiful tree billboards, but he was very slow in
making them. This went on for a few months until the lead artist visited him
and discovered that he was creating a full three-dimensional tree on the PC
modeling tool, taking a picture of it, and using the picture for the billboard! That
practice was changed.

Art on a cross-Discipline team
An artist on a cross-discipline team is faced with a number of challenges. Dif-
ferent vocabularies must be understood, and the artists must struggle to make
themselves understood as well. They are reminded daily of how their art is used:
how it leverages the strengths or exposes the weaknesses of the technology.

For a cross-discipline team that is measured by value added to a working
game, the role of an artist shifts to that of a “game developer” who specializes in
art. An artist doesn’t simply create an asset for someone else to put in the game
and make fun. The artist participates in the creation of an experience, where
art has an equal value. By having a voice in the discussion about what is being
created, the artist elevates the value of what they create and minimizes the cost
of creating it.

creative tension

When forced to work within a strict framework, the imagina-
tion is taxed to its utmost—and will produce the richest ideas.
Given total freedom, the work is likely to sprawl.

—T.S. Eliot

Creative tension exists between what we can do and what we want to do in a
game. Creative tension is a good thing. It enables us to push the quality of an
asset in the game while working within the bounds of technical limits, cost,
and schedule. Creative tension puts pressure on our work processes, tools, and
practices to find opportunities to eliminate waste.

Some of the best ideas are created from these limitations. When we were
developing the game Midtown Madness, the shortage of level artists forced us

From the Library of Wow! eBook

ptg

Chapter 11 Agile Art and Audio228

to rely on a tool that procedurally created a city from a simple line map. This
tool generated an entire city in an hour and allowed us to iterate hundreds of
times whenever we discovered problems such as curb angles interfering with
vehicle wheel physics. Had the entire city been modeled by hand, we could not
have iterated as many times to improve the game.

Scrum compels teams to improve their performance every sprint. It forces
creative tension to the surface where it belongs.

95-MILe-Per-hOUr ArT
Game art has a function and a form. Its purpose guides its creation. Its function
is less apparent when artists are separated from the game. During the develop-
ment of Midnight Club, a city racing game, a group of artists created assets for
the streets in a separate room. We were looking forward to seeing their work
because we had a city filled with gray cubes. The day finally arrived when the
new geometry was placed in the city. It was stunning. The city was truly coming
to life. We started driving around and discovered a major problem. Much of the
new detailed geometry was at the street level. The actual city we were model-
ing had a lot of this detail itself, but it was a terrible problem for a racing game. A
staircase jutting out from a building could instantly stop a car using the sidewalk.
Low planters became uncrossable barriers. Fun transformed into frustration.

Much of this detail had to be removed to eliminate the barriers at street
level. From then on, the mantra repeated daily was “Create 95-mile-per-hour
art.” The art had to look good and function well for players in cars traveling past
it at 95 miles per hour.

Art QA
Many problems are avoided when the entire team iterates on the game daily.
Asset creation tasks aren’t considered complete when they are exported but
when they are verified in-game on the target platform. Verification not only
includes seeing the asset in the game and ensuring that it functions well but also
includes verifying that some of the less-apparent aspects of its use are correct.
In-game asset verification tools aid in checking the construction of assets in the
game in many ways:

●● Physics geometry view: Does the collision geometry match the
visible geometry? Is it aligned properly?

●● Texel density view: Are the textures properly mapped? Are the
textures the right size?

From the Library of Wow! eBook

ptg

Art on a Cross-Discipline Team 229

●● Wireframe view: Is the out-of-view geometry being properly
culled? Are the asset visibility flags set properly?

●● Sound volume view: Are the sound min/max radii properly set?
Are the proper sounds triggering at the right time?

●● Asset selection and highlight: Is an asset lit properly in the game?
It is visible to the player? How often is it instantiated? Rather than
searching for an asset, this tool enables the artist to select it from a list
and see it highlighted.

Artists need to have access to all the target platforms to test their work.
Sometimes it is too expensive to equip every person on the team with platform
development kits. In those cases, small groups share a development kit in a loca-
tion that they can all see and control from their own workstation.

When QA is the responsibility of everyone on the team, then everyone
needs to examine how assets are being used and make sure that they adhere to
the budget requirements.

Building Art Knowledge
A goal of pre-production is to create knowledge. We want to know how fun
the game is, how content will be produced, and how much it is going to cost.
Creating this knowledge requires iteration. Unfortunately, teams often focus
too much on core mechanics or the fun of the game and not enough on pro-
duction costs. This result is that many projects exceed their production budgets
or schedules. They need to explore production costs more in pre-production.

Level production often costs 50% or more of the production budget. Proj-
ect teams need to refine their understanding of the effort to build levels during
pre-production to avoid mechanics that inflate production costs beyond the
budget. For example, some shooters have a fantastic feature that makes it pos-
sible for every object in the environment to be destructible. Unfortunately, this
feature can double level production costs since building destructible geometry
requires far more effort. By knowing this cost impact in pre-production, the
product owner can better judge the return on investment for this feature.

Learning about production cost is an iterative process. It begins with a
range of estimates based on existing knowledge (perhaps from a previous title)
and is iteratively refined during pre-production. Refinement occurs by iterat-
ing on mechanics and building a “vocabulary” of rooms or simpler levels that
grow as the team learns more.

Building a shippable level before a vocabulary of mechanics is established
is wasteful. This waste is seen on many milestone-driven projects. Teams feel

From the Library of Wow! eBook

ptg

Chapter 11 Agile Art and Audio230

compelled to show something that is polished to their publisher when the
gameplay is still undetermined. These polished milestone levels are eventually
thrown out or require a great deal of rework when the team learns more about
the gameplay.

overcoming the “not Done yet” Syndrome
Teams are often called upon to demonstrate the potential value of a mechanic
in a low-cost way. This often requires that stand-in assets, such as low polygon
models or roughly blended animations, be used instead of polished assets. These
demonstrations are useful tracer bullets to indicate where the game is headed.
Although the results might be thrown away, their purpose is to learn more
about a feature before deciding to invest more time in it.

tiP Often level designers create a set of basic level shapes they
refer to as Lego bricks that allow them to “snap together” a
large level very quickly. These levels give a sense of scale for
production levels that take many times more effort to create.

Artists often resist showing stand-in assets to the world and want to add
more polish for a prototype. There is nothing wrong with doing this as long as
it doesn’t negatively impact the goal. For example, one project team discovered
that their prototype level was running extremely slowly. After exploring the
problem, it was discovered that hundreds of the props placed in the level were
dynamically lit. The artists had done this since they didn’t have enough time to
properly prelight the level and wanted everything to look good.

Iteration often requires showing proof-of-concept work to demonstrate
knowledge gained. Stand-in assets are fine to use, but care should be taken to
make it obvious they are temporary. Candy-stripe textures or characters that
look like “crash-test dummies” allow stakeholders to look beyond the test assets
and judge the results.

exPerIenCe
Be careful of using reference assets. Since they look good, they are often for-
gotten until there is a problem, such as the time an artist pasted in the eyeball
of a character with a photo that was a megabyte in size! Another time, on
Midtown Madness 2, an artist textured a garbage can with a picture from a real
garbage can. The company, whose logo was on that can, successfully sued for
its illegal use!

From the Library of Wow! eBook

ptg

Art on a Cross-Discipline Team 231

Budgets
One of the most frustrating things for an artist is seeing their work go to waste.
It’s not unusual to review the assets created for a game and realize that enough
of them were created and discarded to complete two games. The majority of
the team often consists of artists, so wasting 50% of their effort is a tremendous
burden.

Much of the waste comes from assets being created when not enough
about their requirements and budgets are known. Because a game artist’s cre-
ation tools are often separate from the game itself, they “get ahead” of the rest
of the project and create assets that are based more on speculation rather than
the constraints of the emergent game. This is usually driven by schedule and
resource allocation plans. A schedule might stipulate a certain number of assets
created by a specific date, which in turn drives staffing on a project that may
not be ready for it.

For example, a project plan and schedule may forecast a date when a set of
characters is complete. As a result, a group of character modelers and animators
join the project months before this date to start producing the character assets.
At this point it’s expected that the project has proven character requirements
and budgets such as the following:

●●

●

The skeletal budgets, such as how many bones are required, and so on

● The model polygon requirements, such as how many characters are
on the screen at any one time

●●

●

An identified set of behaviors to derive the animation sets

● Character motion needs, such as whether all the animations are iden-
tified for characters to “look good” while moving

If character mechanics are not sufficiently developed to the point where
these things are known, it leads to waste. The character artists would have to
guess about these requirements and, because they have to keep busy, start build-
ing assets with them. This usually results in character assets that need a great
deal of rework or, worse, have to be used as is.

Cross-discipline teams iterate and refine specific asset budgets and require-
ments as part of the goal of finding the fun and the cost. As pre-production
moves forward, budgets and production tool requirements need to become part
of the definition of done for asset classes. When these elements become “out of
sync,” the team identifies it quickly and corrects the problem (such as altering
team membership or future sprint goals).

From the Library of Wow! eBook

ptg

Chapter 11 Agile Art and Audio232

Audio at the “end of the chain”
Adding audio to an otherwise completed asset or mechanic is often the “last
step” in a chain of steps (see Chapter 7), even in pre-production. This can lead
to audio designers or composers with little to do at the start of a sprint and
then too much to do at the end. Scrum teams often change the assumptions
about handing off work and find ways to interleave work on multiple assets
and increase collaboration across disciplines. Chapter 16, “Launching Scrum,”
addresses this in more detail.

collaboration in Production
In Chapter 7, we explored lean production practices and how cross-discipline
teams work together to reduce waste while continually improving what they
are creating and how they are creating it. A side effect of these practices is
that role boundaries begin to blur. For example, as concept artists shift from
handing off drawings to engaging in more collaborative daily conversations
with level designers, both begin to learn each other’s role and vocabulary. The
level designer won’t start drawing concept art and the concept artist will not
start editing levels, but they learn more about each other’s goals and methods.
They use this knowledge to modify their practices to better accommodate one
another. For example, when working on a racing game that took place in Paris,
the concept artist learned about the layout, landmarks, and visual style of Paris,
while the level designer focused on what the vehicle was able to do. The two
worked closely together to find intersecting areas (landmarks and street styles
of Paris that worked well with the vehicle dynamics), and the result improved
quality and reduced waste.

exPerience When I started creating tools for artists and designers, my
understanding of the complete process of creating games
grew by a magnitude. It altered my approach to how I devel-
oped code and later led teams. A wider view of other disci-
plines benefits every role and is a natural advantage of
cross-discipline teams.

Summary
Artists face many challenges on game development teams. They are often at the
mercy of uncertain technology and impossible schedules that end up forcing
them to overproduce assets and compromise quality. As teams grow, these chal-
lenges will also grow.

From the Library of Wow! eBook

ptg

Additional Reading 233

As with the other disciplines, artists need to see themselves as game devel-
opers first and artists second. When they work on art teams in isolation, it creates
communication barriers between the other disciplines. Players aren’t buying
just art; they’re buying art that does something entertaining. This requires a
cross-discipline approach to creating value, which is what Scrum promotes.

Additional reading
Goldscheider, L. 1953. Michelangelo: Paintings, Sculpture, Architecture. London:

Phaidon Press.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

235

chapter 12
Agile Design

when I first started working on games professionally in the early nineties,
the role of designer was being instituted throughout the industry. Following the
mold of prominent designers such as Shigeru Miyamoto and Sid Meier, design-
ers were seen as directors of the game, or at least the people who came up with
many of the ideas. The role required communication with the team on a daily
basis but not much written documentation.

As technical complexity, team size, and project durations grew, the role
of the designer became more delineated. Some projects had teams of design-
ers who specialized in writing stories, scripting, tuning characters, or creating
audio. Hierarchies emerged to include lead, senior, associate, or assistant design-
ers, among others.

The overhead of communication with large teams and the cost of longer
development efforts led to a demand for certainty from the stakeholders. Large
detailed design documents attempted to create that certainty, but at best they
only deferred its reckoning.

This chapter examines how agile can help reverse this trend.

VIeWPOInT
“Designers are the chief proponents for the player. This has not changed in
20 years of game development. Though titles and roles have changed, designers
look out for gameplay and quality of the product from a player’s perspective.

“When teams were small—with ten or less people—this could be done
easily; it was a series of conversations while textures were created and code
was written. The design was natural and organic as it emerged from the team.
‘Horse swaps’ could easily occur. For example, trading a very difficult-to-build
mechanic for an easy one that still achieved the same gameplay vision was
relatively simple.

“However, in the past ten years, teams have begun to balloon, first to
the 30- to 50-person teams of the nineties and then finally to the occasional

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design236

several-hundred-person monstrosities of the 2000s. A single designer could
not have all the conversations that needed to happen (even several designers
have problems). As a result, documentation began to surface that outlined the
product as a whole, from the very high level to the very granular. Although this
paints the initial vision of the title, it does away with one of the most important
facets of any type of product development: the dialogue.

“Scrum addresses this. Five- to ten-person cross-discipline Scrum teams
usually include a designer. Each of these designers is entrusted by the lead
designer to understand the key vision elements and speak to the team.”

—Rory McGuire, game designer

the Problems
What are some of the problems that face developers on large projects? The
two most common problems are the creation of large documents at the start
of a project and the rush at the end of the project to cobble something
together to ship.

Designs Do not create Knowledge
Originally when designers were asked to write design documents, they rebelled.
Writing a design document seemed like an exercise to placate a publisher or
commit the designers to decisions they weren’t ready to make. Over time this
attitude toward documentation has changed. Writing design documents has
become the focus for many designers. It’s felt that this is the easiest way to com-
municate vision to both the stakeholders and a large project team.

Designers need to create a vision, but design documents can go too far
beyond this and speculate instead. Once, on a fantasy shooter game I worked
on, the designers not only defined all the weapons in the design document but
how many clips the player could hold and how many bullets each clip con-
tained! This level of detail didn’t help the team. In fact, for a while, it led them
in the wrong direction.

the game emerges at the end
At the end of a typical game project, when all the features are being integrated,
optimized, and debugged, life becomes complicated for the designer. This is
the first time they experience a potentially shippable version of the game. At
this point it typically bears little resemblance to what was defined in the design
document, but it’s too late to dwell on that. Marketing and QA staffs are ramp-
ing up, and disc production and marketing campaigns are scheduled.

From the Library of Wow! eBook

ptg

Designing with Scrum 237

The true performance of the technology begins to emerge, and it’s usually
less than what was planned for during production. This requires that budgets
be slashed. For example, waves of enemy characters become trickles, detailed
textures are decimated, and props are thinned out.

Because of deadlines, key features that are “at 90%” are cut regardless of
their value. As a result, the game that emerges at beta is a shadow of what was
speculated in the design document. However, it’s time to polish what remains
for shipping.

Designing with Scrum
Successful designers collaborate across all disciplines. If an asset doesn’t match
the needs of a mechanic, they work with an artist to resolve the issue. If a tun-
ing parameter does not exist, they work with a programmer to add it. They also
accept that design ideas come from every member of the team at any time. This
doesn’t mean that every idea is valid. The designer is responsible for a consistent
design vision, which requires them to filter or adapt these ideas.

COPS AnD rOBBerS
In the late nineties, while we were developing Midtown Madness, I was playing
“capture the flag” after-hours in the game Team Fortress. One day it occurred
to me that a version of “capture the flag” for our city racing game might be fun.
I raised this idea with the game designer, and he suggested a creative variation
called “cops and robbers.” In it, one group of players are robbers, while the
other group are cops. The robbers try to capture gold from a bank and race to
return it to their hideout. The cops try to stop the robbers and return the gold.
This feature was a big hit with online players and seemed to be even more
popular than racing! Good ideas can come from anywhere!

A Designer for every team?
A designer should be part of every cross-discipline Scrum team working on a
core gameplay mechanic. They should be selected on the basis of the mechanic
and their skills. For example, a senior designer should be part of the team
working on the shooting mechanic for a first-person shooter. If the team is
responsible for the heads-up display (HUD), then a designer with a good sense
of usability should join the team.

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design238

the role of Documentation
When designers first start using Scrum, they’ll often approach a sprint as a
mini-waterfall project; they’ll spend a quarter of the sprint creating a written
plan for the work to be done during the remainder. Over time this behavior
shifts to daily collaboration and conversation about the emerging goal. This is
far more effective.

This doesn’t mean that designers shouldn’t think beyond a sprint and never
write any documentation. A design document should limit itself to what is
known about the game and identify, but not attempt to answer, the unknown.
Documenting a design forces a designer to think through their vision before
presenting it to the rest of the team. However, a working game is the best way
to address the unknown.

A goal of a design document is to share the vision about the game with the
team and stakeholders. Relying solely on a document for sharing vision has a
number of weaknesses:

●● Documents aren’t the best form of communication: Much of
the information between an author and reader is lost. Sometimes I’ve
discovered that stakeholders don’t read any documentation; it’s merely
a deliverable to be checked off!

●● Vision changes over time: Documents are poor databases of
change. Don’t expect team members to revisit the design document
to find modifications. Recall the story of the animal requirement
for Smuggler’s Run; that was a case of failed communication about
changing vision.

Daily conversation, meaningful sprint and release planning, and reviews are
all places to share vision. Finding the balance between design documentation
and conversation and collaboration is the challenge for every designer on an
agile team.

“STAY The %#&$ OUT!”
One designer at High Moon Studios had a difficult time shifting his focus away
from documentation when he joined his first Scrum team. At the start of every
four-week sprint, he locked himself in an office for a week to write documen-
tation for the sprint goal. The team didn’t want to wait and pestered him with
questions during this time. The constant interruptions led the designer to post
a note on his door that read “Stay the %#&$ out! I’m writing documents!”
Eventually, the team performed an “intervention” of sorts with the designer to
get him to kick the documentation habit!

From the Library of Wow! eBook

ptg

Designing with Scrum 239

Parts on the garage Floor
Agile planning practices create a prioritized feature backlog that can be revised
as the game emerges. The value of features added is evaluated every sprint.
However, many core mechanics take more than a single sprint to demonstrate
minimum marketable value. As a result, the team and product owner need a
certain measure of faith that the vision for such mechanics will prove itself.
However, too much faith invested in a vision will lead teams down long, uncer-
tain paths, which results in a pile of functional “parts” that don’t mesh well
together. I call this the “parts on the garage floor” dysfunction.

We saw one such problem on a project called Bourne Conspiracy. In this
third-person action-adventure game, the player had to occasionally prowl
around areas populated with guards who raise an alarm if they spot the player.
This usually resulted in the player being killed. In these areas, the designers
placed doors that the player had to open. At one point, a user story in the prod-
uct backlog read as follows:

As a player, I want the ability to pick locks to get through
locked doors.

This is a well-constructed story. The problem was that there were no locked
doors anywhere. This resulted in another story being created:

As a level designer, I want to have the ability to make doors
locked so the player can’t use them without picking the lock.

This story is a little suspect. It represents value to a developer, but it doesn’t
communicate any ultimate value to the player. Such stories are common, but
they can be a symptom of a debt of parts building up.

The parts continued to accumulate as sprints went by:

As a player, I want to see a countdown timer on the HUD
that represents how much time is remaining until the lock is
picked.

As a player, I want to hear lock-picking sounds while I am
picking the lock.

As a player, I want to see lock-picking animations on my char-
acter while I pick the lock.

This continued sprint after sprint; work was being added to the lock-
picking mechanic. It was looking more polished every review.

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design240

 All of these lock-picking stories were building the parts for a mechanic
that was still months away from proving itself. The problem was that lock pick-
ing made no sense. The player had no choice but to pick the locks. Nothing
in the game required the player to choose between picking a lock or taking a
longer route. Ultimately, the vision was proven wrong, and lock picking was all
but dropped from the game despite all the work dedicated to it.

Figure 12.1 illustrates this problem of “parts on the garage floor.”
The figure shows many parts, developed over three sprints, finally coming

together in the fourth. This represents a debt that could waste a lot of work if
it doesn’t pay off. It also prevents multiple iterations on the mechanic over a
release cycle, because the parts are integrated only in the last sprint.

Ideally, each sprint iterates on a mechanic’s value. Figure 12.2 shows the
parts being integrated into a playable mechanic every sprint or two.

Story

Story

Story

Story

Story Story

Story

Story

Integration

Sprint 1 Sprint 2

Release

Sprint 3 Sprint 4

Figure 12.1 Integrating a mechanic at the end of a release

From the Library of Wow! eBook

ptg

Designing with Scrum 241

StoryStory

Story

Story

Story

Story Story

Integration

Story

Integration

Story

Integration

Sprint 1 Sprint 2

Release

Sprint 3 Sprint 4

Figure 12.2 Integrating a mechanic every sprint

The approach changes the stories on the product backlog:

As a designer, I want doors to have a delay before they open.
These doors would delay the player by a tunable amount of
time to simulate picking a lock while the danger of being seen
increases.

Notice that this story expresses some fundamental value to the player,
which communicates a vision to both stakeholders and developers.

As a designer, I want to have guards simulating patrols past the
locked doors on a regular basis so the timing opportunity for
the player to pick the lock is narrow.

As a player, I want to unlock doors in the time that exists
between patrols of armed guards to gain access to areas I need
to go.

The first few stories are infrastructure stories, but they describe where the
game is headed. They build the experience for the player in increments and

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design242

explain why. The value emerges quickly and enables the product backlog to be
adapted to maximize value going forward. This is in stark contrast to building
parts that assume a distant destination is the best one. Iterating against a fixed
plan is not agile.

CreATInG FUn IS ITerATIVe AnD COLLABOrATIVe BY
nATUre
One year I took my family to Colorado to spend Christmas in a cabin. After a
large snowstorm, my sons wanted to sled on the side of a small hill. So, I went
to the local hardware store but could only find a couple of cheap plastic sleds.
At first, the snow was too thick and the hill was too small for the sleds, so we
packed down a path in the snow and built a starting ramp for speed. The sleds
kept running off the track, so we packed snow on the sides. To increase speed,
we poured water on the track to ice it—it began to look like a luge track!

After a few hours we had a great track. The boys would speed down on their
sleds. They built jumps and curves and even a few branches into the track.

My oldest son said, “It’s lucky that you bought the perfect sleds!” I hadn’t
done that, so we talked about it. The sleds weren’t perfect; we had merely iter-
ated on the track to match their characteristics. We added elements, such as
the sides to the track, to overcome the sled’s lack of control. We added other
features, such as the ramp and track ice, to overcome the limitations of the thick
snow and low hill. The sleds were the only thing that couldn’t be changed.

I couldn’t help comparing this to game development. We created an expe-
rience by iterating on things we had control over and adapted for things we
didn’t. In this case, design was entirely constrained to working with the level
(the track) and not the player control (the sled), and we were still able to “find
the fun”!

Set-Based Design
When a project begins, the game we imagine is astounding. Players will experi-
ence amazing gameplay and explore incredible worlds where every turn reveals
a delightful surprise. However, as we develop the game, we start to compromise.
Imagination hits the limits of technology, cost, skill, and time. It forces us to
make painful decisions. This is a necessary part of creating any product.

Identifying and narrowing down the set of possibilities is part of plan-
ning. For example, when we plan to create a real-time strategy game, we
eliminate many of the features seen in other genres from consideration (see
Figure 12.3).

From the Library of Wow! eBook

ptg

Designing with Scrum 243

First Person
Shooter

Massively
Multiplayer

Online

Real-time
Strategy

Game Genre Possibilities

Figure 12.3 Narrowing the game to a specific genre

Planning continues to narrow down the set of possible features. Following
a high-level design, many developers refine discipline-centric designs. Design-
ers plan the game design possibilities, programmers plan the technical design
possibilities, and artists plan the art design possibilities. These possibilities do not
perfectly overlap. For example, the designers may want large cities full of thou-
sands of people, but the technology budget may only allow a dozen characters
in linear levels. Figure 12.4 shows how the union of design, art, and technical
possibilities overlap to create a set of features that all disciplines agree upon.

As mentioned earlier, the project starts with an area quite large in scope. As
time goes by, the project staff gains more knowledge of what is possible, and the
range of possibilities shrink, as shown in Figure 12.5.

Design Possibilities

Technical Possibilities

Game
Possibilities Art Possibilities

Figure 12.4 The set of possibilities at the start of a project

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design244

Design Possibilities

Technical
Possibilities

Game
Possibilities Art Possibilities

Figure 12.5 The set of possibilities as the project progresses

This refinement of scope slowly happens through iteration and discovery. It
requires cross-discipline collaboration to find a common ground so that effort
is spent on a rich set of features possible for everyone to succeed.

Problems occur when the disciplines branch off from one another and plan
in isolation. If the disciplines refine their set of possibilities too early or in isola-
tion, then it greatly reduces the set of overlapping options for the game. This
approach is called point-based design in which a single discipline design is
refined in isolation (usually the game design). The set of design options have
been narrowed so much that the overlapping game feature set has been vastly
reduced, as shown in Figure 12.6.

Design Possibilities

Technical Possibilities

Game
Possibilities

Art Possibilities

Figure 12.6 Narrowing game design too soon

From the Library of Wow! eBook

ptg

Designing with Scrum 245

This is the reason for cross-discipline planning. It keeps options open and
the union of all sets as large as possible, so when more is learned, the project has
a wider range of options.

An example of the problem with a point-based design was with a level-
streaming decision made early on a game called Darkwatch. Early in develop-
ment the designers decided that contiguous sections of levels had to be streamed
off the game disc in the background during gameplay so that the player felt the
game was taking place in one large world. The decision was made although no
technical or art tool solutions for such streaming existed.

Entire level designs were created based on the assumption that the technol-
ogy and tool set would be created and that artists would be able to author the
streaming levels efficiently. Unfortunately, these assumptions were proven false.
The effort required to implement the full streaming technology left no time to
create the tools necessary for the artists to manipulate the levels. As a result, the
levels were “chopped up” into small segments, and these segments were loaded
while the player waited. The gameplay experience suffered greatly from this.

Another approach to narrowing multidiscipline designs, called set-based
design, is used to keep design options alive as a number of solutions are
explored and the best design is converged upon. Set-based design has been
shown to produce the best solutions in the shortest possible time (Poppendieck
and Poppendieck 2003).

A set-based design approach to such a problem as the streaming level
example is different from a typical point-based design. Instead, a number of
options are explored:

●●

●

A full level-streaming solution

●

No streaming at all●

A solution that streams portions of the levels (props and textures)

●

As each option matures, knowledge is built to enable a better decision to
be made before level production. Potential solutions are dropped as soon as
enough is learned about cost, risk, and value to show that they weren’t viable.
Although developing three solutions sounds more expensive, it is the best way
to reduce cost over the course of the project.

Making decisions too early is a source of many costly mistakes. This is dif-
ficult to combat since such decisions are often equated with reducing risk or
uncertainty. In point of fact, early decisions do not reduce risk or uncertainty.
The delay of the level design decision in the set-based design approach is an
example of postponing a decision as long as it can be delayed and no longer.
This is an essential part of set-based design.

From the Library of Wow! eBook

ptg

Chapter 12 Agile Design246

lead Designer role
The lead designer’s role is similar to other lead roles; they mentor less-
experienced designers and ensure that the design role is consistent across mul-
tiple Scrum teams. Lead designers meet with the other project designers on a
regular basis (often once a week) to discuss design issues across all teams (see
Chapter 8, “Teams,” to learn about communities of practice).

Scrum demonstrates—through sprint results—whether the project has
enough designers. Scrum teams challenge designers who cannot communicate
effectively. A benefit of Scrum is in exposing these problems so that a lead
designer will step in to mentor less-experienced designers.

Designer as Product owner?
Many game development studios using Scrum make the lead designer the
product owner for a game. This is often a good fit since the product owner role
creates vision, and when we think of visionaries, we often think of successful
designers such as Miyamoto, Shafer, Wright, and Meier. Lead designers make
excellent product owners for the following reasons:

●●

●

Designers represent the player more than any other discipline.

●

●

The product vision is driven primarily by design.

● Design is highly collaborative. Experienced designers should be expe-
rienced in communicating vision to all disciplines.

On the other hand, designers often lack experience for some product
owner responsibilities:

●● Responsible for the return on investment: Most designers I’ve
known often need to be reminded of the cost implications of their
designs! A product owner needs to carefully evaluate costs against the
value for each feature.

●● Project management experience: Teams accomplish many, but
not all, of the duties traditionally assigned to someone in a project
manager role. Many requirements or resources that have long lead
times require a long-term management view.

●● Avoiding a design bias: Product owners need to understand the
issues and limitations for all disciplines. They cannot assume that
everything outside the realm of design “can be handled by others.”

From the Library of Wow! eBook

ptg

Additional Reading 247

For these reasons, it’s often beneficial to have a senior producer support
the “designer as product owner.” A producer can be a voice of reason and cost
management.

Summary
Agile reverses the trend of isolation of disciplines. This trend sees designers
turning more to long-term plans and documentation to communicate with
teams that are ever increasing in size. Scrum practices require the designers to
collaborate and communicate face-to-face on small, cross-discipline teams.

In reversing this trend, designers need to embrace the benefit of emergent
design. No designer has a crystal ball about any mechanic. The limitations of
what is possible prevent this. Instead, they need to ensure that their vision is
communicated and open to all potential ideas.

Additional reading
McGuire, R. 2006. Paper burns: Game design with agile methodologies. www.

gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php.

From the Library of Wow! eBook

www.gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php
www.gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

249

chapter 13
Agile QA and Production

Part of the role definition for quality assurance and production is the ability
to communicate with all disciplines. Since fostering a common language across
all disciplines is a principle for agile game teams, QA and production have an
advantage when agile is adopted.

At the same time, agile practices change the role of QA and produc-
tion the most. Fortunately, the change is for the better. This chapter addresses
those changes and how the QA and production roles fit into agile teams and
organizations.

Agile QA
Every year I’m invited to my sons’ school for parent career day. It’s always fun.
To the class, “video game developer” is the coolest career imaginable. I could
be standing next to the “astronaut/secret agent” dad wearing his space suit, and
the kids would climb over him to ask me questions.

An inevitable question is, “How can I be a game tester?” They dream that
the role of a tester is eight hours a day of the same fun they experience playing
games. What could be better than that? Unfortunately, I am forced to destroy
this notion. I describe the long hours with games that crash. I describe how
testers are often very frustrated because they have an understanding of what the
game is and have very little influence over how it is developed. I don’t want to
discourage future generations of testers; I just don’t want to give the impres-
sion that there is this wonderful job waiting for them because they are “good
at playing games.”

As you may guess, the QA role attracts people who are passionate about
games. The sheer number of people applying for this role gives the industry the
ability to choose from among the best. We need to leverage their passion and
experience far more.

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production250

In this section, we’ll learn how to do that. We’ll explore the role of QA
on a game development project, and we’ll explore how it changes on an agile
team.

the Problem with QA
Traditionally, quality assurance is largely performed at the end of the project
by a dedicated QA team. Figure 13.1 shows the pattern where most bugs are
discovered on such a project after alpha, when all features are considered com-
plete but not debugged.

The reason for this is simple; testing is performed on a potentially ship-
pable game. Since the typical game project does not achieve this state until
post- production, most testing has to be compressed between the alpha and ship
dates. As a result, armies of testers are hired in hopes of achieving a ship date
with a working game. It is impossible to hire and properly train a small army
quickly, so testers are minimally trained for each game.

This type of quality assurance doesn’t always assure the highest quality. By
alpha, the important decisions about the game have been made, and the job of
QA is to find and report minor defects. Most major defects are rooted too deep
in the design or architecture of the game to be properly addressed. For example,
if level pacing isn’t fun, it may be too late to correct it. This compromises the
quality of the final game.

The other problem with traditional testing practices is that quality becomes
the responsibility of remote1 QA and not the developers. Studio cultures

1. Such as a publisher’s QA department in another location or a QA service

Bug
Discovery

Rate

Start Alpha Ship

Figure 13.1 Bug discovery rate on a traditional project

From the Library of Wow! eBook

ptg

Agile QA 251

encourage this by basing employee performance evaluations on the pace of
feature implementation or asset creation. Bugs that do not stop progress are
considered part of making the game and are tolerated before alpha. Adding QA
practices during this time slows feature and asset creation in the short-term, so
it is deferred.

BlAcK Box
AnD white

Box teSting

Testing can be divided into two types: black-box and white-box
testing.
 Black-box testing uses a player’s perspective to test a
game at the highest level. A tester is given a list of expected
behaviors and the conditions or input for causing them. The
tester then ensures that they occur. It’s also meant to ensure
the pacing and mechanics are fun and engaging (see the “Play-
Testing” section later in this chapter).
 White-box testing uses an internal perspective to test a
game. The components of the game, from code to assets, are
examined and tested for standards and functional compliance.
This requires skill and experience in the discipline that created
the code or asset to be tested.

Agile testing is not a Phase
The approach to QA on an agile project is different from that of a traditional
project in a number of ways:

●● Testing takes place on an agile project throughout its life
cycle: This is a major benefit of creating a potentially shippable ver-
sion of the game every sprint. Defects are not deferred or tolerated.

●● Testing is white-box testing: Testing focuses on the internal com-
ponents of the game rather than the game as a whole. This requires
more skilled “product analysts” who can specialize in areas such as
code reviews and test automation.

●● QA is part of every role: Each developer performs QA in their
daily work. QA doesn’t eliminate this need but catches problems that
slip through and helps improve team practices so that similar prob-
lems are more likely to be caught by the developer in the future.

Although large testing groups are still built up in post-production, an agile
project maintains a core QA group throughout the project. The goal is to catch
most problems as they occur, well before alpha, as shown in Figure 13.2.

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production252

Bug
Discovery

Rate

Start Alpha Ship

Figure 13.2 Bug discovery rate on an agile project

DeFinition The game industry traditionally refers to members of a QA
group as testers. This title becomes obsolete as a studio
adopts agile. Testing becomes part of everyone’s job, and the
QA function specializes and overlaps those of other disci-
plines. However, since everyone uses the term testers, I use
it here along with QA, which defines the role more than the
individual.

the role of QA on an Agile game team
Compared to traditional approaches, agile projects extract more value from
testing. Much of this value comes from each team’s goal of delivering a play-
able and potentially shippable game every sprint. The QA role shifts to take
advantage of this:

●● Testers are members of teams, rather than gathered in separate
QA pools. This increases the speed of feedback on defects to the
developers.

●● Stories require QA action for approval before they are considered
done by the development team.2 This creates a true pace of develop-
ment, which should include fixing defects and reduces the cost and
added risk of fixing them at a later date.

●● QA’s voice is heard throughout development, not just at the end. This
allows their valuable feedback to influence the game.

2. The product owner has the final say, however.

From the Library of Wow! eBook

ptg

The Role of QA on an Agile Game Team 253

QA’s role on an agile team grows beyond its traditional role. It starts with
QA’s participation in sprint planning. As each story is discussed, QA needs to
understand how that story will be approved, before tasks are estimated. This
usually takes the form of how the story and the conditions of satisfaction (CoS)
are written.

Consider, for example, the following story:

As a player, when I hit the jump button, my character will
jump.

The team discusses this story and may ask the following questions:

●● Will the character have jump animation? Will it need smooth
transitions?

●●

●

Can the character jump to a higher level?

●

Can the character jump while walking or running?●

Can the character jump from a moving platform?

●

These questions help the team understand the tasks necessary to imple-
ment and test the story to ensure it is done. For example, the answers to the
previous questions may define the following CoS:

●● The character will have a simple stand-in animation that will not be
blended.

●●

●

The character will jump up to a ledge or down to a lower level.

● The character is not expected to jump correctly from a moving
platform.

●● The character can jump from any starting motion, but its momentum
will be ignored. It can jump only a fixed distance and height.

Using these CoS, both QA and the developers verify that the story is com-
plete before the end of the sprint.

QA should also locate problems that are not part of specific CoS but are
part of development. For example, if the test level is missing some physical
geometry that enables the player to “fall through the world,” QA should iden-
tify it as an impediment.

A tester should help to ensure that the team is not impacting other teams.
This includes the following:

●● Performing regression tests on areas the team is working on
that could break other areas of the game: For example, if the
team is working on character control for jumping, keep an eye on

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production254

other character motions to ensure that some side effect of the team’s
changes is not breaking them. Another example would be if every
time a player dies, their character assumes the jump pose, then the
team working on jumping has probably broken something!

●● Testing tools and pipeline changes that a support team wants
to release to the content creators: This includes testing beta ver-
sions of a tool with the content creators to verify changes have not
broken a workflow.

●● Finding ways to improve testing: For example, if bad textures are
frequently crashing the game, QA should raise a request to have the
texture exporters improved to catch the problem.

Some of QA’s time is spent verifying gameplay and offering advice on areas
of improvement. This requires an ongoing dialogue with members of the team.
Since QA is a voice for the consumer, they need to keep a “consumer eye” on
the game. They should point out any issue that the consumer will notice (such
as progression stoppers).

QA will be challenged in this new role. They are required to communicate
with every discipline, understand the tools, and stand up and be heard. QA has
traditionally been a “gateway role” for other roles in game development, so it’s
appropriate to develop these skills to grow their career in game development.

QA, embedded or in Pools?
To what degree should testers be spread across teams or located in a QA pool
that tests independently? There is no simple answer beyond “It depends.” It
depends on what the team and project need in order to ensure that quality is
built into everything they are working on. It depends on the skill level of the
testers and how much white-box testing they can accomplish. It depends on
the testing tools, harnesses, and telemetry that are available.

When a game is in early development, the depth of gameplay and lim-
ited assets don’t need as much separate testing; teams might share testers. As
the project progresses, there is more to test. The game may need to run on
several platforms. The growth of complexity requires not only more testing
of the added features but more regression testing to ensure that previously
added features have not been inadvertently broken. QA pools can even out this
workflow, helping team testers in times of need. As a game approaches its ship
date, QA may be concentrated in a single pool or in separate pools dedicated
to each platform.

From the Library of Wow! eBook

ptg

The Role of QA on an Agile Game Team 255

When a tester is embedded within a single team, they take on a more
expanded role. They can assist the team in addressing impediments and com-
pleting tasks. For example, if an artist needs to test an asset on the PS3, an
embedded tester can help them by creating a PS3 build, launching it, and call-
ing the artist over when the asset is visible. Embedded testing encourages a tes-
ter to build their white-box testing skills and knowledge to overlap their work
with the other developers on the team.

how many testers per team?
A frequent question raised is, “How many testers does a Scrum team need, and
when should they be added?” It’s the same as asking how many animators or
audio designers a team needs; the answer is “as many as you need!”

The number of testers depends on the testing needs of the team. This
hinges on the following:

●● The definition of done: As the definition of done for sprints
approaches the final shippable state, more testing is required. For
example, if a definition of done requires the game to be completely
playable from start to finish without crashes on any platform, more
testers are required than in early development when the game has to
run on a development PC for a few minutes at a time.

●● Team testing practices: If the team uses practices that support
higher quality, such as TDD or thorough export testing, there will be
fewer problems that QA is needed to find.

●● Test automation: It depends on the coverage level of automated
test utilities, ranging from simple smoke tests to complex scripting,
that allow the game to “play itself ” and offload manual testing.

●● Playability testing needs: The game needs hands-on, in-depth test-
ing from a player’s perspective. QA needs to evaluate usability, pacing,
and difficulty levels and provide feedback to the team.

Typically, one tester per team is enough for most of the project, but ulti-
mately the team’s needs are driven by sprint results. As the stakeholders raise
the definition of done, it may put pressure on the team to recruit more testers
to help them to meet their goals.

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production256

using a Bug Database
As discussed in Chapter 7, “Video Game Project Planning,” a debugging stage
after the alpha date is unavoidable for many games. For these projects, the QA
staff is expanded, and the entire game is tested from beginning to end.

It’s dangerous for a project to rely too much on post-production test-
ing and allow significant defects to remain undetected throughout production.
When such defects are uncovered after alpha, they can invalidate a great deal of
work. For example, discovering that the disc budget has been exceeded by 50%
in post-production is very bad.

Ideally, post-production efforts should focus on tuning and polishing tasks
that are identified and prioritized daily. Even without major flaws, tracking
polishing, tuning, and minor bug-fix tasks can overwhelm a sprint task-board
approach.

It’s important that there be only one product backlog for the team. It’s
important for the product owner to prioritize a single list of work for the team
to draw from every sprint. Before alpha, any bugs that are addressed must either
come from the team during the sprint or come from the product backlog. If a
bug database is maintained prior to alpha, then any bugs that are to be worked
on are moved from there and placed on the product backlog to be prioritized
by the product owner.

At alpha, all unimplemented stories on the product backlog are cleared
off (they may become part of the product backlog for the next version of the
game). From here out, only bug fixing and tuning work can be placed on
the product backlog. The product backlog might even be replaced by the bug
database.

The product owner manages the priority of bugs with QA through fre-
quent triage sessions. As with hardening sprints, described in Chapter 6, “Agile
Planning,” the team draws a set of tasks to work on daily, without a specific
sprint goal. The new goal is to burn down all the high-priority bug fixes and
tuning work.

Play-testing
A major benefit of producing a potentially shippable version of the game
every sprint or release is that a game is tested early by potential consumers.
Play-testing is a practice where consumers are lured in to play a game in
development—often with the offer of free pizza—and provide useful feedback
about the gameplay experience.

From the Library of Wow! eBook

ptg

The Role of QA on an Agile Game Team 257

Play-testing can be as informal as a conversation. It can also take a more
scientific approach by recording progress metrics or the answers to carefully
designed surveys.

Play-testing has substantial, but limited, benefits:

●● It reinforces a definition of done: Developers, who see a game
every day, overlook flaws or shortcomings. Play-testing is often a
shock when they observe how these problems impact real consumers.
For example, that missing piece of collision geometry is always found
by play-testers!

●● It won’t produce any breakthrough ideas: Don’t expect the
play-testers to provide original ideas. That’s the developer’s job. At
best, they provide feedback that can improve backlog prioritization.

●● It teaches about usability and challenge: Ever see a player simply
run past a painstakingly scripted boss? It’s a sobering thing to see. It’s
also very frustrating to see a player walk against a wall for two min-
utes until you realize that they are trying to make sense of a HUD
map that is too vague!

exPerience Play-testing is a tool for focusing a team on done. We often
scheduled play-testing sessions for the end of a sprint. This
made the team look at the game with a different set of eyes
and uncovered many polishing and tuning tasks that had previ-
ously been invisible to us.

Play-testing is often organized and run by QA or usability specialists. These
duties include the following:

●● Recruiting play-testers: Local universities and game retail shops
are teeming with good play-test candidates. Be sure to enlist people
who represent the full scale of demographics and skill levels. For
example, a hard-core gamer won’t provide the same feedback about
the tutorial level as a casual gamer. Maintain a database of people, and
invite the more valuable play-testers back.

●● Organizing and running the session: A poorly organized and run
session elicits inferior feedback from play-testers. Don’t waste their time.

●● Including the developers: It’s very beneficial for the develop-
ers to see players interacting with their game in ways they did not
anticipate. It can lead to improved interfaces and usability (see the
sidebar “Damage Meter”).

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production258

●● Letting play-testers meet the other developers: Many testers are
curious about game development and relish the opportunity to speak
with the rest of the team at the end of the session. Encourage this.
The conversations can be very fruitful!

●● Publishing the results: QA’s observations of how well the game
was received provide many insights. However, care must be taken
not to “overinterpret” the results to include subjective bias from QA.
A simple compilation of the answers helps the team understand the
results. Leave the conclusions to the readers or discuss them together.

Maintaining the playability of the game allows everyone to value the work-
ing game over the comprehensive design.

DAMAGe MeTer
During the development of Midtown Madness, we needed to find a way to com-
municate the level of damage to the player’s car. This was important because if
a car accumulated 100% damage, it stalled, and the player lost the race.

We first drew a meter that grew as damage increased. During play-testing,
we found that half the players quickly and intuitively understood that a growing
meter indicated growing damage, but the other half did not.

We then switched to a health meter that shrank as the car became more
damaged and “lost its health.” Once again, play-testing showed that half the
testers understood it immediately, while the other half did not.

So, we went back to the drawing board. How could we communicate the
car’s damage level in a way that every player would immediately understand?
Someone suggested we communicate a wider range of damage on the car’s
body. It was a great idea. We already had some body-damage effects, but it
wasn’t enough. So, we added wobbling tires, broken side mirrors, smashed
windows, and smoke that darkened as the car approached destruction. At one
point, we even added flames, but the vehicle licensees vetoed that effect!

At the next play-test session, all of the players understood the damage
level of their cars!

the Future of QA
As the game industry continues to improve agile practices, the role of QA con-
tinues to transform. As testing becomes more white-box driven, testers require
more knowledge about development disciplines, and testing specialties will
grow. For example, test engineers in many industries focus on the quality of
the code being produced by programmers. These specialists run code-quality

From the Library of Wow! eBook

ptg

Agile Production 259

scanner tools3 and measure unit test coverage to ensure that coding practices
are being held to a high standard. Is this a testing role or programming role? It’s
a bit of both, and it represents a typical evolution and blurring of roles in an
agile environment.

The rising importance, skill level, and value of testers on an agile game
project will improve the role and make it a truly desirable career.

Agile Production
Producers are the most open to adopting agile but usually with some trepida-
tion. They are the first to foresee its benefits, but they are also concerned about
the implications to their role on an agile game project. The main concern is
that as teams become self-organizing and self-managing, then there will be no
need for producers. In reality, producers are often the engines of ongoing agile
adoption. As with the discipline lead roles, the production role is divested of
many of the mundane tasks with agile, such as tracking hourly estimates and
solving the myriads of small problems that cross-discipline teams handle them-
selves. Instead, an agile producer expands their focus on the big picture while
helping teams achieve continual improvement in how they create games.

This section identifies the changes in responsibility for the traditional pro-
ducer on a Scrum project and how they can assume the ScrumMaster, product
owner, or product owner support role.

the role of a Producer on an Agile Project
Producers are often seen as the person who makes sure everything gets done.
This is not the case on an Scrum project. As Scrum teams take responsibility
for what is done every sprint, they relieve the producer of some daily project
management tasks:

●● Building and maintaining detailed schedules: Scrum teams cre-
ate and estimate their own tasks.

●● Tracking daily tasks for each member of the development
staff: This is managed in the daily scrums by the team.

●● Managing dependencies: Cross-discipline teams manage depen-
dencies daily and in sprint planning by selecting goals and team
members who avoid external dependencies.

3. Such as PC-Lint

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production260

Instead, the producer should focus on the larger project management
challenges:

●● Tracking external dependencies: Will the outsourced cinematics
be delivered on time?

●● Publisher collaboration: Are the stakeholders playing the game if
they can’t attend a review?

●● Outsourcing support: What does the outsourced level art team
need to complete their work?

●● First-party (platform) support: When are we scheduled for
acceptance testing, and what are the requirements?

●● Risk management: What are the external schedule and resource
risks for obtaining licensee approval or assets?

●● Critical chain management: What are the resource schedule needs
for the production assets?

Most of these responsibilities are best described in a number of good
game production books (see the “Additional Reading” section at the end of
the chapter).

Producer as Scrummaster
Many studios adopting agile struggle with identifying people to best fill the
ScrumMaster role. It’s often assumed that the producer is natural for the role,
and many times this is true. There are benefits and potential drawbacks with
a producer taking on the ScrumMaster role.

A benefit seen with producers in the ScrumMaster role is the ability
to communicate equally well with all the disciplines. This is essential for a
cross-discipline team. This allows them to remain unbiased toward issues or
unconflicted about what they need to do. For example, programmers who
become ScrumMasters often see issues through a filter that says most prob-
lems are best solved with code. This leaves the other disciplines feeling less
supported.

Another benefit is that producers usually have fewer tasks to commit to
every sprint. This prevents them from having to choose between completing
critical tasks and supporting the team. Depending on the team, the ScrumMaster
role can take anywhere from 33% to 100% of a person’s time.

From the Library of Wow! eBook

ptg

Agile Production 261

A common drawback with a producer taking the ScrumMaster role
derives from their past duties on more preplanned projects. These duties
required producers to lead individuals toward task completion. However,
Scrum teams manage their own tasks to achieve a sprint goal as a team. The
ScrumMaster does not interfere with the team by creating, estimating, assign-
ing, and tracking tasks for them. Unfortunately, some producers assume, out
of habit, that the ScrumMaster role continues to focus on tasks. This prevents
teams from achieving all of the benefits associated with self-management.

Producer as Product owner Support
On large game projects, the demands of a product owner’s time has led to
hierarchies of product owners (see Chapter 9, “Faster Iterations”). Similarly,
the long-term demands of production planning, resource requirements, mar-
keting, licensing, and first-party hardware support have led product owners
to seek production support.

As a result, it is common to pair a product owner with a senior producer.
The product owner manages vision while the senior producer attends to
many project management details. This support enables the product owner
to make better decisions based on license, franchise, budget, and schedule
limitations.

License and franchise details are usually managed by the product owner,
but there are details that need to be handled on a day-by-day basis. For
example, providing sample assets or seeking approval on the use of brands or
likenesses can be very time-consuming.

The most important schedule and budget limitations are those that
define the production requirements and dates. Pre-production creates cost
and schedule debt that is paid off in production. The product owner needs to
monitor this debt to ensure it doesn’t grow beyond the limits of schedule and
cost defined by the stakeholders. For example, before defining the number
of characters to produce, the cost for a single shippable character needs to be
understood.

A product owner and senior producer make an effective pair to create the
best game at the right cost and schedule.

Producer as Product owner
Many successful games have been led by a senior producer who provides proj-
ect management and vision for the game. As with lead designers who have

From the Library of Wow! eBook

ptg

Chapter 13 Agile QA and Production262

strong project management skills, a senior producer with a strong vision of
what the market wants is rare and invaluable.

When a studio has such a producer, the product owner role is ideal for
them. The role leverages vision and project management strengths like no other
(see Chapter 3, “Scrum”).

the Future of Production
As the industry becomes more agile, the producer role will include specialized
and team roles.

Teams no longer need the ubiquitous “gopher” but will need the support
of the following specialists:

●●

●

Outsourcing/insourcing

●

●

Licensing

●

●

Franchise management

●

Technical production (including first-party communication)●

Production planning and support

●

Producers can successfully assume the ScrumMaster and product owner
roles as well. Production will not disappear from agile studios but flourish.

Summary
Agile QA and production will continue to draw people who have these pri-
mary strengths:

●●

●

A deep passion for video games

●

Great communication skills●

Great organizational skills

●

These strengths are in demand in every industry, and the game industry
has to compete for them like any other. By leveraging them, agile organiza-
tions reap major benefits from QA and production, while testers and producers
receive greater challenges in which to rise.

From the Library of Wow! eBook

ptg

Additional Reading 263

Additional reading
Chandler, H. 2008. The Game Production Handbook, Second Edition. Sudbury, MA:

Jones and Bartlett Publishers.

Crispen, L., and J. Gregory. 2009. Agile Testing: A Practical Guide for Testers and
Agile Teams. Boston: Addison-Wesley.

Hight, J., and J. Novak. 2007. Game Development Essentials: Game Project Manage-
ment. Clifton Park, NY: Delmar Cengage Learning.

Irish, D. 2005. The Game Producer’s Handbook. Boston: Course Technology
PTR.

Isbister, K., and N. Schaffer. 2008. Game Usability. San Diego: Morgan
Kaufmann.

Laramee, F. D. 2003. Secrets of the Game Business. Boston: Charles River Media.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

Part V
Getting Started

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

267

chapter 14
The Myths and Challenges

of Scrum

A studio’s development process is a reflection of its culture, and cultures change
slowly. Change usually has to overcome resistance, but change happens—
especially in the game industry—whether we like it or not.

Change requires commitment from a studio. It should avoid quick-fix
solutions or ritual adherence to defined practices. With agile adoption, both of
these extremes are often seen. Some fall in love with the values and principles
and dive into adoption with full faith that the only possible outcome is success.
Others sabotage agile adoption from the start. Saboteurs repeat “urban legends
of agile failure” or label agile as “the latest management fad.” This is referred to
as spreading fear, uncertainty, and doubt and is addressed later in the chapter.

There is a kernel of truth to many of the myths. This chapter identifies
the major ones about agile and Scrum. The purpose of this chapter is to look
behind the myths and explore the truths and falsehoods that they rely upon. It
will also explore many of the barriers to Scrum adoption. Exposing these facts
enables a studio to better judge the value of agile because the best possible path
for adopting it is to understand the reasons behind every practice and leave
little to faith. This is the benefit of an empirical system: to base what we do on
what we know rather than on theory or conjecture.

Silver Bullet myths
Common to the tales of vampire slayers, silver bullets possess magical properties
that give the hero an advantage when facing certain disaster.

Often the adoption of Scrum is motivated by a project disaster. A studio
ships a game that is a financial failure or has a project canceled because of
budget, schedule, or quality problems. During these times, studio management

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum268

is more open to change. This isn’t necessarily bad, but desperation often leads
them to seek a project management silver bullet.

The problem is that Scrum doesn’t work miracles. It has no magical prop-
erties. Improvements in development by using it require an understanding of
the underlying principles, not blind faith. Scrum is a framework to build a pro-
cess that supports talent, great teams, and leaders. It does not replace them.

By avoiding the following silver bullet myths, you avoid falling into the
trap of thinking a process can solve all your problems.

Scrum will Solve All of your Problems for you
Sometimes we have grand assumptions about what a process can accomplish.
Perhaps if we create enough rules, then everyone will follow them, and prob-
lems will disappear. The truth is that if there are underlying problems, Scrum
will only expose those problems. It doesn’t solve them.

exPerience A former California studio adopted Scrum following another
project failure. From the start, the daily scrums unleashed a
flood of complaints about studio operations. Management
quickly decided that Scrum was the source of these problems
and immediately halted its use. As expected, the level of com-
plaints fell off, and management felt that they had averted a
disaster.

The best that can be asked of Scrum is to facilitate problem
solving through transparency. What is done with this transpar-
ency depends on a studio’s culture. This studio closed because
they ignored the problems that existed for years.

Projects using Scrum can Always Ship on time
Another myth is that Scrum teams always ship games on time. This is born
out of desperation to avoid delays from impossible schedules, but Scrum won’t
accomplish miracles.

Many projects attempt to fix budget, schedule, and scope simultaneously. A
benefit of Scrum is that you measure velocity against the goal and know what is
possible early on, make the right decisions and commitments, and then monitor
and progressively refine those decisions.

Sometimes Scrum is blamed and abandoned when its empirical measures
show that a goal is impossible. The goal was probably impossible to begin with,
but Scrum reveals it sooner than a traditional project, which enables problems
to be hidden.

From the Library of Wow! eBook

ptg

Fear, Uncertainty, and Doubt 269

Fear, uncertainty, and Doubt
Some myths fall under the category of fear, uncertainty, and doubt (FUD).1
FUD myths are like urban legends; they are exaggerated stories that have a
kernel of truth that make them stick.

There are many reasons people use FUD to sabotage agile adoption. The
main reason is that change alone creates FUD. Change threatens the status quo
and therefore a person’s security in their position. Sometimes the memory of
past successes creates the belief that the practices used then will continue to
apply equally as well in the future. Problems are seen not with the process,
which has proven itself, but with the developers using it now.

This section addresses some of the common FUD myths about agile.
Chapter 15, “Working with a Publisher,” will address strategies of overcoming
the status quo, which can be the greatest obstacle to adopting agile.

endless Development

Agile teams never plan. They just iterate without a goal.

Sometimes a team new to Scrum assumes that being agile means they don’t
need to plan. They start by iterating to discover the game that emerges.
Eventually the urgency to ship intrudes, and the team has to scramble, often
with enforced overtime, to finish something. This isn’t agile. It’s an iterative
and incremental death march. It’s a danger for agile teams that don’t suf-
ficiently plan.

It is also essential to have a shared vision for any project, whether it
is agile or not. If the product owner on a Scrum team does not provide a
vision, the team cannot be sure that their work creates the greatest stake-
holder value.

exPerience I once knew a team that had no product owner. They were
working on a first-person shooter. The product backlog was pri-
oritized by the lead programmer. Since he was focused on phys-
ics, each sprint would show increasingly impressive physical
effects. After their first release, buoyant rag-doll bodies were
seen floating down a stream in front of the player. When we
asked to see how enemies were shot and fell into the stream,
we were told that shooting wasn’t implemented yet.

A few months later the stakeholders canceled the project.

1. http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

ptg

Chapter 14 The Myths and Challenges of Scrum270

management Fad

Scrum is just another management fad. It will be replaced by
something else next month.

Someone investigating agile will encounter labels such as Scrum, Extreme
Programming, Evo, RUP, Scrum-#, Scrum Type-C, lean, feature-driven devel-
opment, kanban, and so on. It’s a confusing process landscape. This was one
motivation behind the agile manifesto. Decades of discovery about how people
best work together to create new products are embodied in its simple values
and principles. It is an umbrella “brand” name for any number of processes and
frameworks that embrace them.

The expanding list of labels represents the various practices that are con-
stantly emerging as agile becomes more common and accepted. This book has
described numerous practices for game development that lie outside the core
definition of Scrum. We could label them (perhaps Scrum-G), but the point is
for each studio to evolve and adopt their own practices to best fit their needs.
There will never be a single template for game development that applies to
even a majority of game types or studios!

Scrum is a great starting place. For almost a decade, people such as Mike
Cohn and Ken Schwaber have fought to keep it a simple framework for each
team to adapt for the needs of their products:

Agile will go away, but it will most likely go away in the same
way discussing the merits of object-oriented development
went away. Agile will eventually become the accepted way of
doing things, and it will just be what we do. In the same way
no one says, “Gotta run, I’m late for the object-oriented design
meeting” (they just say “design meeting”), we will stop talking
about agile development but only after it is the norm.

—Mike Cohn

the Double Standard

We hear one of two things about Scrum. Either Scrum was
successful, or if the project using it failed, it did so because they
weren’t using Scrum correctly.

Scrum can’t be blamed for failure or even credited with success. Teams succeed
or fail because of many factors: technology, capability, vision, communication,

From the Library of Wow! eBook

ptg

Fear, Uncertainty, and Doubt 271

collaboration, talent, or even the underlying idea of the game. Scrum creates
transparency into how well these elements are working, often in a measurable
way, but that’s all. It doesn’t prescribe what to do when sprints repeatedly show
the game isn’t fun or the velocity of the team is low.

change is Bad

Our process has worked in the past. If we change things,
we’ll fail.

Studios have a certain level of resistance to change in the process they use to
create games. This is not necessarily a bad thing. A studio’s process evolves over
many years. It’s reinforced by its strengths and successes.

However, processes also embed cultural weaknesses. For example, many stu-
dios institute a one- or two-week “lockdown” before a milestone date. The lock-
down ensures that no new features are allowed into the build that can destabilize
it while the build is debugged and polished. This is a concession to a development
culture that allows too many defects into the game during development.

Lockdowns slow development because the cost of fixing bugs increases the
longer you wait. Also, the entire project staff is usually not engaged in bug fixing
during a lockdown, and therefore they have to find other things to do. Lock-
downs also end up becoming a dumping ground for checking in bug- ridden
code or unpolished assets under the assumption that they will be fixed later. This
creates a vicious cycle that can inflate the duration of future lockdowns!

Changing core practices, such as introducing unit testing to improve code
quality, is more challenging than adding a quick fix, such as a lockdown. The
problem is that quick-fix practices become a normal part of a development.

Over months and years, such quick fixes build up. Each of them adds a
bit of drag to development. Resistance to change prevents corrections to the
process until there is a catastrophic failure (such as a project cancellation over
high cost or slow progress).

normAlizA-
tion oF

DeviAnce

Two examples of how ignoring problems can lead to tragedy
are the Challenger and Columbia space shuttle disasters that
took the lives of 14 astronauts. Both incidents involved prob-
lems that were well known and documented with the shuttle
system. These problems had occurred frequently but had not
resulted in the loss of a shuttle. As a result, they became an
acceptable part of operations until there was an accident.

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum272

Following the Challenger accident review, the phrase nor-
malization of deviance was coined (Vaughan 1996) to
describe how the attitude toward defects in the shuttle sys-
tem resulted in its loss. Unfortunately, identifying this problem
with NASA’s culture was not enough to prevent it from con-
tributing to the loss of the Columbia years later.

endless meetings

Scrum consists of nothing but meetings!

As previously described, the meetings defined by Scrum within a sprint cycle
are as follows:

●●

●

Daily scrum

●

●

Sprint review

●

Sprint retrospective●

Sprint planning

●

All of these meetings, except for the daily scrum, occur once a sprint.
Many teams find that for a four-week sprint, these once-a-sprint meetings
can be conducted in a single day. This represents one day of meetings for a
20-working-day sprint, or 5% of the available time. The daily scrum meeting is
a 15-minute, timeboxed daily meeting. This uses about 3% of the working day.
Totaling these percentages results in 8% of a team’s time, or a little more than
three hours of meetings each week average.

Scrum meetings are optimized to create the highest bandwidth of neces-
sary communication. A 15-minute daily scrum will often identify issues that are
easily solved within a day. If not identified, the issue might grow to waste days
and require hours of meetings to address weeks later.

The details in this book will help teams run these meetings as effec-
tively as possible without losing their benefits. If any of these meetings do not
engage everyone attending nearly 100% of the time, then there is room for
improvement.

note Shorter sprints will use a greater percentage of time in meet-
ings. For example, the sprint review, planning, and retrospec-
tives might take six hours to complete for a two-week sprint
rather than the eight that a four-week sprint might require. See
Chapter 4, “Sprints.”

From the Library of Wow! eBook

ptg

Scrum Challenges 273

COnSISTenCY AnD MOnkeYS
Consistency is a hard-coded survival trait. Change is resisted. It’s a primal
instinct. I never fully appreciated this fact until I read about the following experi-
ment (Stephenson 1967).

Five monkeys were placed in a room with a banana tree at the center.
Whenever a monkey attempted to climb the tree to pick a banana, a sprinkler
system sprayed all the monkeys with water until the monkey retreated from the
tree. They repeated this until all the monkeys learned to avoid the tree.

The next stage of the experiment involved replacing one of the monkeys
with one who had never been sprayed with water. The new monkey soon
approached the banana tree. However, before it could reach the tree, the other
monkeys jumped into action and beat the new monkey until it drew back from
the banana tree. This was repeated every time until the new monkey learned
not to approach the tree.

The researchers continued to replace original monkeys who had been
sprayed with water one by one with fresh monkeys. Eventually none of the
monkeys in the room had ever been sprayed with water for climbing the banana
tree. The monkeys still continued to beat up any monkey who approached the
banana tree. None of them “knew why” they shouldn’t approach the tree. They
just knew that it was off-limits.

Sometimes we developers exhibit similar behavior. A company’s culture
becomes intertwined with “best practices” that aren’t questioned and never
replaced. Personally I did this for many years pursuing waterfall methodologies.
I wrote big documents and schedules for projects that attempted to address
every detail. Even after those projects shipped—following months of crunch
and despair—I would start the next project the same way.

Scrum challenges
The only thing harder than starting something new is stop-
ping something old.

—Russell L. Ackoff

Scrum is not a “one-size-fits-all” solution for developers. A goal in adopting
Scrum is to initiate a never-ending cycle of continual improvement customized
to the needs of a studio’s culture, people, and products. Before this goal can be
realized, a studio or team has to start practicing the fundamentals and navigat-
ing early challenges. This section describes a few of these challenges and some
of the ways of navigating them.

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum274

Scrum as a tool for Process and culture change
Any process can be used to make games, but no process is perfect. Even if we
were to identify a perfect process, the constant change in our industry would
quickly make it obsolete. This is a major motive for using Scrum. Scrum is
not a process; it’s a framework for creating and evolving your own process. It
can help any organization create transparency, which enables commonsense
change.

Scrum will influence every part of your studio. Scrum pressures manag-
ers to focus on mentoring and coaching. It involves buy-in from departments
such as HR, which can resist the emphasis on team performance. It demands
people take ownership in areas in which they had no ownership and give up
ownership in areas they once ruled over. It challenges marketing to partici-
pate with development far earlier in a project. It even puts pressure on facili-
ties to provide open team areas and wall space.

Scrum adoption starts with creating transparency to expose cultural
weaknesses and strengths. An example of this was a studio dominated by
technology; games were seen as platforms to demonstrate technical achieve-
ment. Tools and pipelines to improve productivity for artists and designers
were lower on the list of priorities because the programmers were always try-
ing to accomplish nearly impossible challenges. The build was rarely working
because of all the bugs left along the way, so the time it took to iterate on an
asset change was very long.

How did Scrum influence change? First, it made the high iteration costs
visible. Requiring a potentially shippable version of the game every two to
three weeks exposed a lot of problems. At first, the teams spent half their
sprints trying to cobble together a working build. Since velocity was mea-
sured by the value of the features working in the game, their initial velocity
was low.

This simple measurement of velocity is important. Teams need clear per-
formance measurements to evaluate themselves and make changes to improve
that measurement. Our example team did this. They started to come up with
ways to improve the reliability of the build. Because velocity derives from
what is seen in the game, which includes art and design, they formed cross-
discipline teams. They colocated to reduce the overhead of communication.
Programmers focused on improving tools and pipelines. All of these things
improved their velocity.

From the Library of Wow! eBook

ptg

Scrum Challenges 275

Before they adopted Scrum, they would have thought that such change
was only possible through great technical effort. Scrum allowed cultural
change, which resulted in huge performance gains.

exPerIenCe
“After research into methodologies, we were drawn to the advantages of
agile software development and decided to adopt Scrum. Within the first few
months of Brütal Legend development, the team was practicing Scrum, and
the initial payoffs were impressive. Because of Scrum’s emphasis on features
over systems, on rapid prototyping and iteration, on cross-disciplinary teams,
on people over process, and on the creation of a potentially shippable piece of
software, every sprint/milestone made the game playable at a very early stage
in development.”

—Caroline Esmurdoc, executive producer and COO,
Double Fine Productions, Inc.

Scrum is About Adding value, not task tracking
Running a daily scrum is easy. Prioritizing a list of features to be implemented
is straightforward. Creating a task board and burndown chart takes minutes. So,
why do some teams struggle adopting Scrum?

One reason is that many studios that adopt Scrum come from a task- centric
culture. Progress is measured against how well individuals complete their work
against estimates. Task tracking is an important tool in Scrum, but value cre-
ation takes precedence. If value isn’t maximized, then the tasks were wrong.

Have you ever heard someone report “All of the tasks for feature X are
completed” only to see that feature X is nowhere near being done? In Scrum,
the conversation shifts to discuss a feature’s emerging value and the impact on
the tasks for that feature. If this shift doesn’t occur, then the value of Scrum
practices is greatly diminished. For example, in a task-centric culture, the daily
scrum is seen as a task-reporting meeting that is easily replaced. In a culture
focused on value and team commitment, the daily scrum takes on greater
importance.

Cultural change is hard. The status quo will often fight tooth and nail
against it. Scrum is a framework for this change, but it comes from real leader-
ship, not from a book or a fixed set of practices.

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum276

exPerIenCe
“One of the first things I did when starting to work with my current team was
this: ‘We’re going to try this Scrum thing. We’re going to start with Scrum, but
our goal is to end up with a process that fits this team and the work it does. I
will never say no to a change proposed by the team, but I insist on one thing.
We will try Scrum by the book for at least two sprints (one to learn the pro-
cess and one to figure out what you don’t like about it) before we start making
adjustments.’ From day one, it was their process. We were just starting from a
template called Scrum.”

—Bruce Rennie, independent developer

Status Quo versus continual improvement
Building a culture of “continual improvement” is one of the ultimate goals of
Scrum. Scrum practitioners use empirical measures to assess benefits of all prac-
tices. If, for example, a practice change improves velocity, then it’s a beneficial
change.

This is a simple idea to introduce, but it can be challenging to embed. The
status quo, or groundless resistance to change, is often a tremendous barrier to
continual improvement.

Fear of change is not always baseless. Management fears that introducing
profound change gambles a studio’s future. Introducing change requires bravery.
For example, changing a process that may have worked for a PlayStation 2 game
paints a big target on the person who changed the process for a PlayStation 3
game. There is enough risk in changing platforms alone to cause someone to
hesitate over changing one more variable.

This is why it often takes utter project failure and crisis to usher in signifi-
cant change. This isn’t ideal either since it often leads to the “silver bullet” adop-
tion pattern described previously. Ideally, any method for introducing change
needs to do it in ways that

●●

Are measurable to ensure that any perceived improvement is real●

Make small, reversible steps

●

Scrum supports change in this manner. At worst, a change in practices will
impact a single sprint of two to four weeks. Metrics, such as task burndown
slope, user story point velocity, or any number of metrics that the team has
introduced, provide frequent measurement of the value of changes.

From the Library of Wow! eBook

ptg

Scrum Challenges 277

This change of culture can’t happen only from the bottom up. It has to be
supported by company leadership. Management needs to understand the tools
that Scrum provides them to ensure that teams are making progress and that
leadership, vision, and commitment exist.

Lack of management commitment to Scrum and agile principles is a major
challenge for studios attempting to adopt Scrum. Under pressure, a manager
might find it easier to alter a team’s goal midsprint rather than fight to preserve
the team’s commitment to the sprint goal. Educating management about the
benefits of Scrum—especially for them—is an ongoing effort.

exPerIenCe: “SCrUM IS hArD”
“Traditional project management seems a little backward to me. First you hire
a team’s worth of really smart, highly diverse people. Then you try to tell them
what to do. As far as I’m concerned, you may as well try to stuff an octopus into
a string bag. At least that would be easier.

“Because of my belief that the power lies with the people, I searched for a
solution that would give it to them. The agile manifesto, and Scrum in particular,
provided what I was looking for.

“That doesn’t mean that I walked out the door; it means that my role
changed to one where I work with the team rather than for the team. Has it
always worked? No. Scrum is difficult. Some people only see the framework,
the steps to follow; they do not understand that it requires self-reflection, hard
work, trust, dedication, and thorough thought.”

—Senta Jakobsen, COO, EA DICE

cargo cult Scrum
When teams first start using Scrum, they are encouraged to follow the practices
“out of the book.” This enables them to become accustomed to the practices
while the principles sink in. Once the team experiences the initial benefits,
they begin altering practices to improve upon those benefits, but it’s important
that changes to the practices still preserve the principles behind them.

However, some teams stick to the “out-of-the-book” practices and resist
changing anything. These teams end up practicing what I call Cargo Cult
Scrum. This refers to the infamous cargo cults of the Pacific.

Until World War II, many Pacific Islanders were never exposed to Western-
ers or their technology. This changed drastically during the war when the Navy
arrived to occupy the islands and construct airfields. When the airfields were

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum278

complete, cargo planes would land and bring in supplies. These planes carried
many things including simple trinkets that were shared with the islanders to
promote goodwill. The islanders loved these objects (such as steel knives and
mirrors) and gathered around the airfield every time a large aircraft landed
seeking further gifts.

When the war ended, most of these airfields were abandoned, and the cargo
planes stopped coming. The islanders once again found themselves isolated from
the Western world, but they did not forget the cargo planes and their treasures.
They wanted them to return. Out of desperation, they tried to draw the cargo
planes back by replicating the practices they saw at airfields during the war.

They constructed bamboo towers and manned them with natives wear-
ing coconut headphones who spoke into pineapple microphones. They built
bamboo mock-ups of small planes, lit fires next to the runway, and waved flags
of cloth in the air. But the cargo planes did not return. The practices weren’t
enough to bring them back.

This approach is similar to what is done on Cargo Cult Scrum teams. Fol-
lowing the practices isn’t enough to bring the full benefits of highly produc-
tive teams. Teams need to understand the principles behind the practices and
improve those practices to best fit their product, people, and culture.

Scrum is not for everyone
One of the challenges of Scrum adoption is that Scrum is not for everyone. The
initial challenge will be that some people refuse to work in an agile environ-
ment and leave. Some of these people will be valuable. They leave because they
are not comfortable with the change in their position.

Some developers reject participation in any team activity (such as a daily
scrum). Some have grown comfortable from a career of working in relative
isolation and being called upon to be heroes during crunch times. Others
find a niche in a lax management environment where they are given a great
deal of freedom to create technology or assets on their own. Joining a Scrum
team and making daily commitments to a team of peers limits these individual
freedoms.

Most studios find ways to accommodate these individuals, perhaps creat-
ing special “R&D” roles for them, but in many cases they eventually leave. The
transparency Scrum introduces to a studio makes such positions stand out and
not easily justifiable.

The benefits greatly outweigh the losses. Scrum grows leaders and out-
standing contributors at a far greater rate than those who are lost.

From the Library of Wow! eBook

ptg

Scrum Challenges 279

overtime
Scrum doesn’t limit teams to working 40-hour weeks. Its practices enable teams
to find a sustainable pace of work. This pace is discovered as they commit to
sprint goals and learn how much they can achieve sprint after sprint without
overextending themselves.

note In everyday vocabulary, a sprint is something that isn’t sustain-
able. Calling it a jog might have been more accurate but less
appealing.

A sprint can have many uncertainties. Unanticipated problems or unfore-
seen work slows progress. When this happens, teams sometimes put in a bit of
overtime to fulfill their goal.

How much overtime should a Scrum team work? It’s up to them. If they
find that they are working overtime too often, they need to address the prob-
lems that are causing it. Common examples for this are late commits or hand-
offs at the end of a sprint or committing to extra polishing and tuning work on
the last sprint of a release.

When management doesn’t tell teams to work overtime, their attitude
about it changes. When a team decides to work overtime, they do it as a team.
Occasionally working a few extra hours shoulder to shoulder with your team-
mates is a team-building experience.

exPerIenCe: GeTTInG WOrk DOne
“I have a little sticker on my monitor. It reminds me to move fast slowly. I
believe that this is how Scrum needs to be practiced within the game industry.
The industry has a serious addiction to running around with its hair on fire. There
is a propensity to believe that only those with flaming hair are doing real work.
This is simply not the case. Although it would be much easier to ignite my hair
and start running, real work gets done when I take the time to figure out how to
move quickly. The framework that Scrum provides helps to reinforce this.”

—Senta Jakobsen, COO, EA DICE

crunch
Extended periods of enforced overtime are called crunch. Many studios that
are new to Scrum continue to practice it until the empirical measure of veloc-
ity demonstrates its futility.

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum280

Studies have shown the impact of crunch on productivity and quality of
life.2 For High Moon Studios, the proof came when management enforced
companywide overtime early in our adoption of Scrum. The teams were told
to work 10 hours a day for 6 days a week on a troubled project. The subsequent
burndown charts told an interesting story. Figure 14.1 shows the hours the
average team burned down per week from their sprint backlogs.

Week 1 was a normal workweek, before overtime. Weeks 2 to 5 were
crunch weeks of 60 hours each. In the first week of crunch (week 2), velocity
greatly increased; more work was being done because of the 50% overtime.
However, as weeks passed, the velocity decreased until week 5, when the veloc-
ity was less than it was before crunch started!

How is this possible? The reasons are simple. People were tired. They made
more mistakes. They lost their concentration.

This realization represented a huge benefit of Scrum for High Moon, pro-
viding simple empirical evidence about what works and what doesn’t. This is
why there is no rule about overtime in Scrum. There doesn’t need to be a rule.
If your teams are using Scrum to find the best way to work, they’ll quickly dis-
cover that after several weeks of overtime, any benefit from it is lost. It becomes
common sense to maintain a sustainable pace.

Week 1 Week 2 Week 3 Week 4 Week 5

Normal
Velocity Overtime Velocity

Figure 14.1 Burndown during crunch

2. www.igda.org/quality-life-white-paper-info

From the Library of Wow! eBook

www.igda.org/quality-life-white-paper-info

ptg

Summary 281

velocity
in hourS

Although the term velocity usually refers to the number of
story points accomplished per sprint, the velocity, or change, in
hours of work remaining in a sprint per day or week provides
interesting, though less stable, feedback about a team.

exPerIenCe: COUnTInG CArS In The PArkInG LOT
We first started using Scrum at Sammy Studios in 2003. Sammy was owned
by a Japanese Pachinko manufacturing company called Sammy Corporation.
Although we had gotten off to a slow start, Scrum was helping us get back on
track and demonstrate good progress. However, good progress wasn’t enough
for Sammy Corporation. A source of concern from them was based on the
opinion that American game developers don’t dedicate as much overtime as
Japanese developers. They felt the lack of crunch meant a lack of commitment
to the success of the studio.

Sammy Corporation eventually merged with Sega to accelerate their tran-
sition into game development and publishing. During this time, they debated
about whether to retain Sammy Studios. To help in the debate, they had some-
one drive past the studio late at night and count the number of cars in the
parking lot. The count was low, which to them meant that our commitment to
success was also low. Weeks later they informed us that they were closing the
studio. Fortunately, our local management was able to acquire the studio, which
was renamed as High Moon Studios.

Managers often confuse overtime with commitment. They think that forc-
ing people to work overtime demonstrates commitment to the success of a
project. In reality, this is like forcing someone to smile to prove they are happy.
It just doesn’t work that way.

Summary
The best way to adopt Scrum is to do it with eyes wide open. Establishing use-
ful metrics such as velocity and establishing practices such as the daily scrum
provide immediate demonstration of its value.

Scrum is a framework. It doesn’t include practices to optimize code, create
better art, or tune a mechanic. Those come from each studio’s development
practices and culture. In this light, there is less to fear about the change Scrum
introduces.

Keep the myths and challenges from this chapter in mind as you read the
next chapter on launching Scrum. It will continue to introduce challenges and

From the Library of Wow! eBook

ptg

Chapter 14 The Myths and Challenges of Scrum282

describe how to meet them and what to expect in a studio as Scrum principles
take hold.

Additional reading
Heath, C., and D. Heath. 2007. Made to Stick: Why Some Ideas Survive and Others

Die. New York: Random House.

Pascale, R. T., M. Milleman, and L. Gioja. 2001. Surfing the Edge of Chaos: The
Laws of Nature and the New Laws of Business. New York: Three Rivers Press.

From the Library of Wow! eBook

ptg

283

chapter 15
Working with a Publisher

As a member of the Nintendo Ultra-641 Dream Team in the mid-nineties,
Angel Studios was exposed to a very collaborative publishing model. Nintendo
and Angel discussed a game idea, and we were asked to “find the fun” with
it. Nintendo funded the project for three months and then visited to see the
results. Occasionally, the legendary Shigeru Miyamoto—creator of Mario,
Donkey Kong, Legend of Zelda, Nintendogs, and many other hit games—
visited as well!

Nintendo had no interest in any documents we’d prepared; they only
wanted to see the game. If the game was making progress and demonstrating
fun, Nintendo funded another three months and left us with the instructions
to “find more fun.” If not, the game was abandoned, and another idea was
discussed.

This iterative approach, which gauges progress based on the game alone, is
very agile, but few publishers pursue development in such an agile way. In fact,
there’s a polarization of views about agile approaches such as Scrum within the
publishing community. Some have mandated that all their first-party develop-
ers use it, while others have banned it. Those that use Scrum have found chal-
lenges in establishing the best level of collaboration.

Establishing an agile relationship between publishers and developers is
challenging. Publishers don’t simply hand out money to developers who offer
nothing more than a promise to try to “find the fun.” There usually has to be a
more formal arrangement. Outside of our industry, there are plenty of examples
of agile contracts between stakeholders and developers that work and could
form the model for the game industry.

This chapter examines the problems with the existing publisher/developer
relationship, the challenges with establishing a more agile model, and a range of
solutions to becoming more agile.

1. This was the code name for the Nintendo 64.

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher284

the challenges
When I was working in the defense industry, documentation was king. For
every week of actual development (writing code, testing, and so on), I spent
two weeks writing documentation. Everyone’s cubicle had an overhead shelf
filled with binders that demonstrated the amount of documentation each of us
had written for their current project. Our performance was measured primarily
by the amount of documentation we generated.

The last defense industry project I was on was to design an avionics archi-
tecture for a new fighter jet. It represented hundreds of millions of dollars of
work that our company was desperate to secure.

My job was to compile hundreds of various design documents into a single
document to deliver to the Air Force within a few months. After a couple
of weeks it became apparent to me that I could not create a comprehen-
sive, organized, and readable document from all of these separate documents.
I approached the project manager with my concern. “Oh, don’t worry about
that,” he told me. “The Air Force just weighs these documents; they don’t actu-
ally read them!”

I was shocked at this revelation. I finished compiling the master document
with an eye toward maximizing the weight. When completed, the printed ver-
sion weighed 20 pounds and filled one of those boxes that copier paper comes
in. It was truly massive. The document was delivered, and I was given a pat on
the back for a “job well done.” Shortly after, I resigned.

One of the main reasons that game development has become less iter-
ative is the increasing requirement for detailed, up-front plans from pub-
lishers. This has resulted from the rising cost of project failures. Publishers
desire more certainty from developers and want to be sure they are “think-
ing things through” before creating code and assets. Publisher-side producers
are encouraged to demand a detailed plan and schedule, tied to a contract,
because it places much of the responsibility for project uncertainty in the
hands of the developer.

Developers are encouraged to create these documents and schedules
because the false sense of security they provide gives them time to explore
the game, fund their studio, and (ideally) ensure that the publisher’s long-term
financial commitment is established.

Although design documents have not reached the size of those on major
government weapons systems, most publishers and developers are realizing
that there is no correlation between the size of the design documents and the

From the Library of Wow! eBook

ptg

The Challenges 285

success of a game. The illusion of certainty and the ulterior motives that drive
these bad practices have to end. The business model won’t support it for much
longer.

Focus comes too late
Most games demonstrate significant increases in gameplay value after alpha,
when integration, debugging, optimization, and polishing begin in earnest. This
is often a stressful time between the publisher and the developer because the
publisher finally has a potentially shippable game to provide feedback on, but
the definition of alpha usually means that all features are implemented and so it
is too late to consider many of the suggestions.

The pressure to add these last-minute changes is often too much. Teams
succumb to adding late features because they know the game needs them, and
they don’t want to ship a bad game after all the effort put into it. Unfortunately,
the ship dates are not changed to reflect this added work, or if they are changed,
it involves a performance penalty for the studio or damage to their relationship
with the publisher.

milestone Payments and collaboration
Publishers usually hold the upper hand in a development agreement. Contracts
often allow them to terminate a project at their convenience. Given this lever-
age, they can usually dictate new features, which result in “feature creep.”

Milestone payment delays and threats of termination are blunt tools. The
pressure they create results in milestone builds that lack fun and also lack con-
sistency with and adherence to a vision. They might satisfy a milestone deliver-
able checklist, but they don’t move the game toward market success as much
as they should.

Contracts negotiated between a publisher and developer usually cover the
full development cycle of the game from concept to gold master. Given this
liability, publishers prefer to have some guarantees of performance. These typi-
cally take the form of milestone schedules linked to payments. Milestones usu-
ally occur every three months and have specific testable conditions in them
such as the following:

●●

●

Three playable levels

●

Players can join other players for online gameplay.●

The AI characters navigate environments and attack the player.

●

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher286

These seem like reasonable milestone deliverables, but they highlight a few
problems:

●● Quality cannot be defined in a contract: Development studios
are highly dependent on milestone payments, so if the choice comes
down to providing two great levels of gameplay or three mediocre
levels, as defined by a milestone the developer may choose the latter
simply to be paid. There is no way to contractually define a quality
bar unless the developer allows the publisher to subjectively judge the
quality of deliverables, which they would be negligent to allow.

●● Collaboration is discouraged: In the event that a publisher or
developer identifies a change to the game that alters future milestone
deliverables, it’s usually difficult to introduce such a change into the
contract, especially if it impacts the budget or ship date. As a result,
game-improving changes are inhibited at many levels.

●● Problems are hidden, and trust is destroyed: Developers try
to load as much of the development fees from a publisher into early
milestones as possible and define the deliverables in a way that avoids
exposing problems until late in the project (see the “Examples of
Milestone Definitions That Hide Problems” sidebar), when the cost
of cancellation is too high.

●● Developers don’t want to expose problems to the publisher
early because they think they will overreact and cancel
a project: Publishers think that developers won’t openly share
the bad news, so they end up assuming the worst. These attitudes
destroy trust.

exAMPLeS OF MILeSTOne DeFInITIOnS ThAT hIDe
PrOBLeMS
The following are milestone definitions I have seen in contracts, which help
the developer avoid hard questions from the publisher after a milestone is
delivered:

●● “The AI is 60% complete”: I have no idea what “60% complete”
means. It could mean that everything is broken and the AI does nothing.

●● “First-pass at the main character model”: First out of how many
passes? Two or one hundred?

From the Library of Wow! eBook

ptg

The Challenges 287

limited iteration
Many publishers see the need to iterate planning and development. One com-
mon practice used is to allow “rolling milestone” definitions. These enable
the detailed definition of a milestone to be fleshed out during the preced-
ing one. Although this enables details to emerge, it doesn’t permit changes
to major deliverable dates or much flexibility within the milestone being
worked on. Like an Oreo cookie, it sandwiches the flexible part between two
inflexible lumps.

First-Party Problems
The issues of contracts and payments largely disappear when a studio—acquired
by a publisher—becomes a first-party developer. This seems like a relief to a
studio that has struggled to survive, but it raises different challenges.

When a publisher owns a studio, the publisher has more freedom to control
it. For example, if a project is late, they might transfer developers from another
project over to help, which rarely does (see the discussion of “Brook’s Law”
later in this chapter). They might decide that they don’t trust some of the design
decisions being made and dictate them remotely, which destroys morale.

Some studios with a track record of success erect barriers with their parent
publisher to avoid these problems, going so far—in one case—as to bar them
from entering the premises!

It doesn’t help to keep the publisher entirely in the dark because they have
a role to play in the success of a game. For example, this success depends not
only on the quality of the game but also on the publisher’s responsibility in
marketing it. A talented marketing group can help the developers fine-tune the
game to deliver what the market wants.

Portfolios Drive Dates
Market forces often compel publishers to promise ship dates and even projected
sales figures for a game. The demands of large retail chains, licensing deadlines,
long-term portfolio plans, and the desire to please shareholders pressure pub-
lishers to commit to very uncertain and optimistic product flow and ironclad
ship dates.

This compels a publisher to ask the improbable of their developers, even
after many failures demonstrate the futility of this. It’s not that publishers are
unaware of the development realities. They simply can’t resist the pressure from
retailers and shareholders.

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher288

Perhaps as the market changes and as new distribution channels appear,
this problem may be alleviated, but it won’t happen soon. One solution is to
increase the level of collaboration between the publisher and the developer to
make them partners in the goals of the game. This requires a higher level of
trust that has to be slowly built to overcome long-established fears.

Building trust, Allaying Fear
The common root of all these problems is a lack of trust and collaboration
between a developer and publisher. Trust takes a long time to build. Building it
through iteration, transparency, and collaboration are agile principles.

The first step is to deliver value regularly. When a publisher receives sprint
builds with significant incremental improvements to the game, it builds confi-
dence and trust.

The second step is welcoming change from the publisher. Observations
from publishers contain valuable feedback about the marketable value of the
game. When this feedback is reflected in the game within the next few sprints,
it builds trust. Publishers and developers become true collaborators, rather than
rivals trying to manipulate one another.

These steps lead to greater trust in the developer’s ability and decision
making. It enables honest discussions of project goals whenever scope, schedule,
and cost start to conflict as they invariably do on most projects. By having these
discussions earlier, when there are more options for addressing problems, the
relationship and product benefit.

First, the fears that publishers have of releasing the “agile genie” must be
overcome.

the Fears
Publishers have a great deal of fear about agile. Some of these fears are as
follows:

●● “We’d have no idea where the project is headed. They could iterate
forever!”

●● “If the scope is flexible, developers won’t work very hard. We’ll get
half the game for our money!”

From the Library of Wow! eBook

ptg

Building Trust, Allaying Fear 289

Developers have fears about an agile relationship with a publisher as well:

●● “The publishers will micromanage the product backlog, and we’ll
have no creative control”

●● “Allowing publishers to always change the scope will lead to a
death march!”

These fears aren’t groundless. A misunderstanding of agile or Scrum prac-
tices and principles make it possible for any of these problems to be realized.

understanding Agile
Teams slowly absorb the principles of agile development as they iterate, deliver
working builds that demonstrate value, and receive stakeholder and customer
feedback. Publishers are not faced with the daily lessons of agile and can’t
absorb these principles as quickly. As a result, they may not understand the
importance of Scrum practices and their role as a stakeholder, which leads to
the following dysfunctions:

●●

●

Not playing sprint builds

●

●

Not attending reviews or planning sessions

●

●

Ignoring the product backlog

● Demanding detailed schedules and documents up front and ignoring
the need to revisit them based on actual progress

Making urgent requests in the middle of a sprint●●

These are typical actions of publishers who are accustomed to tradi-
tional projects that hide uncertainty and don’t demonstrate real value until
post- production. Agile developers need to reinforce the principles and ben-
efits of agile development with their publishers. One method is to establish a
publisher-side Scrum advocate or even a publisher-side product owner.

Publisher-Side Product owners
A product owner is usually a member of the project development team. Video
game product owners need to provide frequent and subjective feedback. Does
the control of the player feel right? Is a mechanic fun enough? This feedback
requires daily engagement with the team. They are the single voice for all the
customers and stakeholders of the game.

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher290

Unfortunately, many stakeholders reside with a publisher who is based
thousands of miles away. This challenges the product owner’s capacity to cre-
ate a shared vision with them. One solution is to delegate a portion of the
product ownership role by creating a publisher-side product owner. This per-
son represents the publisher-side stakeholders to the developer. Figure 15.1
shows the arrangement between both product owners.

The publisher-side product owner communicates with the developer-
side product owner as frequently as necessary.

The publisher-side product owner has the following responsibilities:

●●

●

Review each sprint build

● Participate in as many sprint review and planning sessions as
possible

●●

●

Attend the release planning and review meetings

● For first-party developers, ensure that the developer-side product
owner is tracking ROI and general project cost dependencies

●● Represent the developer-side product owner to publisher-side
stakeholders such as executives, marketing, and sales groups

●● Ensure that all the publisher-side stakeholders are aware of the
current status of development

Executives Publisher-Side
Product Owner

Developer-Side
Product Owner

Product Backlog

Marketing Team

Team

Team

Team

Sales

Figure 15.1 The product owner roles

From the Library of Wow! eBook

ptg

Building Trust, Allaying Fear 291

The two product owners should communicate about every aspect of the
game and clearly define the limits of ownership. For example, the publisher-
side product owner might own the release goals (epic-level stories) while the
developer-side product owner owns the release plan (the stories that fit within
the release). This is different for every studio, publisher, and game. For example,
some externally licensed games require strong publisher-side product owner-
ship, while intellectual property being developed at the studio must have stron-
ger developer-side product ownership.

Third-party (independent) developers usually maintain more ownership
since they have sole responsibility for maintaining their own financial stability.

Together, the two product owners manage the product backlog. This
includes discussing the addition, removal, and prioritization of features. The
publisher-side product owner must understand that new features are always
welcome on the product backlog, but the product backlog itself is not a prom-
ise of what will ship with the game. They need to understand what velocity
means and how to use it to avoid feature creep and allow collaboration to exist
between the publisher and developer.

meeting Project challenges early
Scrum’s empirical measure of development velocity and the transparency of the
product backlog enable honest and continual discussions of scope and schedule.
By developing a potentially shippable set of prioritized features every sprint,
the team and publisher have the following controls over the project:

●● Control of the release date: If the velocity of the features being
introduced is different from predicted, the release date can be earlier
or later than planned.

●● Control of the scope: Scope is the easiest factor to manipulate as
long as value emerges during development, rather than emerging all
at once after alpha, which is often the case.

●● Control of the budget: The product owner continually measures
ROI based on value, velocity, and cost. This gives greater visibility
into whether the budget being spent on the project is generating suf-
ficient return in value seen.

Most publishers are used to waiting until after alpha for the state and quality
of the game to emerge, which is usually too late to apply these controls without

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher292

expensive consequences. Thus, they are not accustomed to having them avail-
able. Agile projects give more stakeholders more visibility and control.

As Chapter 6, “Agile Planning,” described, these controls are similar to
those applied during a cross-country drive. An experienced driver won’t rely
on a map, or plan, as the only source of information about the trip. They fine-
tune the plan based on the reality emerging, such as miles driven per day or—if
there is enough time—side trips taken to add value to the trip.

managing the Production Plan
Chapter 7, “Video Game Project Planning,” described how production debt is
impacted by decisions made in pre-production and how the estimation of this
debt is continually refined.

Production plans are critically important to publishers and developers.
They represent major cost and resource obligations. The date that teams start
production is a signal that the gameplay is more certain and that they are in the
home stretch. Unfortunately, the desire to reach the state of production often
overshadows the reality of whether the game and team are truly prepared to
enter it. Often the date, or the need, to transition production resources takes
precedence over whether the game is ready to enter production.

Developers and publishers need to clearly establish the goals a game must
meet before it enters production. Metrics need to be established in pre-produc-
tion that demonstrate the production plan is still viable. These metrics, such as
the number of people-days to produce each level, continually measure the cost
of completing assets in pre-production as they approach production quality.
Without them, production schedules remain highly speculative and optimistic.

Production forecasts and metrics should be part of every release deliverable.
Given these forecasts and metrics, the publisher and developer plan coming
releases to ensure that production dates are met or to update planning to match
reality.

Allaying the Fears
Given the tools described earlier, developers and publishers begin to allay the
fears that were identified at the start of this section.

We have no idea where the project is in development. Devel-
opers can iterate forever!

Agile methods require close participation between the stakeholders and
the developers on a regular basis. Without a shared vision, a game easily strays
off course and becomes something the publisher did not want.

From the Library of Wow! eBook

ptg

Agile Contracts 293

With development projects that cost $20 million becoming common,
publishers must have the games prove their value along the way, regardless of
the methodology used. Scrum creates a framework for close collaboration and
iteration that allows this.

If the scope is flexible, developers won’t work very hard. We’ll
get half the game for our money!

Publishers should be impressed with the velocity of features introduced by
Scrum developers. If not, the project should be canceled. Agile contracts give
both parties an opportunity to identify when a game idea is bad or a team is
not a good match for a project. Neither party should wait two years or spend
$20 million to discover that all the hard work won’t provide a sufficient return
on the investment.

The publishers will micromanage the product backlog, and
we’ll have little creative control.

Allowing publishers to change the scope will lead to a death
march!

A first-party developer without a product owner owning the vision is in
greatest danger of this happening. They need to establish the roles on both sides in
terms of product ownership. The practices of Scrum reinforce this every sprint.

Agile contracts
Outside the game development industry there are many examples of agile con-
tracts that have evolved over time. Examples include such products as tax prepa-
ration software or airline reservation websites that slowly expand their features
as business evolves and changes.

This model enables clients and developers to work with a series of con-
tracts. Rather than committing to years of promised effort involving large sums
of money, the smaller contracts each cover an incremental released version of
the product, which provide much more certainty and far less risk. Although
developers might prefer the security of a long-term contract, the reality is that
the “termination for convenience” clause in most contracts allows a project to
be canceled at any time, for any reason.

Most games don’t have regular incremental versions. Many games have one
“big-bang” release followed by a small number of patches. There is greater risk
in funding these large projects, which leads to detailed, ironclad contracts.

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher294

Since agile game development provides a more incremental delivery of
value, it gives publishers and studios the potential to build relationships where
progress is measured on a regular basis to determine whether the project is
worth pursuing further, much as Nintendo and Miyamoto did with Angel
Studios.

The benefits of this approach are significant. Not all ideas result in great
games. Some teams are not well matched to a game they are tasked to develop.
It’s better to abandon those efforts early than to spend years following a
bad path.

While frightening to consider at first, it is actually a measure of success
for projects to “fail early” rather than to “fail late.” Failing early reduces the
possibility of harming the relationship between a publisher and developer.
On the other hand, spending $10 million for a game that never sees the shelf
creates a lot of bad feelings and destroys careers. Besides, no one wants to
spend years of their career working away on a mediocre game.

There is precedence for this type of contract in the game development
industry. As more developers become agile, more publishers will find the
benefit in pursuing agile contracts over traditional ones.

In the meantime, publishers and developers continue to explore more
agile practices with traditional development agreements such as iterating
against a plan or using the kill-gate model.

iterating Against a Plan
Huge design documents and schedules are like a woolen security blanket
in the rain; they give comfort for only a short amount of time. Despite up-
front planning’s poor track record, publishers and project managers demand
it because the only alternative they see—no planning at all—leads to chaos
and ruin. They’re not wrong.

When faced with this, the challenge for agile developers is to gradually
introduce agile planning practices and to find the cracks in the big bang
process that always exist—such as rolling milestone definitions—and exploit
them for the benefit of the project.

What does an agile team do when a publisher demands all-embracing
design documents and schedules? The first thing is to determine how much
flexibility exists within the publisher’s process. It’s rare to find a publisher
that does not allow some form of rolling milestones described earlier. If these
are allowed, such milestones are managed the same as releases. When the

From the Library of Wow! eBook

ptg

Agile Contracts 295

publisher requests an upcoming milestone definition, hold a release planning
meeting for it, and invite a representative from the publisher who can make
decisions.

Over time, a developer builds trust by allowing some change from the
publisher. Care must be taken to not give them a blank check for changes. If a
fixed scope list exists, rather than a backlog, each change must be accompanied
by the deferral of other work from it.

Most long-term deliverables are tied to the minimum required feature set.
As described in Chapter 7, the greatest threat to schedules and resources is an
excessive amount of advance speculation about the details for these features.
They paint teams into death-march corners.

If—in the worst case—no flexibility or trust exists and the developer can-
not refuse the work, what can be done? Although the team benefits from some
practices such as sprints and daily scrum meetings, they will be limited in how
they may react to the emerging game. They should attempt to insert meetings
in the schedule that require stakeholders to review progress and make decisions
about the course of the project. Another useful tool is to enumerate all known
and potential risks and identify how they will be addressed (see the “Experi-
ence” sidebar). Transparency is still encouraged; hiding problems only creates
debt that the team pays back with a death march.

exPerIenCe
For our first project to ship on the PS3, we drew upon the memory of all the
problems we encountered with the PS2 and enumerated them as risks. These
included broken tools, buggy libraries, poor documentation, and delayed test
hardware. We highlighted all the potential impacts to the productivity and
schedule that would occur if any of these problems were realized. As it turned
out, all of them were. Although we couldn’t mitigate the impact to the project,
we worked together with the publisher to address the issues. As a result, they
became partners in finding a solution, and this prevented us from being blamed
for something we had little control over.

Fixed Ship Dates
A common impression about agile is that it does not allow games that use it to
ship on a fixed schedule. The impression is based on the idea that agile teams
don’t plan but simply iterate with a very short horizon—they just don’t know
when the project will end!

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher296

Although most games have a ship date, many of these are considered “firm”
rather than “fixed.” Firm ship dates are established by publishers to fit portfolio
or budget projections. A firm ship date will drive the project, but if it desper-
ately needs another month or so of work to achieve far better results, it won’t
be a disaster to slip the date. Fixed ship dates, on the other hand, are critical for
the success of some games. Examples of games with fixed ship dates are those
that must ship simultaneously with a movie release or games like Madden
Football that must be on shelves by the start of each NFL season. The penalty
in lost sales for missing these dates is major.

How is a project with a fixed ship date managed differently from one that
is not? Mainly, it is the way risk is handled. Risk is uncertainty about what a
team is creating and how it is going to build it. For example, if we want to dedi-
cate 20% of our project budget to creating a cooperative online death-match
mode with AI opponents for our game, a few of the uncertainties might be the
following:

●●

●

Will the AI work online?

●

Will problems in other areas delay work or take people away?●

Is 20% of the budget enough to create a fun and complete experience?

●

The list can go on. Any one of these can threaten the project’s schedule and
result in the feature being dropped after almost 20% of the project’s budget has
been spent on it.

So, how is risk handled? Developers often try to plan and schedule their
way out of risk by creating exceedingly detailed plans that attempt to identify
the solution to every foreseeable problem. Unfortunately, since the danger lies
in what a team does not know, it’s certain that the tasks required to overcome
risk will not be identified up front. The best way to handle risk is to focus on
answering the unknown, in other words, creating knowledge.

Creating knowledge and value is important for any project, regardless of
the ship date. For projects with fixed ship dates, the prioritization of work to
reduce risk is a bit higher. For example, if a movie-based shooter game with
a fixed ship date has to decide between shipping six months after the movie’s
release or dropping online gameplay, they will be more likely to drop online. A
game that is not based on such a license, which instead has a firm ship date, is
more likely to be delayed to ensure the feature is included.

So, let’s return to the original question: Does agile aid or impede a proj-
ect’s ability to achieve a fixed ship date? Executed properly, an agile project has

From the Library of Wow! eBook

ptg

Agile Contracts 297

significant advantages over other methods. Two core principles are behind this
advantage:

●● Prioritizing to create knowledge and reduce risk: Focus on
delivering high value and addressing risk early. Fixed ship dates only
enable a project’s staff or the scope to vary. Increasing the number
of developers on a troubled project usually doesn’t help. Brook’s
Law2 says that “adding manpower to a late software project makes it
later.” The law also applies to game development. The best option is
varying the scope, or feature set, of the project. Identifying the best
features that fit within the schedule is critical to the success of a
game with a fixed ship date.

●● Not postponing debt: Frequent integration, immediate defect
correction, and maintaining target performance (for example,
keeping the game potentially shippable) will prevent late surprises
that require rework and delay. When projects with fixed ship dates
postpone critical work to post-production, they often meet with
disastrous results.

Two tools for applying these principles are the product backlog and the
definition of done. Stories that address schedule risk must often be prioritized
over others on a project with a fixed ship date. An example of this is a spike to
mock up a full level. This would create early knowledge about the level dimen-
sions to better refine the production schedule and risk. Doing this constrains
some of the options for emergent gameplay, but it might be necessary to know
this information sooner than later.

Elevating the definition of done (see Chapter 5, “User Stories”) enables
risk to be addressed earlier. For example, if a game must ship on all platforms,
a product owner might require stories to run on all the platforms earlier in the
project than they normally would. Although this additional definition of done
may slow teams down, especially if the platform technology isn’t fully mature, it
accelerates improvements and creates more knowledge about the risks of those
platforms earlier.

As described in Chapter 7, agile methods don’t attempt to plan away
uncertainty with large documents, but they also don’t ignore uncertainty.
They simply tailor the practices to the different level of uncertainty over time.
Planning for short-term goals, such as sprint goals, is done at a high level of

2. http://en.wikipedia.org/wiki/Brooks%27s_law

From the Library of Wow! eBook

http://en.wikipedia.org/wiki/Brooks%27s_law

ptg

Chapter 15 Working with a Publisher298

detail. Planning for medium-range goals, such as release plans, is less detailed
but receives continual refinement. Long-range planning for things such as ship
dates, production scheduling, and so on, is also continually refined and influ-
ences short-term planning. For example, an agile plan won’t say “Production
will start on September 14” a year in advance. It will refine a range of times
over the course of pre-production. The reason is that not only will we gain
knowledge about production in pre-production, but the debt itself will change.
By acknowledging uncertainty and working to refine it, agile planning will
increasingly match the reality that is emerging rather than drifting further away
from the big document written at the start of a project.

Too many times fixed ship dates result in little innovation or a poor game
that must be shipped before it has been properly polished. Games released along
with the release of movies have long had a reputation for low quality. This
doesn’t need to be the case. Eliminating the waste of dropping features at the
11th hour after months of working on them is a good place to start.

Sometimes a fixed ship date is impossible to achieve. A risk-based approach
for developing completed features will not work miracles, but it will expose the
bad news sooner than later.

Agile Pre-Production
Publishers aren’t deaf to the agile message. They understand that fun cannot
be defined in a document. They’ve seen detailed plans and schedules fail proj-
ects again and again. However, most publishers exist as publicly traded com-
panies that must be able to forecast budgets and ship dates for their games.
As a compromise to this reality, publishers are more readily engaging devel-
opers to be more agile in pre-production alone. This involves small teams
taking longer to iteratively explore potential features, creating knowledge
about production costs, and defining the quality and fun of the game. Since
production is more expensive and amenable to predictive schedules, this is a
reasonable compromise.

note Chapter 7 described lean production and the benefit of agile
thinking during production.

the Stage-gate model
With a “big-bang” release model, a contract that covers the entire development
cycle is a rather large gamble, especially for an original idea. For these games,

From the Library of Wow! eBook

ptg

Agile Contracts 299

publishers may require decision points, called green lights, often at the junc-
ture of two stages to decide whether to continue funding the game. Two of the
most common green-light junctures are the following:

●● Concept green light: The publisher decides whether to let a game
enter the pre-production stage after reviewing project concepts, an
initial plan, and a prototype.

●● Production green light: The publisher decides whether to let a
game enter the production stage after reviewing the gameplay, the
production-representative assets, and the resource plan and schedule
for production.

Publishers fund a number of game ideas and use green lights to funnel
them down to a select a few of the best. This is called a stage-gate model. It
gives a larger number of innovative ideas a chance to be proven.

 Figure 15.2 shows a stage-gate being used to winnow four games down to
the one that demonstrates the best value.

The stage-gate model creates a clear advantage for an agile developer. It
aligns the principles of agile with the goals of the model: to judge the game
itself rather than the plan for it.

Game 1

Concept
Green Light

Production
Green Light

Game 2 Game 2

Game 3 Game 3 Game 3

Game 4

Figure 15.2 A stage-gate in action

From the Library of Wow! eBook

ptg

Chapter 15 Working with a Publisher300

exPerIenCe
I’ve found that teams facing the “do-or-die” barrier of a green light become very
focused on the actual game, rather than the plan. Although no one wants to
have their project canceled, it’s far less painful to be on a project canceled early
than one canceled a year later.

The stage-gate model can also establish the boundary between a longer
pre-production stage that is largely exploratory and the production stage that
is far more predictable.

note Mark Cerny’s method (2002) is an example of a stage-gate
process that focuses on proving game value before entering
production.

Summary
Although publishers may not consider themselves agile and may even recoil in
fear at the term, they have been trying to find ways to be more agile for more
than a decade. Iterative practices have been creeping into the way business is
done between them and developers. By continuing to build an agile vocabulary
and trust through applying agile principles, this trend will continue and allow
game development and publishing to remain a viable and even lucrative busi-
ness model.

Additional reading
Cook, D. Rockets, cars and gardens: Visualizing waterfall, agile and stage gate. http://

lostgarden.com/2007/02/rockets-cars-and-gardens-visualizing.html.

Cooper, R. 2001. Winning at New Products: Accelerating the Process from Idea to
Launch, Third Edition. Cambridge, MA: Basic Books.

From the Library of Wow! eBook

http://lostgarden.com/2007/02/rockets-cars-and-gardens-visualizing.html
http://lostgarden.com/2007/02/rockets-cars-and-gardens-visualizing.html

ptg

301

chapter 16
Launching Scrum

Although Scrum practices are simple and easy to learn, its adoption challenges
organizations, processes, and cultures. It can take years for those challenges to be
overcome. This dichotomy is often referred to as the Zen of Scrum. Although
each studio has their own pace of adoption and challenges, there are enough
common ones to establish a rough road map.

The adoption of Scrum often takes the form of three stages. This chapter
describes them and some strategies for introducing Scrum to your studio.

the three Stages of Adoption
In the movie The Karate Kid, a boy wants to learn karate from an old master.
The master agrees but only on the condition that the boy does whatever he is
told. The master begins by having him wash and wax his cars, paint his fence,
and sand his patio floor. The only constraint he imposes is that the boy use
exact motions for each chore. For example, when waxing the car, wax is applied
in a clockwise motion with the right hand and removed in a counterclockwise
motion with the left hand.

After days of effort, the boy is exasperated. He expected to be taught karate,
not perform chores. When he complains, the master has him repeat the motions
he was taught for the chores as he throws punches and kicks. The motions used
for the chores are the exact motions used to block such attacks; the chores were
meant to teach them subconsciously.

The movie illustrates the first stage of martial arts competence: the appren-
tice stage. In the apprentice stage, the student is focused on the proper forms,
in other words, learning the basics. The second stage is the journeyman stage.
Here the student modifies the motions to leverage their strengths and offset
their weaknesses. The third stage of martial arts competence is the master stage.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum302

Masters create their own moves. They reinvent the art since they know the
underlying principles.

note In martial arts, this progression is known as Shu, Ha, and Ri.

A similar progression of stages is seen with teams adopt-
ing Scrum. Teams cannot master self-organization and continual improvement
from the start. They need to establish muscle memory with basic practices in
the apprentice stage; expand, add, and change them in the journeyman stage;
and then take full control of how they organize and achieve their goals in the
master stage.

Figure 16.1 shows the three stages of Scrum adoption.

note Apprentice, journeyman, and master stages are not guidelines
but convenient labels that help identify typical milestones of
progress with Scrum. Different teams have different pacing
and will improve in different orders than what is represented
by the road map.

the Apprentice Stage
In the apprentice stage, teams become accustomed to iterating on features
and committing to sprint goals. They are challenged to deliver an improved
version of the game with a two- to four-week cadence that requires cross-
discipline collaboration. They learn to step up every day as a member of a team

Journeyman
12-24 Months
Faster Integrations
Better Testing
Release Planning

Apprentice
3-12 Months
Daily Scrums
Iterations
“Done”

Master
Never Ends
Self-Organization
Continual Improvement

Figure 16.1 The road map of Scrum adoption

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 303

who is committed to their sprint goal and to report any impediments to their
progress.

The team establishes a shared definition of done between themselves and
the stakeholders. These challenges put pressure on the build process, pipelines,
and development practices to improve. These improvements appear quickly and
demonstrate the benefits of Scrum.

Adjusting to Sprint Pacing
Many traditional teams don’t need to demonstrate their game to stakeholders
very frequently. Often a demonstration is given every several months when a
milestone is due. The work needed to integrate changes made since the last
milestone, to fix errors, and to polish the game often requires the final few
weeks before the milestone date.

When teams transition to Scrum, the pace of producing a working game
for demonstration to the stakeholders is accelerated. Now they need to show
something every two to four weeks. The immediate problem is that the process
to produce a build now occupies a larger portion of time. Teams can spend 50%
of their time maintaining a working build. This overhead puts pressure on the
practices used to commit and test changes to the game. Rather than abandon-
ing agile because integrating is costly, an agile team finds ways to drive down
the cost of iterating. Chapter 9, “Faster Iterations,” discusses this.

Defining Done
Traditional project management does not fully burden developers with the
responsibility of judging when their work is done. They merely need to accom-
plish tasks assigned to them in a timely manner. Scrum requires teams and
stakeholders to develop a definition of done that they agree upon and can be
tested. Establishing this definition challenges the apprentice team.

At first, this definition might only require a game to run without crashing.
Later, a feature may be expected to run on a target platform at 30 frames per
second. The challenge with the definition of done is that it causes new tasks to
emerge during a sprint. At first, the team might ignore these tasks; they think a
successful sprint means that all the estimated tasks are completed at the end. It
comes as a shock to them to learn that the working game is considered more
important than task completion alone.

As the definition of done is refined and understood by the team, they will
factor an amount of uncertainty into sprint planning. If past sprints required
20% additional time for work not reckoned for, the team will leave that much
slack in future sprint planning.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum304

Daily Scrum Challenges
The daily scrum is an essential practice of an effective Scrum team. Without
it, teams would find it more difficult to manage their progress toward the best
possible sprint result. The daily scrum is a brief discussion among teammates
to ensure that they understand where the game is, with respect to their sprint
goals, and where they are headed next.

Daily scrums are hard to get right from the start. Dysfunctions or misun-
derstandings about the purpose of this practice can prevent teams from achiev-
ing its full benefit. This section describes some of the common dysfunctions
and ways to alleviate them.

reporting to the Scrummaster When the team members report to the Scrum-
Master in a daily scrum, rather than the team, it indicates that they view the
ScrumMaster as a manager. This creates a barrier to ownership and commit-
ment. Team members may think it’s the ScrumMaster’s job to solve all their
problems and tell them what to do. This is common with an apprentice team.
The reason for this behavior is that people need to overcome a career history
that allowed far less ownership. They don’t yet fathom or trust that their team
takes ownership of the sprint goal and controls the means to achieve it.

The ScrumMaster can subtly discourage this behavior through a number
of practices. For example, they can avoid eye contact with the person speaking
in the daily scrum. This encourages the person to address the entire team. The
ScrumMaster should also pose key questions such as “What problems could
we have with achieving our goal?” or “What do you think we should look at
next?” These questions drive teams to come up with solutions they own.

tiP Sometimes not talking at all is the ScrumMaster’s best tool. A
few moments of uncomfortable silence will often result in some
creative ideas being offered. Silently counting to ten or more
gives their minds something to do while waiting for the team.

The ScrumMaster can inadvertently reinforce this dysfunction. One way is
by taking notes at the meeting. Excessive note taking creates the impression that
the task information they are reporting is being recorded and tracked. This creates
distrust and must be avoided. If the ScrumMaster needs to record task hours to
produce the up-to-date burndown chart, they should explain this to the team.

not reporting impediments Teams not reporting impediments either have
none or don’t have a sense of ownership or commitment to their sprint goal.
The latter is more likely.

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 305

The ScrumMaster can do a few things to encourage problem reporting dur-
ing the Scrum. One is to help the team understand that if they weren’t able to
achieve the progress they had set for themselves at the previous day’s daily scrum,
then they ought to report the impediments that caused this to the team.

Key questions help. For example, occasionally adding a fourth question
such as “What threatens our achieving the sprint goal?” at the daily scrum can
help. The team will begin to speak up, not for themselves, but for the team
when they realize that their problems threaten the team’s success and therefore
belong to the team.

lack of Focus on the Sprint goal Sometimes teams focus too much on fin-
ishing the tasks they estimated in the planning meeting and not enough on
the sprint goal itself. The result of this is that all the tasks are accomplished by
the end of the sprint, but the value of what was added to the game is lacking.
Progression stoppers are those that prevent the player from completing a level,
annoying bugs that are not fixed, assets that are missing, and so on.

The main goal of a sprint is to add value to the game, but “finding the
fun” can’t always be predicted in sprint planning. A lot of trial and error
occurs during a sprint. Tasks are volatile when the goal is as subjective as
“finding the fun.” For example, an initial sprint backlog based on a goal to
allow the player to navigate a complex environment may not anticipate all
the character control issues that will typically arise. That doesn’t mean the
team should avoid responsibility for them. Even if unforeseen work threatens
lower-priority stories, they should add the emergent tasks that the definition
of done requires.

ScrumMasters encourage this behavior in a number of ways. One exam-
ple is to embolden the team to change the daily scrum to focus more on
the goal. Instead of going around the room to answer the three questions,
the team could visit each story on the task board and address the progress
and issues for them. This focuses the work more on the stories themselves.
Another useful practice is to conduct a short play-through of the game before
a daily scrum. This focuses the team on the value being added to a running
game rather than progress against the sprint backlog.

The team should be creative in exploring the practices of the daily scrum
to improve their chances of achieving their sprint goal.

replacing the Daily Scrum with a tool I’m often asked by teams starting
Scrum “Can we replace the daily scrum with a software tool?” My answer is
always an emphatic “No!”

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum306

 As described earlier, the daily scrum is not simply a meeting to update
task hours. The daily scrum’s purpose is for the team to inspect their progress
and make commitments to each other about the work needed to achieve their
shared sprint goal.

It takes a while for teams new to Scrum to understand the purpose of
the daily scrum. In the past, tasks were likely estimated and assigned to them
by managers. How the tasks came together to fulfill larger goals was not their
responsibility. Scrum turns that upside down. Teams are given total responsibil-
ity for the tasks and how to accomplish the larger goal. This requires a different
mind-set for the new Scrum team. It’s not a simple challenge; years of muscle
memory must be overcome. This is why the daily scrum might seem wasteful
at first. New teams think it’s all about the tasks and their estimates.

Tasks and estimates are critically important, but experienced Scrum teams
don’t focus entirely on them. Their daily scrum is a beehive of activity that
focuses on what everyone is doing to achieve done and the emergent challenges
to their shared goal.

exPerIenCe
“iPhone development using agile is unlike most other games. You can literally
work for two weeks and ‘ship’ what you have as a finished product on the
iPhone. So, knowing when to ship is the most important thing.

“Our main focus is on making smart decisions on scope, technical deci-
sions, gameplay, and marketing trade-offs. This is the most critical aspect of our
product development and requires the focus of the whole company. We need to
be efficient, yet our business plan calls for us to create original games that are
differentiated from the thousands of game apps in the marketplace, so there
is always a tension between doing what we know how to do and biting off an
experimental feature.

“The vision of the game is communicated through a brutal process where
we winnow down many ideas into one that the company is fully behind. That
one idea is championed and led by a single person who has authority to be the
final arbiter of trade-offs.

“Done varies, but for the most part, every sprint’s work runs on the tar-
get platform. Releases are always pushed to everyone’s iPhone for testing and
evaluation over the weekend. Done means potentially shippable, and we don’t
move on to new functionality until the previous functionality is shippable. We
strive to avoid—at all costs—parts on the garage floor and always elect to ship
‘better with less.’”

—Chris Ulm, CEO, Appy Entertainment

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 307

the journeyman Stage
The journeyman stage of adoption occurs as teams improve how they iterate and
deliver value. Sprints are no longer mini-waterfalls with a design phase at the start
and a test-and-fix phase at the end. These activities take place on a daily basis.

Journeyman teams take more ownership of their practices and process,
identifying and solving impediments and examining the underlying assump-
tions of how disciplines work together. These changes focus on improving their
craft and team velocity.

An example of such an improvement was with a team that created char-
acters. The last stage of creating a character was to supply sounds at particular
animation trigger points, such as a footstep sound during the walk cycle. One
problem was that the animators were checking in all their animations to revision
control late in the sprint, which caused the composers to rush their changes in
so the team could achieve its sprint goal. This rush didn’t lead to the best sounds
being added. The solution the team originally applied in their apprentice stage
was to create a cutoff rule that all animations had to be checked in five days
before the end of the sprint. This allowed plenty of time to add the triggered
audio, but it forced the animators to work on animations that might be needed
for the next sprint after the cutoff. Although this solved the immediate prob-
lem, it was a resource-based solution that didn’t improve velocity.

As the team’s experience with Scrum increased, they found a better solu-
tion. This required the animators to deliver each unpolished animation as it was
created to the composers and then polish the animation after the composer
attached audio. Although this might seem like a simple fix, it violated a deep-
rooted artistic preference to not share an asset until it is completed. In this
case, and in many others like it, a discipline’s bias was overcome to improve the
team’s velocity. Journeyman teams build cross-disciplined trust and find ways of
optimizing the entire cycle of development rather than parts of it.

exPerience Apprentice teams often create work to prepare for future
sprints such as writing small design documents or creating
partial assets. Journeyman teams eliminate most of this by
reducing handoffs and by chopping work into smaller batches.
These changes arise as the barriers between disciplines are
broken down.

Journeyman teams also use more long-term agile estimating and planning
practices such as release planning and story point estimation as described in
Chapters 5 through 7. They also introduce change to discipline practices, such
as test-driven development as described in Part IV, “Agile Discipline.”

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum308

Release Cycles
Journeyman teams improve how releases are planned and executed. As an
apprentice team, they were challenged by the sprint cycle or may have had
releases that didn’t use velocity. Journeyman teams are accustomed to the pace
of sprints. They work with the product owner to plan and monitor releases
through story point estimation (see Chapter 6, “Agile Planning”). This gives
them the tool of velocity measurement, which is necessary for them to quantify
a plan’s size and their pace of implementing it.

Team Colocation
Agile principles emphasize face-to-face communication whenever possible.
The benefits of this are demonstrated best at the team level. When a team is
spread across a studio, the overhead and problems that arise from a lack of easy
communication are seen daily. Studies have shown that when teams reduce
the physical distance between themselves, their performance increases in many
ways (Van Den Bulte and Moenaert 1998). Eventually teams realize this and
rearrange themselves to improve communication.

Physical Arrangement Teams that want to colocate often have limited options.
Sometimes an office is arranged with small cubicles that cannot easily be removed
because of power and data wiring limitations. Team rooms or “bullpens” are less
expensive to create than cubicle farms or separate office spaces, so teams lucky
enough to influence the initial office space build-out can create an ideal location
for themselves. Otherwise, they may need to slowly adapt their current space
though remodeling. Usually it’s best to have one team colocate to judge the cost
and benefit before a studio will allow all of them to colocate.

What makes an ideal team space? There is no single solution. Sometimes
teams can’t even agree among themselves about what makes the best space. On
a cross-discipline team, the programmers might want windows while the artists
don’t want light from the outside. It’s up to the team to work this out. These are
some of the other issues teams need to consider when defining their area:

●● Is there enough wall space for a task board, information radiators
(see the note “Information Radiators”), and whiteboards? Teams can
never have enough wall space!

●● Is there enough “slack” in the space so that developers can pair up or
gather around a monitor? For example, can a programmer sit with an
artist to discuss a problem?

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 309

●● Is there space for meetings, such as the daily scrum or a play-through?
Is there a development station available to conduct a play-through
with the entire team?

●● Is the room off the beaten path? Will traffic through the area from
people outside the team create disruption?

●● Are there rooms where people can have private conversations, con-
duct interviews, or read their e-mail?

What kind of furniture is best? My opinion is that mobile, modular, and
adjustable furniture like that built by Anthro1 is best. Teams change and improve
over time. The ability to regularly rearrange their space creates a big benefit.

information
radiators

An information radiator displays information in a place where
those passing by can see it. With information radiators, those
passing by do not need to ask questions; the information sim-
ply hits them as they pass.2

Concerns Before teams colocate, members often raise concerns about the
potential problems of colocation. Two of the more common concerns are run
down in this section.

Programmers (artists, designers, and so on) need to work in
quiet isolation to focus and be effective. We can’t do this in a
noisy team room with constant interruptions.

There are certainly more interruptions in a team room. Most of these are
the point of the team room. When individual developers are trying to achieve
individual goals, such as writing some code or creating an asset, interrup-
tions often impede them from achieving that goal as quickly. However, Scrum
emphasizes the delivery of value integrated into the game, not the value of
finishing “parts” that should join flawlessly because a document or Gantt chart
states they will.

When a team is focused on achieving a common goal that requires every-
one’s participation, fast access to other team members who can help progress is

1. www.anthro.com
2. Cockburn, A. 2007. Agile Software Development: The Cooperative Game. Boston:

Addison-Wesley. Reproduced by permission of Pearson Education, Inc.

From the Library of Wow! eBook

www.anthro.com

ptg

Chapter 16 Launching Scrum310

essential. For example, it doesn’t make sense to have an animation programmer
building an animation system apart from the animators. They should be solving
the problem together.

Noise and interruptions from outside the team are usually a source of unnec-
essary interruptions. Teams should strive to eliminate things that distract them
from their goals, such as public-address systems (DeMarco and Lister 1999).

exPerience Every team that I have seen colocate doesn’t want to return to
isolation.

If I am not sitting with a group from the same discipline, then
I won’t learn and collaborate with them as much.

This argument creates a barrier for teams who want to collocate. It has
some validity. One example of this was in a large studio where half a dozen AI
programmers spread out across three teams. This led to three incompatible
AI solutions, each duplicating the effort of the others. Although it was ben-
eficial to have an AI programmer close to the designers and animators, there
still needed to be communication that occurred with the other AI program-
mers. Communities of practice, described in Chapter 8, “Teams,” enabled this
to occur. The AI community of practice met as frequently as necessary to share
knowledge that benefited all their teams needing AI.

Release Dysfunctions
Teams can encounter some common dysfunctions as they start using releases,
rather than sprints alone. These are usually caused by the longer time frame
and the difference between the definition of done for a sprint and the more
demanding definition of done for a release. Also, the release cycle can bring out
vestigial waterfall behaviors that cause problems.

This section identifies symptoms of release dysfunctions and identifies ways
to help the team cure them.

hardening Sprint used as a Dumping ground Hardening sprints, described
in Chapter 6, are a practice that teams should strive to minimize or even
eliminate. The danger from hardening sprints is that they become a dump-
ing ground for work that should be completed during normal sprints. Left

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 311

undone, this unfinished work interferes with progress and reduces team
velocity.

Here are some warning signs that hardening sprints are being abused:

●● Artists are postponing asset completion and leaving too many stand-
in or missing assets in the game each sprint.

●●

Designers are not tuning features for gameplay value.●

Programmers are deferring bug fixes.

●

Every sprint should achieve a level of done that includes much of this work.
If this isn’t happening, then the definition of done needs to be improved to
include it.

tiP Frequent play-throughs during the sprint can help the team
focus on making sure their work is done.

Postponed value Apprentice teams often divide sprints into phases, treating
them like mini-waterfall projects. A similar problem can affect teams during
releases. Early sprints are considered “design sprints,” while later sprints are
focused on debugging, tuning, and polishing for the release.

Velocity is used to measure the progress of a release and forecast its com-
pletion (see Chapter 6). This forecast assumes that the velocity trend will be
a straight line through the remainder of the release. However, teams might
experience a velocity drop-off toward the end. This is often accompanied by
overtime, as teams compel themselves to achieve their goals. Teams are working
harder, yet velocity seems to be dropping!

Figure 16.2 illustrates this happening over a four-sprint release. The solid
line shows the total story points accomplished during the release. The dotted
line shows a subjective value of the game (the fun) from the product owner’s
perspective (there’s no practical or easy way to measure this…it’s meant to
illustrate a point).

Ideally, value and story points both grow at a steady pace. In the figure,
story point velocity (slope of the dark line) grows quickly at first and then slows
down at the end of the release. Value grows slowly at first—there isn’t much
“fun” being added to the game in the first few sprints—but the game becomes
a great deal more fun in the last few sprints.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum312

“Fun” Level

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Story Points Finished

Debt

Figure 16.2 Velocity and fun in a release

What happened is that the team used a waterfall approach in the release,
treating it as a single phased iteration of the game with integration, debug-
ging, and polishing at the end. This builds up unfinished work in the release,
called debt.

Debt consists of the following:

●●

●

Polish or tuning work

●

●

Assets that are left out or built before the team knows what works best

●

Developing large assets in parallel●

Bugs that aren’t fixed

●

Debt postpones the actualization of value toward the end of the release
much like a waterfall project defers it until post-production. Teams need to
prevent this debt from growing so as to build value continually.

For example, consider a team with a release plan of creating a level that
explores various mechanics. This level has many rooms that are each meant
to offer different challenges to the player. A team might build the entire level
using a phased approach. In the first sprint, untextured modular parts are used

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 313

to create the level. In the second sprint, design places the AI and triggered
events. In the third sprint, detailed geometry is created. Polishing, debugging,
and sound design are done in the final sprint.

By creating a large level this way, the team is building a debt of work that
has to be “paid off ” by the end of the release. If any of these steps take too long,
then the deadline drives the team to rush completion of the entire level or
delay the release. This often leads to stressed teams and concerned stakehold-
ers. Another drawback is that a polished experience won’t exist until the end
of the release, so the value is not seen until the end. This allows for almost no
gameplay iteration on the polished level.

A better approach is to create a polished and tuned section of the level every
sprint. If there are four sprints in the release, each sprint goal might attempt
to complete a quarter of the level each sprint. For example, if your level has
a medieval village, castle, forest, and fair, your team would finish one of them
every sprint. If the level is too large for the release, the team would discover it
in the first sprint, and the product owner could either reduce the scope of the
level or delay the release date. Another benefit of this approach is that polished
and tuned gameplay can be iterated on for almost the entire release.

Existing gameplay, tool technology, or rendering technology might not
support an approach of vertical slices every sprint, but this is a further argument
for not risking an entire release to such uncertainties.

Improving Iteration
Journeyman teams begin to accelerate the cycle of continuous improvement
by altering practices. To do this, they must measure their velocity and focus on
improving it.

Journeyman teams will introduce significant new practices such as test-
driven development to improve the quality of code or continuous integration,
which allows change to be propagated more safely and quickly (see Chapter
10, “Agile Technology”). The team will seek to improve iteration times in every
area of development, through automated testing, improved tools, or team prac-
tices that move QA closer to the developers (see Chapter 9 and Chapter 13,
“Agile QA and Production”).

Measuring velocity is critical for this to occur. Velocity and other measures
of value create the empirical control system at the core of Scrum. Without
empiricism, a process is like some alchemy, where teams try to transmute work
into success through paradoxical practices.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum314

the master Stage
The master stage is the final stage of Scrum adoption and is the goal of every
Scrum team to achieve. Such teams do the following:

●● Self-organize: Master teams work well together. Great teams are
based on chemistry and motivation. They trust one another and
achieve a high level of communication. The team decides who joins
or leaves.

●● Drive continual improvement: They take control of the rules.
Management merely has to support their needs. These teams take
ownership of their own performance.

●● Enjoy their work immensely: Work is a commitment to their
teammates. They are all in it together, and everyone’s contribution
and creativity are valued and leveraged.

●● Deliver the highest level of value: Master teams are often referred
to as great teams (see Chapter 8), far outpacing other teams.

exPerIenCe
Developers on great teams have referred to their experience as a highlight of
their career. I’ve been on two such teams in 20 years and have always sought
to return to that state.

Master teams are hard to define but easy to recognize. There is no formula
to create them, but I have observed the following:

●● Independence and a sense of ownership: The team needs to feel
that they contribute creatively and have control over how they work.

●● Leadership: There is often a natural leader on the team who com-
municates a vision between the team and the stakeholders and helps
keep the team focused. This isn’t a lead position defined by a role but
by actions.

●● A core expert: Not everyone on the team needs to be an expert,
but on a master team there is often at least one core expert. This per-
son supports the vision with brilliance that the team can rally around
with confidence.

From the Library of Wow! eBook

ptg

The Three Stages of Adoption 315

●● Team collaboration: Teams grow great organically and evolve
together based on chemistry and experience.

●● Proper studio culture: Studio cultures can either nourish such
teams or prevent them from taking root or flourishing. Sometimes
great teams will form in a highly dysfunctional culture, but they
don’t last.

Great teams form independent of process. However, Scrum assists them
based on the mastery of its principles. Team self-organization, sprint goal own-
ership, commitment, and a daily dose of visibility cultivate them.

Team Organization and Membership
Collaboration is a necessary element for master teams. A team of highly skilled
developers who cannot collaborate cannot assume success.

Teams need to form carefully and have the ability to adjust their member-
ship to enable them to improve collaboration and chances of success. At first,
teams can’t do this on their own. Team formation needs to be facilitated by
studio leadership early on. They mentor and encourage the team to slowly
take control and make the best decisions for themselves. Eventually these teams
become self-organizing and make decisions on their own.

Let’s examine how self-organizing teams adjust their membership.
Teams don’t change membership midsprint. They hold off on such changes

until after the sprint review but before sprint planning. There are two reasons
for changing members. The first is to match the team to its goals. For example,
if a team needs animation support for a coming sprint but does not have an
animator, they need to have one join the team before they plan the sprint.

The second reason for changing membership is to improve collaboration
and commitment. This involves adding or removing a member to make it easier
for the team to work effectively. Removing team members is challenging but
sometimes necessary. Often it’s simple lack of chemistry, or there is a personal-
ity conflict.

If a member of the team is becoming an impediment, it needs to be
addressed. If the team cannot address the problem, the ScrumMaster assists
through observation and inquiry. This includes discussion in the retrospective
and coaching the team member in question. Often they are not even aware of
the problem, and the discussion alone is enough to fix it.

If the team is unable to fix the problem internally, they may have no choice
but to remove the teammate. Studio leadership must support this (see the side-
bar “Experience”).

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum316

exPerIenCe
Chapter 8 described how teams could request the removal of teammates that
are not working out. I’m often asked how management handles these situa-
tions. Because I was the CTO at High Moon, occasionally a team came to me
and requested that a programmer be removed from their team. I‘d then speak
with the team and the programmer about the issues that led to this and what
was needed to avoid them in the future. If I thought the situation warranted it,
I would approve the change. I then approached the other teams and told them
that this programmer was free to join their team if needed. I’d explain the issues
that led to their removal from the last team. Most of the time, another team
agreed to take the programmer onto their team. On rare occasions, no other
team would take them. This was almost always because of the individual being
ejected from numerous teams in the past; the person suffered from a reputa-
tion of causing problems. At this point, it became a human resources issue, and
the programmer was dismissed. It was a sad occasion, but it had to happen for
the benefit of the studio.

At the start of a new release, a master team might substantially change
their membership to accomplish a specific release goal. Usually these teams
will retain a core of individuals. It’s far more difficult and rewarding to build a
chemistry of personalities that are effective together than to simply gather indi-
viduals with the necessary skills. Once a working chemistry is found, it should
be protected and supported.

Major Practice Change
A characteristic of master teams is the ability to abandon or modify any prac-
tice, while preserving the underlying principles of Scrum and agile develop-
ment. Some master teams have varied their practices so much that what they
are doing is barely recognizable as Scrum on the surface.

An example of this is the introduction of lean practices as described in
Chapter 7, “Video Game Project Planning.” These practices eliminate sprint
planning and sprint goals for teams creating production assets. These may seem
like a gross violation of Scrum rules, but they aren’t. The Scrum principles
of empiricism, emergence, timeboxing, prioritization, and self-organization
described in Chapter 3, “Scrum,” still hold true.

Master teams make these changes relying on empirical measures, a sense of
ownership, freedom, and a deeply embedded understanding of what the Scrum
and agile principles mean.

From the Library of Wow! eBook

ptg

Adoption Strategies 317

Adoption Strategies
The strategy for rolling out Scrum to your project or studio has to be carefully
considered. Transitioning an entire project to Scrum is challenging. A bottom-
up or beachhead approach proves that Scrum introduces beneficial change with
less risk. However, this approach takes more time.

This section addresses strategies and specific tools and practices for studios
to use to manage adoption.

Beachhead teams
During World War I, the major combatants fought battles on vast front lines.
Offensives were launched along these fronts in massive attacks. Because of the
ever-increasing lethality of 20th-century weaponry, these attacks were often
ineffectual and resulted in nothing more than heavy losses in the attacking
force. The war became a series of deadly stalemates and attrition. Eventual vic-
tory came to the side that could withstand more losses than the other.

Battles in World War II were different. They were often marked by the
penetration of a small area of the front by a focused attack. Large units poured
into the breach, taking advantage of the confusion and disarray of the opposing
army. Offensives such as the Battle of France and D-Day are examples of this
strategy.

A similar approach of introducing Scrum provides an effective way of over-
coming the well-founded concern about large-scale change. Small teams first
experiment with Scrum to increase studio knowledge about its benefits before
it is rolled out to a larger group. These teams are often referred to as beach-
head teams. If a beachhead team is able to establish a foothold and find success
with Scrum, it encourages other teams to adopt it.

Beachhead teams have an improved chance of success with Scrum for a
number of reasons:

●●

●

They can be staffed with people who are open-minded about trying it.

● One team is more easily coached than a dozen. Teams new to Scrum
will have many questions.

●● They can take on noncritical features at first, which puts less pressure
on them to get it perfect the first time.

This seems like stacking the deck in Scrum’s favor, and it is. It’s similar to
planting a seed in a garden; its germination period is when it is most vulnerable.
Conditions have to be carefully monitored during this time. Even if everything

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum318

is done right, the plant might not grow. If the soil is the wrong type or if there
is not enough sunlight or moisture, no amount of care will allow it to grow.

The same idea applies to the beachhead effort. Scrum may not “take” in
the studio. The soil (culture, management style, and so on) might not be fertile
for it. In this case, it’s better to see the experiment fail with one team than a
dozen.

If a beachhead team is successful employing Scrum and the studio wants to
increase its use, there are three methods to use: split and seed, split and reform,
or cross-team coaching.

Split and Seed
In the split-and-seed method, a successful beachhead team is split up to “seed”
other teams that are starting Scrum. This enables the most rapid deployment of
Scrum experience throughout the studio. About eight teams can be seeded this
way. Figure 16.3 shows what this looks like.

The drawback of this approach is that a successful team is broken up.
Breaking up such a team is likely discouraging to the members. When random
people are grouped, it takes time for them to form a strong team, if it happens
at all. The other disadvantage is that not all the members of the original team
will be effective coaches for the newly formed teams.

Beachhead Team

New Team

New Team

New Team
New Team

New Team

Figure 16.3 Split and seed strategy

From the Library of Wow! eBook

ptg

Adoption Strategies 319

Beachhead Team

New Team

Other Developers

Figure 16.4 Splitting the beachhead team into two teams

As a result, a good team might be replaced by half a dozen or more that
aren’t nearly as effective. It can make the beachhead result look like a fluke.
Therefore, this approach is not recommended if a more gradual adoption of
Scrum is possible.

Split and Reform
In the split-and-reform strategy, the beachhead team splits into two, and
each team brings in new members. This results in a slower adoption speed
than the split-and-seed approach, but it enables each half of the original
team to stay together.

This strategy, shown in Figure 16.4, is a compromise between the num-
ber of teams created and the desire to allow teams to remain together.

Although not as traumatic as split and seed, this approach still splits up
a successful team and can result in dysfunctional teams. The old guard from
the original beachhead team might exert more ownership of the process,
which inhibits ownership and commitment from the new recruits.”

Cross-Team Coaching
A third solution is to leave the beachhead team in place and have them coach
other teams transitioning in a number of ways:

●● A member of the beachhead team serves as a part-time member of a
new team. They commit 50% or less of their time to each team.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum320

●● A member of the beachhead team becomes the ScrumMaster on one
or more new teams.

●● A member of the beachhead team attends a new team’s daily
scrum, sprint planning, review, and retrospective meetings, offering
advice and coaching whenever the team has questions about Scrum
practices.

This cross-team solution, shown in Figure 16.5, will subtract some time
from the beachhead team’s sprints, but they will recover it over the following
several sprints as the new teams come up to speed on the practices, needs less
of their time, and eventually replaces them.

The number of new teams transitioned to Scrum this way is limited to
how many members of the beachhead team are suitable coaches and how much
time they can spare.

In most cases, cross-team coaching is the best method of deploying mul-
tiple Scrum teams from the beachhead team. It enables them to retain a success-
ful team and deploys Scrum quickly throughout a project or studio.

Beachhead Team

New Team

New Team

New Team
New Team

New Team

New Team

Figure 16.5 Cross-team coaching

From the Library of Wow! eBook

ptg

Adoption Strategies 321

Full-Scale Deployment
Some studios desire a companywide or projectwide deployment of Scrum. This
presents more risk to the studio, as any major process change would, but if done
properly is the fastest way to roll out Scrum. This section will discuss the areas
of risk and an overall strategy to reduce it.

Transition Planning
Full-scale deployment has to be planned more carefully than the beachhead
team experiment. The larger the number of people transitioning, the more
challenging it is to communicate and sustain the vision for why change is tak-
ing place and to create the conditions that enable them to start using Scrum
quickly. This is the goal of transition planning.

note Transition planning is also needed after a beachhead team has
proven successful and a larger number of teams are deployed
from them.

The first step is to have at least one person become a Certified ScrumMaster
(CSM).3 This provides an exposure to Scrum practices and principles to ensure
the team starts on the right path.

The next step is to establish roles and definitions. This is best done in a
meeting with all the executives, stakeholders, ScrumMasters, and project leads
that form the transition team that is responsible for the transition. The CSM or
a Scrum coach facilitates this meeting.

note A Scrum coach is someone with years of experience shipping
games using Scrum and coaching teams. The Scrum Alliance
recognizes and certifies such coaches.

The product owner and stakeholders for the project and ScrumMasters for
the teams are identified. They must all be well versed in the duties and respon-
sibilities of the product owner role.

note The product owner should be considered full-time on any proj-
ect of three or more Scrum teams. Ideally they should attend
a Certified Product Owner (CPO) course.

3. www.ScrumAlliance.org

From the Library of Wow! eBook

www.ScrumAlliance.org

ptg

Chapter 16 Launching Scrum322

Next the studio executives discuss their expectations and roles with the
group. They must be aware of the principle that teams are committed to work
during the sprint and that all changes in priorities to the project should occur
outside the sprints themselves.

The transition team should help the product owner create an initial defini-
tion of done (see Chapter 5, “User Stories”). Does it mean that each story must
run at a minimum frame rate on the target platform? Does it have to run on the
development platform? The transition team will need to establish the baseline
definition with the expectation that it will improve over time.

The next step is to create an initial release plan that will allow a product
backlog to emerge and the teams to quickly begin working.

The First Release and Sprint
The next step for full-scale Scrum deployment is to prepare for the first release
for each project. This begins with establishing release goals and a release plan
created in a release-planning meeting (see Chapter 6). This meeting is con-
ducted by the transition team or with the entire project staff, if it’s not too
large.

Once a release plan is ready, the transition team will meet with the entire
project staff to discuss the goals of the release. Leading up to this there should
be a number of meetings with the teams to educate them about the practices
and goals of Scrum.

The goals of the first sprint should be modest to establish a cycle of success.
The first sprint will reveal a lot of problems with the existing studio practices
and the team’s adoption of Scrum.

tiP Management should be careful not to go too far promoting
Scrum. The team will be sold by the results. Overselling Scrum
will turn some developers off. The best thing for management
to do during a sprint is to support the teams by helping them
address every impediment they can’t solve themselves. There
will be many at first. Once the teams see management being
facilitative, it will sell them on Scrum more than any entreaty
about its benefits.

The following are the principles and practices that the team needs to
understand in preparing them for their first sprint:

●● They are committing to the goals of the sprint as a team, not as indi-
viduals committing to their own tasks. The entire team will succeed

From the Library of Wow! eBook

ptg

Adoption Strategies 323

or fail on this basis. Overcommitting is not a great danger, since they
can renegotiate with the product owner during the sprint. Teams new
to Scrum are more likely to underestimate their work.

●● Commitment is reciprocal. Management will not change their goals
or the sprint review date without a sprint reset.

●● The definition of done must be clearly understood between the team
and the product owner. The functionality delivered at the end of the
sprint must reflect this definition.

●●

The purpose and utility of the burndown chart are understood.●

The rules of the daily scrum are understood.

●

exPerience Iterating on any change within two to four weeks is challenge
enough for some teams!

Following the first sprint, the ScrumMasters will need to set aside several
hours to run retrospectives for the teams and then meet with the transition
team to discuss the results.

Establishing the Product Backlog
A goal for the first release should be to refine the product backlog. This usually
includes the following:

●● Discussions with the publisher and license holders to establish a
vision for the game

●●

Infrastructure work and risk identification●

Concept and design work to refine the vision

●

All of these elements are used to create a backlog and prioritize the stories
within it.

tiP It’s easy to go too far and create a product backlog that is too
finely detailed and unwieldy. The product backlog should be
large enough to support several releases of stories, with detail
decreasing with priority, yet not so large that the burden of
maintaining it is too great. For a console game, 300 to 500
stories on the product backlog is a good target. For an iPhone
game, probably 100 to 200 stories are enough, but your mile-
age may vary.

From the Library of Wow! eBook

ptg

Chapter 16 Launching Scrum324

Summary
Every studio that adopts Scrum has a unique experience. The path from
apprentice through journeyman to master is different. Some take a few years,
others stall. The goal is to shift studio culture to one that emphasizes continual
improvement, which assumes that change needs to occur, improvements need
to be found, and there is no limit to learning. Culture usually resists change. It
has inertia, and it trumps process every time. That’s the challenge!

Additional reading
Cockburn, A. 2007. Agile Software Development: The Cooperative Game. Boston:

Addison-Wesley.

Cohn, M. 2009. Succeeding with Agile. Boston: Addison-Wesley.

Hackman, J. R. 2002. Leading Teams: Setting the Stage for Great Performances.
Boston: Harvard Business School Press.

From the Library of Wow! eBook

ptg

325

Conclusion

the practices and experiences of agile game development are real. Many stu-
dios are using them now. As new platforms and business models emerge, new
practices, tools, and ways for creative people to make better games less expen-
sively will evolve. This is what makes agile so well suited for developing games.
The goal is not to find the “perfect” methodology but to embrace change.

This is a very unique and challenging time for game developers. Games
are becoming more mainstream, and we are discovering different platforms on
which to release games and new markets for them. Even “serious games” for
education, health care, defense, city planning, and so on, are emerging as a sig-
nificant market. At the same time, massive layoffs and lawsuits over unfair work-
ing conditions threaten careers and cause talented people to leave the industry.

The overhead, drudgery, and suffering that many game developers endure
to make something “fun” impacts game quality. We should share the practices
that help us reduce the waste involved in making games—waste such as wait-
ing around, losing work to crashes, spending time on unworkable solutions, and
communication problems. We need only compete on the basis of our creativity
and talent. Doing this, we can raise the bar for the entire market and grow it.

We need to return to the state where most of us started when making
games in our spare time: we need to love making games.

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

327

Bibliography

Beck, K. 2000. Extreme Programming Explained. Boston: Addison-Wesley.

Boehm, B. 1981. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice Hall.

Cerny, M. 2002. Blog on the Cerny method. www.methodgames.com/ methodblog/
files/category-3.html.

Cockburn, A. 2007. Agile Software Development: The Cooperative Game. Boston:
Addison-Wesley.

Cohn, M. 2004. User Stories Applied: For Agile Software Development. Boston:
Addison-Wesley.

———. 2006. Agile Estimating and Planning. Upper Saddle River, NJ:
Prentice Hall.

———. 2008. Slides from Certified Scrum Master course.

———. 2009. Succeeding with Agile: Software Development Using Scrum. Boston:
Addison-Wesley.

DeGrace, P., and L.H. Stahl. 1990. Wicked Problems, Righteous Solutions: A Cata-
logue of Modern Software Engineering Paradigms. New York: Yourdon Press.

DeMarco, T., and T. Lister. 1999. Peopleware. New York: Dorset House Pub.

Grenning, J. 2002. Planning poker. www.objectmentor.com/resources/articles/
PlanningPoker.zip.

Jeffries, R., and G. Melnik. 2007. TDD: the art of fearless programming. IEEE
Software May/June: 24–30.

Kent, S. 2001. The Ultimate History of Video Games. Roseville, CA: Prima.

Lakos, J. 1996. Large-Scale C++ Software Design. Reading, MA: Addison-
Wesley.

Laramee, F. D. 2005. Secrets of the Game Business. Hingham, MA: Charles River
Media.

From the Library of Wow! eBook

www.methodgames.com/methodblog/files/category-3.html
www.methodgames.com/methodblog/files/category-3.html
www.objectmentor.com/resources/articles/PlanningPoker.zip
www.objectmentor.com/resources/articles/PlanningPoker.zip

ptg

Bibliography328

Larman, C., and B. Vodde. 2009. Scaling Lean and Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum. Boston: Addison-Wesley.

Poppendieck, M., and T. Poppendieck. 2003. Lean Software Development. Boston:
Addison-Wesley.

Schwaber, K. 2004. Agile Project Management with Scrum. Redmond: Microsoft
Press.

Schwaber, K., and M. Beedle. 2002. Agile Software Development with Scrum. Upper
Saddle River, NJ: Prentice Hall.

Steiner, I.D. 1972. Group Process and Productivity. New York: Academic Press.

Stephenson, G. R. 1967. Cultural acquisition of a specific learned response
among rhesus monkeys. In: Starek, D., R. Schneider, and H. J. Kuhn (eds.).
Progress in Primatology. Stuttgart, Germany: Fischer.

Sutherland, J. 2004. Agile development: lessons learned from the first scrum. http://
jeffsutherland.com/scrum/FirstScrum2004.pdf.

Takeuchi, H., and I. Nonaka. 1986. The new new product development game.
Harvard Business Review January: 137–146.

Taylor, F. W. 1911. The Principles of Scientific Management. New York: Harper Bros.

Van Den Bulte, C., R. K. Moenaert. 1998. The effects of R&D team co- location
on communication patterns among R&D, marketing, and manufacturing.
Management Science, v.44 n.11 Pt.2, p.1–18.

Vaughan, D. 1996. The Challenger Launch Decision. Chicago: University of
Chicago Press.

Wake, W., and M. Cohn. 2003. INVEST in good stories and SMART tasks.
www.xp123.com.

From the Library of Wow! eBook

www.xp123.com
http://jeffsutherland.com/scrum/FirstScrum2004.pdf
http://jeffsutherland.com/scrum/FirstScrum2004.pdf

ptg

329

Index

95 mile-per-hour art, 143, 228

A
Abnormal termination. See Sprint resets
Accuracy, of estimations,113
Agile

about, 13, 210–220
agile manifesto, 13
art and audio, 223–233
benefits for game development, 20–28
bibliography, 32, 221, 233, 247,263
budgets, 231
collaboration, 232
concerns about, 225
contracts, 293–300
debugging, 216
design, 235–247
distributed teams, 183–187
leadership, 226
“not done yet” syndrome, 230
planning, 107–124
postmortems, 14–20
problems, 205–209, 223, 236
production, 259–262
projects, 28–31
publishers, 283, 289
QA, 228, 249–259
values applied to game development,

24–28
Analogy, in estimations,114
Apprentice stage, Scrum adoption,

302–306
Apprentice teams, sprints, 307, 311
Arcade games, game development

process, 5
Architecture, changing, 209
Art, agile, 223–233

Assault specialists, role, 97
Asset baking, 192
Asset hot loading, 193
Asset production pipelines, kanban

boards, 139
Asset size, cycle time, 148
Asset validation, 196
Atari, arcade game development,5
Audio, agile, 232
Automated play-through tests, 197

B
Backlogs, See also Product backlogs;

Sprint backlogs
burndown trends, 70
product backlogs, 323
release backlogs, 120
sprint backlogs, 62

Batch size, cycle time, 148
Batches, reducing or eliminating, 149
BDUF (big designs up front)

agile methodologies, 21
feature creep, 17

Beachhead teams, Scrum, 317–320
BHAGS (big hairy audacious goals)

about, 118
teams, 120

Bibliography, 327
agile, 32, 124, 221, 233, 247,263
game development, 12
iterations, 201
planning, 124, 155
publishers, 300
Scrum, 57, 282, 324
sprints, 84
teams, 188
user stories, 105

From the Library of Wow! eBook

ptg

Index330

Black box testing, 251
Boards. See Task boards
Boats, as a metaphor for lean thinking, 151
Bottlenecks, pair programming, 214
Budgets

adhering to, 219
agile, 231
balancing, 129
controlling, 291
production, 229
project leaders, 166

Buffers, shown on a kanban board, 149
Bugs

bug databases, 217
discovery rate in agile projects, 252
discovery rate in waterfall projects, 250

Build configuration testing, 196
Build iterations, 194–201
Builds, defined, 76
Burndown charts

sprints, 69
using, 83

Burndown trends, 70
Burndowns, crunches, 280

C
Cards. See Index cards; Task cards
Cargo Cult Scrum, 277
Challenger project disaster, 271
Change

architecture, 209
communicating, 87
cultural, 275
goals, 82
handling in agile projects, 28
last-minute, 285
practices, 316
Scrum, 274
team membership, 315
testing, 195–198
vision, 238

Charts. See Burndown charts
Chickens and pigs story, Scrum,55

CIS (continuous integration server), 211
Coaches, Scrum coaches, 321
Coaching, cross-team coaching, 319
Collaboration

agile, 232
contracts, 286
publishers, 260, 285
teams, 168–173, 183,315
versus contract negotiation, 27

Collecting, user stories, 100–103
Collocation, teams, 308
Columbia project disaster, 271
Commitment, teams, 158
Commits, 195
Communication, See also

Documentation
about testing, 199
change, 87
large teams, 174
teams, 158, 187

Communities of practice, teams, 180
Concepts

creating, 130
defined, 131
Scrum, 133

Conditions of satisfaction. See CoS
Consistency, monkey example, 273
Constraints, sprint planning, 61
Continual improvement

advantages, 147
master stage, 314
Scrum, 276
ScrumMaster, 49

Continuous build tests, 197
Contracts

agile, 293–300
negotiation versus collaboration, 27
scope of, 285
time and materials form, 28

Conversations
user stories as placeholders for, 94
versus documentation, 87

Core experts, master stage, 314

From the Library of Wow! eBook

ptg

Index 331

CoS (conditions of satisfaction)
about, 91
user stories, 90

Cost
game development, 8
key factor in game development, 22
prioritizing product backlogs, 109
production cost estimates, 135

Creative tension, 227
Creativity, within strict frameworks, 150
Critical chain management, 260
Cross-discipline teams

about, 160
art, 225, 227–232
budgets, 231
feature teams, 169
Scrum, 159

Cross-team coaching, 319
Crunches, Scrum, 279
Cultural change, Scrum, 274,275
Culture, master stage,315
Customers

collaboration versus contract
negotiation, 27

feedback, 65
Scrum, 54

Cycle time, 145–148

D
Daily build tests, 197
Daily scrums

about, 40
challenges, 304
replacing, 305

Databases, bug databases, 217,256
Dates. See Ship dates
Debt

defined, 127
postponing, 297
resulting from features, 129
technical debt, 208
waterfall projects, 312

Debugging
agile, 216
bug databases, 256

Deliverables
features, 295
milestones, 286

Demo done, defined, 100
Demos, See also Magazine demos
Dependencies

managing, 259
teams, 181, 183

Deployment
build iterations, 199
Scrum, 321–323

Design
documentation, 238
lead designer, 246
lead designer role, 246
prioritization, 239–242
product owner, 246
project leaders, 166
Scrum, 237–247
set-based, 242–245

Design documentation. See
Documentation

Details
disaggregating stories, 90
in stories, 94
user stories, 88

Developers, See also Project staff; Teams
agile, 283
collaboration, 25
load balancing, 138
pair programming, 215
play-testing, 257
postmortem example, 15, 16

Development, Scrum, 269
Directors, role of, 168
Disaggregating

in estimations, 114
stories to add details, 90

Distributed teams, 183–187

From the Library of Wow! eBook

ptg

Index332

Documentation
Scrum, 238
Smuggler’s Run example, 86
user stories, 104
versus conversation, 87
writing it down, 21

“Done”
defining, 99, 257, 297, 303,322
sprints, 122

Durations. See Length

E
Embedded QA versus pools, 254
Emergence, defined, 40
Emergent requirements, about, 17
Empiricism, defined, 40
Employees. See Developers
Engineers, role, 97
Environment. See Work environment
Epics

balancing the budget, 129
defined, 89
identifying, 101

Estimable attribute, INVEST,95
Estimating

production costs, 135
size of user stories, 112–117
tasks, 62–65

Expert opinion, in estimations, 114
Experts, master stage, 314
External dependencies, tracking, 260
Extreme programming (XP), 210–220

F
Failure notifications, 198
Failures, handling in sprints, 80–84
Feature creep, 17
Feature teams, cross-discipline teams, 169
Features, See also User stories

deliverables, 295
introducing, 209
planning, 107, 128
production, 154

“Federal and state laws” in managing
studio projects, 165

Feedback
customers, 65
gameplay, 148
production feedback, 148
velocity feedback, 149

Fibonacci series, estimating size of user
stories, 116

First-party problems, 287
Fixed ship dates, agile contracts, 295–298
Forecasting, agile planning, 110
FUD (fear, uncertainty and doubt),

Scrum, 269–273
Fun

iterative and collaborative, 242
key factor in game development, 22
teams, 158

Functional teams, 170

G
Game development, 3–12

arcade games, 5
bibliography, 12
crisis point, 10
history, 4–9

Gameplay
feedback and asset size, 148
required hours, 130

Goals, See also Objectives
in agile projects, 29
BHAGs, 118
changing, 82
dropping, 83
pre-production metrics, 292
Scrum teams, 162
sprints, 43, 70, 120,305
user stories, 88

Green lights, 299

From the Library of Wow! eBook

ptg

Index 333

H
Hand-to-hand combat systems, planning,

102
Handoffs, reducing waste,151
Hardening sprints, 123, 310
Hardware

capabilities of, 4
implications for game development

methodologies, 6
History

game development, 4–9
Scrum, 36–38

Hit-or-miss model of game develop-
ment, 7–9

Hourly build tests, 197

I
Impediments

about, 48
daily scrum meetings, 74

In sourcing, pool teams, 173
Independent attribute, INVEST,92
Independent sprints, 179
Index cards, user stories, 92
Information radiators, 309
Innovation

crisis in game development, 10
effect of cost and risk on, 10
at factory level, 37

Inspect and adapt principle, about, 29,31
Integration teams, 173
Intensity, sprints, 67
INVEST, 92–97

Independent, 92
Negociable, 93
Valuable, 95
Estimable, 95
Sized appropriately, 96
Testable, 97

Iterative development, 189–201
bibliography, 201
build iterations, 194–201
distributed teams, 183, 187

improving, 313
measuring and displaying, 191
overhead, 190
personal iterations, 193
publishers, 287

J
Japan, industrial expansion after World

War II, 37
Journeyman stage, Scrum adoption,

307–313

K
Kanban boards

showing buffers, 149
with sprint swim lane, 154
visualizing flows, 140

The Karate Kid movie, 301
Kill-gate model, 24
Knowledge

art knowledge, 229
key factor in game development, 21

L
Laws, “federal and state laws” in

managing studio projects, 165
Lead designer, Scrum, 246
Leadership

art, 226
master stage, 314
stakeholder role, 55
teams, 159, 165

Lean production, 139–153
Length

sprints, 65–68, 272
story points, 114

Level loads tests, 197
Leveling

flows, 144–146
production flow,142

Lightweight methods, 13

From the Library of Wow! eBook

ptg

Index334

Lines of communication, large teams, 174
Lockdowns, 271
Lookahead planning, 182

M
Magazine demos, 122
Management

project leaders, 166
Scrum, 270

Managers, role in industrial production
processes, 37

Manifesto, agile manifesto, 13
Market

used games, 11
video gaming trend, 8

Marketing
concepts, 130
importance of, 55

Master stage, Scrum adoption, 314–316
Meetings

release planning, 117
Scrum, 74, 272
sprint planning meetings, 38, 59
sprint prioritization meetings, 59
sprint retrospectives, 40, 79

Mentoring, project leaders, 166,167
Metrics, pre-production, 292
Michelangelo, Sistine Chapel, 223
Microprocessors, number of transistors, 4
Midnight Club story, 127
Midtown Madness game, 157
Milestone deliverables, 286
Milestone payments, 285
MMOs (massively multiplayer online

games), release dates, 130
Monitoring progress, 48
Monkey example, consistency,273
Moore, Gordon, on microprocessor tran-

sistor counts, 4

N
Near-shippable state, defined, 44
Negotiable attribute, INVEST, 93
Negotiable stories, about, 94

Negotiation, contract negotiation versus
collaboration, 27

Ninjas, defined, 56
Normalization of deviance, 272
“Not done yet” syndrome, agile, 230
Notifications, failure notifications, 198

O
Objectives, See also Goals

agile planning, 108
Optimization, agile, 217–220
Outsourcing

about, 152
support for, 260

Overhead, iterations, 190
Overtime, Scrum, 279
Owners. See Product owners
Ownership

about, 47
distributed teams, 187
master stage, 314

P
Pair programming, 212–215
Parallel development model, 66
“Parts on the garage floor example”,

239–242
PBIs (product backlog items), See also

User stories
about, 38
dropping, 83
prioritization, 41, 60
task boards, 72
tasks, 62–65

Personal iterations, 193
Pigs and chickens story, Scrum,55
Pirates, defined, 56
Planning See also Production, 127–155

in agile projects, 29
bibliography, 124
estimating size of user stories, 112–117
feature sets
hand-to-hand combat systems, 102
iterating against plans, 294

From the Library of Wow! eBook

ptg

Index 335

lookahead planning, 182
Midnight Club story, 127
overhead required for, 67
product owner role, 53
project leaders, 166
publishers, 291
releases, 117–122, 181
sprints, 59–68
stages, 130–134
subsets of, 45
transition planning, 321
why agile, 107

Planning meetings, sprints, 38
Planning Poker, estimating size of user

stories, 115
Platform smoke tests, 197
Play-testing, about, 256
Play-throughs tests, 197
Point-based design, 244
Poker, Planning Poker, 115
Pool teams, 172
Pools versus embedded QA, 254
Portfolios drive dates, 287
Post-production

about, 131
pair programming, 216
Scrum, 134

Posting, sprint retrospective meeting
results, 80

Postmortems, agile, 14–20
Pre-production

about, 19
agile, 298
budget, 229
defined, 131
measuring production debt, 135
metrics and goals, 292
Scrum, 134

Pre-production done, defined, 100
Predictability, importance of,19
Price, of video games, 9
Prioritization

agile, 108, 297
defined, 41
product backlogs, 109
Scrum, 160, 239–242

sprints, 60
stories and agile planning, 110
teams, 162
tracking and communicating, 87

Processors. See Microprocessors
Product backlog items. See PBIs
Product backlogs

about, 38, 41
agile planning, 108–112
debugging, 217
establishing, 323
product owner role, 53

Product owners
defining “done”, 122
designer as, 246
example of importance, 269
producer as, 261
publishers, 289
release plans, 121
Scrum, 51–54
spikes, 96
teams, 177

Production, 134–155
about, 19, 131
agile, 232, 259–262
art, 225
budget, 229
features, 154
feedback and asset size, 148
lean production, 139–153
leveling flow, 142
postmortem example, 16
publishers, 292
scheduling, 134
Scrum, 134, 136–139, 153
sprints, 153

Production streams, Scrum, 136
Production teams, 171
Profit

cost and quality, 22
of video games, 5, 9

Programming, agile, 210–216
Project leaders, role, 166
Project planning. See Planning
Project staff, See also Developers; Teams

defined, 46

From the Library of Wow! eBook

ptg

Index336

Promotion, project leaders role,166
Prototypes

done, 100
postmortem example, 15

Publisher-producer role, defined,54
Publishers, 283–300

agile, 283, 289
bibliography, 300
collaboration, 285
contracts, 293–300
fears, 288, 292
first-party problems, 287
iterations, 287
milestone payments, 285
portfolios drive dates, 287
product owners, 289
production, 292
project planning, 291
sprint reviews, 77

Q
QA (quality assurance)

agile, 249–259
art, 228
play-throughs tests, 197

Quality
defining in contracts, 286
key factor in game development, 22

R
Reasons, user stories, 88
Refactoring, TDD,211
Reference assets, 230
Regression tests, 253
Release backlogs, usefulness of, 120
Release cycles, 308
Release dates

controlling, 291
MMOs, 130

Release plans
defined, 119
distributed teams, 184, 186
Scrum teams, 162

Release states, in iterative development
process, 29

Releases
about, 31, 43
planning, 117–122, 181
product owner role, 53
sprints, 322
stages, 132

Requirements, See also User stories
in user stories, 94
versus user stories, 103

Resets. See Sprint resets
Resource allocation. See Budgets
Responsibilities, ScrumMasters, 46
Retrospectives

meetings, 79
sprints, 78

Return on investment, product owners,
246

Reviews
project leaders role, 166, 167
sprints, 75–78

Risk
management of, 260
prioritizing product backlogs, 109
waterfall-style methodologies for

reducing, 6
ROI (return on investment), product

owner role, 52
Roles

lead designer, 246
producer, 259–262
QA, 252–259
Scrum, 44–54
user roles, 88
users roles in user stories, 97

Roll outs, release planning, 120
Rooms. See War rooms

S
Sagas, defined, 89
Sales, video games, 7

From the Library of Wow! eBook

ptg

Index 337

Scaling

Scrum, 56
teams, 173–187

Scheduling
aligning sprint dates, 178
producers, 259
production, 134
task estimation, 18

Scope, controlling, 291
Scrum, 35–57, 267–282, 301–324

about, 36, 267
adoption stages, 301–316
adoption strategies, 317–323
apprentice stage, 302–306
asset production pipelines, 139
beachhead teams, 317–320
bibliography, 57, 282,324
Cargo Cult Scrum, 277
challenges, 273–281
chickens and pigs story, 55
coaches, 321
components, 38, 41–44
customers, 54
deployment, 321–323
design, 237–247
documentation, 238
FUD, 269–273
history, 36–38
journeyman stage, 307–313
lead designer, 246
master stage, 314–316
pair programming, 216
principles, 40
prioritization, 239–242
product owners, 246
production, 136–139, 153
releases, 133
roles, 44–54
scaling, 56
set-based design, 242–245
stakeholders, 54
task boards, 136
teams, 159–168, 173–187

ScrumMasters
about, 44, 46–51
changing goals, 82
producer as, 260
reporting to, 304

Self-management
project leaders, 166
teams, 159, 161

Self-organization
defined, 41
master stage, 314
teams, 159, 161–163

Semidaily build tests, 197
Sequential development model, 66
Set-based design, 242–245
Shared infrastructure teams, 171
Shared vision

product owner role, 52, 178
teams, 158, 183

Ship dates
agile, 130
fixed, 295–298, 298
postmortem example, 15

Shippable done, defined, 100
SI teams, 171
Sistine Chapel, Michelangelo’s experi-

ence with, 223
Size, teams, 164, 174
Sized appropriately attribute, INVEST,

96
Smuggler’s Run, 85
Snipers, role, 97
Special forces, role,97
Spikes

about, 96
prioritizing product backlogs, 109

Split-and-reform method, 319
Split-and-seed method, 318
Sprint backlogs

debugging, 217
defined, 38

Sprint dates, teams, 178
Sprint goals, release planning meetings,

120

From the Library of Wow! eBook

ptg

Index338

Sprint planning meetings, 59
Sprint prioritization meetings, 59
Sprint resets, about, 81
Sprint retrospectives, defined,40
Sprint spacing, 303
Sprints, 59–84

about, 38, 42
apprentice teams, 307, 311
bibliography, 84
done, 122
goals, 305
handling failures, 80–84
length, 272
meetings, 74
“parts on the garage floor” example,

240
planning, 59–68
product backlogs, 110
production, 153
production streams, 137
releases, 322
retrospectives, 78
reviews, 75–78
staggered and synchronized, 179
tracking, 68–73
uncertainties, 279

Stage-gate model, 298
Stages

planning, 130–134
Scrum adoption, 301–316

Staggered sprints, 179
Stakeholders, See also Publishers; Studios

communicating with teams, 49
defined, 43
length of sprints, 68
Scrum, 54

“State and federal laws” in managing
studio projects, 165

Stories, See also User stories
chickens and pigs story, 55

Story points
agile planning, 110
estimating size of user stories, 114, 116

Studio culture
master stage, 315
postmortem example, 15

Studios, sprint reviews, 78
Support, role, 97
Synchronized sprints, 179

T
Takt time, about,146
Task boards

Scrum, 136
sprints, 72

Task cards, sprints, 69
Tasks

debugging, 217
estimation and schedules, 18
PBIs, 62–65
project leaders role in creating and

managing, 166
TDD (test driven development),

210–212
Teams, See also Developers; Project staff,

157–188
about, 158
agile, 289
apprentice teams, 307
BHAGS, 120
bibliography, 188
build iterations, 200
collaboration, 168–173
collocation, 308
communicating with stakeholders, 49
communities of practice, 180
cross-discipline, 160, 227–232
daily scrums, 305
dependencies, 181
distributed, 183–187
experience, 66
functional teams, 170
handling failure, 81
integration teams, 173
leadership, 165
load balancing, 138
master stage, 315
pool teams, 172
product owners, 177
production teams, 171
scaling, 173–187
Scrum, 44–46, 155, 159–168, 173–187

From the Library of Wow! eBook

ptg

Index 339

self-management, 161
self-organization, 161–163
shared infrastructure teams, 171
size, 164, 174
sprint dates, 178
sprint reviews, 75, 76
testers, 252, 255
tool teams, 172

Technical debt, 208
Testable attribute, INVEST,97
Testers, teams, 252,255
Testing, See also QA

black box and white box, 251
changes, 195–198
play-testing, 256
regression tests, 253
testers on teams, 252, 255
versus QA, 251
in waterfall designs, 7

Themes, defined, 89
Time, tracking, 62
Time and materials contracts, 28
Timeboxes

about, 142–144
defined, 40, 41

Tool teams, 172
Tracer bullets. See Spikes
Tracking

dependencies, 260
Scrum, 275
sprint retrospective meeting results, 80
sprints, 68–73
tasks, 259
time, 62

Transfer time, reducing, 199
Transition planning, 321
Transparency, importance of,152
Trends. See Burndown trends
Trust, contracts, 286

U
Uncertainty, range of, 17
Units tests, 196
Updating, release plans, 120
Used games market trends, 11
User roles, defined, 88

User stories, See also Features; PBIs;
Requirements, 85–105

about, 28, 87
bibliography, 105
collecting, 100–103
completing, 99
conditions of satisfaction, 90
estimating size of, 112–117
index cards, 92
INVEST, 92–97
levels of detail, 88
QA, 252
Smuggler’s Run, 85
user roles, 97
versus written requirements, 103

V
Valuable attribute, INVEST,95
Value, See also Fun

creating with agile methodologies, 26
crisis in game development, 10
master stage, 314
postponed, 311
prioritizing product backlogs, 109
Scrum, 275
teams, 158
of video games to the consumer, 10

Velocity
agile planning, 110–112
feedback, 149
measuring, 274

Vision, changes, 238

W
War rooms, sprints, 73
Waste

cycle time, 148
eliminating, 24
reducing, 150

Waterfall methodologies
bugs, 250
debt, 312
origin of, 6
responses to, 13
uncertainty, 18

From the Library of Wow! eBook

ptg

Index340

White box testing, 251
Work environment, crisis in game devel-

opment, 10

X
XP (extreme programming), 210–220

Y
YF-23 jet fighter project, 35

Z
Zones, 149

From the Library of Wow! eBook

	CONTENTS
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	ABOUT THE AUTHOR
	Part I: The Problem and the Solution
	1 The Crisis Facing Game Development
	A Brief History of Game Development
	The Crisis
	A Silver Lining
	Additional Reading

	2 Agile Development
	Why Projects Are Hard
	Why Use Agile for Game Development?
	What an Agile Project Looks Like
	The Challenge of Agile
	Additional Reading

	Part II: Scrum and Agile Planning
	3 Scrum
	The History of Scrum
	Scrum Parts
	Scrum Roles
	Customers and Stakeholders
	Chickens and Pigs
	Scaling Scrum
	Summary
	Additional Reading

	4 Sprints
	The Big Picture
	Planning
	Tracking Progress
	The Daily Scrum Meeting
	Sprint Reviews
	Retrospectives
	Sprint Failures
	Summary
	Additional Reading

	5 User Stories
	A Fateful Meeting
	What Are User Stories?
	Levels of Detail
	Conditions of Satisfaction
	Using Index Cards for User Stories
	INVEST in User Stories
	User Roles
	Defining Done
	Collecting Stories
	Advantages of User Stories
	Summary
	Additional Reading

	6 Agile Planning
	Why Agile Planning?
	The Product Backlog
	Estimating Story Size
	Release Planning
	Summary
	Additional Reading

	Part III: Agile Game Development
	7 Video Game Project Planning
	Midnight Club Story
	Minimum Required Feature Sets
	The Need for Stages
	The Development Stages
	Mixing the Stages
	Managing Stages with Releases
	Production on an Agile Project
	Summary
	Additional Reading

	8 Teams
	Great Teams
	A Scrum Approach to Teams
	Game Teams and Collaboration
	Scaling and Distributing Scrum
	Summary
	Additional Reading

	9 Faster Iterations
	Where Does Iteration Overhead Come From?
	Measuring and Displaying Iteration Time
	Personal and Build Iteration
	Summary
	Additional Reading

	Part IV: Agile Disciplines
	10 Agile Technology
	The Problems
	An Agile Approach
	Summary
	Additional Reading

	11 Agile Art and Audio
	The Problems We Are Solving with Agile
	Concerns About Agile
	Art Leadership
	Art on a Cross-Discipline Team
	Summary
	Additional Reading

	12 Agile Design
	The Problems
	Designing with Scrum
	Summary
	Additional Reading

	13 Agile QA and Production
	Agile QA
	The Role of QA on an Agile Game Team
	Agile Production
	Summary
	Additional Reading

	Part V: Getting Started
	14 The Myths and Challenges of Scrum
	Silver Bullet Myths
	Fear, Uncertainty, and Doubt
	Scrum Challenges
	Summary
	Additional Reading

	15 Working with a Publisher
	The Challenges
	Building Trust, Allaying Fear
	Agile Contracts
	Summary
	Additional Reading

	16 Launching Scrum
	The Three Stages of Adoption
	Adoption Strategies
	Summary
	Additional Reading

	CONCLUSION
	BIBLIOGRAPHY
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

