
ptg6843605

ptg6843605

Praise for Agile Analytics

“This book does a great job of explaining why and how you would imple-
ment Agile Analytics in the real world. Ken has many lessons learned from
actually implementing and refining this approach. Business Intelligence is
definitely an area that can benefit from this type of discipline.”

—Dale Zinkgraf, Sr. Business Intelligence Architect

“One remarkable aspect of Agile Analytics is the breadth of coverage—from
product and backlog management to Agile project management techniques,
from self-organizing teams to evolutionary design practices, from auto-
mated testing to build management and continuous integration. Even if you
are not on an analytics project, Ken’s treatment of this broad range of topics
related to products with a substantial data-oriented flavor will be useful for
and beyond the analytics community.”

— Jim Highsmith, Executive Consultant, ThoughtWorks, Inc., and author of Agile
Project Management

“Agile methods have transformed software development, and now it’s time
to transform the analytics space. Agile Analytics provides the knowledge
needed to make the transformation to Agile methods in delivering your
next analytics projects.”

— Pramod Sadalage, coauthor of Refactoring Databases: Evolutionary Database
Design

“This book captures the fundamental strategies for successful business
intelligence/analytics projects for the coming decade. Ken Collier has raised
the bar for analytics practitioners—are you up to the challenge?”

— Scott Ambler, Chief Methodologist for Agile and Lean, IBM Rational Founder,
Agile Data Method

“A sweeping presentation of the fundamentals that will empower teams to
deliver high-quality, high-value, working business intelligence systems far
more quickly and cost effectively than traditional software development
methods.”

—Ralph Hughes, author of Agile Data Warehousing

ptg6843605

This page intentionally left blank

ptg6843605

AGILE ANALYTICS

ptg6843605

Agile software development centers on four values, which are identified
in the Agile Alliance’s Manifesto*:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

The development of Agile software requires innovation and responsiveness, based on
generating and sharing knowledge within a development team and with the customer.
Agile software developers draw on the strengths of customers, users, and developers
to find just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences
of such Agile developers. Individual books address individual techniques (such as Use
Cases), group techniques (such as collaborative decision making), and proven solutions
to different problems from a variety of organizational cultures. The result is a core of
Agile best practices that will enrich your experiences and improve your work.

* © 2001, Authors of the Agile Manifesto

Visit informit.com/agileseries for a complete list of available publications.

The Agile Software Development Series
Alistair Cockburn and Jim Highsmith, Series Editors

ptg6843605

AGILE ANALYTICS

A VALUE-DRIVEN APPROACH TO BUSINESS
INTELLIGENCE AND DATA WAREHOUSING

KEN COLLIER

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg6843605

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Collier, Ken, 1960–
Agile analytics : a value-driven approach to business intelligence and

data warehousing / Ken Collier.
 p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-50481-4 (pbk. : alk. paper)

1. Business intelligence—Data processing. 2. Business
intelligence—Computer programs. 3. Data warehousing. 4. Agile
software development. 5. Management information systems. I. Title.
 HD38.7.C645 2012
 658.4’72—dc23
 2011019825

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-50481-4
ISBN-10: 0-321-50481-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, July 2011

ptg6843605

This book is dedicated to my wife and best friend, Beth,
who never once asked, “How come it’s taking you so

long to finish that darn book?”

ptg6843605

This page intentionally left blank

ptg6843605

ix

CONTENTS

Foreword by Jim Highsmith xv

Foreword by Wayne Eckerson xvii

Preface xix

Acknowledgments xxxiii

About the Author xxxv

Part I Agile Analytics: Management Methods 1

Chapter 1 Introducing Agile Analytics 3
Alpine-Style Systems Development 4
What Is Agile Analytics? 7

Here’s What Agile Analytics Is 7
Guiding Principles 9
Myths and Misconceptions 10

Data Warehousing Architectures and Skill Sets 13
Data Warehousing Conceptual Architectures 13
Diverse and Disparate Technical Skills 15

Why Do We Need Agile Analytics? 16
First Truth: Building DW/BI Systems Is Hard 16
Second Truth: DW/BI Development Projects Fail Often 17
Third Truth: It Is Best to Fail Fast and Adapt 18
Is Agile Really Better? 19
The Difficulties of Agile Analytics 20

Introducing FlixBuster Analytics 22
Wrap-Up 23

Chapter 2 Agile Project Management 25
What Is Agile Project Management? 26
Phased-Sequential DW/BI Development 30

ptg6843605

x CONTENTS

Envision Explore Instead of Plan Do 32
Envision Phase 32
Explore Phase 33

Changing the Role of Project Management 35
Making Sense of Agile “Flavors” 36
Tenets of Agility 39

Just Enough Design 39
Synchronize Daily 41
Timebox Everything 42
Colocating Teams 44
Attention to Technical Debt 45
Plan to Capacity and Monitor Velocity 46
Track Daily Progress 49
Monitor Story Completion, Not Task Time 54

Wrap-Up 56

Chapter 3 Community, Customers, and Collaboration 59
What Are Agile Community and Collaboration? 60
The Agile Community 64
A Continuum of Trust 67
The Mechanics of Collaboration 69
Consumer Collaboration 73
Doer Collaboration 77
Planner Collaboration 78
Precursors to Agility 80
Wrap-Up 82

Chapter 4 User Stories for BI Systems 85
What Are User Stories? 86
User Stories versus Requirements 89
From Roles to Use Cases to User Stories 92

User Roles 93
Use-Case Modeling 96
Finding User Stories in Event Flows 98
Use-Case Scenarios 98

Decomposing Epics 99
What’s the Smallest, Simplest Thing? 103
Story Prioritization and Backlog Management 107

Value-Based Prioritization 108
Capability-Based Prioritization 109

ptg6843605

CONTENTS xi

Prioritization Process 110
Backlog Management 111

Story-Point Estimating 111
Parking Lot Diagrams 117
Wrap-Up 119

Chapter 5 Self-Organizing Teams Boost Performance 121
What Is a Self-Organizing Team? 122
Self-Organization Requires Self-Discipline 127
Self-Organization Requires Shared Responsibility 128
Self-Organization Requires Team Working Agreements 130
Self-Organization Requires Honoring Commitments 132

Watch Out for Hangovers 133
Self-Organization Requires Glass-House Development 134
Self-Organizing Requires Corporate Alignment 136
Wrap-Up 137

Part II Agile Analytics: Technical Methods 139

Chapter 6 Evolving Excellent Design 141
What Is Evolutionary Design? 144
How Much Up-Front Design? 148
Agile Modeling 149
Data Model Patterns 152
Managing Technical Debt 154
Refactoring 157

What Is Refactoring? 159
When to Refactor 162
How to Refactor 165
Final Words on Refactoring 167

Deploying Warehouse Changes 167
Blue-Green Deployment 169
Database Versioning 170

Other Reasons to Take an Evolutionary Approach 171
Case Study: Adaptive Warehouse Architecture 174

Product Evolution 175
Architectural Overview 177
Observation Message Model 179

Wrap-Up 189

ptg6843605

xii CONTENTS

Chapter 7 Test-Driven Data Warehouse Development 193
What Is Agile Analytics Testing? 194
Agile Testing Framework 197

What about Performance, Load, and Stress Testing? 200
BI Test Automation 201

BI Testing Process 203
Database Testing Tools 205
What to Test? 209

Sandbox Development 211
Test-First BI Development 215

Unit-Test-Driven Development 215
Storytest-Driven DW/BI Development 218
Generating Storytests 219

BI Testing Guidelines 220
Setup Time 221
Functional BI Testing 222
Wrap-Up 223

Chapter 8 Version Control for Data Warehousing 225
What Is Version Control? 226
The Repository 230

What to Store? 230
What Not to Store? 232

Working with Files 233
What Are Versions? 235
Tags, Branches, and Merging 236
Resolving Conflicts 238

Organizing the Repository 240
Explanatory Files 241
Directories 241

Tagging and Branching 245
When to Tag and Branch 245
Naming Tags and Branches 248
Keeping Things Simple 251

Choosing an Effective Tool 252
Wrap-Up 254

Chapter 9 Project Automation 257
What Is Project Automation? 258
Getting Started 261

ptg6843605

CONTENTS xiii

Build Automation 262
Rudimentary Automated Build 264
More Advanced Automated Build 267
When to Get Started 274

Continuous Integration 274
Build Frequency 275
Scheduled Builds 276
Triggered Builds 277
Setting Up Continuous Integration 277

Push-Button Releases 281
What Is a Release? 282
Preparing a Release 282
Bundle the Release 283

Wrap-Up 288

Chapter 10 Final Words 291
Focus on the Real Problem 291
Being Agile versus Doing Agile 293
Gnarly Problems 296
What about Emerging Technologies? 298
Adoption Strategies 299

Expect Some Chaos 300
Leadership Responsibilities 302
Goals and Business Alignment 302
Agile Adoption Road-Mapping 303
Training and Coaching 303
Measuring Success 305

Closing Thoughts . . . 306

References and Recommended Reading 309

Index 315

ptg6843605

This page intentionally left blank

ptg6843605

xv

FOREWORD
BY JIM HIGHSMITH

I was introduced to Ken Collier through a mutual friend about seven years
ago. We started meeting for coffee (a two-person Agile group in Flagstaff,
Arizona) every week or so to talk about software development, a sprinkling
of Agile here and there, skiing, mountain biking, and Ken’s analytics proj-
ects. Early on, as Ken talked about a project that was faltering and I talked
about Agile, he decided to try out Agile on his next project. As he quipped,
“It couldn’t be worse!”

Over the years I’ve heard every reason imaginable why “Agile won’t work
in my company because we are different.” Ken never had that attitude and
from the beginning kept trying to figure out not if Agile would work on
business intelligence and data warehousing projects, but how it would work.
Ken saw each impediment as an opportunity to figure out an Agile way to
overcome it. From developing user stories that traversed the entire analyt-
ics software stack, to figuring out how to do continuous integration in that
same diverse stack, Ken has always been Agile, just as he was learning to
do Agile. Today, Ken champions the cause of being Agile and not just doing
Agile.

Over subsequent analytics projects, one that ran for over three years, deliv-
ering releases every quarter, Ken took the fundamental Agile management
and development practices and came up with innovative ways to apply them.
Business intelligence and data warehousing developers have been reluctant
to embrace Agile (although that is changing) in part because it wasn’t clear
how to apply Agile to these large, data-centric projects. However, analytics
projects suffered from the same problems as more typical IT projects—they
took too long, cost too much, and didn’t satisfy their customers. In our cur-
rent turbulent business era these kinds of results are no longer acceptable.

One remarkable aspect of Agile Analytics is the breadth of coverage—from
product and backlog management, to Agile project management techniques,
to self-organizing teams, to evolutionary design practices, to automated
testing, to build management and continuous integration. Even if you are
not on an analytics project, Ken’s treatment of this broad range of topics
related to products with a substantial data-oriented flavor will be useful for
and beyond the analytics community.

ptg6843605

xvi FOREWORD BY JIM HIGHSMITH

In each subject area he has taken the basic Agile practices and custom-
ized them to analytics projects. For example, many BI and data warehouse
teams are far behind their software development counterparts in configura-
tion management. With execution code in Java, Ruby, and other languages,
stored procedures, SQL, and tool-specific code in specialized tools, analyt-
ics teams often have poor “code” management practices. Ken spends several
chapters on reviewing techniques that software developers have been using
and showing how those techniques can be adapted to an analytics envi-
ronment. Ken often asks analytics teams, “If your servers went down hard
today, how long would it take you to rebuild?” The responses he typically
receives vary from a few weeks to never! The automation of the build, inte-
gration, and test process is foreign to many analytics teams, so Ken spends
a chapter each on version control and build automation, showing how to
build a fast-paced continuous integration environment.

The book also devotes a chapter to explaining how to customize test-driven
development (TDD) to an analytics environment. Comprehensive, auto-
mated testing—from unit to acceptance—is a critical piece of Agile devel-
opment and a requirement for complete continuous integration.

The breadth of Ken’s topic coverage extends to architecture. While he advo-
cates architecture evolution (and evolutionary design is covered in Chapter 6,
“Evolving Excellent Design”), he describes architectural patterns that are
adaptive. In Chapter 6 he introduces an adaptable analytics architecture,
one that he used on a large project in which change over time was a key part
of the challenge. This architecture advocates a “data pull” in contrast to the
traditional “data push” approach, much like Kanban systems.

What I like about Ken’s book can be summarized by three points: (1) It
applies Agile principles and practices to analytics projects; (2) it addresses
technical and management practices (doing Agile) and core Agile principles
(being Agile); and (3) it covers an astonishingly wide range of topics—from
architecture to build management—yet it’s not at all superficial. This is
quite an accomplishment. Anyone participating in data-centric or business
analytics projects will benefit from this superb book.

—Jim Highsmith
Executive Consultant
Thoughtworks, Inc.

ptg6843605

xvii

FOREWORD
BY WAYNE ECKERSON

Several years ago, I spearheaded the development of Web sites for The Data
Warehousing Institute’s local chapters. I had established the program two
years earlier and worked closely with many of the officers to grow the chap-
ters and host events.

As the “business driver” of the project, I knew exactly what functionality
the chapter Web sites needed. I had researched registration and collabora-
tion systems and mapped their capabilities to my feature matrix. I was ready
to wheel and deal and get a new system up and running in three months.

Unfortunately, the project went “corporate.” The president assigned some-
one to manage the project, an IT person to collect requirements, and a
marketing person to coordinate integration with our existing Web site. We
established a regular time to meet and discuss solutions. In short order, the
project died.

My first sense of impending doom came when I read the requirements doc-
ument compiled by the IT developer after I had e-mailed her my require-
ments and had a short conversation. When I read the document—and I’m
technically astute—I no longer recognized my project. I knew that anyone
working from the document (i.e., vendor or developer) would never get
close to achieving the vision for the Web sites that I felt we needed.

This experience made me realize how frustrated business people get with
IT’s traditional approach to software development. Because I witnessed
how IT translates business requirements into IT-speak, I now had a greater
understanding of why so many business intelligence (BI) projects fail.

Agile to the rescue. When I first read about Agile development techniques,
I rejoiced. Someone with a tad of business (and common) sense had finally
infiltrated the IT community. Everything about the methodology made
perfect sense. Most important, it shifts the power in a development project
from the IT team to business users for whom the solution is being built!

However, the Agile development methodology was conceived to facili-
tate software projects for classic transaction-processing applications.

ptg6843605

xviii FOREWORD BY WAYNE ECKERSON

Unfortunately, it didn’t anticipate architecture- and data-laden develop-
ment projects germane to business intelligence.

Fortunately, BI practitioners like Ken Collier have pioneered new territory
by applying Agile methods to BI and have lived to tell about their experi-
ences. Ken’s book is a fount of practical knowledge gleaned from real project
work that shows the dos and don’ts of applying Agile methods to BI.

Although the book contains a wealth of process knowledge, it’s not a how-
to manual; it’s really more of a rich narrative that gives would-be Agile BI
practitioners the look, feel, smell, and taste of what it’s like to apply Agile
methods in a real-world BI environment. After you finish reading the book,
you will feel as if you have worked side by side with Ken on a project and
learned from the master.

—Wayne Eckerson
Founder and President
BI Leadership Forum
Formerly Director of Research and Services, TDWI

ptg6843605

xix

PREFACE

WHEN DW/BI PROJECTS GO BAD

Most data warehouse developers have experienced projects that were less
than successful. You may even have experienced the pain of a failed or fail-
ing project. Several years ago I worked for a midsize company that was seek-
ing to replace its existing homegrown reporting application with a properly
architected data warehouse. My role on the project was chief architect and
technical lead. This project ended very badly and our solution was ulti-
mately abandoned. At the outset the project appeared poised for success and
user satisfaction. However, in spite of the best efforts of developers, project
managers, and stakeholders, the project ran over budget and over schedule,
and the users were less than thrilled with the outcome. Since this project
largely motivated my adaptation of Agile principles and practices to data
warehouse and business intelligence (DW/BI) development, I offer this brief
retrospective to help provide a rationale for the Agile DW/BI principles and
practices presented throughout this book. It may have some similarities to
projects that you’ve worked on.

About the Project

This section summarizes the essential characteristics of the project, includ-
ing the following:

� Existing application. The company’s existing reporting application
was internally referred to as a “data warehouse,” which significantly
skewed users’ understanding of what a data warehouse applica-
tion offers. In reality the data model was a replication of parts of
one of the legacy operational databases. This replicated database
did not include any data scrubbing and was wrapped in a signifi-
cant amount of custom Java code to produce the reports required.
Users had, at various times, requested new custom reports, and the
application had become overburdened with highly specialized and
seldom used reporting features. All of the reports could be classi-
fied as canned reports. The system was not optimized for analytical
activities, and advanced analytical capabilities were not provided.

ptg6843605

xx PREFACE

� Project motivation. Because the existing “data warehouse” was
not architected according to data warehousing best practices, it
had reached the practical limits of maintainability and scalability
needed to continue meeting user requirements. Additionally, a new
billing system was coming online, and it was evident that the exist-
ing system could not easily be adapted to accommodate the new
data. Therefore, there was strong executive support for a properly
designed data warehouse.

� External drivers. The data warehousing project was initially envi-
sioned by a sales team from one of the leading worldwide vendors of
data warehousing and business intelligence software. In providing
guidance and presales support, this sales team helped the project
sponsors understand the value of eliciting the help of experienced
business intelligence consultants with knowledge of industry best
practices. However, as happens with many sales efforts, initial esti-
mates of project scope, cost, and schedule were overly ambitious.

� Development team. The development team consisted exclusively of
external data warehousing contractors. Because the company’s exist-
ing IT staff had other high-priority responsibilities, there were no
developers with deep knowledge of the business or existing opera-
tional systems. However, the development team had open access to
both business and technical experts within the company as well as
technology experts from the software vendor. While initial discov-
ery efforts were challenging, there was strong participation from all
stakeholders.

� Customer. The primary “customer” for the new data warehouse was
the company’s finance department, and the project was sponsored
by the chief financial officer. They had a relatively focused busi-
ness goal of gaining more reliable access to revenue and profitability
information. They also had a substantial volume of existing reports
used in business analysis on a routine basis, offering a reasonable
basis for requirements analysis.

� Project management. Project management (PM) responsibilities
were handled by corporate IT using traditional Project Management
Institute/Project Management Body of Knowledge (PMBOK) prac-
tices. The IT group was simultaneously involved in two other large
development projects, both of which had direct or indirect impact
on the data warehouse scope.

� Hosted environment. Because of limited resources and infrastruc-
ture, the company’s IT leadership had recently decided to partner
with an application service provider (ASP) to provide hosting ser-
vices for newly developed production systems. The data warehouse

ptg6843605

PREFACE xxi

was expected to reside at the hosting facility, located on the west
coast of the United States, while the company’s headquarters were
on the east coast. While not insurmountable, this geographic sepa-
ration did have implications for the movement of large volumes of
data since operational systems remained on the east coast, residing
on the corporate IT infrastructure.

Project Outcome

The original project plan called for an initial data warehouse launch within
three months but had an overly ambitious scope for this release cycle. Proj-
ect completion was a full eight months after project start, five months late!
User acceptance testing did not go well. Users were already annoyed with
project delays, and when they finally saw the promised features, there was
a large gap between what they expected and what was delivered. As is com-
mon with late projects, people were added to the development team during
the effort to try to get back on track. As Fred Brooks says, “Adding more
people to a late project only makes it later” (Brooks 1975). Ultimately, proj-
ect costs far exceeded the budget, users were unsatisfied, and the project was
placed on hold until further planning could be done to justify continued
development.

Retrospective

So who was to blame? Everybody! Users felt that the developers had missed
the mark and didn’t implement all of their requirements. Developers felt that
the users’ expectations were not properly managed, and the project scope
grew out of control. Project sponsors felt that the vendors overpromised and
underdelivered. Vendors felt that internal politics and organizational issues
were to blame. Finally, many of the organization’s IT staff felt threatened by
lack of ownership and secretly celebrated the failure.

The project degenerated into a series of meetings to review contracts and
project documents to see who should be held responsible, and guess what?
Everyone involved was partially to blame. In addition to the normal techni-
cal challenges of data warehouse development, the following were identified
as root causes of project failure:

� The contract did not sufficiently balance scope, schedule, and
resources.

� Requirements were incomplete, vague, and open-ended.
� There were conflicting interpretations of the previously approved

requirements and design documents.

ptg6843605

xxii PREFACE

� Developers put in long nights and weekends in chaotic attempts to
respond to user changes and new demands.

� The technical team was afraid to publicize early warning signs
of impending failure and continued trying to honor unrealistic
commitments.

� Developers did not fully understand the users’ requirements or
expectations, and they did not manage requirements changes well.

� Users had significant misconceptions about the purpose of a data
warehouse since existing knowledge was based on the previous
reporting application (which was not a good model of a warehouse).

� Vendors made ambitious promises that the developers could not
deliver on in the time available.

� The project manager did not manage user expectations.
� IT staff withheld important information from developers.
� The ASP partner did not provide the level of connectivity and tech-

nical support the developers expected.

Hindsight truly is 20/20, and in the waning days of this project several things
became apparent: A higher degree of interaction among developers, users,
stakeholders, and internal IT experts would have ensured accurate under-
standing on the part of all participants. Early and frequent working software,
no matter how simplistic, would have greatly reduced the users’ misconcep-
tions and increased the accuracy of their expectations. Greater emphasis on
user collaboration would have helped to avoid conflicting interpretations
of requirements. A project plan that focused on adapting to changes rather
than meeting a set of “frozen” contractual requirements would have greatly
improved user satisfaction with the end product. In the end, and regardless
of blame, the root cause of this and many other data warehousing project
failures is the disconnect in understanding and expectations between devel-
opers and users.

ABOUT THIS BOOK

About the same time I was in the throes of the painful and failing project
just described, I met Jim Highsmith, one of the founding fathers of the Agile
movement, author of Adaptive Software Development, Agile Software Devel-
opment Ecosystems, and Agile Project Management and one of the two series
editors for the Agile Software Development Series of which this book is a
part. Jim listened to my whining about our project difficulties and gave me
much food for thought about how Agile methods might be adapted to DW/BI
systems development. Unfortunately, by the time I met Jim it was too late

ptg6843605

PREFACE xxiii

to right that sinking ship. However, since then Jim and I have become good
friends, exchanging ideas over coffee on a mostly weekly basis. Well, mostly
he shares good ideas and I do my best to absorb them. Jim has become my
Agile mentor, and I have devoted my professional life since we first met to
ensuring that I never, ever work on another failing DW/BI project again.
Now that may seem like an audacious goal, but I believe that (a) life is too
short to suffer projects that are doomed to fail; (b) Agile development is the
single best project risk mitigation approach we have at our disposal; and (c)
Agile development is the single best means of innovating high-value, high-
quality, working DW/BI systems that we have available. That’s what this
book is about:

� Mitigating DW/BI project risk
� Innovating high-value DW/BI solutions
� Having fun!

Since my last painful project experience I have had many wonderful oppor-
tunities to adapt Agile development methods to the unique characteristics
of DW/BI systems development. Working with some very talented Agile
DW/BI practitioners, I have successfully adapted, implemented, and refined
a comprehensive set of project management and technical practices to create
the Agile Analytics development method.

This adaptation is nontrivial as there are some very significant and unique
challenges that we face that mainstream software developers do not. DW/BI
developers deal with a hybrid mix of integrating commercial software and
writing some custom code (ETL scripting, SQL, MDX, and application pro-
gramming are common). DW/BI development teams often have a broad and
disparate set of skills. DW/BI development is based on large data volumes
and a complex mixture of operational, legacy, and specialty systems. The
DW/BI systems development platform is often a high-end dedicated server
or server cluster, making it harder to replicate for sandbox development and
testing. For these reasons and more, Agile software development methods
do not always easily transfer to DW/BI systems development, and I have met
a few DW/BI developers who have given up trying. This book will introduce
you to the key technical and project management practices that are essential
to Agile DW/BI. Each practice will be thoroughly explained and demon-
strated in a working example, and I will show you how you might modify
each practice to best fit the uniqueness of your situation.

ptg6843605

xxiv PREFACE

This book is written for three broad audiences:

� DW/BI practitioners seeking to learn more about Agile techniques
and how they are applied to the familiar complexities of DW/BI
development. For these readers I provide the details of Agile techni-
cal and project management techniques as they relate to business
intelligence and data-centric projects.

� Agile practitioners who want to know how to apply familiar Agile
practices to the complexities of DW/BI systems development. For
these readers I elaborate upon the traits of business intelligence proj-
ects and systems that make them distinctly different from software
development projects, and I show how to adapt Agile principles and
practices to these unique characteristics.

� IT and engineering management who have responsibility for and
oversight of program portfolios, including data warehousing, busi-
ness intelligence, and analytics projects. This audience may possess
neither deep technical expertise in business intelligence nor exper-
tise in Agile methods. For these readers I present an introduction to
an approach that promises to increase the likelihood of successful
projects and delighted customers.

Although this book isn’t a primer on the fundamentals of DW/BI systems, I
will occasionally digress into coverage of DW/BI fundamentals for the ben-
efit of the second audience. Readers already familiar with business intelli-
gence should feel free to skip over these sections.

By the way, although I’m not an expert in all types of enterprise IT systems,
such as enterprise resource planning (ERP) implementations, I have reason
to believe that the principles and practices that make up Agile Analytics can
be easily adapted to work in those environments as well. If you are an IT
executive, you might consider the broader context of Agile development in
your organization.

WHY AN AGILE DW/BI BOOK?
In the last couple of years the Agile software development movement has
exploded. Agile success stories abound. Empirical evidence continues to
increase and strongly supports Agile software development. The Agile com-
munity has grown dramatically during the past few years, and many large
companies have adopted agility across their IT and engineering depart-
ments. And there has been a proliferation of books published about various
aspects of Agile software development.

ptg6843605

PREFACE xxv

Unfortunately, the popularity of Agile methods has been largely lost on the
data and business intelligence communities. For some strange reason the
data community and software development community have always tended
to grow and evolve independently of one another. Big breakthroughs that
occur in one community are often lost on the other. The object-oriented
boom of the 1990s is a classic example of this. The software development
community has reaped the tremendous benefits of folding object orientation
into its DNA, yet object-oriented database development remains peripheral
to the mainstream for the data community.

Whenever I talk to groups of DW/BI practitioners and database developers,
the common reaction is that Agile methods aren’t applicable to data-centric
systems development. Their arguments are wide and varied, and they are
almost always based on myths, fallacies, and misunderstandings, such as
“It is too costly to evolve and change a data model. You must complete the
physical data model before you can begin developing reports and other user
features.”

The reality is that there is nothing special about data-centric systems that
makes Agile principles irrelevant or inappropriate. The challenge is that
Agile practices must be adapted, and a different tool set must be adopted for
data-centric systems development. Although many of the current books on
Agile concepts and techniques are directly relevant to the data community,
most of them do not speak directly to the data-minded reader. Unfortu-
nately, many current Agile books are too narrowly focused on new, green-
field software development using all the latest platforms, frameworks, and
programming languages. It can be difficult for readers to extrapolate the
ideas presented in these books to database development, data warehouse
development, ERP implementation, legacy systems development, and so
forth.

Agile author and database expert Scott Ambler has written books on Agile
database development and database refactoring (a distinctly Agile practice)
to engage the database community in the Agile dialogue. Similarly, I’ve
written this book to engage the DW/BI community in the Agile movement
because Agile is simply a better way to work on large, complex DW/BI sys-
tems. In 2008 Ralph Hughes’s book Agile Data Warehousing hit the shelves
(Hughes 2008). Ralph does a great job of adapting Scrum and eXtreme Pro-
gramming (XP) techniques to the nuances of data warehousing, and many
of those concepts are also present in this book. Additionally, this book aims
to dive into many of the technical practices that are needed to develop in an
Agile manner.

ptg6843605

xxvi PREFACE

WHAT DO I MEAN BY AGILE ANALYTICS?
A word about terminology: I’ve chosen the title Agile Analytics more because
it’s catchy and manageable than because it precisely captures my focus. Face
it, Agile Data Warehousing, Business Intelligence, and Analytics would be a
mouthful. By and large the data warehousing community has come to use
the term data warehousing to refer to back-end management and prepara-
tion of data for analysis and business intelligence to refer to the user-facing
front-end applications that present data from the warehouse for analysis.
The term analytics is frequently used to suggest more advanced business
intelligence methods involving quantitative analysis of data (e.g., predic-
tive modeling, statistical analysis, etc.). Moreover, the industry term busi-
ness intelligence is sometimes an ambiguous and broadly encompassing term
that includes anything to do with data-driven business processes (business
performance management, customer relationship management, etc.) or
decision support (scorecards, dashboards, etc.).

My use of the moniker Agile Analytics should not imply that Agile meth-
ods are applicable only to a certain class of user-facing BI application devel-
opment. Agile methods are applicable and adaptable to data warehouse
development as well as business intelligence and analytical application
development. For many people Agile BI development tends to be easier to
imagine, since it is often assumed that the data warehouse has been built
and populated. Certainly a preexisting data warehouse simplifies the effort
required to build BI applications. However, you should not take this to
mean that the data warehouse must be completed prior to building BI appli-
cations. In fact, Agile Analytics is a user-value–driven approach in which
high-valued BI capabilities drive the evolutionary development of the data
warehouse components needed to support those capabilities. In this way
we avoid overbuilding the warehouse to support more than its intended
purpose.

In this book I focus primarily on the core of most flavors of DW/BI systems,
the data warehouse. My use of the term business intelligence or BI through-
out this book should be assumed to include analytic as well as reporting and
querying applications. When I use the term DW/BI system, you should infer
that I mean the core data warehouse along with any presentation applica-
tions that are served by the warehouse such as a finance dashboard, a fore-
casting portal, or some other BI application. However, the DW/BI acronym
is somewhat clunky, and I may occasionally use BI alone. In most of these
cases you should assume that I mean to include relevant DW components
as well. I’ll also address some of the advanced BI concepts like data mining

ptg6843605

PREFACE xxvii

and data visualization. I’ll leave it to the reader to extrapolate the practices
to more specific BI projects such as CRM implementations. The principles
still apply.

WHO SHOULD READ THIS BOOK?
An Agile DW/BI team is made up of more than just developers. It includes
the customer (user) community, who provide requirements; the business
stakeholder community, who are monitoring the impact of the BI system on
business improvements; and the technical community, who develop, deploy,
and support the DW/BI system. These communities are connected by a
project manager, a business analyst (or product owner), and an executive
sponsor. Each of these communities plays a crucial role in project success,
and each of these communities requires a well-defined set of Agile practices
to be effective in its role. This book is intended for both business and techni-
cal readers who are involved in one or more of the communities described.

Not everything in the book is meant for everyone on the list, but there is
something here for everyone. I have worked with many organizations that
seek Agile training, mentoring, and coaching. Occasionally I have to dispel
the myth that agility applies only to developers and techies.

At one company with which I was invited to work, the executive who spon-
sored the training said something like, “If our engineers could just start
doing Agile development, we could finish projects faster and our customers
would be happier.” This statement represents some unfortunate misconcep-
tions that can be a buzzkill for Agile teams.

First, successful agility requires a change in the mind-set of all team mem-
bers. Customer community members must understand that their time is
required to explore and exercise newly completed features, and to provide
continuous input and feedback on the same. Management community
members must adapt their expectations as project risk and uncertainty
unfolds, and as the team adapts to inevitable change. The technical com-
munity must learn a whole new way of working that involves lots of disci-
pline and rigor. And the project interface community must be committed
to daily project involvement and a shift in their role and contribution to
project success.

Second, Agile doesn’t always mean faster project completion. Even the best
project teams still have a finite capacity to complete a scope of work. Agility
is not a magic wand that makes teams work faster. Agile practices do steer

ptg6843605

xxviii PREFACE

teams to focus on the high-value and riskiest features early. Therefore, it is
possible that an Agile DW/BI system can be launched into production ear-
lier, as soon as the most critical features are complete and accepted. How-
ever, I would caution against expecting significantly faster project cycles,
especially in the beginning. On the other hand, you should expect a signifi-
cant increase in quality and customer delight over traditional DW/BI devel-
opment approaches.

The bottom line is that successful adoption of Agile DW/BI requires aware-
ness, understanding, and commitment from the members of all of the
aforementioned project communities. For this reason I have tried to design
this book to provide something relevant for everyone.

HOW THIS BOOK IS ORGANIZED

This book is divided into two parts. Part I, “Agile Analytics: Management
Methods,” is focused on Agile project management techniques and delivery
team coordination. It includes the following chapters:

� Chapter 1, “Introducing Agile Analytics,” provides an overview and
baseline for this DW/BI approach.

� Chapter 2, “Agile Project Management,” introduces an effective col-
lection of practices for chartering, planning, executing, and moni-
toring an Agile Analytics project.

� Chapter 3, “Community, Customers, and Collaboration,” introduces
a set of guidelines and practices for establishing a highly collabora-
tive project community.

� Chapter 4, “User Stories for BI Systems,” introduces the story-driven
alternative to traditional requirements analysis and shows how use
cases and user stories drive the continuous delivery of value.

� Chapter 5, “Self-Organizing Teams Boost Performance,” introduces
an Agile style of team management and leadership as an effective
alternative to more traditional command-and-control styles.

This first part is written for everyone involved in an Agile Analytics proj-
ect, from executive sponsors, to project managers, to business analysts and
product owners, to technical leads and delivery team members. These chap-
ters establish a collection of core practices that shape the way an Agile proj-
ect community works together toward a successful conclusion.

Part II of the book, “Agile Analytics: Technical Methods,” is focused on
the technical methods that are necessary to enable continuous delivery of

ptg6843605

PREFACE xxix

business value at production-quality levels. This part includes the following
chapters:

� Chapter 6, “Evolving Excellent Design,” shows how the evolutionary
design process works and how to ensure that it results in higher-
quality data models and system components with minimal technical
debt.

� Chapter 7, “Test-Driven Data Warehouse Development,” introduces
a collection of practices and tools for automated testing, and for
taking a test-first approach to building data warehouse and business
intelligence components.

� Chapter 8, “Version Control for Data Warehousing,” introduces a set
of techniques and tools for keeping the entire DW/BI system under
version control and configuration management.

� Chapter 9, “Project Automation,” shows how to combine test
automation and version control practices to establish an automated
continuous integration environment that maintains confidence in
the quality of the evolving system.

� Chapter 10, “Final Words,” takes a look at some of the remaining
factors and considerations that are critical to the successful adoption
of an Agile Analytics approach.

I think of this part as a collection of modern development practices that
should be used on every DW/BI project, be it Agile or traditional (e.g.,
“waterfall”). However, these technical practices are essential when an Agile
Analytics approach is taken. These methods establish the minimally suf-
ficient set of technical practices needed to succeed in the continuous, incre-
mental, and evolutionary delivery of a high-value DW/BI system.

Of course, these technical chapters should be read by technical team leads
and delivery team members. However, I also recommend that nontechnical
project team members read the introductory sections of each of these chap-
ters. Doing so will help nontechnical members establish a shared under-
standing of the purpose of these practices and appreciate the value of the
technical team’s efforts to apply them.

HOW SHOULD YOU READ THIS BOOK?
I like to think of Agile Analytics techniques as supporting one of the follow-
ing focal points:

ptg6843605

xxx PREFACE

� Agile DW/BI management: the set of practices that are devoted to
how you run your project, including precursors to agility, Agile proj-
ect management methods, the Agile team, developer-user interface,
and so on

� Agile DW/BI technical methods: the set of practices that are
devoted to the development and delivery of a high-value, high-
quality, working DW/BI system, including specific technical prac-
tices like story-driven development, test-driven development, build
automation, code management, refactoring, and so on

The chapters are organized into these major sections. Each chapter is dedi-
cated to a key practice or related set of practices, beginning with an execu-
tive-level overview of the salient points of the chapter and progressing into
deeper coverage of the topic. Some of the chapter topics are rich enough to
deserve to be entire books. In these cases, my aim is to give the reader a solid
understanding of the topic, and ideally the motivation needed for a deeper
self-study of its mechanics.

If you are reading this to gain a high-level understanding of Agile DW/BI,
the initial overview at the beginning of each chapter will suffice. My goal in
these overviews is to provide an accurate portrayal of each of the Agile DW/
BI practices, but these sections aren’t intended to give you all the techniques
needed to apply the practice.

If you are a data warehouse manager, project sponsor, or anyone who needs
to have a good working understanding of the practices without getting
bogged down in the technical details, I recommend reading the middle sec-
tions of each chapter, especially the project management chapters. These
sections are designed to provide a deep enough understanding of the topic to
either use the techniques or understand how they are used on your project.

If you are a member of the day-to-day project team (project managers,
technical team members, business analysts, product managers, etc.), I rec-
ommend reading the details and examples in each of the project manage-
ment chapters (Part I, “Agile Analytics: Management Methods”). These are
designed to give you a concrete set of techniques to apply in your release
planning, iteration planning, and all other project management and user
collaboration activities. If you are a member of the technical community,
the chapters in Part II, “Agile Analytics: Technical Methods,” are intended
for you.

ptg6843605

PREFACE xxxi

A word about DW/BI technologies: I am a technology agnostic. I have
done DW/BI development using a variety of technology stacks that are
IBM-DB2-centric, Oracle-centric, SAS-centric, and Microsoft-centric, as
well as a variety of hybrid technology stacks. While some technologies may
lend themselves to Agile DW/BI better than others, I am confident that the
guiding principles and practices introduced in this book are technology-
independent and can be effective regardless of your tool choices.

As this book goes to press, there are an increasing number of data ware-
house and business intelligence tool vendors that are branding their prod-
ucts as Agile. Tools and tool suites from forward-thinking vendors such
as WhereScape, Pentaho, Balanced Insight, and others offer some exciting
possibilities for enabling agility. While I do not believe that you must have
these types of tools to take an Agile approach, they certainly do offer some
powerful benefits to Agile delivery teams. The Agile software development
community has greatly benefited from tools that help automate difficult
development activities, and I look forward to the benefits that our com-
munity stands to gain from these vendors. At the same time I would cau-
tion you not to believe that you must have such tools before you can start
being Agile. Instead, I encourage you to get started with Agile techniques
and practices and adopt tools incrementally as you determine that they are
of sufficient benefit.

ptg6843605

This page intentionally left blank

ptg6843605

xxxiii

ACKNOWLEDGMENTS

I would never have gotten the experience and knowledge I needed to write
this book without the contributions of several key people. These friends and
colleagues have my respect and gratitude for the many valuable interactions
I’ve had with them, and the collaborations that ultimately resulted in the
Agile Analytics approach.

Foremost, my good friend Jim Highsmith has been my trusted adviser and
mentor since the beginning of my Agile journey. Jim was just starting to write
the first edition of Agile Project Management when I first met him, and he
made book-writing look so easy that I decided to give it a try. As it turns out,
it’s much harder than he makes it look. My weekly breakfast discussions with
Jim were critical in shaping the concepts in this book. He voluntarily served
as my developmental editor, reviewing early drafts of sections and chapters
and helping me pull things together in a more cohesive and coherent fashion.
Jim continues to challenge my assumptions and gives me new ideas and new
ways to think about the complexities of development. He also didn’t give up
on me when book-writing wasn’t my highest priority. Thanks, Jim.

Jim introduced me to Luke Hohmann at a time when Luke was looking
for somebody with both data warehousing experience and Agile knowl-
edge. Luke is one of the most visionary people I’ve ever met. I was fortu-
nate enough to be the chief architect for one of Luke’s innovative ideas: a
complex, hosted, enterprise DW/BI product offering from one of Luke’s
clients. The complexity of this project and Luke’s deep knowledge of Agile
techniques challenged me (and our team) to figure out how to apply Agile
software methods to the nuances of DW/BI development. The concepts in
this book stem from that experience and have been refined and matured
on subsequent projects. Luke has become a great friend over the past seven
years, and I value his wisdom and vision. Thanks, Luke.

My team on the aforementioned project remains one of the best Agile teams
I have yet experienced either as a participant or as an Agile trainer. This
team included David Brink, Robert Daugherty, James Slebodnick, Scott
Gilbert, Dan O’Leary, Jonathon Golden, and Ricardo Aguirre. Each team
member brought a special set of skills and perspectives, and over that first
three-plus-year-long project these friends and teammates helped me figure

ptg6843605

xxxiv ACKNOWLEDGMENTS

out effective ways to apply Agile techniques to DW/BI development. I’ve
since had other project opportunities to work with many of these friends,
further refining Agile Analytics concepts. These team members deserve
much of the credit for validating and tweaking Agile Analytics practices in a
complex and real-life situation. Thanks, guys.

Jim Highsmith also introduced me to Scott Ambler along the way. Scott has
led the charge in applying Agile to data-centric systems development. For-
tunately for all of us, Scott is a prolific writer who freely shares his ideas
in his many books and on his ambysoft.com Web site. I have benefited
greatly from the conversations I’ve had with him, as well as from his writ-
ings on Agile Modeling, Agile Data, Agile Unified Process, and Database
Refactoring (together with Pramod Sadalage). In the early days of my focus
on Agile in DW/BI, Scott and I regularly lamented our perceptions that the
data community wasn’t paying attention to the benefits of agility, while the
software community wasn’t paying attention to the unique challenges of
database development and systems integration. Scott gave much of his time
reviewing this book. He has given me much to think about and shared ideas
with me that I might otherwise have missed. Thanks, Scott.

I don’t think I truly understood what it means for somebody to have “the
patience of a saint” before working with Addison-Wesley editor Chris
Guzikowski and editorial assistant Raina Chrobak. As it turns out, I am
a painfully slow author who is not very good at applying Agile principles
to book-writing deadlines. Huge thanks go to Raina and Chris, who were
amazingly patient as I slipped deadline after deadline. I hope I have future
opportunities to redeem myself as an author.

Ralph Hughes’s Agile Data Warehousing book hit the shelves as I was writing
this book. Ralph and I were acquainted at that time and since have become
friends and colleagues. I am grateful for his work in this area and for the dis-
cussions I’ve had with him and the experiences he has shared. Although I have
tried not to duplicate what Ralph has already published, I am confident that
our approaches are consistent with and complementary to one another. I look
forward to future collaborations with Ralph as our ideas mature and evolve.

Finally, the ideas presented in this book have benefited tremendously from
smart and thoughtful people willing to review its early drafts and give me
guidance. In addition to Scott’s and Jim’s reviews, special thanks go to Jona-
thon Golden, my go-to guru on project automation, and Israel Gat, expert
on Agile leadership and technical debt. My gratitude also goes to DW/
BI experts Wayne Eckerson and Dale Zinkgraf and to Agile data expert
Pramod Sadalage for their feedback. Their contributions were invaluable.

ptg6843605

xxxv

ABOUT THE AUTHOR

Ken Collier got excited about Agile development in 2003 and was one of
the first to start combining Agile methods with data warehousing, business
intelligence, and analytics. These disciplines present a unique set of chal-
lenges to the incremental/evolutionary style of Agile development. Ken has
successfully adapted Agile techniques to data warehousing and business
intelligence to create the Agile Analytics style. He continues to refine these
ideas as a technical lead and project manager on several Agile DW/BI proj-
ect teams. Ken also frequently trains data warehousing and business intel-
ligence teams in Agile Analytics, giving him the opportunity to exercise this
approach with various technologies, team dynamics, and industry domains.
He has been an invited keynote speaker on the subject of Agile DW/BI at
several U.S. and international conferences, including multiple TDWI (The
Data Warehousing Institute) World Conferences as well as HEDW (Higher
Education Data Warehousing) annual conferences.

In nearly three decades of working in advanced computing and technology, Ken
has experienced many of the trends that come and go in our field, as well as the
ones that truly transform the state of our practices. With an M.S. and Ph.D. in
computer science engineering, Ken is formally trained in software engineering,
data management, and machine learning. He loves challenging problems in the
areas of systems architecture and design, systems/software development life-
cycles, project leadership, data warehousing, business intelligence, and advanced
analytics. Ken also loves helping organizations adopt and tailor effective
approaches and solutions that might not otherwise be apparent. He combines a
deep technical foundation with sound business acumen to help bridge the gaps
that often exist between technical and business professionals.

Ken is the founder and president of KWC Technologies, Inc., and is a senior
consultant with the Cutter Consortium in both the Agile Development and
Business Intelligence practice areas. Ken has had the privilege of working as
a software engineer for a large semiconductor company. He has spent sev-
eral years as a tenured professor of computer science engineering. He has
directed the data warehousing and business intelligence solutions group for
a major consulting firm. And, most recently, he has focused on enabling
organizational agility, including Agile software engineering, Agile Analyt-
ics, and Agile management and leadership for client companies.

ptg6843605

This page intentionally left blank

ptg6843605

PART I

AGILE ANALYTICS:
MANAGEMENT METHODS

ptg6843605

This page intentionally left blank

ptg6843605

3

Chapter 1

INTRODUCING AGILE ANALYTICS

Like Agile software development, Agile Analytics is established on a set of
core values and guiding principles. It is not a rigid or prescriptive methodol-
ogy; rather it is a style of building a data warehouse, data marts, business
intelligence applications, and analytics applications that focuses on the early
and continuous delivery of business value throughout the development life-
cycle. In practice, Agile Analytics consists of a set of highly disciplined prac-
tices and techniques, some of which may be tailored to fit the unique data
warehouse/business intelligence (DW/BI) project demands found in your
organization.

Agile Analytics includes practices for project planning, management, and
monitoring; for effective collaboration with your business customers and
management stakeholders; and for ensuring technical excellence by the
delivery team. This chapter outlines the tenets of Agile Analytics and estab-
lishes the foundational principles behind each of the practices and tech-
niques that are introduced in the successive chapters in this book.

Agile is a reserved word when used to describe a development style. It means
something very specific. Unfortunately, “agile” occasionally gets misused as
a moniker for processes that are ad hoc, slipshod, and lacking in discipline.
Agile relies on discipline and rigor; however, it is not a heavyweight or highly
ceremonious process despite the attempts of some methodologists to codify
it with those trappings. Rather, Agile falls somewhere in the middle between
just enough structure and just enough flexibility. It has been said that Agile
is simple but not easy, describing the fact that it is built on a simple set of
sensible values and principles but requires a high degree of discipline and
rigor to properly execute. It is important to accurately understand the mini-
mum set of characteristics that differentiate a true Agile process from those
that are too unstructured or too rigid. This chapter is intended to leave you
with a clear understanding of those characteristics as well as the underlying
values and principles of Agile Analytics. These are derived directly from the
tried and proven foundations established by the Agile software community
and are adapted to the nuances of data warehousing and business intelli-
gence development.

ptg6843605

4 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

ALPINE-STYLE SYSTEMS DEVELOPMENT

I’m a bit of an armchair climber and mountaineer. I’m fascinated by the
trials and travails of climbing high mountains like Everest, Annapurna,
and others that rise to over 8,000 meters above sea level. These expeditions
are complicated affairs involving challenging planning and logistics, a high
degree of risk and uncertainty, a high probability of death (for every two
climbers who reach the top of Annapurna, another one dies trying!), diffi-
cult decisions in the face of uncontrollable variables, and incredible rewards
when success is achieved. While it may not be as adventuresome, building
complex business intelligence systems is a lot like high-altitude climbing.
We face lots of risk and uncertainty, complex planning, difficult decisions
in the heat of battle, and the likelihood of death! Okay, maybe not that last
part, but you get the analogy. Unfortunately the success rate for building
DW/BI systems isn’t very much better than the success rate for high-altitude
mountaineering expeditions.

Climbing teams first began successfully “conquering” these high mountains
in the 1950s, ’60s, and ’70s. In those early days the preferred mountaineer-
ing style was known as “siege climbing,” which had a lot of similarities to a
military excursion. Expeditions were led in an autocratic command-and-
control fashion, often by someone with more military leadership experi-
ence than climbing experience. Climbing teams were supported by the large
numbers of porters required to carry massive amounts of gear and supplies
to base camp and higher. Mounting a siege-style expedition takes over a
year of planning and can take two months or more to execute during the
climbing season. Siege climbing is a yo-yo-like affair in which ropes are
fixed higher and higher on the mountain, multiple semipermanent camps
are established at various points along the route, and loads of supplies are
relayed by porters to those higher camps. Finally, with all this support, a
small team of summit climbers launches the final push for the summit on a
single day, leaving from the high camp and returning to the same. Brilliant
teams have successfully climbed mountains for years in this style, but the
expeditions are prohibitively expensive, time-consuming to execute, and
fraught with heavyweight procedures and bureaucracy.

Traditional business intelligence systems development is a lot like siege climb-
ing. It can result in high-quality, working systems that deliver the desired
capabilities. However, these projects are typically expensive, exhibiting a lot
of planning, extensive design prior to development, and long development
cycles. Like siege-style expeditions, all of the energy goes into one shot at the
summit. If the summit bid fails, it is too time-consuming to return to base
camp and regroup for another attempt. In my lifetime (and I’m not that old

ptg6843605

ALPINE-STYLE SYSTEMS DEVELOPMENT 5

yet) I’ve seen multiple traditional DW/BI projects with budgets of $20 mil-
lion or more, and timelines of 18 to 24 months, founder. When such projects
fail, the typical management response is to cancel the project entirely rather
than adjust, adapt, and regroup for another “summit attempt.”

In the 1970s a new mountaineering method called “alpine-style” emerged,
making it feasible for smaller teams to summit these high peaks faster, more
cheaply, and with less protocol. Alpine-style mountaineering still requires
substantial planning, a sufficient supporting team, and enough gear and
supplies to safely reach the summit. However, instead of spending months
preparing the route for the final summit push, alpine-style climbers spend
about a week moving the bare essentials up to the higher camps. In this style,
if conditions are right, summits can be reached in a mere ten days. Teams
of two to three climbers share a single tent and sleeping bag, fewer ropes are
needed, and the climbers can travel much lighter and faster. When condi-
tions are not right, it is feasible for alpine-style mountaineers to return to
base camp and wait for conditions to improve to make another summit bid.

Agile DW/BI development is much like alpine-style climbing. It is essential
that we have a sufficient amount of planning, the necessary support to be
successful, and an appropriate amount of protocol. Our “summit” is the
completion of a high-quality, working business intelligence system that is of
high value to its users. As in mountaineering, reaching our summit requires
the proper conditions. We need just the right amount of planning—but we
must be able to adapt our plan to changing factors and new information.
We must prepare for a high degree of risk and uncertainty—but we must be
able to nimbly manage and respond as risks unfold. We need support and
involvement from a larger community—but we seek team self-organization
rather than command-and-control leadership.

Agile Analytics is a development “style” rather than a methodology or even
a framework. The line between siege-style and alpine-style mountaineering is
not precisely defined, and alpine-style expeditions may include some siege-style
practices. Each style is best described in terms of its values and guiding prin-
ciples. Each alpine-style expedition employs a distinct set of climbing practices
that support a common set of values and principles. Similarly, each Agile DW/
BI project team must adapt its technical, project management, and customer
collaboration practices to best support the Agile values and principles.1

1. I’m not the first Agile advocate to discuss the analogy between climbing and Agile
development. Jim Highsmith made a similar analogy in his 2000 book, Adaptive
Software Development: A Collaborative Approach to Managing Complex Systems
(Highsmith 2000).

ptg6843605

6 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

Premier mountaineer Ed Viesturs has a formula, or core value, that is his
cardinal rule in the big mountains: “Getting to the top is optional. Get-
ting down is mandatory.” (Viesturs and Roberts 2006) I love this core value
because it is simple and elegant, and it provides a clear basis for all of Ed’s
decision making when he is on the mountain. In the stress of the climb, or
in the midst of an intensely challenging project, we need just such a basis for
decision making—our “North Star.” In 2000, a group of the most influen-
tial application software developers convened in Salt Lake City and formed
the Agile Alliance. Through the process of sharing and comparing each
of their “styles” of software development, the Agile Manifesto emerged as
a simple and elegant basis for project guidance and decision making. The
Agile Manifesto reads:2

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

With due respect to the Agile Alliance, of which I am a member, I have
adapted the Agile Manifesto just a bit in order to make it more appropriate
to Agile Analytics:

Manifesto for Agile Analytics Development

We are uncovering better ways of developing data warehousing and business
intelligence systems by doing it and helping others do it. Through this work
we have come to value:

Individuals and interactions over processes and tools
Working DW/BI systems over comprehensive documentation
End-user and stakeholder collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

2. www.agilealliance.org

www.agilealliance.org

ptg6843605

WHAT IS AGILE ANALYTICS? 7

I didn’t want to mess with the original manifesto too much, but it is impor-
tant to acknowledge that DW/BI systems are fundamentally different from
application software. In addition to dealing with large volumes of data,
our efforts involve systems integration, customization, and programming.
Nonetheless, the Agile core values are very relevant to DW/BI systems devel-
opment. These values emphasize the fact that our primary objective is the
creation of high-quality, high-value, working DW/BI systems. Every activity
related to any project either (a) directly and materially contributes to this
primary objective or (b) does not. Agile Analytics attempts to maximize
a-type activities while acknowledging that there are some b-type activities
that are still important, such as documenting your enterprise data model.

WHAT IS AGILE ANALYTICS?
Throughout this book I will introduce you to a set of Agile DW/BI prin-
ciples and practices. These include technical, project management, and user
collaboration practices. I will demonstrate how you can apply these on your
projects, and how you can tailor them to the nuances of your environment.
However, the title of this section is “What Is Agile Analytics?” so I should
probably take you a bit further than the mountaineering analogy.

Here’s What Agile Analytics Is

So here is a summary of the key characteristics of Agile Analytics. This is
simply a high-level glimpse at the key project traits that are the mark of agil-
ity, not an exhaustive list of practices. Throughout the remainder of this
book I will introduce you to a set of specific practices that will enable you to
achieve agility on your DW/BI projects. Moreover, Agile Analytics is a devel-
opment style, not a prescriptive methodology that tells you precisely what
you must do and how you must do it. The dynamics of each project within
each organization require practices that can be tailored appropriately to
the environment. Remember, the primary objective is a high-quality, high-
value, working DW/BI system. These characteristics simply serve that goal:

� Iterative, incremental, evolutionary. Foremost, Agile is an iterative,
incremental, and evolutionary style of development. We work in
short iterations that are generally one to three weeks long, and never
more than four weeks. We build the system in small increments or
“chunks” of user-valued functionality. And we evolve the working
system by adapting to frequent user feedback. Agile development is
like driving around in an unfamiliar city; you want to avoid going
very far without some validation that you are on the right course.

ptg6843605

8 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

Short iterations with frequent user reviews help ensure that we are
never very far off course in our development.

� Value-driven development. The goal of each development itera-
tion is the production of user-valued features. While you and I may
appreciate the difficulty of complex data architectures, elegant data
models, efficient ETL scripts, and so forth, users generally couldn’t
care less about these things. What users of DW/BI systems care
about is the presentation of and access to information that helps
them either solve a business problem or make better business deci-
sions. Every iteration must produce at least one new user-valued
feature in spite of the fact that user features are just the tip of the
architectural iceberg that is a DW/BI system.

� Production quality. Each newly developed feature must be fully
tested and debugged during the development iteration. Agile devel-
opment is not about building hollow prototypes; it is about incre-
mentally evolving to the right solution with the best architectural
underpinnings. We do this by integrating ruthless testing early and
continuously into the DW/BI development process.3 Developers
must plan for and include rigorous testing in their development
process. A user feature is “Done” when it is of production quality, it
is successfully integrated into the evolving system, and developers
are proud of their work. That same feature is “Done! Done!” when
the user accepts it as delivering the right value.

� Barely sufficient processes. Traditional styles of DW/BI develop-
ment are rife with a high degree of ceremony. I’ve worked on many
projects that involved elaborate stage-gate meetings between stages
of development such as the transition from requirements analysis
to design. These gates are almost always accompanied by a formal
document that must be “signed off” as part of the gating process.
In spite of this ceremony many DW/BI projects struggle or founder.
Agile DW/BI emphasizes a sufficient amount of ceremony to meet
the practical needs of the project (and future generations) but noth-
ing more. If a data dictionary is deemed important for use by future
developers, then perhaps a digital image of a whiteboard table or a
simple spreadsheet table will suffice. Since our primary objective
is the production of high-quality, high-value, working systems, we
must be able to minimize the amount of ceremony required for
other activities.

3. Historically database and data warehouse testing has lacked the rigor, discipline, and
automation that have benefited software development efforts (www.ambysoft.com/
surveys/dataQualitySeptember2006.html).

www.ambysoft.com/surveys/dataQualitySeptember2006.html
www.ambysoft.com/surveys/dataQualitySeptember2006.html

ptg6843605

WHAT IS AGILE ANALYTICS? 9

� Automation, automation, automation. The only way to be truly
Agile is to automate as many routine processes as possible. Test
automation is perhaps the most critical. If you must test your fea-
tures and system manually, guess how often you’re likely to rerun
your tests? Test automation enables you to frequently revalidate that
everything is still working as expected. Build automation enables
you to frequently build a version of your complete working DW/BI
system in a demo or preproduction environment. This helps estab-
lish continuous confidence that you are never more than a few hours
or days away from putting a new version into production. Agile
Analytics teams seek to automate any process that is done more
than once. The more you can automate, the more you can focus on
developing user features.

� Collaboration. Too often in traditional projects the development
team solely bears the burden of ensuring that timelines are met,
complete scope is delivered, budgets are managed, and quality is
ensured. Agile business intelligence acknowledges that there is a
broader project community that shares responsibility for project
success. The project community includes the subcommunities of
users, business owners, stakeholders, executive sponsors, techni-
cal experts, project managers, and others. Frequent collaboration
between the technical and user communities is critical to success.
Daily collaboration within the technical community is also critical.
In fact, establishing a collaborative team workspace is an essential
ingredient of successful Agile projects.

� Self-organizing, self-managing teams. Hire the best people, give
them the tools and support they need, then stand aside and allow
them to be successful. There is a key shift in the Agile project man-
agement style compared to traditional project management. The
Agile project manager’s role is to enable team members to work their
magic and to facilitate a high degree of collaboration with users and
other members of the project community. The Agile project team
decides how much work it can complete during an iteration, then
holds itself accountable to honor those commitments. The Agile
style is not a substitute for having the right people on the team.

Guiding Principles

The core values contained in the Agile Manifesto motivate a set of guid-
ing principles for DW/BI systems design and development. These prin-
ciples often become the tiebreaker when difficult trade-off decisions must
be made. Similarly, the Agile Alliance has established a set of principles for

ptg6843605

10 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

software development.4 The following Agile Analytics principles borrow
liberally from t he Agile Alliance principles:

� Our highest priority is to satisfy the DW/BI user community
through early and continuous delivery of working user features.

� We welcome changing requirements, even late in development.
Agile processes harness change for the DW/BI users’ competitive
advantage.

� We deliver working software frequently, providing users with new
DW/BI features every few weeks.

� Users, stakeholders, and developers must share project ownership
and work together daily throughout the project.

� We value the importance of talented and experienced business intel-
ligence experts. We give them the environment and support they
need and trust them to get the job done.

� The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

� A working business intelligence system is the primary measure of
progress.

� We recognize the balance among project scope, schedule, and cost.
The data warehousing team must work at a sustainable pace.

� Continuous attention to the best data warehousing practices
enhances agility.

� The best architectures, requirements, and designs emerge from self-
organizing teams.

� At regular intervals, the team reflects on how to become more effec-
tive, then tunes and adjusts its behavior accordingly.

Take a minute to reflect on these principles. How many of them are present
in the projects in your organization? Do they make sense for your organiza-
tion? Give them another look. Are they realistic principles for your organi-
zation? I have found these not only to be commonsense principles, but also
to be effective and achievable on real projects. Furthermore, adherence to
these principles rather than reliance on a prescriptive and ceremonious pro-
cess model is very liberating.

Myths and Misconceptions

There are some myths and misconceptions that seem to prevail among
other DW/BI practitioners and experts that I have talked to about this style

4. www.agilemanifesto.org/principles.html

www.agilemanifesto.org/principles.html

ptg6843605

WHAT IS AGILE ANALYTICS? 11

of development. I recently had an exchange on this topic with a seasoned
veteran in both software development and data warehousing who is certi-
fied at the mastery level in DW/BI and data management and who has man-
aged large software development groups. His misunderstanding of Agile
development made it evident that myths and misconceptions abound even
among the most senior DW/BI practitioners. Agile Analytics is not:

� A wholesale replacement of traditional practices. I am not suggest-
ing that everything we have learned and practiced in the short his-
tory of DW/BI systems development is wrong, and that Agile is the
new savior that will rescue us from our hell. There are many good
DW/BI project success stories, which is why DW/BI continues to
be among the top five strategic initiatives for most large companies
today. It is important that we keep the practices and methods that
work well, improve those that allow room for improvement, and
replace those that are problematic. Agile Analytics seeks to modify
our general approach to DW/BI systems development without dis-
carding the best practices we’ve learned on our journey so far.

� Synonymous with Scrum or eXtreme Programming (XP). Scrum is
perhaps the Agile flavor that has received the most publicity (along
with XP) in recent years. However, it is incorrect to say that “Agile
was formerly known as eXtreme Programming,” as one skeptic
told me. In fact, there are many different Agile development flavors
that add valuable principles and practices to the broader collective
known as Agile development. These include Scrum, Agile Model-
ing, Agile Data, Crystal, Adaptive, DSDM, Lean Development,
Feature Driven Development, Agile Project Management (APM),
and others.5 Each is guided by the core values expressed in the
Agile Manifesto. Agile Analytics is an adaptation of principles and
practices from a variety of these methods to the complexities of
data-intensive, analytics-based systems integration efforts like data
warehousing and data mart development.

� Simply iterating. Short, frequent development iterations are an
essential cornerstone of Agile development. Unfortunately, this key
practice is commonly misconstrued as the definition of agility. Not
long ago I was asked to mentor a development team that had “gone
Agile” but wasn’t experiencing the expected benefits of agility. Upon
closer inspection I discovered that they were planning in four-week
“iterations” but didn’t expect to have any working features until

5. For a great survey of the various Agile f lavors I highly recommend reading Agile
Software Development Ecosystems (Highsmith 2002).

ptg6843605

12 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

about the sixth month of the project. Effectively they had divided
the traditional waterfall model into time blocks they called itera-
tions. They completely missed the point. The aim of iterative devel-
opment is to demonstrate working features and to obtain frequent
feedback from the user community. This means that every iteration
must result in demonstrable working software.

� For systems integration; it’s only for programming. Much of
our effort in DW/BI development is focused on the integration of
multiple commercial tools, thereby minimizing the volume of raw
programming required. DW/BI tool vendors would have us believe
that DW/BI development is simply a matter of hooking up the tools
to the source systems and pressing the “Go” button. You’ve probably
already discovered that building an effective DW/BI system is not
that simple. A DW/BI development team includes a heterogeneous
mixture of skills, including extraction, transformation, load (ETL)
development; database development; data modeling (both relational
and multidimensional); application development; and others. In
fact, compared to the more homogeneous skills required for appli-
cations development, DW/BI development is quite complex in this
regard. This complexity calls for an approach that supports a high
degree of customer collaboration, frequent delivery of working soft-
ware, and frequent feedback—aha, an Agile approach!

� An excuse for ad hoc behavior. Some have mistaken the tenets of
Agile development for abandonment of rigor, quality, or structure,
in other words, “hacking.” This misperception could not be farther
from the truth. Agility is a focus on the frequent delivery of high-
value, production-quality, working software to the user community
with the goal of continuously adapting to user feedback. This means
that automated testing and quality assurance are critical compo-
nents of all iterative development activities. We don’t build proto-
types; we build working features and then mature those features
in response to user input. Others mistake the Agile Manifesto as
disdain of documentation, which is also incorrect. Agile DW/BI
seeks to ensure that a sufficient amount of documentation is pro-
duced. The keyword here is sufficient. Sufficiency implies that there
is a legitimate purpose for the document, and when that purpose is
served, there is no need for additional documentation.

In my work with teams that are learning and adopting the Agile DW/BI
development style, I often find that they are looking for a prescriptive meth-
odology that makes it very clear which practices to apply and when. This is
a natural inclination for new Agile practitioners, and I will provide some

ptg6843605

DATA WAREHOUSING ARCHITECTURES AND SKILL SETS 13

recommendations that may seem prescriptive in nature. In fact you may
benefit initially by creating your own “recipe” for the application of Agile
DW/BI principles and practices. However, I need to reemphasize that Agile
Analytics is a style, not a methodology and not a framework. Figuratively,
you can absorb agility into your DNA with enough focus, practice, and
discipline. You’ll know you’ve reached that point when you begin applying
Agile principles to everything you do such as buying a new car, remodeling
a bathroom, or writing a book.

DATA WAREHOUSING ARCHITECTURES AND SKILL SETS

To ensure that we are working from a common understanding, here is a very
brief summary of data warehouse architectures and requisite skill sets. This
is not a substitute for any of the more comprehensive technical books on
data warehousing but should be sufficient as a baseline for the remainder of
the book.

Data Warehousing Conceptual Architectures

Figure 1.1 depicts an abstracted classical data warehousing architecture and
is suitable to convey either a Kimball-style (Kimball and Ross 2002) or an
Inmon-style (Inmon 2005) architecture. This is a high-level conceptual
architecture containing multiple layers, each of which includes a complex
integration of commercial technologies, data modeling and manipulation,
and some custom code.

The data warehouse architecture includes one or more operational source
systems from which data is extracted, transformed, and loaded into the data

Metadata Management

ETL

ODS

EII

ETL

Central
Warehouse

Data Mining

Scorecards
&

Dashboards

OLAP

Visualizaion
Reports

Data Marts

Source Systems

Legacy
Mainframe

CRM/ERP

Flat Files

External Data

Intergration Presentation Analysis

Figure 1.1 Classical data warehouse architecture

ptg6843605

14 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

warehouse repositories. These systems are optimized for the daily trans-
actional processing required to run the business operations. Most DW/
BI systems source data from multiple operational systems, some of which
are legacy systems that may be several decades old and reside on older
technologies.

Data from these sources is extracted into an integration tier in the architec-
ture that acts as a “holding pen” where data can be merged, manipulated,
transformed, cleansed, and validated without placing an undue burden on
the operational systems. This tier may include an operational data store or
an enterprise information integration (EII) repository that acts as a system
of record for all relevant operational data. The integration database is typi-
cally based on a relational data model and may have multiple subcompo-
nents, including pre-staging, staging, and an integration repository, each
serving a different purpose relating to the consolidation and preprocessing
of data from disparate source systems. Common technologies for staging
databases are Oracle, IBM DB2, Microsoft SQL Server, and NCR Teradata.
The DW/BI community is beginning to see increasing use of the open-
source database MySQL for this architectural component.

Data is extracted from the staging database, transformed, and loaded into a
presentation tier in the architecture that contains appropriate structures for
optimized multidimensional and analytical queries. This system is designed
to support the data slicing and dicing that define the power of a data ware-
house. There are a variety of alternatives for the implementation of the
presentation database, including normalized relational schemas and denor-
malized schemas like star, snowflake, and even “starflake.” Moreover, the
presentation tier may include a single enterprise data warehouse or a col-
lection of subject-specific data marts. Some architectures include a hybrid
of both of these. Presentation repositories are typically implemented in the
same technologies as the integration database.

Finally, data is presented to the business users at the analysis tier in the
architecture. This conceptual layer in the system represents the variety of
applications and tools that provide users with access to the data, including
report writers, ad hoc querying, online analytical processing (OLAP), data
visualization, data mining, and statistical analysis. BI tool vendors such as
Pentaho, Cognos, MicroStrategy, Business Objects, Microsoft, Oracle, IBM,
and others produce commercial products that enable data from the presen-
tation database to be aggregated and presented within user applications.

ptg6843605

DATA WAREHOUSING ARCHITECTURES AND SKILL SETS 15

This is a generalized architecture, and actual implementations vary in the
details. One major variation on the Kimball architecture is the Inmon
architecture (Inmon 2005), which inserts a layer of subject-specific data
marts that contain subsets of the data from the main warehouse. Each data
mart supports only the specific end-user applications that are relevant to
the business subject area for which that mart was designed. Regardless of
your preferences for Kimball- versus Inmon-style architectures, and of the
variations found in implementation detail, Figure 1.1 will serve as reference
architecture for the discussions in this book. The Agile DW/BI principles
and practices that are introduced here are not specific to any particular
architecture.

Diverse and Disparate Technical Skills

Inherent in the implementation of this architecture are the following aspects
of development, each requiring a unique set of development skills:

� Data modeling. Design and implementation of data models are
required for both the integration and presentation repositories.
Relational data models are distinctly different from dimensional
data models, and each has unique properties. Moreover, relational
data modelers may not have dimensional modeling expertise and
vice versa.

� ETL development. ETL refers to the extraction of data from source
systems into staging, the transformations necessary to recast source
data for analysis, and the loading of transformed data into the pre-
sentation repository. ETL includes the selection criteria to extract
data from source systems, performing any necessary data transfor-
mations or derivations needed, data quality audits, and cleansing.

� Data cleansing. Source data is typically not perfect. Furthermore,
merging data from multiple sources can inject new data quality
issues. Data hygiene is an important aspect of data warehouse that
requires specific skills and techniques.

� OLAP design. Typically data warehouses support some variety of
online analytical processing (HOLAP, MOLAP, or ROLAP). Each
OLAP technique is different but requires special design skills to bal-
ance the reporting requirements against performance constraints.

� Application development. Users commonly require an applica-
tion interface into the data warehouse that provides an easy-to-use
front end combined with comprehensive analytical capabilities, and
one that is tailored to the way the users work. This often requires

ptg6843605

16 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

some degree of custom programming or commercial application
customization.

� Production automation. Data warehouses are generally designed for
periodic automated updates when new and modified data is slurped
into the warehouse so that users can view the most recent data avail-
able. These automated update processes must have built-in fail-over
strategies and must ensure data consistency and correctness.

� General systems and database administration. Data warehouse
developers must have many of the same skills held by the typical
network administrator and database administrator. They must
understand the implications of efficiently moving possibly large vol-
umes of data across the network, and the issues of effectively storing
changing data.

WHY DO WE NEED AGILE ANALYTICS?
In my years as a DW/BI consultant and practitioner I have learned three
consistent truths: Building successful DW/BI systems is hard; DW/BI devel-
opment projects fail very often; and it is better to fail fast and adapt than to
fail late after the budget is spent.

First Truth: Building DW/BI Systems Is Hard

If you have taken part in a data warehousing project, you are aware of the
numerous challenges, perils, and pitfalls. Ralph Kimball, Bill Inmon, and
other DW/BI pioneers have done an excellent job of developing reusable
architectural patterns for data warehouse and DW/BI implementation. Soft-
ware vendors have done a good job of creating tools and technologies to
support the concepts. Nonetheless, DW/BI is just plain hard, and for several
reasons:

� Lack of expertise. Most organizations have not previously built a
DW/BI system or have only limited experience in doing so.

� Lack of experience. Most organizations don’t build multiple DW/BI
systems, and therefore development processes don’t get a chance to
mature through experience.

� Ambitious goals. Organizations often set out to build an enterprise
data warehouse, or at least a broad-reaching data mart, which makes
the process more complex.

� Domain knowledge versus subject matter expertise. DW/BI prac-
titioners often have extensive expertise in business intelligence
but not in the organization’s business domain, causing gaps in

ptg6843605

WHY DO WE NEED AGILE ANALYTICS? 17

understanding. Business users typically don’t know what they can,
or should, expect from a DW/BI system.

� Unrealistic expectations. Business users often think of data ware-
housing as a technology-based plug-and-play application that will
quickly provide them with miraculous insights.

� Educated user phenomenon. As users gain a better understanding of
data warehousing, their needs and wishes change.

� Shooting the messenger. DW/BI systems are like shining a bright
light in the attic: You may not always like what you find. When the
system exposes data quality problems, business users tend to dis-
trust the DW/BI system.

� Focus on technology. Organizations often view a DW/BI system
as an IT application rather than a joint venture between business
stakeholders and IT developers.

� Specialized skills. Data warehousing requires an entirely different
skill set from that of typical database administrators (DBAs) and
developers. Most organizations do not have staff members with
adequate expertise in these areas.

� Multiple skills. Data warehousing requires a multitude of unique
and distinct skills such as multidimensional modeling, data cleans-
ing, ETL development, OLAP design, application development, and
so forth.

These unique DW/BI development characteristics compound the already
complex process of building software or building database applications.

Second Truth: DW/BI Development Projects Fail Often

Unfortunately, I’m not the only one who has experienced failure on DW/
BI projects. A quick Google search on “data warehouse failure polls” results
in a small library of case studies, postmortems, and assessment articles.
Estimated failure rates of around 50 percent are common and are rarely
disputed.

When I speak to groups of business intelligence practitioners, I often
begin my talks with an informal survey. First I ask everyone who has been
involved in the completion of one or more DW/BI projects to stand. It var-
ies depending on the audience, but usually more than half the group stands
up. Then I ask participants to sit down if they have experienced projects
that were delivered late, projects that had significant budget overruns, or
projects that did not satisfy users’ expectations. Typically nobody is left
standing by the third question, and I haven’t even gotten to questions about

ptg6843605

18 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

acceptable quality or any other issues. It is apparent that most experienced
DW/BI practitioners have lived through at least one project failure.

While there is no clear definition of what constitutes “failure,” Sid Adelman
and Larissa Moss classify the following situations as characteristic of limited
acceptance or outright project failure (Moss and Adelman 2000):

� The project is over budget.
� The schedule has slipped.
� Some expected functionality was not implemented.
� Users are unhappy.
� Performance is unacceptable.
� Availability of the warehouse applications is poor.
� There is no ability to expand.
� The data and/or reports are poor.
� The project is not cost-justified.
� Management does not recognize the benefits of the project.

In other words, simply completing the technical implementation of a data
warehouse doesn’t constitute success. Take another look at this list. Nearly
every situation is “customer”-focused; that is, primarily end users deter-
mine whether a project is successful.

There are literally hundreds of similar evaluations of project failures, and
they exhibit a great deal of overlap in terms of root causes: incorrect require-
ments, weak processes, inability to adapt to changes, project scope misman-
agement, unrealistic schedules, inflated expectations, and so forth.

Third Truth: It Is Best to Fail Fast and Adapt

Unfortunately, the traditional development model does little to uncover
these deficiencies early in the project. As Jeff DeLuca, one of the creators
of Feature Driven Development (FDD), says, “We should try to break the
back of the project as early as possible to avoid the high cost of change later
downstream.” In a traditional approach, it is possible for developers to plow
ahead in the blind confidence that they are building the right product, only
to discover at the end of the project that they were sadly mistaken. This is
true even when one uses all the best practices, processes, and methodologies.

What is needed is an approach that promotes early discovery of project
peril. Such an approach must place the responsibility of success equally on
the users, stakeholders, and developers and should reward a team’s ability to
adapt to new directions and substantial requirements changes.

ptg6843605

WHY DO WE NEED AGILE ANALYTICS? 19

As we observed earlier, most classes of project failure are user-satisfaction-
oriented. If we can continuously adapt the DW/BI system and align with
user expectations, users will be satisfied with the outcome. In all of my past
involvement in traditional DW/BI implementations I have consistently seen
the following phenomena at the end of the project:

� Users have become more educated about BI. As the project pro-
gresses, so does users’ understanding of BI. So, what they told you
at the beginning of the project may have been based on a misunder-
standing or incorrect expectations.

� User requirements have changed or become more refined. That’s
true of all software and implementation projects. It’s just a fact of
life. What they told you at the beginning is much less relevant than
what they tell you at the end.

� Users’ memories of early requirements reviews are fuzzy. It often
happens that contractually speaking, a requirement is met by the
production system, but users are less than thrilled, having reactions
like “What I really meant was . . .” or “That may be what I said, but
it’s not what I want.”

� Users have high expectations when anticipating a new and use-
ful tool. Left to their own imaginations, users often elevate their
expectations of the BI system well beyond what is realistic or reason-
able. This only leaves them disappointed when they see the actual
product.

� Developers build based on the initial snapshot of user require-
ments. In waterfall-style development the initial requirements are
reviewed and approved, then act as the scoping contract. Meeting
the terms of the contract is not nearly as satisfying as meeting the
users’ expectations.

All these factors lead to a natural gap between what is built and what is
needed. An approach that frequently releases new BI features to users, hears
user feedback, and adapts to change is the single best way to fail fast and
correct the course of development.

Is Agile Really Better?

There is increasing evidence that Agile approaches lead to higher project
success rates. Scott Ambler, a leader in Agile database development and
Agile Modeling, has conducted numerous surveys on Agile development in
an effort to quantify the impact and effectiveness of these methods. Begin-
ning in 2007, Ambler conducted three surveys specifically relating to IT

ptg6843605

20 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

project success rates.6 The 2007 survey explored success rates of different IT
project types and methods. Only 63 percent of traditional projects and data
warehousing projects were successful, while Agile projects experienced a 72
percent rate of success. The 2008 survey focused on four success criteria:
quality, ROI, functionality, and schedule. In all four areas Agile methods
significantly outperformed traditional, sequential development approaches.
The 2010 survey continued to show that Agile methods in IT produce better
results.

I should note here that traditional definitions of success involve metrics
such as on time, on budget, and to specification. While these metrics may
satisfy management efforts to control budgets, they do not always correlate
to customer satisfaction. In fact, scope, schedule, and cost are poor mea-
sures of progress and success. Martin Fowler argues, “Project success is
more about whether the software delivers value that’s greater than the cost
of the resources put into it.” He points out that XP 2002 conference speaker
Jim Johnson, chairman of the Standish Group, observed that a large propor-
tion of features are frequently unused in software products. He quoted two
studies: a DuPont study, which found that only 25 percent of a system’s fea-
tures were really needed, and a Standish study, which found that 45 percent
of features were never used and only 20 percent of features were used often
or always (Fowler 2002). These findings are further supported by a Depart-
ment of Defense study, which found that only 2 percent of the code in $35.7
billion worth of software was used as delivered, and 75 percent was either
never used or was canceled prior to delivery (Leishman and Cook 2002).

Agile development is principally aimed at the delivery of high-priority value
to the customer community. Measures of progress and success must focus
more on value delivery than on traditional metrics of on schedule, on bud-
get, and to spec. Jim Highsmith points out, “Traditional managers expect
projects to be on-track early and off-track later; Agile managers expect
projects to be off-track early and on-track later.” This statement reflects
the notion that incrementally evolving a system by frequently seeking and
adapting to customer feedback will result in building the right solution, but
it may not be the solution that was originally planned.

The Difficulties of Agile Analytics

Applying Agile methods to DW/BI is not without challenges. Many of the
project management and technical practices I introduce in this book are

6. The detailed results are available at www.ambysoft.com/surveys/.

www.ambysoft.com/surveys/

ptg6843605

WHY DO WE NEED AGILE ANALYTICS? 21

adapted from those of our software development colleagues who have been
maturing these practices for the past decade or longer. Unfortunately, the
specific practices and tools used to custom-build software in languages like
Java, C++, or C# do not always transfer easily to systems integration using
proprietary technologies like Informatica, Oracle, Cognos, and others.
Among the problems that make Agile difficult to apply to DW/BI develop-
ment are the following:

� Tool support. There aren’t many tools that support technical prac-
tices such as test-driven database or ETL development, database
refactoring, data warehouse build automation, and others that are
introduced in this book. The tools that do exist are less mature than
the ones used for software development. However, this current state
of tool support continues to get better, through both open-source as
well as commercial tools.

� Data volume. It takes creative thinking to use lightweight devel-
opment practices to build high-volume data warehouses and BI
systems. We need to use small, representative data samples to
quickly build and test our work, while continuously proving that
our designs will work with production data volumes. This is more of
an impediment to our way of approaching the problem rather than
a barrier that is inherent in the problem domain. Impediments are
those challenges that can be eliminated or worked around; barriers
are insurmountable.

� “Heavy lifting.” While Agile Analytics is a feature-driven (think
business intelligence features) approach, the most time-consuming
aspect of building DW/BI systems is in the back-end data warehouse
or data marts. Early in the project it may seem as if it takes a lot of
“heavy lifting” on the back end just to expose a relatively basic BI
feature on the front end. Like the data volume challenge, it takes
creative thinking to build the smallest/simplest back-end data solu-
tion needed to produce business value on the front end.

� Continuous deployment. The ability to deploy new features into
production frequently is a goal of Agile development. This goal is
hampered by DW/BI systems that are already in production with
large data volumes. Sometimes updating a production data ware-
house with a simple data model revision can require significant time
and careful execution. Frequent deployment may look very different
in DW/BI from the way it looks in software development.

The nuances of your project environment may introduce other such diffi-
culties. In general, those who successfully embrace Agile’s core values and

ptg6843605

22 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

guiding principles learn how to effectively adapt their processes to mitigate
these difficulties. For each of these challenges I find it useful to ask the ques-
tion “Will the project be better off if we can overcome this difficulty despite
how hard it may be to overcome?” As long as the answer to that question is
yes, it is worth grappling with the challenges in order to make Agile Ana-
lytics work. With time and experience these difficulties become easier to
overcome.

INTRODUCING FLIXBUSTER ANALYTICS

Now seems like a good time to introduce the running DW/BI example that
I’ll be revisiting throughout this book to show you how the various Agile
practices are applied. I use an imaginary video rental chain to demonstrate
the Agile Analytics practices. The company is FlixBuster, and they have
retail stores in cities throughout North America. FlixBuster also offers video
rentals online where customers can manage their rental requests and mov-
ies are shipped directly to their mailing address. Finally, FlixBuster offers
movie downloads directly to customers’ computers.

FlixBuster has customers who are members and customers who are non-
members. Customers fall into three buying behavior groups: those who shop
exclusively in retail stores, those who shop exclusively online, and those who
split their activity across channels. FlixBuster customers can order a rental
online or in the store, and they can return videos in the store or via a post-
age-paid return envelope provided by the company.

Members pay a monthly subscription fee, which determines their rental
privileges. Top-tier members may rent up to three videos at the same time.
There is also a membership tier allowing two videos at a time as well as a tier
allowing one at a time. Members may keep their rentals indefinitely with no
late charges. As soon as FlixBuster receives a returned video from a member,
the next one is shipped. Nonmembers may also rent videos in the stores fol-
lowing the traditional video rental model with a four-day return policy.

Approximately 75 percent of the brick-and-mortar FlixBuster stores across
North America are corporately owned and managed; the remaining 25 per-
cent are privately owned franchises. FlixBuster works closely with franchise
owners to ensure that the customer experience is consistent across all stores.
FlixBuster prides itself on its large inventory of titles, the rate of customer
requests that are successfully fulfilled, and how quickly members receive
each new video by mail.

ptg6843605

WRAP-UP 23

FlixBuster has a complex partnership with the studios producing the films
and the clearinghouses that provide licensed media to FlixBuster and man-
age royalty payments and license agreements. Each title is associated with
a royalty percentage to be paid to the studio. Royalty statements and pay-
ments are made on a monthly basis to each of the clearinghouses.

Furthermore, FlixBuster sales channels (e-tail and retail) receive a per-
centage of the video rental revenue. Franchise owners receive a negotiated
revenue amount that is generally higher than for corporately owned retail
outlets. The online channel receives still a different revenue percentage to
cover its operating costs.

FlixBuster has determined that there is a good business case for develop-
ing an enterprise business intelligence system. This DW/BI system will serve
corporate users from finance, marketing, channel sales, customer man-
agement, inventory management, and other departments. FlixBuster also
intends to launch an intranet BI portal for subscription use by its clearing-
house partners, studios, franchisees, and possibly even Internet movie data-
base providers. Such an intranet portal is expected to provide additional
revenue streams for FlixBuster.

There are multiple data sources for the FlixBuster DW/BI system, includ-
ing FlixBackOffice, the corporate ERP system; FlixOps, the video-by-mail
fulfillment system; FlixTrans, the transactional and point-of-sale system;
FlixClear, the royalty management system; and others.

FlixBuster has successfully completed other development projects using
Agile methods and is determined to take an Agile Analytics approach on the
development of its DW/BI system, FlixAnalysis. During high-level executive
steering committee analysis and reviews, it has been decided that the first
production release of FlixAnalysis will be for the finance department and
will be a timeboxed release cycle of six months.

WRAP-UP

This chapter has laid the foundation for an accurate, if high-level, under-
standing of Agile Analytics. Successive chapters in this book serve to fill
in the detailed “how-to” techniques that an Agile Analytics team needs to
put these concepts into practice. You should now understand that Agile
Analytics isn’t simply a matter of chunking tasks into two-week iterations,
holding a 15-minute daily team meeting, or retitling the project manager a
“scrum master.” Although these may be Agile traits, new Agile teams often

ptg6843605

24 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

limit their agility to these simpler concepts and lose sight of the things that
truly define agility. True agility is reflected by traits like early and frequent
delivery of production-quality, working BI features, delivering the highest-
valued features first, tackling risk and uncertainty early, and continuous
stakeholder and developer interaction and collaboration.

Agile Analytics teams evolve toward the best system design by continu-
ously seeking and adapting to feedback from the business community. Agile
Analytics balances the right amount of structure and formality against a
sufficient amount of flexibility, with a constant focus on building the right
solution. The key to agility lies in the core values and guiding principles
more than in a set of specific techniques and practices—although effective
techniques and practices are important. Mature Agile Analytics teams ele-
vate themselves above a catalog of practices and establish attitudes and pat-
terns of behavior that encourage seeking feedback, adapting to change, and
delivering maximum value.

If you are considering adopting Agile Analytics, keep these core values and
guiding principles at the top of your mind. When learning any new tech-
nique, it is natural to look for successful patterns that can be mimicked.
This is a valuable approach that will enable a new Agile team to get on the
right track and avoid unnecessary pitfalls. While I have stressed that Agile
development is not a prescriptive process, new Agile teams will benefit from
some recipe-style techniques. Therefore, many of the practices introduced
in this book may have a bit of a prescriptive feel. I encourage you to try these
practices first as prescribed and then, as you gain experience, tailor them
as needed to be more effective. But be sure you’re tailoring practices for the
right reasons. Be careful not to tailor a practice simply because it was diffi-
cult or uncomfortable on the first try. Also, be sure not to simply cherry-pick
the easy practices while ignoring the harder ones. Often the harder practices
are the ones that will have the biggest impact on your team’s performance.

ptg6843605

25

Chapter 2

AGILE PROJECT MANAGEMENT

In 2006, NBC launched a television series in the United States called Studio
60, a comedy/drama about the production of a weekly live variety show à
la Saturday Night Live. The series gave viewers a behind-the-scenes look at
the intensity with which each new weekly variety show is planned and exe-
cuted. Unlike typical weekly TV shows, each episode of a live variety show
is planned in a “just-in-time” fashion. The content must be adapted to cur-
rent events, the decisions of producers must be responded to immediately,
and the cast and crew must be highly adaptable to change. No matter what
happens during the week, the show must be completely planned and ready
to air at a fixed time. And it must be good enough every week to keep viewer
ratings very high or risk cancellation. Imagine the pressure!

A live variety show team consists of people with a diverse set of skills,
including studio executives, producers, writers, actors, stagehands, props
and lighting crews, camera crew, and others. After an episode airs, the exec-
utives, producers, cast, and crew celebrate their success, monitor viewer rat-
ings, and then immediately start planning for the next episode. The team
must work fast and be highly collaborative to pull this off. There is abso-
lutely no room in the schedule for superfluous meetings, ceremony, or for-
mality. However, there must be sufficient attention to detail and rigor to
ensure that the show is highly successful every single week.

This got me thinking. What if we developed DW/BI systems as if we were
producing a live variety show every week? And what if we measured suc-
cess with the same ruthlessness with which TV networks use viewer ratings?
Agile Analytics developers work in short iterations delivering chunks of
end-user functionality incrementally. What if we behaved as if the project’s
future were dependent upon high “viewer ratings” at the end of our current
iteration? Not only had we better have new features for our “viewers,” but
these features had better be great!

As you read this chapter, I challenge you to think of each development itera-
tion as the creation and airing of your own live variety show. What does
your team need to do to keep its viewer ratings high every single iteration?

ptg6843605

26 CHAPTER 2 � AGILE PROJECT MANAGEMENT

One of the first fundamentals of Agile Analytics is adopting a project man-
agement process that is tailored to support iterative, incremental, and evo-
lutionary development of DW/BI systems. Traditional project management
methods are insufficient for this purpose. This chapter will introduce you
to some of the key practices of Agile Project Management (APM); it is not
the final word on the subject. My good friend and colleague Jim Highsmith
wrote the book on APM (Highsmith 2010a). In this chapter I will focus on
some of the key APM principles and practices as they relate to building busi-
ness intelligence systems.

WHAT IS AGILE PROJECT MANAGEMENT?
Historically, the methods we have used to manage IT and software proj-
ects have been adapted from the construction engineering and management
industries. Building bridges and skyscrapers requires a highly sequential and
phased approach in which architectural details are finalized and approved
before construction can begin. After all, once the cement is set and steel
girders are welded into place, it is very costly to change the design. Most of
us know the phased/sequential systems development model as the “water-
fall model,” and we often use this term disparagingly. Many years and a lot
of data points have shown us that the waterfall model isn’t the best way to
manage systems development projects.

Fortunately, software systems aren’t built of concrete and steel. We have the
unique opportunity to benefit from an approach that allows us to design a
little, build a little, share it with users, listen to their feedback, and adjust
accordingly, eventually converging on a solution that may be more desirable
than what was first envisioned.

Agile methods recognize this, and some agilists suggest that projects should
just get started and the solution will evolve one iteration at a time. Unfortu-
nately, this rather extreme point of view is disconcerting to those who man-
age budgets, monitor return on investments, and allocate resources—senior
management! So Jim Highsmith tackled the problem of balancing agility
with sufficient rigor by introducing APM (Highsmith 2010a).

The following scenario is an example of how effective Agile Analytics proj-
ect planning and management works:

ptg6843605

WHAT IS AGILE PROJECT MANAGEMENT? 27

Scenario

FlixBuster is a company offering video rentals received by mail, by visiting a
retail store, or by instant viewing over the Internet. FlixBuster management has
determined that the company needs a data warehouse and business intelligence
system that will help them better understand customer rental patterns, studio DVD
releases, order fulfillment bottlenecks, and opportunities to increase revenues and
profits as well as customer satisfaction.

Software and Web site development at FlixBuster has been following Agile
methods for a few years with great success, so management wants to use the
same approach for the new DW/BI development project. They’ll tailor the APM
framework and technical practices to work for the DW/BI project.

Because these are big, loosely defined business goals, Pete, the VP of finance
and primary executive sponsor for the project, decides to form a “FlixBuster DW/
BI project community.” Together with Allen, the CTO, he identifies the key technical
team members and decides that Arlene, an experienced scrum master,1 would
be ideal as the project manager. Since Dieter has worked in both finance and
customer management and has been advocating the project for some time, Pete
and Allen select him to be the product owner. Pete also creates a “co-develop-
ment customer team” consisting of five seasoned business professionals who will
be users of the BI system and whose roles give them differing perspectives on the
business.

The project community has been asked to participate in a three-day visioning and
chartering session to kick off the project. Pete has learned from prior experience
that project chartering is most effective off-site, where people are focused and
away from workplace distractions. So, he reserves a meeting room at the nearby
Regents Hotel where snacks and lunches can be catered in to keep the group
well fed and happy.

Pete starts off the chartering session with a broad statement of the long-term vision
for the DW/BI system. He emphasizes that he’s not exactly sure which of the
broad goals is most important, but he wants the team to work in 90-day “planning
cycles.” He charges the group with spending the next three days deciding what to
build and deploy within the next three months, and to develop a release plan.

With Arlene facilitating, Dieter takes the floor and spends about 30 minutes
sharing his ideas and discoveries with the group. He has done some preliminary
research and analysis on the broad goals of the DW/BI system and has formed
the opinion that getting a handle on customer rental patterns and behaviors is the
most valuable goal and should be tackled first. FlixBuster doesn’t have a good
way to evaluate customer behavior across all three rental channels to get a whole
picture of the customer. They currently don’t have a reliable way to determine how
profitable each customer is, and who their most and least profitable customers

1. The Agile method Scrum introduces the role of “scrum master” to replace the
traditional project manager on a project team.

ptg6843605

28 CHAPTER 2 � AGILE PROJECT MANAGEMENT

are. Dieter also points out that FlixBuster’s customer support issues and customer
satisfaction feedback aren’t currently being tied to customers, and so they don’t
have a complete picture of their customers’ experiences and patterns. It’s hard to
determine the impact of these issues on revenue and profit.

After some discussion and friendly debate, the group agrees to focus on cus-
tomer analytics as the primary goal of the first project cycle. They also agree to
schedule a strategic DW/BI road-mapping session for another time with the goal
of identifying all of the big DW/BI goals and prioritizing them as future project
goals.

With the general goal agreed upon, Arlene guides the project community in
establishing a more detailed, shared vision of the customer analytics project. She
leads them in some “serious games” to facilitate the envisioning process. They
build product boxes, they create elevator statements, and in the process they have
lots of conversations in which the end users describe the information they’d like to
have and what they would do if they had it.

The technical team gets a chance to ask lots of questions and learn about the
needs of business users. Already the technical team has started thinking about
how hard, if not infeasible, it’s going to be to accomplish all of these goals in only
three months. As the technical team lead, Prakash shares some of these concerns
with the group, and they begin speculating on the risks and uncertainties that are
inherent in the project vision. Arlene guides them in setting a reasonable set of
project boundaries and expectations. As the user community understands some
of the technical challenges, they help out by lowering their expectations for this
first release of the DW/BI system. They express their hope that future releases will
include improvements to the features included in the first version. Arlene has the
group complete a project data sheet as a preliminary agreement about the scope
and boundaries of the project.

It’s been a busy morning and everyone is ready for a lunch break. They agree
to talk about anything but the project over lunch to give their brains a rest. Over
lunch everyone gets to know each other better. Henry, a recently hired developer,
learns that Andy, one of the business users, is an avid mountain biker like himself,
and they agree to go riding together over the weekend. Allen is happy to see that
everyone seems to be getting along.

After lunch Dieter facilitates the story-writing workshop with the project commu-
nity. This is an important component of project chartering that will result in the
product backlog that is populated with user stories in priority order. The project
team knows that the product backlog is subject to change. New user stories
can be added at any time. They can be removed or altered. And they can be
reprioritized. It will be Dieter’s job to continuously groom the backlog and keep it
up-to-date. The team will plan each iteration with a story conference where they
will select items from the top of the backlog, understand their details, estimate their
effort, and commit to developing those new BI features.

It’s the end of the day, and everyone is exhausted but thrilled to have accom-
plished so much in the first planning day. Javier, a business user who has been at

ptg6843605

WHAT IS AGILE PROJECT MANAGEMENT? 29

FlixBuster since its beginning, comments that it really feels like this project team is
going to build a useful tool for his group to use. He’s impressed with Prakash and
the rest of the developers.

The next morning the group creates a release-planning calendar using butcher
paper on the wall. The calendar divides the next three months into two-week
iterations and identifies a few key milestones. One milestone the team identifies is
that the FlixBuster budget-planning meeting for the 2011 fiscal year is scheduled
at about the same time as the beginning of the team’s iteration six. Kari wonders
out loud if she will be able to use some of the new BI features to provide her boss
with some of the information he needs for this meeting. The team notes that on the
release plan and promises to try to do a preliminary deployment of features that
Kari can use. The group also establishes a theme for each iteration that helps them
think about the bigger capabilities that are being developed.

Because this project is the first in a series of FlixBuster DW/BI projects, the team
agrees they need an iteration zero to set up the development and testing infra-
structure, to install and learn some new development tools, and to develop a high-
level system architecture and data model. So, the development team writes and
prioritizes a set of technical stories that will be the focus of iteration zero.

While the development team is planning iteration zero, the user community meets
with Dieter and Bob, as well as Jamal, the user experience designer, to begin
sketching out the low-fidelity prototypes of the first set of user stories that are in the
backlog. They will continue to refine these lo-fi prototypes during iteration zero to
have them ready for developers at the start of iteration one.

The rest of day two is spent reviewing the user stories that the user community
wrote yesterday. The stories are roughly divided into three priority groups (high,
higher, and highest), allowing the team to focus on the highest-priority group
first. The technical team asks clarifying questions and estimates the difficulty of
implementing each user story. Team members identify the ones that are too big
and work to simplify them or decompose them into multiple smaller stories. Then
Dieter leads the users in rank-ordering them on the backlog so that the team can
speculate on how they might be scheduled into the two-week iterations on the
planning wall. This effort helps shape everyone’s vision for the expected outcome
of this 90-day planning cycle.

On the final day of the project-chartering session, Arlene has the group establish
a shared set of core values and working agreements for this project. Developers
commit to the importance of keeping their work highly visible to the whole com-
munity, and the business users commit to giving lots of feedback on working BI
features and giving input on iteration plans. The technical team plans the details
of iteration zero and makes a preliminary commitment to deliver the first three user
stories in iteration one.

By now it’s mid-afternoon on Friday, and Arlene asks if the participants have
everything they need to start working on the project first thing Monday morning.
Arlene will be helping the development team remain unblocked in their work, and
Dieter continues to talk with users and to refine and groom the backlog. Bob will

ptg6843605

30 CHAPTER 2 � AGILE PROJECT MANAGEMENT

act as a bridge between developers and users, and Jamal will provide DW/BI
developers with more detailed specifications for user stories along with accep-
tance criteria. Everyone is excited to start building, delivering, and deploying new
BI features that will benefit the business units at FlixBuster.

PHASED-SEQUENTIAL DW/BI DEVELOPMENT

Data warehousing projects have traditionally followed some variant of the
waterfall development approach (Figure 2.1). The waterfall (and related)
approach is a Plan Do model in which exhaustive planning is followed by
comprehensive design, development, and testing.

The process is driven by a rigorous requirements analysis up front with an
eye toward collecting and documenting comprehensive user requirements
that establish a “contractual” agreement between the developers and users.
The challenge in this stage is making sure that the users have an accurate
understanding of what a system will and will not provide, and that they
have a solid understanding of their own requirements.

Once agreed upon, these requirements drive a thorough and detailed sys-
tems design and data modeling effort. This is the core of the design cycle
along with other design activities such as volumetric and network load anal-
yses, report design, and ETL design.

By this time in the traditional approach the developers have minimal inter-
action with users because requirements analysis is allegedly done. Instead,
their effort is spent on developing formal and detailed data models using
modeling tools. The design document and data dictionary are typical arti-
facts that demonstrate progress during the design cycle.

Requirements

Design

Implement

Test

Release

User Input User ReviewNo User Interaction

6-9 Months Development

Plan Do

Fi gure 2.1 The typical DW/BI approach

ptg6843605

PHASED-SEQUENTIAL DW/BI DEVELOPMENT 31

The remainder of the development effort (often 12 months or more) is
spent in implementing the design, developing ETL code, implementing data
models, configuring cubes, developing data warehouse update scripts, and
finally in integration and system testing. Final testing may even be handed
off to a dedicated quality assurance team that verifies that all of the require-
ments are met without introducing new data anomalies.

Finally, when the developers, testers, and DBAs are confident that the data
warehouse meets requirements (or more commonly when the schedule runs
out), the users are treated to reviews and user acceptance testing. At this
point it is common that

� Users have developed a bit better understanding of data warehousing
� Users are finally able to articulate their requirements
� User requirements have changed or become more refined
� Users’ memories of early requirements reviews are fuzzy
� Users’ expectations are very high in anticipation of having a new

and useful tool
� Developers are still building the system based on the initial snapshot

of user understanding and requirements definition

All of these factors lead to a natural gap between what is built and what is
needed (see Figure 2.2). Scott Ambler examines the theoretical and prac-
tical implications of this gap and provides a compelling argument against
“big requirements up front” in his Agile modeling article (Ambler 2009b).

• Change Requests
• Contract Negotiations

A
lig

nm
en

t o
f E

xp
ec

ta
tio

ns

Project
Start

Final
Delivery

Requirements
Acceptance

Developers

Users

• Increased Knowledge
• Refined Understanding
• Changing Needs

Fi gure 2.2 Mismatched expectations

ptg6843605

32 CHAPTER 2 � AGILE PROJECT MANAGEMENT

ENVISION EXPLORE INSTEAD OF PLAN DO

Agile Analytics is marked by a highly iterative approach with a high degree
of collaboration between developers, users, and stakeholders. Highsmith’s
APM framework is based on an Envision Explore cycle rather than a Plan

 Do model (see Figure 2.3). The significance of this paradigm shift is that
it acknowledges that projects are subject to uncertainty and change, and
good project teams seek to adapt to that change and uncertainty. The APM
process (and Agile in general) is a highly collaborative one that encourages
frequent interaction between developers, business users, and stakeholders
throughout the project cycle.

Envision Phase

Envisioning is the process of figuring out what is going to be done on the
project and how. Envisioning consists of establishing a vision of the project
outcome, and then speculating about how to incrementally accomplish that
goal. The objective of this phase is to answer these questions:

� What is the customers’ vision of the project outcome (product, sys-
tem, or solution)?

� What are the scope, boundaries, and constraints of the project?
� What is the business case supporting the project?
� Who are the right people to include in the project community?
� What will the solution development and delivery strategy look like?

The approach is a highly collaborative, low-fidelity, low-tech process. For
most projects there has been some preliminary business case analysis prior
to the envision phase. The business case has justified the allocation of

Business
Intelligence Vision

Project Scope
and Boundaries

Release
Planning

Iteration
Planning

Develop
Review

and
Adapt

Cycle 0 Cycle 1 Cycle 3 Cycle 4Cycle 2

Architecture
1.0

Architecture
1.1

Architecture
1.2

Requirements
Cards

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Feature 7

Collaborative Development

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Feature/Component Requirements Card
Planned Cycle:
Feature/Component ID:
Feature/Component Name:
Feature/Component Type:
Feature/Component Description:
Est. Work Effort:
Requirements Uncertainty (H,M,L):
Dependencies with other Features:

Planning

Envision Cycle Explore Cycle

Envision Explore

Fi gure 2.3 The Envision Explore cycle

ptg6843605

ENVISION EXPLORE INSTEAD OF PLAN DO 33

resources to start the project. Although the business case may include high-
level business requirements or objectives, it does not need to be a compre-
hensive set of functional requirements.

For most projects the envision phase culminates in a two- to four-day project-
chartering and release-planning session. Envisioning is most effective when
the entire project community is involved in this kickoff—from end users to
junior developers. This planning session often works best in a dedicated off-
site setting such as a hotel meeting room, which helps eliminate the normal
workplace distractions. It should be noted that Scott Ambler’s Agile Model
Driven Development (AMDD) lifecycle includes a more comprehensive
envision phase, which encompasses requirements and architecture envi-
sioning as well as other project preparation (Ambler 2004). On average this
phase takes about four weeks.

New Agile teams sometimes resist this kind of time commitment. It may be
perceived as a disruption that keeps people from their daily tasks and rou-
tines. I sometimes hear comments like “My gosh, you want all those people
to give up their time for nearly a whole week.” I have a few responses to this
reluctance. First, you are about to embark on a project that will consume
a lot of time and cost. If it isn’t worth investing a few days to make sure
that everyone is galvanized around a common vision, maybe this project is
not worth doing. Second, in traditional projects the requirements analysis
typically consumes months of calendar time and a large number of person-
hours, and those requirements are often wrong. Agile Project Management
replaces this protracted process with a weeklong envisioning workshop. It
probably amounts to the same or fewer total person-hours, and the outcome
is much more effective because it is a face-to-face collaboration among the
entire project community.

Every team I’ve worked with that has been initially reluctant has ultimately
been delighted with the outcome of this envisioning approach. They gener-
ally agree that the envisioning process leads to a much more effective project
launch than traditional project kickoff meetings.

Explore Phase

Waterfall-type models include some variation of these phases: require-
ments, design, implement, test, and maintain. These are all important
components of development, just not as organized in a phased/sequential
manner as in waterfall. Instead, we need to do some analysis and enough
design to get started, prove our design with working code, and do sufficient

ptg6843605

34 CHAPTER 2 � AGILE PROJECT MANAGEMENT

testing to convince ourselves that we did it right. Traditional development is
task- or activity-driven (requirements, coding). Agile development is prod-
uct-driven (small user stories).

We aren’t going to build the entire system correctly in one iteration of this
cycle. We must repeat this simple process many times as we nurture the evo-
lution of a high-value, high-quality, working DW/BI system. At each turn of
the cycle it is critical to seek feedback and acceptance, and then adapt.

Each iteration through the explore cycle takes two weeks2 and results in one
or more working business intelligence “features” that can be reviewed with
the user community for feedback and possible acceptance. The explore cycle
is so-called because it provides us with an opportunity to explore, experi-
ment, test ideas, evaluate, and ultimately settle on the right thing to build
and the right way to build it. One of the great things about working in these
short iterations is that the development doesn’t get very far off track before
the need for course correction becomes evident.

Chapter 4, “User Stories for BI Systems,” will introduce the concept of user
stories as a representation of functional requirements, and a product backlog
as a practice for prioritizing and managing the ever-changing collection of
user stories. We will talk about backlog management and the fact that user
stories are subject to change at any time, either in their definition or in the
priority they are given. You will rarely hear Agile Analytics developers talk
about “scope creep” or “requirements freeze.” We know that requirements
are going to change and expand—and we need techniques for adapting
smoothly to those changes.

Each iteration through the explore cycle begins with an iteration-planning
session. Depending on how well the story backlog is maintained, iteration
planning generally takes anywhere from a couple of hours to one full day to
complete. During this time the development team conducts user story effort
estimation, moves one or more user stories from the top of the backlog into
the iteration plan, commits to the completion of those stories, and defines
the underlying tasks required to complete each story. In essence, the team
does everything necessary to begin working.

Each iteration ends in a feature review or showcase, and a retrospective or
reflection. The feature review is a collaborative session with end users to

2. As Agile development has matured, two-week iterations have become the preferred
length on most Agile projects. Two weeks offers enough time to do meaningful work
but is short enough to get the frequent feedback we seek.

ptg6843605

CHANGING THE ROLE OF PROJECT MANAGEMENT 35

demonstrate new working BI features such as a report or dashboard com-
ponent. The goal of the review is to gain acceptance of the new feature(s) as
meeting users’ needs. The retrospective is a development team self-exami-
nation that provides an opportunity for continuous process improvement
and maturation.

Figure 2.4 recasts the Envision Explore cycle of the APM framework as a
process flow. You can see the iterative nature that exists especially between
the exploration and adaptation processes. The top half of the diagram con-
veys some of the important artifacts and outputs that are generated during
various stages of the process. Although the majority of project time is spent
in the explore/adapt cycle, the APM framework encourages the project team
to return to the envision/speculate stage whenever necessary. This might
happen when there is a substantial shift in the project vision, or whenever
a significant risk is encountered that materially changes the course of the
project.

CHANGING THE ROLE OF PROJECT MANAGEMENT

Traditional project managers commonly focus on planning based on a work
breakdown structure (WBS) that boils a predetermined scope of work down

Product Vision Feature Backlog Release PlanScope and Boundaries Completed Features

Customer
Feedback

Close

Backlog or
Release Plan

Change

Finished Product

Outputs
and

Artifacts

Feature
Revision

APM
Process

Explore

Adapt
Feature

Complete

SpeculateEnvision

esc

~
`!

1!
1!

1!
1!

1!
1!

1!
1!

1!
1!

1!
1!

1

F1

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

Figure 2.4 APM process flow

ptg6843605

36 CHAPTER 2 � AGILE PROJECT MANAGEMENT

to a collection of scheduled tasks. Project managers develop project plans with
input from developers, and they optimize those plans to maximize efficiency
and productivity. The primary measure of success is how well the team com-
pletes the scheduled tasks according to the plan. The focus of the traditional
project manager is on task management and ensuring that the project execu-
tion conforms to the plan.

I once worked with a team that was attempting to blend traditional proj-
ect management methods (i.e., Gantt charts, PERT charts, and WBS) with
Agile development practices (i.e., iterations, user stories, and backlogs). The
project manager was very frustrated because he spent the vast majority of
his time reworking the project plan to accurately reflect reality. It turned
out that he had a Microsoft Project plan that consisted of more than 6,000
WBS tasks with a complex set of dependencies among them. Every change
that impacted a single task had huge ripple effects throughout the project
plan, and the poor project manager spent nearly all his time keeping the
project schedule from exploding. Agile development requires Agile project
management methods.

Agile project managers are focused on team management rather than task
management. They ensure that the development team has what it needs to
succeed. They help buffer the team from external pressures and disruptions.
They work to maximize collaboration both within the development team as
well as across the broader project community. Team managers are enablers.
They enable teams to self-organize and to self-manage task completion.
They enable teams to remain coordinated and effective so that they can
succeed in their purpose. They enable teams to adapt to inevitable changes
rather than forcing them to conform to a plan. After all, as the Agile Mani-
festo suggests, we value “adapting to change over following a plan.”

The role of project manager is as important in Agile development as it is in
traditional development. It is the relationship with the project team that is
fundamentally different. An Agile project manager is a critical member of
the team, not an overseer. The Agile project manager is involved on a daily
basis with the development team. He or she attends daily synchronization
meetings and sits in close proximity to the development team.

MAKING SENSE OF AGILE “FLAVORS”
If you’ve been around the Agile scene very long, you’ve undoubtedly heard
terms like eXtreme Programming, Scrum, Crystal, Agile Model Driven
Development, Lean Development, Adaptive Software Development, and

ptg6843605

MAKING SENSE OF AGILE “FLAVORS” 37

others. These are all various Agile software development methods or “fla-
vors.” All of them have some common characteristics that make them Agile,
and each introduces a unique and valuable set of practices that differentiate
them.

Agile Analytics is largely a blend of practices chosen carefully from the vari-
ous flavors and then adapted to the unique challenges of data warehouse
and BI system development. These include technical development practices,
daily and per-iteration coordination practices, team collaboration practices,
value-delivery practices, and overarching project planning and manage-
ment practices. So, it is helpful to understand existing Agile software devel-
opment methods, some common terminology, and how they complement
one another.

When Kent Beck, Ron Jeffries, and Ward Cunningham introduced eXtreme
Programming, or XP, in the late 1990s, it was an immediate hit with soft-
ware developers. Beck’s Extreme Programming Explained (now in its second
edition) was the first of a series of books on, or relating to, XP (Beck and
Andres 2004). XP remains today one of the predominant flavors of Agile
development. Its success is due in large part to the powerful technical and
development practices that it introduced. Developers have long been ham-
pered by methodologies, and XP offers a practical set of techniques that
make sense. These include test automation, test-driven development, pair
programming, refactoring, continuous integration, and more.3 Agile Ana-
lytics relies on database test automation, test-driven database development,
database refactoring (and ETL refactoring), continuous integration, and
other practices that are adapted from XP innovations. These development
practices are introduced in later chapters of this book.

Scrum is the other predominant Agile method in practice today. The term
Scrum was first used to describe a style of developing software in 1990 by
DeGrace and Stahl (1990). Meanwhile, Ken Schwaber was using an iterative
approach at his company, Advanced Development Methods; and Jeff Suther-
land, John Scumniotales, and Jeff McKenna introduced a similar approach
at Easel Corporation. Sutherland and colleagues were the first to formally
call the approach “Scrum.” Sutherland and Schwaber jointly presented
Scrum at OOPSLA4 ’95 in response to “. . . increasingly detailed and spe-
cific methodologies—overburdened with phases, steps, tasks, and activities

3. XP introduces 12 key practices, some of which are sound project management rather
than development practices.

4. Object-Oriented Programming, Systems, Languages & Applications Conference.

ptg6843605

38 CHAPTER 2 � AGILE PROJECT MANAGEMENT

(with documents to support each). . . .” (Highsmith 2002). Ken Schwaber
and Mike Beedle wrote the first book on Scrum in 2001 (Schwaber and
Beedle 2001). Scrum is based on the rhythm of working in two- to four-
week iterations called sprints and short (15-minute) daily synchronization
meetings called scrums. Many of today’s Scrum practitioners have modified
their sprint length to two weeks, and many other Agile methods have incor-
porated the idea of a daily scrum. Scrum introduces valuable project man-
agement practices. These practices include the product backlog and sprint
backlog for requirements management and post-sprint demonstration of
working features, among others. The project manager in a Scrum setting is
called scrum master, and the scrum master’s role definition is fundamentally
different from a project management role. Agile Analytics relies heavily on a
well-managed and prioritized backlog of user stories, short daily synchroni-
zation and planning meetings (scrums or stand-ups), a feature showcase at
the end of each iteration, and the equivalent of a scrum master. These daily/
iteration management practices have been adapted to Agile Analytics and are
introduced in this and other chapters.

Alistair Cockburn introduced Crystal Methods in 2002. His guiding prin-
ciple is that people, interaction, community, skills, collaboration, and com-
munication are the factors most critical to the performance of effective
development teams. Despite its name, Crystal Methods is not a software
development methodology. A central tenet of Crystal is that the essence
of any methodology is to describe the conventions of how people collabo-
rate: If a convention helps people work together, keep it; if it doesn’t, dis-
card it. Synchronous collaboration (talking to each other) is preferred over
asynchronous communication (e-mail threads). Face-to-face collaboration
is preferred over physical separation. These principles are also central to
Agile Analytics, which stresses team colocation, cross-functional develop-
ment teams, and generalization over specialization, among other practices.
Throughout this book various collaboration practices are introduced and
discussed.

In the 1997–98 time frame Jeff De Luca, with help from Peter Coad, devel-
oped Feature Driven Development (FDD). FDD, as the name implies, is cen-
tered around planning, designing, and building in a user-feature-centric
fashion, based on a master feature list. This goal of delivering working,
granular, user-valued features frequently has become a common theme
across Agile methods. However, FDD introduces some very powerful, and
lightweight, practices that enable very large projects to be tracked, managed,
and monitored in an Agile fashion. Specifically, you’ll learn more about
parking lot diagrams in Chapter 4, “User Stories for BI Systems.” Moreover,

ptg6843605

TENETS OF AGILITY 39

the overriding theme of early and frequent delivery of high-valued BI fea-
tures to end users runs throughout the Agile Analytics method (and this
book). These project-monitoring and value-delivery practices are integral
components of Agile Analytics.

Shortly after the formation of the Agile Alliance in 2001, Jim Highsmith
observed that Agile methods tended to focus on the iterative and evolution-
ary nature of projects but didn’t really address the need of management
stakeholders to understand the bigger picture of project scope, schedule,
and cost. So he developed the Agile Project Management framework intro-
duced previously. The Envision Explore cycle is separated into the more
granular phases of envision, speculate, explore, adapt, and close. Each of these
phases is defined by a set of objectives and specific practices to support
those objectives. APM serves as an overlay framework that augments the
other Agile methods previously introduced. Agile Analytics makes heavy
use of APM for all project management practices, including project charter-
ing, planning, and monitoring. Not all of the APM practices are introduced
in this book, so I urge you to read Agile Project Management (Highsmith
2010a) to supplement your knowledge of Agile Analytics.

TENETS OF AGILITY

Although this chapter is not intended to completely re-present Agile Project
Management, there is a set of foundational tenets of Agile Analytics that
deserve some attention. These tenets lie somewhere between the 11 guiding
principles introduced in the last chapter and the concrete practices that are
introduced in the remainder of this book. In working with many Agile Ana-
lytics teams, and on my own Agile Analytics projects, I have discovered that
these foundational tenets largely make the difference between “doing Agile”
and “being Agile.”

Just Enough Design

There are two common data warehousing design mistakes that are a curse
to agility. The first is attempting to design the warehouse to accommodate
anticipated (but not yet expressed) future business requirements. The sec-
ond is attempting to completely design the data models before developing
the rest of the warehouse to use them.

We are naturally tempted to anticipate, and design for, future business
needs. While it is good to imagine future requirements, it is too costly to
design and develop for these imagined requirements. Such gold-plating of

ptg6843605

40 CHAPTER 2 � AGILE PROJECT MANAGEMENT

your DW/BI system is costly for several reasons. It eats up development time
that would be better spent working on necessary requirements. It increases
the complexity and technical debt (see the section “Attention to Technical
Debt” later in this chapter) of your current implementation unnecessarily;
unnecessary features must still be tested, maintained, and supported just
like the needed ones. In the Agile software community, this mistake is often
referred to by the acronym YAGNI (“You Ain’t Gonna Need It”). To para-
phrase a quote by Ron Jeffries5 as it relates to data warehousing: The best
way to implement a DW/BI system is to implement less of it. The best way to
have fewer defects in your DW/BI system is to have a smaller/simpler one.
While it is important to design with an eye toward future requirements (i.e.,
adaptability), it is equally important to build only what is needed today.

There seems to be a mistaken belief in the data community that data models
(and related stored procedures, ETL code, and other scripts), once imple-
mented, are unchangeable, or at least too expensive to change. This belief
triggers the tendency to complete exhaustive and comprehensive database
designs up front, or Big Design Up Front (BDUF). BDUF causes a number of
problems. Foremost is that we are likely to get it wrong, but we have no way
of knowing until much later. Additionally, we are likely to incorporate more
into a big up-front design than we really need or, conversely, omit design
elements that are needed. The deeper you dive from logical modeling into
physical modeling or conceptual design to detailed design, the greater your
investment is and the more costly it is to change it. Our aim is to reduce the
cost of database and data model changes through better technical practices
such as database refactoring. Once we understand that database changes are
not prohibitively expensive, we are free to practice “barely sufficient” data
modeling.

We do need up-front database design in data warehousing—just enough
to ensure that (a) the entire team is developing to a common architecture
and (b) we are applying standards of technical excellence and adaptability.
Agile Modeling and database development expert Scott Ambler recom-
mends modeling in small increments and frequently validating the mod-
els with working code (Ambler 2002). Put into data warehousing lingo: Do
just enough data warehouse design to get started, and then prove it with
working BI features. Agile Project Management seeks to balance the need
for some degree of up-front design against the goal of iterative, incremental,
evolutionary development.

5. Ron Jeffries was one of the founders of eXtreme Programming in 1996.

ptg6843605

TENETS OF AGILITY 41

Agile Analytics Practice: Work in Small Steps
The “waterfall” steps of requirements, specification, design, build, test
are all relevant in Agile Analytics. But instead of applying these in big
phases, we cycle through these stages over and over again, sometimes
several times a day. The best proof of our requirements understanding
and design is a working warehouse and BI feature.

Synchronize Daily

Agile teams operate as a cohesive unit, not a collection of individuals. The
success or failure of the team to deliver on its commitments is shared by the
entire team. For this reason Agile teams need daily synchronization so that
everyone has a clear and accurate understanding of what has been accom-
plished, what remains to be done, and what issues may prevent the team
from succeeding. However, frequent long meetings can be disruptive and
counterproductive. Therefore, effective Agile teams hold a short daily stand-
up meeting, scrum (in Scrum parlance), or daily coordination meeting.

Effective Agile teams hold these daily meetings to 15 minutes. In these, each
team member answers these questions: “What did I complete yesterday?”
“What do I expect to complete today?” “What problems am I having, or
what help do I need?” When all is going well, everyone on the team gains
confidence that they are on track. As soon as difficulties arise, the entire
team is notified so that it can collectively decide how to address the problem.

Problems should not be solved during the stand-up meeting. Instead, a
quick plan should be made about who the problem solvers are and when
they will convene to address the problem. These meetings are often held
next to the iteration plan so that team members can gain a sense of whether
the entire team is on track for the iteration.

Agile Analytics Practice: Daily Coordination
Agile teams hold a 15-minute daily meeting to coordinate. Everyone
briefly describes yesterday’s accomplishments, today’s expected accom-
plishments, and any problems they are having. Note the emphasis on
accomplishments rather than ongoing activities.

ptg6843605

42 CHAPTER 2 � AGILE PROJECT MANAGEMENT

Timebox Everything

Anyone with basic project management exposure has learned about the
“iron triangle” of trade-offs among scope, schedule, and cost. You can’t
manipulate one of these variables without affecting the others, and it is not
feasible to fix all three during project visioning. The Agile Project Manage-
ment trade-off matrix insists that only one of these variables can be abso-
lutely fixed, the next most important must be somewhat flexible, and the
third is free to fluctuate as necessary to support the others.

By far, the most common tendency of data warehousing projects is for scope
to be fixed. The guiding question during project planning is something like
“Here are the project requirements. How long will it take this team to com-
plete this project ?” The question inherently implies that not only scope but
also costs (or at least resources) are fixed. The only thing that is f lexible (at
least in the beginning) is the schedule.

The trouble with this, as I’m sure you have experienced, is that when the
schedule is allowed to fluctuate to accommodate a fixed scope, it almost
certainly will. But when the schedule fluctuates, cost is impacted. So fixing
scope often causes both schedule and cost to balloon, and you wind up with
a bulging iron triangle that is anchored by a fixed scope that was underesti-
mated to begin with.

Agile Project Management turns the iron triangle upside down by con-
straining the schedule (see Figure 2.5). This is known as timeboxing. Time-
boxing was devised by the founders of the Dynamic Systems Development
Method (DSDM) Consortium in the late 1990s along with many other Agile
techniques (DSDM Consortium 2002). By timeboxing the project you effec-
tively control the project costs as well. By prioritizing requirements on the
basis of value, you ensure that the most important ones will be completed
on time, even if some of them do not get finished. Stakeholders love it when
you deliver on time, even if a few features are left out.

Release cycles are timeboxed. These are relatively short, like three to six
months—long enough to deliver high-value capabilities to customers, but
short enough so that the expected scope is well understood. Large DW/BI
programs may consist of multiple short, timeboxed planning cycles. The
goal of the release cycle is to release whatever new BI features the team has
finished into production for consumption by end users. Generally speaking,
promoting features into production involves a fair amount of governance
process. It is common in Agile Analytics to earmark the final iteration of a

ptg6843605

TENETS OF AGILITY 43

release cycle for these activities rather than creating new features. Remem-
ber that we are doing production-quality development in every iteration,
but that does not necessarily mean actually launching into production.

Iterations are also timeboxed. Agile teams plan each iteration by estimating
the user stories at the top of the backlog and then committing to only those
that will fit within the timeboxed iteration. Most Agile teams work in two-
week iterations, but three or four weeks is not uncommon. I’ve even worked
with teams that prefer one-week iterations. Shorter iterations don’t make
you “more Agile,” but they do reduce the time between feature showcases
and customer feedback.

Within iterations the work week should be timeboxed to 40 hours. Teams
that work excessive weekly hours in order to accomplish more in a two-week
iteration are not working at a sustainable pace. Agile project plans should
provide for a sustainable development pace.

Even the daily stand-ups or scrums are timeboxed to 15 minutes.

Always remember the project management trade-off among time, scope,
and resources (we don’t sacrifice quality). The method I’m describing fixes
time foremost and resources second-most. The scope is determined by team
capacity and velocity. This technique has two major benefits:

Constraints Requirements ScheduleCost

ScheduleCost

Value/Vision-
Driven

Plan-Driven

Estimates Features

The plan drives the estimation
of cost and schedule.

The vision drives the
estimation of features.

AgileTraditional

Figure 2.5 Timeboxing creates value-driven development.

ptg6843605

44 CHAPTER 2 � AGILE PROJECT MANAGEMENT

� It helps avoid “surprise overruns.” You can see what’s left in the
bank at the end of each release cycle and decide whether you can
afford to continue or if you must stop or seek additional funding.

� It provides concrete and tangible results that the project community
can use to make informed decisions about funding and sponsoring a
next round of development.

Timeboxing offers a means of constraining the impact of activities that are
uncertain or hard to estimate. By establishing a maximum amount of time
that will be allocated to such an activity, the team can avoid letting that
activity trample the other things that must be completed.

Finally, timeboxing forces the team and project stakeholders to make hard
decisions early and frequently. By establishing an immovable project end
date, the project community cannot entertain the option of “just running a
little over schedule to get a little bit more work done.”

Agile Analytics Practice: Timebox Everything
Timeboxing is a powerful tool that promotes agility. Effective Agile teams
timebox everything from daily coordination meetings, to experimenta-
tion, to iterations, to release plans, and beyond.

Colocating Teams

The single most effective type of communication is face-to-face, and the
most effective Agile teams are those that sit face-to-face. Team colocation is
a significant contributor to project success (Ambler 2008a). It significantly
reduces the overhead required to communicate through e-mail, chat, voice
mail, and other impersonal means. Colocation promotes multimodal com-
munication in which body language, whiteboard sessions, and hand ges-
tures can augment verbal communication. Scott Ambler’s essay on Agile
communication provides excellent and compelling detail on the modes of
communication and their impact on Agile teams (Ambler 2009a).

The ultimate colocation occurs when team members literally sit next to and
across from each other during core team hours each workday. Cubicle walls
and private offices are barriers to this degree of colocation. Many Agile
teams rearrange cubicles or find a dedicated project room where they can sit
face-to-face during work hours.

ptg6843605

TENETS OF AGILITY 45

Teams that are geographically distributed have the added challenge of creat-
ing “virtual colocation” in order to eliminate as many barriers to collabora-
tion as possible. Many good collaboration tools are available to assist in this,
such as instant messaging, desktop-sharing tools, voice over IP (VoIP), and
others.

Teams that are also separated by time zones must creatively overcome that
barrier as well. A few time zones are surmountable, but team members who
are on opposite sides of the planet face significant challenges.

There are many examples of Agile teams that are effective despite geograph-
ical and temporal separation. These teams are able to creatively minimize
the collaboration barriers. However, teams whose members work in the
same building but do not maximize collaboration and colocation stand to
lose a great opportunity for maximizing effectiveness.

Agile Analytics Practice: Strive for Colocation
If it’s possible to work face-to-face, do it. Even if it isn’t possible to be
physically together, Agile teams seek creative ways to eliminate the bar-
riers of being a distributed team.

Attention to Technical Debt

Ward Cunningham uses the metaphor of fiscal debt to describe the natural
entropy that occurs in systems over time (Cunningham 1992). He points
out, “A little debt speeds development so long as it is paid back promptly
with a rewrite. . . . The danger occurs when the debt is not repaid. Every
minute spent on not-quite-right code counts as interest on that debt.”

Technical debt is a common occurrence in data warehouse development. It
occurs when time pressures cause us to take shortcuts. It occurs when we
fail to make good design decisions. It occurs naturally over the course of
time as we make revisions and fix bugs. Technical debt is the entropy that
occurs in all systems over time.

Just like financial debt, a little technical debt is okay as long as we monitor
it and don’t let it accumulate. However, technical debt drives up the cost of
making changes to the system. The problem occurs if technical debt contin-
ues to accrue unabated. A DW/BI system with high technical debt is costly
to modify or enhance because we must navigate convoluted code, messy
data models, sloppy designs, and other problems. In the extreme, technical

ptg6843605

46 CHAPTER 2 � AGILE PROJECT MANAGEMENT

debt has the potential to bury a system if the cost of change outweighs the
cost of building a new system (see Figure 2.6).

Effective Agile Analytics teams keep track of known technical debt and work
to pay down that debt on a routine and intentional basis. Such teams iden-
tify, track, and manage technical debt in much the same way they manage
user stories or defects. They prioritize debt and allocate the necessary time
during the project cycle to eliminate it. We will examine specific debt reduc-
tion techniques, such as code and database refactoring, in later chapters.

Agile Analytics Practice: Track and Manage Debt
When an aspect of the data warehouse or BI apps is uncovered that
reflects unwanted technical debt, write it on an index card and prioritize
it on your product backlog alongside user stories, defects, and other
backlog items. Don’t let it be forgotten.

Plan to Capacity and Monitor Velocity

Every project team, regardless of team size or project complexity, has a finite
work capacity. Moreover, the very same team working on two different

Acceptable
Debt

Excessive
Debt

Intentional
Debt Pay-Down

Failure to
Reduce Debt

Time

C
os

t o
f C

ha
ng

e

Figure 2.6 Technical debt management

ptg6843605

TENETS OF AGILITY 47

projects may have a different capacity on each project. Because Agile Ana-
lytics is a feature-driven approach, we define capacity in terms of the num-
ber of features that a team can complete at product quality during a single
iteration. Features are not always equivalent in the effort required to com-
plete them, so we use a story-point or feature-point estimation to differenti-
ate them. Team capacity is a measure of how many story points the team
can complete in an iteration. Story-point estimating is presented in much
greater detail in Chapter 4, “User Stories for BI Systems.”

It is important for Agile Analytics teams to assess their capacity and plan
within that upper limit. A newly formed team on a new project will not
know its actual capacity. So, the team starts the project in the first iteration
by committing to one or more user stories based on the team members’ best
experience and judgment. At the end of the first iteration, when the team
has completed its commitments (ideally) and the new features have been
accepted, the total number of story points represented by those features is
the team’s demonstrated capacity. In other words, the team’s performance
has confirmed what the members’ experience and judgment suggested.

When planning the next iteration, the team must not plan more than its
demonstrated capacity from the previous iteration, even if their judgment
tempts the team members to do so. If the team finishes its commitments
early in the iteration and feels it can complete another feature, it may pull
another story from the backlog. If the team is successful in this, it has a
newer and higher demonstrated capacity and can plan to this new capac-
ity in the next iteration. Agile Analytics teams boost their velocity by plan-
ning conservatively and then exceeding their own expectations. Figure 2.7
depicts a typical capacity growth curve on a new project. Over the first sev-
eral iterations the team settles into its rhythm, and its capacity levels out,
representing optimal performance.

Once optimal capacity is established, Agile Analytics teams track their
velocity against that capacity. Velocity is also a measure of completed and
accepted story points during each iteration. Velocity relative to capacity
helps the team determine if it is working at peak effectiveness. For example,
suppose the team has an established velocity of 30 points. During iteration
eight it completes four new features for a total of 31 story points. However,
the business owner rejects one 5-point feature, because of a flaw in the logic.
In this case the team’s velocity is only 26 points even though its demon-
strated capacity remains at 30—the team did not perform at peak effective-
ness. During iteration 11 two of the team’s members are away on vacation.
The team velocity drops as expected during this iteration, but the team

ptg6843605

48 CHAPTER 2 � AGILE PROJECT MANAGEMENT

capacity remains at 30 because this is a temporary dip in productivity. As
Figure 2.8 shows, it is when team velocity exceeds previously demonstrated
capacity that new, higher capacity is established.

Ite
ra

tio
n

1
Ite

ra
tio

n
2

Ite
ra

tio
n

3
Ite

ra
tio

n
4

Ite
ra

tio
n

5
Ite

ra
tio

n
6

Ite
ra

tio
n

7
Ite

ra
tio

n
8

Ite
ra

tio
n

9
Ite

ra
tio

n
10

Ite
ra

tio
n

11
Ite

ra
tio

n
12

Ite
ra

tio
n

13
Ite

ra
tio

n
14

Ite
ra

tio
n

15

30
Capacity

20

25

15

10

5

0

Figure 2.7 Team capacity in story points

Ite
ra

tio
n

1
Ite

ra
tio

n
2

Ite
ra

tio
n

3
Ite

ra
tio

n
4

Ite
ra

tio
n

5
Ite

ra
tio

n
6

Ite
ra

tio
n

7
Ite

ra
tio

n
8

Ite
ra

tio
n

9
Ite

ra
tio

n
10

Ite
ra

tio
n

11
Ite

ra
tio

n
12

Ite
ra

tio
n

13
Ite

ra
tio

n
14

Ite
ra

tio
n

15

35

30

20

25

15

10

5

0

Capacity Velocity

Figure 2.8 Actual velocity increases capacity.

ptg6843605

TENETS OF AGILITY 49

Failure to plan within demonstrated capacity boundaries can cause
unpleasant outcomes. In Chapter 5, “Self-Organizing Teams Boost Perfor-
mance,” we will examine team responsibility and accountability. If a team
plans beyond its capacity, it must bear the responsibility for honoring its
overcommitment. There are a variety of pressures that cause Agile teams
to plan beyond their capacity. Some are caused by internal team optimism,
and others are caused by external prodding. Jim Highsmith describes this
as a shift from capacity-based planning to wish-based planning. The plan is
based on how much work the project community wishes the team could
accomplish rather than what it has demonstrated. Ultimately the team will
accomplish the volume of work it is capable of doing. Wish-based planning
generally leads to disappointment and a sense of failure, whereas capacity-
based planning generally leads to a sense of joy and celebration. Personally,
I prefer to celebrate!

Agile Analytics Practice: Capacity-Based Planning
Avoid wish-based planning by never letting an iteration plan exceed the
team’s demonstrated capacity. Increases in capacity should occur by
delivering more than was committed, not by committing to more than is
possible.

Track Daily Progress

Sometimes Agile Analytics teams with the best of intentions still find them-
selves scrambling at the end of an iteration to complete their commitments.
In addition to daily synchronization and colocation to help teams work as a
unit, Agile project managers (and teams) should explicitly track and moni-
tor their daily progress. Doing so will help the team avoid eleventh-hour
“uh-oh” moments. There are multiple practices and techniques that will
assist the team with this daily tracking. We’ll take a brief look at iteration
planning, story tracking, and burn-down charts as a few of these.

In Chapter 4, “User Stories for BI Systems” you will be introduced to the
effective creation of user stories for a DW/BI system and the management
of a prioritized backlog of user stories. These practices provide the project
community with a project-level or release-level view of scope. Assuming
the backlog is properly managed, and the team has an established capac-
ity, planning the next iteration is relatively simple. The highest-priority user
stories are moved from the backlog into the iteration plan. The effort to
complete these stories has already been estimated using story points (also

ptg6843605

50 CHAPTER 2 � AGILE PROJECT MANAGEMENT

covered in Chapter 4). The total points from all of the stories that are moved
into the iteration plan must not exceed the team’s demonstrated capacity.

Once the team has committed to completing the user stories that have been
moved into the iteration plan, it identifies the detailed development tasks
needed to complete each story. With the use of flip charts, index cards, and
sticky notes, the iteration plan might end up looking something like Figure
2.9 (the details of this figure are not important at this point).

Iteration 5Capacity = 30
Plan = 29

Determine the
business logic
for calculating
gross profit

Develop ETL
logic to
calculate
transaction
gross profit

Add other
necessary
fields to
transaction
table for net
profit calc.

Modify profit
margin table
to include net
profit margin
lookups

Create BI
report showing
gross profit by
transaction

Validate that
gross revenue
is properly
calculated

Associate
transaction
fact table
with date
dimension

Ensure that
net and gross
profit measures
appear correctly
in transaction
fact

Develop a
new user report
that shows
customer
profit by store

Validate that
customer net
and gross
profit are
correctly
calculated

Verify
calculation
of net and
gross profit

Develop ETL
logic to
calculate
transaction
profit

Add revenue
to transaction
fact table

Develop profit
margin table
in staging

Create BI
report showing
revenue by
transaction

Validate that
transaction
revenue is
properly
calculated

Modify staging
data model to
include
transaction
revenue.

As a profitability
analyst I need the

ability to examine net
profit per customer
per transaction for

any customer so that
I can identify the

customers who might
become more profitable. 13

As a profitability
analyst I need the

ability to examine gross
profit per customer
per transaction for

any customer so that
I can identify the

most profitable
customers. 8

As a profitability analyst I
need the ability to
examine customer

profitability by individual
store per day

so that I can help the
least profitable stores

become more
profitable. 8

Figure 2.9 Iteration plan with task detail

ptg6843605

TENETS OF AGILITY 51

Once the team launches into the iteration, it needs a method for tracking
its progress. This serves two purposes: to give the team a visual cue as to
whether it is on track for success, and to provide visibility into the team’s
progress for external community members. The card wall is an effective and
highly visual tool for accomplishing this goal (see Figure 2.10). Although
somewhat more jumbled, the card wall communicates much more than the
iteration plan in Figure 2.9.

The card wall hangs in a visible spot in the team workspace, and the team
holds its daily stand-up meeting in front of it. In this way the team members
can see what tasks are left to be completed, and they should expect to see
reasonable completion of tasks throughout the iteration. As team members
commit to completing tasks, the task notes are moved from the “On Deck”
column into the “In Progress” column. When tasks are finished, they are
moved into the “Done!” column. When all of the tasks for a story card are
complete, the story card is moved into the “Done!” column. As soon as a
card is done, it is ready for review and acceptance by the business owner
and/or the user representatives. When user acceptance is complete, the user
story is “Done! Done!” If the team were just a few days from the end of
iteration five and the card wall looked like the one in Figure 2.10, this team
may have reason to be very concerned.

There are many other creative ways to track and monitor task and story
completion on a daily basis throughout an iteration. Some Agile teams use
different-colored dots or markings on a story card to denote the stages of
“in progress,” “complete,” and “accepted.” Although there are many ways
you can track this progress, it is the highly visual nature of these that is key
to their effectiveness. When the card wall is posted in a prominent place,
the team members are continuously reminded of how well they are tracking
toward completing their commitments.

The burn-down chart is another tool for tracking daily progress during an
iteration. This project management tool is another visual control that many
teams hang prominently on the wall. Burn-down charts track the comple-
tion of work from one day to the next and convey the team’s trajectory
toward its iteration goal.

Figure 2.11 depicts an example of a burn-down chart that tracks tasks
remaining during a two-week iteration beginning on Monday and ending
on Friday of the following week. In this example the team has completed 15
out of a total of 20 tasks as of the end of the second Monday of the iteration.
A glance at this chart suggests that the team is on a trajectory to complete all
of its tasks by the end of the iteration.

ptg6843605

52 CHAPTER 2 � AGILE PROJECT MANAGEMENT

Alternatively, burn-down charts can track estimated hours of work remain-
ing, story points remaining, or some other comparison of work completed
to work remaining. It is not uncommon for teams to identify new tasks
after the iteration has begun, or to recognize that previously identified tasks
can be eliminated. When this happens, the burn-down chart will show a
sharper-than-normal drop in trajectory, a flattening over multiple days, or

As a profitability analyst I
need the ability to
examine customer

profitability by individual
store per day

so that I can help the
least profitable stores

become more
profitable. 8

Add revenue

to transacti

fact table

Create BI

showing
revenue by
transaction

Develop ETL
logic to
calculate
transaction
profit

Capacity = 30
Plan = 29

In ProgressOn Deck Done! Done! Done!

Iteration 5

Modify staging
data model to
include
transaction
revenue.

Validate that
transaction
revenue is
properly
calculated

Develop
profit margin
table in
staging

Modify profit
margin table
to include net
profit margin
lookups

Determine the
logic
calculating
gross profit

Develop ETL
logic to
calculate
transaction
gross profit

Add other
necessary
fields to
transaction
table for net
profit calc.

Creat BI
 report
sh owing
gross profit by
transaction

Validate that
gross revenue
is properly
calculated

Associate
transaction
fact table
with date
dimension

Ensure that
net and gross
profit measures
appear correctly
in transaction
fact

Develop a
new user report
that shows
customer
profit
by store

Validate that
customer net
and gross
profit are
correctly
calculated

Verify
calculation
of net and
gross profit

As a profitability
analyst I need the

ability to examine net
profit per customer
per transaction for

any customer so that
I can identify the

customers who might
become more profitable. 13

ETLV lid t th t

As a profitability
analyst I need the

ability to examine gross
profit per customer
per transaction for

any customer so that
I can identify the

most profitable
customers. 8

Figure 2.10 Card wall

ptg6843605

TENETS OF AGILITY 53

even a temporary rise in trajectory. As long as the team understands and
properly manages the impact of these anomalies, there should not be cause
for alarm. Remember, the primary goal is the completion of working fea-
tures. Task completion is simply in support of that goal.

Many Agile teams use electronic tools such as Microsoft Excel to manage
their burn-down charts. At the time of this writing there are a number of
fairly elaborate Excel solutions and tools for tracking burn-down, both free
and commercial, available on the Internet. Likewise, most of the commer-
cial and open-source Agile project management tools available provide a
burn-down tracking feature. Whether you elect to use an electronic burn-
down or a manual one like the example in Figure 2.11, this tool is most
effective when it is updated daily and is made visible to the entire team.

Agile Analytics Practice: Team Self-Monitoring
Teams monitor their own velocity, burn-down, and card walls on a daily
basis. These visible controls are ever present in the team’s workspace.
Outsiders can see them but should not use them as performance metrics.

20

15

10

5

0

N
um

be
r o

f T
as

ks
 R

em
ai

ni
ng

Iteration Days
M

on Tu
e

W
ed Th
u Fr
i

M
on Tu
e

W
ed Th
u Fr
i

Figure 2.11 Tracking burn-down

ptg6843605

54 CHAPTER 2 � AGILE PROJECT MANAGEMENT

Monitor Story Completion, Not Task Time

A brief observation about the tasks in Figure 2.10: Even though they are not
particularly readable, you may have noticed that they do not include time
or effort estimates. It isn’t clear whether some tasks are more or less time-
consuming than others. Although there is a temptation to estimate and
track task completion time, doing so has the undesirable effect of taking the
team’s focus off of what is important: completed features.

Instead, the team should strive to define tasks that are small enough to be
completed in less than one workday. Some will take less than an hour and
others will consume nearly a full day of effort. Many teams establish the
practice of defining tasks that are expected to take less than half a day to
complete. Doing so enables the development team to self-manage their tasks
as a simple to-do list. As with any to-do list, new tasks can be added to the
list, and tasks that become irrelevant can be removed without a burdensome
change procedure.

Also, you may have noticed that owners are not assigned to the tasks in Fig-
ure 2.10. As previously mentioned, effective Agile teams operate as a collec-
tive. By maintaining a collective set of tasks, any member of the team who
is available can complete any task provided he or she has the necessary skills
to do so. In practice it may be implied that the ETL developers will handle
ETL tasks, data modelers will handle modeling tasks, and so forth. How-
ever, Agile teams work best when they behave like generalists rather than
specialists. It is not uncommon on a healthy team to see a DBA stepping up
to write a bit of ETL code, or an ETL developer stepping up to write some
PL/SQL if needed. This promotes better cross-disciplinary understanding of
the entire solution, and team members have the opportunity to develop new
skills. During each daily stand-up meeting the team cooperatively decides
what should be done, and team members volunteer for the tasks that they
are best suited to complete. The project manager facilitates this process.

One Agile Analytics team of which I was a member established the practice
of assigning an estimated effort of 1.0 hour to every task. It was our goal
to define tasks smaller than half a day. Some took less than one hour, and
some took more. We did not establish this practice until well into a multi-
year, multirelease project. In the beginning our team estimated task effort
in person-hours, and, like many teams, we tracked actual time versus esti-
mated time. Like most effort estimates, ours were routinely incorrect. After
shifting to the simpler practice of not estimating task effort and assigning
1.0 to every task, we discovered the following benefits:

ptg6843605

TENETS OF AGILITY 55

� Our iteration-planning time became much shorter because we
didn’t have to estimate effort for every task.

� We were liberated from the previous impact of adding, removing,
and modifying tasks once the iteration was under way. Prior to our
simpler approach task changes messed up the burn-down chart and
caused a bit of grief for the project manager.

� Our entire team shifted its focus more toward story completion and
away from task completion.

� Tasks assumed thei r proper role as to-do items rather than measures
of productivity.

Not long ago I was asked by a client to conduct an assessment of their Agile
Analytics efforts. Although they were doing many things very well, they
were experiencing a particular problem during iteration planning. Roughly
90 percent of their iteration-planning time was spent in task definition and
estimating. The project manager was intent on aligning task time estimates
with the personnel time allocated to the project. So, if Russell was allocated
25 hours per week to the project, all of the tasks assigned to Russell had to
add up to 25. If Russell was overtasked, he had to lower estimates or elimi-
nate tasks; if he was under 25, he had to account for how he would spend his
available extra time. Surprisingly little attention was given to understanding
the user stories, story acceptance criteria, or related business drivers.

I observed several interesting effects that this task-centric planning caused.
First, the team members were frustrated because they didn’t see the value in
this type of planning. Second, the team tended to sandbag its task time esti-
mates so that they added up to the “right” number. Third, it promoted indi-
vidualism over team cooperation because individuals were assigned “their
tasks” to fill their personal time capacity. Finally, it was not a collaborative
team planning effort; it was a grilling of the team by the project manager to
get the information he needed to plug into his planning tool. In the end the
team left the meeting exhausted and frustrated—and that was on a Monday
morning at the beginning of a new iteration. Not a good way to start!

However you choose to tailor your iteration planning and daily tracking
practices, make sure that your team’s primary focus is on the completion of
working features in the DW/BI system. Keep in mind the first principle of
Agile Analytics: “Our highest priority is to satisfy the BI user community
through early and continuous delivery of working user features.”

ptg6843605

56 CHAPTER 2 � AGILE PROJECT MANAGEMENT

Agile Analytics Practice: You Get What You Measure
Agile Analytics teams and Agile leaders measure what is important. That
is principally the delivery of high-quality, high-value, working BI features.
Progress and performance metrics should be built around value delivery
and quality rather than on such things as task completion and velocity.

WRAP-UP

Creating a weekly live television variety show requires a lightweight
approach in which time is not wasted on things that don’t directly contrib-
ute to the show. It requires lots of face-to-face teamwork among writers,
actors, stagehands, and other people. It requires creative ideas and visions,
followed quickly by the exploration of those ideas to see if they are good
enough to keep. It requires adapting to the feedback of test audiences and
to external events. Creating a live TV show requires airing at the scheduled
time whether or not the creators need more time. And by the way, the show
had better consistently get high network ratings to stay alive. This type of
pressure quickly forces creative teams to abandon practices that don’t help
and to emphasize and fine-tune the ones that do.

This chapter on Agile Project Management lays the foundation and frame-
work for a set of lightweight Agile Analytics practices that are introduced
throughout the remainder of this book. Agile Analytics is formed of a
blend of practices from XP, Scrum, Crystal, FDD, and APM. These prac-
tices have been adapted to the unique challenges of data warehousing and
business intelligence. They require discipline and rigor but should never get
in the way of the goal of producing high-value, working BI features every
two weeks. Good Agile Analytics teams tailor these practices to meet their
needs. They abandon practices that don’t help, and they emphasize and
fine-tune the ones that do.

In this chapter we have examined the core differences between phased/
sequential processes and iterative/incremental/evolutionary processes. We
have explored the key differences between traditional Plan Do cycles
and the APM cycle of Envision Explore. These key differences primarily
reflect a mind-set shift in our approach to project planning and manage-
ment. This mind-set shift is the foundation of Agile Analytics. Built on this
foundation is a set of planning practices and execution practices that rep-
resent a significant change in the way we build data warehousing systems.

ptg6843605

WRAP-UP 57

This approach embraces changing requirements. It seeks user feedback early
and often. And it focuses on the early delivery of business-valued features.

This overview of Agile Project Management is not a substitute for a deeper
study of APM as presented in Highsmith’s book. APM introduces a well-
defined collection of phases and practices for effective project visioning,
speculation, exploration, adapting, and finishing. Agility requires a very
different style from the project manager than traditional projects. The proj-
ect manager becomes a team facilitator and enabler rather than a task com-
pletion manager. This chapter has highlighted the tenets of agility—those
behaviors and attitudes that make the difference between a team that has
Agile DNA and a team that does not.

In my experience working with numerous data warehousing groups in their
Agile Analytics adoption, the most common problems I have observed
involve project management practices. Although development practices,
collaboration practices, and other practices are important, they do not seem
to be as critical to Agile success as project management. Teams that are suc-
cessful in adopting good APM practices have established the basis for rapid
Agile maturation in other practice areas.

ptg6843605

This page intentionally left blank

ptg6843605

59

Chapter 3

COMMUNITY, CUSTOMERS, AND
COLLABORATION

I occasionally am asked to describe Agile project failures and struggles. I
haven’t formally studied root causes of failure but have worked with enough
struggling Agile teams to gain a qualitative sense of these causes. Agile
struggles are commonly caused by non-Agile behaviors masked behind
Agile trappings and terminology. Failure to collaborate is a common prob-
lem. People tend to revert to the asynchronous communication (e-mail and
written documents) and “throw-it-over-the-wall” habits with which they’ve
grown familiar.

Two of the Agile Manifesto’s core values are focused on collaboration—one
between team members and the other with customers. Another one focuses
on responding to change. Fundamentally, responding to change requires
collaboration and the continuous realignment of expectations among devel-
opers, customers, and stakeholders. Despite the apparent focus on budgets
and schedules, projects are generally declared successful when the results
meet the expectations of stakeholders and customers—even if those expec-
tations have changed dramatically during the course of the project. This
chapter is about how to facilitate interactions among team members and
collaboration with BI “customers.”

I also occasionally get asked what kinds of projects are not suitable for an
Agile approach. After much thought, I’ve concluded that I would use Agile
on every BI project, small or large, as long as I had the committed participa-
tion of stakeholders, customers, and developers. Not long ago I was asked
to coach an Agile data warehousing group in a large company. They had
recently adopted an Agile approach but were struggling to be effective. Dur-
ing the assessment phase of my coaching process I asked the team techni-
cal leaders to describe their collaboration with end users. I learned that the
users were too busy to be involved in planning, story prioritization, and new
feature review and acceptance. The same was true for many of the business
experts and stakeholders, so I advised the team to halt the project. A proj-
ect that isn’t worth the involvement of users and stakeholders is not worth
doing; time is better spent on other endeavors. This chapter is about how to

ptg6843605

60 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

effectively involve everyone in the project community, and how to ensure
that their time is well spent.

On a positive note, the most gratifying and successful Agile projects I have
experienced or witnessed have active project community involvement. The
strong bond of trust that develops among users, team members, and stake-
holders on such projects is a wonderful side effect of successful Agile proj-
ects. Because success breeds more success, these bonds carry forward to
future projects.

WHAT ARE AGILE COMMUNITY AND COLLABORATION?
The very nature of traditional, phased, sequential (e.g., “waterfall”) devel-
opment methods tends to promote interaction between project leaders and
customers early in the project lifecycle, during requirements gathering. This
is followed by very limited interaction during design, development, and ini-
tial testing. Then customers are reengaged during final acceptance testing
and release preparation. It isn’t uncommon in this approach for developers
never to interact with customers.

Similarly, under this model management sponsors and stakeholders are
involved in early project inception, cost justification, and planning. Then
throughout project execution they are kept informed about progress
through periodic status reports and updates.

In fact, our industry has spent many years training developers not to bother
customers during development, project managers to keep management
happy with cursory status updates, and customers to be uninvolved after
initial requirements analysis. These behaviors are anathema to the princi-
pal goal of Agile Analytics, which is the incremental delivery of working
features and the evolutionary development of a DW/BI system by adapting
to frequent customer feedback. Agile success requires that we change these
traditional organizational habits and project community behaviors.

The project community includes those building the system, those who will
use the system or benefit from its use, and those who understand the corpo-
rate benefits of undertaking the project in the first place. Agile development
calls for regular and frequent interactions between these groups. While
the builders are involved on a daily basis, the customers/users are involved
weekly, and the management sponsors/stakeholders are involved every few
weeks. Here is a glimpse at how the FlixBuster DW/BI project community
practices healthy, effective collaboration:

ptg6843605

WHAT ARE AGILE COMMUNITY AND COLLABORATION? 61

Scenario

The FlixBuster DW/BI project has been progressing well since its inception. The
team is now in its third two-week iteration. The end of this iteration will mark the
midpoint of the 90-day project plan, so in addition to the normal feature show-
case that the developers hold for the customers in their co-development group,
they will also be holding a project showcase for the management stakeholder
group.

Arlene, the scrum master for the team, will be coordinating these two showcases
and has worked hard to ensure that the right people have committed to being
there. She has discovered on past projects that when key people miss out on
these important checkpoints, expectations can get out of alignment and misunder-
standings can arise. She also knows that the key stakeholders on this project are
extremely busy and expect their time to be used wisely. The project team trusts her
to facilitate both showcases to ensure that they are effective and efficient.

It’s Friday morning at 8:30 and all of the feature showcase participants begin
arriving. Arlene arranged a continental breakfast to get everyone there early
for a prompt start at 9:00. Pete, the VP of finance, and Allen, the CTO, are the
executive sponsors of the FlixBuster project. They have been invited to observe the
feature showcase along with key stakeholders Gary (VP of sales) and Marcus (VP
of marketing). This group will be staying for the project showcase afterward.

The co-development team includes Beulah (finance), Andy (retail sales), Kari (mar-
keting), Mike (operations), Jane (finance), Chuck (finance), Mack (operations),
Samantha (marketing), and Javier (controller). Beulah has been with the FlixBuster
finance division since the beginning ten years ago. Jane and Chuck are financial
analysts who provide key decision support information to Carroll, the CFO, and
Georgina, the CEO, along with other executive decision makers. Because Mike,
Andy, and Kari are off-site in Reno, Nevada, Arlene has set up a videoconference
bridge so that they can participate effectively.

Arlene wrangles everyone into the conference room at 8:55 and the showcase
starts right on time. She kicks off the meeting by reminding everyone that the
project is at the midpoint of the current 90-day planning period, and this is a key
checkpoint. She emphasizes the team’s desire to highlight any concerns, issues,
problems, or unmet expectations now so that the group can make any course cor-
rections that might be necessary.

Arlene reminds the group that the showcase is only for feature review and accep-
tance, and she reiterates the ground rules that they agreed upon at the beginning
of the project:

 Rule 1: This meeting is for the customer community to review completed work
and give feedback.

 Rule 2: Everyone except the product owner and customer community is a
silent observer, including executive sponsors and stakeholders.

 Rule 3: Developers shouldn’t explain why features work the way they do or
offer suggestions for how to fix problems.

ptg6843605

62 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

 Rule 4: If a feature is not accepted by users, the reasons will be noted but
no commitments should be made about when or how it will be
corrected.

 Rule 5: The showcase is only for the features the team completed in this itera-
tion. Feedback on previously completed features or new feature ideas
should be given to the product owner outside the showcase.

The team has discovered that these guidelines keep the showcase focused and
effective and prevent heading off on tangents.

Bob, the team’s business analyst, will be the scribe for this showcase. His job is to
capture all comments and feedback. Dieter, the product owner, will demonstrate
the features and will talk about any deviations from the original iteration plan two
weeks earlier. As the facilitator, Arlene creates a flip chart poster titled “Parking
Lot” where she will capture any topics that come up that threaten to pull the group
off track. She knows that these topics may be important, and the parking lot
allows her to capture them while keeping to the agenda.

Alongside the parking lot poster is the team’s card wall, showing team accom-
plishments during the past two weeks. Next to that are the project release plan
and product backlog. Dieter references these during the feature demonstration.

He reminds the co-development customers that the team committed to three new
stories in this iteration along with a requested revision of a feature from an earlier
iteration. The team has had a productive iteration and has met all of its commit-
ments. Dieter makes a list of the stories that he will demonstrate, which include top
10 percent of movie rentals by genre, release date, and studio; customer profit-
ability analysis; seasonal profitability analysis; and a revision to the studio royalties
feature from iteration one.

Dieter kicks off the demonstration by role-playing a business scenario. He pretends
to be a profitability analyst after the winter holidays reviewing holiday sales
figures. He has learned that these demonstrations are most effective when they
follow a use-case scenario because that puts the demo into a meaningful business
context.

Kari stops Dieter during the first story demo, saying, “What if I want to see the top
20 percent rather than the top 10 percent?” Andy adds, “How about the bottom
10 percent or 20 percent?” Dieter points out that this particular user story is just
part one of a series of stories that are on the backlog. He points to a couple of
other stories near the top of the backlog that call for giving users the ability to
specify top or bottom N percent, where the user defines N. But he agrees to
review those other stories later with customers to be sure they are still valid. Bob
makes note of this agreement and everyone is satisfied.

As Dieter continues with his demonstrations, co-development customers stop him
with questions, observations, or feedback. Bob takes notes. At one point Beu-
lah says, “With our third quarter about to end, it would be really helpful if the
finance department had these new features sooner rather than later. What would
it take to put these into production right away, even though they are still relatively
immature?” Without making a firm commitment, Dieter agrees to evaluate this

ptg6843605

WHAT ARE AGILE COMMUNITY AND COLLABORATION? 63

with Arlene and the development team. He promises to have more information for
Beulah and the co-dev group by Monday for the next iteration-planning session.

The co-developers accept all of the new features and the feature revision. It was
a successful iteration and everyone is very excited. Javier comments, “It’s amazing
how much our team has done in only 45 days. The last BI project ran for nine
months before they had anything to show us.” Arlene finds it interesting that he
said “our team” in the first sentence but used the pronouns “them” and “us” in the
second. That’s a good sign that he feels like part of the team.

After the feature showcase, Arlene kicks off the project showcase for management
sponsors and stakeholders. It is only 9:50; they are ahead of schedule. She asks
if anyone needs a break, and since nobody does, she proceeds. The goal of the
project showcase is to highlight the team’s progress toward the initial project vision
and any deviations from the original release plan that was developed during proj-
ect chartering. Her goal is to keep the conversation at a summary level, getting
into the details only if sponsors and stakeholders ask her to.

Arlene is well prepared with iteration burn-down charts to show that the team has
only missed its commitments on the first iteration. The team’s velocity is currently 34
story points but seems to be increasing. She reminds managers that this just means
the team is getting better, and that they should not use velocity as a productivity
measure. She shows a project burn-up chart that shows how many value points
and features have been delivered, and that the team is on a good trajectory,
but the original 90-day plan might be a little too ambitious. She and Dieter will
continue working with the co-development team to rein that in. Finally, Arlene
presents a parking lot diagram (this is different from the parking lot poster and is
introduced in Chapter 4, “User Stories for BI Systems”). The parking lot diagram
gives sponsors and stakeholders an at-a-glance look at the project status. It shows
capabilities delivered, capabilities still in progress, capabilities not yet started,
and capabilities that are behind schedule. The profitability analysis capability is
a little behind schedule, but Beulah pipes up and says, “That’s because it took
the finance group longer than expected to agree on how net profit should be
calculated. We finally got that to the team and now they are on track.” Arlene
wasn’t going to ascribe blame, but she’s happy that Beulah was willing to accept
ownership.

Arlene gives Prakash, the technical team leader, a chance to update everyone on
the current known risks and uncertainties as well as plans for handling them. She
also gives Dieter an opportunity to update the group on changes in the product
backlog and BI features to be delivered. Marcus, the VP of marketing and a
project stakeholder, wants to be sure that customer segmentation is still included
in this project phase. His team needs this capability to meet some of its annual
goals. After a few other questions from sponsors and stakeholders Pete, the VP of
finance, comments on how great it is to see his staff working so closely with the
development team. He is excited about the ongoing collaboration and what it
means for the success of this and future projects.

It’s now 10:30 A.M. and Arlene has promised to have everything finished by
11:00. It’s time for the iteration retrospective, a chance for the team to reflect

ptg6843605

64 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

on and improve its performance. Arlene writes the following three questions on
the flip chart: “What went well?” “What to improve?” “What are my questions
or concerns?” She asks everyone to take a few minutes to write their answers
to these questions, one per sticky note. When the writing seems to slow down,
she asks someone to volunteer an answer to the “What went well?” question.
Francisco, a developer, hands Arlene one of his answers and says, “The team did
a much better job of testing during this iteration.” Many of the other developers
have a similar answer, so Arlene collects all of these and puts them in a cluster
on the flip chart. She asks for another volunteer, and Dieter gives her a sticky note
that says, “There’s still too much problem solving during daily stand-up meetings,”
which many others agree with. In this way Arlene quickly gathers and groups
everyone’s answers to the retrospective questions. The team has learned not to
use this time to resolve all of the areas for improvement or answer outstanding
questions. Instead, Arlene commits to following up with the team on any new
action items or process adjustments. She also promises to work with the team and
sponsors to answer any of the questions or concerns. Allen, the CTO and project
sponsor, commends the group on everything that has gone well and mentions
how impressed he is by the synergy that is apparent between the developers and
the co-development “customers.”

It’s now 11:00 A.M. and, as promised, Arlene adjourns the meeting on time and
promises to follow up on the various action items and commitments that were
made during the showcases and retrospective. She also promises to update the
information radiators (the big visible charts and posters) in the team room so that
they accurately reflect the decisions made today. She reminds everyone that
the FlixBuster BI system is running on a demo platform with the latest accepted
features and encourages everyone to regularly test-drive that system and give the
team feedback.

THE AGILE COMMUNITY

Agile Analytics relies on a well-populated project community: the planners,
the doers, and the consumers (see Figure 3.1).

The planners are senior management, project sponsors, and stakeholders.
Anyone who has a vested interest in project success and its strategic impor-
tance to the business falls into this category. The project community relies
on planners to prioritize the project and to act as executive champions and
enablers when tough decisions must be made. Planners care about the proj-
ect budget, schedule, and its ultimate value to the organization. They are not
directly responsible for feature acceptance, but they care about the users’
needs being met. Planners are involved in the project every few iterations
and should be monitoring project status more frequently.

ptg6843605

THE AGILE COMMUNITY 65

Doers include those community members who are directly involved in exe-
cuting the project plan. This group includes technical architects and devel-
opers as well as testers, business analysts, technical writers, and operations
specialists. The Agile project manager is a doer as well as a planner. Doers
are involved on a daily basis.

Consumers are anyone who is directly or indirectly involved in accepting
the working BI system produced by the doers. This group includes “fingers
on keyboard” end users, consumers of the resulting business intelligence,
business managers whose staff members rely on the BI system to do their
jobs, those making project funding decisions, and others. Anyone who cares
about the functionality of the system falls into this group. Consumers are
involved in the project on a weekly basis.

Some community members have multiple roles or are in more than one
subgroup. The data warehouse technical lead may be both a planner and a
doer, and the business analyst may be both a doer and a consumer. Further-
more, the interface between subgroups is generally facilitated by appropriate
community members. The interface between planners and doers is com-
monly the project manager, and the product owner is typically the interface
between doers and consumers, and between consumers and planners.

Planners

DoersConsumers

Figure 3.1 The Agile project community

ptg6843605

66 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

The members of a healthy Agile community are actively engaged in the
project and committed to its success. In traditional plan-driven projects
the planners complete their work, and the doers are expected to execute the
plan and deliver it to the consumers. Agile communities work best when
planners, doers, and consumers are actively involved from start to finish.
Doers are directly involved in the project daily, consumers are involved
weekly, and planners are involved several times per month.

Agile community members may have multiple roles, but each individual’s
purpose is well understood. Although Agile Analytics favors generalists
over specialists, community members must still bring appropriate skills and
talents to the team. Project success depends on having the right members
in the community who are actively engaged and possess the right blend of
skills.

Agile Analytics Practice: Self-Identify
During your project release-planning meeting draw the Venn diagram in
Figure 3.1 on a flip chart. Ask the attendees to write their initials where
they believe they fit in the project community. Ask them to write their
roles as community members next to their initials.

This practice will help clearly define each team member’s purpose for
themselves and others.

All projects have a core group of critical community members without
whom the project cannot succeed. They are the showstoppers. Peripheral
to this core group are members who are essential. The project can succeed
without them, but not optimally. Outside the essential group are other
interested, and possibly contributing, community members. These ancillary
members are not essential to success, but their involvement may become
essential at any time. Figure 3.2 depicts this overlay of critical, essential, and
ancillary members of the community.

Agile Analytics communities must carefully evaluate each project to iden-
tify the minimally sufficient critical, essential, and ancillary member roles.
These roles include an executive sponsor who can champion and facilitate,
a project manager, a product owner, a technical team leader, a lead business
analyst, development team members, customer team members, DBA and
systems support staff, and others.

ptg6843605

A CONTINUUM OF TRUST 67

Once identified, these roles must be filled with the most appropriate indi-
viduals—people with sufficient experience, expertise, and understanding to
effectively perform in their respective roles. Once the roles are filled, these
community members should be actively engaged early, during project plan-
ning, and periodically throughout the project. The initial goal of this col-
laboration is to provide early opportunities for input, risk identification,
and expectation setting. Throughout the project, this collaboration serves
the important goal of continuously realigning everyone’s expectations.

A CONTINUUM OF TRUST

In Coaching Agile Teams, Lyssa Adkins differentiates cooperation from col-
laboration, explaining that group cooperation yields the sum of its parts,
while collaboration yields a sum that is greater than its parts (Adkins 2010).

Cooperation between group members involves the smooth transfer of work
in progress, work products, and information from one member to another.
The team has a shared commitment to a common outcome, and individuals
coordinate their activities in ways that support other group members. In a
cooperative team, members interact in an egoless manner and understand
their individual roles as they relate to the group’s objectives.

Planners

Ancillary

Essential
Critical

DoersConsumers

Figure 3.2 Identifying community members

ptg6843605

68 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

Collaboration elevates groups beyond cooperation, adding an essential
ingredient for emergent, innovative, and creative thinking. With coopera-
tion, the properties of the group’s output can be traced back to individuals,
whereas with collaboration, the properties of group output exceed anything
that could have been achieved individually. When a team is truly collaborat-
ing, its members build on top of each other’s ideas, and the collective result
is beyond what any one member could have envisioned. Cooperation is a
prerequisite to collaboration.

Jim Highsmith builds on this distinction by adding a third aspect of group
interaction: compliance (Highsmith 2010c). He describes a continuum of trust
(see Figure 3.3) within a group that ranges from compliance to cooperation to
collaboration, depending upon the level of trust that exists within the group.

A group relationship based on compliance is one where trust is limited.
Groups lacking internal trust tend to compensate for the lack of trust by
formalizing procedures and documents such as contracts, change control
boards, and stage gates. Not all compliance procedures are bad, and many
are beneficial. However, groups that are predominantly compliance-based
cannot achieve the same levels of performance as cooperative and collab-
orative teams. Highsmith points out that that the level of trust that exists
within a group is a critical factor in the group’s ability to be cooperative or
collaborative.

As one of the original Agile Manifesto authors, Jim Highsmith describes
the 2001 gathering at Snowbird, Utah, and the resulting Manifesto, as an
example of true collaboration. He points out that with very few excep-
tions, he isn’t able to distinguish who contributed which elements to the
Agile Manifesto. Furthermore, the Manifesto emerged as a result of a highly
focused group of motivated individuals freely sharing good ideas with one
another during an effective face-to-face gathering. It probably would not
have emerged without the level of trust and respect that the Agile Manifesto
authors had for one another.

Little
Trust

Significant
Trust

 Compliance

• Contracts
• Formal Approvals
• Change Control
• Procedural
• Heavy Governance

 Cooperation

• Individual Contributors
• Individual Motivators
• Group Sharing
• Group Bonding
• Minimal Ceremony

 Collaboration

• Shared Ownership
• Mutual Accountability
• Minimal Ego
• Little Blame
• Group Thinking
• Collective Energy

Figure 3.3 A continuum of trust

ptg6843605

THE MECHANICS OF COLLABORATION 69

Every project community falls somewhere along this continuum of trust.
It is important for an Agile project community to evaluate where they are
operating along the continuum. Furthermore, there may be disparity within
the Agile project community in this regard. For example, the development
community may internally be highly collaborative, but their interaction
with the customer community may tend more toward cooperation or even
compliance until trust improves. When product owners fail to trust devel-
opment teams, they often focus on pushing the team to be more produc-
tive. Agile project communities must work to smooth out these disparities
in order to establish a shared level of trust within the community. Then the
community can seek to progress toward a truly collaborative relationship.
Lyssa Adkins offers many powerful coaching techniques to help teams and
individuals become truly collaborative (Adkins 2010).

THE MECHANICS OF COLLABORATION

Collaboration is an essential ingredient in healthy Agile project communi-
ties, yet in my experience truly effective collaboration is perhaps the hardest
thing to do well. We have become so adept at using e-mail, instant messag-
ing, voice mail, and telephones to communicate that we have lost our prefer-
ence for face-to-face communications. I once met a developer who said, “I
prefer sending e-mail or leaving voice mail so that I don’t get sucked into a
conversation.” I’ve heard other project team members say things like “All
those face-to-face meetings—they keep us from getting work done.” These
are sad statements but somewhat understandable. Most organizations today
have a meeting culture, and we’ve all been victims of time-wasting meetings
at one time or another.

However, the avoidance of healthy collaboration is the wrong response to
this prior conditioning. What we need are some principles for ensuring that
our collaboration has high signal and low noise, that is, high-value collabo-
ration that makes a difference. Jim Highsmith differentiates collaboration
and coordination this way: “. . . collaboration can be defined as working
together to jointly produce a deliverable (think pair programming as an
example) or make a decision, whereas coordination is sharing information”
(Highsmith 2010c). Here are some effective principles and mechanics for
achieving this goal:

� Don’t call them “meetings.” Healthy collaboration is not the
same thing as useless meetings. If you’re like me, the invitation to
a “meeting” raises those little hairs on your neck. Certainly not
all meetings are useless, but often a request to attend a scheduled

ptg6843605

70 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

meeting is met with resistance or negativity. Our goal is for collab-
orative sessions to be perceived as enhancing project effectiveness.

If you need to have a collaborative session with other developers,
customers, or stakeholders, it’s helpful to give the session a descrip-
tor that conveys its purpose, such as “object modeling session” or
“requirements clarification roundtable.” While this seems like a
minor thing, it helps the participants get in the right frame of mind
to make the session worthwhile.

� Collaborate with a purpose. Avoid scheduling collaborative ses-
sions for ambiguous reasons. The best collaborative sessions are
those with one or two well-defined purposes, such as “To develop a
use-case model for customer profitability analysis” or “To modify
the star schema to handle the invoice facts and dimensions.” This
practice serves two valuable goals. It ensures that everyone has a
shared understanding of why they are at the gathering, and it clearly
defines how everyone can know when the session is finished (when
the purpose is achieved).

� Get done quickly. How often have you agreed to attend a one-hour
meeting and left at the end of the hour thinking, “We could have
done that in 15 minutes”? One hour is the default length of most
scheduled meetings. However, the most rewarding collaborative
sessions are the ones in which the issue gets addressed quickly and
with minimal wasted time. An hour-long (or longer) session is fine
if the issue really deserves that much time. But many issues can be
resolved much faster than that. When you are collaborating with
consumers or planners, they will greatly appreciate earlier-than-
expected finishes.

� Get the right people. How many times have you been in a meeting
wondering, “Why am I here? I have little or nothing to add”? The
purpose of the collaborative session should dictate who needs to be
involved. Every session participant should be involved because he or
she can either add to the conversation or must be kept informed.

Keep in mind Figure 3.2, and make sure that you include the
appropriate critical and essential participants. Then decide if there
are ancillary participants who can either add value to the session
or who need to be kept informed. Additionally, participants should
be invited to opt out of the session if they do not feel that they can
contribute.

� Limit the membership. What is the minimally sufficient set of par-
ticipants needed to achieve the purpose of the session? Avoid includ-
ing participants who are superfluous to the purpose. But focus
on the “sufficiency” aspect of minimal sufficiency. It can be very

ptg6843605

THE MECHANICS OF COLLABORATION 71

frustrating to make a collective design decision only to discover later
that it violates database optimization protocols that you overlooked
because your DBA wasn’t involved.

� Live in a glass house. Sometimes people are hurt, offended, or
bothered when they are excluded from collaborative sessions. This
problem can be mitigated by holding collaborative sessions in an
open space such as the team room. If others are interested in the
conversation or the decisions, they can become silent observers of
the process. If you aren’t careful, this practice can conflict with the
“limit the membership” practice. It is helpful to establish explicit
working agreements for the entire project community about how
people may observe without disrupting collaborative sessions.

“Glass-house” collaboration extends beyond meetings and gath-
erings. Agile teams make project progress and issues easily visible to
everyone. Alistair Cockburn coined the term information radiators
to describe displays of useful information that people can easily see
as they work or walk by (Cockburn 2004). These are often simple
posters and flip charts with useful information. Good information
radiators are easily understood at a glance, are easy to update, are
posted in a high-traffic area, and are current. Agile team rooms are
loaded with radiators that show current iteration progress, current
work assignments, number of stories delivered, architecture deci-
sions, and other information. Although they are used by the Agile
team, they generally serve to inform people outside the team.

More high-tech information radiators are the various Agile
project dashboards that have emerged in recent years. Many open-
source and commercial project management tools now support
at-a-glance project metrics such as burn-down and burn-up charts
as well as automated product and team performance metrics.

� Eliminate distractions. Laptops closed . . . cell phones off or on
vibrate . . . and focus! The people in front of you are more important
than the people who might be trying to call you, text you, or e-mail
you. In my opinion this should be etiquette rule number one in
today’s corporate culture, but that’s a topic for a different book.

However, collaborative sessions are quickly derailed when par-
ticipants are distracted by unrelated activities. The fact is that we
stink at multitasking. Intensive corporate meeting cultures condi-
tion people to multitask as a compensation for low-value meetings,
which reduces their focus at the meeting, which further reduces the
value of the meeting, thereby creating a negative feedback cycle.

Participants in a collaborative session must be singly focused
on the purpose of that session for the agreed-upon duration of the

ptg6843605

72 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

session. If key participants are distracted, it’s often better to cancel
the session and find a time when everyone can focus.

� Decide quickly. When the purpose of a collaborative session is to
make a decision, avoid getting stalled in the process. Group deci-
sions that get made today can be changed tomorrow in light of
new information. If the group doesn’t have enough information to
decide, then quickly identify the research that needs to be done to
get enough information. If the group is split after everyone’s input
has been gathered, it may be the case that more information is
needed.

� Minimize ceremony. The best collaborative sessions are not for-
malized meetings with agendas and meeting minutes distributed.
Instead, they are the ones with the right people talking to each other
until the goal is achieved. Often the best documentation is a digital
photograph of the whiteboard or flip chart posted on the project
wiki. The picture triggers memories of the conversations that took
place, the decisions that were made, and the knowledge that was
shared.

� Synchronous is better than asynchronous. Most of us have partici-
pated in e-mail threads that took a day or longer to reach a conclu-
sion when a simple conversation would have allowed us to get there
much faster. How many times have you waited several hours or
more for a response to an e-mail request? How many times have you
taken several hours to reply to someone else’s e-mail request? Lost
time caused by asynchronous communication can be very costly on
a project. Real-time conversations are the most effective collabora-
tive methods.

� Face-to-face is better than voice-to-voice is better than. . . . By far
the most effective collaboration is face-to-face and in-person with
a shared medium like a whiteboard (Ambler 2009a).This form of
communication offers multimodal expressiveness that includes
words, facial expressions, gestures, sketches, and other additions to
meaning. Today’s project teams are often geographically separated,
thus making in-person collaboration challenging. Your goal should
be to get as close to face-to-face/person-to-person communication
as possible using whatever tools are required to facilitate that goal.
This practice will greatly increase the likelihood that participants
will have a truly shared understanding of the outcome of the session.

� Avoid repetition. If you can’t get all of the right people involved in
a collaborative session, postpone it until you can. This is preferable
to having multiple repeats of the session with the same purpose
and different participants, which can cause inconsistencies and

ptg6843605

CONSUMER COLLABORATION 73

conflicting outcomes. Similarly, once a session has resulted in a
decision or outcome, avoid rehashing it unnecessarily unless there is
new information that gives cause for reconsideration.

Poor collaborative practices can be a time sink for project community
members and can adversely affect the project. Good Agile teams often make
explicit agreements about their collaborative practices and include those in
their team working agreements, which are discussed elsewhere in this book.

Agile Analytics Practice: Frequent Reflection
Agile project communities seek continuous improvement by frequently
reflecting on and evaluating their performance. At the end of each
iteration reflect on what went well, what needs improvement, and areas
of concern. Also reflect on how well the community is maturing toward
effective collaboration.

CONSUMER COLLABORATION

“Customer collaboration over contract negotiation”

It’s one of the four values expressed in the Agile Manifesto, yet it is perhaps
the hardest one to really practice well. Customers of business intelligence
systems are a highly diversified group. They are diverse in their analytical
skills, their analytical needs, their business responsibilities, their informa-
tional requirements, and so on. Furthermore, they are busy people who
often balk at being asked for frequent review of and feedback on newly
developed BI features. I was once on a smallish project to build a customer
profitability data mart for the finance division of a midsize company. That
project scope sounds pretty homogeneous, right? Well, between the needs
of the CFO, the VP of finance, the financial controller, the forecasters, the
predictive analytics group, the accountants, and others, the needs and per-
spectives of the user community were surprisingly diverse. It would have
been inappropriate to consider only one customer type on that project.
Scott Ambler prefers the term stakeholders to reflect this diversity within the
consumer community (Ambler 2008a).

Customer collaboration in BI systems development is further complicated by
the fact that users often don’t know what to expect, or ask for, from a BI sys-
tem. They need to experience using one before their wants and needs begin
to jell (another reason why Agile Analytics makes sense). Furthermore, our

ptg6843605

74 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

customers have probably never been asked to actively and continuously col-
laborate during the development of any system, so they may not understand
what we need from them. Sometimes we even sabotage ourselves by feel-
ing apologetic about asking for time from our busy customers, and so we
refrain from “bothering” them.

All of these challenges translate into an increasing likelihood that we will
build the wrong thing as a result of insufficient customer involvement.
These challenges cause many Agile teams to use easier, but less effective,
alternatives to customer collaboration, such as heavy reliance on business
analysts, choosing only one customer to represent the entire customer com-
munity, or relying solely on a “product owner” to be the proxy voice of the
customer community. Each of these alternatives erodes the effectiveness of
“adapting to feedback” and is a poor substitute for real and deep collabora-
tion with our customers.

The fact of the matter is that, if our BI customers don’t see the value of being
actively engaged in helping us get it right, the BI system is not worth build-
ing at all. Our time would be better spent on other projects. That said, it is
incumbent on us as an Agile project team to use our customers’ time wisely
and efficiently so that they will experience benefits that far outweigh the
efforts.

Effective customer collaboration models have the following characteristics:

� All user types are sufficiently represented.
� Real users are actively engaged during every iteration.
� The user group is small enough to be manageable.
� There is a mechanism for prioritizing user input.
� There is a mechanism for resolving conflicting feedback from users.
� Customer collaboration quickly becomes a natural part of the

process.

An effective model for customer collaboration is the co-development user
group. The name itself suggests that users are in partnership with develop-
ers. This group contains carefully selected representatives of the various
end-user types, organized into an actively involved extension of the project
team. Good co-dev user groups have the following attributes:

� Product ownership. The group is often organized or led by a busi-
ness analyst from the business domain who bridges the divide
between the business domain and the technical team of experts.

ptg6843605

CONSUMER COLLABORATION 75

Alternatively, co-dev user groups might be led by the business
sponsor of the project who works directly with other members of
the user community. A product manager serves this role when the
BI system is a commercial product offering. In any of these cases,
the user group lead acts as a filter and funnel from the broader user
community into the project team. This group leader is responsible
for feature prioritization, tie breaking, and resolving conflicting
feedback so that the project team can take the right action and adapt
appropriately to feedback.

� Collegial membership. Co-dev user group members should be sup-
portive and “bought into” the Agile process and the BI project goals.
Members who are cynical and/or antagonistic can do more harm
than good as co-development partners. Similarly, co-dev partners
should be confident in their roles, aware of their purpose on the
team, and confident in the project’s success potential. The co-dev
user group is in a partnership with the project team, and they share
the responsibility for project success. People who have a fragile or
adversarial relationship with the project team do not make good
co-dev partners.

� Agile mentoring. Co-dev user groups receive education about the
Agile process, its reliance on customer feedback, its focus on high-
value feature delivery every two weeks, its adaptive/evolutionary
nature, and the roles and responsibilities of the user group. They
are taught to view the Agile Analytics project as a “glass-house”
activity that seeks frequent input and involvement from users. They
are involved in the chartering and release-planning activities, the
iteration commitments, and the end-of-iteration feature showcases.
They may also be involved in conversations during the iteration to
illuminate, explain, or make decisions with the project team.

� Bilateral commitments. Involvement in the co-dev user group is
based on commitments on the part of both the user group members
and project team members. User group members commit from 8 to
16 hours (one to two days) per month of active engagement, involve-
ment, and availability, and the project team agrees to ensure that
this time is well spent and effective. The user group members agree
to provide timely and thoughtful feedback, and the project team
agrees to evaluate and consider this feedback. The user group under-
stands that its feedback is not guaranteed to be acted upon, but that
it will be prioritized alongside other backlog items.

� Retrospective involvement. It is essential that the co-dev user group
be involved in each end-of-iteration retrospective. Doing so enables
the entire team to adjust its practices to ensure that user group

ptg6843605

76 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

members’ time is well spent, that expectations remain in alignment,
and that value is continuously being delivered.

Co-dev users quickly establish a sense of ownership in the BI project and
pride in its outcome. When users share the responsibility for success with
the project team, the outcomes are significantly more exciting. Not long
before writing this I was asked to lead a BI project for an IT division in a
large company. The company was relatively new to data warehousing and
had no experience with the Agile style of development. My job was to intro-
duce the organization to Agile Analytics and help them advance their tech-
nical data warehousing disciplines. I stipulated that the company needed to
provide easy access to the user community as well as a “product owner” to
bridge the gap between the technical team and customer community. The
product owner turned out to be an energetic guy with deep experience in
the business domain who was very knowledgeable about analytics and mul-
tidimensional reporting. He was initially reluctant to bother the very busy
sales reps, customer service reps, and marketing executives—and they were
reluctant to commit very much of their time. At first he made most of the
feature priority and feature illumination decisions by himself. The user
group first became involved at the first feature showcase, and their response
was lukewarm; we had missed the mark on several of their user stories. In
response we adjusted and involved the user group more frequently, and the
feedback quickly became marvelous and insightful. Sales and marketing
people love to talk about their world! Although we consumed significantly
more of our users’ time, they remained eager partners. During the first proj-
ect retrospective (after six two-week iterations) the user group unanimously
agreed that its involvement was a key in our ability to build what the users
wanted. In spite of the project’s demands on their time, these users felt that
they wanted even more involvement in the next phase of development. They
saw how their involvement translated into a BI system that made their jobs
easier and better.

Agile Analytics Practice: Customer Commitment
Promise your co-development customers that you will not ask for more
than two days per month of their time, and in exchange you need them
to be wholly committed to partnering with you, test-driving new features,
and providing valuable feedback. Make sure you use the customers’ time
effectively.

ptg6843605

DOER COLLABORATION 77

DOER COLLABORATION

“Individuals and interactions over processes and tools”

Another of the core values from the Agile Manifesto. This one is directed at
the criticality of collaboration between delivery team members. Data ware-
house delivery team members include ETL developers, data modelers, data
architects, DBAs, business analysts, BI tool specialists, testers, project man-
agers, and anyone else who is involved in the day-to-day activities required
to build the BI system.

In an Agile Analytics project, these people need to be face-to-face as much
as possible. Face-to-face communication is by far the most effective mul-
timodal communication method. If I can see your facial expressions, hear
your voice inflections, observe your gestures, and view what you are draw-
ing on the whiteboard, I will much more accurately understand what you
are trying to tell me. Furthermore, I can save a great deal of time if I can
just talk directly to you about what I’m thinking rather than writing it in
an e-mail or trying to explain it over the phone. When the entire team (or
subgroup) is involved in collaborative whiteboard discussions, the result is a
better-designed system that includes everyone’s good ideas.

While there is no doubt that face-to-face communication is preferred, the
realities of today’s workplaces sometimes make this impossible. Geographi-
cally distributed teams are common, and the use of offshore developers is
routine. If you are lucky enough to be in a BI team that is not geographically
distributed, be sure to get your team sitting and working together face-to-
face. While this may take a bit of getting used to, the benefits will be evident
and the team effectiveness will increase greatly.

If geographic separation is inevitable, do everything possible to create what
Jim Highsmith refers to as virtual colocation; that is, find ways to be as col-
laborative and “face-to-face” as possible. This includes the use of VoIP com-
munications technologies, desktop-sharing technologies, instant messaging,
Web cameras, and other tools. Not long ago I consulted with an Agile team
that was separated into three remote locations. Each of the sites had a team
room in which all project team members at that site sat together face-to-face.
All of the developers wore headsets and had Web cams at their workstations.
They made heavy use of Skype1 to simulate face-to-face communications.

1. Skype is a voice-over-Internet application. For more information see
www.skype.com.

www.skype.com

ptg6843605

78 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

They also used the desktop-sharing capabilities of Skype to enable pair pro-
gramming and “whiteboarding” discussions. The ability to do multiway
conference calling enabled this team to be highly effective despite its geo-
graphic separation. There are several remote collaboration tools designed to
help geographically distributed teams achieve virtual colocation. These are
constantly improving and offering more powerful capabilities.

Time zone differences are perhaps the greatest impediment to developer
collaboration. When half the team is on the American continent and the
other half is in Asia or Europe, the time separation is significant. While
Agile teams can function under these conditions, true collaboration suffers.
It is often best to separate the project into two subprojects with indepen-
dent and noncompeting objectives. Each team can work autonomously on
its user backlog and, with weekly synchronization, can evolve the BI sys-
tem in parallel. The weekly synchronization is needed to ensure that both
teams are making mutually beneficial design choices and working toward
the same architecture.

PLANNER COLLABORATION

Undoubtedly your BI project is championed by people in the organization
who are not users of the system but who recognize the project’s value to the
business. These executives, management sponsors, and stakeholders have a
vested interest in the success of your project, and they care about budgets,
schedules, and progress. They also care about whether the evolving system
is on a trajectory to meet the needs of the consumer community, even if
they have no direct input into user stories or priorities.

It’s easy to overlook the criticality of collaborating with project planners,
which can result in misperceptions about the health of the project. Project
planners need to be kept aware of project risks and uncertainties. During
project visioning and planning it is common for the planner community to
set ambitious expectations about the project outcomes. As projects unfold,
we must help the planners realign their expectations in light of the typical
risks and challenges that we encounter on projects.

I was once involved in a high-exploration-factor2 project. As the project
unfolded over multiple iterations, the shared vision of the user and developer

2. Exploration factor is an assessment of project uncertainty introduced in Agile Project
Management: Creating Innovative Products (Highsmith 2010a).

ptg6843605

PLANNER COLLABORATION 79

communities naturally morphed and adapted to the realities of the project.
The expectations of both users and developers were in alignment, and both
groups were satisfied with the project’s trajectory. Unfortunately, the project
sponsor and other stakeholders had not been involved in the various conver-
sations that altered the course of the project. When they became aware that
the project had deviated significantly from their initial vision, the stakehold-
ers began to view the project as a failure. Effort was expended on root-cause
analyses and assessing how to get the project “back on track.” Eventually the
planners came to realize that the needs of the consumers were being met by
the doers. In fact, the planners acknowledged that the new vision was better
and more correct than the original one. The lack of frequent collaboration
with the planners had caused a significant mismatch in expectations, which
resulted in substantial churn while those expectations were realigned.

The planner community should be encouraged to attend the feature show-
case that occurs at the end of each iteration. In these showcases planners
are passive participants. Their role is to observe the interactions between
doers and consumers and the feedback and acceptance of new features. It
is this flow of feedback that subtly and gradually shifts the trajectory of a
project away from the original vision. It’s much more difficult to track and
document these subtle changes than to track the major explicit changes.
Therefore, when planners are absent from the feature showcases, it is easy
for them to lose track of the little course corrections that occur naturally on
an Agile project.

We also need to hold intentional “stakeholder showcases” for the purpose
of realigning everyone’s expectations. These should be held about every
third iteration, approximately every six weeks—immediately following the
feature showcase. During these stakeholder showcases we review the status
of the project relative to the latest release plan that was established by the
entire community. We examine the things that have changed since the last
planning session. We examine the current user story backlog and focus on
new stories and newly reprioritized stories. We review the known risks and
uncertainties and discuss our mitigation and exploration plans for resolv-
ing them. We talk about the team’s development velocity and the rate of
user acceptance of new features. And ultimately we talk about the project’s
current vision and expected outcomes as they have changed since the lat-
est visioning or re-visioning session. Stakeholder showcases may or may not
include users but should include the product owner or lead business analyst
to represent the consumer community. Adjust the frequency of these stake-
holder showcases as needed to ensure that the entire community’s expecta-
tions remain closely aligned during the project.

ptg6843605

80 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

Agile Analytics Practice: Regular Stakeholder Showcase
Hold a stakeholder showcase every third iteration (six weeks) to realign
stakeholder expectations. Review current plans against the original
plans; review risks and unknowns; review value delivered and changes
in priorities.

PRECURSORS TO AGILITY

In addition to the mechanics of the project community and collaboration,
there are some precursors to Agile Analytics—the “stuff” that must exist
before an Agile project can achieve the high levels of performance often
reported by mature Agile project teams. These precursors include

� Solid tools. You can’t be Agile without reasonably solid tools. These
include both the technical stack of products on which your BI sys-
tem is built as well as the development tools used to produce high-
quality working code.

If the tools aren’t solid, you end up dealing with a special class
of problems. In addition to the uncertainty and “high exploration”
associated with the actual BI system (what needs to be built), the
team must also devote time to the high exploration factor associated
with its tools. Unless the focus of exploration is on the actual tools,
such as a proof-of-concept project, the team will be perceived as
inefficient (at best) or incompetent (at worst).

� Agile infrastructure. Even if your tools are solid, you can’t really be
Agile without the proper infrastructure. This means such things as
configuration management systems, testing infrastructure, and so
forth. These topics are presented in greater detail in later chapters.

In a new project adopting Agile, this is often not that difficult
because you can build the infrastructure you need in an Agile man-
ner. In an existing project adopting Agile, the retrofitting of an Agile
infrastructure, including the retraining of the team to use existing
tools in an Agile manner, can be significant. Adding a legacy code
base into the mix can further complicate the Agile infrastructure
planning.

� Agile workmanship. If you have solid tools and a solid infrastruc-
ture, you still can’t be Agile if your team doesn’t know this specific
set of tools and this specific infrastructure. This result has been
discussed by many people, including Fred Brooks (Brooks 1975), as
well as Abdel-Hamid and Madnick (1991) with their human system

ptg6843605

PRECURSORS TO AGILITY 81

dynamics models, and is crudely (but usefully) summarized by the
rule of thumb that it takes between two and six months for a devel-
oper to become acceptably (not necessarily fully) productive on any
project, Agile or otherwise.

� Agile architecture. There is, of course, the great debate about BDUF
(Big Design Up Front). Aside from the silliness of the debate, with
some proponents of Agile arguing that there is no need and others
claiming that this traditional architectural design practice makes
sense as is, there is a place for UFD. The “Big” part of it in an Agile
project comes from leveraging proven architectures, often by apply-
ing one of many architectural patterns. The “UFD” means proving
your architecture in your project as quickly as you can. The chal-
lenge here is that more than any other method, Agile needs archi-
tecture as the stable, unifying conceptual framework that enables
developers to work urgently but without hurrying, and quickly but
with minimal waste. We will cover this in greater detail in Chapter
6, “Evolving Excellent Design.”

� Customer commitment. While the role of customers and your
access to customers vary greatly from project to project, it is critical
that your Agile project team have sufficient external input into proj-
ect planning, capability definition, feature prioritization, product
review, and feedback. The form that customer collaboration takes
in an Agile project is widely varied, but its absence is a warning sign
that you do not have the necessary precursors for Agile success. We
will discuss the perils of customer collaboration in greater detail
later in this book.

I don’t claim that this is a complete list of the precursors required for a given
set of developers to become genuinely Agile. I have also omitted certain pre-
cursors that seem painfully obvious, such as development computers. You
may find the need to add others, and we are finding that different teams
have different precursors that often must be addressed, ranging from “What
is a unit test?” to “How do I prioritize feature requests from multiple cus-
tomers?” However, this list is a solid start and should be considered as a
jumping-off point for further Agile enablement.

The astute reader may argue that these precursors must be present on any
project, Agile or not. This is true, but since a key Agile principle is the fre-
quent delivery of a working BI system to users, the extent to which Agile
projects require these precursors is far greater than for standard projects.

ptg6843605

82 CHAPTER 3 � COMMUNITY, CUSTOMERS, AND COLLABORATION

Agile Analytics Practice: Iteration Zero
Iteration zero is a regular Agile iteration but without the expectation
of BI feature development. This gives the team time to ensure that the
necessary precursors for success are in place. Team members can stand
up new technologies, do some initial design, conduct some experiments,
and perform other preliminary tasks.

WRAP-UP

This chapter frames many of the critical prerequisites for the successful
adoption of Agile Analytics practices. Project success requires much more
than just good technical skills and discipline or good project management
methods. Unfortunately, many BI development efforts involve the users and
the stakeholders looking passively toward the IT department or BI develop-
ment team to “make it happen.” Historically we in the development com-
munity have largely shouldered the burden and accepted the lion’s share of
responsibility for project success. When projects fail, users and management
look to the delivery team and ask, “Why?” and “What went wrong?” That
community model is a recipe for trouble.

This chapter is placed intentionally early in the book to clearly establish the
necessity of a shared-responsibility community model. The planners, the
consumers, and the doers each form essential and valuable subgroups within
the project community. Each group brings a unique perspective about the
vision, goals, scope, and boundaries of the BI project. The perspectives of
these groups serve as a system of checks and balances that are needed to
ensure that the right product is built.

A high degree of collaboration between these groups is required for this
community model to be effective. Daily collaboration within the doer group
is mandatory. Near-daily collaboration between the doers and consumers is
required as well as formal feature review and acceptance activities near the
end of every iteration. The planners must be actively kept in the feedback
loop as well to ensure that their goals are met and their expectations remain
realistic.

In addition to all of this community and collaboration, there is a set of pre-
cursors that are required for Agile Analytics projects to succeed. The tools
and technologies used in development must be sufficient to their purpose,
and the project team members must be proficient in the use of these tools

ptg6843605

WRAP-UP 83

and technologies. These tools and technologies must exist in the necessary
infrastructure for developers to deliver production-quality features every
few weeks. Too often I work with BI teams that do not have the right devel-
opment and testing infrastructure to work effectively. Typically the reasons
given are along the lines of excessive licensing or hardware costs; yet these
costs pale in comparison with the cost of lost productivity and people time
developing within an insufficient infrastructure.

This chapter introduced several collaboration practices. Upcoming chap-
ters in this book will introduce specific engineering practices and project
management practices that build on the precursors outlined here. Seasoned
Agile practitioners know the value of looking for ways to be more Agile.
These include adjustments in attitudes and behaviors as well as specific
practices and techniques. The nuances of your project may dictate that you
tailor these customer, community, and collaborative techniques and may
even cause you to invent a new set of techniques to be more effective.

ptg6843605

This page intentionally left blank

ptg6843605

85

Chapter 4

USER STORIES FOR BI SYSTEMS

Contrary to popular opinion, the best business intelligence systems are not
driven by the data or the operational source systems. I recently had a con-
versation with a group of data warehouse developers who were completely
baffled by the notion of building a BI solution without first extracting all of
the source system data into a single, normalized data model. They insisted
that this was the necessary precursor to building BI applications for end
users. I asked them what specific business problems the data warehouse was
required to solve. They speculated on a lot of possible ideas but admitted
that they had no business requirements. They explained that their project
was an IT initiative, and their first job was to consolidate the data. After
that, they planned to begin building BI applications against the warehouse.
This was how this group had always worked. When I asked how often their
customer/user community was completely delighted with the resulting BI
applications, the team chuckled and reluctantly admitted that users had
never been “delighted.”

This story is too often the way data warehousing projects go. They fail to
focus on the early delivery of business value and lose end-user trust and
acceptance. We “data geeks” take a data-centric approach to building a data
warehouse, and we convince ourselves that we have to solve lots of thorny
data issues before we can build the applications for users. It’s all about
the data! Many data experts make the wrong assumption that if they get
the data right, they can meet all possible future user requirements. Oddly
enough, when you talk to the business users, it’s not about the data. The
data is just a means to the end goal of handling business problems and sup-
porting business decisions. Users have stories to tell, and they are usually not
about the data. The data merely plays a supporting role.

Agile Analytics is a feature-driven or story-driven approach. We are eager
to produce user features that enable our customers to do their jobs better or
more efficiently. The data just supports this goal. And it just so happens that
the best way to deliver that data is via a data warehouse.

Story-driven development is a very gratifying way to work once you get the
hang of it. In this chapter I will show you how to write good user stories for

ptg6843605

86 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

BI systems, how to make your stories small enough and simple enough that
they can be completed in short iterations, and how to prioritize stories and
estimate effort. You’ll pick up a few other tips along the way. By the way,
Mike Cohn has written extensively about “user stories” among other Agile
topics. You should read his book for a deeper dive into this topic (Cohn
2004). My focus in this chapter is to show how to do story-driven data ware-
house development, and to help you wrestle with the common question
“How can we build anything meaningful in only two weeks?”

WHAT ARE USER STORIES?
User stories offer a quick way to gather and organize project requirements
without conducting a comprehensive requirements analysis up front. Sto-
ries capture the essence of features that users need in the BI system while
deferring the details until later. Stories are gathered collaboratively during
project chartering and then prioritized on a product backlog that is con-
tinuously groomed and maintained by the product owner. The backlog
provides the basis for planning each development iteration in what Ralph
Hughes calls the story conference where the detailed specifications are deter-
mined (Hughes 2008). The process might look something like the following
scenario:

Scenario

An important element of project chartering is the story-writing workshop. In this
workshop the development group works with the co-development customers to
gather and organize user stories. The user stories will be managed on a priori-
tized product backlog by Dieter, the team’s product owner.

Prakash, the team’s technical leader, kicks off the story-writing workshop by facili-
tating a use-case discussion. He acknowledges that the co-development customers
in the group are from various business units at FlixBuster. Beulah, Jane, Javier, and
Chuck are from the finance department; Kari and Samantha are from marketing;
Mike and Mack are from operations; and Andy is from sales. They also have
some executives in the group, including the CFO, CTO, and VPs of finance, sales,
and marketing.

Prakash draws several stick figures around the perimeter of a whiteboard and
labels them Sales, Marketing, Finance, Operations, and Executive. The stick
figures represent business user roles from each department. He points out that this
is just a starting point, and the team can change role names, add more roles, or
remove roles as the discussion ensues.

He starts by asking the members from finance to describe the big-picture goals
they hope to achieve using the FlixBuster BI system. Jane mentions that she needs

ptg6843605

WHAT ARE USER STORIES? 87

to analyze customer profitability; Chuck mentions operational cost analysis and
reduction; and Beulah mentions channel profitability (stores versus online rentals).
Prakash draws an oval in the middle of the whiteboard and labels it “Analyze cus-
tomer profitability.” He draws another and labels it “Analyze channel profitability,”
and so on for each of these goals.

He draws lines linking the Finance stick figure to each of these ovals, and Beulah
points out that there are really different roles within the finance department. She
recommends separating them into profitability analyst, operations analyst, and
financial forecaster, which Prakash does. The discussion continues by adding roles
from marketing, sales, and operations. More ovals, or use-case bubbles, emerge,
and the FlixBuster BI vision is starting to take shape. Prakash helps the group avoid
creating too much detail in this use-case diagram because its main purpose is to
provide a conceptual understanding of the different types of users and the kinds of
things they need to do.

When the group decides they have an accurate use-case diagram, Prakash shows
them how to create more detailed use cases. He points out that each bubble
on the diagram should map to one or more use cases. He uses Jane’s need to
analyze customer profit as a starting point and asks Jane to describe how she
wants to do this analysis. She explains that she needs to be able to see net profit
per customer per transaction, but she also wants to see average profit margin per
customer, as well as the net profit margin for the top and bottom 10 percent of all
customers.

Prakash writes Jane’s description on the flip chart and then asks Jane to imagine
that the BI system is working, and to describe the specific processes she wants to
follow to accomplish these goals. As she describes them, Prakash adds them as
event flows below the general use-case description. He asks the group to divide
up into user types and asks the developers to partner with each of the groups to
create detailed use cases for each of the bubbles on the use-case diagram. The
developers are to be scribes, and the business users are to tell them what to write.

After about an hour, each of the groups has a pretty good collection of use cases
written in detail. The whole group comes back together, and each small group
presents its use cases to the larger team. Arlene, the scrum master, takes digital
pictures of the use-case diagram as well as each of the detailed use cases. These
will be published on the project wiki for future reference.

After a short break the project team reconvenes and Dieter, the product owner,
takes over. Now that the group has a shared understanding of the conceptual
use-case model and the more detailed use cases, he wants them to break these
use cases into user stories. He explains that a use case represents a BI system
capability that is made up of multiple features. Each feature may be fairly complex
and is made up of smaller user stories. These stories should be small enough to be
built in two weeks while still reflecting business value.

Jane suggests this story: “As a finance analyst I need the ability to analyze past
transactional profit by month or season, by sales channel, and by customer
region so that I can understand seasonal trends in video rentals.” Natasha, an ETL

ptg6843605

88 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

developer, writes down Jane’s story on an index card and starts asking clarifying
questions about the business logic for calculating profit. Arlene intervenes and
reminds the group not to dive into the details of each story. She encourages them
to just capture as many stories as the users can think of.

Dieter asks the members of the group to return to their smaller groups to write
as many stories as they can think of from the use cases they created earlier. He
reminds them not to dwell too long on any single story; the goal is to quickly
create a good collection of stories. They will refine these later. The technical
team members in each group are experienced with user stories and story-driven
development, so they help the customer community members in the story-writing
process.

When the groups have finished this preliminary story writing, Dieter brings every-
one back together. They review the stories and group the duplicate ones together.
Dieter guides the group in prioritizing the user stories. Since the theme of the first
90-day planning cycle is “Finance Analytics,” the finance-related stories naturally
land in the highest-priority grouping. However, the team discovers that some of the
sales stories are beneficial to the finance group and vice versa. Dieter acknowl-
edges that some of Andy’s requirements can be met during this first planning cycle
even though the sales and marketing theme is scheduled for a later planning
cycle. These stories move up in priority, which is on the basis of business value.

As the stories are prioritized, Dieter hangs them on the product backlog, which is
posted on the planning room wall. In the first pass, the group roughly grouped the
stories into thirds reflecting the first, second, and third highest-priority groupings.
Such grouping allows the team to focus on refining the highest group and simpli-
fies their task.

After the customer group rank-orders the stories in the top third, the team has an
initial product backlog populated and prioritized. Now the team members can do
enough estimating to make some projections for their 90-day plan. Arlene reminds
everyone that the customer team drives prioritization and the technical team drives
estimation. However, she points out that the customer group can help in estimating
by shaping and simplifying stories.

In the first estimating pass, the team simply identifies the stories as small, medium,
large, or extra-large. The extra-large stories are epics (too big for one iteration).
The epics need to be split or simplified, but not all at once. The group grapples
with the epics that will affect the first couple of iterations, and Dieter agrees to
shepherd the others as part of his backlog grooming duties.

Arlene facilitates the process of moving stories from the top of the backlog into
the release plan. For each iteration the technical team speculates about how
many stories seem reasonable. The technical team members have learned to be
conservative in their estimates. The purpose of this practice is simply to get an
initial projection of what can be delivered at the end of the planning cycle. It isn’t
a commitment, but it helps level everyone’s expectations.

It’s now Monday morning of the first iteration. The team completed a success-
ful chartering session last week and now has a high-level 90-day project plan

ptg6843605

USER STORIES VERSUS REQUIREMENTS 89

divided into six two-week iterations. The team also has a backlog, which Dieter
spent more time grooming after the chartering session. The group kicks off Mon-
day morning with a story conference that includes both the customer co-dev and
technical groups.

The aim of the story conference is to understand enough details of the stories to
estimate them using story points, to move stories from the product backlog to the
iteration backlog, and to commit to the iteration plan. The FlixBuster BI team uses
relative sizing for its estimates. The team has chosen a scoring system of 0, 1, 2,
3, 5, 8, 13, 21, and 34 as for story-point values. After a few iterations the team
will begin to establish its velocity for this project. The team’s velocity will provide
an upper limit for planning each iteration within the team’s capacity. This way the
team can avoid overcommitments and frustrations. The team can increase its veloc-
ity by accomplishing stretch goals that aren’t part of the initial commitments.

The story conference takes up the better part of Monday morning, but by the
end the technical team members feel they have all of the necessary details to get
started working. Everyone feels good about this first iteration plan. If everything
goes as planned, it will result in some good working BI features that the finance
group can begin using and exploring.

USER STORIES VERSUS REQUIREMENTS

Agile Analytics takes a user-story-driven rather than a data-driven approach
to building the BI system. This serves the first principle of frequently deliv-
ering high-value, working features. A user story is a statement that can be
expressed from the point of view of the user and can be tied to a specific
business need or goal. User stories should be able to fit into the following
story template:

As a <role> I need the ability to <do something> so that I can <goal
statement>.

For example:

As a financial analyst I need the ability to see net profit per customer per
transaction over time so that I can identify upward or downward profit
trends.

A well-written user story has the following characteristics:

1. It represents business value to the customer community.
2. When implemented, it can be demonstrated to business users as a

working feature for feedback and acceptance.

ptg6843605

90 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

3. It can be implemented in a single iteration as an architecturally com-
plete and production-quality working feature.
a. Architecturally complete: The feature spikes through the archi-

tecture from end to end. It is not a nonfunctional or disposable
prototype.

b. Production-quality: The feature is fully tested and ready for
potential deployment.

Watch out for epics! An epic can be expressed in the same form as a user
story, but it contains so much complexity that it must be decomposed into
a collection of simpler user stories that meet the characteristics just listed.
Users commonly think in terms of epics, since their needs are fairly com-
plex. An example of a data warehousing epic might be the following:

As a financial analyst I need to understand our cost of service per customer
relative to the profitability of that customer, and I need to analyze custom-
ers by city, state, and region and evaluate their trends, so that I can identify
opportunities for either reducing cost of service or increasing profits.

This is a great description of a BI feature, but it isn’t a great user story
because it is probably too complex to be completed in a single iteration. We
care about these epics, and we will deliver them as user capabilities, but we
need to deliver them incrementally.

User stories don’t always translate into glorious, exciting features. Some-
times they are relatively mundane stepping-stones toward more powerful
capabilities. For example:

As a financial analyst I need the ability to open a previously saved report.

This is a valuable user story, but it doesn’t have much sex appeal. Effec-
tive Agile Analytics developers know how to think in the smallest, simplest
terms in order to chip away at delivering the right solution.

Also, watch out for anti-stories! These are statements that are expressed in
the story template but don’t meet all of the criteria. For example:

As a financial analyst I need to know that the FlixBuster data model will
correctly house all of the data I need so that I can conduct a wide variety of
revenue and profit analyses.

This is an architecture story hiding in user story clothing. I’ve actually seen
data modelers and architects write stories like this one to exempt themselves

ptg6843605

USER STORIES VERSUS REQUIREMENTS 91

from a true customer-value focus. A good acid test is to pretend that you
aren’t building a BI system (or any software solution for that matter) and
ask if the user story still reflects something that users need the ability to
do in order to accomplish their business goals. Users don’t need data mod-
els and system architectures; they need the solutions that data models and
architectures support.

The great thing about user stories is that they enable the project community
to quickly define the capabilities and features that the system needs to sup-
port without investing a huge effort in exhaustive requirements analysis.

User stories by themselves are not requirements; they represent require-
ments. Mike Cohn says user stories “are a promise to have a conversation
about the requirements” (Cohn 2004). This conversation is the collabora-
tion between developers and users to establish a shared understanding of
what is needed. Stories work best when this conversation happens in a just-
in-time fashion as the story is being scheduled into an iteration. The conver-
sation produces the following residue:

� A description of the story
� Notes or low-fidelity sketches that detail and clarify what is needed
� Acceptance tests that add clarity and help determine when a story is

done

As a user story is scheduled for development, this residue gives developers
what they need to build the right thing. Scott Ambler describes just-in-time
data modeling as a key component of iteration modeling in Agile Model
Driven Development (Ambler 2006). This may be an additional artifact
produced as a result of the story conversation.

I once worked with a company that had spent 18 months gathering detailed
requirements for a large business intelligence system. They wanted to be sure
to get input from everyone to ensure a complete set of requirements. During
that 18-month period many of the original users moved on to other jobs,
and there were new users. So, many of the original requirements were stale
and obsolete. Similarly, the original project sponsor had been replaced by a
new sponsor, so the vision and goals of the project had shifted. Addition-
ally, the strategic direction of the entire organization had shifted, rendering
many of the requirements irrelevant. Several of the original users told me
that they had given up any hope of ever seeing a working system, so they had
developed their own unsanctioned Microsoft Access databases and Excel
workbooks to analyze the data. As is often the case, the user community

ptg6843605

92 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

was doing whatever it needed to accomplish its objectives in the absence of a
working BI system.

As I reviewed the work of this requirements effort, I discovered that if they
had conducted a collaborative story-writing workshop, the company could
have identified at least 80 percent of those requirements in a couple of days
(Ambler 2005b). With a bit more effort they could have prioritized the sto-
ries and quickly begun development on the highest-priority ones.

FROM ROLES TO USE CASES TO USER STORIES

When a BI project is well defined or relatively small in scope, it is often pos-
sible for the team to go directly to story writing. However, in more complex
or broad-reaching BI projects teams need a process for accurately identify-
ing user roles and decomposing the problem domain from the top down.
Role definition and use-case modeling offer an effective means of decom-
posing the problem domain down to the user story level.

Not all users are created equal. Our FlixBuster data warehouse users are a
diverse group of business experts in different areas who have different jobs
to do. Jane, in finance, needs to understand revenue, gross profit, and net
profit. Chuck, also in finance, needs to analyze and reduce operational
costs. Carroll, the chief financial officer, needs to analyze trends and project
the future profitability of FlixBuster. Mack, the head of operations, needs to
manage a just-in-time DVD inventory to minimize a surplus of unrequested
titles, while maximizing the ability to meet customer requests. Samantha,
in marketing, needs to run an effective campaign to attract new customers
and upgrade existing customers to the “Unlimited Movies” package. Kari,
also in marketing, needs to analyze what movie genres customers prefer
based on geography, age, gender, socioeconomic status, marital status, and
a variety of other factors. Andy, in retail sales, needs to evaluate and fore-
cast sales volume, revenue, and profit by retail store. Mike, in operations,
needs to analyze and find ways to improve the average time it takes custom-
ers to receive movies by mail. Oh, yes, then there is Georgina, who reports
to the CEO, needs to evaluate a wide variety of what-if scenarios and analyze
whether the new strategic road map is helping improve the balanced score-
card key performance indicators (KPIs). This is just the beginning—there
are a lot more FlixBuster business experts who need the data warehouse.

ptg6843605

FROM ROLES TO USE CASES TO USER STORIES 93

User Roles

Clearly we can’t write user stories from just a single perspective. We need to
consider each user story from the point of view of that user’s role and goals. In
fact, it’s really useful to post a set of user roles on your team room wall where
the team can use them to write stories, and developers can reference them to
keep stories in the proper perspective. As new roles are identified, you can add
to the collection, and as their goals change, you can modify the roles.

Keep in mind that the same person is likely to have many different roles at
any given time or span of time. For example, I am in the role of author as I
write this, but when my wife interrupts my writing by asking me to take out
the trash, I am in the role of husband (and servant!). Official job titles are
often insufficient as use-case roles. For instance, CFO is a title, but the CFO
probably acts in a wide spectrum of roles during the course of business.

Start by brainstorming an initial set of roles and give each one a distinct
title. Write the roles on index cards, a single role title per card (see Figure 4.1).
Post these on the wall or on a flip chart. Brainstorming rules apply, and
anything and everything goes for the first pass.

Next, organize the roles into logical groups of similar functions. If two roles
have overlapping functions, overlap the cards to convey this (see Figure 4.2).
Greater card overlap means more duplication between the roles.

Profitability Analyst

Jane

Operational Cost
Analyst

Chuck

Financial Forecaster

Ahmed

Inventory Manager

Mack

Campaign Manager

Samantha

Customer Profiler

Kari

Retail Stores
 Analyst

Andy

Operational
Efficiency Expert

Mike

Corporate Strategy
Analyst

Georgina

Figure 4.1 Brainstorm initial user roles

ptg6843605

94 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Now consolidate the roles by eliminating the duplicates and clarifying the
differences. When there is a high degree of overlap among multiple roles,
replace them with a single role title that covers them all. When there is a
minimal degree of overlap among roles, rename them to more clearly dis-
tinguish them from one another (see Figure 4.3).

Finally, refine the roles by defining the distinguishing characteristics,
expected usage frequency, usage patterns, savvy in using data for analy-
sis, domain expertise, usage goals, and other factors. Write this as a short,
descriptive paragraph on each card (see Figure 4.4).

Sometimes it’s useful to create a mock user persona to remind developers
who their users are. A persona is an imaginary example of a user role with a
name, a background, interests, hobbies, a family, and so on. Use magazine
photos or online images to associate a picture with your personas. Personas
are optional, but in complex environments they can help developers think
about users in more concrete ways.

Profitability Analyst

Financial Forecaster

Retail Stores
 Analyst

Campaign Manager

Customer Profiler
Corporate Strategy

Analyst

Kari

Andy

Operations Manager

Operational Cost
Analyst

Operational
Efficiency Expert

Mike

Georgina

Figure 4.2 Organize user roles

ptg6843605

FROM ROLES TO USE CASES TO USER STORIES 95

Agile Analytics Practice: Create Personas
Taking time during project planning to create a persona for each of your
identified user roles will help the DW/BI team continuously think in con-
crete terms about who the users are and how the development activities
will benefit those users. Publish these personas on the wall in the team
workspace where they can be referenced during development.

Profitability analyst

Financial forecaster

Retail stores
 analyst

Andy

ofitability analystf l lofitability analyst

Financial forecasterFi i l f tFinancial forecaster

Retail storesR t il tRe es
 analystanalyst

etail storseta sts

AAA

Financia Analyst

Andy

Operations Manager
Needs exception-based
operational BI to take
immediate corrective

actions Mack

Compaign manager

Customer profiler

Kari

Corporate Strategy
Analyst

Georgina

Operational Cost
Analyst

Operational
Efficiency Expert

Mike

Operational CostlOperational Cost
AnalystA l tAnalyst

OperationalO ti lpe at na
Efficiency ExpertEfficiency Expe ty p

MiiM

Operations Analyst

optimization of

Focused on “strategic

operational processes

Mike

Compaign managerC iCompa gn manage

Customer profilerlCustomer profiler

KariKa

Marketing Analyst

Kari

Figure 4.3 Consolidate roles

Financial Analyst

Very computer savvy. Excel power user who makes

extensive use of pivot tables for custom analyses. Has a

deep understanding of how profit margins and revenues are

calculated. The financial analyst needs highly flexible

tools for building custom reports and calculations.

Expected to use the data warehouse applications on a daily

basis.

Figure 4.4 Refine and distinguish roles

ptg6843605

96 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Use-Case Modeling

Now that you have a set of roles, you want to write a collection of user sto-
ries that, when developed as data warehouse features, will satisfy the needs
of each role. When the scope of the BI system is small enough, you can often
get straight to the writing of stories. However, sometimes it’s helpful to
decompose the problem domain incrementally so that you don’t get over-
whelmed. Use-case modeling is a great way to model the problem space in
terms of user roles and goals.

Ivar Jacobson introduced the concept of use-case modeling in 1986, and use-
case diagrams (one component of use-case modeling) are part of the Uni-
fied Modeling Language 2.0 (UML), which was introduced in the mid-1990s
as a consolidation of popular software modeling methods from the 1980s
and ’90s. Alistair Cockburn has improved on use-case modeling techniques
(Cockburn 2000). Use-case modeling describes actors who act on one or
more use cases to accomplish goals. The user roles that we’ve identified work
very neatly as actors in use-case modeling.

The first step in use-case modeling is the creation of a use-case diagram
that provides a high-level identification of multiple use cases and the actors
(roles) that interact with them. Figure 4.5 shows an example of a use-case
diagram for our FlixBuster business intelligence problem domain. The use-
case bubbles in the diagram describe the high-level actions that actors must
perform to achieve their goals. Each actor is associated with one or more use
cases, and use cases can sometimes use other shared use cases to perform
their tasks.

You can do this simply on a whiteboard or flip chart. Although many UML
software tools are available, I strongly advocate using low-tech tools such as
index cards. The real value is in the conversations you have during the col-
laborative effort. Be thorough, but avoid getting overly detailed in your use
cases.

Next, define the use-case details for each of the use-case bubbles in your dia-
gram. Use-case details include the use-case title, a list of the actors involved,
the goal or intended outcome of the use case, and a series of event flows that
describe various interaction sequences and the outcome of each sequence.
The main event flow, or “happy path,” is the most common or expected
event flow. Other event flows describe various exceptions to the main event
flow. Figure 4.6 shows an example of the FlixBuster use case for “Analyze
Customer Profitability.”

ptg6843605

FROM ROLES TO USE CASES TO USER STORIES 97

Profitability Analyst
Analyze Customer

Profitability

Analyze Channel
Profitability

Analyze Customer
Revenue

Calculate Net Profit

Analyze Operational
Costs

Model Inventory Patterns

Profile Customer Buying
Behavior

Determine Retail Store
Profit

Determine Online
Channel Profit

Operational Cost Analyst

Financial Forecaster

Inventory Manager

Campaign Manager

<<uses>>

<<uses>>

<<uses>>

Determine Operating
Costs

Analyze Popular
Titles

Analyze Demand and
Order Lag

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 4.5 Use-case diagram

Use Case: Analyze Customer Profitability

Actors: Profitability Analyst, Financial Forecaster

Goal: To understand customer profit margin statistics over

transactions, time periods, locations, customer groups, and other

criteria.

Main Event Flow: User runs a predefined OLAP report that

contains revenue and profit amounts, and averages and other

statistics for each of these. User can see the aggregate for all

customers over time but can drill down to the individual

customer transaction if desired.

Figure 4.6 Use-case detail

ptg6843605

98 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Agile Analytics Practice: Big Visible Use Case
Post the project’s use-case diagram on the wall in the team workspace to
provide a constant reference for developers to the problem domain and
the big-picture vision of the system.

Finding User Stories in Event Flows

A simple use case might translate directly into a user story. For example, the
use case “Log In to BI System” might be simplistic enough that it becomes
the user story “As an operations manager I need the ability to log in to
the FlixBuster business intelligence application.” However, most use-case
details suggest a whole collection of user stories related to the various event
flows. The use-case detail for “Analyze Customer Profitability” might gen-
erate the user stories shown in Figure 4.7.

Write each user story on a separate index card. Remember, a user story by
itself is not a requirement. It is a promise to have a conversation about the
requirements. We can defer that conversation until we need the detailed
requirements for any given user story.

Use-Case Scenarios

One final word about use-case modeling and user stories, and use-case sce-
narios. A use-case scenario is a specific concrete path through a use-case

As a profitability analyst I need
the ability to examine net profit
per customer per transaction for

any customer so that I can
identify the customers who might

become more profitable.

As a profitability analyst I need
the ability to examine customer
profitability by customer type so

that I can anticipate future
profitability.

As a profitability analyst I need
the ability to examine gross

profit per customer per
transaction for any customer so

that I can identify the most
profitable customers.

As a profitability analyst I need
the ability to examine customer
profitability by individual store

per day so that I can help the least
profitable stores become more

profitable.

. . .

Figure 4.7 User stories from a use case

ptg6843605

DECOMPOSING EPICS 99

event flow. It is an example or instance of the use case in action. Use-case
scenarios are often used to clarify the expected behavior of more complex
use cases as well as to help ensure that all possibilities have been consid-
ered. Use-case scenarios are a natural outgrowth of collaborative sessions
between developers and customers or users.

In Agile Analytics development we can take advantage of use-case scenar-
ios to define story-test cases. User story testing and storytest-driven devel-
opment (STDD) are introduced in depth in Chapter 7, “Test-Driven Data
Warehouse Development.” However, now is a good time to point out this
relationship. Each use-case scenario should be recast as one or more story-
test cases. These story-test cases become the acceptance criteria that devel-
opers need in order to know what it means to be done with a story.

Although it is important to be thorough as you write use-case scenarios,
it isn’t necessary to be comprehensive in one pass. Over time you can add
more event flows, use-case scenarios, and storytests, and you can alter these
based on user feedback or increased clarity of the user stories.

DECOMPOSING EPICS

Recall that one of the measures of a good user story is that it can be com-
pleted in a single iteration of no more than four weeks (preferably two).
Although we aren’t estimating user stories yet, it pays to do a quick pass
through the stories to get a feel for whether they seem small and simple
enough to pass this criterion. You will inevitably encounter some epics dur-
ing this pass. Epics, in some ways, are close to use cases. They describe gen-
eral functionality that may reflect various event flows and scenarios.

Epics should be decomposed into good user stories before they can be esti-
mated or scheduled. The easiest epics to handle are those that naturally
break down into multiple, simpler user stories. These often have a pattern of
complex conjunctive phrases such as the following:

As a sales forecaster I need the ability to see the daily revenue per store along
with the number of transactions per day, and the demographic profile of cus-
tomers near each store, as well as the historical revenue for each store over the
past two years so that I can analyze and forecast revenue and buying trends.

This epic is clearly a collection of multiple related stories:

ptg6843605

100 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

As a sales forecaster I need the ability to

1. See daily revenue per store
2. See the number of transactions per day (per store?)
3. See the demographic profile of customers near each store
4. See the historical revenue for each store over the past two years

Sometimes epics are not as obvious:

As a financial forecaster I need the ability see profit and profit margin per
customer per transaction for the top 10 percent of our customers so that I can
identify the characteristics of the most profitable transactions.

In the eye of a user this looks like a reasonably atomic user story, but devel-
opers realize that profit and profit margin are based on a complex set of
business rules. Furthermore, isolating the top 10 percent may involve com-
plex processing in the presentation tier of the system depending on the
presentation technologies. This is required in addition to the ETL coding,
database development, and other architectural tasks.

Sometimes a seemingly reasonable user story is really an epic when the team
forgets that the definition of done means production-quality workmanship.
This includes writing all test cases, user documentation, and other ancillary
but essential work.

Epics come in many forms, and with some experience the Agile develop-
ment team is able to identify and decompose them before it is too late and
they get scheduled into an iteration. While it is the right of the customer
community to prioritize stories based on value, it is the right of the develop-
ers to estimate effort and identify epics.

Epics are either compound or complex (Cohn 2004), and there are two fun-
damental approaches to decomposing them. Compound epics should be
split into a collection of separate user stories. The previous example with the
complex conjunctive phrases is a good candidate for the splitting approach.
The split lines for other epics may not be as obvious. Other epic-splitting
approaches include the following (Cohn 2006):

� Split on customer value. An epic may represent a user story in its
most glorious form. By separating out the highest-value aspects
of the epic, and deferring the lower-value aspects, it is possible to
shrink the epic to a story.

ptg6843605

DECOMPOSING EPICS 101

� Split on data boundaries. Data boundaries occur in multiple ways
in a data warehouse architecture. By isolating a story to a single data
source, to a single table, or even to a single column, it is possible to
reduce a portion of an epic to a story. (See the anti-pattern sidebar
on this approach.)

� Split on operational boundaries. When an epic represents multiple
operations such as CRUD, split these into multiple stories in which
each story provides a single operation.

� Defer ancillary concerns. Our typical goal is to incorporate issues
like security, role-based access control, error handling, audit log-
ging, and so forth into the completion of a story. While this is nor-
mally appropriate, if a story is too big it may be useful to defer these
ancillary concerns until a later maturation story.

� Defer nonfunctional requirements. “Make it right before you make
it faster” (Kernighan 1974). By deferring nonfunctional require-
ments, epics can be reduced to stories. The nonfunctional require-
ments can be addressed by a later card. Be forewarned, however, that
these nonfunctional requirements are an important part of the defi-
nition of “Done! Done!” and should not be deferred for long. In fact,
this technique for splitting epics should be viewed as an intentional
choice to incur technical debt. That debt should be paid as soon as
possible so that it doesn’t accumulate.

Regardless of your epic-splitting approach, be sure to avoid splitting epics
into tasks. Recall that a good user story is architecturally complete and rep-
resents business value; the resulting feature can be demonstrated to users;
and the story is doable in a single iteration. Sometimes when an epic is dif-
ficult to split, it is tempting to start slicing it into tasks such as “Develop the
ETL to populate the fact table.” This should be avoided.

The Anti-Pattern of Splitting on Data Boundaries
Remember that Agile Analytics is a feature-driven approach rather than
a data-driven approach. Our primary goal is to deliver business value
irrespective of from where, or from how many sources, the data comes.
The technique of splitting an epic on the basis of source data is contrary
to this guiding principle. If we aren’t careful, this strategy may cause
us to shift into the traditional data-centric thinking that we are trying to
avoid. However, if used sparingly and judiciously, this technique offers a
useful tool for decomposing epics.

ptg6843605

102 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Complex epics should be made smaller and simpler so that they become
good stories. The latter story example is well suited to the second approach.
By temporarily removing the “top 10 percent” and the “profit margin” com-
ponents, this story becomes smaller and simpler:

As a financial forecaster I need the ability see profit and profit margin per
customer per transaction for the top 10 percent of our customers so that I can
identify the characteristics of the most profitable transactions.

This story may now be much more realistic for completion during a sin-
gle iteration. If not, we may need to seek ways to simplify it even further.
This approach requires that we create additional stories to mature the fea-
ture to its completion. For our example we may create two new stories, one
for adding profit margin and another for presenting the top 10 percent of
customers.

Luke Hohmann describes these small/simple stories as being like a baby. It
is physically whole and complete with all the working parts, but it is imma-
ture and will grow over time. A feature must be architecturally whole and
complete (and of production quality), but it may require incremental matu-
ration over successive iterations before it is finished.

Finally, some stories are epics simply because they have a high degree of
uncertainty or risk. These epics may require an exploratory or experimen-
tal “spike” to shake out the uncertainty or mitigate the risk. Experimental
spikes should still result in something demonstrable but may be prototypi-
cal rather than production-ready. Sometimes these exploratory spikes may
be for the purpose of comparing multiple technology or architectural alter-
natives to select the best one. In that case the work is demonstrable but dis-
posable. In any case, the goal is to remove uncertainty and risk so that the
stories that follow are well understood.

Agile Analytics Practice: Handle Epics Just in Time
Avoid worrying about all of the epics during initial planning. Some of
them may be low enough on the prioritized backlog that you can defer
them until later in the project. Grapple with the most important ones
so that you can get busy planning the next few iterations. But flag the
remaining epics so that you don’t forget about them.

ptg6843605

WHAT’S THE SMALLEST, SIMPLEST THING? 103

WHAT’S THE SMALLEST, SIMPLEST THING?
Data warehouse practitioners often have a difficult time envisioning how a
user story can be completed in a single, short iteration. The goal of creating
a production-quality working feature that is architecturally complete and
is potentially releasable can be daunting. I sometimes work with data ware-
house developers who declare every story an epic because they cannot imag-
ine how it can be simplified enough to fit within an iteration.

Experienced agilists develop a variety of techniques for creatively simplify-
ing a user story while still maintaining their focus on feature-driven devel-
opment and production quality. Although developing this skill requires
practice, one method that helps is to examine and simplify the specific tasks
associated with the story.

Underlying every user story is a collection of implementation tasks that
must be completed to deliver the completed feature. Tasks include both
technical (data architecture, ETL development, etc.) and nontechnical (user
documentation, quality assurance, etc.) activities for the team to accom-
plish. Tasks are the “to-do list” used by the implementation team to manage
the details.

If your team is having difficulty envisioning how to complete a user story
within a single iteration, try this: Sketch the conceptual architecture for
your BI system on a whiteboard or flip chart. This is just a conceptual block
diagram but should depict all of the essential architectural elements from
the data source systems all the way through the data warehouse to the end-
user application. You can decide later if you need more, or less, detail. Your
diagram might look something like the one shown in Figure 4.8.

Now, select a user story that seems daunting. Starting with the end user in
your diagram, work your way backward through the architectural diagram.
At each block or transition in the diagram ask the question “What is the
smallest, simplest thing that is needed here to complete this story?” Write
the answer as a task on a sticky note, and stick it in the appropriate place on
the diagram next to the corresponding component.

Now that you have identified the critical technical tasks, make another pass
through the architecture asking, “What additional quality assurance tasks
or nontechnical tasks need to be completed?” Be sure to add the necessary

ptg6843605

104 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

task notes for testing, documentation, training, and so on. Now your dia-
gram might look something like what is shown in Figure 4.9.

Once the team has created all the task notes it can think of, the group should
answer the question “Working collaboratively and in parallel, can our team
complete all of these tasks within a single iteration?” If the answer is no,
you should identify the tasks that appear problematic and seek to further
simplify them. Generally only one or two tasks are the culprits, allowing the
team to focus on those problem areas. Now it’s time for the team to think
creatively about how to further simplify these time-consuming tasks.

Financial
Forecaster

BI APP

Warehouse

Staging

Pre-staging

Inventory
and

Fulfillment

Customer
Demographic

Point
of

Sale

As a financial forecaster I need
the ability to see profit per
customer per transaction for
our customers so that I can
identify the characteristics of
the most profitable
transactions.

Figure 4.8 Conceptual architecture sketch

ptg6843605

WHAT’S THE SMALLEST, SIMPLEST THING? 105

Example

As an example, I recently worked with a data warehousing team that was
wrestling with the challenges of calculating online advertising revenue as part of
completing a user story. The business logic for calculating revenue was relatively
complex and involved the use of an ancillary ad rates table. Populating a rates
table was itself challenging, based on complicated business rules in which ad
rates are different for different advertisers and subject to monthly changes. Finally,
this was further complicated by the fact that the revenue calculation business logic
was not well defined and agreed upon. All of these complexities were affecting a

Create a mock
revenue aggregate
table for reporting
while production
tables are in
development

Develop ETL
to move revenue
into fact and
summary tables

Define rules
for calculating
transaction
revenue and get
approval from
business

Create drillable
report showing
customer profit
per transaction
over time

Develop and modify
warehouse DDL
scripts to store
revenue per
transaction

Add transaction
revenue column
into transactions
detail table in
staging

Develop ETL to
calculate
transaction
revenue using
approved business
rules

Financial
Forecaster

BI APP

Warehouse

Staging

Pre-staging

Inventory
and

Fulfillment

Customer
Demographic

Point
of

Sale

Identify all
data cleansing
and prep rules
needed for
revenue-related
data elements

Develop ETL for
extracting the
needed transaction
data for revenue
calculation

Develop ETL
for handling
updates on
transaction
revenue
values

As a financial forecaster
I need the ability to see profit
per customer per transaction
for our customers so that I can
identify the characteristics
of the most profitable
transactions.

Figure 4.9 Overlaying task detail on architecture

ptg6843605

106 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

couple of ETL development tasks needed to properly populate the ad rates table
and the revenue measures in a fact and summary table.

The team members decided to simplify the problem in a few creative ways:

• First, they chose to use a simpler (and initially incorrect) set of rules for cal-
culating revenue. They would design their ETL so that they could easily and
quickly replace the simple/incorrect rule with the more complicated/correct
rule. This decision caused them to make better overall ETL design decisions
because they realized that all business rules need to be easily modified.
The team also added a task for the business analyst to determine, finalize,
and confirm the revenue calculation logic so that it could be ready to plug
in during the next iteration.

• Second, the team chose to start out by using a simplified ad rates table
in which the rates didn’t initially change monthly. The team made plans
to incrementally mature the revenue-reporting feature by updating the ad
rates table to include varying monthly rates. This decision caused the team
to develop more modular ETL code to make it easier to incrementally add
code to handle the monthly rate changes.

These two simplifying steps enabled the team members to craft an early, and
admittedly immature, user story. They agreed that they could demonstrate the
revenue-reporting feature to their users by explaining their simplifying assumptions.
They created a second user story for maturing the initial feature to include the cor-
rect revenue logic and the changing monthly ad rates.

So, did this team cheat? The team members developed a feature that was
demonstrable to end users; they needed to explain their simplifying assumptions
to end users; they did production-quality work; and they planned to correct their
simplifying assumptions in the very next iteration. Their simplification decisions also
motivated them to create a better implementation design that enabled them to
more easily adapt to changes. They didn’t cheat; they judiciously and creatively
identified the smallest, simplest thing that still satisfied the spirit of feature-driven
development.

Often the problem is not the magnitude of any single task, but instead the
dependencies between tasks. Teams say things like “We can’t create the BI
report until the rate and revenue summary tables are ready. We can’t create
the rate and revenue tables until the ETL code is written to pull the neces-
sary data from the source systems; and we still need the business logic for
how revenue should be calculated.” None of these tasks takes the full itera-
tion by itself, but completing all of them in sequence will take longer than
the iteration length.

In these cases the team must think creatively about how to keep team
members from being blocked waiting for one another. This is often done

ptg6843605

STORY PRIORITIZATION AND BACKLOG MANAGEMENT 107

by creating disposable “scaffolding” or “mock” components. For example,
if the MicroStrategy report developer needs the rate and revenue sum-
mary tables, he or she might manually mock up disposable replicas of those
tables so that the reports can be built while the ETL and database devel-
opers are creating the real tables. The ETL developers might mock up the
revenue logic while the business analyst confirms the real logic. Application
developers use these mocking and scaffolding techniques as a normal part
of their development methods. We can do the same things in database and
data warehouse development.

It should be emphasized that this activity of sketching your conceptual
architecture and evaluating the underlying tasks is not a routine Agile plan-
ning practice. Identifying all tasks for each story during project planning
is too inefficient. However, it is an effective technique for learning how to
think about stories in their smallest, simplest form. It can also be an effec-
tive technique for better understanding user stories that are somewhat
vague or ambiguous to the team. Once you’ve developed this skill, you can
more accurately identify true epics and move faster during story writing
and planning. Generally speaking, task detailing is done in a “just-in-time”
fashion during iteration planning. Effective Agile teams are able to think
implicitly about task detail as they estimate effort, but the concrete identifi-
cation of tasks occurs later.

Agile Analytics Practice: Do Less
Agile teams seek ways to deliver something smaller and simpler, sooner.
This practice shortens the customer feedback loop and helps developers
build the things that matter and avoid wasting time on things that don’t.

STORY PRIORITIZATION AND BACKLOG MANAGEMENT

User stories are managed on a prioritized product backlog. The backlog is
simply a visible chart or dedicated wall space where the story cards (index
cards) are hung in priority order from the next most important user story
to the least important one in top-to-bottom order. The backlog should hang
in the collaborative team workspace where any community member can
review it or work with it at any time. It is a highly dynamic artifact that is
the basis for ongoing iteration planning and release replanning.

A word of caution: New teams (with the best intentions) often move their
backlog into an electronic form such as a Microsoft Excel workbook, a

ptg6843605

108 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

relational database, or one of the various Agile project management tools
available on the market. There is a lot of value in keeping the backlog vis-
ible and accessible in a way that enables the team to gather around it for
conversations. Much of this value is lost by moving the backlog into elec-
tronic formats. I strongly encourage Agile data warehousing teams to keep
their backlog in a low-tech medium, such as index cards, on the wall unless
there is a compelling reason to store it electronically (e.g., Sarbanes-Oxley
compliance, geographically distributed teams, etc.). Don’t be too eager to go
high-tech with your backlog management, even though it may be tempting
to do so.

Scott Ambler introduces three models for prioritizing requirements in Agile
Best Practice (Ambler 2005a). These include the Product Backlog approach
from Scrum, the Work Item List from the Disciplined Agile Delivery
method, and the Option Pool from Lean/Kanban development. Each of
these is a powerful method for requirements prioritization. In this chapter
we will focus on the Product Backlog approach from Scrum.

Value-Based Prioritization

Agile Analytics development is about the frequent delivery of high-value,
working software to the customer/user community. Doing so requires the
prioritization of user stories and the continuous monitoring of the priori-
tized story backlog. The primary driver for prioritization is customer value.
However, it is insufficient to simply say that the highest-value stories are
the highest priority. Product owners must also factor in the cost of devel-
opment. An extremely valuable feature quickly loses its luster when it is
also extremely costly to implement. Additionally, there are other secondary
drivers such as risk and uncertainty. These should be resolved early. There
may also be experimental stories that are worth developing early to find out
whether customers see value in further development along those lines. For
example, a wireless company’s user community may need a basis for deter-
mining the value of a data mining model that profiles the top five predictors
of customer churn. It may be beneficial to conduct an early experiment on
this capability to provide the user community with the information they
need to value the feature. There may be other prioritization drivers, but
business value should always be foremost.

While each project is different, a good model for value-based prioritization
is as follows:

1. Complete the high-value, high-risk stories first if the cost is justified.
2. Complete the high-value, low-risk stories next if the cost is justified.

ptg6843605

STORY PRIORITIZATION AND BACKLOG MANAGEMENT 109

3. Complete the lower-value, low-risk stories next.
4. Avoid low-value, high-risk stories.

In their book Stand Back and Deliver (Pixton et al. 2009), the authors intro-
duce the Purpose Alignment Model for prioritizing on the basis of aligning
project requirements with organizational strategy. The Purpose Alignment
Model considers decisions along two dimensions. The first is the extent to
which the activity differentiates the organization in the marketplace, and
the second is the extent to which the activity is mission-critical. This yields
four categories:

� Differentiating activities: market-differentiating and mission-
critical. These are the “game-changing” kinds of activities.

� Parity activities: mission-critical but not market-differentiating.
These are the activities that are essential to remaining competitive.

� Partnering activities: market-differentiating but not mission-
critical. These are opportunities to find a partner with which you
can combine efforts rather than bear the total cost of ownership
internally.

� Who cares activities: neither market-differentiating nor mission-
critical. These activities deserve minimal time and consideration.

The Purpose Alignment Model is very relevant to data warehousing, busi-
ness intelligence, and data management projects. An example of this is
enterprise data modeling. Enterprise data models offer value when they
accurately model the business domain, and they highlight optimization
opportunities or inconsistencies. These discoveries can reflect mission criti-
cality and/or market differentiation. However, when enterprise data models
simply parrot all existing and legacy systems, they can become overly com-
plicated and overbuilt, adding little value and incurring significant cost.
Replacing the term activities in the Purpose Alignment Model with user sto-
ries can help the product owner prioritize the backlog in alignment with
organizational strategy.

Whether you adopt these guidelines or some other one, ensure that the
entire team understands the prioritization guidelines. Otherwise the priori-
tization process will suffer from conflicting perspectives.

Capability-Based Prioritization

For very large or complex projects with a high volume of user stories it is often
beneficial to group stories into themes or capabilities such as “Customer

ptg6843605

110 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Profitability Analysis” or “Operating Cost Analysis.” This enables you to
prioritize the aggregate collections of stories and avoid becoming mired in
the sheer number of stories. Prioritizing on the basis of capabilities may also
help constrain various release themes. For example, the first 90-day release
of the BI system may deliver customer value analytics; the second release
of the system may add retail store analysis; and so on. Then the stories that
support the theme of the current release can be prioritized separately from
those that are deferred until later.

Prioritization Process

As with other Agile practices, prioritizing is an incremental and iterative
process. The process begins with coarse-grained prioritization and moves
incrementally toward detailed prioritization.

The first pass is a coarse-grained “bucketing” of user stories into thirds—
the highest-priority group, the middle-priority group, and the lowest-prior-
ity group. It is sometimes hard for the customer community to assign stories
to a “low-priority” category because everything is important. Therefore, I
prefer to label these priority bins high, higher, and highest. While this doesn’t
trick anyone, it conveys the important message that we intend to develop all
of the stories; we just need to know which one to develop first.

The project community should conduct this coarse-grained prioritization
around a table by creating three stacks of story cards. The process should
move quickly, and the team should avoid overanalyzing whether a card
belongs in one group rather than another since prioritization is not final
and cards can be moved. Ensure that the three priority groups are equally
balanced.

The next pass is a fine-grained prioritization of the top third. Focusing on
this top tier helps the team avoid spending too much up-front energy on the
wrong thing. Fine-grained prioritization follows these steps:

1. The technical community estimates the top-tier user stories using
story-point estimating (see the next section of this chapter).

2. The technical community identifies stories with high technical risk
or uncertainty.

3. The customer community applies prioritization guidelines to rank-
order the top-tier stories according to priority.

The ultimate goal of backlog prioritization is to establish a clear under-
standing of the next most important thing to develop. However, getting to

ptg6843605

STORY-POINT ESTIMATING 111

this state is almost never easy. It requires evaluating cost-benefits, analyzing
trade-offs, compromising, and collaborative bartering. It is the right of the
customer community to set priorities, but the technical community must
provide input and guidance in the process.

Backlog Management

Once the backlog is established and prioritized, it must be continuously
maintained and managed. User stories move off the backlog in priority
order as they are scheduled into an iteration for development. When they are
completed and accepted, they are marked as such. The product owner and
customer community have the responsibility of continuously reviewing and
refining the backlog. As new knowledge about the BI system and the busi-
ness needs unfolds, the priorities may change. As the project community
gains clarity on certain stories, they may become obsolete or change. At any
given moment, the backlog should reflect the most current understanding
and prioritization of user features. Whenever the development team has an
opportunity to work on something new, there should be no debate that the
next most important thing is the story card that is at the top of the backlog.

The identification of user stories is never absolutely complete. During release
planning we strive to identify a comprehensive set of the most important
stories, but during the project stories will be redefined or eliminated, and
new ones will be written. I’ve worked on many BI projects in which story
definitions evolve as users’ understanding of BI solutions matures. Don’t be
afraid to tear up a story card if it no longer seems relevant. If it turns out to
be important, it will resurface later.

Agile Analytics Practice: Continuous Backlog Grooming
The product owner, in partnership with the co-development customers,
should pay continuous attention to the product backlog. Grooming the
backlog includes shaping the user stories, reprioritizing them, and add-
ing new details as they are discovered. Doing this will ensure that the
backlog is an accurate reflection of what is planned.

STORY-POINT ESTIMATING

In addition to writing the book on user stories, Mike Cohn is the authority
on Agile estimating and planning, and his methods apply very appropri-
ately to Agile Analytics development (Cohn 2006). This section serves as

ptg6843605

112 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

an introduction to Mike’s techniques but is not a substitute for reading his
more comprehensive treatment of this complex topic.

First let’s acknowledge that we aren’t very good at accurately estimating
development effort and complexity. Traditional phased project management
focuses on breaking down work into tasks and activities (work breakdown
structures), estimating the person-hours required to complete each task,
parallelizing wherever possible, then adding it all up to get an overall project
time estimate. The success of the project is measured in terms of how well
the team executes to the plan.

There are numerous reasons why this approach doesn’t work. Each task
estimate has error built in, and all that error gets added into the project
total. Estimating is done up front when project uncertainty is greatest. It
doesn’t incorporate frequent replanning and re-estimating opportunities
to make adjustments and corrections in light of new knowledge. Estimates
become contractual obligations, so they get artificially padded at each step
in the process. Estimation is often in terms of developer hours per task,
which doesn’t account for multitasking, distractions, and other external
influences.

One of the biggest reasons work breakdown structure estimating doesn’t
work is that you cannot estimate tasks without really understanding the
“product.” Stories force you to understand the product and the customer
value it represents first.

Imagine that you are asked to estimate the distance from your workplace
to your home in centimeters. Assuming you live a reasonable distance from
work, it’s going to take you a lot longer to evaluate the distance in centime-
ters than it would in kilometers or miles. In fact, you’ll probably start out
estimating in a coarser-grained unit like kilometers and then converting to
centimeters. (If you live in the United States you may take even more con-
version steps.) It isn’t appropriate to estimate large, uncertain things like
long distances in fine-grained units like centimeters; nor is it appropriate to
estimate project lengths in fine-grained time units like developer hours or
even days.

Painters use square feet of space to estimate the cost of a painting job. For
years software developers have looked for a similar unit of output to esti-
mate. Both the early use of lines of code and later use of function points
attempted to be this “unit.” Unfortunately, both can be estimated only late
in the development process—they were developed to complement a water-
fall lifecycle process. Agile developers needed something new.

ptg6843605

STORY-POINT ESTIMATING 113

Story points are a nebulous unit of effort that enable us to avoid using
clock time or developer time. Story points are relative. A 100-point story is
expected to take twice as much effort as a 50-point story and half as much
effort as a 200-point story. The actual point values are irrelevant so long as
the development team uses its point scheme consistently.

To illustrate the concept, consider how you might select a car at the ACME
Car Rental agency. They offer economy, compact, midsize, standard, full-
size, and minivan classes of vehicles. Now it isn’t really necessary to estimate
the precise differences in the bumper-to-bumper length or interior volume
of each car class to decide which class you need. Let’s start with the stan-
dard car class and assign it an arbitrary value of 10. Since a minivan is about
twice as large, we might assign it a point value of 20. The economy class
gets a 6 since it isn’t fully half as large as a standard but still significantly
smaller. We’ll assign the compact class 8 points, and the full-size class 14
points. Now we have a set of “car points” that describe the relative differ-
ences among these car classes. As long as we understand and agree upon our
“car points” scheme, these numbers are relevant and meaningful.

We can do the same thing with user stories since some of them are relatively
simple and straightforward while others are complex, risky, and uncertain.
The numbering scheme you select for story points should reflect the notion
of relativity. Two good numbering schemes are {1, 2, 4, 8, 16} and {1, 2,
3, 5, 8, 13}. The first one works because each number is simply two times
the prior number. The second one is the first six numbers in the Fibonacci
sequence starting at 1. This is meaningful because the gaps in the sequence
become larger as the numbers get larger. This supports the goal of clearly
separating bigger story estimates while allowing smaller ones to be a bit
finer-grained. Numbering schemes like {1, 2, 3, 4, 5, 6} aren’t a good idea
because they promote unnecessary debate about whether something is a 5
or a 6 since these numbers sit so close together. If you really want to appear
impressive, choose large numbers like {100, 200, 400, 800, 1,600} which will
give the impression that the team is very productive.

To bootstrap the estimating process we must have a starter story to estab-
lish a point of reference. First, let’s agree to use a {100, 200, 400, 800, 1,600}
story-point scheme. Second, let’s choose a moderately complex story and
assign it a baseline reference value of 400 (see Figure 4.10). The reference
story doesn’t have to be one of the new user stories. If there is a story avail-
able that has already been implemented, and the team is familiar with it,
this is a good candidate for the baseline reference. Ideally this reference
story is not overly simplistic or complex. It should be of relatively moderate
complexity.

ptg6843605

114 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

From this reference we now have the ability to assign story-point estimates
to other stories by asking the questions “Is this harder, easier, or about the
same as our reference story?” and “How much harder or easier?” Now in
relative (and approximate) terms we can assign point values to the other
user stories (see Figure 4.11).

The beauty of estimating in story points is that it keeps the team think-
ing in coarse-grained terms, which is akin to estimating long distances in
kilometers rather than centimeters. There will be times when a team mem-
ber might say something like “This is more than a 200 but less than a 400.”
Avoid the temptation to use point values between your agreed-upon values.

As a profitability analyst
I need the ability to examine

customer profitability by
customer type so that I can

anticipate future
 profitability. 400

Figure 4.10 Story-point reference baseline

As a profitability analyst
 I need the ability to examine

 net profit per customer per
 transaction for any customer

 so that I can identify the
 customers who might become

 more profitable. 200

e

As a profitability analyst
I need the ability to examine
gross profit per customer per

transaction for any customer
so that I can identify the most

profitable customers.
t

As a profitability analyst
I need the ability to examine

 customer profitability by
 individual store per day so
that I can help the least
profitable stores become

more profitable.

. . .

200

800

As a profitability analyst
 I need the ability to examine

 customer profitability by
 customer type so that I can

 anticipate future profitability.

400

Figure 4.11 Relative story-point estimates

ptg6843605

STORY-POINT ESTIMATING 115

Restricting estimates to a small, discrete set of point values will help the
team avoid overthinking these estimates. When in doubt on a point value,
take the more conservative estimate to allow for the unknown tasks. If it
turns out that a story is easier than you originally estimated, you can cel-
ebrate the earlier completion of a feature.

It is the right (and job) of the development team to estimate effort in story
points. It is essential that the entire development team be involved in the
estimating process. This practice has two distinct benefits. First, it ensures
buy-in and ownership by the entire development team. Team buy-in and
ownership are critical components of the success of self-managing teams.
Second, it injects a sort of “checks and balances” into the estimating pro-
cess. When everyone agrees on an estimate, the team quickly moves on to
the next story. However, disagreement on the estimate suggests that either
team members have differing understandings of the story or there is a high
degree of uncertainty or risk in the story.

Don’t be tempted to expedite the planning process by having the project
manager, technical lead, or chief architect handle the estimating single-
handedly. When the entire team is involved in planning and estimating,
there is tremendous value in the conversations that ensue. Collaborative
planning generates questions whose answers lead to greater clarity of under-
standing by all team members. It creates early opportunities to identify risk
and uncertainty. And team planning ultimately leads to a galvanization of
the product vision. These gains are well worth the time required for collab-
orative planning.

Development velocity is the key to the effectiveness of story-point estimat-
ing. Velocity is the demonstrated number of story points a team is able to
complete and have accepted in a single iteration. A team’s capacity is its
steady-state velocity after the team establishes its sustainable development
pace or rhythm.

Suppose a team commits to the completion of four user stories at the begin-
ning of an iteration. The point values of these stories are 100, 400, 200, and
200 for a total goal of 900 points. If the team finishes all four stories, but the
customer community accepts only the last three stories based on the accep-
tance criteria, the team velocity for that iteration is only 800, not 900. The
remaining 100-point story is not finished until user feedback is addressed
and the customer community accepts the feature. This highlights the
importance of developer-customer collaboration and the clear definition
of acceptance criteria. Nonetheless, user expectations are always subject to
change, and we must embrace and adapt to that change.

ptg6843605

116 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Monitoring velocity establishes the basis for the next iteration plan. A devel-
opment team should not commit to more points than its demonstrated
velocity. Even though our hypothetical team did more than 800 points
worth of work, it should commit to only 800 points for the next iteration.
Now suppose the team commits to finishing the 100-point story plus three
additional stories with point values of 100, 200, and 400. The effort required
to finish the “hangover” story is minimal, and the team finishes all 800
points of work at the beginning of the second week of a two-week iteration.
It now has the option of plucking one or more additional stories from the
backlog (or the next iteration plan). The team collectively agrees to com-
mit to an additional 200-point story. At the end of the iteration the features
are showcased to the user community and are all accepted. The team’s new
demonstrated velocity is 1,000 points, so it can now make the next iteration
commitments based on this velocity.

Another benefit of tracking velocity is that it enables the project community
to anticipate the cut line on the prioritized backlog. The cut line is an imagi-
nary line on a theoretically infinite backlog of user stories. The cut line rep-
resents the volume of story work that can be completed by a development
team during a timeboxed project cycle. Since the team’s capacity is finite,
the project timeline is bounded, and the backlog is prioritized according
to business value—the project community can anticipate which, and how
many, stories will be delivered during the project cycle.

When an Agile team begins a new project, or a new team is forming, it may
take several iterations for the team to match its velocity to its true capacity.
During this time it is important that the team base its current commitments
on the previously demonstrated velocity. This supports the well-known
principle of undercommitting and overdelivering. I have worked with many
new teams that succumb to the pressure to overcommit during early itera-
tions. When they don’t meet their commitments, they are demoralized. It is
much more gratifying to celebrate a boost in velocity through overdelivery
than to be discouraged by overcommitment.

Over time every team will establish its steady-state capacity. Capacity and
velocity should not be used as productivity metrics for comparing one team
with another, or one project with another. Capacity and velocity should be
used only within a project to monitor whether the team is operating at peak
efficiency. Planning should always be capacity-based. A project community
should base project plans and expectations on the actual capacity of the team.
Avoid the temptation to do what Jim Highsmith calls “wish-based planning.”
Business intelligence projects almost always have the natural tension between
the desires and wishes of the customer community and the finite capacity of

ptg6843605

PARKING LOT DIAGRAMS 117

the development team. While the development team should work to maxi-
mize its capacity, the entire project community must maintain a realistic set
of expectations. Because the focus is on the highest-value user stories, it is
sometimes the case that developing the top 20 percent of user stories addresses
the vast majority of the business needs of the user community.

PARKING LOT DIAGRAMS

Agile Analytics projects are primarily focused on delivering the next
highest-value set of user stories in the current iteration. However, this
should not imply that an Agile Analytics project simply shuffles from one
iteration to the next without any clear understanding of when the current
release cycle will be complete. We’ve spoken about release planning as the
mechanism for establishing a release date and estimating the set of user
capabilities and stories that will be completed within that timebox. The
parking lot diagram provides a way of monitoring the overall health and
status of a complex data warehousing project.

The parking lot diagram was developed by Jeff DeLuca and Peter Coad as
a Feature Driven Development (FDD) practice (Palmer and Felsing 2002).
FDD is distinguished by its business domain decomposition approach in
which the domain is decomposed into functional subject areas, which are
made up of business activities that contain a categorized feature list. Features
are synonymous with user stories. Business activities may stem from com-
plex use cases or epics. Subject areas may stem from capability cases.

Figure 4.12 depicts a parking lot for the first release of the FlixBuster Analytics
system. This project represents a six-month release plan running timeboxed
from January to July of 2008. A look at the example parking lot quickly con-
veys that the project is mostly on track, with the exception of the red business
activity box, which is slightly behind schedule. This helps focus project moni-
toring on the delayed business activity and triggers a conversation about the
impact of the delay and plans for getting it completed. Parking lot diagrams
can easily be created in Excel workbooks or in a graphical tool like Visio.

Figure 4.13 describes the key elements in a parking lot diagram. The out-
ermost boxes outline the project’s major business subject areas using boxed
groupings of business activities (capabilities). The business activities con-
tain status information, including color1 to represent the stage of work in

1.. Although Figures 4.12 and 4.13 are shown in gray in this book, parking lot diagrams
are typically color-coded using red to indicate activities that require attention and
green for those that are complete.

ptg6843605

118 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

progress, a status bar to convey the percentage of completeness for each
business activity, a date when each activity is expected to be completed, and
the number of user stories or story points that are required for completion.
Other relevant information can also be included.

The parking lot is intended to provide at-a-glance project status, not detailed
status. Community members and stakeholders should use it as a starting
point for deeper exploration and monitoring as needed. Note that the dates
on the business activity boxes are at the month level, and the feature count
does not convey any of the story detail. Alternatively this number can repre-
sent the estimated story points rather than feature count.

Profitability Analysis

100% 16%

Channel
Profitability
Analysis

(13)

July 2008
0%

Financial Forecasting

Operating
Cost Analysis

(8)

February 2008
87% 79%

Predictive
Profit

Analysis
(15)

July 2008
0%

Inventory Management Analysis

Customer
Revenue
Analysis

(11)

March 2008

Inventory
Trend

Analysis
(4)

January 2008
100%

Hypothesis
Testing
Analysis

(11)

June 2008
0%

Customer
Demand
Modeling

(9)

July 2008
0% 51%

Campaign Management

Customer
Profitability
Analysis

(9)

April 2008

Historical
Profitability
Analysis

(5)

March 2008

Product
Supply
Analysis

(10)

April 2008

Campaign
Response
Modeling

(14)

May 2008
80%

Customer
Segmentation

Modeling
(10)

April 2008
0%

ProgressAttentionWork in progressFinishedKey

Figure 4.12 FlixBuster parking lot example

Profitability Analysis

Customer
Revenue
Analysis

(11)

March 2008
100%

Customer
Profitability
Analysis

(9)

April 2008
16%

Channel
Profitability
Analysis

(13)

July 2008
0%

Subject Area
Business Activity

Feature Count

Progress Bar

Planned Completion

ProgressAttentionWork in progressFinishedKey

Figure 4.13 Parking lot elements

ptg6843605

WRAP-UP 119

The parking lot should be used frequently to realign the project commu-
nity’s understanding of project health and status. It should be updated at the
end of each iteration and used as part of status reporting to the stakeholder
community. The parking lot is a powerful tool that can be displayed on a
project wiki alongside other project residue that supports the goal of high
visibility into development activities.

Agile Analytics Practice: Publish the Parking Lot
Publish a project parking lot in the team’s workspace and keep it up-to-
date to clearly communicate the health of the project at all times. This
gives the team a big-picture sense of its progress, as well as an at-a-
glance status for people outside the development team.

WRAP-UP

One of the most fundamental shifts from traditional DW/BI development
to Agile Analytics development is the explicit focus on delivering working
features to end users. Our focus is on users and their stories about what they
need to be able to do. Our goal is to capture those stories, prioritize them,
and deliver features that satisfy the highest-value stories as early as possible.

This chapter introduced user stories as an alternative to more traditional
functional requirements. A user story is distinct in that it represents a
demonstrable feature that can be completed in a single short iteration. It
is written from the point of view of a specific user role, and it describes the
goal of that user.

We have examined how to identify all of the user roles that should be con-
sidered and mapping those roles into imaginary personas to help us under-
stand them better. Use-case modeling is a valuable language for evaluating
how different user roles need to interact with the business intelligence sys-
tem. This chapter showed how to begin with user roles, personas, and use-
case diagrams—and then incrementally flesh out more detail by moving to
use cases and then teasing out user stories.

One of the challenges with user stories is that they are sometimes too large
to be completed in a single iteration. These stories are called epics, and
several techniques were introduced to show how to decompose epics into
smaller, simpler stories.

ptg6843605

120 CHAPTER 4 � USER STORIES FOR BI SYSTEMS

Once the lion’s share of stories have been identified and written, the next
step is to prioritize them onto a well-managed backlog of stories. Prioritiza-
tion is primarily based on user value, but we also seek to give higher priority
to risky and uncertain user stories. A two-pass method for quickly prioritiz-
ing user stories was introduced. The first pass is a coarse-grained grouping
of stories, and the second pass is a more detailed assessment of the highest-
priority group.

ptg6843605

121

Chapter 5

SELF-ORGANIZING TEAMS BOOST
PERFORMANCE

Agile data warehousing teams are self-organizing. The fifth guiding principle
behind the Agile Manifesto (see Chapter 1, “Introducing Agile Analytics”)
says, “We value the importance of talented and experienced business intel-
ligence experts. We give them the environment and support they need, and
trust them to get the job done.” This principle has a lot of implications, includ-
ing that there is no substitute for having the right people on the team, and that
there is much value in enabling the team to self-organize and self-manage.

The problem with self-organization lies in the potential for improper or
sloppy behaviors. Self-organization and self-management do not imply no
organization and no management. Instead, they imply that the locus of
leadership and decision making is housed within the Agile team, not exter-
nally. In some Agile circles the term self-management has become synony-
mous with anarchy—no defined leaders. However, effective Agile Analytics
teams have leaders; they have project managers, technical leaders, product
managers, and others. Those leaders are integral members of the Agile team;
they do not manage from on high. Moreover, such teams are self-organizing
within the context of appropriate corporate governance. They still must
adhere to organizational standards and align their performance with the
goals of the company.

Most of the Agile failures that I have witnessed (fortunately very few) hap-
pened not because Agile methods don’t work, but because the Agile proj-
ect community failed to be disciplined, focused, rigorous, and intentional
in its practices and behaviors. The early chapters of this book were focused
on Agile core values and guiding principles. Most of the other chapters are
focused on introducing specific Agile practices. This chapter is focused on
another consideration, the behaviors and habits that are required for a self-
organizing/self-managing team to succeed. These Agile Analytics behaviors
lie in the nooks and crannies between values, principles, and practices. They
are about teams adopting the right attitudes and habits as they implement
the practices.

ptg6843605

122 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

Failure to intentionally incorporate these self-organizing team behaviors
can cause project delays, inhibit teams from maximizing productivity, lead
to internal conflict or unrealistic external expectations, and be generally
disruptive to the success of a project. This chapter is devoted to many of the
hygienic behaviors that are essential to running an effective Agile Analytics
project.

WHAT IS A SELF-ORGANIZING TEAM?
In his book Drive: The Surprising Truth about What Motivates Us (Pink
2009), Daniel Pink distills a significant body of psychological and sociologi-
cal research to analyze the factors that contribute to personal and profes-
sional high performance. A key conclusion of his analysis is that people are
motivated by three factors:

� Autonomy. People want to have control over their work.
� Mastery. People want to get better at what they do.
� Purpose. People want to be part of something that is bigger than

they are.

Furthermore, he points out that people are not motivated by traditional
management “carrots and sticks” such as bonuses or performance reviews.

These key factors are also key ingredients of highly effective Agile teams.
High-performing Agile teams manage their own processes, techniques, and
outcomes; they seek to continuously improve; and they are excited about
their contribution to the greater good. The following FlixBuster BI team
scenario demonstrates the characteristics of a high-performing and self-
organizing team.

Scenario

It’s 10:00 A.M. on Thursday morning in the first week of iteration five in the Flix-
Buster Analytics project’s 90-day (six-iteration) planning cycle. The project has pro-
gressed nicely through the first four iterations, and the DW/BI system is expected
to be deployed into production in about three weeks.

Unfortunately, this iteration is not going smoothly. On Tuesday Natasha, the lead
ETL developer, had to take a sudden leave of absence for a personal emergency.
It is uncertain when she will return.

In addition, the team arrived this morning to discover that many of the continu-
ous integration tests were suddenly failing. Apparently FlixTrans, the company’s
transactional system, was upgraded to version 4.0 overnight. This new version has

ptg6843605

WHAT IS A SELF-ORGANIZING TEAM? 123

significant data model changes, causing some of the ETL code to stop working.
The FlixBuster Analytics team members were unaware of this upgrade. Had they
known about the upgrade plans, they could have been prepared to handle the
changes. Now they are caught off guard without their lead ETL programmer.

Arlene convenes the technical team to assess the situation. Prakash has already gath-
ered some information about the FlixTrans upgrade, including the new data model.
But he hasn’t had much time to analyze it yet. Francisco, the team’s release manager
and sometime developer, reminds the team that he has been pair programming a lot
lately with Natasha in his effort to become a better Informatica developer.

Francisco and Prakash agree to spend the next hour together to evaluate the ETL
code that is impacted by the new transactional data model. They commit to shar-
ing their findings with the team within an hour.

At 11:00 A.M. the team reconvenes, and Francisco and Prakash present their
findings. Apparently, several of the core tables in FlixTrans have been revised. In
some cases the changes are superficial, such as column name changes. How-
ever, in other cases they are more significant structural changes, such as data type
changes and the addition of new columns, and in one case a single table was
split into two new tables. Their conservative estimate is that it will take the entire
team one day to fix all of the broken ETL code and get all the tests passing again.

Adriana points out that the team has committed to an ambitious backlog for this
iteration and, with the loss of Natasha, is already stretched to meet those com-
mitments. Henry, the team quality assurance expert, reminds everyone about the
team agreement that a broken build is a top-priority “showstopper.”

Arlene suggests that the team work through lunch to develop a plan of attack for
mitigating these new problems. Everyone agrees with Arlene, and Bob, the team’s
business analyst and sometime developer, comments that this would be a good
time to use the “Six Thinking Hats” method (de Bono 1999) for group decision
making that he’s been learning about. He’s been telling the group about this for
several weeks now, and everyone is intrigued. They agree to give it a try.

Bob goes to the team room whiteboard and creates six vertical columns. At the
top of the first column he draws a white top hat and writes “Facts/Information”
below it. He draws a red hat above the second column and labels it “Emotions/
Feelings.” Above the third he draws a yellow hat labeled “Benefits/Positives.” The
fourth hat is black, labeled “Drawbacks/Negatives.” The fifth is green, labeled
“Creative/Unconventional.” And the sixth is blue, labeled “Facilitation.”

Bob explains that the process involves everyone figuratively wearing the same hat
at the same time and suppressing the urge to switch hats without the whole group
doing so. For example, if the group is wearing the green “unconventional thinking”
hat, that is not the time to be critical or negative about outlandish ideas because
criticism is reserved for black hat thinking. He also points out that there’s nothing
bad about black hat thinking, when the group is in that mode, and that the blue
hat is for summarizing a discussion and switching group hat colors if needed. Any-
one at any time can request a blue hat period to keep the discussion productive.

Bob asks the team to start in white hat mode and asks for all of the facts and
information they have. As team members verbalize these, Bob writes them in the

ptg6843605

124 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

white hat column. This doesn’t take long, and Jamal requests a blue hat switch. He
summarizes the white hat discussion by pointing out that it is almost certain that the
current iteration’s workload exceeds the team’s normal capacity. Everyone agrees.

Jamal is frustrated and calls for a switch to red hat to vent in a constructive way for
a bit. Bob writes down the team’s frustrations in the red hat column: They weren’t
notified of the FlixTrans upgrade; these problems are too late in the 90-day proj-
ect cycle to absorb easily; the project has been on track until now, but the team
may look bad anyway; nobody should blame the team because these problems
are outside its control; and others.

Henry calls for the blue hat again and suggests this summary: “We’re frustrated
with the circumstances but don’t want to let this derail our project.” The team
agrees with that sentiment, and so Bob suggests switching to the green hat to
figure out what to do.

Arlene thanks the team for not blaming the FlixTrans surprise on her. It’s part of her
role to be aware of external factors that might impede or block the team. Unfor-
tunately she hasn’t spent much time with the FlixTrans project leaders, and so she
wasn’t aware of the upgrade. She commits to better collaboration with all of the
source system team leaders in the future.

In green hat mode the team considers solutions to the problem. Team members
come up with working over the weekend, working long days for the rest of the
sprint, hiring a temporary ETL developer until Natasha returns, shrinking or simplify-
ing user stories, eliminating stories from this sprint backlog, or turning the problem
over to the broader project community for a decision.

When green hat ideas stop emerging, Bob suggests switching to yellow hat think-
ing—the benefits of these ideas. Francisco asks who is willing to work weekends
and/or late nights. Most members of the team say they could, but Adriana has
her kids this weekend so that won’t work for her. Bob has a few evening obliga-
tions that may be a problem. Other members of the team are understanding of
this and reassure Adriana and Bob that there are no expectations of them. Adri-
ana also mentions that she has a friend who is an Informatica developer and an
independent contractor. He may be available to help out on short notice. Finally,
Prakash points out that shrinking or eliminating user stories has the benefit of get-
ting the rest of the project community to share the burden.

Bob suggests that the team shift to black hat thinking before making any action
plans. They agree and quickly come up with a set of drawbacks: Working long
hours may affect quality and may set a bad precedent for the future; it would take
time to get a temporary ETL developer up to speed; it may not be possible to
shrink or eliminate stories and still have a minimally complete feature.

After reviewing the discussion, the team quickly agrees to take three actions. The
technical team will first focus on fixing the broken ETL and failing tests. Second,
the team will make plans to work long hours and through the weekend to bridge.
Third, Arlene will convene a brief meeting of the entire project community to share
the current issues and ideas for mitigation, and to ask for additional input and sup-
port. When the team is finished, the whiteboard looks like Figure 5.1.

ptg6843605

WHAT IS A SELF-ORGANIZING TEAM? 125

FACTS / INFO

WHITE HAT

NATASHA IS ABSENT FOR
THE FORESEEABLE FUTURE.

ONE WHOLE DAY TO FIX ETL

THERE IS NO TEAM CAPACITY
BUFFER BUILT INTO THIS
ITERATION.

ITERATION FIVE IS OUR LAST
BIG CHANCE TO COMPLETE
FIRST RELEASE STORIES.

EMOTIONS / FEELINGS

RED HAT

WHY DIDN’T THE FLIXTRANS
TEAM NOTIFY US?

THE PROJECT HAS BEEN ON
TRACK UNTIL NOW.

WHO UPGRADES PRODUCTION
SW MIDWEEK?

WE CAN’T BE BLAMED FOR
PROBLEMS OUTSIDE OUR
CONTROL.

ARLENE IS GRATEFUL THAT
THE TEAM DOESN’T BLAME
HER.

BENEFITS / POSITIVE

YELLOW HAT

MOST OF TEAM WILLING TO
WORK WEEKEND

PROBLEM SHARED BY WHOLE
COMMUNITY

ADRIANA KNOWS AN ETL
DEVELOPER WHO MIGHT BE
AVAILABLE.

DRAWBACKS / NEGATIVES

BLACK HAT

CREATIVE / UNCONVENTIONAL

GREEN HAT

FACILITATION

BLUE HAT

QUALITY MAY SUFFER.

MAY SET A BAD PRECEDENT

CUSTOMERS ALREADY FEEL
THAT STORIES HAVE BEEN
SIMPLIFIED.

FINAL STORIES ARE NEEDED
TO COMPLETE THE FEATURE.

TEMP ETL DEV. MUST BE
BROUGHT UP TO SPEED.

WORK THROUGH THE
WEEKEND.

WORK LONG DAYS FOR THE
REST OF SPRINT.

NEGOTIATE SMALLER &
SIMPLER VERSIONS OF
STORIES.

ELIMINATE STORIES FROM
SPRINT BACKLOG.

HIRE TEMPORARY ETL DEV.
UNTIL NATASHA RETURNS.

LET PROJECT COMMUNITY
DECIDE.

CURRENT WORKLOAD
EXCEEDS TEAM CAPACITY.

FRUSTRATED WITH THE
CIRCUMSTANCES BUT DON’T
WANT THIS TO DERAIL
PROJECT.

TEAM WILL PLAN TO WORK
OVER THE WEEKEND.

PROJECT COMMUNITY WILL
BE ASKED TO SHARE
DECISION.

Figure 5.1 Team whiteboard after the “Six Thinking Hats” discussion

ptg6843605

126 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

As Prakash and Francisco get started refactoring the ETL code to adapt to the
revised data model, Arlene manages to get some time from the project sponsors,
most of the co-development group, and a couple of the management stakehold-
ers. The meeting is scheduled for 3:30 the same afternoon.

At 3:30 the project community gathers in the team room where Arlene quickly
outlines the recent challenges that are plaguing the team. She reviews the Six
Thinking Hats ideas and decisions that are still on the whiteboard, and she asks
the group if they have any other thoughts or ideas to add. Allen, the CTO, says
that he will immediately begin working with other IT leaders to avoid these types
of problems in the future. Pete, the VP of finance, says that he will happily pay the
cost of hiring Adriana’s ETL developer friend if the team thinks that would help.
The technical team agrees to discuss this further to determine whether it would be
beneficial. As expected, the co-development users have a difficult time shrinking
or eliminating any current user stories from the backlog. But they agree to spend
time with Dieter after this meeting to think creatively about how they might reduce
the scope of the current iteration.

Gary, the VP of sales and a stakeholder whose department will benefit from the
first release of the system, comments on how impressed he is by the way the team
handled these current circumstances. He likes the fact that the team has made
these issues immediately visible to everyone, and that everybody is focused more
on solutions than on blaming others for the problem. Pete seconds this sentiment
and also points out how impressed he is by the Six Thinking Hats approach that
the team used to handle the challenge. He can see a lot of places to use that
technique in his own finance department.

By 4:00 P.M. the action plan is solidified, and Dieter and the co-development
customers gather at the sprint backlog to talk about simplifying the scope. Adriana
thanks Bob for introducing them to the Six Thinking Hats technique and suggests
that they add it to their working agreements as a preferred decision-making
method. Everyone agrees. Arlene also suggests adding a working agreement that
calls for routine collaboration with other project teams and IT support staff to avoid
future unwanted surprises.

At the end of the iteration the team is exhausted but happy. They’ve managed to
meet all of their commitments despite the issues that arose in the previous week.
Natasha returned to work on the following Tuesday, and by then Prakash and
Francisco had resolved the broken ETL problem. They reviewed the ETL changes
with Natasha, who pointed out a few techniques for avoiding this sort of prob-
lem in the future. She committed to reviewing all of the ETL code to make it more
immune to source system data model changes. Although Dieter managed to get
the customer team to shrink the user story scope, that turned out not to be neces-
sary. At the feature showcase the customer team was delighted to find out that the
team delivered everything that was on the original iteration backlog. The custom-
ers are especially happy because they had reduced their expectations and the
team exceeded the new, lower expectations, rather than the other way around.

Arlene commends the team on a crisis narrowly averted. They decide to quit early
on Friday and spend the weekend reenergizing before the final iteration, which
will involve final system “hardening” and deployment.

ptg6843605

SELF-ORGANIZATION REQUIRES SELF-DISCIPLINE 127

SELF-ORGANIZATION REQUIRES SELF-DISCIPLINE

People and teams tend to work in ways that maximize how their perfor-
mance is measured. Agile Analytics teams whose performance is measured
on the frequent delivery of high-quality, working DW/BI system features
will naturally respond accordingly. This phenomenon is the basis for the
guiding principle of enabling self-organizing and self-managing teams by
giving them the environment, support, and trust they need to succeed.

When this principle is put into practice effectively, it is a beautiful thing.
Teams establish their own internal governance system; they adapt quickly
to the changing nature of the project; they rapidly identify shortcomings
and work together to overcome them; they freely share information and
skills; and they don’t wait to be told what to do next. While there is still the
“storming and norming” that any new team must undergo (Tuckman 1965),
effective Agile teams naturally do this more quickly and less painfully than
command-and-control-managed teams.

Self-organizing teams must exhibit self-discipline. Team members must
hold themselves and one another accountable to the norms and agreements
of the team. Self-organizing teams must seek to continuously improve their
practices and performance. They must strive to identify and correct areas
and behaviors that are insufficient or problematic. Individual team mem-
bers must be committed to the frequent delivery of high-quality business
intelligence features.

It’s difficult to pinpoint a set of specific practices that constitute team self-
discipline. Rather, self-discipline is a set of group and individual behaviors
and attitudes that a team embraces. It means individual compliance with
group standards, or responsible efforts to change those standards. As in
societies in which members have certain rights, they are expected to be good
citizens, and members agree to be held accountable to citizenship standards.

When there is a breakdown in team self-discipline, the symptoms are often
internal chaos or confusion, failure to develop production-quality software,
failure to meet all commitments, and other inhibitors to success. In general,
the performance of undisciplined teams falls below a minimally acceptable
threshold.

As with many Agile team behaviors, self-discipline is often tested when the
going gets tough. When teams overcommit or face unforeseen technical
complexities, when mid-sprint disruptions occur, when personalities clash—
these can disrupt team discipline. Some teams tout “self-organization” but

ptg6843605

128 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

then fail to comprehend the accompanying self-discipline required to be an
effective self-organizing team.

Agile Analytics Practice: Team Accountability
Agile team members should agree on how to hold one another account-
able to the commitments of the team. This includes how issues can be
addressed without personally offending individuals.

SELF-ORGANIZATION REQUIRES SHARED
RESPONSIBILITY

Too often the traditional data warehouse development team gets the short
straw when the project begins to run late, requirements change, or users are
unsatisfied. It ends up being the development team that pulls long nights
and works weekends trying to deliver according to the original plan and
timeline. And it ends up being the development team that receives the lion’s
share of blame for lack of user acceptance or project success. Similarly, if the
development team dumps responsibility for a failing project on the manage-
ment stakeholders without any input, guidance, recommendations, or alter-
natives, the management team cannot make sound and informed decisions.

In a healthy Agile Analytics project the entire project community shares the
successes, failures, and challenges that occur on the project. Recall that an
Agile project community consists of planners (management sponsors and
stakeholders), doers (delivery team), and consumers (customers/users). Each
of these groups has corporate responsibilities that are tied to project success,
and each is accountable under organizational governance to perform those
responsibilities. The planners are responsible for enabling the team to work
unimpeded and uninterrupted. The consumers are responsible for defin-
ing, refining, prioritizing, and clarifying scope and for reviewing finished
work and providing feedback. The doers are responsible for delivering high-
quality, working features and providing the necessary support for ongoing
development and maintenance. These are the three “legs” that hold up the
project “stool.” Without continuous involvement, buy-in, and support from
all three groups, the stool will teeter and the project will suffer.

Agile or otherwise, project outcomes often vary from the vision at inception.
Although sometimes this variance is an indication of failure, it is commonly
a reflection of the changing and uncertain nature of building complex sys-
tems. Sometimes what is envisioned and planned for is the wrong thing,
and the project community doesn’t discover this until well into the project.

ptg6843605

SELF-ORGANIZATION REQUIRES SHARED RESPONSIBILITY 129

Other times what is envisioned and planned morphs into something else in
light of the dynamic nature of business needs.

If you’ve been involved in systems development for any length of time,
you have likely experienced this variant nature of project requirements. It
doesn’t happen in one instant. Rather, small changes occur incrementally,
and uncertainty is uncovered gradually. This naturally occurring phenom-
enon is not, by itself, a problem. After all, we embrace change and seek to
adapt quickly. The problem lies in the potential for an impedance mismatch
between the expectations of the three groups that make up the project
community.

Effective Agile communities frequently resynchronize and revalidate their
project visions, assumptions, and expectations. As the customer commu-
nity adds or revises user stories and reprioritizes the backlog, these changes
must be shared across the entire project community. As the technical team
uncovers technical risks and issues, the impacts of these on the project plan
must be communicated to the entire community. As business strategies
change stakeholders’ project visions and goals, these new visions must be
communicated across the entire community.

Problems and project difficulties tend to increase dramatically as the expec-
tations of the subcommunities become more disparate. A feature showcase
every iteration is critical for the proper alignment of customer and devel-
oper expectations. It’s impossible to have a feature showcase without users.
Their involvement is essential and should be a high priority.

Equally important is a periodic stakeholder review. The stakeholder review
is held every few iterations. It provides visibility into the project and enables
governance by presenting accurate information to decision makers. It
addresses these questions:

� What has been accomplished to date?
� How have the initial project vision, scope, and boundaries changed?
� What are the key risks and issues?
� What is needed from the stakeholders to enable the development

team to be successful?

When the project deviates significantly from the initial vision, scope, and
boundaries, it may be necessary to revisit and revise the project charter. In
this case, it’s each community member’s responsibility to plan, attend, and
actively participate. The entire community comes back together to “restart”
the project with a revised set of visions, expectations, and understanding.

ptg6843605

130 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

As important as shared responsibility across the entire project community
is the sharing of responsibility within the development team. A self-orga-
nizing technical team makes a collective commitment at the start of each
iteration. Healthy Agile development teams establish a pattern of helping
one another complete tasks to ensure that the team commitments are met.
When one team member fails to honor his or her commitments, the entire
team shares responsibility for that failure.

SELF-ORGANIZATION REQUIRES TEAM WORKING
AGREEMENTS

Effective Agile communities collaboratively establish and commit to a set of
core values and working agreements that establish the “playground rules”
for the project. Core values and working agreements are posted on the wall
in the collaborative team workspace and are refined and revised as needed.
While these values and working agreements are self-imposed by the Agile
team, they must be consistent with organizational values and guidelines.

Core values establish the criteria for decision making and community
behaviors. A team’s core values also establish the basis for a set of concrete
working agreements. While the core values may mirror those of the entire
company, it is valuable for the Agile community to establish and commit
to its own set of values. I’ve seen Agile teams establish such values as “Pride
in workmanship”; “Continuous focus on high quality”; “Respect, trust, and
honor between team members”; “Have fun.” Note that values are broad-
brushed statements about what is important to the team. They are not rules.
Even when these value statements are similar to company statements, teams
that develop their own, with their own wording, become more committed
to them.

Working agreements are the rules established by a self-organizing team.
They are not imposed by external forces; they are the set of specific guide-
lines and behaviors that the team establishes to be highly effective. Working
agreements can cover such issues as problem solving, decision making, team
meetings, accountability, responsibility, and civility. I’ve seen teams estab-
lish such agreements as defining a set of core team hours, when the devel-
opment team commits to being together and focused on the project. I’ve
also worked with teams that establish agreements about timely responses to
requests and preference for face-to-face communication whenever possible.

The development team may establish an additional set of technical prac-
tice working agreements such as “Pair programming is required for all story

ptg6843605

 SELF-ORGANIZATION REQUIRES TEAM WORKING AGREEMENTS 131

development activities” or “Tests will always be written before the code is
written to pass the tests.”

It is important that community members give one another permission to
hold each other accountable to the values and working agreements. It can
be challenging and sometimes daunting to call a teammate out for violating
an agreement. To avoid this discomfort the team should establish a light-
hearted and friendly technique for handling violations. Agile teams have
been known to throw Nerf balls at the offender or shout out a silly code
phrase to highlight the offense.

The power of a good set of core values and working agreements should
not be underestimated. I’ve worked with teams that initially downplay
these as “fluffy” or unnecessary. These teams typically arrive at some sort
of impasse or difficulty in their early iterations that highlights the impor-
tance of a common set of values and agreements. I once trained a team that
was to be the first to “go Agile” in the organization—the pilot Agile team.
Team members were hand-selected from a pool of talented and interested
employees. The team was provided with all of the best physical resources
(team room, high-end workstations, etc.) needed to succeed. The team was
assigned a modestly scoped project so that its primary focus was on learning
agility. In spite of these success factors, the team foundered during its first
four or five iterations. I was flummoxed: great people, great working envi-
ronment, formal training, management support. How could they possibly
fail? After closely examining the team dynamics and analyzing the chal-
lenges they were facing, I realized that they had not really committed to the
working agreements I had them develop during the training workshop. The
team members thought this was just a workshop exercise and that the work-
ing agreements didn’t move with them into the team work environment. I
gave them some general guidelines for team core values and working agree-
ments and asked them to create their own (ones to which they were willing
to commit) without me in the room. Improvements were apparent almost
immediately. The team scrum master (project manager) later told me that
the working agreements were key to solving the team’s problems. It became
clear that the team members’ individual standards were inconsistent with
one another, causing team strife.

Agile Analytics Practice: Establish Working Agreements
Taking the time during project chartering to establish a set of working
agreements will boost team performance. These agreements should be
published visibly in the team workspace.

ptg6843605

132 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

SELF-ORGANIZATION REQUIRES HONORING
COMMITMENTS

Self-organizing and self-managing development teams are given the free-
dom to make their own commitments during release planning and dur-
ing iteration planning. They have the right to estimate the effort required
to develop the desired features (and complete other tasks), and they are
encouraged to plan within their limited capacity. Effective Agile teams plan
to their capacity, make commitments that are within reason, and then take
responsibility for ensuring that those commitments are met. Without com-
mitments like these, the “we’re just responding to change” mantra becomes
a ready excuse for always missing targets.

The catch is that business intelligence practitioners, like programmers, are
eternal optimists. Occasionally our estimates are overly optimistic, and
we commit beyond our capacity. In a traditional phased project plan these
underestimates tend to accumulate over time and create a large pile of work
in the project’s eleventh hour. You’ve probably experienced these projects.
They are the ones in which the entire development team starts working 60,
70, and 80 hours per week near the project deadline. Quality of life suffers as
does quality of work product.

In an Agile environment, these overcommitments put undue stress on the
team’s ability to complete everything before the iteration’s end. A new itera-
tion marks a fresh beginning, with a fresh set of commitments along with
the lessons learned from the last overcommitted iteration.

Although establishing a sustainable pace is a key Agile principle, it is incum-
bent on the team to do whatever is required to meet all of its commitments
during an iteration. There are two key reasons why honoring commitments
is essential to a healthy Agile project. First, development teams that fall
short of their commitments soon lose the trust of other project community
members and in turn the right to be self-managing. Second, a team that
allows itself to fall short of commitments stands to create a pile of eleventh-
hour work as in waterfall projects. In The Mythical Man-Month, Fred Brooks
wrote the oft-quoted rhetorical question “How does a project get to be a year
late? One day at a time” (Brooks 1975). An Agile variant of this quote might
be “How does an Agile project get to be late? One iteration at a time.”

Effective Agile development teams bend over backward to meet their com-
mitments, and when they get burned by overcommitting, they self-correct
in the next iteration. This sometimes means late nights and long hours if

ptg6843605

SELF-ORGANIZATION REQUIRES HONORING COMMITMENTS 133

the team has committed beyond its capacity. While this may not sound like
a long-term sustainable pace, it is sometimes necessary in the short term to
maintain the overall health of the project.

Watch Out for Hangovers

A hangover is a backlog item (typically a user story) that is scheduled into
an iteration but remains unfinished at the end of the iteration. It hangs over
into the next iteration. Hangovers are related to, but are different from, the
unmet commitments we’ve been discussing. A hangover is a backlog item
whose engineering tasks are all completed, and that the team believes is
complete, but it fails to meet the minimum acceptance criteria to be consid-
ered finished.

While there are a variety of specific types of hangovers, they can be gener-
ally classified into two categories: those that are not “Done!” and those that
are not “Done! Done!”

Recall the introduction of “Done! Done!” in Chapter 1, “Introducing Agile
Analytics.” The first “Done!” refers to all technical work being completed,
passing all functional tests, and being of production quality. The second
“Done!” refers to user review and acceptance.

The first type of hangover occurs when a development team completes all
of the requisite technical tasks but falls short of creating production-qual-
ity output. Either there are tests that are not consistently passing, or there
is insufficient testing, or there is unacceptable technical debt or rework
required for the work product to be considered production-quality. In a data
warehousing application, the focus may be less on functional testing of the
presentation and more on the quality and accuracy of the data presented.
Whatever the case, the project community (and probably the enterprise)
has an established expectation of what constitutes production quality, and
when additional work is required to meet this baseline, a hangover occurs.

The second type of hangover occurs when the development team has
completed all work, and the work product meets the production-quality
baseline, but the work product (feature) fails to meet user/customer expec-
tations and acceptance criteria. These types of hangovers reflect the need for
better or more frequent collaboration between developers and users. They
also reflect the need for earlier, preliminary showcasing of features as they
become available. One Agile data warehousing team I worked on established
a working agreement that every user story required a low-fidelity prototype

ptg6843605

134 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

(generally a simple user interaction or wireframe sketch). This agreement
eliminated much of the ambiguity that was formerly present in the interpre-
tation of narrative user stories (and corresponding requirements).

Note that it is expected that feature showcases with users may trigger the
identification of further enhancements and improvements to an existing
feature. These should be captured as new user stories and should not be
considered hangovers. It is natural in a business intelligence system for the
answer to one question (a user feature) to generate several new questions
and needs (user stories). These simply get incorporated into the backlog and
assigned the appropriate priority.

Healthy Agile Analytics teams develop processes and methods that mini-
mize hangovers. Test automation and test-driven development will be intro-
duced in Chapter 7, “Test-Driven Data Warehouse Development.” These
technical practices are significant factors in reducing hangovers.

SELF-ORGANIZATION REQUIRES GLASS-HOUSE
DEVELOPMENT

Have you ever worked on a project that wasn’t going according to plan?
Perhaps the plan was unrealistic to begin with, or maybe the plan was dis-
rupted by a series of unanticipated difficulties. How did the team present
project status or task completion? Was everyone open, honest, and realistic
in delivering the bad news, or were efforts made to put the most positive
(and maybe unrealistic) spin on the situation? If you’re like me, you’ve prob-
ably worked on projects where bad news is suppressed or downplayed, and
the project is presented as being “on track.”

Historically the bearers of bad news are punished, so we naturally tend to
avoid being the messenger with bad news. One good friend of mine tells of
a large, high-exploration-factor software project he was part of. The grem-
lins were ever present on this project: Things that could go wrong did, risks
became realities, and the project was not going according to plan. After a
series of weekly status meetings in which the software engineers truthfully
reported the problems they were having, a senior director in engineering
became frustrated and pronounced that he “no longer wanted to hear any
bad news. Only good news was to be reported!” This unfortunate Dilber-
tesque story reflects a behavior that occurs far too often on large projects.
The suppression of bad news is bound to catch up with us sooner or later.
The later bad news is discovered, the greater the negative impact and the
cost of course correction.

ptg6843605

SELF-ORGANIZATION REQUIRES GLASS-HOUSE DEVELOPMENT 135

Healthy Agile data warehousing teams make extra efforts to operate in a
glass house. That is, they strive to make it easy for anyone who is interested
in the project to gain an accurate and honest insight into the project. Fun-
damentally this glass-house nature is in the team’s DNA. Good Agile teams
adopt a variety of behaviors that promote this glass-house development
environment—even when it is difficult and appears to be unappreciated.
Additionally, there are some specific practices that Agile data warehousing
teams should incorporate.

Foremost, the Agile data warehousing team that operates in a glass house
uses visual controls liberally. Visual controls include all of the butcher paper,
index cards, f lip charts, sticky notes, and other things that we post on our
team room walls to promote collaboration. When I walk into an Agile team
room, I expect to see core values and working agreements posted on the
wall, the current iteration plan, the prioritized backlog of user stories, the
overall release plan, a collection of known technical debt (each item on its
own index card), a bug-tracking chart, a risk management chart, and any
other information that should be radiated to the project community. These
are primarily for use by the team during development, but anyone visiting
the team room can easily review the visual controls, ask questions about
what they convey, and point out areas of concern. Additionally, disciplined
Agile teams use automated dashboards populated with metrics culled auto-
matically from development and testing tools directly. In essence, this is BI
for use by BI developers.

The glass-house environment also includes a demo of the working BI sys-
tem that includes all of the features that have been developed and accepted
to date. This system is always up and available for anyone who wishes to
see the work that has been completed. Nothing conveys the status of a data
warehousing project more accurately and honestly than the working system.
The demo system is probably based on a static snapshot of operational data
and is not necessarily running in production, but it is available for others
to explore. This practice is supported nicely by the preproduction or dem-
onstration sandbox that is discussed in Chapter 7, “Test-Driven Data Ware-
house Development.”

In addition to the demo system, the glass-house environment should pro-
vide access to work in progress. Features that are in development, features
that are finished and awaiting review, and any experimental or exploratory
work should be available frequently. Chapter 9, “Project Automation,” dis-
cusses the mechanics of establishing an integration sandbox that is routinely

ptg6843605

136 CHAPTER 5 � SELF-ORGANIZING TEAMS BOOST PERFORMANCE

updated to include new features and enhancements. Establishing a continu-
ous integration sandbox also enables others to see that tests are passing and
the build is successful.

Project wikis are a powerful mechanism for making supporting artifacts
and discussions available to others. Many teams use a wiki to present design
documents, data models, domain models, use-case diagrams, business
analysis documentation, and other project residue.

Finally, feature showcases and executive showcases provide further visibility
into project status and any issues that might disrupt the plan. Many Agile
teams also produce weekly status reports that convey accomplishments,
agreements, issues/risks, and other useful information.

Agile Analytics Practice: Big Visual Controls
Having team plans, progress, decisions, as well as project and itera-
tion status visible on the walls will boost team performance by keeping
everyone aligned and communicating with others. When visual controls
become outdated or obsolete, be sure to take them down or update
them.

SELF-ORGANIZING REQUIRES CORPORATE ALIGNMENT

Effective Agile teams have a high degree of flexibility to determine the best
ways to work within the boundaries of corporate governance and compli-
ance mandates. The principle of self-organization does not invite teams to
reject corporate conventions and standards. Tempering self-organization
with appropriate corporate governance is a critical success factor for sus-
tainable enterprise agility and sustainable data warehouses and BI systems.
Jim Highsmith refers to this as “balancing flexibility with structure.”

Typical organizations have IT infrastructure standards, technology stan-
dards, and IT protocols. Agile DW/BI teams must be in alignment with
these. Oftentimes the larger the organization, the more rigorously these
standards are enforced. When project teams attempt to circumvent the
standards, they risk becoming organizational outsiders and their project is
viewed as out of compliance. This outcome is undesirable for both the orga-
nization and the project team.

ptg6843605

WRAP-UP 137

Moreover, many companies face other regulatory mandates such as Sar-
banes-Oxley,1 ISO 90002 and/or CMMI3 certifications, FDA4 requirements,
and other external compliance constraints. Such external constraints
impact the balance between flexibility and structure in much the same way
that nonfunctional requirements impact the balance between technical
flexibility and design structure.

By ensuring appropriate alignment with corporate governance and external
compliance requirements, Agile teams establish themselves as responsible
citizens within the enterprise. Effective Agile teams possess a deep under-
standing of these governance and compliance guidelines so that they can
satisfy the requirements as simply and efficiently as possible.

WRAP-UP

Team self-organization and self-management can go badly wrong with-
out attention and diligence on the part of the entire project community. A
proper self-organizing team behaves in ways that establish and promote

� Self-discipline
� Shared responsibility
� A common set of core values
� Team working agreements
� Honoring commitments
� Glass-house development
� Corporate alignment

While there are probably many other desired behaviors and attitudes that
we might identify, these are essential to Agile team effectiveness. Healthy
Agile data warehousing teams benefit greatly from intentional and explicit
focus on these characteristics. They monitor these behaviors during itera-
tion retrospectives and self-evaluation periods. These behaviors, attitudes,
and mind-sets mark the difference between practicing Agile “by the num-
bers” (doing Agile) and practicing Agile in accordance with the values and
guiding principles (being Agile).

1. Financial regulatory requirements established in the United States under public law
107-204, 116 statute 745.

2. Family of quality standards maintained by the International Organization for
Standardization.

3. Capability Maturity Model Integration.
4. U.S. Food and Drug Administration.

ptg6843605

This page intentionally left blank

ptg6843605

PART II

AGILE ANALYTICS:
TECHNICAL METHODS

ptg6843605

This page intentionally left blank

ptg6843605

141

Chapter 6

EVOLVING EXCELLENT DESIGN

Design excellence is critical to the success of Agile Analytics. The right
design choices will help minimize technical debt, facilitate adapting to
changes, improve quality, and provide the Agile team with a cohesive tech-
nical framework. The wrong design choices can lead to overbuilt systems
and high technical debt, severely hindering the team’s ability to be Agile.
This applies to the design of data models, system architectures, ETL code,
BI applications, and other components of the data warehouse and business
intelligence solution.

Agile Analytics presents a difficult paradox: The ability to quickly respond
to change and frequently deliver new features requires excellent data models
and system design, yet excellent design takes time to develop. How do we
deliver business value early and frequently without doing a lot of the design
up front? Not long ago I had a conversation with a DW/BI practitioner that
went something like this:

Practitioner: “Agile makes sense for DW/BI systems already in produc-
tion. It’s not applicable to new data warehouse development.”

Me: “Why do you say that?”

Practitioner: “Because it is important to have correct and complete data
models and a populated data warehouse before we can start developing
BI applications. It’s not practical to keep changing the data models.”

Me: “Why is changing the data models impractical?”

Practitioner: “Because it means a lot of rework. It’s better to do it once
and do it right the first time.”

Me: “Has that approach worked well for you in the past? Do you typi-
cally get the model right on the first try?”

Practitioner: “We get pretty close, but of course some adjustments are
always needed.”

Me: “How much unused data is in your warehouse, for example,
unused tables or unused columns of data?”

ptg6843605

142 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Practitioner: “We have quite a bit of data that isn’t used. Some of it we
expect to use in the future. Plus there is probably some data that we’ll
never use, but we felt it was better to include it just in case.”

Me: “How long did it take to build your current data warehouse?”

Practitioner: “After we had the requirements, it took about two months
to finalize the data models, and another six months to implement and
test everything.”

Me: “Assuming the BI application development started after that, how
long was it before the first BI features could be reviewed by business
users?”

Practitioner: “We were able to build a few reports in about a month
after that, but it took two months before we had the first BI apps ready
for production.”

Me: “Were the users happy with those first available BI applications?”

Practitioner: “They were reasonably happy, but they asked for several
improvements and new features, which will be in the next phase of
development.”

Me: “So, business users didn’t receive any value for about ten months.
What did they do while they waited for the system to be built?”

Practitioner: “They kept using the spreadsheets and pivot tables that
they had been using. These were populated using some custom queries
on the operational databases.”

Me: “Sounds like they needed some support from the IT department
while they waited.”

Practitioner: “Yes, we had some DBAs helping run those custom queries
weekly or monthly to produce the spreadsheets.”

Me: “Suppose you could safely evolve your design while delivering
continuous business value to the users. Would that be beneficial to the
DW/BI team?”

Practitioner: “Sure, it would be nice to hear what users have to say
earlier in the project. Plus, I suppose the system would be more refined
and tailored to serve its purpose rather than too complicated and
overbuilt. That would certainly be easier to develop, understand, and
maintain. We could also move faster if we only had to deal with the
data we need rather than all the extra data. But we still need an enter-
prise data model.”

ptg6843605

EVOLVING EXCELLENT DESIGN 143

Me: “An enterprise data model is an important part of your master data
management strategy. But evolutionary development lets you prove out
your enterprise data model by putting it to use early.”

Practitioner: “But it’s too difficult and risky to change the data model
once it is populated with data. Also, if the system doesn’t conform to
the master data management strategy and enterprise data model, we’ll
just have one more data silo in the company.”

Me: “That can be true. So it’s really important to have a disciplined
approach to evolving the design toward, not away from, the corporate
data standards. Better yet, evolutionary BI development can help shape
the enterprise data model and master data management strategy to
become more useful to the enterprise.”

Practitioner: “I’m skeptical that it’ll work without making a mess of
things, but I’d like to learn more about the approach.”

I have variations of this dialogue with seasoned DW/BI developers a lot.
Fortunately, this practitioner was open-minded to a different approach. Ini-
tially the idea of incrementally evolving a complex system design and cor-
responding data models seems risky and prone to problems. Anyone who
has worked with any sort of legacy database system has likely seen how data
models naturally evolve over time, and it isn’t pretty. Ad hoc tables get added
as stopgap measures. Columns whose original purpose is long forgotten get
reused on the fly to serve some other purpose. Pretty soon the whole model
becomes like a bowl of spaghetti, with no clear and understandable design
and lots of disconnected tables floating around the periphery. It’s easy to see
why the idea of evolutionary design is initially disturbing to some.

At the same time, most experienced BI developers have also encountered
models and designs that, however well thought-out they seemed initially,
fall short in practice and must be tweaked and adapted to achieve their pur-
pose. We don’t get the real validation that our design decisions are correct
until we see them in action. This is true for system design as well as data
models.

So, we are better off if we can do a little design, validate it in a working
system, and repeat the cycle many times. But if we fail to do this with a
high degree of technical excellence and discipline, the results can be frag-
ile, overly complex, and hard to understand and maintain. Good evolution-
ary design is based on having a good conceptual model as a starting point
and requires continuous refactoring toward design excellence. With good

ptg6843605

144 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

discipline evolutionary design often results in a better implementation than
designing it all up front. The aim of this chapter is to introduce the set of
practices required to evolve high-quality, effective, and maintainable mod-
els and designs.

WHAT IS EVOLUTIONARY DESIGN?
A common misconception among Agile critics is that Agile development
involves zero design up front and therefore has a high risk of resulting in
a poorly designed product. Conversely, agilists dislike the BDUF nature of
plan-driven development, preferring instead to begin building something
sooner that customers can evaluate and to which they can react. Uncertainty
early in a project makes BDUF too costly and risky. However, experienced
Agile developers also know that no up-front design leads to poor quality and
high technical debt. What is needed is sufficient design up front (SDUF)—
enough to galvanize developers around a shared understanding of problem
domain, architecture, user experience, and data. Agile development doesn’t
require a whole new set of modeling techniques. What is required is a new
way of applying good modeling methods in an incremental, iterative, and
evolutionary manner. Establishing a minimally sufficient conceptual model
up front, and then incrementally evolving the physical model as the system
is built, helps limit technical debt and increase design quality.

However, good evolutionary design requires team discipline, design exper-
tise, and technical excellence. In other words, Agile Analytics is not a magic
alternative to proper training, techniques, and experience. In practice, evo-
lutionary design looks something like this:

Scenario

The FlixBuster DW/BI system was first deployed into production at the end of
iteration six with a couple of high-value BI capabilities. The users were amazed at
how quickly the development team delivered the first release and were delighted
at how useful those first simple BI features were. Now, after 28 iterations, the
development team has established a steady rhythm of releasing enhancements
plus a few new BI capabilities into production every month and a half. The user
community is ecstatic at how fast the development team is able to build useful BI
applications for them to use.

As the lead data modeler, Prakash has helped the data warehousing team follow
two key principles: First, never implement anything that isn’t necessary to support
the current work in progress. Second, all data model modifications must be consis-
tent with the reference (conceptual) data model.

ptg6843605

WHAT IS EVOLUTIONARY DESIGN? 145

With Prakash facilitating during iteration zero, the technical team collabora-
tively developed a relational reference data model for the integration tier of the
warehouse and a multidimensional reference data model for the presentation tier.
Originally these were simple whiteboard sketches that gave the team a shared
understanding of the database designs. Even though there were lots of unan-
swered questions, the team had learned enough during project chartering and
planning to feel confident in these high-level conceptual models.

Prakash initially documented these reference data models and published them on
the project wiki so that team members could easily reference them during devel-
opment. As aspects of the data model get implemented during iterative develop-
ment, Prakash updates the wiki documentation to show this detail. This is how
conceptual models gradually evolve into logical models. Also, the documentation
always matches the physical implementation of the data models.

Each iteration, as soon as the iteration plan is finalized, the team collaboratively
reviews the reference models to evaluate how the new user stories will affect the
design. Sometimes the new stories don’t require any new data. Other times the
new stories require new data that has already been anticipated but is not yet
populated in the model. And every now and then a new story requires data that
Prakash and the team did not anticipate. When that happens, the team modifies
the reference data model to handle the new data requirements, and it evaluates
possible side effects or other impacts that the changes will have on the version of
the warehouse that is in production.

As the team plans iteration 29, it runs into the third, more complex scenario. This
iteration includes the story “As a FlixBuster financial analyst I need to determine
cost of sales down to individual transactions so that I can more accurately calcu-
late profit.”

The FlixBuster team faces three problems. First, the formula for calculating cost of
sales (CoS) is not well defined by the business but is expected to include ele-
ments such as studio royalty, handling costs, shipping costs, inventory overhead,
loss and damage costs, among other variables. Some of these components are
complex by themselves, such as the handling costs. Second, the components that
constitute CoS come from a variety of sources, including some syndicated third-
party sources. Finally, CoS is an aggregate value covering all sales for some time
period. The business logic defining how to allocate CoS down to singular transac-
tions must be developed by business experts.

Additionally, the team expects to add the CoS measure to the already populated
F_Transaction fact table, which includes transaction revenue and net profit. This
poses two challenges: how to backfill historical facts with values for the CoS mea-
sure (the production fact table contains billions of records) and how the new CoS
measure affects the previously developed net profit measure. The team agrees that
there may be other issues in addition to these.

The development team shares these challenges with Dieter, the product owner,
who brings business users Javier, Beulah, Kari, and Andy, as well as Bob, the busi-
ness analyst, and Pete, the VP of finance, into the conversation. The group quickly

ptg6843605

146 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

recognizes that completely maturing the CoS story will take a few iterations. So,
to simplify the first iteration they agree upon a rudimentary formula for CoS that
will give developers a chance to collect the necessary data while business experts
develop a more accurate and permanent formula before the start of iteration 30.
They also agree upon a simplistic CoS allocation scheme for developers to use
until the business experts can agree on a better one. Finally, the group agrees that
integrating CoS into the net profit formula is a separate user story. So they write
that story and turn it over to the product owner to add onto the backlog. For the
time being, CoS will not be included in net profit calculations.

The development team reviews the reference data models, working backward
from the star schema in the presentation tier to the relational schema in the integra-
tion tier. The F_Transaction fact table already exists, and the team agrees that
this is where the CoS measure belongs. So, a task card is written to reflect this
modification of the data definition language (DDL) script for F_Transaction. The
integration schema is more complicated because it involves multiple values, some
of which are calculated. However, after some discussion the team agrees to add
studio royalty as a new column in the Product table; add a loss_ damage field to
the Transactions table; create a new Studio table, which will be used to popu-
late the D_Studio dimension in the presentation schema; and make some other
data model refinements. The team creates task cards for each of these implemen-
tation decisions, and Prakash commits to updating the reference models to reflect
the team’s decisions.

Because there is already a version of the data warehouse in production with live
data, the team must consider the impact of these new database changes on the
existing warehouse and all BI applications that rely on it. The team recommits to
using disciplined database refactoring techniques (Ambler and Sadalage 2006).
Henry, the database developer with the most experience in database refactoring,
commits to reviewing the other developers’ refactoring plans and corresponding
code.

The development team quickly reviews the expected work for iteration 29 and
agrees that it is reasonable and fits within the team’s capacity. The team formally
commits to the iteration plan and begins working with the knowledge that there
will be more changes in the upcoming iterations.

This example offers a glimpse of how an Agile data warehousing team takes
a highly disciplined approach to evolutionary design to avoid overbuilding
the data models while also limiting technical debt and continuously improv-
ing the design through careful refactoring. Effective evolutionary data ware-
house design has the following benefits (Ambler and Sadalage 2006):

� Minimal waste. By evolving the warehouse design in a just-in-time
fashion, you build what is needed, adapt to requirements changes as
they arise, and avoid working on irrelevant elements.

ptg6843605

WHAT IS EVOLUTIONARY DESIGN? 147

� Minimal rework. By making small incremental changes in the ware-
house design, you avoid sweeping overhauls of the design. Rework
efforts serve the purpose of making improvements to, rather than
replacements of, existing elements.

� Continuous confidence. An evolutionary approach results in a
working system early and the frequent addition of new working fea-
tures and enhancements, giving you continued confidence that you
are building the right system and are building the system right.

� High quality. Refactoring is the discipline of improving your ware-
house design a little bit at a time, continuously.

� Reduced effort. By working only on what you need today, you elimi-
nate unnecessary efforts.

Evolutionary design involves the following key developer practices (Ambler
2003):

� Database refactoring to make safe changes that improve quality a
little at a time without changing the semantics

� Evolutionary data modeling to ensure that the data model provides
exactly what is needed to support the BI applications

� Database regression testing to ensure that new changes don’t break
preexisting components of the system

� Configuration management to manage the version history of the
entire system as well as the change history of every artifact that
makes up the system

� Developer sandboxes to give developers a place to safely experiment
with ideas and develop and test their work before integrating it into
the system

The following sections offer insight into practices that, when taken together,
enable teams to effectively evolve the design of their DW/BI solution. Evo-
lutionary design begins with making a series of decisions about the bal-
ance between up-front design and evolving design and how a design evolves
toward excellence through the use of Agile Modeling, database refactoring,
and design patterns. A key constraint to keep in mind during the evolution-
ary design process is minimizing technical debt in the design and imple-
mentation. Finally, the adaptive architecture section presents an in-depth
example of how many of these practices were used to build a complex,
hosted DW/BI product for enterprise customers. References are made in
these sections to topics such as regression testing, developer sandboxes, and
configuration management that are covered in detail in later chapters of this
book.

ptg6843605

148 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

HOW MUCH UP-FRONT DESIGN?
Evolutionary design strikes the right sufficient-up-front and just-in-time
balance. Jim Highsmith compares this to trekking in the desert. If you’re
trekking in the desert, you’ll benefit from a map, a hat, good boots, and a
canteen of water. You aren’t likely to survive if you burden yourself with a
hundred gallons of water and a pack loaded with every imaginable piece of
survival gear; nor are you likely to survive without a minimum of impor-
tant supplies (Highsmith 2000). The goal of Agile design and modeling is
to strike the right balance between too little and too much. Our objective
is to model just enough up front to ensure that all developers have a shared
understanding of the solution approach and can commence building the
working components in a common and cohesive way.

We can take a lesson from Stewart Brand’s observations in How Buildings
Learn (Brand 1995). Brand identifies six layers that exist in any building:

� Site: the location where the building sits
� Structure: the foundation and frame
� Skin: the outer shell of the building
� Services: water, electric, sewage, and other systems
� Space: the interior layout and configuration
� Stuff: lighting, colors, f looring, decor, and other cosmetic elements

The order of this list of layers is important. Each successive layer is increas-
ingly easier and less costly to change than the one before it, with site being
the hardest to change and stuff being easiest. Like buildings, systems have
these layers as well. The underlying hardware and technology infrastructure
is much like the site; the systems architecture is the structure; and so on up
to the look and feel of BI applications, which is the stuff.

While it is not impossible to change a DW/BI system’s infrastructure or sys-
tems architecture after it has been built, it is difficult and costly to do so.
Therefore, it is important to get these layers right as early as possible. Note
that getting it right is not the same as getting it finished. In other words, we
need to design these layers to a sufficient level of detail to convince ourselves
that our design choices are viable, sustainable, robust, scalable, and flex-
ible. We do not need a complete and comprehensive detailed design before
we can start building the warehouse. During the early stages of design on a
new project, before development has started, I like to continuously ask the
following questions:

ptg6843605

AGILE MODELING 149

1. What is our design objective—to improve our own understanding
or to communicate the solution to others?

2. Have we accomplished our objective yet (i.e., have we done enough
for now)?

3. If so, what’s keeping us from getting started developing?
4. If not, what is the smallest/simplest thing we can do to accomplish

our objective?

Continuously asking this sequence of questions will help the Agile Analytics
team avoid the temptation to spend too much time doing up-front design
while helping ensure that they don’t start developing without the important
prerequisite design decisions.

Agile Analytics Practice: Architecture Envisioning
During iteration zero seek to develop a minimally sufficient up-front
design. Look for opportunities to do less up-front design without falling
below the “minimally sufficient” threshold. This will leave the develop-
ment team with more empty canvas to work with as you adapt and
evolve the design.

AGILE MODELING

An Agile approach to modeling is essential to evolving excellent designs. An
Agile model is one that is minimally sufficient. This means that it conveys
just enough to be useful while remaining malleable and adaptable. Agile
Modeling is an iterative, incremental, and evolutionary approach that calls
for a repeating cycle of modeling in small increments, proving your model
with working code, and inspecting and testing the results. An Agile model
has the following traits (Ambler 2002):

� It fulfills its purpose. We model for one of two reasons: to commu-
nicate a design to others, or to better understand what we’re working
on. Agile Modeling is done with clarity of purpose. When modeling
to communicate, know who the audience is and what is being com-
municated. When modeling to understand, know what the question
is, who should be involved, and when the goal is reached.

� It is understandable. Agile models are developed with the intended
audience in mind, using the correct “language” for that audience.
If we are modeling to understand the business domain, use-case

ptg6843605

150 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

diagrams and business lingo are appropriate. For data modeling, a
modeling notation such as an entity-relationship (ER) or UML 2.x
class diagram is more appropriate.

� It is sufficiently accurate. Agile models don’t need to be 100 per-
cent accurate, but they do need to be accurate enough to serve their
purpose. For example, if I am drawing a map to show you how to
get to my house for a party this weekend, a simple sketch with street
names and directions will suffice. It doesn’t matter if it isn’t pre-
cisely to scale.

� It is sufficiently consistent. Agile models don’t need to be 100 per-
cent consistent, but they do need to be consistent enough to serve
their purpose. For example, a logical data model with a “Customer”
table may be inconsistent with a use-case model that refers to a “Cli-
ent” actor, yet this doesn’t result in major misunderstandings of the
two models.

� It is sufficiently detailed. The degree of detail in an Agile model
depends on its purpose and audience. Drivers need maps that show
streets and intersections; building contractors need maps that show
civil engineering detail.

� It provides positive value. The more formal the model, the more
costly it is to maintain. A digital picture of a conceptual model on
the whiteboard is inexpensive compared to a formalized model
drawn in a data modeling tool like ERwin, Rational Rose Data
Modeler, IBM (InfoSphere) Data Architect, or some other profes-
sional modeling tool. An Agile model’s value outweighs its cost of
creation and ongoing maintenance. If a model is worth formalizing,
it is worth keeping updated. Formalized models that are out-of-date
have negative value.

� It is as simple as possible. In Agile models the level of detail is lim-
ited to only what is needed to serve their purpose. Furthermore, the
notational symbols are limited to only what is necessary.

Note the recurring theme of purpose in these Agile model trait descrip-
tions. Too often DW/BI practitioners fall into the trap of creating and for-
malizing models without a clear sense of purpose. When that happens, the
models and corresponding documentation often become bloated and over-
developed, and correspondingly more costly to create and maintain. The
most accurate documentation of a DW/BI system is the system itself. Sup-
porting documents are always at risk of being out of sync with the actual
implementation. The best design documentation is a self-documenting
implementation.

ptg6843605

AGILE MODELING 151

Agile Modeling is driven by these guiding principles:

� The working solution is your primary goal. Model just enough to
get back to the business of building a working DW/BI system.

� Enabling the next effort is your secondary goal. A DW/BI system
must be built with an eye toward the future, but it doesn’t need to be
built to handle all future possibilities. Part of fulfilling the needs of
stakeholders is designing a system that is robust and extensible over
time.

� Travel light. Create just enough models and documentation to get by.
� Assume simplicity. The simplest solution is usually the best solu-

tion. Don’t overcomplicate the design.
� Embrace change. Change is inevitable. Anticipate it and design for

it. Don’t expect to get the design exactly right once and for all time.
� Make incremental changes. Work in small steps and avoid big

sweeping changes.
� Model with a purpose. If you can’t identify why you are modeling

and for whom, don’t do it.
� Create multiple models. There are a variety of modeling techniques

and notations. Be sure to use the right tools for the intended pur-
pose, and develop multiple models in parallel if it helps.

� Ensure quality workmanship. If the model is worth formalizing, it’s
worth formalizing with high quality. Like high-quality code, high-
quality models are elegant and rich with useful information. They
are not sloppy and incomplete.

� Obtain rapid feedback. Share your models with others early and fre-
quently to avoid heading too far off course. Publicize stable models
and invite input.

� Maximize stakeholder investment. Involve stakeholders in the
modeling process whenever possible. This will help avoid model-
ing in a vacuum and will shape the models to more effectively meet
stakeholder needs.

Agile Modeling is an attitude and style, not a prescriptive process. It is not a
replacement methodology. Instead, it supplements and complements exist-
ing modeling methods. Agile Modeling is a way for developers to collabo-
rate and evolve excellent designs that meet the needs of project stakeholders.
There is nothing magic about Agile Modeling, but it is a cornerstone of evo-
lutionary design. Scott Ambler’s book entitled Agile Modeling offers a more
comprehensive coverage of the values, principles, and practices that make
up this approach (Ambler 2002).

ptg6843605

152 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Agile Analytics Practice: Prove It with Code
Avoid the temptation to model in large steps with lots of design revisions.
Instead, model in small increments and prove out your ideas by imple-
menting them. And don’t forget to test as you go.

DATA MODEL PATTERNS

Designs evolve toward excellence when we take advantage of tried and tested
existing solutions. The use of design patterns enables us to benefit from the
mature solutions that have previously been developed.

Software design patterns were first introduced in 1994 in recognition that
many of the problems programmers solve look very much like other previ-
ously solved problems (Gamma et al. 1994). The authors of Design Patterns
(commonly called the “Gang of Four”) sought to identify and catalog a set
of reusable object-oriented design patterns and provide guidelines for when
and how to use them. Later, Martin Fowler extended this catalog in his book
Analysis Patterns (Fowler 1997). Since that time the software community
has embraced other pattern books such as Kent Beck’s Implementation Pat-
terns (Beck 2008), Josh Kerievsky’s Refactoring to Patterns (Kerievsky 2004),
and others.

The 1990s patterns movement together with the explosion of object-ori-
ented programming methods revolutionized software development. Design
patterns give programmers a springboard for implementing high-quality
software designs. They enable programmers to move more quickly because
they don’t have to design every solution from scratch.

Data modelers and data warehouse architects can also benefit from the
effective use of design patterns. David Hay first introduced Data Model Pat-
terns: Conventions of Thought shortly after the Gang of Four book was pub-
lished (Hay 1996). More recently Hay produced a catalog of enterprise data
model patterns in Data Model Patterns: A Metadata Map (Hay 2006). Even
more recently, respected data modeling expert Michael Blaha published
his catalog of data model patterns called Patterns of Data Modeling (Blaha
2010). These resources offer a solid set of tools for the evolution of excellent
data warehouse designs.

Patterns are different from standards and conventions. Standards pro-
vide general guidelines on capabilities that must be part of the solution.

ptg6843605

DATA MODEL PATTERNS 153

Conventions provide specific stylistic guidelines for developers. A pattern,
however, provides an abstract and generalized design template that can be
used to model a class of similar problems or scenarios. Using a data model
pattern involves tailoring and specializing it to fit the specific situation you
are modeling. You can think of a pattern as a half-baked model that requires
you to bake in the remaining ingredients so that it best models your domain.

The adaptive data model is a good example of the use of data model patterns
(see Figure 6.1). It is designed using an aggregate of simpler data model and
object model patterns. The adaptive data model is based on Adaptive Object
Modeling (AOM) principles (Yoder and Johnson 2002). The use of adaptive

EntityType

EntityTypeClass

AccountabilityType

Accountability

Entity

Attribute

AttributeType

Name
DataType

AttributeValue
StartTime
Duration

Start Date
End Date

Start Date
End Date

responsible to

commissioner

type of type of

commissioner of

responsible to

type of

has

has

Figure 6.1 Adaptive data model pattern

ptg6843605

154 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

data modeling (ADM) for data warehousing was first introduced at a Data
Management Association (DAMA) meeting in the UK in 2005 (Longman
2005). Both AOM and ADM are strongly rooted in a collection of earlier
architectural patterns. ADM is a domain-independent model that repre-
sents all entities in the domain, their attributes, their relationships to one
another, and the duration of those relationships. The power of an adaptive
model is that the definition of the domain model and the rules of its integ-
rity are stored in a metadata base and are easily configurable by domain
modeling experts without structural database changes.

Evolutionary data warehouse design calls for the appropriate use of pat-
terns in data modeling. At present the majority of cataloged patterns for
data modeling are focused on normalized ER modeling. However, an initial
catalog of dimensional modeling patterns was introduced at the 2005 inter-
national ACM workshop on data warehousing and OLAP (Jones and Song
2005). This catalog includes temporal, action, location, object, stakeholder,
qualifier, and combination patterns. Moreover, many of the dimensional
modeling ideas introduced by Ralph Kimball, Margy Ross, and others have
a distinct patterns flavor (Kimball and Ross 2002). ETL patterns also hold
a lot of promise for future data warehouse design and development. At the
time of this writing there were no published catalogs of ETL patterns. How-
ever, Bob Jankovsky has a Web-based collection of metadata-driven ETL
patterns that deserve consideration (Jankovsky 2008).

Agile Analytics Practice: Gentle Application of Patterns
Patterns are powerful tools for developing excellent data models and
code. Become knowledgeable about patterns and familiar with pattern
catalogs, and then use them judiciously. Avoid treating everything as an
opportunity to use a pattern. Some things are simpler.

MANAGING TECHNICAL DEBT

The topic of technical debt was introduced in Chapter 2, “Agile Project
Management.” Identification and proper management (and pay-down) of
technical debt are integral aspects of evolving toward excellent data ware-
house and BI design. In 1992 software development expert Ward Cunning-
ham compared technical complexity in software code to fiscal debt. He
pointed out that sometimes it’s useful to take development shortcuts or less-
than-ideal approaches in order to move quickly. But these shortcuts are like
financial debt; if they aren’t paid back, the complexities in the system will

ptg6843605

MANAGING TECHNICAL DEBT 155

accumulate, eventually reaching unmanageable levels. Every minute spent
on not-quite-right code counts as interest on the debt.

Since Ward introduced this concept, the term technical debt has become
widely accepted in the software development community to describe the
inevitable entropy that occurs in any system. Sometimes this entropy occurs
by design when developers make trade-offs to optimize for speed. Other
times it occurs unintentionally through suboptimal design choices, design
decisions made in the absence of important information, multiple revi-
sions made without discipline, developer mistakes, and other causes. What-
ever the reasons, technical debt is an unavoidable consequence of systems
development—and this includes data warehouses and business intelligence
systems.

As technical debt increases, so does the cost of change (CoC). In fact, Jim
Highsmith describes technical debt as the gap between a system’s actual
CoC and its optimal CoC (Highsmith 2010a). As a DW/BI system grows in
essential complexity (multiple data sources, increasing capabilities, increas-
ing data volumes, etc.), its optimal CoC is expected to increase. More com-
plex systems are more costly to change than simpler systems. However,
technical debt is a nonessential source of complexity that further increases
the CoC beyond its optimal levels. As the CoC increases, customer respon-
siveness decreases. In other words, technical debt is anathema to agility.

One challenge with the technical debt metaphor is that it is difficult to
quantify and prioritize. Everyone seems to be in agreement that it exists in
all systems and should not be ignored. But when push comes to shove on a
project, attention to technical debt routinely takes a back seat to new feature
development.

Recently Israel Gat has introduced a model for monetizing technical debt
by evaluating existing code and estimating the cost of repairing problem-
atic code (Gat 2009). For instance, suppose that the FlixBuster DW contains
50,000 lines of stored procedure code and it is estimated that eliminating
all known technical debt in the stored procedures will cost $100,000; Flix-
Buster will have to spend $2 per line of code to eliminate all technical debt.

Such monetization allows us to establish a “credit limit” on technical debt.
When technical debt reaches a certain level, say, $0.25 per line of stored pro-
cedure code, new feature development is put on hold while the team focuses
on aggressive refactoring to reduce technical debt to an acceptable level.

ptg6843605

156 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

An additional benefit of technical debt monetization is that it can be listed
as a liability line item on the balance sheet. Therefore, the net value of a
DW/BI system is measured as the monetized business value of working BI
features and capabilities offset by the monetized liability of existing techni-
cal debt.

Israel outlines the following transformative aspects of monetizing or other-
wise quantifying technical debt (Gat 2010):

1. The technical debt metric enables Continuous Inspection of the code
through ultra-rapid feedback to the software process. . . .

2. It shifts the emphasis in software development from proficiency in the
software process to the output of the process.

3. It changes the playing fields from qualitative assessment to quantitative
measurement of the quality of the software.

4. It is an effective antidote to the relentless function/feature pressure.
5. It can be used with any [development] method, not “just” Agile.
6. It is applicable to any amount of code.
7. It can be applied at any point in time in the [development] life-cycle.
8. These seven characteristics of the technical debt metric enable effec-

tive governance of the [development] process.
9. The above characteristics of the technical debt metric enable effec-

tive governance of the . . . product portfolio.

Highsmith says this about technical debt: “It’s expensive to fix, but much
more expensive to ignore. Technical debt reduces future earnings, but even
more critically, it destroys predictability which in turn impacts market capi-
talization in the near term, not in the future” (Highsmith 2010b).

When a team allows technical debt to accumulate unabated, the system will
eventually reach a point of stagnation. Defects are prevalent and increas-
ing. It becomes too costly and risky to add new features. And fixing bugs
becomes a full-time effort. When a system is referred to as a “legacy sys-
tem,” you can be sure that it is mired in technical debt. Nobody wants to
touch those.

Agile Analytics Practice: Prioritize Debt
Agile teams intentionally identify, track, prioritize, monitor, and pay
down their technical debt. Technical debt stories should be prioritized
alongside user stories to balance new feature development against debt
reduction.

ptg6843605

REFACTORING 157

Effective Agile Analytics teams seek to identify, monitor, and pay down
technical debt. Whenever developers make choices that incur technical debt,
or when they discover preexisting technical debt, they log it into the team’s
debt-tracking system. The debt-tracking system, like the defect-tracking
system, need not be complicated or high-tech. A simple chart on the wall
using index cards to capture “technical debt stories” is an effective way for a
colocated team to manage its technical debt.

Unlike for the valuation and prioritization of user stories, it is the techni-
cal team that prioritizes technical debt stories and estimates the value of
eliminating each one. It is important for the product owner to ensure that
the priority of new user stories does not always trump the priority of tech-
nical debt stories. Technical team leaders must advocate for opportunities
to schedule debt stories into development iterations. Some Agile project
teams agree to allocate 15 to 20 percent of team capacity in each iteration to
debt reduction, leaving 80 to 85 percent for user story development. Other
Agile teams occasionally designate explicit debt reduction iterations that
eschew user story development in favor of debt reduction work. Still other
Agile teams find ways to eliminate technical debt in the course of user story
development. Whatever the approach, it is essential to continuously moni-
tor and pay down technical debt.

REFACTORING

Refactoring is an important technical discipline that serves two very impor-
tant purposes. First, it is a technique for safely evolving the design or models
without breaking previously working features and components. Second, it
is a technique for eliminating technical debt without breaking previously
working features and components. Note the common elements of these
purposes—without breaking previously working features and components.
An ever-present consideration of iterative development is ensuring that the
work we are doing in this iteration does not have an adverse impact on the
work we’ve done in prior iterations. The next chapter introduces the impor-
tance of test automation in DW/BI development. Together with testing,
refactoring is an essential engineering practice that enables Agile teams to
be effective.

The practice of refactoring was first introduced to the software community
by Martin Fowler (1999). He defines refactoring as “the process of changing
a software system in such a way that it does not alter the external behav-
ior of the code yet improves its internal structure.” This practice has had a

ptg6843605

158 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

profound impact on the quality of software application development. It has
enabled programmers to improve a design after it has been written. Within
a few years after Fowler introduced refactoring, nearly every single interac-
tive development environment (IDE) had support built directly into the tool
to help programmers refactor their code.

Scott Ambler and Pramod Sadalage introduced refactoring to the database
community in 2006 with a very thorough catalog of database refactorings
and transformations (Ambler and Sadalage 2006). They describe a database
refactoring as “. . . a simple change to a database schema that improves its
design while retaining both its behavioral and informational semantics (in a
practical manner).” A database refactoring may affect structural elements of
the schema such as tables and views, or functional elements such as stored
procedures and triggers. Not only must database refactoring preserve the
core database behavior and semantics; it must also preserve all external sys-
tems that are coupled to the database schema such as business applications
and data extract processes. The database refactoring principles (and most
of the refactorings) introduced by Ambler and Sadalage are directly appli-
cable to evolutionary data warehouse development. Therefore, this section
of the chapter will provide an overview of the refactoring discipline rather
than comprehensive coverage of the topic. Every data warehouse developer
should have a copy of Refactoring Databases in his or her personal library.

Refactoring is not the same as ad hoc restructuring of code or data models.
While restructuring is a good practice, it is important to understand that
refactoring means something very specific. In fact, refactoring is the key to
effective evolutionary database design. Refactoring relies on regression test-
ing to ensure that your changes have not broken anything. Moreover, the
regression test suite must be automated to enable you to repeatedly execute
your tests quickly and easily in the course of refactoring. The focus of the
next chapter is on test automation and test-driven data warehouse develop-
ment (including regression testing), so we’ll defer discussion of those details
for now.

Ambler and Sadalage distinguish the six categories of refactoring presented
in Table 6.1. Within each category there are several specific refactorings and
transformations.

ptg6843605

REFACTORING 159

What Is Refactoring?

Without rewriting the book on database refactoring, perhaps it would be
best to explain the concept of refactoring with an example. Suppose our
FlixBuster data warehouse has been in production for some time and the
data model includes a conformed product dimension that is keyed on prod-
uct ID and is used by several fact tables. However, in the current develop-
ment cycle we are integrating a new syndicated data source that contains
rich information about product purchases but is at the product subcategory
grain rather than the more detailed individual product grain. Because we
will be building a new fact table that uses the grain of product subcategory,
we decide to split the product dimension into two separate dimensions, Dim_
Product and Dim_ProductSubcategory. The new dimension can be used as a
star schema for detailed product facts or linked directly to the more coarse-
grained subcategory facts.

Table 6.1 Database Refactoring Categories

Database Refactoring
Category Description Example(s)

Structural A change to the definition of one or
more tables or views

Moving a column from one table to
another, or splitting a multipurpose
column into separate columns

Data quality A change that improves the quality
of information

Making a column non-nullable or
applying a common format to a
column

Referential integrity A change that ensures that a
referenced row exists within another
table and/or that a row that is no
longer needed is removed
appropriately

Adding a trigger to enable a cascad-
ing delete between two entities, code
that was formerly implemented outside
the database

Architectural A change that improves the overall
manner in which external programs
interact with a database

Replacing an existing Java database
operation in a code library with a
stored procedure in the database to
make it available to non-Java
applications

Method A change to a stored procedure, ETL
object, stored function, or trigger
that improves its quality

Renaming a stored procedure to make
it easier to understand

Non-refactoring
transformation

A change to a database schema
that changes its semantics

Adding a new column to an existing
table

ptg6843605

160 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Because the data warehouse has been in production for some time, and
Dim_Product contains historical data, we’ll need to be disciplined in how we
split this dimension table to ensure that all existing BI applications continue
working properly. That means that we’ll need to introduce the new dimen-
sion table but establish a transition period during which the original table
continues to include subcategory information. This transition period will
allow us to carefully refactor the BI applications to use the new subcategory
dimension wherever appropriate. We’ll use the Split Table refactoring for
this task (Ambler and Sadalage 2006).

During the transition period we will have some intentional data duplica-
tion. To avoid possible inconsistencies between these dimensions we will
outfit each table with a trigger to synchronize data across tables in the event
of an insertion, deletion, or update. We must create these triggers so that
cycles between the two do not occur.

While we don’t want the transition period to linger too long, we also don’t
want to deprecate the old schema too early and risk breaking any BI applica-
tions. After careful consideration we’ve determined that February 1, 2013, is
an appropriate date by which to complete the schema transition. To imple-
ment this we’ll schedule the necessary ALTER TABLE statements to run on that
date. This step in the refactoring automates the necessary housekeeping that
we might otherwise forget to do. Figure 6.2 depicts the schema before, dur-
ing, and after our transition period.

Dim_Product

Dim_Product

1..* 1

1..* 1

Dim_ProductSubcategory

Dim_ProductSubcategoryDim_Product

-productID <<PK>>
-productCategory

Original Schema

Transition Period

Resulting Schema

-productSubcategory
-productName
-productFeature
-productBasePrice

-productID <<PK>>

-productID <<PK>>

TI
M

E

-subcategoryID <<PK>>
-subcategoryName
-subcategoryCategory

-subcategoryID <<PK>>
-subcategoryName
-subcategoryCategory

SynchronizeWithProduct

-productCategory
-productSubcategory
-productName

-productName

-productFeature

-productFeature

-productBasePrice

-productBasePrice

SynchronizeWithSubcategory
 { event = update | delete | insert, drop date= February 1, 2013 }

 { event = update | delete | insert, drop date= February 1, 2013 }

Figure 6.2 Splitting the product dimension table

ptg6843605

REFACTORING 161

The code for this refactoring looks like this:

CREATE TABLE Dim_ProductSubcategory (
 subcategoryID VARCHAR(15)NOT NULL,
 subcategoryName VARCHAR(20)NOT NULL,
 subcategoryCategory VARCHAR(15)NOT NULL,
 CONSTRAINT PKSubcategoryID
 PRIMARY KEY (subcategoryID)
);

-Trigger to keep all split tables in sync
CREATE OR REPLACE TRIGGER SynchronizeWithSubcategory
BEFORE INSERT OR UPDATE
ON Dim_Product
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEGIN
 IF updating THEN
 FindOrCreateSubcategory;
 END IF;
 IF inserting THEN
 CreateSubcategory;
 END IF;
END;
/

CREATE OR REPLACE TRIGGER SynchronizeWithProduct
BEFORE UPDATE OF productSubcategory
ON Dim_ProductSubcategory
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEGIN
 IF updating THEN
 FindAndUpdateAllProductsForSubcategory
 END IF;
END;
/

-On February 1, 2013
ALTER TABLE Dim_Product DROP COLUMN productCategory;
ALTER TABLE Dim_Product DROP COLUMN productSubcategory;
DROP TRIGGER SynchronizeWithSubcategory
DROP TRIGGER SynchronizeWithProduct

But we aren’t going to write all that code at one time. Before we even start
this refactoring, we’ll review the existing test suite to be sure the original
schema is well covered by automated tests. We’ll take the time to add any
new tests we wish we had, and we’ll ensure that all the tests are passing.

ptg6843605

162 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Then, before we begin writing the code, we’ll write new tests to test the code
we’re about to write.

For example, we’ll start by writing some structural tests to verify that the
Dim_ProductSubcategory table exists and contains the expected columns
and constraints. These tests will fail until we write the CREATE TABLE query
correctly. As we proceed in tiny steps, writing tests along the way, we’ll also
continue to rerun the old tests to be sure we haven’t broken anything. By
the time we’re finished, we will have a new table, new triggers, and a suite of
new tests to validate our work.

Structural database refactorings typically follow a pattern that includes a
transition period between the old schema and the new one. These buffers
coupled with automated tests are essential ingredients of refactoring safety.
Additionally, all of the database code and related artifacts should be man-
aged in a version control system, making it easy to roll back to an earlier
version if things go horribly wrong. We’ll discuss that in detail in Chapter 8,
“Version Control for Data Warehousing.”

Many other refactoring situations and corresponding database refactorings
are presented in Refactoring Databases (Ambler and Sadalage 2006), and
future books may introduce even more. However, this example provides a
glimpse of what database refactoring looks like and should convey the idea
that refactoring is more than simply restructuring or improving database
elements.

When to Refactor

Database refactoring applies not only to new warehouse development but
also to the ongoing maintenance and revision of existing data warehouses.
This means that you may be making improvements to a data warehouse that
has been in production for some time and supports multiple business intel-
ligence and analytical applications. For that reason, the refactoring process
must be a highly structured and safe one that keeps the supported applica-
tions running correctly.

Ambler and Sadalage introduced a set of database smells1 that suggest the
need for a refactoring. These database smells include

1. Martin Fowler first introduced the concept of “code smells” to the programming
community in Refactoring: Improving the Design of Existing Code (Fowler 1999).

ptg6843605

REFACTORING 163

� Fear of change. Fear of changing the database schema because you’re
not sure what might break is a sign that the database needs refactor-
ing. Fear of change typically suggests an undesirable level of techni-
cal debt in your data warehouse.

� Multipurpose column. Columns for which the data semantics vary
depending on the context of the row are signs of the need for refac-
toring, for example, using a date column to store either customer
birth date or employee start date, depending on whether the record
represents a customer or an employee.

� Multipurpose table. Tables that are used to store different types of
entities may suggest a design flaw in the data model, for example,
storing both consumers and corporations in a Customer table.

� Redundant data. Duplicating data introduces the possibility of data
inconsistencies, such as customer information that is duplicated in
multiple source data systems. Resolving data duplication is one of
the roles of a data warehouse.

� Tables with too many columns. This smell suggests that the table
lacks cohesion (a single well-defined purpose) and is trying to store
data from several different entities.

� Tables with too many rows. Such tables are indicative of perfor-
mance problems. Data warehouses often appropriately include fact
tables with billions of rows, but this smell may be more applicable to
staging databases or system-of-record repositories.

� “Smart” columns. These are columns whose values can be decoded
to produce additional meaning, such as a customer ID in which the
first four digits convey the customer’s home branch. Often these are
called “smart keys,” and they create data management complexities.

In addition to these general database smells I routinely see the following
data warehousing smells that may suggest the need for refactoring:

� Complex ETL objects. When ETL packages contain too many flow
paths and complicated transformation nodes, they can be difficult
to troubleshoot and maintain. It is also difficult to write test cases
around these multipurpose ETL objects. It is preferable to build
a collection of simple, single-purpose ETL objects and link them
using a sequencer object.

� Large SQL modules. When a SQL script or stored procedure is try-
ing to do too much, it often shows up as a large script containing
several multiple SQL statements. Such scripts risk code duplication

ptg6843605

164 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

and should be divided into a collection of small, separate, highly
cohesive and loosely coupled2 modules.

� Unconformed dimensions. Multidimensional data models with two
or more dimensions containing overlapping data give rise to data
duplication and inconsistencies. Ralph Kimball emphasizes creating
singular, multipurpose conformed dimensions to avoid this problem
(Kimball and Ross 2002).

� Indiscriminate use of materialized views. Indexed, or materialized,
views are a powerful feature of modern relational database manage-
ment systems. Used wisely, they can be an effective buffer between
data accessors and the physical implementation of base tables. How-
ever, materialized views that call materialized views can severely
obfuscate the warehouse design.

� Underutilization of materialized views. Data warehouses that rely
solely on access to base tables are at risk of fragility. That is, minor
changes in the physical implementation of these base tables can
have unexpected ripple effects for the various accessors to these base
tables. The selection of materialized views should strike an appro-
priate balance between query performance, cost of view mainte-
nance, and base table flexibility.

� Overreliance on documentation. Data warehouse tables, columns,
scripts, stored procedures, ETL modules, and other components that
are not easily understood without accompanying documentation
suggest the possible need for refactoring. Data warehouse compo-
nents, like software, should be self-documenting and self-explana-
tory. Cleaner designs lead to a reduced need for documentation.

There may be other smells in your data warehouse design, but smells do not
always mean something is bad. As you run across these or other smells in
your warehouse, evaluate them, analyze them, and decide if a refactoring
makes good sense.

Agile Analytics Practice: Take Small Steps
Data models evolve toward excellence through many small changes, not
big sweeping ones. Agile developers apply refactorings one at a time,
making sure that everything is working correctly afterward before apply-
ing another one.

2. Cohesion is the degree to which a unit performs a single well-defined task; coupling
is the degree of interdependence between units (Constantine and Yourdon 1979).

ptg6843605

REFACTORING 165

How to Refactor

When you have determined that a database refactoring is appropriate, it is
important to carefully follow a series of engineering practices to refactor
safely and with confidence. Integral aspects of refactoring are test automa-
tion and test-driven database development. Furthermore, refactoring should
be conducted in an isolated development sandbox where you can experi-
ment using your own copy of the code and databases. Finally, all develop-
ment code and artifacts should be kept under version control, enabling you
to roll back to a previous version if the refactoring does not go as planned.
These practices and concepts are examined in detail in coming chapters.

Ambler and Sadalage advocate the following process for database
refactoring:

1. Verify that refactoring is appropriate. Does the refactoring oppor-
tunity make good sense? Is the change actually needed now, or
should it be deferred? Is it worth the effort? These are some of the
issues to consider first.

2. Choose the appropriate refactoring. Once you’ve identified the
opportunity for a refactoring, be sure to choose the right one. This
sometimes requires evaluating other areas in the data model that
may affect the refactoring. For example, the FlixBuster team may
wish to add Balance to the Account table using the Introduce Column
refactoring without realizing that Balance already exists in the Cus-
tomer table. Therefore, Move Column would be a more appropriate
refactoring.

3. Deprecate the original schema. When refactoring a data model
within a production data warehouse, you will likely need to establish
a transition (or deprecation) period to ensure that all BI applications
continue to work properly. During this period both the original
schema and the refactored schema run in parallel. A BI application
uses either the original schema or the new one, but not both. The
data in both schemas must be synchronized to ensure that BI appli-
cations work properly regardless of which schema is used. During
the deprecation period BI applications are modified to move away
from the deprecated schema and toward the new one. At the end of
this period, the deprecated schema is taken off-line, and final testing
commences to ensure that nothing breaks. The deprecation pro-
cesses should be automated as much as possible to ensure a seamless
transition during refactoring.

ptg6843605

166 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

4. Test before, during, and after. The only way to safely change a data
model is to surround the area of change with a healthy test suite that
can be run and rerun at any time. Before you start making changes,
be sure that all of your tests are passing, and evaluate the test suite
for completeness, adding any test cases you wish you had. Be sure
you test all of the ways BI applications access the database schema.
Also, create a test suite to validate the data migration strategy. Test
all BI applications to ensure no changes in data or behavior. And, of
course, add new tests around the newly introduced schema changes,
and remove tests that become obsolete or irrelevant. Test automa-
tion is the only practical means of testing and retesting continuously
throughout the refactoring (covered in greater detail in Chapter 7,
“Test-Driven Data Warehouse Development”).

5. Modify the database schema. Implement the planned refactoring
using small, highly cohesive, scripted changes (not manual). Use a
test-driven database development approach to take small tests and
build a regression test suite that can be used continuously. As new
code is written and new tests pass, check those changes into the
version control system. This will enable you to easily back out small
changes if necessary.

6. Migrate the source data. Many refactorings require migrating data
from the old schema to the new one, especially when refactoring
a production data warehouse. The Move Data refactoring is spe-
cifically designed to support this. But sometimes, if data quality
improvement is a goal of your refactoring, you may wish to use
one or more of the data quality refactorings such as Apply Standard
Type or Introduce Common Format. Data migration should also be
scripted, and those scripts should have tests supporting them.

7. Refactor external access programs. Typically this involves adapting
BI applications to work with the new schema but may involve modi-
fying custom programs that access the data warehouse. Modifying
these external access programs should also follow a disciplined
refactoring process. See the works by Fowler (1999), Feathers (2004),
and Kerievsky (2004) for more on software refactoring.

8. Run all regression tests. All those tests that were passing before you
started the refactoring, plus all the new tests you’ve added during
refactoring, should still be passing after you finish the refactoring.
Ideally you’ve automated all the tests and have been running and
rerunning them continuously during the refactoring process.

9. Version-control your work. Be sure to commit all modified files
and any new ones into your version control system (see Chapter 8,
“Version Control for Data Warehousing”). These include any new

ptg6843605

DEPLOYING WAREHOUSE CHANGES 167

or modified scripts or ETL objects, test data or generated code,
test cases, documentation, and models. Now is also a good time to
tag the version control mainline with a marker that indicates the
completion of your refactoring.

10. Announce the refactoring. Publicize the refactoring to everyone on
the data warehousing and business intelligence teams, in addition
to all parties who may directly access the data warehouse’s internal
schemas, to ensure that everyone uses the new schema correctly.

Final Words on Refactoring

This section serves only as a summary of database refactoring and aims to
accurately convey what refactoring is, what it is not, and how it can be a
valuable technique for evolving excellent data warehouse design. As you
incorporate database refactoring into your data warehousing technical
practices, it is important to continuously balance the structure provided by
sound data modeling principles with the flexibility offered by this adaptive
approach. That is, underuse of sound up-front design followed by overreli-
ance on refactoring to adapt may cause unnecessary rework. Conversely, an
appropriate degree of “rework” can lead to better, and more fitting, design
choices and should be tolerated. The mini-book Recipes for Continuous
Database Integration, by Pramod Sadalage, is a companion book to Refactor-
ing Databases that introduces other powerful evolutionary database devel-
opment techniques (Sadalage 2007). Also, Scott Ambler’s Web site, www.
agiledata.org, provides a detailed source of information about Agile data-
base practices.

DEPLOYING WAREHOUSE CHANGES

As Agile Analytics teams mature in the evolutionary development of the
warehouse, data marts, and BI applications, they strive toward more fre-
quent—nearly continuous—deployment of new features and revisions.
Experience has shown that early version deployments involve more data
warehouse revisions than later versions. Often these early deployments
involve as many warehouse revisions (and refactorings) as the new BI fea-
tures that those modifications support. Over time the warehouse design
tends to stabilize and settle, supporting new BI features with few changes in
data models or warehouse components.

However, as time passes, deployments of revisions to a production ware-
house and/or data marts have a new set of challenges, namely, the migration
of large data sets in structures indexed on surrogate keys and other database

www.agiledata.org
www.agiledata.org

ptg6843605

168 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

optimization elements like partitioning. These are all factors that compli-
cate the ability to frequently deploy improvements in the DW/BI systems
and should be balanced against the business benefits of frequent deploy-
ment. There is no single right answer to the question of deployment fre-
quency. However, the more frequent your deployments, the smaller they are
and the easier they are to back out if needed.

Regardless of deployment frequency, a disciplined and carefully designed
deployment process is paramount. Furthermore, the steps in the process,
including data migration steps, should be primarily automated rather than
manual. Automated deployment scripts and utilities must be thought of as
an extension of the production DW/BI system and should be thoroughly
tested as such. In fact, Agile Analytics teams think of the production DW/BI
system as a combination of warehouse components, BI application compo-
nents, user and technical documentation, deployment and installation com-
ponents, and administrative utilities.

If you adopt the recommendations on test automation, version control, and
continuous integration that are presented later in this book, you’ll find that
frequent DW/BI deployment is the logical next step in this set of engineer-
ing practices. Conversely, if you envision deploying from development into
production relying on final-stage manual testing, and no version control,
frequent deployment probably seems like a daunting and risky concept.

Pramod Sadalage and Scott Ambler outline a deployment sequence for gen-
eral database deployment (Ambler and Sadalage 2006). I have taken some
liberties and repurposed their process for data warehouse and business
intelligence system deployment:

1. Back up data. If the deployment doesn’t go as expected, you may
need to abort the deployment and restore everything.

2. Run previous regression tests. Before doing anything else, be sure
that the current production system is running properly and that
nothing has become inadvertently corrupted. If any regression tests
fail, don’t deploy until you’ve identified and corrected the problem
in both the current version and the new version.

3. Deploy changed BI apps. Follow existing procedures to deploy new
versions of BI applications.

4. Deploy database changes. Run all of the newly developed or modi-
fied schema change scripts and data migration scripts.

5. Run new regression tests. Run the latest version of the regression
test suite, including modified and newly added tests. Beware of side

ptg6843605

DEPLOYING WAREHOUSE CHANGES 169

effects from your tests such as leaving test data residue or schema
changes (e.g., temporary tables) behind.

6. Back out if necessary. If regression testing reveals severe defects,
everything must be reverted to the previous version until defects are
corrected. In this case back out database refactorings and deployed
applications, and abort the deployment.

7. Publicize the deployment. When everything is successfully
deployed, the project community should be notified immediately.
Community members are eager to know how everything went and
whether their new BI features are available.

8. Remove the deprecated schema. Although this step may occur
many months after steps 1 through 7, the deployment is not really
complete until deprecated schemas and scaffolding components like
triggers and stored procedures are completely removed.

Of course, you’ll want to do a dry run of this process first in your prepro-
duction environment to surface as many glitches as possible without affect-
ing the production system. This process should be sufficient for DW/BI
systems of small to moderate data volumes. However, if your warehouse
contains tens or hundreds of terabytes of data, the data migration alone may
take many days, and it is unacceptable to take the production warehouse
off-line that long for deployment.

In their book Continuous Delivery, David Farley and Jez Humble introduce a
comprehensive, well-thought-out set of techniques for simplifying and rou-
tinizing frequent software deployments (Farley and Humble 2010). Many of
those concepts and practices are directly applicable to DW/BI deployment,
and a couple of ideas deserve a brief introduction here.

Blue-Green Deployment

Farley and Humble describe a powerful release technique called blue-green
deployment that is akin to the hot switch-over strategy long used in the
mainframe world. In this approach you have two identical production envi-
ronments called “blue” and “green.” Users access BI applications through
a router that points to one or the other of these, whichever is the current
production release. Figure 6.3 depicts an example in which the green slice
is currently active. The DW/BI deployment occurs in the blue slice and has
no effect on the green slice. Before switching the router to the blue slice, we
run data migration scripts to populate the blue data warehouse and smoke
test to confirm that everything is working properly. When everything is
ready, we can switch the router to point to the blue slice with virtually zero

ptg6843605

170 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

downtime. If anything goes wrong with the deployment, we can simply
switch back to the green slice and commence debugging the problem in the
blue environment. Once a deployment is deemed successful, the green envi-
ronment becomes available for the next deployment.

Clearly the blue-green deployment scheme requires an investment in addi-
tional hardware and software licenses. This cost should be weighed against
the person time saved and the value produced by frequent releases. None-
theless, depending on your DW/BI technologies, the cost can be signifi-
cant. Virtualization offers one means of reducing this cost depending on
performance requirements and data volumes. Another alternative may
be to run both the blue and green slices in parallel on the same hardware
infrastructure using designated ports, file system partitions, or some other
configuration.

Another potential difficulty with the blue-green deployment scheme is
the management and migration of high-volume data. No matter what the
approach, migrating high-volume databases is a gnarly problem for which
there is no simple solution. A recommended data migration strategy in
blue-green deployment is to put the green data warehouse in a read-only
state while migration scripts are loading data into the blue warehouse. Once
data migration is complete, the inflow of new data can be switched back on.
This helps avoid inconsistencies but can impact BI users if data migration
takes very long to execute, in which case you’ll need to clearly communicate
with customers and stakeholders so that expectations are managed properly.

Database Versioning

Farley and Humble discuss another powerful technique for managing
database releases. This technique involves versioning the database using a
single-cell table in the database that contains its version number, a prac-
tice first introduced in Refactoring Databases (Ambler and Sadalage 2006).

Web Server

Green Slice Green Slice Green Slice

Blue SliceBlue SliceBlue Slice

RouterUsers

BI App Server Data Warehouse

Figure 6.3 Blue-green deployment scheme

ptg6843605

OTHER REASONS TO TAKE AN EVOLUTIONARY APPROACH 171

Whenever a change is made to the database schema, two scripts are created.
One is a roll-forward script that takes the schema from version x to version
x + 1, and the other is a roll-back script that reverts the schema from ver-
sion x + 1 back to version x. These include data migration scripts as well as
schema change scripts. The deployment scripts need to include a configura-
tion setting that specifies which database version is used in the deployment.
Moving from one database version to another involves executing a sequence
of one or more roll-forward or roll-back scripts.

This technique should be used for each of the repositories in the data ware-
house environment, including the staging and integration schemas, the pre-
sentation database, and any data mart schemas. In addition to supporting
easier deployments, this technique supports database refactoring very nicely
and is generally a good practice.

Agile Analytics Practice: Always Be Ready to Deploy
Agile development teams seek to end every iteration prepared to deploy.
Deployment should be driven by business decisions, not technical readi-
ness. By developing an automated and disciplined deployment process,
your team can offer deployment as an option to the business at any time.
This principle is called “potentially shippable” in Scrum and “potentially
consumable” in Disciplined Agile Delivery (DAD).

OTHER REASONS TO TAKE AN EVOLUTIONARY
APPROACH

The data warehousing demands of today impose a newer and more challeng-
ing set of demands, rendering big requirements and design up front (BRUF/
BDUF) even less appropriate. Traditional data warehouse architectures have
always been complex and time-consuming to implement. Not only do new
pressures add to this complexity, but users are also demanding faster time to
availability. These new demands include the following:

� Broader and more diverse user community. Historically, the major-
ity of usage of data warehouse implementations has been from a
relatively small percentage of users including senior executives and
analytical specialists. Executives and their representatives have tra-
ditionally used the corporate data warehouse as a tool for strategic
planning and forecasting. Analytics professionals have traditionally
used the warehouse for more tactical purposes such as customer
relationship management and marketing strategies.

ptg6843605

172 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Today’s business intelligence mantra is “BI for the masses.” More
and different types of users, with a broader spectrum of usage
patterns and needs, are using today’s BI systems. Scaling the data
warehouse to accommodate a greater number of subject-specific
data marts and a higher volume of users is putting strains on data
warehousing development groups because doing these things in the
traditional way is time-intensive. Today’s data warehousing archi-
tectures must accommodate this diversity while still maintaining one
consistent and correct version of the truth.

� New and even more disparate data sources. Corporate data ware-
houses have always been challenged by the integration of legacy,
ERP, transactional, HR, and other systems. Today legacy systems are
even older; many “new” systems aren’t so new anymore; and there is
a demand for including data from external sources via Web service
calls and the like. Moreover, the structure and nature of today’s data
are more disparate. We now have the need to analyze Web log data,
video and image data, unstructured content, and other such data.

Historically, adding a new source system was a matter of analyz-
ing and understanding the structure of the source data, writing the
ETL code necessary to extract that data, identifying and rectifying
quality problems, and writing the ETL necessary to integrate the
new data source into the existing data warehouse schema. This has
always been complicated and time-intensive at best, requiring access
to knowledgeable domain experts and developing customized ETL
code for each new data source. Handling today’s even more disparate
data sources places an even heavier tax on the already overburdened
data warehousing department.

� External data sources. Related to the increasingly disparate nature
of source data is the increasing demand to import external data into
the data warehouse. For years external data has included customer
credit profiles and psycho-demographic data offered by third-party
data providers. Importing such third-party data has been relatively
limited and has become a routine monthly, quarterly, or semian-
nual update process. However, today’s data warehouses are import-
ing data from corporate partners, customers’ systems, and other
external sources. This new external data must be updated in the
warehouse with the same, or nearly the same, frequency as internal
data feeds. Today’s data warehouses must provide the mechanics to
frequently retrieve both internal and external data with high reliability.

� Changing source data is problematic. Changes in the structure
or the semantics of any given data source are problematic for data
warehousing. Data extraction jobs break, and data loads fail to

ptg6843605

OTHER REASONS TO TAKE AN EVOLUTIONARY APPROACH 173

finish, causing data in the warehouse to get out of sync. Fortunately
this is not a frequent occurrence, but it does happen enough to be of
concern. When a new operational system is being deployed, or a new
revision is released, it is not uncommon for the data warehousing
team to fail to get notified of changes. Other unexpected changes
such as database view changes or Web service API changes further
compound this problem.

Even more challenging is the possible change in the semantics
of source data. This may be a subtle shift such as switching from a
corporate-generated smart key for customer ID to an autogenerated
surrogate key in the operational system. Nonetheless, these changes
can wreak havoc on data warehousing integration and reconciliation
processes. Today’s data warehouse architectures must be more immune
to the unexpected changes in data source structure or semantics.

� New demands for near real-time BI. One of the latest hot topics
in business intelligence is business performance management or
BPM. BPM represents an increasing demand for operational BI.
Operational business intelligence requires that business users learn
about operational situations as quickly as possible so that immedi-
ate corrective action can be taken. Nightly data warehouse updates
and refreshes are no longer sufficient to support the near real-time
demands of operational business intelligence. However, keeping the
data warehouse up-to-date with real-time events is a challenging goal
that includes pulling new data, cleansing it, integrating it, transform-
ing it, loading it into the warehouse, reprocessing cubes, and so on.

Imagine the complexities of managing a large airline company.
Margins are very slim, so cost control is essential. The airline may
have upward of 700 airplanes in its f leet, and at any given time some
of these are in the sky, some are on the ground between flights,
some are out of service, and some of the in-service planes are near-
ing their routine maintenance schedules. Pilots must be in compli-
ance with FAA regulations, and flights are expected to be on time.
Airlines have significant BPM requirements for keeping airplanes in
service, pilots flying safely, fuel costs at a minimum, and passengers
happy. Maintenance managers, logistics managers, terminal manag-
ers, safety officers, and others need the data as quickly as possible—
waiting until tomorrow for the intelligence is too late for intervening
in today’s problems. Today’s data warehouses must provide near real-
time business intelligence.

� New demands for proactive push reporting. Related to this new
trend toward BPM and operational BI is a demand for proactive push
reporting. Users have always wanted exception-based reporting:

ptg6843605

174 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

“Show me the things that require my attention so I don’t have to
sort through all the data.” This has led to color coding, dashboard
presentation, and alerts. Proactive push reporting takes this a step
further by sending users a BI notification (possibly to their mobile
devices). For example, an airline company’s maintenance director
may wish to be notified immediately about airplanes whose onboard
sensors indicate anomalies, because this may suggest a safety or
urgent maintenance problem. Today’s data warehouses must offer
users the ability to define push notifications and the events that will
trigger a push; and then the system must proactively push that notifica-
tion as near to real time as is feasible.

� Data loading and reloading are time-intensive. Most produc-
tion data warehouses are challenged to complete their nightly data
refreshes before the next workday begins. This is especially true
when there are BI reports that rely on time-intensive queries. These
queries cannot run until all of the data is updated and cubes are
reprocessed. Not long ago I consulted for a company that conducts
nightly data warehouse updates. One particular BI report was based
on a query that took approximately four hours complete. The users
of this BI report had to wait until early afternoon to use the report
in order to be certain that it contained the most current informa-
tion. This is not an unfamiliar scenario, and it is an unacceptable
one. Business users should be enabled by, not hobbled by, the data
warehouse. Today’s data warehouses must provide users with timely
data where “timely” is defined as “when the user needs it.”

Each of these constraints and requirements suggests the need for data ware-
house architects and data modelers to maintain a minimally sufficient yet
highly adaptable warehouse design and data model. Overdesigning the
warehouse or the underlying data models inhibits developers’ ability to
travel light and fast. Underdesigning the warehouse and underlying data
models inhibits developers’ ability to be well prepared for iterative develop-
ment. And warehouse designs that evolve without discipline and technical
excellence soon become unwieldy and inflexible with increasing technical
debt. The aim of Agile DW/BI is to strike the right balance of minimally suf-
ficient, highly adaptive, and technically excellent designs and data models.

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE

What follows is a summary of a unique Agile data warehousing and BI proj-
ect that resulted in the evolution of a metadata-driven systems architecture
using an adaptive data model for extreme flexibility. A detailed technical

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 175

description of this architecture is available as a Cutter Consortium Execu-
tive Report (Collier and O’Leary 2009). This section is intended to describe
the factors that led our team to evolve from a traditional architecture to a
surprisingly innovative warehouse architecture.

This architecture evolved out of necessity. In 2004 I was hired as the techni-
cal lead and chief architect on an ambitious data warehousing project. The
company sought to offer productized business intelligence to its enterprise
customers via a hosted software-as-a-service (SaaS) application. The BI
product was to be data-warehouse-based and was to enable the integration
and analysis of data from a variety of sources, both internal (provider data)
and external (customer data). Data could not be easily pulled from across
Internet boundaries. This solution required a single warehouse architecture
that could adapt to a broad variety of customer types, sizes, and business
requirements. The product had to offer a personalized customer experi-
ence without being custom-tailored to each enterprise customer or user—
creating custom ETL code, custom data models, custom BI applications,
and other customized elements was not an option.

Our Agile Analytics team initially applied a typical Kimball-style warehouse
architecture on this project, but the complexities of integrating many dispa-
rate, and unfamiliar, data sources that varied from customer to customer
made it impossible to adapt quickly. Out of necessity ingenuity is born, and
we developed what we call the Message Driven Warehouse. It turns out that
this architecture has many benefits beyond the productization of hosted
BI applications. Adapting to new and changing requirements is easier and
faster. Adding new data sources is easier. Spinning up new data marts is eas-
ier. And the architecture is much less affected by unexpected changes.

The architecture emerged with the continuous customer validation of a
maturing, production-quality data warehouse. It evolved in 90-day release
cycles divided into three-week sprints. End users were actively involved in
the process, reviewing new BI features at the end of each sprint. The message-
driven data warehouse has been vetted on real operational data with real
customers. This architecture enables warehouse developers to move faster,
leaner, and at a lower cost than current data warehouse implementations.

Product Evolution

When the project began in 2004, the stakeholder vision was for an on- premise,
productized data warehouse and BI application. After an exploratory 90-day
pilot to validate the concept and technology selection, the product vision
began to take shape.

ptg6843605

176 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Our customers were medium to large companies in the transportation
industry—trucking companies. Most modern tractor-trailer vehicles have
advanced technology on board that monitors GPS position, speed, fuel con-
sumption, oil pressure, idling and moving states, current gear, as well as
driver activity and DOT (Department of Transportation) status, in addition
to critical event data such as rapid deceleration. All of this operational data
is routinely transmitted wirelessly to corporate transportation hubs, where
it is used to support safety initiatives, maintenance optimization, resource
utilization, and other purposes.

You can imagine the complexities of managing a fleet of more than 20,000
vehicles, twice as many trailers, and more than 50,000 drivers. Add the
fact that these assets are always moving and often in remote locations.
Keeping track of scheduled maintenance, driver availability, on-the-road
breakdowns, and the goal of on-time deliveries and pickups is an ongoing
challenge. Our project involved the effective management and presentation
of this data for various analytical and decision support purposes.

Our product’s first several releases included on-site installation and config-
uration. The architecture, built on Microsoft SQL Server technologies, was
a fairly typical Kimball architecture consisting of a set of conformed dimen-
sions servicing multiple subject-specific fact tables. However, sometime in
early 2007 the stakeholders and product manager concluded that our prod-
uct would better meet the customer community needs if offered as a hosted
product. So, our next release was focused on shifting the implementation
to a multitenant, highly available, secure SaaS architecture. Moreover, our
product manager, through lots of customer input, determined that the
product needed to merge customer-generated data (e.g., HR, ERP, payroll)
with the vehicle and driver data on which we had thus far been focused.

Clearly our development team had a new set of technical challenges to
embrace. We immediately faced the challenge of how to extract data from
customer source systems, across the Internet and through the customers’
corporate firewalls. Customer data models and content differed, sometimes
significantly, from one customer to the next. That data was to be merged
with our company’s well-understood vehicle and driver data (previously
described). We quickly realized that traditional pull-based data extraction
techniques were not appropriate for the new version of the product.

We also quickly discovered that the data model in our integration tier was
insufficient to handle the disparate nature of the customer-generated data.
That data was to be merged with vehicle and driver data to establish a more

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 177

holistic view of operations. After we experimented with Web services, data
agents, and bulk FTP transfers as techniques for moving data from customer
sites to our data center, our systems architecture began evolving toward a
message-driven architecture, enabling a shift from data pull to data push.
Throughout 2007 and 2008 we continued to develop in 90-day planning
cycles. Our systems architecture and underlying data models continued to
evolve incrementally, and we incorporated many other innovative elements.
By the summer of 2008 our project was winding down and our design was
stabilizing. The remainder of this section describes the innovative aspects of
our design, and I hope it will serve as a concrete example of how well evolu-
tionary design can work in DW/BI development.

Architectural Overview

The Message Driven Warehouse architecture is a significant overhaul of the
data preparation and metadata layers of the generic DW architecture and is
aimed at addressing the aforementioned limitations. On the surface the most
significant shift in this architecture is that data is pushed into the warehouse
via a message bus rather than the traditional method of pulling data from
operational source systems using ETL processes. Operational source systems
publish new and updated data, in a common message format, to a corporate
message bus. The bus is monitored by the data warehouse message handler
for applicable incoming messages. As data arrives on the warehouse mes-
sage queue, the handler deconstructs the messages using a metadata diction-
ary and passes the message payload along to an adapter layer. The adapter
maps the incoming data into a normalized system of record (SOR) database,
which is akin to Inmon’s centralized warehouse (Inmon 2005). The SOR is
built on a domain-independent adaptive data model, enabling developers to
rapidly adapt the data model to various industries and business domains.
The SOR is the basis for various dimensional data marts, mining marts, and
materialized relational databases for presentation of business intelligence to
the user community. Figure 6.4 provides a high-level, logical diagram of the
Message Driven Warehouse architecture for reference.

Observe that the architecture incorporates elements of both Kimball’s Data
Warehouse Bus (Kimball and Ross 2002) and Inmon’s Corporate Informa-
tion Factory (Inmon 2007). The real power of this architecture lies in the
data preparation layer—getting the data into the warehouse, integrating it,
and transforming it prior to loading the various presentation marts.

Central to this architecture is the use of a message bus to push data updates
into the warehouse. However, the Message Driven Warehouse is much
more than just a push alternative to the traditional pull architectures. The

ptg6843605

178 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

following key architectural components and concepts work in concert to
make the Message Driven Warehouse faster and easier for practitioners to
implement, modify, and maintain:

� Observation message model. This highly generalized message
format enables source data changes to be conveyed as observations
about particular phenomena during specific time frames. Analyzing
source data models is significantly minimized, and domain infor-
mation is codified in the observation metadata. Adding new source
systems is a matter of updating the metadata dictionary and instru-
menting the source database to publish observation message model
(OMM)-formatted messages.

� Message bus. The Message Driven Warehouse leverages existing
enterprise message bus technologies and concepts to send data to the
warehouse. This use of the message bus enables data to trickle into
the warehouse as it becomes available, a step toward attaining near
real-time business intelligence.

JM
S

M
es

sa
ge

 B
us

Warehouse Repository

ET
L

Pr
oc

es
se

s
D

at
a

Pu
bl

ic
at

io
n

Se
rv

ic
es

M
et

ad
at

a-
D

riv
en

 A
da

pt
er

Source
System
Update

Messages

Unified
System

of Record

Data updates are pushed to the data warehouse

Metadata
Repository

In
te

rn
al

 O
pe

ra
tio

na
l S

ou
rc

e
Sy

ste
m

s ERP Finanace Marketing

CRM

Experiment

Segment

PredictionProfiling
Forecasting

HR Supply
Chain

Conformed Facts and Dimensions

Dimensional Data Marts
Strategic
Decision
Makers

Tactical
Decision
Makers

Operational
Decision
Makers

General
Business
Users

Materialized DSS
Databases

Mining and Exploration

External Apps and Users

Presentation LayerData Preparation Layer

BI
Applications

Sales
Multi-

Dimensional
Analysis

Ad Hoc
Queries

Canned
Views

Exception-
Based

Notifications

Schedule-
Based

Notifications

Data
Visualization

Predictive
Analysis

...

...

POS

HR

Other

Public Store

Cloud
Apps

WWW

Customer and Partner
Dace

Published Web
Services or
FTP Drop
Locations

Cleansing Rules
Business Logic

Transformation Rules
Mapping Logic

Source System Specifics

Descriptions of
SOR Data Model

Configurations and
Variations

- Data Integration
- Data Update History
- Adaptive Data Model
- Domain Independent

M
es

sa
ge

 H
an

dl
er

Figure 6.4 Message-driven data warehouse conceptual architecture

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 179

� Unified system of record database. Similar to Inmon’s centralized
warehouse database, the SOR is a 3NF relational database in which
the data is integrated and prepared for use. We refer to this as the
SOR because it fits into the broader enterprise service-oriented
architecture as the single version of historical truth, a purpose that
serves a potentially broader purpose than business intelligence
alone.

� Adaptive data modeling. Although the SOR data model is normal-
ized, it is domain-independent, based on adaptive modeling and
meta-modeling techniques. Adaptive modeling is a highly general-
ized modeling approach that eliminates domain-centricity from
the relational data model. It melds very neatly with the OMM and
adapts very easily to changes in the data and problem domain.

� Metadata-driven data adapter. The adapter is a data-processing
layer that converts the data payload from incoming Java Message
Service (JMS) messages to the adaptive data model within the SOR
database. It relies on metadata to handle anomalies, perform trans-
formations, merge data, purge duplicates, and apply business logic.

� Metadata-driven configuration. The Message Driven Warehouse
is designed so that ETL and SQL code, data models, and processes
remain as generalized and invariant as possible. Elements that are
expected to change over time such as business rules and data-cleans-
ing logic are stored in the metadata store. The metadata store is key
to the highly adaptive nature of the message-driven data warehouse.

Each of these architectural concepts and components is described in greater
detail in the following sections. Once implemented, the message-driven
data warehouse can rapidly accommodate the addition of new source sys-
tems, making changes to the logical data model, creating new data marts,
changing business rules, and so on. Coupled with Agile Analytics develop-
ment methods, this architecture can place BI applications in the hands of
business decision makers within a few short weeks of starting development.

Observation Message Model

A Message Driven Warehouse requires messaging with a payload able to
support disparate data sources and data domains. This requires balancing
uniformity in representation as well as the ability to augment the represen-
tation with new kinds of objects.

The OMM described here draws heavily on the concepts and terminology in
the Observations and Measurements model defined by the Open Geospatial

ptg6843605

180 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Consortium (OGC) (Cox 2006). This model in turn draws on the Observa-
tion and Measurement (OAM) analysis pattern by Martin Fowler (1997).

The OMM uses a set of terms to describe an object in time. These terms
form an observation about an object (or feature of interest) that happens at
a point in time or over a span of time. As described by the OGC, an observa-
tion breaks down into the following components:

� The time frame is expressed as a range of time or an instant in time
with zero duration.

� The feature of interest is the object about which the observation is
made, such as a person, product, or other object having attributes
that may change over time.

� The phenomenon is a reference to the type of aspect of the feature of
interest that is observed. This could be any kind of aspect, from a
GPS position to an insurance premium payment. This type defines
the structure and kinds of data for the aspect. The phenomenon
may be an atomic measurement of a single attribute or event, or it
may be a collection of measurements of several attributes.

� The result is the actual data defined by the phenomenon. It may be a
single value or a complex network of nested structures, each con-
taining a set of values.

Essentially, an observation captures a particular kind of result about an
object at a given point or period in time. An observation separates informa-
tion at the knowledge level (observation metadata) from the operational level
(observation data) using XML schemas that define the features of interest
and phenomena. These schemas are referenced within the XML file contain-
ing the observation collection. Extending the ability to make observations
across domains is a matter of defining features of interest and phenomena
in an XML schema definition and referring to its URL in the XML file con-
taining the observations.

Let’s use a FlixBuster example to understand the mechanics of the model.
Using the XML format specified in Cox’s Observations and Measurements
(Cox 2006), our example will present a collection of observations establish-
ing a studio that owns the rights to specific video content (e.g., the movie
Jerry Maguire) and a royalty payment made to the studio (see Listing 6.1).
Two observations are contained in the collection. Both observations refer
to a video content object (or feature of interest) that is a movie with an ID
equal to '890327762'.

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 181

Listing 6.1 Observation Collection about a FlixBuster Royalty Payment

01 <?xml version="1.0" encoding="UTF-8"?>
02 <om:ObservationCollection pm:id="coll1"
03 xmlns:om="http://www.opengeospatial.net/om/0.0"
04 xmlns:pm="http://www.flixbuster.com/royalty/1.0"
05 pm:schemaLocation=
 "http://www.flixbuster.com/royalty/1.0 pm.xsd"
06 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
07 xsi:schemaLocation=
 "http://www.opengeospatial.net/om/0.0 ../om.xsd">
08 <om:Observation>
09 <om:time>
10 <pm:TimePeriod>
11 <pm:beginTime>1996-10-11T00:00:00.00</pm:beginTime>
12 <pm:endTime>2100-01-11T17:22:25.00</pm:endTime>
13 </pm:TimePeriod>
14 </om:time>
15 <om:featureOfInterest>
16 <pm:VideoContent>
17 <pm:VideoContentId>890327762</pm:VideoContentId>
18 <pm:VideoContentType>Movie</pm:VideoContentType>
19 <pm:VideoContentName>Jerry Maguire</pm:VideoContentName>
20 </pm:VideoContent>
21 </om:featureOfInterest>
22 <om:observedProperty pm:href=
 "urn:x-ogc:def:phenomenon:OGC:Studio"/>
23 <om:result>
24 <pm:Studio>
25 <pm:StudioId>324223434</pm:StudioId>
26 <pm:StudioName>TriStar Pictures</pm:StudioName>
27 </pm:Studio>
28 </om:result>
29 </om:Observation>
30
31 <om:Observation>
32 <om:time>
33 <pm:TimeInstant>2005-01-19T14:12:41.00</pm:TimeInstant>
34 </om:time>
35 <om:featureOfInterest>
36 <pm:Royalty>
37 <pm:VideoContentId>890327762</pm:VideoContentId>
38 <pm:VideoContentType>Movie</pm:VideoContentType>
39 </pm:Royalty>
40 </om:featureOfInterest>
41 <om:observedProperty pm:href=
 "urn:x-ogc:def:phenomenon:OGC:RoyaltyPayment" />
42 <om:result>
43 <pm:RoyaltyPayment>
44 <pm:StudioId>324223434</pm:StudioId>
45 <pm:payment currency="USD">234.12</pm:payment>
46 </pm:RoyaltyPayment>
47 </om:result>

continues

ptg6843605

182 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Listing 6.1 Observation Collection about a FlixBuster Royalty Payment
(Continued)

48 </om:Observation>
49 </om:ObservationCollection>
50

The first observation on lines 8–29 establishes studio rights to video con-
tent. A studio is paid an agreed-upon royalty percentage each time one of
its films is rented by a FlixBuster customer. This observation specifies that
the video containing the movie Jerry Maguire is owned by TriStar Pictures
starting on October 11, 1996, at midnight and extending far into the future.

The second observation on lines 31–49 captures a royalty payment event
made to the studio on January 19, 2005, at 2:12 P.M. The studio with the stu-
dio ID = '324223434' (TriStar Pictures) was paid a royalty amount of $234.12.

The definitions (or metadata) of the objects in this example are specified by
the inclusion of the appropriate namespace and schema references for the pm
namespace as indicated in the xmlns:pm and pm:schemaLocation attributes of
the ObservationCollection element. The objects defined in the pm.xsd file
include VideoContent, Studio, and RoyaltyPayment. The pm schema is sepa-
rate from the observation collection, which accomplishes Fowler’s goal of
separating the knowledge level from the operational level.

This OMM specification is sufficient to describe any problem or business
domain in terms of the objects, their attributes, their relationships with one
another, and all events and activities that occur in the domain. Defining the
appropriate OMM metadata is the key to adapting this model to any given
domain. It is not necessary that this metadata be complete and comprehen-
sive before using the OMM. The metadata can evolve incrementally and be
driven by a prioritized set of user requirements.

Message Bus for Pushing Data

Traditional data extraction is a fragile and trouble-prone approach. Data
pulls must be scheduled during off-peak hours; ETL processes must have
“insider knowledge” about the structure and form of source data; changes
in the structure or format of source data may cause ETL processes to break
or fail; and developing this custom ETL is costly and time-consuming.

Our architecture relies on source systems sending data changes using the
OMM format previously described. By pushing small messages throughout
the day, we also avoid the performance bottleneck of nightly update jobs.

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 183

Our message-driven architecture is also a trickle-feed architecture, which
has the possibility of approaching a near real-time DW/BI system.

Figure 6.5 shows how upstream source applications funnel their data into
the Message Driven Warehouse.

The first time a source application connects to the data warehouse, it may
have a lot of data to transmit. In this case, it does a one-time “bulk load” of
its data by transmitting a data file to a secure FTP drop box (step 1 in the
bulk load path). The drop box then sends a message to the data warehouse’s
message handler through a message bus to alert the warehouse that there is
a data file to load (step 2). The message handler then downloads the file and
processes its contents (in the form of an observation collection) to load the
application’s data into the data warehouse.

Source
Applications

App 1

App 2

App 3

App 4

Update Path

W
eb

 S
er

vi
ce

 H
os

t
FT

P
D

ro
p

Bo
x

M
es

sa
ge

 B
us

W
ar

eh
ou

se
 R

ep
os

ito
ry

M
et

ad
at

a-
D

riv
en

 D
at

a
A

da
pt

er

Bulk Load Path

1

Domain-
Driven
SOR
DB

3

31

2

2

Figure 6.5 Flow of application data into the message-driven data warehouse

ptg6843605

184 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

After the source application has done an initial bulk load, it can send
updates via a Web service (step 1 in the update path) which (as in the bulk
load) sends an observation collection as a message (step 2). Once the data
adapter receives the JMS message, it processes the observation collection
payload, resulting in updates to the data warehouse.

Pushing, rather than pulling, source data has the additional benefit of sepa-
rating concerns in the warehouse architecture. The warehouse does not have
to be concerned with where the source system resides, how to connect to it,
or how to interpret its data structures. The source system may reside outside
the enterprise as long as it can publish updates as OMM messages onto the
enterprise message bus. This separation of concerns may also translate into
a separation of responsibilities for developers, thereby increasing parallel
development efforts. While warehouse developers are preparing the ware-
house to receive new source data, other developers take responsibility for
automating the publication of OMM messages from the new source.

Warehouse Repository

The message handler retrieves messages from the bus and passes their pay-
load (OMM observations) to the data warehouse repository for processing
and storage. The warehouse repository is the core architectural component
of the message-driven data warehouse. It is composed of four key elements:
the data adapter, the system of record database, the metadata repository, and
the data access services tier (see Figure 6.6). This design of the warehouse
repository makes it faster and easier to adapt to new requirements. Develop-
ers can create a new data mart, add a new data source, or change a business
rule in just a few days. Most changes occur in the metadata repository and
in the data adapters—minimal database changes are needed.

Data Adapter. The data adapter is a metadata-driven software layer that
receives OMM message payloads and uses metadata to validate, inter-
pret, and process payload data and map it into the SOR database through
an object relational mapping (ORM) framework. The adapter sequence is
shown in Figure 6.7 for a single incoming message.

The message director monitors the message bus for incoming warehouse
messages. The payload from incoming messages is passed to an internal
data handler that uses the observation globally unique identifier (GUID)
to retrieve applicable metadata from the metadata store. This metadata tells
the data handler how to process the message payload. Once all atomic pro-
cessing operations have completed, the resulting data set is loaded into the
SOR database via an ORM tier.

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 185

Finance Marketing

Conformed Facts and Dimensions

Dimensional Data Marts

Sales...

CRM HR Supply
Chain

Materialized DSS
Databases

...

Segment

Profiling
PredictionForecasting

Mining and Exploration

External Apps and Users

Metadata
Repository

Cleansing Rules
Business Logic

Transformation Rules
Mapping Logic

Source System Specifics

Descriptions of
SOR Data Model

Configurations and
Variations

M
es

sa
ge

 H
an

dl
er

M
et

a
d
a
ta

-D
ri

ve
n
 A

d
a
p
te

r

Warehouse Repository

Unified
System

of Record

- Data Integration
- Data Update History
- Adaptive Data Model
- Domain Independent

ET
L

P
ro

ce
ss

es
D

a
ta

 P
u
b
lic

a
ti
o
n

Se
rv

ic
es

Experiment

Figure 6.6 Warehouse repository component of the Message-Driven Warehouse

Data Integration Client Director Data Handler Data Builder Metadata Store ORM SOR Database

Commit Object
Write

Object Write
Confirmation

Domain Object Write Confirmed

Write Domain Object(s) to Database

Return Domain
Object

Handle
Observation

Perform 1st Build Operation

Return Data Object Post-1st-op

Return Data Object post-Nth-op

Perform Nth Build Operation

Connect

Process
Stream Input

Disconnect

Get Metadata for Observation

Return Metadata for Observation

Figure 6.7 Adapter sequence diagram

ptg6843605

186 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

The adapter is an object-oriented implementation that implements the
Chain of Responsibility, Factory, and Builder software design patterns
(Gamma et al. 1994) coupled with metadata to process incoming message
payloads (see Figure 6.8). When the message director retrieves a message,
a factory instance is autoconfigured based on the observation GUID. This
configuration determines the types of builders that are needed; the factory
organizes the builders into a sequence of operations (or chain of responsibil-
ity) that is applied to the payload.

For example, when the OMM payload in Listing 6.1 arrives, the director
passes this payload to the data handler object. The handler parses this into
the respective video and royalty features of interest plus the collection of
phenomena about them and generates instances of the appropriate build-
ers to process each element. As each builder uses the metadata to process its
element, it constructs a collection of prepared data objects. For instance, the
EntityBuilder that is processing the policy feature of interest in the mes-
sage will create a videoContentEntity prepared data object with the ID of
'890327762'.

Unified
Relational
Database

Meta
Database

NHibernate ORM

NHibernate ORM

FieldMapper

<<interface>>
iValidator

RegexValidator

ActivityAssociationBuilderActivityBuilderEntityBuilder

DataHandler

�BuildPart () : object
�GetBuilders () : object

<<interface>>
iDataBuilder

InboundXML
IntegrationClient

<<interface>>
IlnboundXMLIntegration

Connector

Director

�HandleRecord () : object

successor

Message Bus

�Connect ()

<<interface>>
IXMLIntputStream

Handler
�OnStreamInputEvent ()

RangeValidator

�Validate () : object
�GetValidators () : object

NullValidator

<<uses>>

<<uses>>

*

1

1

<<uses>>

<<uses>>

<<uses>>

<<uses>>

�CurrentSession
�OnFileInputEvent ()
�OnStreamInputEvent ()
�ObservationsFromXMLStream ()
�ObservationsFromXMLFile ()
�PersistPreparedObjects ()

*

Figure 6.8 Adapter object model

ptg6843605

CASE STUDY: ADAPTIVE WAREHOUSE ARCHITECTURE 187

The prepared data object is an ORM object that is handled by a frame-
work like Hibernate.3 The ORM framework uses a mapping file to map a
videoContentEntity object into the SOR data model, minimizing the need
for code modifications.

The messages in Listing 6.1 result in a prepared objects collection containing
videoContentEntity, studioEntity, and entityAccountability. The director
passes each prepared data object to the ORM tier, which issues the appropri-
ate SQL commands to insert or update the data into the SOR database.

The Validator class (also patterns-based) handles data validation and
cleansing. For example, suppose the observed property called RoyaltyPay-
ment for an observation is a required field that must be a real number with
a value greater than zero. The Validator factory queries the metadata store
to find out that a range validator, a null validator, and a type validator are
needed. The range validator will query the metadata store to learn that Roy-
altyPayment must be greater than zero; the null validator will ensure that
the value is not null; and the type validator will assure that the value is a
legitimate real number. When data anomalies are detected, the validators
look to the metadata store for the data-cleansing rules to apply. As these
data-handling rules change, only the metadata is affected.

Because the OMM message format generalizes all data to observations
about entities, activities, and associations between entities, the three builder
types in the object model are sufficient to handle new data sources with
ease. When a new entity type, event type, or association type is discovered,
these new types only need to be added into the OMM metadata dictionary.
Of course, new business rules or cleansing logic for these new types must be
added to the adapter metadata store as well.

System of Record Database. The SOR database is the unifying repository
in the architecture. Data processed by the data adapter is loaded into the
adaptive schema in the SOR (described in the next section). Like Inmon’s
centralized data warehouse, the SOR is a normalized relational database.
Also like Inmon’s model (and Kimball’s), this is an atomic, time-variant,
and nonmonotonic database—new data and updates arrive over time, and
data in the SOR is never deleted or overwritten.

3. www.hibernate.org

www.hibernate.org

ptg6843605

188 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

Unlike Inmon’s warehouse, the data model is adaptive and domain-indepen-
dent and is expected to evolve and adapt to new requirements with minimal
structural changes and effort. Although the SOR contains the official, single
version of the truth, this database is not intended to be accessed directly
by outside developers, systems, or users. Instead, it is “wrapped” between
the metadata-driven adapter and the data access services layers. Data enter-
ing the SOR is processed through the data adapter, and data is retrieved
through the access tier (e.g., materialized views).

This encapsulation of the SOR supports the easy modification of the SOR
to accommodate new warehouse requirements. Changes (structural, refer-
ential, etc.) can quickly and easily be made in the SOR data model without
affecting data producers or consumers because the adapter, access service,
and ETL layers isolate external systems. Changes to the SOR schema are fur-
ther minimized by the use of the metadata base.

Adaptive Data Model. Earlier in this chapter we saw the adaptive data
model (ADM) as an example of a data model pattern. The power of ADM is
that domain model semantics and rules of integrity are stored in a metadata
base and are configurable by domain modeling experts without structural
database changes. The SOR schema implements a variant of the ADM.

The ADM represents all observed properties related to an entity as attri-
butes. This includes both characteristics (e.g., a studio name) as well as
events that occur over time (e.g., a studio royalty payment). This overload-
ing of the Attribute table in the ADM has a tendency to make the data
model somewhat more confusing because the semantics of properties and
events are different. Also, it adds query complexity in order to separate
events from properties. Finally, in a high-volume warehouse the large size of
the Attribute table may affect performance.

Our design extends the ADM to separate events and activities from attri-
butes by adding Event and EventType tables to store transactional and oper-
ational events (see Figure 6.9). Discrete events like subscription cancellation
have zero duration, while activities like a video being checked out have a
duration greater than zero. Adapter metadata distinguishes an OMM phe-
nomenon as an event or an attribute. The Extended ADM is expressively
equal to the ADM, and implementation choice is situational. Performance
concerns remain an issue in the Event table for high transaction volumes. It
is important to index this table to address this problem.

The Cutter Report on this subject provides much more technical detail
than this summary, including slowly changing dimensions and configuring

ptg6843605

WRAP-UP 189

metadata (Collier and O’Leary 2009). Our aim in this design was to drive
variability out of the implementation and into the metadata base. Doing
so promotes the rapid, inexpensive ability to respond to new and changing
business requirements.

This case study demonstrates at least three Agile themes: that agility ben-
efits from adaptive design, that excellent design is not created on the first
try but evolves, and that excellent design relies on sound technical practices
such as the gentle application of patterns.

WRAP-UP

Agility comes from three sources: an Agile team, an adaptive process, and an
evolving design. Agile Analytics relies on a set of practices that enable DW/
BI developers to incrementally evolve the system design and underlying data
models without a reduction in design quality. Whether you are working on

EventType

EntityType

has

has

AccountabilityType

Accountability Attribute

AttributeValue
StartTime
Duration

Start Date
End Date

SourceID

Entity

AttributeType EntityTypeClass

Start Date
End Date

Name
DateType

Event

EventName
MeasureType
MeasureUnit

type oftype of

StartTime
Duration
MeasureValue

experiencesresponsible to

commissioner

commissioning party

responsible party type of
can experience

type of

experiencing party

Figure 6.9 Extended ADM

ptg6843605

190 CHAPTER 6 � EVOLVING EXCELLENT DESIGN

a preexisting data warehouse or are enjoying new “greenfield” development,
adaptive design principles are relevant and beneficial, even in the oldest of
legacy architectures. As maintenance projects and new development efforts
are planned, Agile Analytics practitioners should continuously seek to drive
down technical debt and improve quality through the application of evolu-
tionary design techniques like sufficient up-front design, Agile Modeling,
gentle application of patterns, managing technical debt, refactoring, and
frequent deployment.

Balancing just enough up-front design with ongoing design evolution is part
of the art of Agile development. As you practice this art, always seek to do
less until you discover that you have done too little; then adjust. Seek to
model a little bit and then prove out your ideas by building working fea-
tures. Learn how to use refactoring to effectively and fearlessly evolve your
designs.

Architectural patterns, introduced in the mid-1990s, have proven to be a
highly valuable practice in the application development community. Pat-
terns promote reuse and improve quality because they are mature, and
proven, solutions to design problems. This chapter described the use of sev-
eral object-oriented design patterns as well as data modeling patterns. Pat-
terns enable us to leverage the wisdom and experience of those who have
gone before us.

The data and data warehousing communities are beginning to embrace
design patterns as well. Reusable data models for various industry domains
have become more prevalent in recent years. David Hay’s 1996 book on the
subject, Data Model Patterns: Conventions of Thought (Hay 1996), is a good
starting point, and his 2006 book extends the concept to metadata and data
warehousing (Hay 2006).

For data modeling we can also leverage object-oriented design patterns
because objects and their interactions are conceptually the same as entities
and relationships. The adaptive data model presented in this chapter has its
roots in the object-oriented design pattern Adaptive Object Modeling (Yoder
and Johnson 2002). In the near future I expect to see ETL and Stored Proce-
dure patterns to help round out the availability of patterns in our discipline.

Patterns are just one powerful mechanism for creating more adaptive ware-
house architectures. Generalization and abstraction, such as the OMM and
ADM presented in this chapter, are highly effective methods as well. Driving

ptg6843605

WRAP-UP 191

variation out of implementation and into metadata is a similarly powerful
technique for making your warehouse architecture more easily adaptable.

Bill Inmon opened a recent article with these words (Inmon 2008):

Data warehouses are a lot of work. Once they are built, they cost
money. They need to be monitored. People are constantly requesting
changes and additions. The cost of storage quickly adds up. . . . All in
all, data warehouses are quite a mess. They are not easy to build, they
are not particularly easy to operate, and they are expensive.

He is absolutely right! Although some of this complexity is inherent in our
BI systems, it is incumbent on us to make our architectures as maintainable,
high-quality, and easy to change as possible. And by the way, doing so will
help us be more Agile in our development practices.

ptg6843605

This page intentionally left blank

ptg6843605

193

Chapter 7

TEST-DRIVEN DATA WAREHOUSE
DEVELOPMENT

Remember that our goal in Agile Analytics development is the frequent
release of production-quality, working software for user feedback and accep-
tance. At the end of each iteration or sprint, and each release, our working
product is expected to be of production quality, even in its most embryonic
stages. This objective requires an entirely different approach to our quality
assurance methods. Foremost it means integrating testing efforts right into
our iterations.

Traditional BI development methods push system and acceptance testing
to the end of the project cycle. This back-end testing is typically manually
intensive and time-consuming. Under the pressures of on-time delivery,
back-end testing often gets shortchanged. We need an entirely different test-
ing discipline for Agile Analytics development.

Foremost, testing must be integrated into the development process. Each
development iteration must include plans for testing and quality activities.
One of the great things about this is that bugs don’t get a chance to accumu-
late over the project lifecycle. Quality feedback is immediate and frequent,
and bugs are handled as they arise. Testing specialists become integral
members of the development team rather than gatekeepers at the end of
the development cycle. Developers become integral to the testing process
and learn sound testing practices as an extension of their technical skills.
When I first introduce this notion to new Agile teams, I often get pushback
from developers who say things like “I don’t have time to test” or “Testing
is not my job.” I generally quell the urge to say something like “If building
a high-quality BI system is not your job, then what exactly is your job?”
Once developers establish the rhythm of making testing an integral part
of development, they usually love it. I’ve known a number of BI developers
who wondered why they didn’t learn to integrate testing and development
long ago.

Essential to integrated testing is test automation. Manual testing is just
not practical in a highly iterative and adaptive development environment.

ptg6843605

194 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

There are two key problems with manual testing. First, it takes too darn
long and inhibits the frequent delivery of working software. Teams that rely
on manual testing ultimately end up deferring testing until dedicated test-
ing periods, which allows bugs to accumulate. Second, it is not sufficiently
repeatable for regression testing. While we seek to embrace and adapt to
change, we must always be confident that features that were “Done! Done!”
in a previous iteration retain their high quality in the changing system
around them. Test automation requires some initial effort and ongoing dili-
gence, but once technical teams get the hang of it, they can’t live without it.

The benefits of integrated, automated testing are even further boosted by
using test-driven development (TDD) for DW/BI (Collier 2005; Ambler
2007). TDD for DW/BI is as much a development practice as it is a testing
practice. In this approach test cases are written first, and then the code (or
script, or configuration, etc.) is written to pass those test cases. When the
system passes all of the test cases, and the BI practitioners can’t think of
any new test cases, the implementation work is “Done.” That is, it works as
the developers think it should and is of production quality. It is now ready
for user acceptance to consider it “Done! Done!” While test-driven devel-
opment may not be mandatory like test automation and test integration, it
is a technical practice that yields tremendous benefits because testing and
development are inextricably linked. The test suite grows alongside the sys-
tem, and because testing is automated, the suite can be rerun frequently to
maintain a high level of confidence in BI product quality.

It is my contention that teams that do not practice integrated, automated
testing cannot be Agile. This practice is an Agile Analytics critical suc-
cess factor (Ambler 2010). It just isn’t feasible to create production-quality,
working features for user acceptance every one to three weeks without inte-
grated and automated testing. This chapter presents a complete framework
for building automated, integrated, test-driven development into your Agile
Analytics development. In the spirit of agility, the test-driven database
development framework is a collection of principles and practices that are
largely derived from the more mature Agile testing practices and tools used
in Agile software development.

WHAT IS AGILE ANALYTICS TESTING?
Not only is Agile Analytics testing integrated and automated, it is more
comprehensive than just system testing. I’m always surprised at BI teams
that treat final system testing as the only testing that is required in BI devel-
opment. Agile Analytics developers test every unit of code, every integration

ptg6843605

WHAT IS AGILE ANALYTICS TESTING? 195

point, every data structure, every user feature, and ultimately the entire work-
ing system, no matter how embryonic. Unit testing involves testing the low-
est-level components that make up the BI system such as SQL scripts, ETL
modules, or stored procedures. Integration testing involves testing all of the
data transition points and wherever BI tools are receiving or returning data.
As data is pumped from source systems into staging databases, or from stag-
ing into multidimensional databases or OLAP engines, each data structure
along the data flow path must be tested to ensure that data integrity is pre-
served or enhanced. Simple mistakes like copying a VARCHAR(50) value into
a VARCHAR(30) field in the staging database can wreak havoc on data integ-
rity. Finally, each newly developed feature must be tested for acceptance and
accuracy. Does it do what the user wants, needs, and expects; and does it do
it correctly? While this is the ultimate acid test, we need confidence that our
system is behaving well throughout the process flow.

Test-driven BI development is applied most prominently at the lowest com-
ponent level, or unit level, which ensures that high quality exists in the
building blocks that make up the system. Storytest-Driven Development will
help ensure that the user acceptance criteria are clearly defined for each user
story before development begins. In practice, Agile Analytics testing works
like the following example:

Scenario

It’s Monday at the start of iteration eight and the FlixBuster BI project team is
involved in its iteration-planning activities. Together in the room are the delivery
team (including the testers), the project sponsor, and about six end users who par-
ticipate in story definition and acceptance testing. Arlene, the project manager, is
facilitating this planning session, and the group has agreed upon the next four user
stories that will be developed during this iteration.

Now the developers are looking forward to understanding in greater detail what
they have committed to deliver. It’s time to define all of the acceptance criteria
for each of the user stories. The team has learned that acceptance criteria are
best expressed as actual functional tests to eliminate any ambiguity about feature
behavior.

The FlixBuster BI team uses WatiN1 for acceptance testing. Because WatiN is a
tool that tests Web applications through the user interface, this makes it easy for
the user group to describe how each feature should work. In fact, Jamal, the user
experience designer, loves this part of the planning session because it also helps
him refine the UI design.

1. http://watin.sourceforge.net/

http://watin.sourceforge.net/

ptg6843605

196 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

Arlene facilitates this process by having Jamal display his “scribble frames” for
the first user story on the team room projection screen. Last week, Dieter (the
product owner), Jamal, and Arlene spent some time together preparing for this
iteration-planning session. They groomed the backlog and anticipated which user
stories would be tackled during iteration eight. Then Jamal, with input from Dieter,
sketched a few low-fidelity prototypes to show how these stories might be imple-
mented. Now, as Jamal and Dieter show-and-tell these for developers and users,
they get lots of feedback that will help them refine their ideas.

At the same time, Prakash, the team’s technical lead, asks the users to describe a
few specific examples showing exactly how user story 54 should work:

User story 54: As a financial analyst I need the ability to see net profit per customer
per transaction over time so that I can identify upward or downward profit trends.

The user group starts out with a series of simple, routine examples by creating a
few mock customers and mocking up a series of transactions for each one. This
causes them to describe the specifics of the business logic used to calculate net
profit per transaction, which involves evaluating the price of each item in the trans-
action and its corresponding cost-of-goods value. The developers take copious
notes about these required data elements.

As the exercise picks up steam, users dream up more mock usage scenarios, and
they begin thinking of odd cases and special exceptions to the rules. Arlene has
been making sure the group is writing down each of these scenarios on wall
charts in a format that corresponds to Jamal’s lo-fi prototypes (and ultimately to
WatiN).

When the group can’t think of any more examples, Henry, the team’s testing
lead, asks the users and Dieter to confirm that if the new feature handles each of
these scenarios correctly, the feature will be done. The users agree, but everyone
acknowledges that if the users think of new scenarios, they should share them with
Dieter, Henry, and Arlene, and a feature update will be planned and prioritized
as needed.

The group goes through the same process for the remaining user stories. It’s a
tiring but productive exercise that fully clarifies the detailed specifications of each
story. The development team is grateful to get the chance to hear directly from
end users how the new BI features are supposed to work. At the end of the day
everyone is exhausted but has a sense of accomplishment. All the developers
know what their job is for the coming iteration.

On Tuesday at 9:00 A.M. the team holds its daily stand-up meeting. Henry
commits to setting up all of the WatiN acceptance tests for the first two stories by
the end of the day. Each example scenario from Monday will become a WatiN
test. Francisco and Bob commit to developing the BI feature for story 54 accord-
ing to Jamal’s revised prototype, using mock data to get Henry’s tests passing
initially. Prakash and Natasha commit to completing the ETL, data modeling, and
database development tasks needed to replace the mock data with actual source
data. They plan to connect all these components on Wednesday to have a first
working version of story 54.

ptg6843605

AGILE TESTING FRAMEWORK 197

As Natasha begins creating the ETL packages to pull cost-of-goods detail into the
data warehouse, she writes a simple DbFit test to verify that the raw data arrived
correctly in the integration tier. Her test fails at first, and then she implements some
simple ETL to make that test pass. Then she adds another test to ensure that nega-
tive values are trapped and filtered to an audit report, and she modifies her ETL
to pass the new test. During each pass through this cycle Natasha looks for ways
to improve her design, and she continuously refactors her work as she finds ways
to improve it. All of the FlixBuster BI developers use this test-driven approach. They
have learned through experience that it results in far fewer defects that they have
to fix later, and it results in a suite of tests that can be run over and over again.

With Bob’s help Henry adds new data to the test databases to create the accep-
tance test cases that the group defined during planning. By the second Wednesday
of iteration eight the team is able to run all of the new WatiN tests for the four new
user stories. It can also run all of the new unit tests for each of the new modules and
components that were developed. Moreover, the team can run all of the tests that
were previously created in the first seven iterations to make sure those still pass.

Henry reviews the test suites and tries to think of any other ways to “break” the
evolving BI system. He adds a few more tests that he thinks of and is pleased to
find that all of the tests still pass. The team will spend Thursday updating documen-
tation, running performance tests, and getting ready for Friday’s feature showcase.
It has been a good iteration and it doesn’t look as if the team will have to pull any
late nights to finish their commitments.

Integrated automated testing in database development presents a unique
set of challenges. Current automated testing tools designed for software
development are not easily adaptable to database development, and large
data volumes can make automated testing a daunting task. Data warehouse
architectures further complicate these challenges because they involve mul-
tiple databases (staging, presentation, and sometimes even pre-staging);
special code for data extraction, transformation, and loading (ETL); data-
cleansing code; and reporting engines and applications.

AGILE TESTING FRAMEWORK

There are four key perspectives against which software and systems must be
tested for overall acceptability. According to Brian Marick, leading Agile test-
ing expert and author of The Craft of Software Testing (Marick 1994), these are

� Business acceptability. This testing dimension is end-user-centered.
It focuses on the capability of the system to deliver the expected fea-
tures and value. That is, does the system do correctly what the end
users need and expect it to do?

ptg6843605

198 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

� Product validation. This dimension is focused on critiquing the
product. It addresses whether the system produces accurate results
and performs as expected. That is, does the system work correctly?

� Technical acceptability. This dimension is developer-centered. It is
focused on the capability of the system to meet the technical prod-
uct requirements. That is, does the system do what the developers
think it should do?

� System validation. This dimension focuses on supporting the
programmer. It reassures programmers that their code behaves as
intended under a wide variety of conditions.

These testing dimensions are the basis for the testing matrix depicted in
Figure 7.1. The first two dimensions are business- and user-centric and
are aimed at critiquing the product. These dimensions ensure that we are
building the right product. The last two dimensions are technology- and
programmer-centric and are aimed at reassuring developers that they are
building the product the right way.

We can complete the matrix by adding the following testing strategies:

� Unit testing. At the junction of system validation and technical
acceptability lies unit testing. This is developer-driven testing at the

Sy
st

em
 V

a
lid

a
ti
o
n

P
ro

d
u
ct V

a
lid

a
tio

n

Business Acceptability

Automated
Story Testing

Acceptance Tests

Manual
Human-Centric

Exploratory
Testing

Highly
Automated
Unit Testing

Automated
Functional

Testing

Technical Acceptability

Bu
ild

in
g

th
e

Pr
od

uc
t R

ig
ht

Building the Right Product

Program and

Programmer Support

User and

Business Support

Figure 7.1 Agile testing framework

ptg6843605

AGILE TESTING FRAMEWORK 199

system component level. This level of testing is highly automatable
using tools like Quest Code Tester,2 SQLUnit,3 DbUnit,4 and even
DbFit .5

� Story or capability testing. At the junction of system validation
and business acceptability is story testing or capability testing. This
level of testing is akin to integration testing in traditional testing
methodologies. However, the focus is on validating user stories. Fit6

(Framework for Integrated Testing) and FitNesse7 are powerful tools
for automating story testing. DbFit is an extension of FitNesse for
database testing.

� Functional or acceptance testing. To test product validation for
technical acceptability we conduct functional testing. While
unit and story testing test system functionality beneath the GUI,
functional testing involves the user interface. Testing tools like
Selenium,8 Watir,9 WebTest,10 and others are well suited to the auto-
mation of usability tests.

� Exploratory testing. There is no substitute for having real users take
the system out for a test drive. Exploratory testing occurs at the end
of each sprint or iteration, and sometimes more frequently. This
level of testing is manual and human-centered. It highlights ways
that real users might interact with the software that we may not have
considered for our automated tests. Periodically my team conducts
a “bug bash.” At a bug bash everyone in the project community
(developers, testers, project manager, product owner, users, spon-
sors) puts aside regular work to pound on the system, trying to find
new ways to break it. The testers log the defects or undesirable char-
acteristics they find and then we review the findings. Awards might
be given to the person who finds the most bugs or the worst bugs.
The goal is to find problems in the system. This focused approach
to exploratory testing generally provides much more concentrated
feedback than simply asking users to use the system during their
daily routines and provide feedback.

2. www.quest.com/code-tester-for-oracle/
3. http://sqlunit.sourceforge.net/
4. www.dbunit.org
5. www.fitnesse.info/dbfit
6. http://fit.c2.com
7. www.fitnesse.org
8. www.openqa.org/selenium/
9. http://wtr.rubyforge.org

10. http://webtest.canoo.com/webtest/manual/WebTestHome.html

www.quest.com/code-tester-for-oracle/
http://sqlunit.sourceforge.net/
www.dbunit.org
www.fitnesse.info/dbfit
http://fit.c2.com
www.fitnesse.org
www.openqa.org/selenium/
http://wtr.rubyforge.org
http://webtest.canoo.com/webtest/manual/WebTestHome.html

ptg6843605

200 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

The Agile Analytics testing imperative is to employ all of these testing strat-
egies during each development iteration. Developers should be in the habit
of using unit testing throughout their daily development activities. I prefer
to have the testing specialists on the team review the unit test cases that
developers create as part of their development. Story testing occurs periodi-
cally during the iteration and is driven more by the product owner/sponsor
in partnership with testing specialists. The entire project team should be
involved in defining the acceptance criteria for each user story (more on
this later). Usability and UI testing typically occurs throughout the iteration
but tends to become more important later in the iteration. It is driven by the
testing specialists with assistance from technical team members as needed.
Finally, exploratory testing is done primarily by the customer community
with guidance and assistance from business analysts, project manager,
product owner, and others. Ideally exploratory testing is always in progress.
By releasing new features to users as soon as they are done, we give users the
continuous ability to provide feedback about their exploratory use of the
system. Alternatively it may be necessary to schedule specific exploratory
testing sessions with the user community.

What about Performance, Load, and Stress Testing?

Okay, so functional testing isn’t the only thing we must consider in BI devel-
opment. Keeping in mind that user acceptance includes the BI application’s
response time, availability, reliability, and other intrinsic characteristics
that are important to users, we must still be concerned about the pressures
of high data volumes and concurrent users. So, Agile Analytics augments
the user acceptance testing framework with additional system-level perfor-
mance, load, and stress testing. Each of these testing strategies involves a
preproduction sandbox that mimics the production environment. As with
acceptance testing, these tests are all automated and can be run frequently
against the latest build of the BI system.

Performance testing in the BI systems context is focused on evaluating the
ability of the BI system to effectively handle large data volumes during ini-
tial load, during periodic update periods (e.g., nightly refresh), and during
periodic archival processes and maintenance efforts.

Data warehouse performance testing involves contriving a high-volume test
bed (a static representation of the production data sources that feed your
BI system). As a guideline I recommend extrapolating the largest data vol-
ume that the system is expected to handle during its life span and tripling

ptg6843605

BI TEST AUTOMATION 201

it to create the contrived test bed. For example, if you expect to have 80,000
customers who conduct 12,000 transactions per day on average, you should
contrive a test bed of 240,000 customers who conduct 36,000 transactions
per day for performance testing.

Performance testing should also examine potential bottlenecks in the appli-
cation, operating system, and network layers of the architecture, as they
relate to the movement of large data volumes. Of course, there are also tra-
ditional application performance testing issues to consider, but we’ll focus
here on performance as it relates to data volume and complexity.

Load testing focuses on the performance of the system when a large number
of concurrent users or HTTP connections put pressure on the system. Auto-
mating load testing requires specialized load-testing tools such as Open-
STA.11 Similar to performance testing, load testing should be conducted in
a preproduction environment that mimics the configuration of the produc-
tion environment. Each new release (at least one per iteration) should be
exposed to load testing.

Stress testing overloads the system resources to the point of failure to deter-
mine how gracefully the system fails, and how well it recovers from that
failure. Like performance and load testing, stress testing is conducted in a
preproduction environment that closely replicates the production deploy-
ment environment.

Stress testing involves introducing chaos and unexpected events into the
running system to see how it behaves. In a BI application this may mean
randomly disconnecting the database from other system components, fail-
ing or partially completing a nightly data refresh, disconnecting user appli-
cations from the network, or other interference. Agile teams think of all the
things that might disrupt the normal flow of data through the BI system
and mimic them during stress testing. You can automate stress testing by
scripting these events and forcing them to occur at random intervals or in
random combinations.

BI TEST AUTOMATION

BI system testing presents a unique set of challenges that aren’t inherent in
software testing. It takes a bit of creative thinking to avoid being stymied by

11. www.opensta.org

www.opensta.org

ptg6843605

202 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

the effort required to automate your BI testing processes. Here are a few of
the issues that we face:

� Data volumes. Unlike application software, our systems must
handle potentially large volumes of data. While it is easy to think
about writing a test case for the conversion of Swiss francs into U.S.
dollars, it is more difficult to imagine writing a test case for a system
that merges 10 terabytes of data from three separate operational
databases into a data mart.

� Non-object-oriented code. We don’t typically write object-oriented
software to manipulate the data in BI systems. We develop stored
procedures, ETL scripts, and other declarative and procedural code
to process the data. Software testing tools are best suited to object-
oriented software whose “units” are well defined with high cohesion
and low coupling. It’s hard to think in terms of units in a BI system.

� Systems integration. A lot of what we do in database develop-
ment and data warehousing involves the integration of commercial
software into a complete system. While we do write custom code,
we don’t generally build our systems completely from scratch. This
means we are testing a heterogeneous collection of components
rather than a homogeneous code base.

� Proprietary components. OLAP cubes and other proprietary ana-
lytical engines in BI architectures are black boxes that include mate-
rialized tables, summary tables, optimized physical data structures,
and more. These components are often complex data structures that
are difficult to test.

� Mixed code base. The code we write in BI systems includes a variety
of languages such as SQL, T-SQL, PL/SQL, MDX, XMLA, and even
VBScript or JavaScript, not to mention the variety of end-user BI
application coding languages. It’s hard to think about automated
testing for each of these disparate programming languages and
paradigms.

You may be able to think of other challenges, but these were my initial reac-
tions when I first began thinking about adapting Agile software testing
practices to Agile Analytics development. In fact, in the creation of the Agile
Analytics development style one of the most significant hurdles my teams
faced was integrated, automated testing. We had to rethink our develop-
ment practices, and we had to adapt the testing tools to work for database
testing. Since then testing tools have evolved and matured to be more suit-
able for database testing.

ptg6843605

BI TEST AUTOMATION 203

In fact, there’s nothing special about databases that prevents us from using
the same testing approaches that we use for application code. The princi-
ples of Marick, Beck, Cunningham, and Kerievsky apply to BI systems quite
nicely. It’s the mechanics of automation that we need to adjust to fit these
unique challenges. The biggest problem is that open-source testing tools
for database and data warehouse development have lagged behind those for
application development.

BI Testing Process

Before we worry about test automation, let’s tackle the testing procedure.
Once your team has established an effective testing method, automation
becomes quite simple. Fundamentally BI testing involves the following steps:

1. Load a fixed set of test data.
2. Run the process that is under test.
3. Verify that the resulting data is what you expected.
4. Return everything to the way you found it.

Let’s dissect each step in turn.

Test Data Set

The test data set should be as small as possible while still containing a rep-
resentative sample of the actual production data. For example, if we are
testing the process that calculates the net profit per transaction using item
price, quantity, and cost of goods (CoG), we want the test set to represent
the variety of possible values for these data elements. At the same time we
want the test set to be as small as possible.

To contrive this set we might select records from production data contain-
ing the maximum price, maximum quantity, and maximum CoG, as well
as the minimums for these values. We might also choose a few test records
that represent average or normal values. Additionally, we’ll want to test the
boundaries, so we might create some records with negative and zero values
for these elements as well as other unexpected or unusual values. Over time
we may add new test data to this data set as we discover areas of insuffi-
ciency. Otherwise, the test data set remains fixed and reusable for the dura-
tion of the project.

The testing environment must mimic the production environment, but
with test data in the place of production or development data. We must be
able to quickly load or reload the test data as a precursor to running the

ptg6843605

204 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

process under test. Moreover, it is important to avoid mixing test data with
development or production data in the testing environment. Also, consider
replacing sensitive data in your test databases with artificial replicas that
accurately reflect actual data.

Process under Test

For unit testing, the process under test should be as small and cohesive as
possible. In other words, it should perform exactly one well-defined task.
How many times have you seen (or maybe created) a large, monolithic SQL
script or ETL package that performs a sequence of tasks because they are
related? Not only is it difficult to test these multipurpose components, but
it’s also hard to debug them when something goes wrong. Agile Analytics
developers learn to create small, highly cohesive components and then link
them together through sequencer processes. For example, the calculation of
net profit per transaction is a well-defined and simple process that can be
easily tested.

For story or acceptance testing the process under test is not so atomic. How-
ever, if we have done a good job of unit testing each of the components that
make up a user story, the story-testing procedure can focus entirely on the
integration of those components. In other words, we can test the proper
execution of business scenarios rather than the verification of lower-level
computations.

Verify the Results

Corresponding to your test data set is an “expected results set.” You should
know precisely what the resulting data will include and what it will exclude.
Every time a new test record is added to the test data set, a result record
should be added to the expected result set. It is insufficient to simply spot-
check a few of the resulting values to determine if your tests are passing. It is
necessary to confirm that every expected result is actually present, and that
there are no unexpected results present after running the process under test.
Because the test data was carefully constructed to include a minimally suf-
ficient set of test records, it is critical that we check the result of every single
test record. It’s nearly impossible to do this reliably using a manual testing
procedure.

Clean Up

After the testing is completed, everything should be returned to its original
state and made ready for the next test suite to run. Doing this ensures that
the results of one testing procedure don’t influence the behavior of another

ptg6843605

BI TEST AUTOMATION 205

testing procedure. We want each test process to be as isolated as possible so
that the results are accurate and repeatable, and so that problems can easily
be analyzed and fixed.

Database Testing Tools

There are two main approaches to automated BI testing. The first focuses
on testing the structure, content, and state of a resulting data table after
an action has been applied. The second focuses directly on the procedural
or declarative code component (e.g., stored procedure, SQL script, PL/
SQL) used to perform actions on the data. Several open-source and com-
mercial tools are aimed at database testing using one or the other of these
approaches. Test automation tools have tended to evolve from the JUnit
framework developed by Kent Beck or the Fit framework developed by Ward
Cunningham. There is an additional class of testing tools that simulate
users interacting with a system through the application’s user interface.

The xUnit family of open-source testing tools has grown to include tools
designed for nearly every popular programming language available, and
new variants continue to emerge. For software development these are really
class libraries rather than stand-alone tools. These unit-testing tools iso-
late smaller units of code (such as function, procedure, method, class) and
create the scaffolding necessary to call the code module and then make an
assertion about the result. If the assertion is correct, the test passes. Other-
wise, the test fails. Each module ends up with a suite of many such asser-
tions designed to test it extensively.

Like the xUnit tools for software, there are a few database unit-testing tools
that follow this testing model. In fact, SQLUnit is a database unit-testing
tool implemented as a JUnit test that simply reads a SQLUnit test file to exe-
cute database tests. The SQLUnit test file is in XML format and a test case
might look something like this:

<test name="Checking net profit from transaction">
 <sql>
 <stmt>select NetProfit from transaction where tranId=?</stmt>
 <param id="1" type="INTEGER" inout="in" is-null="false">
 1
 </param>
 </sql>
 <result>
 <resultset id="1">
 <row id="1">
 <col id="1" type="FLOAT">44.32</col>
 </row>

ptg6843605

206 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

 </resultset>
 </result>
</test>

Although this test may look a little cryptic at first, it is a simple test, fol-
lowing the net profit per transaction calculation, that checks to see if the
first transaction has the expected net profit amount of $44.32. This single
test would be just one of many such tests in the same SQLUnit test suite.
Fortunately there are graphical tools that enable testers and developers to
create these test cases more simply. This unit-testing tool targets the result-
ing data table (e.g., Transaction). Other database unit-testing tools such as
TSQLUnit12 and utPLSQL13 are aimed at testing stored procedures written
in T-SQL and PL/SQL respectively.

Another class of database testing tools can be used at the unit- or micro-test-
ing level as well as the integration- or macro-testing level. Software develop-
ers have been using Fit for years, as well as a more recent variant developed
by Robert C. Martin called FitNesse. These frameworks use a browser-based
wiki for specifying the test cases, describing the expected results, and exe-
cuting the tests. The Fit/FitNesse frameworks are easily extensible by cre-
ating fixtures, which are small source code modules typically written in a
programming language like Java or C#. The fixture tells the framework how
to “talk to” the system under test.

Gojko Adzic was kind enough to develop a set of fixtures for database test-
ing called DbFit.14 DbFit makes it easy to issue SQL queries directly against
the database and compare the results against an expected result set. Figure
7.2 shows a series of simple DbFit tests of a Microsoft SQL Server Integra-
tion Services (SSIS) package for merging data from a collection of source
tables into a single invoice table in the integration tier of the FlixBuster data
warehouse.

In this example the setup section (collapsed) runs a series of test preparation
scripts that create the source tables and populate them with test data. Then
the SSIS package under test, Load.Invoice.Stage.dtsx, is executed. Follow-
ing this is a series of simple tests to check that the table got created and has
the expected number of records and the correct column names. Not shown
in this example are the additional tests needed to test the actual data values
against the expected ones.

12. http://TSQLunit.sourceforge.net
13. http://utplsql.sourceforge.net
14. http://gojko.net/fitnesse/dbfit/

http://TSQLunit.sourceforge.net
http://utplsql.sourceforge.net
http://gojko.net/fitnesse/dbfit/

ptg6843605

BI TEST AUTOMATION 207

Notice that each test table has, as its first row, a SQL query followed by a row
containing one or more result set column headers. These column headers
are followed by the expected values contained in the result set. When the
test is executed, the cells in these tables are colored green if the actual result
matches the expected result, or red if they do not match.

Also notice that the execution of the SSIS package is included in a table in
which the first row describes the fixture warehouse.etlTest.ExecuteSsis-
Fixture. Because DbFit does not inherently know how to run SSIS packages,
I needed to create a fixture to tell DbFit/FitNesse how to do so. Following
is the code for that fixture, written in C#.NET. While this chapter is not
intended as a fixture tutorial, it should be apparent that fixtures are not
overly complicated. Once they are working, they can be used repeatedly.

Figure 7.2 DbFit/FitNesse test example

ptg6843605

208 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SqlServer.Dts.Runtime;

namespace warehouse.etlTest
{
 public class ExecuteSsisFixture: fit.ColumnFixture
 {
 public string packageLocation = null;//Path to .dtsx file
 public int executionResult //0 = "Success"
 { //1 = "Failed"
 get //3 = "Cancelled by user"
 { //4 = "Unable to locate file"
 return runThePackage(); //5 = "Unable to load file"
 } //6 = "Internal error occurred"
 }

 public int runThePackage()
 {
 Package pkg;
 Application app;

 app = new Application();
 pkg = app.LoadPackage(packageLocation, null);

 return(Convert.ToInt32(pkg.Execute()));
 }
 }
}

Yet another class of testing tools is aimed at system testing through the
user interface. Tools such as Selenium, Watir, WatiN, and WebTest are
designed to test Web-based applications, and tools such as Mercury QTP,
SilkTest, and TestComplete are better suited to stand-alone or client-server
applications. These tools create scripts that simulate users interacting with
the application and then testing to see if what appears on screen is what is
expected. These are easily adaptable to BI applications. However, these tests
can be rather fragile because they do not accommodate UI changes particu-
larly well.

As quickly as new testing tools emerge, this section cannot possibly include
a complete list of them, and I’m certain that I have failed to list someone’s
favorite testing tool. By the time this book hits the shelves there are likely to
be new testing tools and tool advancements. The field of test automation has
been evolving and maturing rapidly and is a mainstream practice for soft-
ware development. The BI community can only stand to benefit from those

ptg6843605

BI TEST AUTOMATION 209

advancements, and as Agile Analytics grows deeper roots, we will benefit
from the great ideas of people in our own community.

What to Test?

Now let’s examine the test-driven database development methodology as it
applies to classical data warehouse architectures. Figure 7.3 highlights the
key testing points in the classical warehouse architecture.

Sales HR Operations Inventory

Staging
Database

AP/AR

Presentation
Repository

ETL Processes

Optimized for:
• Analytical Reporting
• Flexible Querying
• Multidimensional
 Analysis
• “Large” Data for
 Historical Analysis

• Data Integrity
 Checking
• Data Cleansing
• Exception Handling
• Data
 Transformations
• Data Preparation

Executive Reporting Management Reporting

Field Reporting

Testing Points

1 2

3

4

5

6

7

ETL Processes

Data Access
Server

Operational Source Systems

Figure 7.3 Testing points in a data warehouse architecture

ptg6843605

210 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

In this architecture data flows from one or more operational systems on the
left to one or more end-user applications on the right of the diagram. There
are multiple points in this architecture where testing is needed to ensure
data consistency and correctness. These include

1. Operational databases. Generally the operational systems are run-
ning in production by the time data warehouse development begins.
However, these systems should also undergo test-driven develop-
ment during their development cycles. For systems already in
production I encourage the use of test-driven development for new
revisions and bug fixes.

2. Data update code. The ETL scripts that extract data from opera-
tional systems into the staging database must be validated. These
scripts typically run on a nightly basis and include slowly changing
dimension type 1 and type 2 updates.

3. Data preparation code. The code used for data merge/purge, cleans-
ing, preparation, and processing in the staging database.

4. Data transformation code. The ETL scripts used to extract data
from the staging database and transform it into the multidimen-
sional database schema of the presentation database (e.g., star
schema).

5. Data derivation code. The code or scripts used within the multidi-
mensional presentation database for further data transformations
and derivations (e.g., data mining scoring).

6. Data access layer code. Any customized server-side applications
that are responsible for providing user access to the data in the
warehouse. This includes OLAP cube specification code, deployed
analytical models, and others.

7. BI application code. The customized client-side applications that
present data to end users and enable end users to query the data
warehouse.

8. Administrative application code. There may additionally be a ware-
house administrator interface application (not in the diagram) that
must be tested as well.

In general, we seek to write automated tests anywhere and anytime the data
is manipulated within the BI system. Although Figure 7.3 depicts a classical
data warehousing architecture, you should adapt this principle to the specif-
ics of your BI system’s technical architecture.

ptg6843605

SANDBOX DEVELOPMENT 211

Testing “Black Box” BI Technologies

Many commercial BI tools promote pulling data directly from operational data
stores. These tools generally provide some built-in capabilities for data cleansing
and merging. This use of BI tools creates a sort of “black box” effect, making it
difficult to test the discrete units of data manipulation. In general, I don’t advocate
pumping raw, untreated data into these tools. I’ve experienced better performance
and higher-quality BI results by conforming to architectural patterns and best prac-
tices for preparing data. Nonetheless, this use of BI tools deserves a word about
testing. It is not necessary to test commercial third-party code. We can gener-
ally rely on the vendors to have done their own testing. But it is important to test
whatever configurations, OLAP cube specifications, calculated measures, and so
on you may have established in your use of the tool. The testing practices remain
the same. Each new tweak in software parameters, each new alteration in the
cube specs, each new calculated measure, and any other data manipulation that
is specified through the BI tool deserves test cases against the resulting data set.

SANDBOX DEVELOPMENT

Typical BI systems are built using a shared development environment, a test
or preproduction environment, and a production environment as a means of
separating work under construction from work being validated from the
system available to users in production. Developers commonly share the
development environment, making it difficult for individual developers
to experiment with new ideas. I’ve been on several projects where develop-
ers run the risk of treading on each other’s work because one developer’s
modification conflicts with the work of another. Furthermore, promoting
the system from the development to the testing environment can be a com-
plex ordeal involving lots of manual setup, configuration, and tweaks to get
everything working. This is normally deferred until late in the development
cycle in preparation for system testing. The promotion to production is a
similarly complicated affair.

Because Agile Analytics calls for the frequent release of new features to the
user community, this traditional infrastructure is not sufficient. We require
a development, test, and production environment that

� Provides a separate, experimental development environment for
each developer

� Supports frequent execution of the entire test suite (unit tests, story
tests, acceptance tests, etc.)

� Supports rapid and simple deployment of new features into prepro-
duction and production

ptg6843605

212 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

� Provides a way for users and stakeholders to work with new features,
features under construction, and other changes in the system

� Supports frequent, automated build and deployment of the BI sys-
tem into the test environment

� Supports the ability to easily revert to any earlier version of the
system at any time

These requirements are met by using development sandboxes (Ambler and
Sadalage 2006). A sandbox is a fully functional replica of the production
environment in which the system is expected to be deployed. A sandbox
might be a dedicated server, a partition on a shared server, a virtual server,
or simply a dedicated directory on a shared server. The complete develop-
ment infrastructure includes a multitude of these sandboxes—one for each
developer, one for integrating everyone’s work, one for demonstration pur-
poses, one for preproduction testing, and possibly others. Such a develop-
ment infrastructure requires plenty of hardware and software. Fortunately
these are cheap relative to people time, and the benefits of this investment
are quickly realized and readily apparent. Figure 7.4 shows a logical depic-
tion of this sandbox development model.15

Foremost it must be easy and fast to deploy the current version of the BI sys-
tem on any of these sandboxes as well as to remove it. This requires that all
“code” be held in a code management (CM) repository using a tool like CVS
or Subversion. The CM system should include all ETL scripts, stored pro-
cedure code, DDL scripts, batch data load scripts, application code, OLAP
cube definitions, data mining scripts—everything that is needed to build
the BI system once the technology stack has been installed on the server.
Code management is covered in greater detail in Chapter 8, “Version Con-
trol for Data Warehousing.”

It is also beneficial to use a build automation tool to automate code check-
out, BI system build, and execution of test suites. Chapter 9, “Project Auto-
mation,” covers BI project automation in greater detail. Build automation
and continuous integration are essential for the integration sandbox and
allow the BI system to be quickly built and tested multiple times per day
with no manual intervention required (unless the build breaks or tests fail).
Build automation is also used within developer sandboxes to expedite the
checkout and installation of the most current version of the system.

15. Thanks to Scott Ambler and Pramodkumar Sadalage for first framing this concept
in Refactoring Databases (Ambler and Sadalage 2006).

ptg6843605

SANDBOX DEVELOPMENT 213

Each team member must have his or her own sandbox to experiment with
ideas, to complete development tasks, and to create and run unit tests. Ide-
ally each developer’s sandbox should include a separate instance of the data-
base schemas populated with development data. Since development data is
typically a smaller, more manageable replica of actual production data, it
is often possible for all developers to work on the same physical hardware
using shared software. Virtual servers on a single physical server can be
useful to ensure that each developer sandbox is isolated from the others.
However, it is generally sufficient for each developer to have his or her own
instance of the database and a sandbox directory in which to work. Devel-
opers must frequently check working and tested code into the CM reposi-
tory, and they should frequently update the code in their sandbox to make
sure they are working with the latest revisions. This activity should occur
every 15 minutes to one hour. Developers write unit tests as they create new
code. All test cases are checked into the CM system alongside the code.

Developer
Sandbox

Developer
Sandbox

Developer
Sandbox

Integration
Sandbox

Preproduction Testing
Sandbox

Production
System

Production EnvironmentDevelopment Environment

Test-Driven
Development

Capability and
Usability
Testing

Exploratory and
Performance

Testing
Deployment
Frequency

C
on

sta
nt

ly
C

ha
ng

in
g

H
ou

rly
 to

Se
m

i-D
ai

ly

Ea
ch

Ite
ra

tio
n

Fr
eq

ue
nt

Sc
he

du
le

d
Re

le
as

es

Controlled Highly ControlledMinimal Control

Broken Build

Bug Report or Acceptance Feedback

Software Problem Report or User Request for Change

Demonstration
Sandbox

Code Management and
Version Control

Figure 7.4 Sandbox development and testing infrastructure
Scott W. Ambler and Pramodkumar J. Sadalage, Refactoring Databases: Evolutionary Database
Design, 1st Edition, ©2006. Reprinted by permission of Pearson Education, Inc., Upper Saddle
River, NJ.

ptg6843605

214 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

When a developer checks new code or code changes into the CM reposi-
tory, the build automation software detects that a change has occurred. This
triggers a new build of the system in the integration sandbox. Once the sys-
tem has been built successfully, the entire test suite is run to ensure that the
changes did not break anything, and to ensure that new tests are passing. It
is this automated process that gives the team members constant confirma-
tion that they are building the product right. All of this should occur multiple
times throughout a development day, or at the very least once per day.

Whenever a new user story or capability is complete, tested, and confirmed
by the team, it is deployed into the demo sandbox to be shared with the user
community for exploratory testing and feedback. At least once per iteration
new features are showcased to the user community. These user showcases
offer the opportunity for a first round of feedback. Additionally, it is impor-
tant for users to continue using new features so they can provide continuous
and deeper feedback. For this reason it is important that the demo sandbox
contain live or nearly live data. Perhaps the fastest way to turn off your users
is to show them development data or mock data. Users need to see how the
new features address their current business problems. And what could be a
better way to score points with your users than to give them a feature that
helps them solve current problems? This doesn’t mean that the new features
are deployed to the production system yet, and the user community must
understand that the new features are still being validated to confirm that
you are building the right product.

As new features are reviewed and accepted by users, they are deployed to
the preproduction sandbox for performance, load, and stress testing and
any other system testing that is required. It is critical that the preproduc-
tion sandbox accurately represent the configuration of the production envi-
ronment. Although I use the term system testing, I want to emphasize that
I don’t mean back-end testing as in traditional serial development styles.
Because we are building production-quality features in each iteration, the
line between integration testing and system testing is blurred. We are con-
stantly evolving the BI system by adding new features, maturing existing
features, and adapting features based on user feedback. Therefore, system
testing begins early in the development cycle and continues throughout the
process.

Since we are conducting performance, load, and stress tests in the prepro-
duction sandbox, we’ll be using much larger data sets and computationally
intensive test cases. Sometimes running the full battery of tests can take
several hours, so this system testing may occur less frequently. Nonetheless,

ptg6843605

TEST-FIRST BI DEVELOPMENT 215

system testing must occur routinely to reassure the project community that
the evolving BI system remains robust, reliable, efficient, and scalable.

This sandbox development and testing infrastructure ensures that new
features and capabilities can be deployed into production at any time
rather than having to wait until some predefined release date. Whenever
the stakeholder community or project sponsor feels that the business can
benefit from new capabilities, a release to production can be executed as
described in Chapter 6, “Evolving Excellent Design.” Of course, there may
be additional IT governance considerations impacting frequent releases
into production. An objective of Agile Analytics is that frequent production
deployment is always an option, and the choice about when it is appropriate
to deploy is business-driven rather than technically bound.

TEST-FIRST BI DEVELOPMENT

Test automation is an essential set of quality assurance practices for Agile
DW/BI development. However, a more advanced and powerful practice
involves writing tests before you begin implementing a solution. Test-first or
test-driven development makes testing integral to the development process.
In this way testing becomes more than purely a quality assurance activity; it
becomes the specification process for what is to be constructed, and it estab-
lishes a very crisp definition of “Done!” Test-first development is a powerful
practice at the story level as well as the unit level of development. The fol-
lowing sections outline how test-first DW/BI development works. As Agile
Analytics continues to mature, we can expect an increasing number of tools
to help support these practices.

Unit-Test-Driven Development

Test-driven development (TDD) was developed by Kent Beck, a founding
father of eXtreme Programming (XP). Kent is also the inventor of the xUnit
family of automated unit-testing utilities and author of Test-Driven Develop-
ment: By Example (Beck 2003), which highlights both TDD and JUnit.

TDD is really a development method rather than a testing method. It just so
happens that testing occurs as part of the development process. The prin-
cipal idea behind TDD is that you think of a little test, and then write just
enough code to pass the test. This cycle continues until you can’t think of
any more tests. Moreover, you write only the tests you need based on the
user requirements rather than possible but unspecified future requirements.

ptg6843605

216 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

The TDD methodology is relatively simple in concept. Developers work in
small steps. First, they write a little test that fails. Then they write the code
necessary to make the test pass. Finally, they refactor the code to make it
better. Beck describes the TDD rhythm as “test tiny/build tiny” (Beck 2003):

1. Quickly add a little test.
2. Run all the tests and see the new one fail.
3. Make a little change in the code.
4. Run all the tests and see them succeed.
5. Refactor to make the code better.

In other words: Write a test, make it run, make it right!

Although TDD was designed for object-oriented programming, adapt-
ing this development method to BI is relatively easy. As an example, let’s
examine the TDD steps as they apply to building the ETL object that cal-
culates net profit for a single item in a transaction. We’ll use DbFit for test
automation:

1. Quickly add a test. We might start by adding a single test item into
the test data set. Let’s start simply by adding a normal “happy path”
transaction containing an item with an average price, an average
CoG, and a quantity of one.

Additionally we’ll create a DbFit test page for our ETL module.
Like the prior DbFit example, this DbFit page will
a. Set up the test by creating the necessary source tables and load-

ing test data into those tables
b. Execute our ETL module (which doesn’t exist yet)
c. Test the result to see if the net profit for our single test case is

correct
2. Run all tests. When we first run the new test it will fail, because the

ETL object doesn’t exist yet.
3. Make a little change. We’ll create the smallest, simplest ETL pack-

age possible. In fact, for starters we might even hard-code it with the
expected result rather than doing the actual net profit calculation.
In the next pass, we’ll replace the hard-coded result with a simple
calculation. On successive passes we will incrementally improve the
calculation to handle odd cases and bad data.

While that approach may seem silly, the aim is to move in very
tiny steps, making lots of small improvements. Learning to work
like this is a powerful way to build quality into your code organi-
cally. Once you are comfortable working in tiny steps, you may
choose to take slightly bigger steps.

ptg6843605

TEST-FIRST BI DEVELOPMENT 217

4. Watch the test pass. Now we’ll run our DbFit test again. This time it
passes because the package exists, and it creates the expected result.
Watching tests pass is very satisfying!

5. Refactor. Step 3 is focused on making the test pass rather than the
best approach. However, we want good design, so this step is focused
on improving the code we implemented. During this step we want
to remove duplication, eliminate inefficiencies, simplify the imple-
mentation details, and so on. While we’re improving the design, we
must keep running our test(s) to be sure that they still pass.

6. Repeat from step 1. Now we’ll add another test, make another little
change to make it work, and then make it right. We will repeat this
cycle many times every hour during the development day. In fact, we
keep repeating this cycle until we can’t think of any new tests to add
to the ever-increasing test suite.

The beauty of test-driven database development is that as you evolve toward
the right solution, you are also growing a suite of valuable tests that are run
and rerun many times. This test suite not only serves to confirm that the
unit under test is done; it also serves as a set of regression tests to confirm
that future changes haven’t broken the previous ones. When you work like
this, you don’t have to allow for time at the end to add all the tests you wish
you had; nor do you have to allow time at the end to rework your design.
These steps are integrated into the development process.

Some tests are as simple as verifying that a table was successfully dropped or
created; field names are correct; foreign key constraints are enforced; field
types, lengths, and precision are correct. It is important to conduct other
validity checks in your unit tests such as verifying row counts, distinct value
checks, minimum and maximum value checks, and so forth. Agile Analyt-
ics teams adhere to the agreement that no new code gets created without first
having a test case.

There are a few things you should expect from TDD. As with any practice
change, TDD will feel awkward in the beginning, and you may feel less pro-
ductive for a while. Keep in mind that you are now doing detailed design,
development, and testing combined in the same cycle. You may produce
less, but it will be production-ready when finished. Expect that the volume
of test cases will approximately equal the volume of production “code.” This
is actually a good thing but can be surprising. Also expect that you will be
tempted to make bigger development “steps” in each TDD cycle. Sometimes
those tiny steps feel overly simplistic. Bigger steps aren’t necessarily bad, but
they can be expensive to undo if necessary. It’s better to err on the side of
too tiny rather than too large.

ptg6843605

218 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

Agile Analytics Practice: First Write a Little Test
Team working agreement: No line of code gets written without having a
test case first.

Storytest-Driven DW/BI Development

As discussed in Chapter 4, “User Stories for BI Systems,” data warehouse
stories translate into user-demonstrable features presented to the user via
BI applications. These features include reports, charts, graphs, multidimen-
sional (OLAP) reports, data mining scores, and data visualization, as well as
features enabling users to change settings, adjust parameters, modify their
view, and so on. Story testing is focused on these types of end-user features.

TDD is extremely effective at reducing defects at the unit development level,
and Josh Kerievsky has adapted this method to user story development with
storytest-driven development (STDD). Storytests are specific examples of
user stories. While unit tests are typically written by the programmer to test
low-level components or units, storytests can be written by users or busi-
ness analysts because they describe examples of business stories. The STDD
methodology embeds TDD into the development rhythm:

1. Write a storytest that fails.
2. Make the storytest pass by using TDD to develop component parts

(units).
3. Run all storytests and watch the new storytest pass.
4. Refactor to make the implementation better.
5. Repeat from step 1 until all storytests are passing.

Like unit-test-driven development, storytest-driven development is more a
development process with testing built in than a quality assurance process.
STDD is the precursor to unit-test-driven development. In fact, Agile Ana-
lytics teams follow the agreement that no work begins on a story until that
story’s tests have been written.

Agile Analytics Practice: Lead with a Storytest
No work begins on a user story until at least some storytests have been
written for that story. Customers, product owners, and testers can con-
tinue adding storytests, but there must be at least one before developers
can start building.

ptg6843605

TEST-FIRST BI DEVELOPMENT 219

Generating Storytests

In practice the project team may write as many storytests as the team mem-
bers can think of during iteration planning, as in the example scenario at
the beginning of this chapter. In this case, the STDD cycle proceeds by tak-
ing one storytest at a time and making it pass through TDD, then taking
another storytest and making it pass, and so on.

Imagine the user story “As VP of sales I need the ability to analyze gross mar-
gins over the past year by account manager, by dates of purchase, by prod-
uct, and by customer location.” This is a classic OLAP-style requirement for
which we must ensure that the data presented in our system is accurate down
to the finest-grained detail and up to the highest levels of aggregation.

Working with the VP of sales, you might discuss several concrete examples
of the behavior of this user story. For example:

VP sales: “Gross margin at our company is calculated by subtracting
the item cost and the cost of sale from the sales amount, then dividing
that by the sales amount.”

Agile team member: “Okay, we know that item cost, cost of sale, and sales
amount are available for each item in the transaction file, so we can
calculate gross margin. Can you give me an example of one way you’d
like to analyze that information?”

VP sales: “I want to list the gross margin for all sales by each account
manager in the southeast region for December 2008 and compare those
margins with the ones from December 2007.”

This information provides the basis for the storytest cases presented in
Table 7.1.

The team would validate with the sales VP that the calculations in these test
cases are correct, and that the VP wants to see two digits of precision in the
gross margin field. This is a start, but there’s more.

Agile team member: “We noticed that Becky Thatcher was reassigned to
the Northeast region in early December 2008. How would you like the
system to display that change?”

VP sales: “That’s a good observation. I think I would like to see Becky’s
gross margin for the whole month of December 2008 regardless of
region. But I also want to see her margin for the period of December
when she was assigned to the Southeast.”

ptg6843605

220 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

This would generate an additional set of test cases that shows Becky in both
regions and combined. After a continuation of this discussion, this user
story will receive a complete set of acceptance tests, including examples that
are drilled down to individual products per day as well as other regions. The
goal is to ensure that there is at least one storytest for every possible varia-
tion of this user story, including edge cases such as when there are gross
margins of around 0 percent and above 100 percent.

Storytest writing involves a high degree of collaboration with your user
community to ensure that you develop a realistic and complete set of story-
tests. In fact, you may think of storytests as detailed requirements specifica-
tions. The Agile technical team collaborates with users to write a complete
set of storytests. When the team agrees that the storytests are complete, it
is very clear what needs to be developed and when that feature is done. It’s
done when it passes all the storytests, and if the team can think of another
storytest, the feature can quickly be adapted to pass the new storytest as well
as the old ones.

BI TESTING GUIDELINES

Now that we’ve looked at the Agile testing framework, an Agile Analytics
testing process, tools for automating BI testing, and the test-driven and sto-
rytest-driven development methods, there are some guidelines to consider
when designing a testing strategy. These include

Table 7.1 Basis for the Storytest Cases

Year Month Region Account Manager
Item Cost
(Total)

Cost of
Sale

Sales
Amount

Gross
Margin

2007 Dec. Southeast Huck Finn $20,000 $3,000 $30,000 23.33%

Tom Sawyer $35,000 $6,000 $50,000 18.00%

Becky Thatcher $27,000 $4,000 $45,000 31.11%

Joe Harper $19,000 $2,500 $37,000 41.89%

2008 Dec. Southeast Huck Finn $22,500 $2,000 $35,000 30.00%

Tom Sawyer $15,000 $2,000 $25,000 32.00%

Becky Thatcher $4,000 $400 $5,500 20.00%

Joe Harper $25,000 $7,000 $43,000 20.93%

ptg6843605

SETUP TIME 221

� One test set per “unit.” Create one test file per system component
(e.g., script or stored procedure). One file will contain all of the test
cases for its corresponding unit.

� Keep test cases under version control. Check your test case files into
your code management repository just as you check in code. Use
these test cases for all regression testing whenever you must modify
your scripts or create new scripts.

� Build tiny/test tiny. Add one simple test case to the test suite, then
write a little bit of code to make the test pass. Repeat this until the
script is complete.

� Low coupling/high cohesion. By designing your scripts and pro-
cedures as small, independent, single-purpose modules, you make
them much easier to test, debug, and maintain.

� Don’t retest commercial software. We only need to test our own
code. Since data warehousing generally involves systems integration,
our focus is on the glue code that we write to stitch these systems
together.

� Do test all new code. Temporary tables, working tables, and views
should be tested just like the persistent tables that make up your
system.

� Keep your test database small. The larger the database gets, the
harder your testing becomes. Ensure that it contains a complete set
of example cases, but it should be barely sufficient to exercise every
test you have thought of. If you discover new cases, add them to the
test database as part of new test-driven development.

Application development and other traditional programming within a data
warehouse environment should follow the test-driven development meth-
odology described by Kent Beck. An increasing number of xUnit frame-
works are available on the open-source domain, including NUnit (.NET),
CPPUnit (C++), HTMLUnit (HTML), and JsUnit (JavaScript). There is
an xUnit framework for almost any of today’s popular programming lan-
guages. These frameworks are in various states of maturity, JUnit being the
most mature. However, it is valuable to integrate automated testing into as
many aspects of custom coding as possible.

SETUP TIME

The primary reasons that most developers resist the adoption of auto-
mated testing are the setup time and learning curve associated with using
these testing tools and frameworks. This is a legitimate concern. First-time

ptg6843605

222 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

adoption of these practices, establishing the testing infrastructure, and
learning a new testing tool can be time-consuming.

In my experience it takes two to three days for a single developer to learn to
use test automation and TDD. This includes time to learn the testing tool’s
“language,” time to integrate the tool into the development environment,
time to learn how to extend the tool, and time to become comfortable with
the TDD development method.

Finally, it typically takes one to two days to integrate and configure a test
automation tool for your development infrastructure. I prefer to allocate
one complete team week to focus on getting all developers familiar and
comfortable with Agile database testing tools and methods.

Jim Highsmith promotes the concept of “iteration zero” on any Agile proj-
ect. Iteration zero serves the purpose of ensuring that your development
infrastructure is established among other project initiation activities such
as initial requirements and architectural modeling. This iteration is not
expected to produce any new features. Iteration zero is the ideal time to
adopt and integrate these Agile database testing tools and methods.

FUNCTIONAL BI TESTING

Most of this chapter is devoted to unit testing and story testing. These meth-
ods test underneath the user interface. If you do a good job in these testing
approaches, you’ve likely addressed the majority of quality issues. However,
functional testing through the UI is required to complete the picture.

Functional testing is a diverse topic subject to the BI application approaches
and technologies in your system. Are BI applications homegrown or com-
mercial? Are they browser-based or stand-alone? Are they thin client, fat
client, or “chubby” client applications? Are there multiple BI application
technologies or a single one? Does the app involve customization of a com-
mercial product? And the list goes on.

The answers to these questions determine which functional testing tools
and approaches you employ. There are two aspects to functional BI testing:

� Controls. Test the user controls and interaction to ensure that
they behave correctly and produce the correct results. This test-
ing focuses on ensuring that application components exhibit the

ptg6843605

WRAP-UP 223

correct behavior, the application handles invalid inputs and actions
elegantly, and the application recovers from errors gracefully.

� Content. Test to ensure that the data presented is accurate relative to
the back-end data architecture. This includes ensuring that OLAP
drill-down, roll-up, drill-through, and other actions produce the
expected results; predictive modeling scores are properly presented;
and ad hoc queries produce the correct results (and avoid big outer
joins or other resource-intensive queries).

How you conduct each of these depends largely on your choice of portal and
BI presentation technologies. For example, I once worked on a project for
which the back-end database and OLAP engine were based on Microsoft’s
SQL Server Analysis Services (SSAS). The front end was a custom-built
ASP.NET application with embedded Microsoft Office Web Components
(OWC) for the delivery of data using Microsoft Excel’s pivot table and pivot
chart functionality. On a prior project we developed on the SAS Institute’s
BI technology stack for back-end data management and delivered the end-
user application via a homegrown J2EE-based Web application using HTML
tables and custom components for data presentation. The functional testing
approaches were quite different for each of these scenarios.

An increasing number of script-based functional testing tools simulate user
interaction with the application through the UI. These were described pre-
viously and are expected to continue evolving and maturing. BI application
content testing may require some creativity to automate. Many functional
testing tools are limited in their ability to isolate values in reports or tables.

WRAP-UP

Manual database testing involves building the data structures, writing some
code to access the database, running the code, then writing some queries
to verify that the data got into the database correctly. Even the most rigor-
ous database testers generally verify a database by running several queries
and visually inspecting the results for validity. The problem with this is that
as changes are made to the database, we don’t generally rerun all the old
test queries to revalidate that everything is still fine. Even if we do rerun
the old queries, the task of visually inspecting the results quickly becomes
overwhelming.

Rerunning automated tests is painless and transparent (as long as the tests
keep passing). It provides continuous assurance that new changes don’t

ptg6843605

224 CHAPTER 7 � TEST-DRIVEN DATA WAREHOUSE DEVELOPMENT

adversely impact already working code. Test cases provide documentation
and make it easier to understand other people’s code and intentions.

Automated test-driven database and data warehouse development has a
unique set of challenges. However, with a little effort the Agile software test-
ing concepts, principles, and practices can generalize to provide a powerful
framework that significantly exceeds traditional database testing practices.
If you adopt test-driven database development practices:

� Expect test code volume to be roughly equivalent to new code vol-
ume. However, the test code does not contain the complex logic that
is in the new code.

� Don’t expect a large reduction in initial productivity. It will take
some time and practice with these tools and techniques to improve
productivity. However, you will spend much less time tracking down
and fixing bugs later in the project.

� Don’t expect a large reduction in script size. Your stored procedures
won’t necessarily get smaller. They will get better.

� Do expect large improvements in software reliability.
� Do expect a large reduction in defect rates.
� Do expect clean code that works.

ptg6843605

225

Chapter 8

VERSION CONTROL FOR DATA
WAREHOUSING

If your data warehouse server(s) failed catastrophically, how long would it
take to redeploy the system into production?

If you discovered a critical defect in your production DW/BI system, how long
would it take to revert to a previous version while you resolve the problem?

If you had to prove that what you had in production was the same as what you
think is in production, how long would that take?

As with other mission-critical systems, it should take no more than a few
days to rebuild your DW/BI system from scratch—including reconfigur-
ing new servers and reloading data. The actual redeployment of your ware-
house implementation (database schemas, ETL scripts, BI applications, etc.)
should range from minutes to hours, not days or weeks.

Rapid deployment not only is essential because of the mission-critical nature
of today’s DW/BI systems; it is also a critical aspect of agility. Remember
that our highest priority is to satisfy the user community through early and
continuous delivery of BI features. This means releasing new BI features
into production every iteration or every few iterations. Doing so requires a
highly optimized deployment process.

Optimizing data warehouse deployment time requires a combination of sev-
eral good engineering and IT practices. Central to this goal are proper code
management and version control, concepts with which many seasoned DW/
BI professionals remain unfamiliar. Proper code management requires that
all project artifacts be stored and managed in the same version control sys-
tem. DW/BI systems are built using a disparate set of technologies and tools,
each with its own coding language or configuration. These tools often store
system artifacts in proprietary data stores or in encoded binary files. Fur-
thermore, ETL developers often manage their code separately from database
developers, separately from BI application developers, and so forth. These
and other factors have a tendency to steer teams away from, rather than
toward, effective version control. Fortunately, our colleagues in the software

ptg6843605

226 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

development community have been managing code for decades and have
paved the way with effective tools and techniques that we can use.

This chapter is devoted to the adaptation of those effective version control
and code management methods to the nuances of DW/BI systems. Scott
Ambler addresses this topic for general database development in Agile Data-
base Techniques (Ambler 2003). This chapter is intended to be general to all
(or most) version control software and as such is not a tutorial on how to
use any one specific tool. There are very good books available to teach you
how to use the more popular version control tools. Instead, this chapter is
intended to guide you toward effective practices and habits for managing
your DW/BI system code much as good software developers manage their
source code.

Also, this chapter does not provide comprehensive coverage of the topics of
release management or configuration management. These topics are related
to version control but are not synonymous, and each one is worthy of its
own book. Version control is about tracing the history of events and changes
in project code and artifacts; release management refers to the processes
and procedures needed to ensure a successful system deployment; and con-
figuration management is about the collection of activities (technical and
nontechnical) that are required to reproduce the successful deployment of
any version of the system at any time. This chapter specifically focuses on
the topic of version control—how a DW/BI team manages its system code
and artifacts to support other Agile practices such as frequent releases, test
automation, and build automation.

WHAT IS VERSION CONTROL?
Traditionally, data warehouse developers have worked in a shared devel-
opment environment, on a shared server, using shared database instances.
Development work progresses in this environment day after day, and there
is no clear means of rolling back to a previous state. Data model changes
must be carefully orchestrated so that developers don’t trip one another up.
When mistakes are made in this environment, the team must either care-
fully unravel its work or apply patches and fixes to overcome the mistakes.
Many teams working in this way establish a series of rigid “change man-
agement” policies to help prevent a developer from making changes that
adversely impact the work of other developers. This effectively slows the
team down and may create an environment of fear within the team—fear of
costly mistakes, fear of experimentation, and fear of unexpected side effects.

ptg6843605

WHAT IS VERSION CONTROL? 227

Version control is mandatory on all Agile Analytics projects. Not only is it
central to the goal of rapid deployment, but it offers the following advan-
tages to the team and to the developers:

� Rewind. Version control offers the ability to undo any changes made
during development to a previous point in time or a previous ver-
sion. It’s like a rewind button on the development process.

� Controlled sharing. Version control enables developers to work on
the same system at the same time without inadvertently changing or
overwriting the work of other developers on the team.

� Audit trail. Version control systems maintain a record of changes
that developers make over time. When a change in a data model or
ETL script is puzzling, it is easy to see who made the change and any
notations entered about the change.

� Release control. Version control eliminates the need for a “code
freeze” prior to each release. Developers can continue working on
the mainline without affecting the release candidate code. Addi-
tionally, it affords the ability to keep track of which releases were in
production at which point in time.

� Fearlessness. Version control enables developers to experiment with
different solution alternatives, explore new ideas, and make changes
without fear of adversely impacting the rest of the team or the proj-
ect. Only when this experimentation and exploration evolve into
production-ready solutions does the developer check the changes
into version control, making them official.

Recall the sandbox development concepts presented in Chapter 7, “Test-
Driven Data Warehouse Development.” The use of separate development,
integration, preproduction, demonstration, and production sandboxes is
made possible by version control. As changes are checked into the version
control system, the sandboxes are updated to include these changes so that
they remain synchronized with one another. Here is an example of what
working with version control is like:

Scenario

Prakash, a database developer, is working late one night on some improvements
in the dimensional data model of the FlixBuster data warehouse. His improvements
include a new territory dimension and a new fact table containing order
shipment measures. The rest of the team members have gone home, but Prakash
wants to be sure they can work with the new fact and dimension tables first thing
tomorrow.

ptg6843605

228 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

Prakash updates his local copy of the data warehouse code1 and writes a set of
DbFit tests that should pass once the new data model changes are in place. Next
he implements his physical data model changes in the DDL scripts that are used
to automatically build the dimensional database schema. He runs all of his new
tests to make sure they pass and reruns the existing tests to be sure he didn’t break
anything with his changes. When he is satisfied that his changes are production-
ready, he checks the new and modified DDL scripts and his new DbFit test cases
into the central version control tool.

The next morning, when the team arrives, each team member updates his or
her local copy of the data warehouse code. Natasha looks at the change log
produced by her update and sees Prakash’s changes. She is a little concerned
that the new F_Order Shipment fact table may affect the ETL code that she’s been
working on to populate the F_sales fact table, which had previously contained
some shipment information.

Since Prakash worked late last night he hasn’t yet arrived this morning, so Natasha
can’t ask him about the changes directly. So, she reviews the change comments
that he entered when he checked in his revisions and she sees this comment:

Extracted quantity_shipped from F_Sales into new F_Shipment table.

This confirms that Natasha’s ETL script for populating the F_Sales fact table
will break when looking for the quantity_shipped field. Fortunately she hasn’t
checked in her ETL changes yet, so she can make the necessary changes to
ensure that her code will play nicely with Prakash’s changes. She rebuilds her
local copy of the data warehouse to include Prakash’s changes and then modifies
her test cases so that they will not test for quantity_shipped in the F_Sales fact
table. Then she modifies the ETL code that populates the F_Sales fact table to
remove this reference. Next she runs her newest tests to be sure they all pass, and
she reruns the existing tests (including Prakash’s new tests) to be sure she didn’t
break anything with her changes. Finally, she checks her new ETL code and tests
into the central version control system for other team members to retrieve.

It’s now 10:00 A.M. and time for the daily stand-up meeting. Both Natasha and
Prakash are able to tell the team about the changes they have successfully com-
pleted since yesterday. Since the team practices frequent check-ins of changes,
and frequent updates of their local development sandboxes, everyone takes these
changes in stride. This enables other team members to proceed with their tasks in
order to be prepared to showcase the new BI features for the user community on
this coming Friday.

The feature showcase on Friday is a success, with the user community accepting
three new BI features. However, on Monday morning the forecasting analyst in
the CFO’s office reports an apparent bug in the current production version (release
3.1) of the BI system. It appears that some of the data in the forecasting tool is

1. In this context the term code refers to any SQL queries, data definition (DDL) scripts,
stored procedures, ETL packages, operating system scripts, and database scripts.

ptg6843605

WHAT IS VERSION CONTROL? 229

inaccurate, and the business is currently in the budgeting process, so this problem
is critical and high-priority.

The bug is entered in the bug-tracking system, and Henry agrees to take the
lead on researching and resolving the problem. He quickly creates a new virtual
development sandbox, checks out the release 3.1 branch from the version control
system, and runs the build script to re-create the production version in his sandbox.

Using development data, Henry is able to replicate the problem and identify
the root cause. One of the ETL packages has a mistake in the logic for deriving
a new measure used in forecasting. The logic applies only in certain situations.
Henry reviews the unit tests for this code and discovers that there aren’t any tests to
cover these situations. So, he writes a few new test cases, runs the tests, and sure
enough, the new tests fail.

Henry creates a new tag in the version control system on the release 3.1 branch
to mark the point in time before the bug was fixed. He makes the necessary
changes in the ETL code to get his new tests passing and then reruns the entire
suite of unit tests for that ETL package to be sure they all pass. When Henry is
confident that his changes have fixed the defect, he checks his changes (as well
as the new tests) into the version control system and creates a new tag on the
release 3.1 branch as a post-bug-fix marker.

The continuous integration server detects the changes in the version control system
and automatically rebuilds the system and runs all of the integration and functional
tests. At 3:15 P.M. Henry notifies the team that the defect is fixed and all tests are
passing. The team reviews his changes and everyone agrees that the system is
ready to deploy into the preproduction testing sandbox for final validation. Since
the team is doing its new feature development using the mainline of the code
repository, Henry merges his changes and new tests from the 3.1 release branch
into the mainline to fix the problem there as well.

Francisco is the acting release manager during this iteration, so he runs a version
control update to retrieve the latest release 3.1 code changes and initiates a build
on the test servers. He coordinates this update with the testers and users who are
evaluating this preproduction environment. He also asks the forecasting analyst in
the CFO’s office to review the changes and verify that they have fixed the prob-
lem she reported.

By 5:30 P.M. Bob has received confirmation that the bug has been fixed, and he
has coordinated with the user community to update the production system after
hours. He agrees to stay late to redeploy version 3.1 into production during off-
hours so that when users arrive tomorrow, they will have the latest updates.

This correct use of version control enabled everyone on the team to work
fluidly and efficiently. It minimized the need for manual coordination of
changes to the system under development and allowed the developers to
experiment freely without impacting their teammates. You can see from

ptg6843605

230 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

this scenario that version control is most effective when coupled with test
automation, sandbox development and test environments, and continuous
integration. All of these are discussed elsewhere in this book.

THE REPOSITORY

At the heart of version control is the central repository that contains all of
the files that make up the DW/BI system and the history of changes made
to those files. Depending on the version control tool, the repository may be
a database management system, a file system, or some combination of the
two. The repository contains everything necessary to reconstruct the DW/
BI system at any point in time since the start of the project.

The repository is the official container for the most up-to-the-minute state
of the system under development. As such, it must reside on a secure, safe,
and reliable server that is routinely backed up. Development and testing
environments can easily be scrapped and rebuilt, but the loss of the reposi-
tory is catastrophic.

The repository must always be available and accessible to all developers.
Therefore, a dedicated, networked version control server is recommended
for DW/BI projects. Ideally the repository is securely accessible to develop-
ers from any location whether inside or outside the organization’s firewalls.
This enables developers to work asynchronously from remote locations
without the risk of working with out-of-date code, test data, lookup tables,
and other elements.

What to Store?

Every digital artifact in your project is a candidate for version control. In
general, it is better to keep too many things under version control than too
few. However, there is a balance between completeness and complexity. Here
is a list of the artifacts that should be under version control:

� Code and scripts
� Configuration files
� ETL object files
� Analytical models
� OLAP cube configuration files
� XML and XML for Analysis (XMLA) files
� Metadata
� Test data

ptg6843605

THE REPOSITORY 231

� Test suites
� Documentation files
� Project wiki or similar files
� Release notes
� Deployment scripts
� Lookup table data
� Other relevant data (not production business data)

You may wish to add items to this list based on the specifics of your DW/BI
technologies and situation.

The code that makes up your DW/BI system is the most essential collection
of items to store in the repository. Obviously this includes SQL queries and
scripts, ETL packages, DDL code, configuration files, and operating system
scripts. All of these items must be stored in the same version control system
so that the team always has a complete snapshot of each version of the DW/
BI system.

Unlike application source code, many of the “code” artifacts in a DW/BI
system are contained within the technology used to create them. For exam-
ple, Microsoft’s SSIS packages are contained in Visual Studio projects, and
Informatica objects are contained within the PowerCenter repository. In
these situations you may need to export the objects to external files or iden-
tify where the technology stores these as external files. The external files
should be stored in the repository.

Similarly, much DW/BI system development involves configuring settings
through an application’s user interface. For example, Microsoft’s SSAS
involves visual cube configuration via the Visual Studio interface. In these
situations you may need to learn how these configurations can be exported
to external files for version control and reimported into the technology dur-
ing the build and deployment process. For example, SSAS cube configura-
tions can be extracted to XMLA files, and there are command-line utilities
that can be invoked to build the cube from scratch using the corresponding
XMLA file. In this case the XMLA files should be stored in the version con-
trol repository.

DW/BI systems also typically involve metadata that drives their configu-
ration. This metadata should be kept under version control as well as any
static data used to populate lookup tables or other static tables in the data
warehouse.

ptg6843605

232 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

Test suites and test cases should also be stored in the repository. Teams that
effectively use automated testing in DW/BI development discover that the
test suites grow large very quickly. These test suites should exist side by side
with the system under test and should be readily available to any person or
process that might build and test the system.

Project documentation should be kept under version control. Although
Agile Analytics seeks to hold formal documentation to a minimum, there
are likely to be some important documents that evolve as the system evolves.
Keeping this documentation in the repository will assist the development
team in accessing it and updating it as system changes occur. Many teams
use a wiki to collaborate and document project discussions and deci-
sions. These artifacts are also candidates for version control and should be
considered.

All release and deployment scripts should be stored in the repository. In
fact, you should seek to fully automate the deployment process (see Chapter 9,
“Project Automation”), which may involve a series of scripted steps. Each of
these scripts should be in the repository.

In general, the repository should contain everything that is necessary to
build and deploy the fully working DW/BI system and anything that is
needed to make sense of the implementation later on. However, this does
not include storing the commercial and third-party technologies that form
the base stack on which your DW/BI system is built.

What Not to Store?

If you aren’t careful, the version control repository can become bloated
with unnecessary or even harmful items. Artifacts that are automatically
generated by the tools in your DW/BI stack should generally not be stored
in the repository. For example, when Microsoft’s SSAS processes a cube, it
produces a file with a .cub extension. These files should not be stored in the
repository because they can be reconstituted using the cube configuration
files that are already in the repository. Similarly, temporary files and work-
ing files are not typically stored in the repository.

In general, you should seek to avoid duplication within the repository. If the
repository contains automatically generated artifacts as well as the code or
configurations used to generate them, there is a possibility that they may
become inconsistent with one another. However, in some cases there are
practical reasons to store generated artifacts in the repository. For instance,

ptg6843605

WORKING WITH FILES 233

if the generated artifact is particularly difficult or time-consuming to regen-
erate, it may make sense to store it in the repository. I once worked on a DW/
BI project that used InstallShield to automate the deployment of the system.
InstallShield is designed to orchestrate a sequence of complex installation
steps such as verifying that the DBMS is configured properly and running
the DDL scripts to build the correct database schemas. Our version control
repository contained a Deployment folder that held the InstallShield script as
well as all of the utilities and scripts used by it. Some of those utilities and
scripts were compiled programs whose source code was stored elsewhere in
the repository. In this case it made sense to store the generated files in the
repository. However, the development team had to take extra precautions
to avoid letting the source files become out of sync with the generated files.

WORKING WITH FILES

Although the repository is the heart of the version control system, it isn’t
where you actually work with the files to make changes. Instead, you retrieve
working copies of the desired files from the repository into a workspace on
your local development sandbox. This local workspace is typically a file
folder or subdirectory on your local workstation. You can think of the work-
space as a collection of unofficial copies of repository files. You can modify
or delete those files, and you can create new files, without directly affect-
ing the official files that are in the repository. Recall from Chapter 7, “Test-
Driven Data Warehouse Development,” that your development sandbox is
an unofficial replica of the data warehouse server that allows you to experi-
ment with and test your development ideas. The workspace is the directory
on this sandbox where this experimental code resides. Only when you are
satisfied with your changes are they made official by being checked into
the repository. The good thing about the workspace is that you can explore,
experiment, and make mistakes without fear of accidentally messing up the
official code base. The bad thing about the workspace is that if you delete
the files in your workspace before storing the changes in the repository,
your changes are lost for good. This means that it is a good practice to make
small changes, test your changes, and frequently check them into the reposi-
tory so they aren’t lost. It is also a good practice to frequently update your
workspace with any changes that your teammates may have checked into
the repository so that your workspace stays up-to-date.

All version control tools provide a set of commands to interact with the cen-
tral repository. Many of these commands support the administration and
management of the central repository. However, three essential commands
are used frequently by developers: checkout, update, and commit. Each tool

ptg6843605

234 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

uses its own command syntax or client application for executing these com-
mands. For example, in the Subversion command-line interface the com-
mand is

$ svn checkout http://repos.flixbuster.com/dw/trunk

In this example the $ represents the command-line prompt, and the URL is
an example of the address where the project repository resides.

The checkout command enables you to populate your workspace with any or
all of the files in the project repository. For smaller projects it is often conve-
nient to check out the entire project into your workspace. For larger projects
it is more manageable to check out just the subdirectories containing the
files you need to work with. The update command enables you to retrieve
the latest repository changes into your workspace, including new files that
have been added as well as file modifications that have been checked in by
other team members. The commit command enables you to check your local
workspace changes into the repository, making them official within the cen-
tral repository.

Agile Analytics Practice: Frequent Updates
Frequently updating your workspace will help the development team stay
synchronized. Updating your workspace frequently will help you avoid
spending too much time working on an outdated file.

Agile Analytics Practice: Frequent Commits
Local workspace changes that haven’t been checked in for many days
will cause problems for other team members and during merge attempts.
Check in your work many times a day.

Various version control utilities implement these command concepts slightly
differently. For example, adding a new file into a Subversion repository is a
two-step process, first using the add command to flag the new file as ready
to add, then using the commit command to insert it into the repository.

Agile Analytics Practice: Take Small Steps
Work in small increments, and whenever you have a little something
working and tested, check it into the repository.

ptg6843605

WORKING WITH FILES 235

Frequent workspace updates and check-ins are essential to effective collab-
orative DW/BI development. Agile Analytics developers work in small steps,
solving one little problem at a time and testing as they go. As soon as a small
problem is solved, the developer checks in his or her changes and test cases,
then verbally notifies teammates of the changes so that they can keep their
workspaces up-to-date. Problems often occur when developers allow many
changes to accumulate in their local workspace and then check them in all
at once.

Agile Analytics Practice: Check in Finished Work
Check in only completed chunks of working and tested code. Avoid
checking in unfinished work.

What Are Versions?

Now that we’ve seen what it looks like to work on a DW/BI project that is
under version control, it is useful to understand what is happening within
the central repository as all these changes are made. The real power of every
version control system lies in the central repository. For any single file that
is under version control the repository doesn’t just store the file. It stores
every single version of that file since it was first checked into the system.

For example, imagine creating a simple ETL package that derives a netProfit
measure using revenue and costOfGoods. We develop it, test it, and check it
into the version control system. Then we modify this logic by further sub-
tracting shippingCost from revenue. After committing these changes, there
are two versions of the file in the repository, and we can retrieve either one.
Each new version of the file receives a unique version identifier, so our ETL
file may have version numbers 1.0 and 1.1 to reflect the sequence of changes.
In actuality most version control systems store only the differences from
one version to the next rather than entire copies of each one.

A complete DW/BI system is made up of hundreds or even thousands of
files, each one with its own version history. Because each of these files has
a unique change history, the version identifiers are not the same for all of
them. Therefore, a specific version of the entire DW/BI system is really just a
snapshot of all of the file versions at a particular point in time. In Agile Ana-
lytics, every iteration results in a new version of the system, which includes
the newest features that have been built, tested, and accepted by users. Each
new version is a release candidate, which may be deployed into production.

ptg6843605

236 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

Tags, Branches, and Merging

So far we’ve been talking about the version control repository as a collection
of files, each one with its own revision history. Obviously it isn’t feasible to
describe a version of the DW/BI system as a collection of file version iden-
tifiers. Instead, we need a way to insert labels, such as “Release Candidate
3,” into the repository at critical points in time, as placeholders for system
versions.

There is another problem with the repository concept presented so far.
Imagine that release 1.3 of the FlixBuster BI system is currently in produc-
tion and has been for five weeks. During that time the development team
has been developing new features, checking in the changes frequently. Sud-
denly members of the user community discover a defect in the system. If
the developers fix the bug and check in their changes, how can they deploy
the new version of release 1.3 without including the new features, which will
be in release 1.4? We need a means of separating one set of changes in the
repository from another set of changes. But we also want to make sure that
the bug fix is applied in both places.

Version control systems give us tagging, branching, and merging capabili-
ties to address these challenges. Tags enable us to label a group of files in
the repository at a particular point in time. This group can be the entire file
collection or a subset of the files in the repository. A tag is simply a label,
such as Release_1_3, that we can use to refer to the group of file versions at
a particular time. Agile Analytics teams make frequent use of tags to mark
significant events in the evolution of the DW/BI system and to keep track of
historical changes. Once the tag is assigned, you can use it to check out this
set of file versions. However, you cannot check in new changes at a tag point
because a tag is simply a label associated with a point in time.

Agile Analytics Practice: Tag Each Iteration Result
Inserting a tag in the version control system at the end of every iteration
enables the team to reproduce the DW/BI system as it existed at any of
those important milestones. The tags can be used for incremental release
roll-backs if needed.

As developers check changes into the version control system, they are typi-
cally making those changes on the code mainline or trunk. The mainline
represents the evolution of the project over time. Figure 8.1 depicts this con-
cept. The head of the mainline is a virtual tag that is always assigned to the

ptg6843605

WORKING WITH FILES 237

latest version of each file. Executing a checkout typically means retrieving
the head of the mainline. Similarly, executing an update typically means
synchronizing your workspace with the head of the mainline. Figure 8.1
also shows the concept of tagging the mainline at each iteration.

Branching enables us to create a code path that runs parallel to the mainline.
This is especially useful for managing production releases separately from
new feature development. Figure 8.2 depicts the repository history from the
FlixBuster scenario. As the team members were preparing for release 3.1,
they created a release branch from the mainline. This branch replicates the
mainline at a point in time and provides a path for final stabilization and
deployment. The branch also enables the team to continue with new feature
development along the mainline without disrupting release preparations.
Notice that the actual release version of the system is tagged as release 3.1.0.
When the defect was reported by the users, the branch provided the devel-
opers with a place to research and fix the bug separately from new devel-
opment. Once the bug fix was complete, the branch was tagged as release
3.1.1 to denote a minor revision. Like the mainline, each branch has a head.

Code Mainline

HeadProject Start

Time

Ite
rat

ion
_1

Ite
rat

ion
_2

Ite
rat

ion
_3

Ite
rat

ion
_4

Ite
rat

ion
_5

Ite
rat

ion
_6

Figure 8.1 Mainline tagging at every iteration

Code Mainline

Head

Head

Merge

Bug Fix
Release 3.1.0 Release 3.1.1

Project Start Release 3.1
Branch

Time

Figure 8.2 Branching from the mainline

ptg6843605

238 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

When developers check out the branch code, they are typically checking out
the head of that branch. Changes checked into the branch are checked in at
the head of the branch.

Merging is also depicted in Figure 8.2. As developers identify and fix the
bug in release 3.1, they recognize that this bug still exists in the mainline
code. They could check out the mainline and duplicate the changes they
made on the release branch, but doing this is time-consuming and error-
prone. It would be better to ask the version control system to compare the
files that have been fixed with their counterparts in the mainline and merge
the changes into those files. Version control systems are very good at com-
paring the differences between files. Merging takes advantage of this power
and enables developers to quickly migrate the bug fix into the mainline.

Resolving Conflicts

An issue version control systems must address is how to resolve file change
conflicts. What happens when two developers change their copies of the
same file and then try to commit those changes? Suppose Prakash has mod-
ified the ETL code contained in the CalcNetProfit.dtsx file and committed
his changes to the repository. Sometime later Natasha, who has also modi-
fied this file, attempts to commit her changes. Clearly, it is unacceptable for
the system to allow Natasha’s changes to replace Prakash’s changes because
his important work will be lost. Version control systems typically use a type
of locking scheme to handle such conflicts. The most common schemes are
strict locking and optimistic locking.

In a strict locking model a file is available for modification by only one per-
son at a time. Others may check the file out for read-only access. So, assum-
ing Prakash is the first to check out the file, Natasha would not be allowed
to modify her copy. Instead, she would have to wait until Prakash commit-
ted his revisions and released the lock on the file. Then Natasha would have
been able to check out the file for editing and insert her changes alongside
the ones Prakash already made.

In this way strict locking preemptively prevents file change conflicts. How-
ever, this scheme also inhibits productivity because only one person at a
time can work with a file. This downside can be further compounded if the
person with the lock fails to release it as soon as possible. Many strict lock-
ing systems automatically change the local file permissions from read/write
to read-only following a commit to prevent this problem.

ptg6843605

WORKING WITH FILES 239

Agile Analytics Practice: Collaboration Avoids Conflicts
A high degree of face-to-face collaboration within the DW/BI develop-
ment team will help team members avoid file change conflicts because
each member is aware of what others are working on.

Optimistic locking handles file change conflicts only if they occur rather
than by preemptive prevention. In this scheme all developers may check
out copies of the same file for editing. However, when multiple developers
make changes to the file, the system attempts to merge these changes in the
repository. When a merge is infeasible, the system requires the developers to
resolve the file conflicts before committing.

So, in our example, both Prakash and Natasha may edit their copies of
CalcNetProfit.dtsx. When Prakash commits his changes, a newer version
of the file is added to the repository. Then, when Natasha attempts to com-
mit her changes, the system will notify her that there is a newer version of
the file and will ask her to update her local copy to the latest version. In
this situation, there are several possible scenarios. Suppose that Prakash
revised lines 6–12 of the file and Natasha’s revisions affected lines 23–30. In
this case, when the changes do not appear to conflict with one another, the
system invites Natasha to merge the newer version of the file into her local
copy. Because his changes don’t affect hers, and vice versa, Natasha accepts
the merge and the system updates her local copy without losing her changes.
After rerunning all the tests for this code module, Natasha can now commit
her changes into the version control system.

However, suppose that Prakash revised lines 6–12 and Natasha revised lines
8–17. In this case, the system detects a conflict and requests that Natasha
resolve this collision before she is allowed to commit her revisions. Natasha
talks to Prakash about why they were both working on the same section of
code at the same time, and about how best to resolve the current conflict.
Together they add Natasha’s changes to a copy of the latest version of the
file, test it, and commit these newest changes.

Agile Analytics Practice: Small Cohesive Files
Keeping DW/BI source code files (stored procedures, ETL packages,
SQL scripts, etc.) highly cohesive and modular will help avoid file
change conflicts because changes are more isolated from one another.

ptg6843605

240 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

It may seem that optimistic locking is highly prone to these conflicts and
that it will frequently disrupt the development process. Yet in practice, espe-
cially in highly collaborative teams, these types of collisions are extremely
infrequent. Typically when work is divided among developers, each devel-
oper is working on separate parts of the system. But conflicts can occur
when developers’ working directories are not updated frequently. Develop-
ers who frequently update their working directory minimize the likelihood
of these conflicts by ensuring that they are working with the latest version
of the code before making changes. Additionally, the occurrence of these
conflicts is increased by large, multipurpose code units. For example, one
file with multiple stored procedure definitions, or one ETL package that
performs a sequence of complex tasks, tends to cause more conflicts. Isolat-
ing small, highly cohesive units of functionality into separate modules (and
files) helps reduce the occurrence of conflicts.

While it may seem that a version control system with a strict locking pro-
tocol would be preferable to one using optimistic locking, it turns out that
strict locking causes an undue set of complications for the development
team. Most modern version control systems use some form of optimistic
locking with the option of enforcing strict locking through some adminis-
trative commands.

ORGANIZING THE REPOSITORY

How you organize the project repository is an important aspect of effective
version control. The project repository is typically organized into a direc-
tory or folder hierarchy. This enables the team to store files of the same type
side by side. For example, DDL scripts may be stored in a separate folder
from stored procedure definitions. Although the repository structure can
be changed later, it is much easier if you plan ahead for all of the future arti-
facts that will be developed and stored in the repository.

While there is no single right way to organize the repository, here is a rec-
ommended structure that has worked well on projects in which I’ve been
involved. This directory structure is much like many software application
development repository structures but has been adapted to the uniqueness
of DW/BI systems. These suggestions are based on the wisdom presented in
the Pragmatic Programmer Version Control series of books (Thomas and
Hunt 2004; Mason, 2006).

ptg6843605

ORGANIZING THE REPOSITORY 241

Explanatory Files

Future developers are one customer community that we haven’t talked about
yet. We need to leave sufficient information for them to pick up where we
left off. Moreover, a few years from now we may not even recall the details of
the project we’re working on today. So, it’s beneficial to create a set of simple
explanatory files in the root directory of the project’s repository. These may
include the following:

� README. This is a short and simple overview of the project, the
business domain and problem scope, the last deployment date, and
any contact information for management sponsors and key stake-
holders. The document is purely a memory prompter and should be
correspondingly brief.

� BUILDING. This file contains a set of prerequisites for building the
system and instructions for performing a clean build. The document
should outline the technology stack on which the DW/BI system is
built, including tested versions of all third-party software. Ideally
the build itself is automated (covered in detail in Chapter 9, “Project
Automation”), so this document is a brief set of initial instructions
on the build steps.

� GLOSSARY. Include any project-specific terminology in this file
to help familiarize future teams with any jargon that they may
encounter.

Directories

It’s generally a good idea to keep the directory structure relatively flat. Any
more than two or three levels deep can become confusing and hard to navi-
gate. The following top-level directories will help with this organization:

� build/. This directory contains all of the files and components
needed for the automated build and deployment processes. Chapter
9, “Project Automation,” will provide more detail on the files that
are stored in this directory. All scripts and utilities used to automate
the deployment of your DW/BI system are stored here. It is often
useful to store deployment instructions and release notes either in
this directory or in the top-level directory.

� doc/. Check in all formal and semiformal project documentation
here. This includes project wiki content, e-mails documenting deci-
sions made, digital photos of important whiteboard discussions,
and other artifacts. It typically makes sense to organize the doc/

ptg6843605

242 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

directory into a collection of meaningful subdirectories by docu-
ment purpose or project phase.

� data/. Use this directory for any non-source data that is loaded into
the system, such as data for lookup tables or data used by key busi-
ness rules. Keeping this type of data under version control is often
helpful.

� db/. This directory holds all of the database schema definition SQL
scripts. By keeping schema definitions scripted and under version
control, you will have a history of the database changes from one
release to the next, which can help with migration of one database
version to the next. It is useful to divide this directory into subdi-
rectories for the different data tiers in the architecture, such as ddl/
stage, ddl/integration, ddl/warehouse, ddl/financeMart.

� etl/. All ETL modules should be stored in this directory. Depending
on the ETL application being used, this may require exporting the
modules into stand-alone files. For example, Informatica objects are
stored in the Informatica Server repository but can be exported to
XML-formatted files to be kept under version control.2 Conversely,
Microsoft’s SSIS maintains its objects as Visual Studio project files
in the file system. All of the Visual Studio project directory struc-
tures (including subdirectories) can be placed directly under the
etl/ directory.

� mdx/. If your DW/BI system includes the use of multidimensional
queries using the Multidimensional Expressions (MDX) language,
these queries should be scripted and stored in this directory. Alter-
natively, if your DW/BI system uses a proprietary language for issu-
ing multidimensional queries, use a different name for this directory
and store the queries in that directory.

� svcs/. If your DW/BI system includes a Web service API or other
services, they should be stored in this directory. For example, sup-
pose the DW/BI system’s authentication process uses services that
communicate with the organizational Active Directory system.
These interface services may be stored in this directory.

� sp/. Use this directory to store all procedure definition scripts.
Additionally, create a build script that automatically executes these
definition scripts to load them into the DBMS during the DW/BI
system build process. Depending on how your DW/BI system uses

2. Readers may be aware that the Informatica suite includes a version control system.
However, at the time of this writing, it is too rudimentary for real version control
because it is incapable of storing non-Informatica objects in the same repository.

ptg6843605

ORGANIZING THE REPOSITORY 243

stored procedures, it may be useful to split them into a series of
subdirectories based on the data tier in your architecture to which
they apply.

� sql/. Use this directory to store all scripted SQL queries that are
used in your DW/BI system, including any queries used to populate
static reports, preprogrammed queries that are available to users,
and so on.

� test/. This directory houses all of the unit, integration, functional,
acceptance, performance, and stress test suites that are created dur-
ing the iterative development of the system. It should be organized
into subdirectories that coincide with the tiers in your DW/BI sys-
tems architecture. For example, all of the tests for the data integra-
tion tier may reside in a test/int/ directory. Those directories may
be further divided into testing tool subgroups such as dbfit/ or
sqlunit/. Alternatively, you may wish to divide these into test type
subgroups such as unit/ or functional/. This alternative enables
you to run smaller test suites more easily. Finally, many developers
prefer to store test cases alongside the code that they are designed to
test. This can be very beneficial, especially for unit tests, but makes
it more difficult to separate production system code from test code.

� util/. This directory is used to store various utility scripts and
programs that support the DW/BI project but are not part of the
production system. These may include deployment scripts or utili-
ties to import files into their corresponding applications.

� vendor/. Use this directory to store any third-party vendor librar-
ies or customizations. For example, many BI dashboard products
offer a highly customizable user interface look and feel. All of this
customization should be kept under version control. Microsoft’s
ProClarity product (now integrated into Office PerformancePoint)
supports the customization of elements such as on-screen logos,
screen layouts, and button and tab labels. This is done by modifying
files that are part of the ProClarity server installation. These modi-
fied files should be checked into version control as part of the BI
system build that uses them.

� vendorsrc/. Sometimes third-party DW/BI applications involve
development and configuration within the tool, using a visual
development environment or wizard-driven process. These tools
often produce a binary file in a proprietary format. You should keep
these binary files under version control in this folder and, whenever
possible, the exported configuration sources used to produce the
binaries.

ptg6843605

244 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

� views/. Use this folder to store any SQL view definition scripts that
are part of the DW/BI system. Alternatively, you may wish to make
this a subdirectory under the sql/ directory previously described.

� xmla/. If your DW/BI system uses XMLA, use this directory to store
those files.

There are no absolutes in how you choose to organize the version control
repository. Instead, carefully evaluate the tools and languages that are used
in your DW/BI system development, and identify all of the files and artifacts
that should be kept under version control. Then design your file organiza-
tion around these file types. Figure 8.3 depicts one effective way to organize
a project repository.

FlixBuster-1_0
README
BUILDING
GLOSSARY

doc/

data/
db/

etl/
mdx/

sp/
olap/

sql/

vendor/
vendorsrc/

views/
xmla/

integration/
marts/
stage/
warehouse/

apps/
advanced/
dashboard/
reporting/

bin/

src/

lib/

build/
prod/
test/

test/
util/

Figure 8.3 Example project directory structure

ptg6843605

TAGGING AND BRANCHING 245

For those file types that require extra steps, such as exporting and import-
ing, it pays to develop utilities to automate them. Doing so will streamline
your build process and make it much easier to quickly deploy the system in
any of the sandboxes or into production.

TAGGING AND BRANCHING

The mechanics of tags and branches were described earlier in this chapter,
but it is useful to establish a set of development standards for tagging and
branching in your repository. These standards should cover everything
from experimental development work, to ending each iteration, to manag-
ing new production releases, to fixing defects found in production. Such
standards should include

� When to assign tags and when to create branches
� Naming conventions for tags and branches
� How to avoid complex and problematic branching

As for the repository directory structure, the standards recommended here
are based on a set of fairly widely accepted practices in the software develop-
ment community. After using version control on many DW/BI projects, I
have found these standards to be very effective in our domain as well. These
standards are presented in greater detail in the Pragmatic Programmer
book series on version control (Thomas and Hunt 2004).

Each version control utility handles branching and tagging differently. This
chapter is not specific to any particular version control tool. However, all
fully functional version control tools will support tagging and branching.
For example, the Subversion tool uses a separate copy3 of the repository as
a branch; the CVS tool uses a special variant of the release tag command
(rtag) and handles the actual branch internal to the repository. In practice it
is possible to make things unnecessarily messy when branching if you aren’t
careful. Therefore, it is important to clearly and accurately understand how
the system you are using handles these concepts.

When to Tag and Branch

Tagging is easier to manage since a tag is just a symbolic name assigned to
a particular point in time within your version control repository. In fact,

3. In actuality, Subversion uses a “cheap copy” strategy to avoid actually copying all of
the data in the repository, thereby optimizing repository storage space.

ptg6843605

246 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

you can think of HEAD as a system-generated tag that is continuously being
reassigned to the most current version of all the files in the repository. Ver-
sion control systems also allow you to execute checkouts by specifying a date
and time. These date/time combinations behave like system-generated tags
as well. The trouble with relying on date/time tags is that they require us to
remember specifically when the repository was in a particular state of inter-
est. So, version control systems allow us to assign meaningful tag names at
key milestones in the repository.

Tags come in two flavors: regular tags and branch tags. Depending on your
version control system, the differences may only be conceptual. For exam-
ple, in Subversion there is no material difference between a branch tag and
a regular tag other than the context in which each is used. Tags can be used
for a variety of purposes, but too many tags can make it difficult and con-
fusing to review the code history. Agile Analytics teams routinely use tags to
mark the following important events in the code base:

� End of iterations. The goal of every iteration in an Agile project is to
have a potentially deployable DW/BI system. While actual deploy-
ment every two weeks may be too ambitious for some teams, it is
a healthy objective. Tagging the code mainline at the end of each
iteration helps the team establish a pattern of asking the ques-
tion “What is keeping us from deploying this version right now?”
Reviewing the changes between these tags also conveys the team’s
progress in terms of new features delivered.

� Branches. Anytime a branch is created from the code mainline,
it should be tagged with a label that conveys the purpose of the
branch. Different reasons for branching will be discussed shortly.

� Releases. A tag should be added at every point when the code is
tested, stable, and deemed ready for release. This helps prevent the
need for a “code freeze” in order to deploy the latest release and
enables developers to continue making refinements. As we will dis-
cuss, each release candidate should be managed on a release branch.

� Defects. After a release has been deployed into production, end users
may report defects and issues. Since fixing bugs carries the possi-
bility of introducing other problems, it is useful to insert a tag just
prior to the bug fix in case you need to roll back to the pre-fix state
of things. Additionally, it is useful to insert a tag just after a bug fix
in order to isolate the fix from other changes in the release code.

Branching was previously introduced as a means of establishing a code path
that parallels the mainline. Figure 8.2 depicts how you might think of a

ptg6843605

TAGGING AND BRANCHING 247

code branch. Branches are more complicated than tags because a branch is
a physical replica of the path it branches from rather than just a symbolic
marker pointing to a certain event. You can check out and modify a branch
in the same way you can check out the mainline, whereas you can only check
out (not modify) the code at a tag. If you aren’t careful, too many branches
can easily complicate your version control repository, making code manage-
ment difficult and confusing. For this reason, branches should be planned
and used carefully and with express purpose. Experience has shown that
there are two good reasons to branch:

� Experimental branches. Every DW/BI project has a degree of uncer-
tainty, whether it is an uncertain technology decision, a funda-
mental design decision with significant ramifications, or just some
technical question that remains unanswered. Agile Analytics teams
occasionally find it useful to conduct small and simple experiments
for the express purpose of resolving uncertainty or finalizing a
decision. Since these experiments may result in throwaway code,
it is beneficial to create an experimental branch where developers
can try out different ideas without corrupting the production code
mainline. Experimental branches should be tagged to denote their
purpose. If the experiments result in working/tested code that is
worth keeping, that code can be merged back into the mainline. In
this way the development team can continue working on the main-
line while the experimental developers work on their branch.

� Release branches. Each planned release of the DW/BI system should
be managed on its own branch off of the mainline. These branches
should be tagged to denote the point at which a release candidate
begins being prepared for the actual release. Release branches are
typically considered to be “feature complete” for that release. In
other words, developers should avoid doing any new feature devel-
opment along a release branch. The release branch is for any final
testing, documentation, and refinement of the DW/BI system before
it is released into production. As my friend Luke Hohmann says,
“We need to let the bits settle prior to launch.” Of course, any of
these final refinements that are appropriate should be merged back
into the mainline so that they are naturally propagated into future
releases as well.

As previously described, any bugs that are found after the system is deployed
should be tagged and fixed along the corresponding release branch. It
may be useful to insert tags along the release branch to denote key events
prior to the release. However, it is not necessary to tag bug fixes prior to

ptg6843605

248 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

release unless they are significant code revisions. This helps separate for-
mally reported defects from those found during routine testing and release
preparation.

Naming Tags and Branches

Each team should adopt a tag-naming convention. As with many of the rec-
ommendations in this chapter, I favor the naming conventions introduced
by Thomas and Hunt (2004) with some slight modifications. These include
the following:

� Release branch. The tag convention is RB_releaseID. For example,
RB_3_1 denotes a release branch for version 3.1, RB_3_1_2 for version
3.1.2, and so on.

� Experimental branch. The tag convention is TRY_codename. For
example, TRY_abinitio may denote an experimental branch using
Ab Initio tools for data integration; TRY_adaptivemodel may denote
an experiment using an adaptive data model design alternative.
Another convention for these branches is TRY_initials_date, which
includes the initials of the developer conducting the experiment
and the date the branch was created. For example, TRY_kwc_20100301
reflects a branch created by Ken W. Collier on 3/1/2010.

� Iteration end. The tag convention is IT_iterationID. For example,
IT_2_5 might refer to the fifth iteration during the second release
cycle, or IT_8 might refer to iteration number eight, or IT_20100326
might refer to the iteration ending on March 26, 2010. Ideally, each
iteration results in the real production release of new features. When
this is your routine, there is no need to use separate tags to mark the
end of each iteration. The release branches and tags will serve that
purpose. If your team uses Scrum terminology, you may wish to use
the convention SPR_sprintID instead.

� Release. The tag convention is REL_releaseID. For example, REL_3_1
tags the point on the release branch RB_3_1 when the code was actu-
ally deployed.

� Pre–bug fixes. The tag convention is PRE_trackingID. For example,
PRE_158009 marks the code just prior to applying the fix for defect
ID 158009. The ID corresponds to the ID assigned by the bug-track-
ing system.

� Post–bug fixes. The tag convention is POST_trackingID. For example,
POST_158009 marks the code just after applying the fix for defect ID
158009.

ptg6843605

TAGGING AND BRANCHING 249

Figure 8.4 offers an example of how one might visualize a project repository
over time using this scheme.

Scenario

At the end of iteration two the FlixBuster Analytics project community decides to
deploy the finished features into production as version 1.0. The development team
tags the code mainline and creates a release branch to prepare for the deploy-
ment. David has volunteered to act as release manager for this release, allowing
the rest of the development team to continue with iteration three’s development of
new features. David runs a complete rebuild of release candidate 1.0 in the pre-
production testing environment; reruns the entire suite of functional tests; and then
runs the load, stress, and performance tests to validate the behavior of the DW/BI
system in a production-like setting.

After a week of final preparation, David reviews the test results with the product
owner and the team, and they decide that the release candidate is ready for
production deployment. David subsequently executes the DW/BI system build
script on the production servers while the product owner coordinates with the user
community to launch the system using live data.

After the initial data load is complete, the system is made available to the user
community. Within the first week after launch, the users begin to notice a data
anomaly in the customer profitability features. A problem report is entered into
the defect-tracking system, and the team agrees that this issue has high priority.
Adriana volunteers to tackle the bug during iteration four.

Luckily, Adriana discovers the root cause quickly in one of the ETL modules.
Natasha agrees to pair program with her to fix the problem. They quickly add a

Code Mainline Time

Decision M
erg

e

M
erge

Bug Fix

IT_1_1 IT_1_2 IT_1_3 IT_1_4 IT_1_5 IT_1_6

RB_1_0 REL_1_1

TRY_Pentaho

RB_2_0

REL_2_0REL_1_0

PRE_15

POST_15

Figure 8.4 Project repository lifecycle example

ptg6843605

250 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

pre-bug-fix tag along the release branch and begin working. First they write the
test cases that should have detected the problem. They run the tests, and sure
enough, the new tests fail. They apply the bug fix in the ETL module and rerun
their tests to make sure they all pass, and then they add a post-bug-fix tag to sur-
round the fix. They evaluate whether any other problems might be related to this
one and agree that the new bug fix is sufficient.

After Adriana and Natasha review the problem’s root cause and their fix with the
rest of the team, everyone agrees that the problem is solved. Adriana and Nata-
sha agree to merge their bug fix into the mainline. However, the team decides to
wait a few days to deploy the bug fix because it is so close to the end of iteration
four and the team may deploy new features as well as the bug fix. As it turns out,
the project community decides that the new features aren’t ready for deployment,
so David releases version 1.1 so that the users will benefit immediately from the
bug fix.

Later, during iteration four, the team has decided to explore the use of the Pentaho
open-source DW/BI platform as an alternative to the commercial tools they have
been using. Lead developers Johannes and Bert create an experimental branch
to evaluate the Pentaho tools, while the other developers continue building new
features on the mainline.

The expected outcome of this experiment is a simple prototype DW/BI system
with a small set of features using FlixBuster development data. The project commu-
nity will review this prototype at the end of iteration four and decide as a group
whether or not to switch to the new platform. The experiment is very successful,
and the project community agrees to switch technologies. They agree upon a cut-
over plan, which begins immediately during iteration five. They also discover that
Johannes and Bert did some experimental work that is worth keeping, so this work
is merged into the mainline.

The technology switch goes surprisingly smoothly, and the team is able to repro-
duce all of the DW/BI features from version 1.1 in Pentaho, at production quality,
by the end of iteration five. After reviewing these features, the community agrees
to rerelease the Pentaho version of the system into production. The team creates a
new release branch and continues preparing for the release of version 2.0.

As you can see, the version control system coupled with a set of good engi-
neering practices enables the FlixBuster Analytics team to work efficiently
and effectively. The team maintains its feature-driven goals despite the dis-
ruptions caused by defects and technology changes. Team members worked
closely with the product owner and user community to review new features,
and because they focus on production quality in all development, they are
able to release frequently into production.

ptg6843605

TAGGING AND BRANCHING 251

Keeping Things Simple

Effective code management relies on careful management of your ver-
sion control repository and judicious use of branching and tagging. I once
worked with a client whose DW/BI team was using the CVS version con-
trol tool to manage project artifacts. Unfortunately, over time, the reposi-
tory had devolved into convoluted branching structures that were multiple
layers deep. The tags didn’t follow any common convention, and the team
members were so confused by the version control system that they avoided
committing new changes or updating their sandboxes. The version control
system wasn’t helping them, it was hurting them.

Like your house, your project’s repository must be kept tidy. The following
is a set of habits, practices, and good ideas for ensuring that your team ben-
efits from version control rather than suffering because of it:

� Develop on the mainline. The vast majority of your team’s develop-
ment work should be committed along the mainline and checked
out from there as well. Working on code branches should be the
exception, not the norm. The mainline represents the primary his-
torical timeline in the evolution of your system. The bulk of activity
should be collected and tagged along this path. This practice will
help ensure that everyone is working with the same code base and
evolving the system collaboratively.

� Avoid branching a branch. Suppose you’re working on an experi-
mental branch and decide to conduct a small side experiment. You
may be tempted to branch off of your experimental branch so that
you don’t corrupt your primary experiment. This practice should be
avoided. It is preferable to use a tag to mark the point to which you
may wish to roll back if the secondary experiment goes awry. When
this temptation arises, think carefully about the purpose, and look
for alternative ways to accomplish the same goal without multilevel
branching. This habit encourages continuous convergence toward,
rather than divergence away from, the mainline.

� Keep branches single-purposed. Avoid using a branch to achieve
multiple objectives. For example, a release branch should not include
any new feature development, only refinements, new tests, and bug
fixes. This habit helps minimize the merges back to the mainline
and simplifies code management.

� Shorten branch life span. The longer a code branch remains an
active path of development, the more likely it is to become out of
sync with the code mainline. As soon as a branch has served its

ptg6843605

252 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

purpose, all appropriate changes should be merged to the mainline,
and development activity should halt along the branch.

� Merge early and often. Merging from a branch to the mainline is
least difficult when the change is a single, small, simple one. Larger
collections of changes are often more challenging to merge cor-
rectly. Additionally, as time passes, the ongoing development along
the mainline causes the code to increasingly deviate from that along
the branch, and the version control system may have a difficult time
merging properly. While a branch remains active, team members
working on the branch should frequently make small merges when-
ever applicable.

� One question per experimental branch. Experimental branches are
for experimentation, exploration, and evaluation. Their purpose is
to give you a place to answer a question you have. Always seek to
keep these branches focused on a single question, and do the small-
est, simplest amount of work necessary to answer that question. This
habit will help keep the life span of an experimental branch as short
as possible so that you can get back to the business of building a
production-quality, working DW/BI system.

� Truncate experimental branches early. This practice relates to the
previous one. It is often tempting to take an experiment or explora-
tion much farther than is necessary. Bear in mind that experimental
branches hold throwaway work. This habit will help prevent you
from expending unnecessary effort along these branches. Once the
question is answered, move back to the mainline.

� Assign pre-bug-fix tags as late as possible. Wait until you’ve identi-
fied the root cause of a defect, have a plan of attack, and are ready
to implement the changes before you tag the release branch with the
pre-fix tag. This will help isolate your bug fix changes from other
refinements along the branch.

� Assign post-bug-fix tags as early as possible. Similar to the prior
recommendation, tag the release branch with the post-fix tag as
soon as you are confident that the issue is resolved. This will help
isolate your bug fix changes from unrelated changes along the same
branch.

CHOOSING AN EFFECTIVE TOOL

Because version control is essential in the support of Agile Analytics devel-
opment practices, selecting the right version control system is important.
It’s also important to select a tool that you expect to live with for some time,
since it can be difficult to migrate a project repository from one version

ptg6843605

CHOOSING AN EFFECTIVE TOOL 253

control system to another. There are several criteria to consider when select-
ing the right version control tool, including the following:

� Storage for everything. The tool you select must be capable of stor-
ing all of your DW/BI project artifacts in the same repository. These
include digital images, written documents, e-mails and text mes-
sages, text files, binary files, and any other file types that are gener-
ated by your DW/BI technologies. Evaluate your DW/BI project and
consider all of the items that you expect to house in your version
control system, then be sure to select a tool that will accommodate
them. Some version control systems cannot.

� Support for Agile habits. The tool you select must support frequent
workspace updates, frequent commits, and other routine version
control interactions. Be sure that the tool you select supports a client
application that makes these frequent interactions easy. Almost all
version control tools support a command-line interface; many also
support clients that are integrated into the development tools (as
plug-ins) or are integrated into the operating system (as OS com-
mand extensions). If it is clunky for developers to exercise frequent
version control functions, they will avoid doing so.

� Free or commercial. Many enterprise-capable open-source software
(OSS) products provide version control. However, there is some
solace in the confidence that commercial vendors will provide the
necessary support and maintenance for their products. OSS version
control systems tend to evolve to address flaws and shortcomings in
earlier systems, while commercial systems tend to focus on market
opportunities by offering greater functionality or ease of use. Bal-
ancing cost of ownership against richness of function is an impor-
tant consideration when choosing a version control system.

� Hosted or installed. With the advent of software as a service (SaaS),
many vendors have emerged that offer hosted project management
solutions, including version control. Such hosting options relieve the
DW/BI development organization of version control administration
tasks such as frequent repository backups, repository configuration,
user access, and other responsibilities. Conversely, an internally
managed version control system ensures that project artifacts are
contained within the corporate firewall and are not subject to the
long-term viability of a hosting provider.

� Existing standards. Of course, if your organization already has an
established version control infrastructure to support other projects,
it is probably best to use that corporate standard. Unfortunately,
sometimes the corporate version control standard was established

ptg6843605

254 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

long ago and does not benefit from new advances in version control
technologies. When this is the case, evaluate the standard against
the Agile Analytics team’s need for seamless integration of version
control in the work environment. On the other hand, organizations
with an established standard also have internal expertise in the
maintenance and usage of the adopted tool. This can greatly benefit
a DW/BI team that has little or no experience with such tools.

� Integration with build automation. Build automation is introduced
in the next chapter but relies heavily on a version control system to
monitor and detect the code changes that will trigger a build. Not all
version control systems are easy to integrate with all build automa-
tion tools. It is best to select a version control tool that integrates
easily with your build tool (or vice versa). This enables the devel-
opment team to focus on building the DW/BI system rather than
administering the development infrastructure.

Consider other factors that will be impacted by your selection of a version
control technology. This chapter is intended to be tool-agnostic, although
under full disclosure I have managed several successful DW/BI projects (as
well as the elements of this book) in Subversion4 using the TortoiseSVN5

client, so these remain favorites of mine. As of this writing, there is a very
comprehensive Wikipedia entry that compares and contrasts version con-
trol tools, both OSS and commercial.6 It will serve your project well to care-
fully consider which technology will best support the values and principles
of Agile Analytics.

WRAP-UP

Agile Analytics is all about the early and frequent delivery of value to users.
Achieving this goal using old-fashioned manual methods is nearly impos-
sible. To be successful we need the support of development tools and infra-
structure. Version control is a core component of this infrastructure. It is at
the heart of release management and build automation.

This chapter introduced version control as an essential part of every Agile
Analytics project. We examined how effective version control benefits the
development team by providing an “undo button” to back up to a previ-
ous stable situation. We examined how version control enables developers

4. http://subversion.tigris.org/
5. http://tortoisesvn.tigris.org/
6. http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

ptg6843605

WRAP-UP 255

to work together on the same system without tripping over one another. We
saw how version control provides a bread-crumb trail of changes made in
the system over time. And we saw how version control enables the team to
execute a production deployment without having to manage a “code freeze.”

Agile Analytics developers are in the habit of keeping their local workspace
in sync with the central code repository. Many times every hour, developers
check out the changes their teammates have made and check in their own
tested changes. The Agile team makes judicious use of tags and branches
to create a history of important events and milestones during the project.
Each release gets its own code branch where the team can handle all of the
release preparation activities and can resolve any issues that arise after the
release. Teams can use branching for exploratory and experimental work,
giving developers a way to test ideas without messing things up in the main-
line of code.

In this chapter we looked at the storage of more than just code. Teams should
also keep their documentation and other project artifacts under version
control. By keeping everything in the version control system, the team can
retrieve a snapshot of the entire project at any given point in time during the
project lifecycle. We also acknowledged that there are some things that don’t
belong in the version control system. Items that are generated from other
items, by compiling or processing them, are typically not kept under version
control. This helps prevent duplication within the version control system.

This chapter also highlights the importance of developer collaboration to
minimize file change conflicts. But it is helpful to understand how version
control systems behave when file conflicts do occur. Teams that have a high
degree of developer collaboration benefit from the flexibility of optimistic
locking, which allows multiple developers to edit copies of the same file at
the same time. Strict locking lets only one developer edit a file at a time,
which ensures that no conflicts will occur, but it is much more restrictive.

Effective use of version control is simply a better way to work. It helps devel-
opers become more organized. It reduces the burden on developers to man-
age their own code locally. It establishes a single, official location for project
items. And it frees developers to focus on creating new features rather than
managing project artifacts.

Agile Analytics requires being fearless. We can’t be effective if we are afraid
of quality problems in the system, how changes will affect existing features,
or a disruptive deployment. The knowledge that we can quickly revert to an

ptg6843605

256 CHAPTER 8 � VERSION CONTROL FOR DATA WAREHOUSING

earlier version if needed encourages us to deploy more frequently. The sim-
plicity with which we can spin up a testing environment gives us confidence
that the system is of high quality. The ability to experiment with new ideas
without corrupting the project makes us more likely to arrive at the best
solution. Good code management is just one of many practices that enable
fearlessness.

ptg6843605

257

Chapter 9

PROJECT AUTOMATION

The general goal of DW/BI systems development is to automate and opti-
mize data-based decision support for our customers. In fact, automation of
routine processes is a primary goal of most systems and application devel-
opment. Such automation makes end users’ jobs easier, more reliable, more
repeatable, and faster. Unfortunately, like the fabled cobbler’s children, we
often don’t automate our own work to gain the same benefits. DW/BI devel-
opers don’t typically make the time or have the wherewithal to automate the
routine processes that make up a large percentage of their work.

The previous two chapters introduced test automation and version control
for DW/BI systems development. I occasionally work with DW/BI teams
that stall out on those crucial technical practices. Such teams cannot really
be Agile, because their manually intensive efforts quickly become impedi-
ments to the goal of frequently delivering new high-value BI features. How-
ever, with those foundational practices in place, DW/BI teams are poised
for fully automated continuous integration, deployment, and monitoring.
These are the practices exhibited by a finely tuned and highly effective DW/
BI team.

Software product development teams have been using automated instal-
lation for many years. Most of us have experienced either push-button or
wizard-driven software installations on our own workstations, if not on
the installation of server software. Not only are today’s software products
designed for automated deployment that minimizes manual intervention;
these products are routinely and automatically updated with upgrades, bug
fixes, and improvements.

But, with some exceptions, today’s DW/BI system deployment is a highly
manual effort. More advanced DW/BI teams have a sequenced checklist of
steps to complete during an installation, while less advanced teams perform
an ad hoc series of actions until everything seems to be working. Either case
is error-prone and time-consuming. Imagine the possibilities if we took
a bit of time to automate all of those steps the way our software develop-
ment colleagues do. We would have a reliable, repeatable, efficient means of

ptg6843605

258 CHAPTER 9 � PROJECT AUTOMATION

installing the latest version of our DW/BI system—and that means that we
could deploy new features more frequently.

But wait, that’s not all! If we can automate DW/BI system deployment, then
without too much extra effort we can create automated builds within those
development sandboxes introduced in Chapter 7, “Test-Driven Data Ware-
house Development.” Then we might as well combine those automated
builds with our automated tests to quickly, easily, and frequently rebuild
and retest the system. What a great way to maintain high confidence in the
quality of our DW/BI system!

Our software development colleagues have been practicing continuous inte-
gration for a while now, and the results are exciting. Developers spend much
more time working on software and less time chasing down bugs. They can
make fearless changes and quickly get confirmation of whether or not their
changes have broken the system.

This chapter draws on that experience and introduces approaches for DW/
BI system build automation, continuous integration, and automated deploy-
ment. Fortunately, there are lots of open-source software tools to help with
this automation. Unfortunately, most of these tools are designed for build-
ing compiled software systems. We will examine techniques for adapting
these tools to the nuances of technology integration and customization.
Gone are the days of wondering if you’re building a fragile DW/BI system
that will break under the pressure of use.

WHAT IS PROJECT AUTOMATION?
If we expect to do something more than once, we should consider auto-
mating it. After all, isn’t that what our customers are asking for help with?
The steps required to build and test the DW/BI system are candidates for
automation, as are the steps necessary to deploy the system into production.
The procedure for generating a release bundle from the version control sys-
tem should be automated. Automating the build, monitoring, release, and
deployment of the business intelligence systems under development is core
to Agile Analytics. In practice it looks something like the following:

Scenario

Bob arrives early this morning to finish some project work before the daily stand-
up. He wants to be sure that Natasha and Henry aren’t blocked waiting for him
to finish the code that imports syndicated third-party customer demographic data

ptg6843605

WHAT IS PROJECT AUTOMATION? 259

into the integration tier of the data warehouse. Bob realizes it’s been a while
since he has fully rebuilt the system in his local sandbox, and he wants to be sure
that he does his final testing on the most up-to-date version of the system. So, he
initiates an update to his local workspace, executes the uninstall script to remove
the older version from his sandbox, and then executes the build script to install the
latest version of the DW/BI system on his sandbox environment. Finally, he runs
the data load scripts to populate the new installation with development data. All
of this takes a little less than 30 minutes, including time for Bob to get his fresh
coffee while the uninstaller script was running. Now Bob is ready to get his work
done using the latest system version.

As Bob works on his new code, he notices the small green icon in the lower
corner of his screen. It represents the utility that is monitoring the continuous inte-
gration sandbox. The green icon tells Bob that the last integration/test sequence
(sometime overnight) completed successfully. If something had gone wrong, the
icon would be red. Bob is happy to see that everything is working as expected,
allowing him to add his new code into the system.

Francisco also arrives early and decides to pair program with Bob so that he can
learn more about the syndicated data import process. They finish up the third-
party import code about 45 minutes before the stand-up and check in the new
code along with the new test cases. This check-in is detected by the continuous
integration server, which automatically executes the build/test sequence. As Bob
and Francisco anticipated, everything works fine and all of the tests (including the
new ones) pass. The team will be happy to hear about this progress during the
daily stand-up.

During the stand-up Natasha also reports her latest ETL modifications, which
were checked into the version management system along with her new test cases
late yesterday. These include the deployment of the latest customer profitability
segmentation model from the data mining that Prakash completed last week. The
scheduled nightly build included Natasha’s latest changes, and the team is very
happy that the recent builds are successful.

During the daily stand-up Henry commits to finishing up the BI features that will
enable users to see the customer profitability segments. He anticipates having
something that can be demonstrated to users by tonight’s scheduled system build.

Francisco commits to modifying the customer dimensions in the warehouse to
include the new customer demographic data, and Natasha commits to finishing
the ETL modifications that will merge this syndicated data with the FlixBuster data.
They anticipate that these modifications will be ready for the scheduled nightly
build as well.

As the end of the current iteration approaches, the team continues to make this
sort of progress. Dieter, the product owner, is delighted. The automated continu-
ous integration system gives him confidence that new changes aren’t breaking pre-
viously working capabilities. On Wednesday before Friday’s feature showcase,
Dieter tells the team that he would like to deploy the latest version into production
if the users accept these latest features and improvements. The team agrees to
finish its last few tasks and begin preparing for a deployment.

ptg6843605

260 CHAPTER 9 � PROJECT AUTOMATION

In preparation for Friday’s feature showcase Henry, the acting release manager
for this iteration, creates a new release branch in the version control system, tags
it as RB_2_0, and checks it out into his workspace. He runs the release bundler
script that the team has developed for automatic deployments, which creates a
self-contained package that can be copied to any properly configured server.
Unpacking and executing this release bundle will automatically check for the
proper server configuration and then, if everything checks out, will automatically
install the latest DW/BI system version on the server.

After running the uninstaller script to clean up the preproduction demo server,
Henry copies the release bundle onto the demo server, unpacks it, and executes
the installer. He runs the data loader scripts to populate the system and runs the
diagnostic scripts to verify that the installation completed successfully. This dry run
installation gives Henry (and the team) confidence that the deployment is self-con-
tained and does not require a connection to the version control system for success-
ful completion. By 4:00 on Thursday Henry has reviewed the demo deployment
results with the team, and Dieter leads a walk-through of the new features that will
be showcased tomorrow.

By 10:00 A.M. on Friday the feature showcase is successfully finished. The user
community is excited about the new improvements and has identified only a few
minor refinements needed before version 2.0 is deployed into production. The
team spends the rest of Friday making these final changes on the release 2.0
branch, and by 4:00 P.M. Henry has re-created the release bundle and will run
one final test of this installation on the test server. By 4:30 P.M. the team is satis-
fied that the release bundle is stable, and by 5:15 version 2.0 has been installed
on the production servers and the data migration scripts are running. Since tonight
is the team’s “Extreme Bowling” night, everyone is ready to turn the lights out and
head to the bowling alley by 6:00 P.M. The team members worked a little longer
than normal today, but their sense of accomplishment is high and their spirits are
good.

This example shows how test automation, version control, and project auto-
mation all coincide to give an Agile Analytics team continued confidence
that their system is always ready for production. This triad of practices
enables the Agile Analytics team to react quickly and smoothly to address
problems with the build or to respond to the wishes of customers for pro-
duction deployments.

In this latest FlixBuster scenario we saw examples of the following types of
automation:

� One-step builds: automating the build process so that the entire sys-
tem build is triggered by one execution step. This step may trigger a
multistage “wizard” but is still initiated in one step.

ptg6843605

GETTING STARTED 261

� Triggered builds: system builds that are automatically triggered by
some event, such as a change in the version control repository.

� Scheduled builds: system builds that are executed at a prescheduled
time, such as late at night while developers are asleep.

� Push-button release: the automated creation of a stand-alone release
package that omits non-production items such as test suites and
utility files.

� Installation and deployment: the automation of the installation
procedure for rapid deployment.

� Monitoring: the automatic monitoring of triggered and scheduled
builds to notify developers of build success or failure.

This chapter outlines an adaptation of the principles and practices pre-
sented in detail by Mike Clark in Pragmatic Project Automation (Clark
2004). This book is an excellent treatise on complete project automation for
Java software development projects using the Apache Ant1 and CruiseCon-
trol2 open-source build automation tools. In this chapter we will explore the
adaptation of these and other tools to the unique differences in DW/BI sys-
tems automation.

GETTING STARTED

There are a few things that must be in place and working before project
automation makes sense. These include

� Version control. As discussed in Chapter 8, “Version Control for
Data Warehousing,” all of the project files must be stored in a cen-
tral version control repository. This code management system pro-
vides the automation processes with a single source from which to
get the files needed to build the project. The version control system
also enables the development team to create automated build scripts
for different versions of the DW/BI system.

� Automated tests. As discussed in Chapter 7, “Test-Driven Data
Warehouse Development,” automated tests are tests that run and
check their own results automatically. They enable the team to
incrementally build quality into the DW/BI system. These auto-
mated tests are an integral part of project automation. They are
run automatically during continuous integration to confirm that

1. http://ant.apache.org/
2. http://cruisecontrol.sourceforge.net/

http://ant.apache.org/
http://cruisecontrol.sourceforge.net/

ptg6843605

262 CHAPTER 9 � PROJECT AUTOMATION

the system builds are successful. Without these automated tests we
would have confirmation that the DW/BI system components are
successfully installed and configured, but not whether they function
as expected.

� Utility scripts. Scripts are the building blocks of project automation.
They may be operating system command scripts, database scripts, or
other small scripts that automatically perform simple and singular
tasks in the build process. In the FlixBuster scenario, Bob uses an
uninstaller script that the development team had built to simplify
the removal of the DW/BI system components from the server(s).
Scripts should be small and simple to debug and should not require
their own separate build processes. These are most commonly shell
scripts using command-line statements.

� Monitoring devices. In the FlixBuster example there is a small
green icon on Bob’s workstation desktop that tells him that the most
recent build was successful. A red icon would have signaled a prob-
lem with the build that Bob would need to look into. Some teams
configure their automation systems to send SMS messages to team
members’ mobile devices, others to send e-mail or Twitter messages;
and some monitor build success using visual controls like the red/
green icon on developers’ desktops. Whatever the communication
technique, the entire development team must be notified immedi-
ately when a build fails. We will look at some tools and techniques to
assist with this monitoring requirement later in this chapter.

BUILD AUTOMATION

A one-step automated build is the point of departure for more compre-
hensive project automation. This commanded build is used routinely by
developers within their sandboxes during the develop-test cycle. Once estab-
lished, the one-step build is the basis for scheduled and triggered builds.

A one-step build process changes the nature of your project documentation.
How many projects have you worked on that included a written sequence of
installation instructions for installing and configuring the DW/BI system?
The one-step automated build replaces the need for step-by-step instruc-
tions, with guidelines on how to change the build configuration.

Project automation expert Mike Clark describes the ideal automated build
as being CRISP—Complete, Repeatable, Informative, Schedulable, Portable
(Clark 2004). Here is what that means for DW/BI system builds:

ptg6843605

BUILD AUTOMATION 263

� Complete. A complete build is one that builds the system entirely
from scratch on a properly configured baseline platform. The build
should complete as many of the installation steps itself with mini-
mal manual intervention. While some build utilities may require
certain prerequisites, such as properly installed DBMS and BI soft-
ware, other tools have the ability to install these prerequisite tech-
nologies as part of the build.

� Repeatable. The build should be consistently repeatable with the
same outcome every time as long as the prerequisite configuration
is present. Each new release candidate of the DW/BI system should
include a fully tested build file. When this build file is maintained in
the version control system alongside the other system components,
anyone can check out any version of the system and quickly build it
with minimal additional effort.

� Informative. An informative build broadcasts the details of build
success or failure to developers. At the most basic level, the build
must report whether or not all build steps were completed suc-
cessfully. But more important, the build should take advantage of
all those automated tests that we talked about in Chapter 7, “Test-
Driven Data Warehouse Development.” The build should run a test
suite to confirm that everything is functioning properly.

� Schedulable. With relative ease, a complete, repeatable build can be
run on a schedule like the scheduled nightly build in our FlixBuster
example. Scheduling your builds is the next aspect of completely
hands-off project automation. The scheduled build can be set to run
on a time interval such as every hour or at prescheduled times. Since
the version control system holds everything needed to build the sys-
tem, the computer can simply do a fresh checkout of the system and
run the build file. Moreover, the build can be triggered by certain
events, such as when new or modified files are checked into version
control.

� Portable. The build should run on any platform with the proper
prerequisites. In a DW/BI system this means that we must take
extra care not to hard-code server names, database names, IP
addresses, and similar elements. These specific references and set-
tings must reside in configuration files, the system registry, or some
other location that is independent of the DW/BI system compo-
nents. This characteristic can be particularly challenging in complex
DW/BI environments, but it is well worth the investment of effort
to separate machine- or database-specific references from DW/BI
system code.

ptg6843605

264 CHAPTER 9 � PROJECT AUTOMATION

Rudimentary Automated Build

Let’s take a look at what a CRISP build process for a DW/BI system looks
like in action. Depending on your choice of technologies and architecture,
your build process might include the following high-level workflow:

Precondition: servers configured and all prerequisite software installed/configured

1. Check out all of the files for the build from the version control
system.

2. Create all database instances and/or schemas.
3. Create physical data models for the integration and presentation

database tiers.
4. Install all required stored procedure definitions.
5. Install the ETL modules for extracting source data into the integra-

tion schemas.
6. Install the ETL modules for manipulating data in the integration

tier.
7. Install the ETL modules for moving data from the integration into

the presentation tier.
8. Configure the OLAP cubes (if applicable).
9. Install the analysis tier modules (dashboard code, report defini-

tions, analytical models, BI apps, etc.).
10. Configure the source database connections.
11. Configure the BI system database connections.
12. Run the initial data load sequence.
13. Process the OLAP cubes (if applicable).
14. Run the complete suite of automated functional tests for

verification.

Post-condition: analytical applications working and displaying expected data

It is this workflow that we need to automate. Unlike the homogeneous
nature of building a complete Java application using a Java compiler, a
tricky challenge in automating DW/BI projects is in the multiple heteroge-
neous steps that must be completed. That is, there are several steps and each
requires a different “compilation” technique ranging from operating sys-
tem shell scripts, to special command-line interfaces provided by BI tools,
to importing XML configuration data. So, the first order of business is to
figure out how best to perform each of these workflow steps with a single
command.

ptg6843605

BUILD AUTOMATION 265

We should start by building the necessary script or utility to verify that the
preconditions are present before executing the first step. We want to execute
the first step only if the preconditions are met. This might be a shell script
that issues OS commands to confirm that the server meets the minimum
hardware requirements and that the required software is installed and con-
figured properly.

The steps for creating database instances and creating the physical data
models and stored procedure definitions are typically done with SQL data
definition language (DDL) commands. We will place these DDL commands
into SQL files that can be executed using the command-line utility provided
by most DBMS software. We’ll take advantage of the SQL IF EXISTS (...)
DROP <item> command prior to our CREATE <item> ... commands to ensure
a clean installation on servers on which our DW/BI system has been previ-
ously installed.

The steps for installing ETL modules or packages vary depending on the
ETL tool. SSIS packages are conveniently stored in separate files and orga-
nized in Visual Studio project directories on the file system. Informatica
modules can be exported into XML files and stored on the file system. Other
ETL tools can store code in other file formats. Regardless, these files must
be managed in the version control system where they can be automatically
checked out, loaded into, and executed by the automated build. For exam-
ple, SSIS modules can be executed from the operating system command line
using the SQL Server utility dtexec.exe. So, our build step for SSIS ETL will
involve checking out the Visual Studio project files from version control and
installing them in an appropriate location on the server where they can be
executed by other build steps using the dtexec.exe utility.

Similarly, configuring and processing OLAP cubes (if your architecture
includes these) will vary depending on the technologies involved. Micro-
soft’s SSAS enables the export of cube creation scripts into XMLA files. So,
our build process for this technology can use the SQL Server command-line
utility ascmd.exe to execute those XMLA scripts. Later on the build process
will use this utility to process the cubes.

Likewise, our build process must automate the installation and configu-
ration of end-user BI applications. This step ranges from automating the
installation of custom applications to loading report templates and analytic
configurations into commercial BI presentation tools. Finally, we’ll need to
automatically configure the database connections needed to hook every-
thing together and run the initial data load sequence.

ptg6843605

266 CHAPTER 9 � PROJECT AUTOMATION

Most of the technologies we use in business intelligence provide some type
of API or command-line utility that can be used by the automated build
process. It sometimes takes some creative thinking, or a bit of extra pro-
gramming, to automate the setup and execution of these steps. However,
this up-front investment will more than pay for itself over time.

The final step in the build process is to kick off the automated testing tools
to run the entire suite of integration and functional tests. This is the step
that will satisfy the Informative aspect of the CRISP characteristics. Seeing
our tests passing after running the build process gives us confidence that
our system is of production quality.

With each of these steps automated it is now pretty simple to create a master
script or batch process that will execute the steps in the proper sequence (see
Listing 9.1). With that script, we have a simple and rudimentary automated
build that has all of the CRISP properties. Using the Subversion version
control software and Microsoft’s SQL Server technologies as an example
might result in a simple build script like the one in Listing 9.1. Note that
this example uses the dtexec.exe utility for most of the steps. This approach
takes advantage of SSIS packages to execute the steps and enables database
connections to reside in a configuration file on the server, thereby making
the build script portable to other servers, provided the configuration file is
present on those servers.

Listing 9.1 SimpleBuildScript.bat Listing

01 :: Verify that preconditions are present before starting build.
02 CALL verifyPreconditions.bat
03 ECHO Server Preconditions Verified
04
05 :: Check out mainline source files for build
06 MKDIR C:\BuildWorkspace
07 CD C:\Buildworkspace
08 svn checkout http://repos.flixbuster.com/dw/trunk ^
 C:\BuildWorkspace --username builder --password h0ping4Succ3ss
09
10 :: Create database instances
11 dtexec /f ^
 "c:\Buildworkspace\db\staging\createStagingInstance.dtsx"
12 dtexec /f ^
 "c:\Buildworkspace\db\integration\createIntegInstance.dtsx"
13 dtexec /f ^
 "c:\Buildworkspace\db\warehouse\createWarehouseInstance.dtsx"
14 dtexec /f ^
 "c:\Buildworkspace\db\marts\createFinanceMartInstance.dtsx"
15
16 :: Create physical data models
17 dtexec /f ^

ptg6843605

BUILD AUTOMATION 267

 "c:\Buildworkspace\db\staging\createStagingModel.dtsx"
18 dtexec /f ^
 "c:\Buildworkspace\db\integration\createIntegrationModel.dtsx"
19 dtexec /f ^
 "c:\Buildworkspace\db\warehouse\createWarehouseModel.dtsx"
20 dtexec /f ^
 "c:\Buildworkspace\db\marts\createFinanceMartModel.dtsx"
21
22 :: Install stored procedures
23 dtexec /f "c:\Buildworkspace\sp\staging\createStagingSPs.dtsx"
24 dtexec /f ^
 "c:\Buildworkspace\sp\integration\createIntegrationSPs.dtsx"
25 dtexec /f ^
 "c:\Buildworkspace\sp\warehouse\createWarehouseSPs.dtsx"
26 dtexec /f "c:\Buildworkspace\sp\mart\createFinanceMartSPs.dtsx"
27
28 :: Configure OLAP cubes
29 dtexec /f "c:\Buildworkspace\olap\createFinanceCube.dtsx"
30 dtexec /f "c:\Buildworkspace\olap\createCustomerBuysCube.dtsx"
31 dtexec /f "c:\Buildworkspace\olap\createInventoryCube.dtsx"
32 dtexec /f "c:\Buildworkspace\olap\createProfitabilityCube.dtsx"
33
34 :: Install analytical applications
35 CALL c:\Buildworkspace\apps\dashboard\install.bat
36 CALL c:\Buildworkspace\apps\reporting\install.bat
37 CALL c:\Buildworkspace\apps\advanced\install.bat
38
39 :: Run Initial Load Sequence
40 dtexec /f ^
 "c:\Buildworkspace\etl\masterInitialLoadSequencer.dtsx"
41 dtexec /f ^
 "c:\Buildworkspace\olap\masterCubeProcessingSequencer.dtsx"
42
43 :: Run DbFit Functional Test Suite
44 CD C:\Buildworkspace\test\fitnesse
45 java -cp fitnesse.jar fitnesse.runner.TestRunner ^
 localhost 8085 FrontPage -html TestResults.html

More Advanced Automated Build

Although the batch script in Listing 9.1 is functional, it isn’t an ideal solu-
tion. One problem is the absolute path references to the various build files.
This script isn’t very portable. Also, for this simple script to really be use-
ful it needs some conditional expressions to verify that each step has com-
pleted successfully; and we should echo those results to the screen to make
it more informative. Suddenly our simple script is not so simple anymore.
It’s quickly becoming a procedural program that is error-prone and not par-
ticularly adaptable to changes. It reflects additional code that must be main-
tained, debugged, tested, and updated. Furthermore, it is only informative

ptg6843605

268 CHAPTER 9 � PROJECT AUTOMATION

inasmuch as there is a human watching the output while the build executes.
We need a better approach.

Once again we can benefit from the prior advancements made in the appli-
cation development realm using build automation tools such as Ant ,Maven,3

NAnt,4 MSBuild,5 and others. Although these build tools were initially tai-
lored for use on software projects implemented with Java, .NET, and other
languages and frameworks, they can easily be adapted to automate our DW/
BI system builds.

Build tools operate using a build specification file, typically an XML data
file containing predefined elements that the tool knows how to interpret
and act upon. It isn’t possible to include a full tutorial on build tools in this
chapter, and many such tutorials are available online. However, a simple
example should help show how they work, so let’s re-create the prior SQL
Server example using NAnt. It would also be appropriate to choose MSBuild
for a SQL Server–based data warehouse. NAnt and MSBuild are intended
for Windows and .NET platforms and provide predefined tasks that are
designed for Microsoft technologies. Conversely, Ant and Maven provide
predefined tasks that are better suited for UNIX and Java/J2EE platforms
and tend to be more suitable for Oracle-, IBM UDB–, or MySQL-based data
warehouse architectures.

Here are the essential steps that we need our automated build to perform:

1. Delete and clean up all traces of any prior builds if there are any.
2. Execute the build workflow steps as previously outlined.
3. Execute the automated test suite.

Define the Project

The first step in creating our NAnt build is to create the NAnt project speci-
fication file that will contain the required build tasks and dependencies. To
do this simply open a text editor and add the following lines, then save the
file as FlixBusterBI.build:

<?xml version="1.0"?>
<project name="FlixBusterBI" default="all" basedir=".">
 <target name="all"/>

</project>

3. http://maven.apache.org/
4. Ant for .NET environments: http://nant.sourceforge.net/
5. http://msdn.microsoft.com/en-us/library/wea2sca5(VS.90).aspx

http://maven.apache.org/
http://msdn.microsoft.com/en-us/library/wea2sca5(VS.90).aspx
http://nant.sourceforge.net/

ptg6843605

BUILD AUTOMATION 269

If we turn NAnt loose on this skeleton build file, we will see the following
output:

>NAnt -buildfile:FlixBusterBI.build
NAnt 0.90 (Build 0.90.3780.0; release; 5/8/2010)
Copyright (C) 2001-2010 Gerry Shaw
http://nant.sourceforge.net

Buildfile: file:///C:/FlixBusterSandbox/FlixBusterBI.build
Target framework: Microsoft .NET Framework 2.0
Target(s) specified: all

all:

BUILD SUCCEEDED

Total time: 0 seconds.

The first line of this skeleton build file tells us that the file is an XML 1.0
file. The project element surrounds the entire body (currently empty) of
the build file. It identifies the project name as FlixBusterBI. The default
attribute is the most important attribute in this line. It tells NAnt which
default target to execute. In this case, the target named all does nothing
because it does not specify a task to perform. A target is an action step with
a name that can be referenced elsewhere. We’ll look at targets in more detail
shortly. The basedir attribute tells NAnt that the base directory, from which
other files are referenced, is the same as the build file.

Define the Directory Structure

Now we need to tell NAnt about our project directory structure. This will
make it easier later when we need to tell NAnt where to find various files.
We’ll do this with properties. Properties are like variables. Once they are
defined, they can be referenced in the build file using the syntax ${prop-
erty.name}. Properties are a great way to avoid repeating actual values
throughout the build file. If we decide to rename the etl directory to ssis,
we only need to change the property definition in the build file. The follow-
ing listing adds some of these properties to FlixBusterBI.build:

<?xml version="1.0"?>
<project name="FlixBusterBI" default="all" basedir=".">
 <property name="build.dir" value="build"/>
 <property name="build.prod.dir" value="${build.dir}/prod" />
 <property name="build.test.dir" value="${build.dir}/test" />
 <property name="db.dir" value="db" />
 <property name="db.stage.dir" value="${db.dir}/stage" />
 <property name="doc.dir" value="doc" />
 <property name="etl.dir" value="etl" />

ptg6843605

270 CHAPTER 9 � PROJECT AUTOMATION

 <property name="olap.dir" value="olap" />
 <property name="test.dir" value="test" />

 <target name="all" />

</project>

Agile Analytics Practice: Use Properties Files
Storing volatile or machine-specific configuration settings, file paths, and
connection strings in a local properties file and referencing these settings
in the build script will make your build highly portable from sandbox to
sandbox. Keep a local properties file template under version control,
and create instances on each build platform.

Define the Build Tasks

Now that NAnt knows about our project’s directory structure, it’s time to
tell it about the build tasks that need to be executed. Tasks are actions that
are specified by the target elements within build.xml. For example, we can
use the following target to specify the task that creates our staging database
instance:

<?xml version="1.0"?>
<project name="FlixBusterBI" default="all" basedir=".">
 ...
 <property name="db.dir" value="db" />
 <property name="db.stage.dir" value="${db.dir}/stage" />
 ...

 <target name="all" depends="createStaging" />

 <target name="createStaging">
 <exec program="dtexec">
 <arg value="/f" />
 <arg path="${db.stage.dir}/createStagingInstance.dtsx" />
 </exec>
 </target>
</project>

The new target element executes the SQL Server utility dtexec.exe to exe-
cute the SSIS package createStagingInstance.dtsx. Also, notice the new
depends attribute that has been added to the original target named all. This
attribute specifies that the all target depends on the successful completion
of the createStaging target before it can execute.

Like SQL, NAnt is declarative rather than procedural. NAnt executes its tar-
get tasks according to a set of dependencies specified in the build file. This

ptg6843605

BUILD AUTOMATION 271

enables us to be concerned with tasks and their prerequisites rather than
the order in which they appear in the build file. The script in Listing 9.1
must execute commands in sequence. If the initial load sequence is executed
before the databases are created, the process will fail. NAnt doesn’t care
about the order of the tasks in the build file since it follows the specified
dependencies. This declarative approach can be very powerful, allowing you
to run just part of a build by specifying an intermediate target. For example,
if we wanted to install only the databases and OLAP cubes, we might run
this command:

> NAnt –buildfile:FlixBusterBI.build configureOLAP

The configureOLAP option tells NAnt to execute the target element of that
name and everything it depends upon (i.e., all of the prerequisite database
targets). Most build automation tools use some form of declarative para-
digm coupled with dependency specification to determine the execution
order, simplifying management and support of your build script.

It is important to perform a clean installation every time we run the build
script. This will ensure that the build is neither corrupted by nor utilizes
any residual elements from a prior installation. You could use NAnt to cre-
ate an uninstaller that is invoked from within your build script, or you may
have an uninstaller script that is executed in the build script using depen-
dencies like this:

...
<target name="uninstallFlixBusterBI">
 <exec executable="cmd">
 <arg value="/c"/>
 <arg value="masterUninstaller.bat"/>
 </exec>
</target>

<target name="createStaging" depends="masterUninstaller.bat">
 <exec program="dtexec">
 <arg value="/f" />
 <arg path="${db.stage.dir}/createStagingInstance.dtsx" />
 </exec>
</target>
...

Define the Testing Tasks

Now, after adding the necessary exec tasks to run our remaining installa-
tion steps, the only thing from our original batch script that is missing is the
automatic execution of tests to verify that the build is working correctly. We
need to create a target element in our NAnt build script called test that will

ptg6843605

272 CHAPTER 9 � PROJECT AUTOMATION

run the automated test suite. In fact, this is the culminating target in the
script and probably should be the default target named in the script header.
For this example we will assume that our functional test suite is in DbFit,
an extension of the FitNesse testing framework designed for database test
automation. One way to do this is to use the exec task to run the FitNesse
test runner like this:

<property name="fitnesse.dir" value="${test.dir}/dbfit" />
<property name="fitnesse.server" value="localhost" />
<property name="fitnesse.port" value="8085" />

<target name="test" depends="processOLAPCubes">
 <exec program="${fitnesse.dir}\dotnet2\TestRunner.exe">
 <arg value="-r" />
 <arg value="fitnesse.fitserver.TestRunner,dotnet2\fit.dll" />
 <arg value="${fitnesse.server}" />
 <arg value="${fitnesse.port}" />
 <arg value="${fitnesse.test}" />
 </exec>
</target>

At the time of this writing there is an open-source project called Fitnesse.
NAntTasks6 that is in the alpha stage of readiness. This extension of NAnt
includes a set of predefined tasks that streamline the execution of test suites.
For example, the following NAnt sequence starts an instance of FitNesse,
runs the tests on fitnesse.tests, converts the format to XML for reporting
purposes, and then stops the FitNesse instance:

<fitnesse-start workingdir "${fitnesse.dir}" port="8085" />
<fitnesse-testrunner-dotnet outputfile="fitnesse.results"
 testpage="fitnesse.tests" />
<fitnesse-formatoutput inputfile="fitnesse.results"
 outputfile="fitnesse.results.xml" testpage="fitnesse.tests" />
<fitnesse-stop />

NAnt as well as other build automation tools is highly extensible. New tasks
like the ones in the code just listed can be developed and easily added to
the task library. Unfortunately, at this time the extensions (plug-ins) avail-
able for mainstream DW/BI technologies are limited. As the previous exam-
ples have shown, automating DW/BI builds commonly involves executing
command-line utilities. While this is a feasible approach, it would be better
to interface with the tools’ APIs, and to capture the resulting output and
format it for effective reporting. Well-designed plug-ins can provide this

6. http://sourceforge.net/projects/fnessenanttasks/

http://sourceforge.net/projects/fnessenanttasks/

ptg6843605

BUILD AUTOMATION 273

capability. Today’s DW/BI teams must be prepared to exercise some cre-
ativity to achieve the goal of one-step automated builds. Ideally, in the not-
too-distant future there will be an increasing number of extensions to these
build tools from which we can benefit.7

Agile Analytics Practice: Store Test Frameworks
Testing frameworks such as FitNesse that are kept in the version control
repository are available on any build platform as soon as the DW/BI
system is checked out on that platform. No additional setup is required.7

Another SQL Server Approach

So far I’ve been showing examples using dtexec.exe to run SSIS packages inside
NAnt exec targets. Another alternative uses the SQL Server utility osql.exe, which
executes a SQL script contained in a file with a .sql extension. Here is an example
of how this can be implemented within NAnt. First, create an exec target that
generalizes the command-line call to osql.exe like this:

<target name="exec.sql">
 <exec program="${osql.exe}">
 <arg value="${osql.conn}" />
 <arg value="-n" />
 <arg value="-b" />
 <arg value="-i" />
 <arg value="${target}" />
 </exec>
</target>

Next, you can bundle a sequence of SQL script executions with explicit calls to
the exec.sql target like this:

<target name="buildIntegrationDB">
 <property name="target" value="${db.int.dir}/createDB.sql" />
 <call target="exec.sql" />

 <property name="target" value="${db.int.dir}/createModel.sql" />
 <call target="exec.sql" />

 <property name="target" value="${db.int.dir}/createSPs.sql" />
 <call target="exec.sql" />
</target>

7. Build tools such as Maven support plug-ins to ease the integration of other utilities
such as test automation libraries. This eliminates the need to store those utilities in
the version control system.

ptg6843605

274 CHAPTER 9 � PROJECT AUTOMATION

While this approach is more procedural than the earlier examples, it has the
benefit of being more self-documenting within the sequencing target. In the earlier
example, one must look at the SSIS package to see these lower-level execution
steps. Conversely, the approach presented earlier makes it simpler to store local
settings in a local properties file that is used by the SSIS packages to ensure build
portability.

When to Get Started

There is no time like the present to get started automating your DW/BI
build. Even if your team is in the midst of a development cycle, it is well
worth the allocation of some effort to begin automating your build. How-
ever, the preferable time to set up a one-step build is at the start of the proj-
ect—during iteration zero. If you’re lucky enough to be starting the first
version of your DW/BI system from scratch, you have the luxury of creating
a simple one-step build script and evolving it incrementally alongside your
DW/BI system.

Unfortunately, most of us aren’t so lucky. Instead, we are working on the
maintenance, refinement, or advancement of an existing DW/BI system. In
this case, it is ideal to allocate time at the start of the next project cycle (or
between development efforts) to establish your automated build. Investing
time and effort into doing so will yield high returns during the next devel-
opment cycle.

Finally, if your team is in the throes of a development project, and it’s likely
to be a while before there will be a break between projects, the team should
treat build automation as a series of user stories. These stories should be
given high priority alongside the BI feature stories and should be scheduled
into the iterative development routine. The team may not achieve fully auto-
mated one-step builds in a single iteration but will quickly reap the benefits
of incremental automation. And in just a few short iterations, the one-step
build will become a reality.

CONTINUOUS INTEGRATION

Once your team has a CRISP build, it has established the strong foundation
for more comprehensive project automation. The next question is when to
execute the build and how often. Agile Analytics teams continuously inte-
grate newly completed code into the build/test cycle, and they monitor the
results of this continuous integration.

ptg6843605

CONTINUOUS INTEGRATION 275

The primary benefit of build automation is increased confidence in the qual-
ity of the DW/BI system under development. Every time the build completes
successfully, the team gets confirmation that it is not introducing defects. In
the early days of your Agile Analytics project the build can run all test suites
in a reasonable time frame. However, those test suites will quickly grow to
a point where the build/test time is unacceptably long. When that happens,
the team becomes disinclined to run the build, thereby reducing the build
frequency, and ultimately diminishing the team’s confidence—a negative
feedback loop.

To mitigate this tendency it is best to create multiple build variants, one
that executes the unit test suite, another that executes the acceptance (func-
tional) test suite, and so on. This can be done by simply using a single build
file with multiple testing task blocks that are run selectively depending on
the build purpose. Alternatively, multiple build files, each performing a dis-
tinct and well-defined task, can be coordinated through a build sequencer
that selectively invokes the correct build files. If you take the latter approach,
be sure to avoid task duplication across these build files. Yet other build
tools like Maven enable you to create reusable build modules and build pro-
files that use just the modules needed for their purpose.

Build Frequency

A key benefit of the one-step automated build is the ability to quickly spin
up developer sandboxes. You may have experienced situations where the
developers’ sandboxes have gotten out of sync over time. Even with the judi-
cious use of version control as described in Chapter 8, “Version Control for
Data Warehousing,” developer sandboxes tend to accumulate residue over
time that isn’t necessarily included in the production artifacts under ver-
sion control. It’s a healthy practice for each developer to periodically tear
down his or her sandbox and rebuild it from scratch to eliminate this resi-
due. Each developer should do this at the start of each new iteration. Virtu-
alization can greatly help with the management of various sandboxes in the
development infrastructure.

Agile Analytics Practice: Use Virtual Machines
With the use of virtualization with tools like VMware, Xen, and others,
a sandbox can be rolled back to a baseline instance in seconds. An
added benefit is that developers can mimic distributed systems on a
single workstation using virtualization.

ptg6843605

276 CHAPTER 9 � PROJECT AUTOMATION

You should expect to run your unit test build every 5 to 15 minutes as incre-
mental code changes are checked into the version control system. The more
comprehensive acceptance test build should be run every couple of hours,
or three or four times per day. The performance testing build should run
once every day. Since the performance build probably involves higher data
volumes and a more time-intensive setup and execution, it is best to run this
at night.

Recall the discussion in Chapter 7, “Test-Driven Data Warehouse Develop-
ment,” about development and testing sandboxes (refer to Figure 7.4). The
integration server is where the functional testing builds are executed, and
the preproduction testing server is where performance testing builds are
executed. The benefit of this infrastructure is that developers can continue
working unfettered while a build is executing on another computer. There-
fore, the only constraint on build frequency is ensuring that one build has
completely finished executing before another one starts. For large, complex,
and high-volume DW/BI systems, build times can become quite lengthy. So,
depending on the size, scope, and complexity of your DW/BI system, you
will need to find a build frequency that balances frequent feedback against
build times.

Scheduled Builds

At this point you have a commanded build, one that runs whenever you
execute it, saving precious time and effort. The next step is to run this build
automatically without having to do anything yourself. Scheduled builds run
at regular intervals while developers are doing other things (including sleep-
ing) and alerts them only if there is a problem. Not only does this recurring
build test the newly completed code, but it also serves as a regression test to
ensure that new changes haven’t broken formerly working components.

One approach might be to use scheduling utilities built into most operat-
ing systems, such as cron or at, to run the build script. With a bit of extra
effort we could easily create a script or batch file that will check out the
current files from version control, run the build file to build and test the
system, redirect the build output to a log file, and use the scheduling utility
to run the master script at predetermined intervals. We might even develop
an easy method for broadcasting the log file containing the build results to
the team.

Good news: This approach is rather anachronistic. Today’s automation tools
support the scheduled execution of build scripts, so there is no need to use
separate scheduling utilities.

ptg6843605

CONTINUOUS INTEGRATION 277

Triggered Builds

Sometimes you want the build to run when a particular event occurs. For
example, you may want the build to run as soon as a team member commits
changes into version control. Although these changes will be picked up in
the next scheduled build, if a lot of changes accumulate between builds, it
can be hard to fix a broken build. A build triggered by a single version con-
trol update is much simpler to diagnose if it breaks.

Unfortunately, scheduling utilities aren’t designed to detect events, and cre-
ating such a utility is not trivial. The good news is that there are free and
commercial tools available that automate scheduled and triggered builds,
as well as many other beneficial features. These tools are called continuous
integration (CI) utilities; some examples include AnthillPro, CruiseControl,
CruiseControl.NET, Hudson,8 Team Foundation Server, and TeamCity.

CI software is installed on the integration and preproduction testing serv-
ers. It runs in the background and follows the directions in a configura-
tion file to execute the build process. For example, if the configuration file
specifies a NAnt build to execute whenever a change is made to files under
version control, the CI software will periodically poll the version control
system. When it detects a change, it will run the specified NAnt build file
and publish the results to the team.

Setting Up Continuous Integration

Setting up the CI build generally involves the following steps:

� Configure the build server. Install all prerequisite DW/BI software
on a dedicated build server. This server is either a physical or, prefer-
ably, a virtual server and should be sufficiently powerful to run the
entire DW/BI system using a small test data set.

� Install the build software. Install the build software on the build
server (e.g., NAnt) that will be used to run your build files.

� Install the CI software. Install and configure the continuous
integration software on the build server (e.g., CruiseControl.
NET) that will be used to execute the scheduled or triggered builds
automatically.

� Create the build workspace. Create a directory on the build server
that will act as a container where the files involved in the build

8. http://hudson-ci.org/

http://hudson-ci.org/

ptg6843605

278 CHAPTER 9 � PROJECT AUTOMATION

process are managed. This directory will be used by the CI software
to check out the project, generate log files, and produce the informa-
tive results that are published to the team.

� Create the log directory. Make a directory within the build work-
space where the CI software can create and manage the log files
generated during the build.

� Check out the project. Check out all of the project files into a project
directory within the build workspace. If everything goes well, this
will be the only time you’ll need to manually check out the project
on the build server. Once everything is working, the CI software
will do that automatically. Some continuous integration tools, like
Hudson, may perform this step for you automatically.

� Configure the CI process. Ensure that the continuous integration
process includes the following steps:

1. Deletes all traces of the last build
2. Checks out the current version of the project from version

control
3. Runs the build

Mike Clark (Clark 2004) calls this a “scorch-the-Earth” build—one
that starts everything from scratch to avoid the odd side effects that
can happen when detritus is left hanging around from previous
builds. The master build file is written for execution by your build
software, so an example NAnt CI build file for a project stored in
Subversion might look like this:

<?xml version="1.0"?>
<project name="ci-build" default="build" basedir="checkout">

 <property name="project.dir" value="project"/>
 <property name="build.file" value="FlixBusterBI.build"/>

 <target name="build">
 <delete dir="${project.dir}" />
 <exec executable="cmd">
 <arg value="/c"/>
 <arg value="masterUninstaller.bat"/>
 </exec>
 <svn command="checkout"
 destination="c:\builds\checkout\project"
 svnroot="http://repos.flixbuster.com/dw/trunk"
 username="builder"
 password="h0ping4Succ3ss" />
 <nant buildfile="${project.dir}/${build.file}" />
 </target>

</project>

ptg6843605

CONTINUOUS INTEGRATION 279

This file is called CIBuild.build and is stored in the top level of
the build workspace where it can orchestrate the build process. The
syntax should look familiar since it is just another NAnt specifi-
cation, although it contains a few new tasks that we haven’t seen
before. The CI build file will eventually be executed by the CI soft-
ware but should be tested manually to make sure everything works
as expected.

� Check in the CI build file. CIBuild.build should be checked into
version control, which might seem confusing because it contains the
checkout command. In fact, this file is unlikely to change much, so
we will keep the active copy of it on the build server. But it should
also be kept in version control so we don’t lose it, plus we can use it
to easily set up other build servers if necessary.

� Configure the CI process. Just as the build software relies on a build
file for its instructions, so does the CI software. In fact, most CI
tools use XML specification files like build tools. However, a new
generation of CI tools is emerging that enable developers to config-
ure the CI build through a graphical interface and keep the XML
build file under the covers. Hudson is such an example. Hudson
runs on the build server as a service and is configured via a Web
browser interface. Other tools such as AnthillPro have a similar
approach that simplifies this configuration.

In fact, many current CI tools are also capable of handling the preparatory
tasks that we included in the CIBuild.build file. They can establish the build
workspace, check out the project files from version control, execute the
build file, and run the test suite. You’ll need to decide how to delegate these
tasks between your build tool and your CI tool.

CI build tools enable you to easily specify either scheduled or triggered
builds along with a variety of parameters to control when builds occur. The
following snippet is an example from a CruiseControl configuration file
(ccnet.config). This bit of code specifies that CruiseControl should check
the source control repository every 30 seconds and, if a modification exists,
should trigger a build.

<project name="CIBuild">
...
<triggers>
 <intervalTrigger name="CIbuild"
 seconds="30"
 buildCondition="IfModificationExists"
 initialSeconds="30" />

ptg6843605

280 CHAPTER 9 � PROJECT AUTOMATION

</triggers>
<sourcecontrol type="svn">
 <executable>c:\program files\subversion\bin\svn.exe</executable>
 <trunkUrl>http://repos.flixbuster.com/dw/trunk</trunkUrl>
 <workingDirectory>c:\builds\checkout\project</workingDirectory>
</sourcecontrol>
...
</project>

One of the most important responsibilities of the CI tool is to broadcast
the results of the build to the team. Team members should be able to eas-
ily check the status of the most recent build at any time, but they should be
bothered by the CI process only when the build fails. Most CI tools provide
a project dashboard that presents the project build status at a glance. Agile
Analytics teams typically have a dedicated monitor in their team room that
constantly displays the CI dashboard. Figure 9.1 shows an example of a
project dashboard as presented by Hudson. Notice that team members can
subscribe to RSS feeds from Hudson for all builds, failed builds, or just the
latest build. Hudson can also be configured to send e-mails to team mem-
bers when the build fails.

Figure 9.1 FlixBuster Analytics project dashboard using Hudson

ptg6843605

PUSH-BUTTON RELEASES 281

Agile teams have invented many creative techniques to keep the team
informed of the CI build status. One of the most famous examples is the
use of red and green lava lamps in the team room. A bubbling green light
indicates that the most recent build succeeded. A bubbling red lamp tells the
team that there is a problem.

Agile Analytics Practice: A Broken Build Stops the Line
A broken build is the team’s top priority. Everyone stops working to col-
laborate about the failure and how to fix it. Nobody checks in any new
work until the build is fixed. If the build isn’t fixed in 20 minutes, the team
should undo changes and revert to the previous working version. When
the build is fixed, the team reviews the results for acceptance before get-
ting back to work.

Once you’ve set up a CI build for functional acceptance testing on your
build server, it’s a great idea to do the same thing for performance testing
on your preproduction testing sandbox. As we discussed in Chapter 7, “Test-
Driven Data Warehouse Development,” your performance testing should
simulate production data volumes, concurrent user loads, and other system
stressors. Since running this suite of tests tends to be very time-intensive,
the performance test is a good candidate for a scheduled build rather than
a triggered one. By configuring this build to run nightly, the team will gain
regular confirmation that the evolving DW/BI system is meeting perfor-
mance goals.

PUSH-BUTTON RELEASES

Successful build automation and continuous integration enable teams to
overcome the main impediments to the goal of delivering production-qual-
ity BI features every few weeks. This success means that the team has auto-
mated tests, the project is under version control, and the system is routinely
built and tested to confirm its quality. The final goal in this project auto-
mation chain is production deployment of the DW/BI system quickly, eas-
ily, and reliably. Imagine if your DW/BI team could deploy newly accepted
features into production frequently and without disrupting the user
community.

This is the goal of push-button releases. We want a deployment package
that resembles a software product that can be installed in any environment
that meets the necessary prerequisites. Unlike the automated build and CI

ptg6843605

282 CHAPTER 9 � PROJECT AUTOMATION

server, the production environment should not require any special tools or
configurations other than those needed to run the DW/BI system. More-
over, it should be easy to determine the currently installed version of the
system.

What Is a Release?

A release is a bundled collection of files from a specific point in the project
repository (ideally a tagged point on a release branch). It includes the mini-
mal set of files needed to deploy the complete working DW/BI system. Each
release is marked by a distinct version number and includes a brief descrip-
tion of the newest features or enhancements. The release also includes
essential documentation needed by end users and administrators.

At the heart of a good release package is single installation script or util-
ity, hence the name push-button release. The installation script may require
active involvement by an administrator to configure various aspects of the
system during the install process. The release should be generated in the
same way whether you are producing a release for a QA team, an internal
deployment, or a productized DW/BI solution for a commercial market.

Design your release package so that it can be installed by someone outside
the development team such as a systems admin, system tester, or support
specialist. Think of the installers and ancillary support staff as extensions
of the customer community. This customer community is much like your
end-user customer community, and their user stories should be identified
and prioritized just like the feature stories we discussed in Chapter 4, “User
Stories for BI Systems.” The release package is the primary product that
you are developing for this customer community, and it deserves frequent
review and acceptance just like BI features.

Preparing a Release

If you aren’t careful, release packages can become elaborate, fancy affairs
that are projects in their own right. It’s best to start by building the small-
est and simplest thing that is sufficient. (Is this a familiar theme?) Ideally,
you’ve automated the build and your continuous integration is running
regularly. As the end of the iteration nears, it’s time to prepare for a release
in the hope that customers will be demanding those great new features the
team has just finished.

It’s helpful to have a designated release manager, or even a separate release
team, to coordinate this preparation. The role of the release manager is to

ptg6843605

PUSH-BUTTON RELEASES 283

oversee the release process and enable the development team to continue
developing. The release manager helps the team properly follow and main-
tain the discipline of versioning, tagging, and branching strategies and
manages the sandbox environment promotion. Additionally, the release
manager is an important gatekeeper for production deployment. For large
systems this can become a full-time job. The release manager guides the fol-
lowing release preparation processes:

1. Team check-in. All team members need to synchronize their work-
spaces with the version control system, making sure that all com-
pleted work is checked in.

2. Sanity check. Run the build one final time to be sure that every-
thing is checked in, the system is working, and all tests are passing.

3. Create the release branch. Create a branch in the version control
system specifically for this release (see Chapter 8, “Version Control
for Data Warehousing,” on creating release branches).

4. Finalize the release branch. Double-check to be sure that all docu-
mentation and ancillary files are updated for this release, including
release notes, README files, installation instructions, and others.

5. Configure CI for the release branch. Just as we need continuous
integration on the trunk, so we need to have CI running on the
branch to validate the changes we make on the branch.

6. Test the release branch. Check out the release branch into a separate
workspace and run the sanity check once more to be sure that the
release branch is complete and correct.

7. Tag the release branch. Once everything on the branch is finalized
and tested, tag the branch to mark the release point (see the dis-
cussion on release tagging in Chapter 8, “Version Control for Data
Warehousing”).

8. Merge changes into the trunk. Changes that are made along the
release branch must be thoughtfully merged back into the trunk.

After these steps are complete, the release tag marks the version of the sys-
tem that is ready to be bundled into a release. While the release manager is
coordinating the release, the rest of the team is free to continue working on
the project mainline.

Bundle the Release

Now that you have confirmed that the release is ready, it’s time to bundle
the release package. The release package will end up as a single distribution
file that can be unpacked on the server(s) targeted for installation. When

ptg6843605

284 CHAPTER 9 � PROJECT AUTOMATION

the admin doing the installation unpacks the distribution file, the result
should be easy to navigate and execute. The instructions should be easy to
find and follow, and the installation should be self-explanatory. Like project
automation, a key benefit of creating an elegant and easy-to-use distribu-
tion package is that it frees developers to spend more time developing rather
than supporting the deployment process.

What Goes in a Release Package?

The first order of business is to determine which files from your project
repository belong in the release package, which files do not, and how to
organize the files. Review your project repository and identify the files and
directories that are not part of the production DW/BI system such as the
following:

� Test suites and testing frameworks. You won’t be running your
tests in production, so be sure to leave out test suites and any testing
frameworks and tools.

� Development utilities. Scripts, tools, or utilities used to make devel-
opment easier are not part of production deployment. These should
be left behind.

� Build and CI scripts. These were designed to build the system and
run the tests and should be left behind. However, you may have spe-
cially developed deployment scripts that are variations of the build
and CI scripts.

� Compilable source code. If your DW/BI system includes compo-
nents that are compiled, such as homegrown BI applications, they
should be precompiled. The compiled executable file is included in
the distribution bundle, but the source files are not.

Evaluate your project files carefully and select only those files that are essen-
tial. In addition to these files, it may be necessary to develop some scripts to
assist in the deployment. For example, the following deployment processes
should be scripted:

� Data archive. If the DW/BI deployment is an upgrade from a previ-
ous version, all the data in the previous version should be archived
before the upgrade. This will make it feasible to revert to the prior
version if something goes wrong with the upgrade. Although this is
a routine DBA procedure for DW/BI systems, your DW/BI team may
want to consider developing scripts to automate this as part of the
upgrade.

ptg6843605

PUSH-BUTTON RELEASES 285

� Data migration. Iterative DW/BI development often results in
changes to the data models. Migrating historical data from older
data models to newer ones may require some conversion scripts.

� Data loaders. Upon deployment, DW/BI systems must be primed
with initial data. On the first deployment all required source data
must be “pumped” into the system. But iterative DW/BI develop-
ment routinely calls for adding new source data alongside already
existing data. Both cases call for scripts or utilities to perform these
initial data loads and data alignments.

� User authentication and security. Depending on how user autho-
rization and role-based access control are handled in your DW/
BI system, it may be necessary to develop scripts to migrate user
authorization data from prior versions to the latest version during
deployment.

� User-defined views/reports. Nothing annoys BI system users more
than having their custom reports disappear after a system upgrade.
And there is little that is more tedious than having to manually re-
create these views and reports for users. Create the necessary scripts
to back up these user-defined features and restore them in the new
system. Occasionally during iterative BI development, the data ele-
ments or metadata used in these reports changes, so it is important
to automate the migration of old user-defined features to work with
new data elements.

Carefully evaluate your deployment preparation and transition process and
identify any other steps in the workflow that can and should be automated
as part of push-button deployment. If you are concerned about the time
required to automate these steps, consider that they already consume sub-
stantial time to execute manually. Part of the ability to deploy frequently is
the freedom to move unimpeded by time-consuming manual preparatory
and transition steps.

How to Organize the Release Package

Once you’ve determined what goes into the distribution bundle, you need
to think carefully about how to organize its contents. The project direc-
tory structure is designed to support current and future developers, but will
it also make sense to the installer? Ideally, the project directory structure
will require minimal changes to be suitable as a distribution structure. For
example, Figure 9.2 depicts how a release package might be organized after
eliminating the unnecessary directories.

ptg6843605

286 CHAPTER 9 � PROJECT AUTOMATION

Packing It All Up

Now that all the deployment scripts, files, directories, and structure have
been determined, it’s time to pack them into a single container like a .zip,
.tar, or .rar file. In keeping with the spirit of this chapter, we should auto-
mate this process as well. The good news is that tools like Ant and NAnt can
help with this step. For example, a NAnt script that packages the FlixBuster
DW/BI system into a .zip file named FlixBuster-1_0.zip might include the
following:

...
<zip zipfile="FlixBuster-1_0.zip">
 <zipfileset basedir=".">
 <include name="README" />
 <include name="BUILDING" />
 <include name="GLOSSARY" />

FlixBuster-1_0
README
BUILDING
GLOSSARY

doc/

data/
db/

etl/
mdx/

sp/
olap/

sql/

vendor/
vendorsrc/

views/
xmla/

integration/
marts/
stage/
warehouse/

apps/
advanced/
dashboard/
reporting/

bin/

src/

lib/

Reorganizing Distribution
Bundle

FlixBuster-RB-1_0
README
BUILDING
GLOSSARY

build/

doc/
data/
db/

etl/
mdx/
olap/
sp/
sql/
test/

util/
vendor/
vendorsrc/
views/
xmla/

prod/
test/

integration/
marts/
stage/
warehouse/

apps/
advanced/
dashboard/
reporting/

dbfit/

Figure 9.2 An example release package structure

ptg6843605

PUSH-BUTTON RELEASES 287

 </zipfileset >
 <zipfileset basedir="${bin.dir}" prefix="bin">
 <include name="**/*" />
 </zipfileset>
 <zipfileset basedir="${doc.dir}" prefix="doc">
 <include name="**/*" />
 </zipfileset>
 ...
</zip>
...

It is relatively simple using tasks like this one to create an Ant or NAnt script
to handle the bundling for you. Be sure to check this file into version control
along with everything else.

Keeping Track of Versions

I was once on a non-Agile DW/BI team that was developing new features
and enhancements for an existing DW/BI system. Even though we weren’t
Agile, we had multiple deployments scheduled to release new features at
different points in the project schedule. After one deployment users began
complaining about features missing that were previously available. Upon
closer inspection we discovered that we had inadvertently installed an older
version of the system rather than a newer one. We went backward! Not only
did the deployment (a manual one) consume precious time, so did the root-
cause analysis as well as the redeployment of the proper version.

Over time, and multiple deployments, it’s easy to lose track of exactly which
version of the DW/BI system is currently in production and what the delta
is between versions. Like software, an installed DW/BI system should be
able to tell us what version it is. Moreover, it’s a really good idea to include
database schema versions within each of the databases that make up your
DW/BI system. I will defer to the many good articles available that describe
how to instrument this versioning within your system. However, we need a
similar capability for our release packaging. Notice that the preceding NAnt
snippet has hard-coded version numbering in the distribution file name.
We can take advantage of NAnt properties to make this more dynamic by
defining the following properties in our bundling script:

...
<property name="name" value="FlixBuster" />
<property name="version" value="x_y" />
<property name="release" value="${name}-${version}" />
...
<zip zipfile="${release}">
...

ptg6843605

288 CHAPTER 9 � PROJECT AUTOMATION

Now, with these properties set, you can take advantage of the NAnt com-
mand parameter –D, which enables you to override the values of properties.
So, assuming our NAnt file is named releasePackage.build, the NAnt exe-
cution command

> NAnt –buildfile: releasePackage.build –Dversion=1_0

will dynamically create the right file name for our release package. This
technique can be used elsewhere in this and other NAnt scripts to physi-
cally tag a production deployment with a version number that can be easily
located. Couple this approach with proper branching and tagging in the
version control system, and you should be able to avoid experiences like the
one I described.

WRAP-UP

Consider this chapter an introductory overview of project automation for
business intelligence. Each project will be different because of the tech-
nology stack choices, the systems architecture, the development tools, and
other factors. Because we aren’t working with compiled source code like
our software brethren, and we’re working with a diverse set of technolo-
gies, project automation becomes somewhat more complicated. Nonethe-
less, it is worth the investment of effort to automate as much as possible on
your DW/BI project. Not only will developers regain valuable time, but the
DW/BI team can truly operate in Agile ways, frequently building and test-
ing, frequently deploying, and always with the confidence of knowing that
everything is still working.

If your head is as full after reading this chapter as mine is after writing it, I
have a word of advice: Start automating early. If possible, start small during
iteration zero by automating the simplest build, CI, and deployment pro-
cesses. Then allocate some time in every iteration to gradually enhance and
mature these processes so that your project automation progresses at the
same rate as the project itself.

If your DW/BI project is already under way, then better late than never. But
don’t try to eat the elephant in one bite. Instead, allocate a little bit of time,
starting in your next iteration, to begin automating the build. Once you have
a commanded build working, focus on continuous integration followed by
push-button releases. Don’t stop delivering features to set this up if you can
avoid it. Instead, reduce the size and number of features delivered for a few

ptg6843605

WRAP-UP 289

iterations. Although the team’s velocity will suffer some in the interim, the
payback will be evident once the project is automated.

As I have worked with Agile Analytics adopters, project automation is one
of the technical practices that meets with significant resistance. Excuses
include

� We don’t know XML or Java or C# or . . .
� We don’t have, or can’t afford, a dedicated build server.
� We don’t have time to automate the project; we have to get started

developing.
� Project automation won’t work for us because we are using XYZ

technology.

Regarding not knowing the necessary language, I have this to say: DW/
BI developers, like anyone in high tech, must constantly learn and grow
their skills. Automation does not require object-oriented programming
genius, nor does it require in-depth XML knowledge. Tools that support
project automation are continuously advancing and making automation
easier without any special skills. Meanwhile, the skills required are not dif-
ficult, and there are many good online resources and examples to help the
neophyte.

Regarding the cost or availability of a dedicated build server: I recently fin-
ished a DW/BI project in which we configured a virtual server as a dedicated
build server. The primary cost of this solution was in the allocation of disk
storage for the server. Since build servers don’t operate on large data vol-
umes, this cost was nominal and the disk space was recovered at the end
of the project. A dedicated build server need not be an expensive, high-
powered computer. It is not uncommon for development teams to repur-
pose a mothballed computer as the build server. Regardless of the options
available, the cost of developer time spent doing these things manually very
quickly justifies an investment in a dedicated build server.

Regarding the lack of time to automate the project: A bit of time estimating
and simple math should help put this excuse to rest. How much time will
it take the team to do a manual build, a manual integration, and a manual
deployment? Now, since Agile Analytics calls for frequent builds, system
integration at regular intervals, and potential deployment every iteration,
multiply the initial time estimates by the number of iterations in your proj-
ect plan (at least). The time saved by project automation, coupled with the
peace of mind it offers, far outstrips the time it takes to set everything up.

ptg6843605

290 CHAPTER 9 � PROJECT AUTOMATION

Alternatively, I would encourage the DW/BI team to ask itself, “How would
our project benefit if we could build quickly, integrate continuously, and
deploy frequently?” An honest assessment of those benefits will typically
result in a strong argument in favor of this investment.

Regarding the argument about some DW/BI technologies being difficult
to automate: There is no doubt that some technologies are more easily
automated than others, and unfortunately I can’t profess to having auto-
mated projects in every available DW/BI technology. However, I have yet
to encounter a DW/BI technology that was impossible to incorporate into
automated processes. Doing so may require creative thinking and a bit of
exploration and experimentation.

As with all things Agile, if you move in small, incremental steps and in short
iterations, before you know it your project will be fully automated and you’ll
wonder why you haven’t always worked this way.

ptg6843605

291

Chapter 10

FINAL WORDS

This book offers a point of departure to help launch you on a successful
Agile Analytics trajectory. However, rather than covering all of the knotty
problems you’re bound to encounter on your journey, I’ve introduced a set
of methods, techniques, and practices that support the core values and guid-
ing principles of agility. Keeping your focus on these values and principles,
rather than seeking a comprehensive methodology, will enable you to adapt
your flavor of Agile Analytics to effectively handle the knotty problems in
your environment.

It is my intention that this book be equally relevant to business leaders,
stakeholders, project managers, and technical leaders and practitioners. One
of the critical success factors of Agile adoption is the active participation of
all of these groups. As you consider Agile Analytics adoption, I hope you
will emphasize this community involvement within your organization.

The following sections are some of the topical areas that I believe either are
important enough to reemphasize or deserve further attention even though
they weren’t addressed in this book. Some of these topics raise questions for
which I don’t have good answers but continue to explore. Other topics are
so situational that there isn’t one best approach. And still other topics in this
chapter are cautionary messages to help you avoid many of the perils and
pitfalls that can trap new Agile adopters.

FOCUS ON THE REAL PROBLEM

It pays to keep in mind the highest priority of Agile Analytics: to satisfy cus-
tomers through the early and continuous delivery of working BI features.
Whether you adopt the techniques presented in this book or another set of
methods serving the same purpose matters less than keeping a focus on the
real problem—that is, the DW/BI community’s track record of not satisfy-
ing our customers.

In addition to the many IT industry reports presenting DW/BI project
failure statistics, the proliferation of “spreadmarts” in most enterprises is
another measure of our failure as a DW/BI community to respond to the

ptg6843605

292 CHAPTER 10 � FINAL WORDS

needs of our customers. Wayne Eckerson coined the term spreadmart in
2002 to describe the proliferation of ad hoc spreadsheets within an orga-
nization for decision support (Eckerson 2002). Spreadmarts are created by
various individuals, at various times, using different data sources and dif-
ferent business rules. They create a fractured view of the enterprise and are
anathema to the goal of “one version of the truth.” They typically bloom
where standard BI reporting is too inflexible or too slow or fails to provide
the needed features.

In discussions about different methods and techniques it is tempting to
focus on how the new method will support our ability to do things the way
we’ve done them in the past. We are drawn to what we know best. I recently
had a conversation about Agile methods with a senior IT executive who
has decades of experience in the industry. He said, “I know how to evalu-
ate whether a waterfall project is on track by evaluating the initial project
plan, the development artifacts, and whether or not the critical path tasks
are being completed on time. But I can’t see how to evaluate whether an
Agile project is on track.” I pointed out that effective Agile approaches result
in the continuous delivery of production-quality, working features that cus-
tomers have the opportunity to review and accept, suggesting that customer
satisfaction is a better way of evaluating project status. We reflected on past
projects that went according to plan but failed to delight customers ver-
sus projects that deviated from their plans and were ultimately considered
big successes. He acknowledged that traditional project-tracking methods
might be diverting his attention from the real problem, satisfying the actual
needs of the customer community rather than rigidly following a plan.

Many Agile practices introduced in this book can be difficult, requiring
investments of time, effort, and/or money. Test automation may require an
entire shift in the way development teams work and may require develop-
ers to learn new tools and techniques. Keeping your project under version
control may require an investment in procuring and configuring the right
version control software. Build and deployment automation requires a dif-
ferent kind of discipline from what many DW/BI teams are experienced
with. Focusing on value and quality may require managers and executives
to view project results and status very differently. These and other Agile
practices will initially be disruptive until they become team habits.

Agile adoptions tend to fail when the adopters “cherry-pick” the easy prac-
tices and ignore the hard ones. Efforts to justify ignoring hard practices
include arguments like “We have a tight timeline and don’t have time to
learn that right now” or “Our situation is unique and that practice won’t

ptg6843605

BEING AGILE VERSUS DOING AGILE 293

work for us.” There is no mandate to adopt all of the recommended prac-
tices at once, or even to adopt all of them. However, as your team wrestles
with whether or not to adopt a practice, consider the following questions:

� Will the goals of delivering customer value early and responding to
change be better served if we adopt this practice?

� Will our team and our project be better off in the long run if we
adopt this practice?

� Will the cost of adopting this practice be justified by its benefits?
And how long will that return on investment take?

These questions will help your team keep its focus on the real problem
rather than on reasons to ignore good practices. Also consider these ques-
tions as you roll out new practices over time. A particular practice may be
valuable to implement, but others might need to be implemented first.

If you are adopting an Agile Analytics approach, you must be doing so
because your previous methods were insufficient in some way. It pays to
continuously reflect on those insufficiencies and evaluate your Agile adop-
tion in light of how well it is helping you remedy the real problems.

BEING AGILE VERSUS DOING AGILE

I said it in the first chapter, but it bears repeating: Agile Analytics is not a
methodology. Rather, it is a development style based on a set of core values
(the Agile Manifesto) and supported by a set of guiding principles on which
decisions are based. Agile’s core values and guiding principles give rise to
good process, not the other way around. In my experience helping to enable
organizational agility I’ve seen success patterns and anti-patterns emerge.
I’ve begun referring to success patterns as Being Agile and anti-patterns as
Doing Agile. Doing Agile refers to teams that fail to move beyond the sim-
pler trappings of agility: iterations, daily stand-up meetings, and the like.
Being Agile refers to teams whose inherent values, behaviors, and mind-sets
exhibit the essence and spirit of agility: adaptive, evolutionary, value-driven,
and quality-driven development. Organizations that are Agile also do Agile,
but the inverse is not necessarily true. Many organizations are decidedly
non-Agile while still using many Agile practices. The following are some of
the “smells” that suggest that a team or organization may be too fixated on
Doing Agile:

� Iron triangle planning. Agile Analytics projects deserve sufficient
planning, but Agile plans are projections, not promises. Leaders

ptg6843605

294 CHAPTER 10 � FINAL WORDS

with lots of experience sometimes have difficulty breaking the habit
of expecting a fixed-price, fixed-scope, and fixed-schedule project
plan. An Agile plan reflects the teams’ best projections based only
on the information that is currently available. As requirements
change and uncertainty is uncovered, those projections are likely to
become obsolete. Agile leaders anticipate and adapt to this.

� Management styles don’t change. The best Agile Analytics teams
are self-organizing, self-managing, and self-responsible. This doesn’t
mean that the role of management is subverted; instead, it changes.
Managers are enablers, decision makers, and facilitators. They work
with development teams to remove barriers and protect the team
from unwanted outside pressures. Agile leaders are effective at
replacing command-and-control leadership styles with more col-
laborative ones.

� Emphasis on productivity. The promise of Agile Analytics is the
delivery of a high-value, high-quality working system, not increased
productivity. Leaders who emphasize productivity are surprised
when quality suffers and end users are dissatisfied with results.
Yet, when developers are pressured to be more productive, they
take shortcuts such as reduced testing and hurried workmanship.
Conversely, when the emphasis is on high-value and high-quality BI
features, it is often the case that users’ needs are met after only 60
to 70 percent of the planned features are done, effectively shorten-
ing the project cycle by shrinking the scope. Agile leaders emphasize
quality and value and trust that productivity will take care of itself.

� Adapting to change is only lip service. Agile or otherwise, anyone
who has been in the DW/BI business for long knows that change is
inevitable. This is perhaps more true in today’s climate than ever
before. Unfortunately, embracing and adapting to change are not
normal parts of human nature. We go to great lengths to control
and limit changes. We establish change control boards and change
management processes. But instead of controlling changes, these
processes only make them more disruptive. Embracing change
means seeking it out, inviting it in, and encouraging more of it to
ensure that we build the right solution for our customers. Agile
leaders are eager to add new requirements, eliminate unnecessary
requirements, overhaul project plans, rearrange priorities, and even
discard working BI features in order to respond to and embrace
change.

� Customer collaboration is short-circuited. One of the four Agile
core values is customer collaboration. Unfortunately, really effective
customer collaboration is hard. Our customers are busy and hard to

ptg6843605

BEING AGILE VERSUS DOING AGILE 295

pin down. They sometimes tell us things that don’t make sense or
won’t work. Customer collaboration cuts into development time. It
is a mistake to defer to product owners or business analysts to be the
complete “voice of the customer.” It’s easy to make this mistake, and
it’s almost never as effective as real customer collaboration. BI cus-
tomers have really interesting stories to tell, and when developers get
to hear these stories firsthand, they get a more holistic understand-
ing of the BI system they are building—and they build it better.
Agile leaders insist on frequent collaboration between BI develop-
ment teams and end users, and they enable effective collaboration
between these groups.

While Agile is not a prescriptive methodology, the Agile community has
invented a number of technical and management practices that boost Agile
performance, many of which have been adapted to analytics and are pre-
sented in this book. Although these practices are not mandatory, new Agile
adopters tend to be more successful when they adhere to practices and fol-
low them closely. Like people learning to play a musical instrument or sport,
new Agile teams learn how to be effective by first learning and copying
the habits and practices of seasoned teams. Once they’ve effectively copied
these, they can benefit by selectively applying practices and tailoring how
they are applied.

Agile skeptics sometimes focus on topics such as the value of compre-
hensive requirements and design up front; the importance of rigorous,
formalized documentation; the need for detailed project plans; or other
“sacred” aspects of their favorite methodology as arguments against Agile
approaches. Conversely, Agile advocates can sometimes be overly evangelis-
tic in their zeal, insisting that there is a single right method or a mandatory
collection of practices required to be “truly Agile.” It’s often the excited new
adopters who are the most zealous in their notion of Agile methods. As with
most good ideas in our industry, one size never seems to fit all.

It’s easy to get drawn into methodology debates, focusing on specific tech-
niques while losing sight of the real problem. Methodology debates tend
to cause us to focus on championing our favorite techniques rather than
on their intended outcomes and results. Such debates can quickly become
pedantic and lose focus on the real goal: doing what is right to deliver
customer value early and often. If we’ve learned anything from various
methodologies that have emerged over the years, it is that prescriptive meth-
odologies are not a substitute for having motivated and talented people on
the team. As Fred Brooks said, “There is no silver bullet” that will magically
boost performance by orders of magnitude (Brooks 1975).

ptg6843605

296 CHAPTER 10 � FINAL WORDS

My hope is that you’ll embrace the tenets of agility that have been presented
throughout this book, if not the specific practices. By focusing on continu-
ously becoming more Agile rather than on doing Agile methods, you will be
more effective when faced with complex challenges for which there is no
recommended practice. By blending and tailoring the good practices from
a variety of Agile flavors, you will arrive at a customized Agile flavor that is
most appropriate for the nuances of your environment.

For managers and leaders reading this book in the hope of urging your staff
to adopt Agile approaches, I have a word of advice: Do your best to avoid
imposing a single, standardized Agile method across all Agile teams. By
focusing on the teams’ outcomes and results to measure their performance,
you can empower them to adopt and adapt the practices as they think best.
Watch out for the temptation to monitor and measure performance using
traditional performance-to-plan metrics. Keep in mind that we expect
plans to change, and effective Agile teams embrace that change and adapt
accordingly.

GNARLY PROBLEMS

Like all complex, technical domains we face problems in DW/BI that are
just plain gnarly. These are problems that make our jobs both more inter-
esting and frustrating at the same time. Issues such as extremely large data
volumes, demand for near real-time analytics, and widely disparate or
anomalous source data can all be gnarly problems. Furthermore, you may
be facing some gnarly problems that are unique to your situation.

When I speak with experienced DW/BI practitioners about Agile Analyt-
ics, the conversation almost always involves a discussion of how to handle
some particularly complex situation. I once spoke with a BI director who
described a high-volume warehouse with over 20 fact tables of varying grain
and a significant collection of conformed dimensions, all indexed on sur-
rogate keys. The BI director was struggling with evolutionary data model-
ing because something as simple as adding a new column to a dimension
table would adversely impact physical data storage, performance, the ability
to backfill the new column with historical data, and other areas. The team
would have to complete several database tasks to avoid incurring unwanted
technical debt and performance hits.

Initially it did seem as if evolutionary database development would be
impractical in this environment. However, as we talked further, I began to
ask questions like “How easy will it be to get your data models correct and

ptg6843605

GNARLY PROBLEMS 297

complete up front?” and “How long will comprehensive up-front modeling
take?” We also talked about the fragile relationship between business and
IT and the lack of confidence that business leaders had in IT. As we talked
about the trade-offs between the cost of dealing with gnarly technical prob-
lems and the benefits of incrementally evolving toward the right solution,
the BI director acknowledged that the benefits were probably worth the
extra effort. The cost-benefit analysis doesn’t always go like this for gnarly
problems. Sometimes it makes sense to do a little more up-front work to
avoid the high cost of change later. But the question should always include
consideration of how much better off the project will be.

Another gnarly problem that I frequently encounter is that of data migra-
tion, including migrating data from one database or schema to another one
or from one third-party technology to another. It is generally assumed that
data migration cannot be iterative and incremental since that implies having
one foot in the old schema and the other in the new one. The evolutionary
modeling, database refactoring, and continuous delivery methods presented
in Chapter 6, “Evolving Excellent Design,” may address this problem in
some situations. However, there are situations in which the data migration
must occur all at once and must be correct on the first try. When very large
data volumes are involved, these efforts are substantial and risky. Therefore,
it makes sense to take an Agile approach leading up to the actual migra-
tion, using short iterations to build and test migration scripts. By working
in small steps, and continuously integrating and testing those scripts in a
preproduction “dry run” environment, you can be confident that the actual
migration will succeed.

This book does not attempt to address all the various gnarly problems you
may encounter in your DW/BI environment; nor does it try to answer the
various forms of “How do I apply practice X given special circumstance Y?”
My hope is that introducing the fundamentals of Agile Analytics will pro-
vide the jumping-off point needed to shape the techniques to work effec-
tively for these difficult situations. I find that every new project I work on
requires some new creative thinking about how to set up continuous inte-
gration, test automation, automated deployment, and other technical prac-
tices given the idiosyncrasies of the situation and technologies.

Finally, many Agile skeptics’ arguments are based on avoiding rework and
reducing technical effort. Agile Analytics does not ensure less technical
effort or limited rework. In fact, it is through the continuous, incremental
shaping of the solution, using good technical practices and refactoring, that
the system evolves to become the right, well-designed solution.

ptg6843605

298 CHAPTER 10 � FINAL WORDS

WHAT ABOUT EMERGING TECHNOLOGIES?
Our discipline is continuously morphing and evolving. While not new, data
mining and predictive analytics remain as advanced BI techniques. Com-
plex event processing and real-time analytics have been increasing in popu-
larity in recent years. On-demand and cloud-based DW/BI technologies are
gaining momentum as alternatives for many enterprises. High-performance
analytic databases based on massively parallel, shared-nothing architectures
are boosting the performance of extremely high-volume data analysis. These
are just a few of the current trends in our field, and it is reasonable to ques-
tion how Agile Analytics applies to these and other emerging technologies.

Many of these technologies should be enhanced by Agile development. On-
demand and cloud-based technologies offer a ready-to-go infrastructure
and system architecture. These may provide a more advanced starting point,
enabling Agile Analytics teams to get started sooner without the added
burden of configuring technology stacks. Some analytic, cloud-based, and
NoSQL1 databases eliminate the need for traditional data modeling, instead
using hidden/proprietary storage structures that are accessed via published
interfaces. These technologies may enable Agile Analytics teams to be less
bound to a particular data model, and therefore more easily able to adapt to
change.

As organizations seek to explore new and emerging technologies, Agile
techniques make perfect sense. By establishing timeboxed proof-of-concept
projects, Agile Analytics teams can iteratively experiment with new technol-
ogies by building actual working BI features while uncovering the strengths
and weaknesses of the technologies. This approach offers a much deeper
exploration than traditional research and analysis techniques since develop-
ers actually work with the technologies and users actually experience the
results, all the while using real operational data.

Conversely, many new and emerging technologies may change the nature
of the development environment. The “sandbox infrastructure” presented
in Chapter 7, “Test-Driven Data Warehouse Development,” provides each
developer with a private place to experiment, a separate sandbox for con-
tinuous integration, and a preproduction environment for final system
readiness. This model may not be as easy to achieve when developing in on-
demand and cloud-based platforms. However, the goals of these separate

1. A class of databases that do not adhere to a fixed relational model and do not expose
a SQL interface (see http://en.wikipedia.org/wiki/NoSQL).

http://en.wikipedia.org/wiki/NoSQL

ptg6843605

ADOPTION STRATEGIES 299

sandboxes remain relevant, and Agile Analytics teams may need to be cre-
ative in achieving these goals using new technologies.

The configuration of automated testing, continuous integration, and
deployment automation may also be impacted by many of these emerging
DW/BI technologies. As we saw in Chapter 8, “Version Control for Data
Warehousing,” and Chapter 9, “Project Automation,” modern DW/BI tools
using proprietary interfaces can be challenging to incorporate into project
automation scripts. Doing so with on-demand and cloud-based technolo-
gies may be even more challenging. Ideally, popularizing these practices will
encourage vendors to build better interfaces into their technologies to sup-
port them.

Agile approaches are very well suited to the development of complex event
reporting and other near real-time BI requirements. By taking an incre-
mental and iterative approach in this domain, Agile Analytics teams can
converge on the right balance of functional and performance requirements
needed to satisfy the customer community. Issues like the time-intensive
nature of updating the warehouse and data marts can be counterbalanced
with the time-sensitive needs of the business to receive data as soon as pos-
sible. Moreover, an Agile approach will enable the development team to
keep the DW/BI system as lean as possible to better respond to the real-time
demands of customers.

Adapting Agile methods to these new and emerging technologies is one of
the next steps in Agile Analytics. As you encounter nontraditional technolo-
gies and analytical problems, consider the benefits of an adaptive, evolution-
ary approach that will enable the early and continuous delivery of business
value. While the specific practices you employ may look different from the
ones introduced in this book, you’ll be able to align the constraints of your
project with the values and principles of agility.

ADOPTION STRATEGIES

As you consider adopting an Agile Analytics approach in your organiza-
tion, there are some things to consider and be prepared for. There may be
a significant cultural impedance mismatch to overcome, and it’s going to
take time. In his keynote address at the Agile2010 conference in Orlando,
Florida, Mike Cohn said, “Agile is not something you become, it is some-
thing you continue becoming more of.” Organizations that successfully
adopt Agile techniques do so by continuously reflecting and incrementally
maturing and improving. Agile is simple in concept but is not easy to learn

ptg6843605

300 CHAPTER 10 � FINAL WORDS

and practice well. You should expect some stumbles and challenges along
the way. After helping many teams and organizations with their Agile adop-
tions, I have observed many such struggles and a few outright false starts.

The topic of Agile adoption could fill an entire book. In fact, it does, and you
will benefit by adding Amr Elssamadisy’s, Agile Adoption Patterns to your
library (Elssamadisy 2008). However, I’ll leave you with some suggestions
and expectations to consider as you shape your Agile adoption strategy.

Expect Some Chaos

Whatever change you introduce, whether it is at the individual, team, or
organizational level, will cause some initial disruption, discomfort, and
chaos before the benefits are observed. If you play a musical instrument, a
sport like golf, or any activity that requires proper technique, you’ve prob-
ably experienced this. Your technique may be working okay, but it includes
some bad habits so you seek instruction from an expert. The expert shows
you proper technique, but bad habits are hard to break. While you’re trying
to unlearn your old technique and relearn the better technique, your per-
formance degrades below previous levels, you experience discomfort while
learning new habits, and it may be frustrating until the change has become
natural.

You can expect new Agile teams to experience initial frustration and dis-
comfort as they integrate new principles, practices, and techniques. The
Virginia Satir Change Model (see Figure 10.1) describes a pattern of events
and stages a team or individual passes through when undergoing change.
These stages affect team and individual feelings, thinking, performance,
and psyche as a team shifts from the late performance status quo to the new
one. These events and stages are summarized as follows:

1. Late status quo. The team is experiencing a consistent level of per-
formance using familiar tools, processes, and techniques. Members
know what to expect and how to behave and react.

2. Foreign element. The team is introduced to a new way of working
that is expected to improve performance, for example, the Agile
Analytics values, principles, and practices.

3. Resistance. The foreign element threatens the team’s comfort with
familiar structures and processes, and there is typically a period of
resistance to the new and unfamiliar changes.

4. Chaos. As the team and individuals grapple with new techniques,
their old expectations are no longer valid, and their old reactions

ptg6843605

ADOPTION STRATEGIES 301

are no longer effective. There is often frustration and a sense that
the new techniques aren’t working. Performance during this stage is
unpredictable.

5. Transforming idea. The group collectively discovers or embraces
an idea that is transformational. For example, a Scrum team has a
successful sprint and experiences the delight and excitement of the
customer community during the feature showcase.

6. Integration. Team members begin to align with one another and
embrace the changes with commitment. During this stage they may
continue to revert to old habits and behaviors, but they are commit-
ted to breaking those habits.

7. Practice. The changes are becoming more routine and second
nature. When team members encounter difficulty or frustra-
tion, they are able to identify problem areas and make effective
adjustments.

8. New status quo. If the change is successfully assimilated, the team
and the environment experience a consistent and predictable boost
in performance. The team becomes healthier and better able to
effectively react to uncertainty and difficulty.

Teams can get stuck in chaos and may need help moving out of this stage. By
understanding the natural progression of a team undergoing change, lead-
ers can provide the team with the necessary support and assistance to move
efficiently toward the new status quo.

Foreign
Element

Chaos

Re
sis

ta
nc

e

Integration Practice New Status QuoLate Status Quo

Pe
rfo

rm
an

ce

Transforming
Idea

Time

Figure 10.1 Satir Change Model

ptg6843605

302 CHAPTER 10 � FINAL WORDS

Leadership Responsibilities

Agile adoption is doomed without the sponsorship, support, and active
involvement of management. Beware the temptation to treat Agile adoption
as something limited to the development teams. Management styles may
need to change as part of Agile adoption. Agile leaders provide Agile teams
with focus and clarity of vision. They help the team strike the right bal-
ance among value delivery, focus on quality, and project constraints. Agile
leaders guide the team by establishing core strategic vision and values. They
facilitate team collaboration and work to foster team self-organization.
Agile leaders provide the team with necessary constraints by making dif-
ficult decisions such as the allocation of people, money, priorities, and time.
To do these things Agile leaders must have a solid understanding of Agile
development and realistic expectations about its impact on products and
projects.

Jim Highsmith, an expert on Agile leadership, outlines a few concrete things
that Agile leaders should do in his blog, “What Do Agile Executives and
Leaders Do” (Highsmith 2010d). These include aligning Agile transforma-
tion efforts to business strategy; helping teams understand and deliver on
business, product, and project objectives; creating an Agile performance
management system; facilitating a decentralized, empowered, collaborative
workplace; fostering an adaptable product line and product architecture;
creating an Agile proficiency framework; creating proactive and reactive
organizational adaptation processes; understanding the Agile development
process; and creating guidelines, training, and support for Agile processes,
practices, and tools.

The Agile Project Leadership Network (www.apln.org) is an organization
that is focused on developing Agile leadership qualities. The APLN helps
leaders focus on value, customers, context, teams, individuals, and uncer-
tainty and is founded on the values expressed in the Declaration of Interde-
pendence (www.pmdoi.org).

Goals and Business Alignment

Understanding and clarifying your goals for adopting Agile Analytics are
critical to success. Are you adopting Agile methods to address quality prob-
lems, improve customer responsiveness, rebuild the relationship with your
customer community, better handle the risk and uncertainty inherent in
your projects, address on-time delivery problems, or some other goal? Care-
fully evaluate your reasons for Agile adoption and establish a set of realistic
indicators of success.

www.apln.org
www.pmdoi.org

ptg6843605

ADOPTION STRATEGIES 303

It is equally important to understand how these goals align with the strate-
gic goals of the business. Doing so will ensure that you have executive sup-
port and buy-in and will enable you to show how improvements in your
DW/BI processes directly tie to strategic organizational objectives.

Agile Adoption Road-Mapping

As a consultant helping organizations with Agile adoption (including soft-
ware, product, and DW/BI agility), I have discovered tremendous benefit
in the power of strategic road-mapping techniques. Road-mapping is com-
monly used for establishing long-range strategic objectives and analyzing
the factors and prerequisites necessary for achieving those goals. Road-map-
ping is used by senior executives to clarifying strategic enterprise objectives,
product managers to clarify strategic product objectives, and IT department
leaders to align IT direction with enterprise goals.

A strategic road map is typically a two-dimensional chart showing a two-
to five-year timeline along the horizontal axis. The vertical axis generally
is divided into a series of swim lanes (see Figure 10.2). The topmost lane
typically conveys strategic goals, and each of the others reflects a different
business or functional perspective (technology, training, resources, etc.).
Cambridge University professor Robert Phaal and colleagues have devel-
oped highly collaborative road-mapping workshop techniques that enable
organizational leaders to fill in these swim lanes with key activities, precur-
sors, and success factors (Phaal, Farrukh, and Probert 2010).

A collaborative road-mapping workshop focused on your Agile adoption is
a powerful technique for achieving organizational alignment. The road map
will enable you to visualize how the strategic goals behind the initiative will
be achieved. My Agile enablement road maps typically include swim lanes
such as training, projects, resources, technology, organizational capabilities,
and internal coaching. You may uncover other valuable perspectives that
make good swim lanes on your road map.

Training and Coaching

Training refers to the formalized classroom style of transferring knowl-
edge. It is an effective method for helping newly formed Agile communities
gain a shared and common understanding of Agile values, principles, and
practices. An Agile coach is a key member of the Agile project community
(sometimes the scrum master is the coach). The coach has deep knowledge
of Agile techniques and is a team facilitator, teacher, mentor, problem solver,
conflict navigator, collaboration conductor, and more (Adkins 2010).

ptg6843605

304 CHAPTER 10 � FINAL WORDS

Your Agile adoption strategy should include a substantial focus on both
training and coaching. My friend and colleague Masa K. Maeda uses the
analog of teaching someone to ride a bicycle. Training is like explaining
bike-riding technique, including balance, braking, steering, and pedaling;
coaching is like running alongside to keep the new rider from crashing until
he or she learns to stay upright and steady. Training without coaching is
likely to result in a conceptual understanding of bicycling followed by a
series of painful crashes that may put the new rider off of bicycling forever.

Like learning to ride a bicycle, Agile adoption requires an effective blending
of training and coaching to help new teams avoid painful crashes that may
put the team off of Agile forever. Be sure that your trainers have good teach-
ing skills combined with sufficient depth of experience to answer the hard

Figure 10.2 Conceptualized strategic road map
Image from Roadmapping for Strategy and Innovation (Phaal, Farrukh,
and Probert 2010), used with permission from Robert Phaal.

ptg6843605

ADOPTION STRATEGIES 305

questions that inevitably arise during training. Trainers whose knowledge
is limited to textbook examples may fail to garner the confidence of those
receiving training. Be sure that your Agile coaches are knowledgeable in
Agile methods as well as the problem domain of the Agile project. The best
coaches are those who are well respected by the team and who demonstrate
agility through their behaviors and attitudes. Effective coaches are embed-
ded with the project team and provide gentle guidance through behavioral
modeling and silent influence rather than overbearing dominance.

Just as new Agile development teams need coaching, so do new Agile man-
agers and leaders. As discussed, effective Agile leadership is essential to suc-
cessful Agile adoption. While Agile development practices are tangible and
well defined, Agile management practices are often less crisp. Agile man-
agers are often faced with leadership challenges that rely on “Agile think-
ing” rather than well-defined practices. Agile management coaches can help
leaders learn to think in an Agile fashion.

Measuring Success

Every Agile adoption strategy should include a well-defined and shared
understanding of success. Moreover, this definition of success should be
objectively measurable. Revisit the adoption goals and Agile enablement
road map to align your success metrics with those goals and timelines.
There must be very good reasons to adopt Agile Analytics since it will be
disruptive to your current processes. If your aim is to improve responsive-
ness to your BI users, then establish metrics that reflect that. If the goal is
to deliver high-priority BI value early, then establish value delivery metrics.
Similarly, on-time delivery goals require timeliness metrics and quality
goals require defect density metrics.

As you craft your success metrics, be realistic. As discussed previously, the
stages of change will take time. Things will initially get worse before they
improve. Build these expectations into your monitoring and metrics collec-
tion processes. Additionally, take the time to baseline your organization’s
pre-Agile performance so that you can evaluate performance improvements
in relative terms. Be realistic and conservative in setting expectations for
improvement. Metrics expert Michael Mah has observed that it takes high-
performing Agile teams at least two years to achieve the expected perfor-
mance increases (Mah 2008). During that time teams continuously improve
but have more room for growth.

ptg6843605

306 CHAPTER 10 � FINAL WORDS

CLOSING THOUGHTS . . .
At the time of this writing there are a few of us in the data warehousing
and business intelligence community who have been successfully applying
agility to DW/BI projects. Until recently our sub-community seemed to be
relatively small, but 2010 has seen a marked increase in the attention being
given to Agile in data warehousing, business intelligence, and analytics.

There is an increasing body of written knowledge on this topic. Ralph
Hughes’s book Agile Data Warehousing offers a great introduction to apply-
ing Scrum practices on DW projects (Hughes 2008). Scott Ambler is a
prolific writer who has written extensively about Agile data techniques as
well as providing thought leadership on many other important Agile top-
ics. Chris Sorensen is an Agile data warehouse practitioner at WestJet who
has taken the time to maintain a blog on his experiences and ideas (www.
the agiledatawarehouse.com). The Data Warehousing Institute (TDWI)
instructor and DW/BI author Larissa Moss has been teaching and writ-
ing about Agile approaches to scoping and development for the past sev-
eral years. BI thought leaders Claudia Imhoff and Len Silverston have been
including Agile topics in their DW/BI presentations recently. Ralph Kim-
ball and Joy Mundy of the Kimball Group have periodically addressed Agile
techniques in their publications. Jill Dyche’s 2010 blogs on Agile BI were
both thought-provoking and highly ranked by Information Management
magazine.2 Steve Hitchman and Phil Consadine, of the Australian consul-
tancy MIP, have authored a number of Agile BI articles and are active in
the Agile DW/BI movement. In addition to these notable authors there are
many others who are active contributors to Agile DW/BI forums, blogs, and
discussion threads, many of whom are practitioners willing to share their
firsthand experiences and lessons learned.

In addition to the growing body of knowledge in this field, an increasing
number of DW/BI technology vendors are offering Agile enabling technolo-
gies. Open-source business intelligence vendor Pentaho has established an
Agile BI initiative as part of its strategic direction and actively markets agil-
ity as being integral to its products and services. New Zealand technology
vendor WhereScape has long supported rapid data warehouse development
and deployment with its RED product and in 2010 launched WhereScape
RED—The Agile Edition, which is further tuned to support many of the
technical practices introduced in this book. In-memory BI technology

2. www.information-management.com/blogs/business_intelligence_TDWI_
analytics-10018597-1.html

www.theagiledatawarehouse.com
www.theagiledatawarehouse.com
www.information-management.com/blogs/business_intelligence_TDWI_analytics-10018597-1.html
www.information-management.com/blogs/business_intelligence_TDWI_analytics-10018597-1.html

ptg6843605

CLOSING THOUGHTS . . . 307

vendors like QlikView offer Agile-enabling technologies as do many provid-
ers of SaaS data warehouse and business intelligence products.

I expect that in the next few years we will see continued growth and refine-
ment of Agile DW/BI concepts, techniques, and approaches. Through expe-
rience these ideas will continue to evolve and take shape. Regardless of the
specific techniques, an adaptive and evolutionary approach to large, com-
plex projects is simply the right thing to do; and before long I expect that we
will no longer distinguish development as being Agile or not.

I leave you with my best wishes on your Agile journey. I hope it is as reward-
ing as mine has been so far. I can be found online at www.theagilist.com.
Please contact me with your experiences, questions, discoveries, and other
Agile thoughts. I’m interested in knowing about the lessons you learn along
the way.

www.theagilist.com

ptg6843605

This page intentionally left blank

ptg6843605

309

REFERENCES AND
RECOMMENDED READING

Abdel-Hamid, T., and S. Madnick. 1991. Software Project Dynamics: An
Integrated Approach. Upper Saddle River, NJ: Prentice Hall.

Adkins, L. 2010. Coaching Agile Teams: A Companion for ScrumMasters,
Agile Coaches, and Project Managers in Transition. Boston: Addison-Wesley.

Ambler, S. W. 2002. Agile Modeling: Effective Practices for eXtreme Program-
ming and the Unified Process. New York: John Wiley & Sons, Inc.

———. 2003. Agile Database Techniques: Effective Strategies for the Agile
Software Developer. Danvers: John Wiley & Sons.

———. 2004. The Object Primer: Agile Model-Driven Development with
UML 2.0. Cambridge: Cambridge University Press.

———. 2005a. “Agile Best Practice: Prioritized Requirements.” Retrieved
November 2, 2010, from Agile Modeling, www.agilemodeling.com/essays/
prioritizedRequirements.htm.

———. 2005b. “Requirements Envisioning: An Agile Best Practice.”
Retrieved November 1, 2010, from Agile Modeling, www.agilemodeling.
com/essays/initialRequirementsModeling.htm.

———. 2006. “Iteration Modeling: An Agile Best Practice.” Retrieved
November 1, 2010, from Agile Modeling, www.agilemodeling.com/essays/
iterationModeling.htm.

———. 2007. “Test-Driven Development of Relational Databases,” IEEE
Software 24, no. 3 (May): 37–43.

———. 2008a. “Active Stakeholder Participation: An Agile Best Practice.”
Retrieved October 19, 2010, from Agile Modeling, www.agilemodeling.
com/essays/activeStakeholderParticipation.htm#Stakeholders.

———. 2008b. “Surveys Exploring the Current State of Information
Technology Practices,” December 5. Retrieved October 18, 2010, from 2008
IT Project Success Rates Survey Results, www.ambysoft.com/surveys/
success2008.html.

www.agilemodeling.com/essays/prioritizedRequirements.htm
www.agilemodeling.com/essays/prioritizedRequirements.htm
www.agilemodeling.com/essays/initialRequirementsModeling.htm
www.agilemodeling.com/essays/initialRequirementsModeling.htm
www.agilemodeling.com/essays/iterationModeling.htm
www.agilemodeling.com/essays/iterationModeling.htm
www.agilemodeling.com/essays/activeStakeholderParticipation.htm#Stakeholders
www.agilemodeling.com/essays/activeStakeholderParticipation.htm#Stakeholders
www.ambysoft.com/surveys/success2008.html
www.ambysoft.com/surveys/success2008.html

ptg6843605

310 REFERENCES AND RECOMMENDED READING

———. 2009a. “Communication on Agile Software Projects.” Retrieved
October 18, 2010, from Agile Modeling, www.agilemodeling.com/essays/
communication.htm.

———. 2009b. “Examining the ‘Big Requirements Up Front (BRUF)
Approach.’” Retrieved October 14, 2010, from www.agilemodeling.com/
essays/examiningBRUF.htm.

———. 2010. “How Agile Are You? 2010 Survey Results.” Retrieved
November 18, 2010, from Ambysoft, www.ambysoft.com/surveys/
howAgileAreYou2010.html.

Ambler, S. W., and P. J. Sadalage. 2006. Refactoring Databases: Evolutionary
Database Design. Boston: Addison-Wesley.

Beck, K. 2003. Test-Driven Development: By Example. Boston: Addison-Wesley.

———. 2008. Implementation Patterns. Boston: Addison-Wesley.

Beck, K., and C. Andres. 2004. Extreme Programming Explained: Embrace
Change, 2nd Edition. Boston: Addison-Wesley.

Blaha, M. 2010. Patterns of Data Modeling. Boca Raton, FL: CRC Press.

Brand, S. 1995. How Buildings Learn: What Happens After They’re Built.
New York: Penguin.

Brooks, F. J. 1975. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley.

Calero, C., M. Piattini, C. Pascual, and M. Serrano. 2001. “Towards Data
Warehouse Quality Metrics,” pp. 2.1–2.8. In Design and Management of
Data Warehouses. Interlaken, Switzerland: CEUR Workshop Proceedings.

Clark, M. 2004. Pragmatic Project Automation: How to Build, Deploy, and
Monitor Java Applications. Raleigh: Pragmatic Bookshelf.

Cockburn, A. 2000. Writing Effective Use Cases. Boston: Addison-Wesley.

———. 2001. Agile Software Development. Boston: Addison-Wesley.

———. 2004. Crystal Clear: A Human-Powered Methodology for Small
Teams. Boston: Addison-Wesley.

Cohn, M. 2004. User Stories Applied: For Agile Software Development.
 Boston: Addison-Wesley.

———. 2006. Agile Estimating and Planning. Upper Saddle River, NJ:
Prentice Hall.

www.agilemodeling.com/essays/communication.htm
www.agilemodeling.com/essays/communication.htm
www.agilemodeling.com/essays/examiningBRUF.htm
www.agilemodeling.com/essays/examiningBRUF.htm
www.ambysoft.com/surveys/howAgileAreYou2010.html
www.ambysoft.com/surveys/howAgileAreYou2010.html

ptg6843605

REFERENCES AND RECOMMENDED READING 311

Collier, K. 2005. “Agile Database Testing.” Cutter IT Journal (December):
14–22.

Collier, K., and D. O’Leary. 2009. The Message Driven Warehouse. Cam-
bridge, MA: Cutter Consortium.

Constantine, L. L., and E. Yourdon. 1979. Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Upper Saddle
River, NJ: Prentice Hall.

Cox, S. 2006. “Observations and Measurements,” September 21. Retrieved
April 2009 from OpenGIS Standards and Specifications, http://portal.
opengeospatial.org/files/?artifact_id=17038.

Cunningham, W. 1992. “The WyCash Portfolio Management System.”
ACM OOPSLA Conference Proceedings. Reading, MA: Addison-Wesley.

de Bono, E. 1999. Six Thinking Hats. Boston: Back Bay Books.

DeGrace, P., and L. H. Stahl. 1990. Wicked Problems, Righteous Solutions:
A Catalog of Modern Engineering Paradigms. Upper Saddle River, NJ:
Prentice Hall.

DSDM Consortium. 2002. “Timeboxing.” Retrieved October 14, 2010, from
DSDM Consortium, www.dsdm.org/version4/2/public/Timeboxing.
asp#Timebox_Schedule.

Eckerson, W. 2002. “Taming Spreadsheet Jockeys.” Application Development
Trends (ADTmag.com) September 1, http://adtmag.com/articles/2002/
09/01/taming-spreadsheet-jockeys.aspx.

Elssamadisy, A. 2008. Agile Adoption Patterns: A Roadmap to Organiza-
tional Success. Boston: Addison-Wesley.

Farley, D., and J. Humble. 2010. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Boston: Addison-
Wesley.

Feathers, M. 2004. Working Effectively with Legacy Code. Upper Saddle
River, NJ: Prentice Hall.

Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Menlo Park,
CA: Addison Wesley Longman.

———. 1999. Refactoring: Improving the Design of Existing Code. Boston:
Addison Wesley Longman.

———. 2002. “The XP 2002 Conference,” June. Retrieved July 14, 2010,
from Martin Fowler.com, http://martinfowler.com/articles/xp2002.html.

www.dsdm.org/version4/2/public/Timeboxing.asp#Timebox_Schedule
www.dsdm.org/version4/2/public/Timeboxing.asp#Timebox_Schedule
http://adtmag.com/articles/2002/09/01/taming-spreadsheet-jockeys.aspx
http://adtmag.com/articles/2002/09/01/taming-spreadsheet-jockeys.aspx
http://martinfowler.com/articles/xp2002.html
http://portal.opengeospatial.org/files/?artifact_id=17038
http://portal.opengeospatial.org/files/?artifact_id=17038

ptg6843605

312 REFERENCES AND RECOMMENDED READING

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison
Wesley Longman.

Gat, I. 2009. “Technical Debt on Your Balance Sheet,” September 29.
Retrieved November 19, 2010, from The Agile Executive, http://
theagileexecutive.com/2009/09/29/technical-debt-on-your-balance-sheet/.

———. 2010. “The Nine Transformative Aspects of the Technical Debt
Metric,” October 28. Retrieved November 19, 2010, from The Agile Execu-
tive, http://theagileexecutive.com/2010/10/28/the-nine-transformative-
aspects-of-the-technical-debt-metric/.

Hay, D. C. 1996. Data Model Patterns: Conventions of Thought. New York:
Dorset House Publishing.

———. 2006. Data Model Patterns: A Metadata Map. San Francisco:
Morgan Kaufman.

Highsmith, J. A. 2000. Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. New York: Dorset House
Publishing.

———. 2002. Agile Software Development Ecosystems. Boston: Addison-
Wesley.

———. 2010a. Agile Project Management: Creating Innovative Products, 2nd
Edition. Boston: Addison-Wesley.

———. 2010b. “The Financial Implications of Technical Debt,” October 19.
Retrieved November 19, 2010, from Adaptive Imagineering: Changing the
Way IT Does Business, www.jimhighsmith.com/2010/10/19/the-
financial-implications-of-technical-debt/.

———. 2010c. “Tracing a Continuum of Trust: Compliance, Cooperation,
Collaboration,” June 17. Retrieved November 16, 2010, from Cutter Con-
sortium: Agile Product & Project Management, www.cutter.com/content/
project/fulltext/advisor/2010/apm100617.html.

———. 2010d. “What Do Agile Executives and Leaders Do,” November 4.
Retrieved December 27, 2010, from Agile Project Leadership Network,
www.apln.org/profiles/blogs/what-do-agile-executives-amp.

Hughes, R. 2008. Agile Data Warehousing: Delivering World-Class Business
Intelligence Systems Using Scrum and XP. Bloomington: iUniverse.

Inmon, W. 2005. Building the Data Warehouse, 4th Edition. New York: John
Wiley & Sons.

www.jimhighsmith.com/2010/10/19/the-financial-implications-of-technical-debt/
www.jimhighsmith.com/2010/10/19/the-financial-implications-of-technical-debt/
www.cutter.com/content/project/fulltext/advisor/2010/apm100617.html
www.cutter.com/content/project/fulltext/advisor/2010/apm100617.html
www.apln.org/profiles/blogs/what-do-agile-executives-amp
http://theagileexecutive.com/2009/09/29/technical-debt-on-your-balance-sheet/
http://theagileexecutive.com/2009/09/29/technical-debt-on-your-balance-sheet/
http://theagileexecutive.com/2010/10/28/the-nine-transformative-aspects-of-the-technical-debt-metric/
http://theagileexecutive.com/2010/10/28/the-nine-transformative-aspects-of-the-technical-debt-metric/

ptg6843605

REFERENCES AND RECOMMENDED READING 313

———. 2007. “Corporate Information Factory (CIF) Overview,” January 1.
Retrieved November 11, 2008, from Corporate Information Factory, www.
inmoncif.com/library/cif/.

———. 2008. “The Virtual Data Warehouse (Again),” December 4.
Retrieved December 4, 2008, from BeyeNetwork, www.b-eye-network.
com/newsletters/inmon/9018.

Jankovsky, B. 2008. “ETL Patterns,” August 28. Retrieved November 23,
2010, from http://bobjankovsky.org/showx.php?class=ETL%20PATTERNS.

Jones, M. E., and I.-Y. Song. 2005. “Dimensional Modeling: Identifying,
Classifying & Applying,” pp. 29–38. In Proceedings of the 8th ACM Interna-
tional Workshop on Data Warehousing and OLAP. Bremen: ACM.

Katzenbach, J. R., and D. K. Smith. 2006. The Wisdom of Teams: Creating
the High-Performance Organization. New York: Collins.

Kerievsky, J. 2004. Refactoring to Patterns. Boston: Addison-Wesley.

Kernighan, B. W. 1974. The Elements of Programming Style. New York:
McGraw-Hill Education.

Kimball, R., and M. Ross. 2002. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling, 2nd Edition. New York: John Wiley & Sons.

Leishman, T. R., and D. A. Cook. 2002. “Requirements Risks Can Drown
Software Projects.” CrossTalk: The Journal of Defense Software Engineering
(April): 4–8.

Longman, C. 2005. “Data Warehousing Meeting—December 7, 2005,”
December 7. Retrieved November 16, 2008, from DAMA UK—Data
Management Association, www.damauk.org/Building%20the%20
 adaptive%20data%20warehouse%20-%20Cliff%20Longman.pdf.

Mah, M. 2008. How Agile Projects Measure Up, and What This Means to
You. Cambridge, MA: Cutter Consortium.

Marick, B. 1994. The Craft of Software Testing: Subsystems Testing Including
Object-Based and Object-Oriented Testing. Upper Saddle River, NJ: Prentice
Hall.

Mason, M. 2006. Pragmatic Version Control: Using Subversion, 2nd Edition.
Raleigh, NC: Pragmatic Bookshelf.

Moss, L., and S. Adelman. 2000. “Data Warehouse Failures,” October 1.
Retrieved October 1, 2007, from The Data Administration Newsletter, www.
tdan.com/i014fe01.htm.

www.inmoncif.com/library/cif/
www.inmoncif.com/library/cif/
www.b-eye-network.com/newsletters/inmon/9018
www.b-eye-network.com/newsletters/inmon/9018
http://bobjankovsky.org/showx.php?class=ETL%20PATTERNS
www.damauk.org/Building%20the%20adaptive%20data%20warehouse%20-%20Cliff%20Longman.pdf
www.damauk.org/Building%20the%20adaptive%20data%20warehouse%20-%20Cliff%20Longman.pdf
www.tdan.com/i014fe01.htm
www.tdan.com/i014fe01.htm

ptg6843605

314 REFERENCES AND RECOMMENDED READING

Palmer, S. R., and M. J. Felsing. 2002. A Practical Guide to Feature-Driven
Development. Upper Saddle River, NJ: Prentice Hall.

Phaal, R., C. Farrukh, and D. Probert. 2010. Roadmapping for Strategy and
Innovation: Aligning Technology and Markets in a Dynamic World. Cam-
bridge: University of Cambridge, Institute for Manufacturing.

Pink, D. H. 2009. Drive: The Surprising Truth about What Motivates Us.
New York: Riverhead.

Pixton, P., N. Nickolaisen, T. Little, and K. McDonald. 2009. Stand Back
and Deliver: Accelerating Business Agility. Boston: Addison-Wesley.

Sadalage, P. J. 2007. Recipes for Continuous Database Integration. Boston:
Addison-Wesley.

Schwaber, K., and M. Beedle. 2001. Agile Software Development with Scrum.
Upper Saddle River, NJ: Prentice Hall.

Thomas, D., and A. Hunt. 2004. Pragmatic Version Control Using CVS.
Raleigh: Pragmatic Bookshelf.

Tuckman, B. 1965. “Developmental Sequence in Small Groups.” Psychologi-
cal Bulletin 63: 384–99.

Viesturs, E., and D. Roberts. 2006. No Shortcuts to the Top: Climbing the
World’s 14 Highest Peaks. New York: Broadway Books.

Yoder, J. W., and R. E. Johnson. 2002. “The Adaptive Object-Model Archi-
tectural Style.” IFIP Conference Proceedings 224: 3–27. Deventer: Kluwer, B.V.

ptg6843605

315

Agile Adoption Patterns (Elssamadisy), 300
Agile Alliance

guiding principles of, 9–10
overview of, 6

Agile Analytics, introduction to
Agile approach to developing DW/BI systems,

4–7
challenges of applying Agile methods to DW/BI,

20–22
data warehousing architectures and, 13–16
difficulty of building DW/BI systems, 16–17
fail fast and adapt approach, 18–19
FlixBuster example, 22–23
frequent failure of DW/BI development projects,

17–18
guiding principles,9–10
myths and misconceptions, 10–13
overview of, 3
relating Agile approach to success rate, 19–20
summary (wrap up) of, 23–24
what it is, 7–9
what the term means, xxvi–xxvii
why it is needed, 16

Agile Best Practice (Ambler), 108
Agile Data Warehousing (Hughes), 306, xxv
Agile Database Techniques (Ambler), 226
Agile, defined, 3
Agile Manifesto, 6
Agile Model Driven Development (AMDD), 33
Agile Modeling (Ambler), 151
Agile Project Leadership Network (APLN), 302
Agile Project Management. See APM (Agile Project

management)
Agile Project Management (Highsmith), 39
Agreements, working agreements required by self-

organizing teams, 130–131
Aguirre, Ricardo, xxxiii
Ambler, Scott, 19–20, 31, 33, 40, 44, 72–73, 91–92,

108, 146, 151, 158, 162–163, 165–166, 168, 194,
212, 226, xxv, xxxiv

Numbers
90-day (six-iteration) planning cycle, dividing proj-

ect plan into iterations, 88–89

A
Acceptance testing. See also Functional testing

in Agile testing framework, 199
for failed DW/BI project, xxi
key perspectives in testing software and systems,

197–198
process under test, 204
in traditional development, 193
WatiN utility for, 195
in waterfall development, 31

Accountability, of teams, 128
Accuracy, traits of Agile modeling, 150
Adaptive Object Modeling (AOM), 153–154
Adaptive Object Modeling (Yoder and Johnson), 190
Adaptive Software Development (Highsmith), 5
Adkins, Lyssa, 67, 69, 303
ADM (adaptive data model), 179

in architecture of message-driven warehouse,
188–189

creating adaptive warehouses, 190
SOR (System of Record) database built on, 177,

179
use of design patterns in, 153–154

Administrative skills, for implementing DW/BI
systems, 16

Adoption strategies
expecting some chaos while making change,

300–301
goals and business alignment and, 302–303
leadership responsibilities regarding, 302
measuring success of, 305
overview of, 299–300
road map for, 303
training and coaching in, 303–305

Adzic, Gojko, 206

INDEX

ptg6843605

316 INDEX

AMDD (Agile Model Driven Development), 33
Analysis Patterns (Fowler), 152
Analysis tier, in data warehousing architecture, 13–14
Ancillary members, of Agile community, 66–67
AOM (Adaptive Object Modeling), 153–154
APLN (Agile Project Leadership Network), 302
APM (Agile Project Management)

changing role of, 35–36
colocation of teams, 44–45
envision phase, 32–33
explore phase, 33–35
just enough design, 39–40
making sense of varieties (f lavors) of Agile devel-

opment, 36–39
monitoring feature completion not task time,

54–56
overview of, 25–26
phased-sequential DW/BI development, 30–32
planning to capacity and monitoring velocity of

work, 46–49
scenario, 27–30
summary (wrap up) of, 56–57
synchronization on daily basis, 41
technical debt and, 45–46
timeboxing, 42–44
tracking progress on daily basis, 49–53
what it is, 26

Application development, skills needed for imple-
menting DW/BI systems, 15–16

Architectural sketch, for envisioning user stories,
103–104

Architectures
data warehouse, 13–15
key testing points in data warehouse architec-

ture, 209–211
message-driven warehouse, 177–179
precursors for Agile projects, 81
technical skills needed for implementing DW,

15–16
Audit trails, benefits of version control, 227
Authentication, scripting,285
Automation

build automation. See Build automation
characteristics of Agile Analytics, 9
of production in data warehousing, 16
project automation. See Projects, automating
test automation. See Test automation
types of, 260–261

B
Back end systems, development of, 21
Backlog. See Product backlog
Bad news, suppression of, 134
BDUF (Big Design Up Front)

costs and risks of, 144
just enough design as alternative to, 40

Beck, Kent, 37, 152, 205, 215, 221
Beedle, Mike, 38
Being Agile vs. Doing Agile, 293–296
BI (business intelligence). See also DW/BI (data

warehousing/business intelligence)
advanced BI techniques, 298
automating testing in, 201–203
black box technologies for testing, 211
comparing traditional BI systems with Agile

systems, 4–5
development, preproduction, and production

environments, 211–212
focusing on early and continuous delivery of BI

features, 291–292
guidelines for BI testing, 220–221
increasing demand for operational BI, 173
performance testing, 200–201
testing process for, 203–205
user stories for. See User stories
what the term means, xxvi

Big Design Up Front (BDUF)
costs and risks of, 144
just enough design as alternative to, 40

Bilateral commitments, in co-dev user groups, 75
Black box technologies, for BI testing, 211
Blaha, Michael, 152
Blue-green deployment, of warehouse changes,

169–170
BPM (business performance management), 173
Branching

creating release branches, 260
keeping things simple, 251–252
naming branches, 248–249
standards for, 245
tagging branches, 246
version control capabilities and, 237–238
when to branch, 245–248

Brand, Stewart, 148
Brink, David, xxxiii
Brooks, Fred, 80, 132, 295, xxi
Bug-tracking system, 229

ptg6843605

INDEX 317

Bugs, tagging, 248, 250, 252
Build automation

advanced, 267–268
build frequency, 275–276
defining the build tasks, 270–271
defining the directory structure, 269–270
defining the project, 268–269
defining the testing tasks, 271–273
overview of, 262–263
rudimentary, 264–267
scheduling builds, 276
selecting version control tools, 254
triggering builds, 277
when to start, 274

build/, in project directory structure, 241
Build scripts, in release package, 284
Build tasks, defining, 270–271
BUILDING file, in repository, 241
Bundling releases, 283–284
Burn-down chart

in collaboration session, 63
tracking progress on daily basis, 51–53

Business acceptability, Marick's perspectives for
acceptance testing, 197

Business activities, parking lot diagrams and, 117
Business alignment, adoption strategies and,

302–303
Business performance management (BPM), 173

C
Capability testing, in Agile testing framework, 199
Capacity

planning to capacity, 46–49
vs. wish-based planning, 49

Card wall, tracking progress on daily basis, 51–52
Ceremony, minimizing in collaborative sessions, 72
Change

adapting to, 294
avoiding high costs of, 297
deploying warehouse changes, 167–169
expecting some chaos while adopting Agile

approach, 300–301
response to requiring collaboration, 59

Chaos, expecting during adoption process, 300–301
checkout command, working with files, 233
CI. See Continuous integration

Clark, Mike, 262
Cloud computing, enhanced by Agile development,

298–299
CM (code management) repository, 212–214
Co-development user group, attributes of, 74–76
Coaching, as part of adoption strategy, 303–305
Coad, Peter, 38, 117
CoC (cost of change), managing technical debt and,

155
Cockburn, Alistair, 38, 71, 96
Code management (CM) repository, 212–214
Code smells (Fowler)

data warehouse smells and refactoring, 163–164
database smells and refactoring, 162–163
overview of, 162

Code, storing in version control repository, 231
Cohn, Mike, 85, 86, 91, 111–112, 299
Collaboration. See also Community

characteristics of Agile Analytics, 9
consumer collaboration, 73–76
as a continuum of trust, 67–69
doer collaboration, 77–78
FlixBuster scenario, 61–64
leadership facilitating, 302
mechanics of, 69–73
not short-circuiting customer collaboration, 294
overview of, 59–60
planner collaboration, 78–79
precursors for Agile projects and, 80–81
summary (wrap up) of, 82
what it is, 60–61

Collegial membership, in co-dev user groups, 75
Collier, Ken, 194, xv, xviii, xxxv
Colocation of teams, 44–45
commit command, working with files, 233
Commitments

bilateral commitment in co-dev user groups, 75
customer commitment in co-development, 76
honoring commitments required by self-organiz-

ing teams, 132–133
to iteration plan, 146
precursors for Agile projects, 81

Communication
face-to-face communication facilitated by colo-

cation of teams, 44
synchronous vs. asynchronous, 72
traits of Agile modeling, 149–150

ptg6843605

318 INDEX

Community. See also Collaboration
core group in, 66
diversity as challenge facing data warehousing,

171–172
diversity in consumer community, 73
identifying and filling roles, 67
members of, 64–65
multiple roles of members, 65–66
what it is, 60–61

Complete, Repeatable, Informative, Schedulable,
Portable (CRISP), 262–263, 266

Complexity
facing gnarly problems, 296–297
simplifying complex Epics, 102

Compliance
corporate regulations and, 137
group interaction and, 68

Conceptual (reference) data model, consistency
with, 144–146

Configuration settings, storing in version control
repository, 231

Conflict resolution, version control and, 238–240
Consadine, Phil, 306
Consistency, traits of Agile modeling, 150
Consumer collaboration

characteristics of effective, 74
not short-circuiting, 294–295
overview of, 73–74

Consumers, in Agile community, 65
Continuous Delivery (Farley and Humble), 169
Continuous integration

emerging technologies impacting, 299
overview of, 261, 274–275
sandbox for, 259
scripts in release package, 284
setting up, 277–281

Continuum of trust, compliance to cooperation to
collaboration, 67–69

Controls, functional testing of user controls, 223
Conventions, compared with patterns, 152–153
Cooperation, relationship to collaboration, 67–68
Coordination, synchronization of work by teams on

daily basis, 41
Core group, in Agile community, 66
Core values, glass-house development and, 135
Corporate alignment

aligning business to adoption strategy, 302–303
required by self-organizing teams, 136–137

Corporate Information Factory (Inmon), 177
Cost of change (CoC), managing technical debt and,

155
Cost of sales (CoS), calculating, 145–146
Costs, in scope, schedule, and cost triangle, 41, 43
Cox, Simon, 180
The Craft of Software Testing (Marick), 197
CRISP (Complete, Repeatable, Informative, Sched-

ulable, Portable), 262–263, 266
Critical members, of Agile community, 66–67
Crystal Methods, f lavors of Agile development, 38
Cunningham, Ward, 37, 45, 154–155, 205
Customers. See Users
Cut line, on prioritized backlog, 116
CVS

release tags, 245
storing code in CM repository, 212
version control tool, 251

D
Data adapters

in message-driven warehouse,184–187
metadata-driven, 179

Data archive, scripting, 284
Data boundaries, epic-splitting approaches, 101
Data-centric approach, vs. user stories, 85
Data cleansing, skills needed for implementing DW/

BI systems, 15
Data definition language (DDL) scripts, version

control and, 228
data/, in project directory structure, 242
Data loading/reloading

challenges facing data warehousing systems, 174
scripting, 285

Data migration
facing gnarly problems, 297
scripting, 285

Data mining, advanced BI techniques, 298
Data Model Patterns: A Metadata Map (Hay), 152
Data Model Patterns: Conventions of Thought (Hay), 152
Data modeling

adaptive. See ADM (adaptive data model)
changes and, 40
just-in-time, 91
maintaining consistency with conceptual model,

144– 145
patterns for, 152–154

ptg6843605

INDEX 319

skills needed for implementing DW/BI systems, 15
in waterfall development approach, 30

Data set, in BI testing process, 203
Data sources, challenges facing data warehousing

systems, 172–173
Data volume, difficulties of building DW/BI sys-

tems, 21
Data warehouse architecture, adaptive design

ADM (adaptive data model), 188–189
architectural overview, 177–179
data adapter, 184– 187
message bus for pushing data, 182–184
OMM (Observation Message Model), 179–182
overview of, 174–175
product evolution, 175–177
SOR (System of Record) database, 187–188
warehouse repository, 184

Data Warehouse Bus (Kimball and Ross), 177
Data warehousing. See also DW/BI (data warehousing/

business intelligence)
benefits of evolutionary design, 146–147
conceptual architectures, 13–15
data-centric approach to, 85
deploying warehouse changes, 167–169
key testing points in, 209–211
message-driven warehouse, 175
new demands facing, 171–174
repository for, 184
skills needed for implementation of architec-

tures, 15–16
test-driven development. See test-driven

development
what the term means, xxvi

The Data Warehousing Institute (TDWI), 306, xvii,
xxxv

Databases
deployment sequence for, 168– 169
evolutionary development of, 296–297
refactoring, 165–167
testing operational, 210
testing tools for, 205–209
versioning, 170–171

Daugherty, Robert, xxxiii
db/, in project directory structure, 242
DBAs (database administrators), skills needed for

implementing DW/BI systems, 16
DbFit

as database testing tool, 206–207

for test automation, 216
for version control, 228

DDL (data definition language) scripts, version
control and, 228

De Luca, Jeff, 38
Decision making

in collaborative sessions, 72
by groups, 123–125

Defects, tagging, 246
Delivery, frequent delivery as Agile principle, 81
DeLuca, Jeff, 18, 117
Deployment

always be ready to deploy, 171
blue-green deployment, 169–170
continuous, 21
optimizing deployment time, 225
storing deployment scripts in version control

repository, 232
types of automation, 261
of warehouse changes, 167–169

Design
evolutionary. See Evolutionary design
just enough design as tenet of Agility, 39–40
patterns, 152–154

Design Patterns (Gamma, et al.), 152
Desktop sharing, for virtual colocation, 77–78
Detail level, traits of Agile modeling, 150
Developers, evolutionary design practices for, 147
Development

Agile Analytics as style rather than methodology,
5, 293

environment for, in BI systems, 211
Directory structure

defining in build automation, 269–270
for version control, 241–245

Discipline, self-organization requiring self-discipline,
127

Distractions, eliminating from collaborative ses-
sions, 71

Do less practice, in Agile development, 107
doc/, in project directory structure, 241–242
Documentation

of collaborative sessions, 72
storing in version control repository, 231

Doers
in Agile community, 65
doer collaboration, 77–78

Done! at completion of testing process, 133, 194

ptg6843605

320 INDEX

Done! Done! user acceptance and, 133, 194
Drive: The Surprising Truth about What Motivates Us

(Pink), 122
DSDM (Dynamic Systems Development Method)

Consortium, 42
DW/BI (data warehousing/business intelligence)

Agile Analytics tailored to fit DW/BI projects, 3
Agile approach to developing DW/BI systems, 4–7
business intelligence. See BI (business

intelligence)
challenges of applying Agile methods to, 20–22
data warehousing. See data warehousing
difficulty of building DW/BI systems, 16–17
focusing on early and continuous delivery of

features, 291–292
frequent failure of DW/BI projects, 17–18,

xix–xxii
phased-sequential development as approach to

project management, 30–32
technologies, xxxi
testing in. See TDD (test-driven development)
what the term means, xxvi

Dyche, Jill, 306
Dynamic Systems Development Method (DSDM)

Consortium, 42

E
Eckerson, Wayne, 292, xvii–xviii, xxxiv
Elssamadisy, Amr, 300
Envision®Explore cycle

envision phase, 32–33
explore phase, 33–35

Envisioning process
for architecture design, 149
in Envision®Explore cycle, 32–33
in FlixBuster scenario, 27–28
for message-driven warehouse, 176

Epics
as collection of related stories, 99–100
epic-splitting approaches, 100–101
removing risk and uncertainty, 102
simplifying complex, 102

Essential members, of Agile community, 66–67
Estimating story-point,88–89, 111–112
ETL (extraction, transformations, loading)

development

development skills needed for implementing
DW/BI systems, 15

in waterfall development approach, 31
etl/, in project directory structure, 242
Event f lows

finding user stories in, 98
use-case modeling and, 96

Evolutionary design
Agile modeling, 149–151
blue-green deployment, 169–170
case study. See Data warehouse architecture,

adaptive design
data model patterns, 152–154
database versioning, 170–171
deploying warehouse changes, 167–169
determining amount of up-front design, 148–149
developer practices, 147
facing gnarly problems, 296
how to refactor, 165–167
managing technical debt, 154–157
overview of, 141–144
reasons for using, 171–174
refactoring and, 157–162
scenario illustrating, 144–146
summary (wrap up) of, 189–191
what it is, 144, 146–147
when to refactor, 162–164

Excel
storing product backlog on, 107–108
tracking progress on daily basis, 53

Expectations
mismatched, 31
stakeholder showcases for aligning, 79–80

Experimental branches
naming, 248
uses of branching, 247

Exploration factor, 78
Exploratory testing, in Agile testing framework, 199
Explore phase, in Envision®Explore cycle, 33–35
Extraction, transformations, loading (ETL)

development
development skills needed for implementing

DW/BI systems, 15
in waterfall development approach, 31

eXtreme Programming. See XP (eXtreme
Programming)

Extreme Programming Explained (Beck), 37

ptg6843605

INDEX 321

F
Face-to-face communication

in collaboration,72
colocation of teams facilitating, 44
in doer collaboration, 77

Fail fast and adapt approach, 18–19
Failure

characteristics of project failure, 18
lack of success in DW/BI development, xix–xxii
project failure statistics, 291–292
project success/failure measured by user satisfac-

tion, 18
Farley, David, 169–171
FDD (Feature Driven Development)

flavors of Agile development, 38–39
overview of, 18
parking lot diagrams, 117

Features
focusing on early and continuous delivery of BI

features, 291–292
iterations ending with feature review, 34
parking lot diagrams and, 117
showcase for, 260

Files
build specification, 268
conflict resolution, 238–240
explanatory files in repository, 241
properties files, 270
working with, 233–235

Fit framework, for test automation, 205
FitNesse, for database testing, 206–207
Flexibility, balancing with structure, 137
Flip charts, in story-writing workshop, 87
FlixBuster example, 22–23
Fowler, Martin, 20, 152, 157, 162, 180
Functional testing. See also Acceptance testing

in Agile testing framework, 199
testing content, 223
testing user controls, 222–223

G
Gat, Israel, 155–156, xxxiv
Gilbert, Scott, xxxiii
Glass-house collaboration, 71
Glass-house development, 134–136
GLOSSARY file, in repository, 241

Goals
adoption strategies and, 302–303
considering in story-writing workshop, 86–87
use-case modeling, 96

Golden, Jonathon, xxxiv
Governance, corporate regulations and, 137
Groups, decision making by, 123–125

H
Hangovers, 133–134
Hay, David, 152–154
Highsmith, Jim, 5, 26, 39, 49, 57, 68–69, 77, 136, 156,

222, 302, xv–xvi, xxii–xxiii, xxxiii–xxxiv
Hitchman, Steve, 306
Hohmann, Luke, 102, xxxiii
How Buildings Learn (Brand), 148
Hughes, Ralph, 86, 306, xxv, xxxiv
Humble, Jez, 169–171

I
Imhoff, Claudia, 306
Implementation Patterns (Beck), 152
Information radiators (Cockburn), 71
Infrastructure, precursors for Agile projects, 79–80
Inmon, Bill, 13, 15–16, 177, 191
Inmon-style architecture, for data warehousing, 13,

15
Installation, automation of, 261
Instant messaging, for virtual colocation, 77
Integration testing

failing tests, 122
overview of, 195

Integration tier, in data warehousing architecture,
13–14

Iron triangle planning, Being Agile vs. Doing Agile,
293–294

Iteration zero
adopting testing tools and methods during, 222
overview of, 82
planning in FlixBuster scenario, 29

Iterations
dividing project plan into, 88–89
meeting commitments and, 132–133
misconceptions regarding Agile development

and, 11–12

ptg6843605

322 INDEX

Iterations (continued)
planning iteration zero in FlixBuster scenario, 29
planning sessions for, 34
planning to capacity, 47
retrospective, 63–64
tagging end of, 246, 248
timeboxing, 43
tracking progress on daily basis, 50–51

Iterative, incremental, evolutionary development
characteristics of Agile Analytics, 7–8
project management approach to, 26

J
Jankovsky, Bob, 154
Jeffries, Ron, 37, 40
JUnit framework, for test automation, 205
Just enough design, tenets of project management,

39–40
Just-in-time data modeling (Ambler), 91
Just-in-time warehouse design, 146

K
Kerievsky, Josh, 152
Kimball, Ralph, 13, 15–16, 154, 177, 306
Kimball-style architecture, for data warehousing, 13, 15

L
Leadership responsibility, in adopting Agile

approach, 302
Load testing, 201
Locking protocols, version control and, 238–240

M
Maeda, Masa, 304
Mah, Michael, 305
Mainline, keeping development on, 251
Management

Being Agile vs. Doing Agile, 293–294
leadership responsibilities for adopting Agile

approach, 302–303
project management. See APM (Agile Project

management)
self-management, 121
traditional approach, 36

Marick, Brian, 197
Martin, Robert C., 206
Maven, 273
McKenna, Jeff, 37
mdx/, in project directory structure, 242
Meetings

limiting membership in, 70–71
qualities of effective, 69–70

Members, of Agile community
core group, 66
Identifying and filling roles, 67
multiple roles of, 65–66
overview of, 64–65

Mentoring
in adoption process, 303
in co-dev user groups, 75

Merging capabilities
keeping things simple, 252
version control capabilities, 238

Message bus, for pushing data, 177–178, 182–184
Message-driven warehouse

architectural overview, 177–179
development of, 175
product evolution, 175–177

Metadata dictionary, in message-driven warehouse,
177

Metadata, storing, 231
Metrics, measuring success of Agile adoption pro-

cess, 305
Microsoft Excel

storing product backlog on, 107–108
tracking progress on daily basis, 53

Modeling
adaptive. See ADM (adaptive data model)
data model patterns, 152–154
data modeling. See Data modeling
evolutionary design and, 144
Observation Message Model. See OMM (Obser-

vation Message Model)
principles of, 151
prioritizing backlog, 108–109
Satir Change Model, 300–301
traits of, 149–150
use-case modeling. See Use-case modeling

Monitoring
feature completion not task time, 54–56
types of automation, 261
velocity of work over against capacity, 47–49

ptg6843605

INDEX 323

Monitoring devices, as prerequisite for project auto-
mation, 262

Moss, Larissa, 306
Motivation, factors in, 122
Mundy, Joy, 306
The Mythical Man-Month (Brooks), 132

N
NAnt build example

defining directory structure,269–270
defining project, 268–269
defining tasks, 270–271
defining testing tasks, 271–273

Network administrators, skills needed for imple-
menting DW/BI systems, 16

Nonfunctional requirements, epic-splitting
approaches, 101

NoSQL databases, 298

O
Object-oriented programming, TDD designed for,

216
Observation Message Model. See OMM (Observa-

tion Message Model)
Observations and Measurements (Cox), 180
OLAP (online analytical processing), 15
O'Leary, Dan, xxxiii
OMM (Observation Message Model)

in creation of adaptive warehouses, 190
data adapter receiving OMM message payload,

184–187
message bus for pushing data, 182–184
in message-driven warehouse,179–182
overview of, 178

On-demand technologies, 298–299
One-step builds, 260
Online analytical processing (OLAP), 15
Open-source software (OSS), for version control,

253
Operational boundaries, epic-splitting approaches,

101
Operational databases, as test point, 210
Optimistic locking, 239–240
osql.exe, 273
OSS (open-source software), for version control, 253

P
Package, release

bundling, 283–284
creating, 286–287
organizing, 285–286
what it contains, 284–285

Pair programming, in project automation scenario,
259

Parking lot diagrams, 117–119
Patterns

adaptive data model, 153–154
in creation of adaptive warehouses, 190
data model, 152–153
right use of, 154

Patterns of Data Modeling (Blaha), 152
Penaho, vendors offering Agile enabled technolo-

gies, 306
Performance, factors motivating, 122
Performance testing, 200–201
Personas, user roles and, 94–95
Phaal , Robert, 303–304
Phased-sequential development. See also Waterfall

development, 30–32
Pink, Daniel, 122
Plan®Do model

Envision®Explore cycle as alternative to, 32
waterfall development approach as, 30–31

Planners
in Agile community, 64
collaboration, 78–79

Planning
Iron triangle planning, 293–294
iterations, 34

Preproduction environment, in BI systems, 211
Presentation tier, in data warehousing architecture,

13–14
Principles

for Agile Analytics, 9–10
of Agile modeling, 151

Prioritization, of product backlog
backlog management, 111
capability-based, 109–110
overview of, 107–108
process of, 110
user stories and, 88
value-based, 108–109

Problem solving, facing gnarly problems, 296–297

ptg6843605

324 INDEX

Product backlog
capability-based prioritization,109–110
continuous backlog grooming, 111
hangovers, 133–134
managing changes in user stories, 34
prioritization of,107–108
prioritizing user stories and, 88
updating, 63
value-based prioritization, 108–109

Product-driven development, in Agile approach, 34
Product evolution, for message-driven warehouse,

175–177
Product ownership, in co-dev user groups, 74–75
Product validation, Marick's perspectives for accep-

tance testing, 198
Production environment, in BI systems, 211
Production quality, characteristics of Agile Analyt-

ics, 8
Productivity, emphasizing quality and value as basis

of, 294
Programatic Programmer book series (Thomas and

Hunt), 245
Progress, tracking on daily basis, 49–53
Project-chartering session, in FlixBuster scenario, 29
Project documentation. See also Documentation
Project manager, in Agile approach, 36
Projects

defining, 268–269
documenting, 231
managing. See APM (Agile Project management)
precursors for Agile projects, 80–81
proof-of-concept projects, 298

Projects, automating
build automation. See Build automation
continuous integration,261
overview of, 257–258
prerequisites for, 261–262
push button releases. See Push button releases
scenario illustrating, 258–260
setting up continuous integration,277–281
summary (wrap up) of, 288–290
what it is, 258, 260–261

Proof-of-concept projects, 298
Properties files, 270
Purpose

clarity of, 150
well-defined purpose as basis of collaborative

sessions, 70

Purpose Alignment Model (Pixton, et al.), 109
Push button releases

bundling, 283–284
creating release package, 286–287
keeping track of versions, 287–288
organizing the release package, 285–286
overview of, 281–282
preparing, 282–283
types of automation, 261
what goes into the release package, 284–285
what is a release, 281–282

Push reporting
demand for, 173–174
in message-driven data warehouse, 177–178,

182–184

Q
QlikView, vendors offering Agile enabled technolo-

gies, 307

R
README files, 241
Real-time analytics, advanced BI techniques, 298
Refactoring

database refactoring categories, 159
how to, 165–167
overview of, 157–158
what it is, 158–159
when to, 162–164

Refactoring Databases (Ambler and Sadalage), 162,
170

Refactoring to Patterns (Kerievsky), 152
Reference (conceptual) data model, consistency

with, 144– 146
Reflection

frequency of, 73
iterations ending with, 34

Relational database, storing product backlog in,
107–108

Release branches
frequent release of production-quality software,

193
naming, 248
uses of branching, 247

Release managers, 282–283
Release teams, 282–283

ptg6843605

INDEX 325

Releases. See also Push button releases
bundling, 283–284
controlling, 227
creating release package, 286–287
keeping track of versions, 287–288
organizing the release package, 285–286
planning calendar for, 29
preparing, 282–283
storing release scripts in version control reposi-

tory, 232
tagging, 246, 248
timeboxing release cycles, 42–43
what goes into the release package, 284–285
what it is, 281–282

Repetition, avoiding in collaborative sessions, 72
Reports, scripting user-defined, 285
Repositories

CM (code management) repository, 212–214
explanatory files in, 241
organizing, 240
revision history in, 235
storing all project artifacts in single repository,

253
storing testing frameworks in version control

repository, 273
for version control, 230
for warehouse, 184
what not to store in version control repository,

232–233
what to store in version control repository,

230–232
Requirements

user stories representing, 91–92
in waterfall development approach, 30

Responsibility, self-organization requires shared
responsibility, 128–130

Retrospectives
in co-dev user groups, 75–76
on failed DW/BI project, xxi–xxii
iteration review, 34, 63–64

Review, stakeholder, 129
Revision history, in repository, 235
Rewind ability, benefits of version control, 227
Road map, for adoption strategies, 303–304
Role-playing, in collaboration session, 62
Roles, in writing user stories, 93–95
Ross, Margy, 154, 177

S
Sadalage, Pramod, 158, 162–163, 165–166, 168, 212,

xxxiv
Sandboxes

for continuous integration, 259
for experimentation, 298–299
for testing, 211–215
version control and, 227

Satir Change Model, 300–301
Scheduled builds, 261, 276
Scheduling, in scope, schedule, and cost triangle,

41, 43
Schwaber, Ken, 37–38
Scope, in scope, schedule, and cost triangle, 41, 43
Scribble frames, 196
Scripts, for assisting development, 284–285
Scrum

Agile Analytics compared with, 11
flavors of Agile development, 37–38
resources on, 306

Scrum master role, 27
Scumniotales, John, 37
SDUF (sufficient design up front), 144
Self-discipline, required by self-organizing teams,

126–127
Self-management, 121
Self-organizing teams

in APM, 53
characteristics of Agile Analytics, 9
corporate alignment required, 136–137
glass-house development and, 134–136
honoring commitments, 132–133
overview of, 121–122
scenario illustrating use of, 122–126
self-discipline in, 126–127
shared responsibility in, 128–130
summary (wrap up) of, 137
watching out for hangovers, 133–134
what they are, 122
working agreements in, 130–131

Setup time, for automated testing, 221–222
Shared responsibility, required by self-organizing

teams, 128–130
Sharing, benefits of version control, 227
Showcases

aligning stakeholder expectations, 79–80
for feature review and acceptance, 61–63

ptg6843605

326 INDEX

Showcases (continued)
for features, 260
glass-house development and, 136
iterations ending with, 34
for project management sponsors and stakehold-

ers, 63
Silverston, Len, 306
Simplicity, traits of Agile modeling, 150
"Six Thinking Hats" method (de Bono), 123–126
Slebodnick, James, xxxiii
Software

Agile Analytics compared with Agile software
development, 3

frequent release of production-quality, 193
key perspectives in testing,197–198

SOR (System of Record) database, for message-
driven warehouse, 177, 187–188

Source code, in release package, 284
Source systems, in data warehousing architecture, 13
sp/, in project directory structure, 242–243
Split Table refactoring, 160
Sponsors, in adopting Agile approach, 302–303
Spreadmarts (Eckerson), 291–292
sql/, in project directory structure, 243
SQLUnit, as database unit testing tool, 205–206
Stakeholders

diversity in consumer community and, 73
periodic review, 129
showcases for aligning expectations of, 79–80

Stand Back and Deliver (Pixton, et al.), 109
Stand-up meetings

synchronization of work by teams on daily basis, 41
timeboxing, 43

Standards
compared with patterns, 152
selecting version control tools, 253

STDD (storytest-driven development), 99, 218–220
Stories. See User stories
Story conference (Hughes), 86
Story-point estimating,111–117
Story-test cases, 99
Story-writing workshop, 86–89
Storytest-driven development (STDD), 99, 218–220
Storytests

in Agile testing framework, 199
generating, 219–220
process under test, 204
in test-driven development, 218

Strategies, for testing, 198–201
Stress testing, 201
Stretch goals, 89
Strict locking, conflict resolution, 238, 240
Subject areas, parking lot diagrams and, 117
Subject-specific data marts, 15
Subversion

selecting version control tools, 254
storing code in CM repository, 212

Successes, measuring success of adoption process,
305

Sufficiency
applying the use of barely sufficient processes, 8
barely sufficient data modeling, 40
vs. ad hoc or hacking, 12

Sufficient design up front (SDUF), 144
Sutherland, Jeff, 37
svcs/, in project directory structure, 242
Synchronization, of project on daily basis, 41
System of Record (SOR) database, for message-

driven warehouse, 177, 187–188
Systems

design in waterfall development approach, 30
integration, 12
testing, 197–198
validation (Marick's perspectives for acceptance

testing), 198

T
Tags

creating, 229
naming, 248–249
standards for, 245
version control capabilities, 236–237
when to tag, 245–248

Tasks
monitoring feature completion not task time, 54–56
task management as focus of traditional develop-

ment, 36
TDD (test-driven development)

overview of, 215
storytests, 218–220
unit testing, 215–218

TDWI (The Data Warehousing Institute), 306, xvii,
xxxv

Teams
accountability of, 128

ptg6843605

INDEX 327

colocation of, 44–45
making Agile practices habitual, 292
self-organizing and self-managing. See self-orga-

nizing teams
synchronization of work on daily basis, 41
team management as focus of Agile project man-

agement, 36
Technical acceptability, Marick's perspectives for

acceptance testing, 198
Technical debt

CoC (cost of change) and, 155
managing, 45–46, 154–157
monetizing, 155–156
overview of, 154–155
prioritizing, 156–157

Technology, handling emerging, 298–299
Test automation

challenges in, 201–203
DbFit utility for, 216
emerging technologies impacting, 299
overview of, 193
requiring shift in team work habits, 292
setup time for, 221–222

Test cases, storing in version control repository, 232
Test data set, in BI testing process, 203
Test-driven development. See TDD (test-driven

development)
Test-Driven Development: By Example (Beck), 215
Test-first approach. See also TDD (test-driven devel-

opment), 215
test/, in project directory structure, 243
Test suites

in release package, 284
storing in version control repository, 232

Testing frameworks, in release package, 284
Tests/testing

black box technologies for BI testing, 211
challenges in automating, 201–203
database testing tools, 205–209
defining testing tasks in build automation,

271–273
functional approach to BI testing, 222–223
guidelines for BI testing, 220–221
key perspectives in testing software and systems,

197–198
key testing points in data warehouse architec-

ture, 209–211
overview of, 193–194

process of BI testing, 203–205
sandbox for, 211–215
scenario illustrating use of, 195–197
setup time for automated testing, 221–222
storing testing frameworks in version control

repository, 273
strategies, 198–201
summary (wrap up) of, 223–224
test-first approach. See TDD (test-driven

development)
what is Agile Analytics testing, 194–195

Time zones, as impediment to collaboration, 78
Timeboxing

applying to releases, iterations, and schedules, 43
benefits of, 44
developed by DSDM Consortium, 42
proof-of-concept projects, 298

Tools
for build automation, 268
for continuous integration, 277
for database testing, 205–209
lack of support making Agile development dif-

ficult, 21
precursors for Agile projects, 79–80
for use in Agile testing framework, 199–201
for version control, 252–254

TortoiseSVN, 254
Tracking progress, on daily basis, 49–53
Training, as part of adoption strategy, 303–305
Triggered builds

overview of, 277
types of automation, 261

TSQLUnit, 206

U
UML (Unified Modeling Language), 96
Unit testing

in Agile testing framework, 198
database testing tools, 205–206
overview of, 195
process under test, 204
in test-first approach, 215–218
tools for automating, 199
when it occurs, 200

Up-front design
avoiding high costs of change later, 297
BDUF (Big Design Up Front), 144

ptg6843605

328 INDEX

Up-front design (continued)
determining amount of, 148–149
SDUF (sufficient design up front), 144

Updating workspace, 234–235
Usability testing, 200
Use-case modeling

diagram and details, 87, 97
finding user stories in event f lows, 98
overview of, 96–97
scenarios, 98–99
in story-writing workshop, 86–88

User roles
in development of user stories, 93–95
use-case modeling and, 96

User stories
backlog management, 111
basing on smallest, simplest thing, 103–107
capability-based prioritization,109–110
caution regarding epics and antistories, 90–91
characteristics of well-written, 89–90
decomposing epics, 99–102
finding in event f lows, 98
monitoring feature completion not task time,

54–56
overview of, 85–86
parking lot diagrams, 117–119
presenting on scribble frames, 196
prioritization of product backlog, 107–108
prioritization process,110
representing requirements, 91–92
small user stories in Agile product driven devel-

opment, 34
story-point estimating,111–117
story-test cases, 99
story-writing workshop, 86–89
summary (wrap up) of, 119–120
use-case modeling, 96–99
user roles and, 93–95
value-based prioritization, 108–109
what they are, 86

Users
acceptance tests. See Acceptance testing
collaboration. See Consumer collaboration
focusing on customer satisfaction, 291–292
functional testing of user controls, 223
not short-circuiting customer collaboration,

294–295

project success/failure measured by user satisfac-
tion, 18–19

scripting user authentication, 285
util/, in project directory structure, 243
Utility scripts, prerequisites for project automation, 262
utPL/SQL, 206

V
Value-based prioritization, of product backlog,

108–109
Value-driven development, 8
Velocity, of development

establishing for project, 89
story-point estimating and, 115–116
tracking against capacity, 47–49

vendor/, in project directory structure, 243
Vendors, offering Agile enabled technologies, 306–307
vendorsrc/, in project directory structure, 243
Version control

choosing tool for, 252–254
conflict resolution, 238–240
directory structure for,241–245
explanatory files in repository, 241
keeping things simple, 251–252
naming tags and branches, 248–249
organizing repository, 240
overview of, 225–226
prerequisites for project automation, 261
repository for, 230
revision history in repository, 235
scenarios, 227–229, 249–250
storing testing frameworks in version control

repository, 273
summary (wrap up) of, 254–256
tags, branches, and merging capabilities, 236–238
test guidelines, 221
tracking versions, 287–288
what it is, 226–227, 229–230
what not to store, 232–233
what to store, 230–232
when to tag and branch, 245–248
working with files and, 233–235

views/, in project directory structure, 244
Views, scripting user-defined, 285
Virtual colocation (Highsmith), 45, 77–78
Virtualization, benefits of, 275

ptg6843605

INDEX 329

Vision. See also envisioning, 32–33
Visual controls, glass-house development and, 135–136
Voice-to-voice communication, in collaboration, 72
VoIP, for virtual colocation, 77

W
WaitN, tool for acceptance testing, 195
Warehouse. See Data warehousing
Waterfall development approach

collaboration in, 60
Envision®Explore cycle as alternative to, 30–31
small steps in Agile development mirroring

stages of, 41
WBS (work breakdown structure)

estimating based on, 112
traditional planning based on, 35

Web cameras, for virtual colocation, 77
WhereScape RED, vendors offering Agile enabled

technologies, 306
Whiteboard

in story-writing workshop, 86–87
use by team in problem solving, 123–124

Wikis, glass-house development and, 136
Wish-based planning, vs. capacity-based planning, 49
Work breakdown structure (WBS)

estimating based on, 112
traditional planning based on, 35

Working agreements
glass-house development and, 135
required by self-organizing teams, 130–131

Workmanship, precursors for Agile projects, 80–81
Workspace

updating frequently, 234–235
for working with files, 233

X
XMLA files, 231
xmla/, in project directory structure, 244
XP (eXtreme Programming)

Agile Analytics compared with, 11
flavors of Agile development, 37
unit-test-driven development and, 215

xUnit
automating unit testing, 215
frameworks based on, 221
testing tools, 205–206

Y
YAGNI (You Ain't Gonna Need It), 40

Z
Zinkgraf, Dale, xxxiv

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Agile Analytics: Management Methods
	Chapter 1 Introducing Agile Analytics
	Alpine-Style Systems Development
	What Is Agile Analytics?
	Data Warehousing Architectures and Skill Sets
	Why Do We Need Agile Analytics?
	Introducing FlixBuster Analytics
	Wrap-Up

	Chapter 2 Agile Project Management
	What Is Agile Project Management?
	Phased-Sequential DW/BI Development
	Envision → Explore Instead of Plan → Do
	Changing the Role of Project Management
	Making Sense of Agile “Flavors”
	Tenets of Agility
	Wrap-Up

	Chapter 3 Community, Customers, and Collaboration
	What Are Agile Community and Collaboration?
	The Agile Community
	A Continuum of Trust
	The Mechanics of Collaboration
	Consumer Collaboration
	Doer Collaboration
	Planner Collaboration
	Precursors to Agility
	Wrap-Up

	Chapter 4 User Stories for BI Systems
	What Are User Stories?
	User Stories versus Requirements
	From Roles to Use Cases to User Stories
	Decomposing Epics
	What’s the Smallest, Simplest Thing?
	Story Prioritization and Backlog Management
	Story-Point Estimating
	Parking Lot Diagrams
	Wrap-Up

	Chapter 5 Self-Organizing Teams Boost Performance
	What Is a Self-Organizing Team?
	Self-Organization Requires Self-Discipline
	Self-Organization Requires Shared Responsibility
	Self-Organization Requires Team Working Agreements
	Self-Organization Requires Honoring Commitments
	Self-Organization Requires Glass-House Development
	Self-Organizing Requires Corporate Alignment
	Wrap-Up

	Part II: Agile Analytics: Technical Methods
	Chapter 6 Evolving Excellent Design
	What Is Evolutionary Design?
	How Much Up-Front Design?
	Agile Modeling
	Data Model Patterns
	Managing Technical Debt
	Refactoring
	Deploying Warehouse Changes
	Other Reasons to Take an Evolutionary Approach
	Case Study: Adaptive Warehouse Architecture
	Wrap-Up

	Chapter 7 Test-Driven Data Warehouse Development
	What Is Agile Analytics Testing?
	Agile Testing Framework
	BI Test Automation
	Sandbox Development
	Test-First BI Development
	BI Testing Guidelines
	Setup Time
	Functional BI Testing
	Wrap-Up

	Chapter 8 Version Control for Data Warehousing
	What Is Version Control?
	The Repository
	Working with Files
	Organizing the Repository
	Tagging and Branching
	Choosing an Effective Tool
	Wrap-Up

	Chapter 9 Project Automation
	What Is Project Automation?
	Getting Started
	Build Automation
	Continuous Integration
	Push-Button Releases
	Wrap-Up

	Chapter 10 Final Words
	Focus on the Real Problem
	Being Agile versus Doing Agile
	Gnarly Problems
	What about Emerging Technologies?
	Adoption Strategies
	Closing Thoughts . . .

	References and Recommended Reading
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

