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INTRODUCTION

The word trigonometry comes from Greek words meaning measurement
of triangles. Solving triangles is one of many aspects of trigonometry

that you study today. To develop methods to solve triangles, trigonomet-
ric functions are constructed. The study of the properties of these func-
tions and related applications form the subject matter of trigonometry.
Trigonometry has applications in navigation, surveying, construction, and
many other branches of science, including mathematics and physics. 

Why You Need This Book
Can you answer yes to any of these questions?

■ Do you need to review the fundamentals of trigonometry fast?

■ Do you need a course supplement to trigonometry?

■ Do you need a concise, comprehensive reference for trigonometry?

If so, then CliffsQuickReview Trigonometry is for you!

How to Use This Book
You’re in charge here. You get to decide how to use this book. You can
either read the book from cover to cover or just look for the information
you need right now. However, here are a few recommended ways to search
for topics:

■ Flip through the book looking for your topics in the running heads.

■ Look in the Glossary for all the important terms and definitions.

■ Look for your topic in the Table of Contents in the front of the book.

■ Look at the Chapter Check-In list at the beginning of each chapter.

■ Look at the Chapter Check-Out questions at the end of each 
chapter.

■ Test your knowledge with the CQR Review at the end of the book.

6389-0 Intro.F  7/27/01  8:40 AM  Page 1



2 CliffsQuickReview Trigonometry

Visit Our Web Site 
A great resource, www.cliffsnotes.com, features review materials, valu-
able Internet links, quizzes, and more to enhance your learning. The site
also features timely articles and tips, plus downloadable versions of many
CliffsNotes books. 

When you stop by our site, don’t hesitate to share your thoughts about this
book or any Hungry Minds product. Just click the Talk to Us button. We
welcome your feedback!
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Chapter 1

TRIGONOMETRIC FUNCTIONS

Chapter  Checkin

❑ Understanding angles and angle measurements

❑ Finding out about trigonometric functions of acute angles

❑ Defining trigonometric functions of general angles

❑ Using inverse notation and linear interpolation

Historically, trigonometry was developed to help find the measurements
in triangles as an aid in navigation and surveying.  Recently, trigonom-

etry is used in numerous sciences to help explain natural phenomena.  In
this chapter, I define angle measure and basic trigonometric relationships
and introduce the use of inverse trigonometric functions.

6389-0 Ch01.F  7/27/01  8:40 AM  Page 3



4 CliffsQuickReview Trigonometry

Angles
An angle is a measure of rotation. Angles are measured in degrees. One
complete rotation is measured as 360°. Angle measure can be positive or
negative, depending on the direction of rotation. The angle measure is the
amount of rotation between the two rays forming the angle. Rotation is
measured from the initial side to the terminal side of the angle. Positive
angles (Figure 1-1a) result from counterclockwise rotation, and negative
angles (Figure 1-1b) result from clockwise rotation. An angle with its ini-
tial side on the x-axis is said to be in standard position.

Figure 1-1 (a) A positive angle and (b) a negative angle.

Angles that are in standard position are said to be quadrantal if their ter-
minal side coincides with a coordinate axis. Angles in standard position
that are not quadrantal fall in one of the four quadrants, as shown in 
Figure 1-2.

(a) (b)

150° -245°
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Chapter 1: Trigonometric Functions 5

Figure 1-2 Types of angles.

II I

III IV

210°
x

y

Third quadrant angle
(a)

II I

III IV

-260°

x

y

Second quadrant angle
(b)

II I

III IV

40° x

y

First quadrant angle
(c)

II I

III IV

-50°

x

y

Fourth quadrant angle
(d)

II I

III IV

270°
x

y

Quadrant angle
(e)

II I

III IV

-180°

x

y

Quadrant angle
(f )
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6 CliffsQuickReview Trigonometry

Example 1: The following angles (standard position) terminate in the
listed quadrant.

94° 2nd quadrant

500° 2nd quadrant

–100° 3rd quadrant

180° quadrantal

–300° 1st quadrant

Two angles in standard position that share a common terminal side are
said to be coterminal. The angles in Figure 1-3 are all coterminal with an
angle that measures 30°.

All angles that are coterminal with d° can be written as 
% %d n 360360$+

where n is an integer (positive, negative, or zero).

Example 2: Is an angle measuring 200° coterminal with an angle mea-
suring 940°?

If an angle measuring 940° and an angle measuring 200° were cotermi-
nal, then

n940940 200200 360360$= +% %%

n740740 360360$=% %

Because 740 is not a multiple of 360, these angles are not coterminal.
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Chapter 1: Trigonometric Functions 7

Figure 1-3 Angles coterminal with −70°.

y

x30°

(a)

y

x390°

(a)

y

x750°

(c)

y

x
1110°

(d)

y

x

-330°

(e)

y

x

-690°

(f )
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8 CliffsQuickReview Trigonometry

Example 3: Name 4 angles that are coterminal with −70°.

7070 1 360360 290290- + =% % %^ h

7070 2 360360 650650- + =% %%^ h

7070 3 360360 11101110- + =%% %^ h

7070 1 360360 430430- + - =-%% %^ h

7070 2 360360 790790- + - =- %% %^ h

Angle measurements are not always whole numbers. Fractional degree mea-
sure can be expressed either as a decimal part of a degree, such as 34.25°,
or by using standard divisions of a degree called minutes and seconds. The
following relationships exist between degrees, minutes, and seconds:

1 degree = 60 minutes

1 minute = 60 seconds

or

1 6060=% l

1 6060=l m

Example 4: Write 3434 1515% l using decimal degrees.

3434 1515 3434
6060
1515

= +% % %
l

.3434 2525= +% %

.3434 2525= %

Example 5: Write 1212 1818 4444% l m using decimal degrees.

. .

.

1212 1818 4444 1212
6060
1818

36003600
4444

1212 3 012012

1212 312312

.

.

= + +

+ +

% % % %

% % %

%

l m

Example 6: Write .8181 293293%using degrees, minutes, and seconds.

. .

.

.

8181 293293 8181 293293 6060

8181 1717 5858

8181 1717 5858 6060

8181 1717 3535

8181 1717 3535

#

#

.

.

= +

= +

= + +

+ +

% %

%

%

%

%

l

l

l m

l m

l m

^

^

h

h
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Chapter 1: Trigonometric Functions 9

Functions of Acute Angles
The characteristics of similar triangles, originally formulated by Euclid,
are the building blocks of trigonometry. Euclid’s theorems state if two
angles of one triangle have the same measure as two angles of another tri-
angle, then the two triangles are similar. Also, in similar triangles, angle
measure and ratios of corresponding sides are preserved. Because all right
triangles contain a 90° angle, all right triangles that contain another angle
of equal measure must be similar. Therefore, the ratio of the correspond-
ing sides of these triangles must be equal in value. These relationships lead
to the trigonometric ratios. Lowercase Greek letters are usually used to
name angle measures. It doesn’t matter which letter is used, but two that
are used quite often are alpha (α) and theta (θ).

Angles can be measured in one of two units: degrees or radians. The rela-
tionship between these two measures may be expressed as follows:

radiansradians

radiansradians

radianradian

180180

1 180180

1 180180

=

=

=

r
r

r

%

%

%

The following ratios are defined using a circle with the equation x y r2 2 2
+ =

and refer to Figure 1-4.

Figure 1-4 Reference triangles.

r

x

y

(a) (b)

hypotenuse

side adjacent

side opposite
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10 CliffsQuickReview Trigonometry

sinsinsinesine ofof r
y

lengthlength ofof hypotenusehypotenuse
lengthlength ofof sideside oppositeopposite

= = =a a
a

coscoscosinecosine ofof r
x

lengthlength ofof hypotenusehypotenuse
lengthlength ofof sideside adjacentadjacent toto

= = =a a
a

tantantangenttangent ofof x
y

lengthlength ofof sideside adjacentadjacent
lengthlength ofof sideside oppositeopposite

= = =a a
a

Remember, if the angles of a triangle remain the same, but the sides
increase or decrease in length proportionally, these ratios remain the same.
Therefore, trigonometric ratios in right triangles are dependent only on
the size of the angles, not on the lengths of the sides.

The cotangent, secant, and cosecant are trigonometric functions that
are the reciprocals of the sine, cosine, and tangent, respectively.

csccsccosecantcosecant ofof y
r

lengthlength ofof sideside oppositeopposite
lengthlength ofof hypotenusehypotenuse

= = =a a
a

secsecsecantsecant ofof x
r

lengthlength ofof sideside adjacentadjacent toto
lengthlength ofof hypotenusehypotenuse

= = =a a
a

cotcotcotangentcotangent ofof y
x

lengthlength ofof sideside oppositeopposite toto
lengthlength ofof sideside adjacentadjacent toto

= = =a a
a
a

If trigonometric functions of an angle θ are combined in an equation and
the equation is valid for all values of θ, then the equation is known as a
trigonometric identity. Using the trigonometric ratios shown in the pre-
ceding equation, the following trigonometric identities can be constructed.

º
coscos
sinsin tantan

sinsin
coscos cotcot

r
x
r
y

x
y

r
y
r
x

x
y

= = = = = =
i
i i

i
i i

Symbolically, (sin α)2 and sin2 α can be used interchangeably. From Fig-
ure 1-4 (a) and the Pythagorean theorem, x y r2 2 2

+ = .

sinsin coscos r
y

r
x

r
y

r
x

r
x y

r
r 12 2

2 2

2

2

2

2

2

2 2

2

2

+ = + = + +
+

= =i i e co m

These three trigonometric identities are extremely important:

coscos
sinsin tantan=

i
i i

sinsin
coscos cotcot=

i
i i

sinsin coscos 12 2
+ =i i
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Chapter 1: Trigonometric Functions 11

Example 7: Find sin θ and tan θ if θ is an acute angle < <0 9090i% %a k and 
cos θ = 1/4.

sinsin coscos 12 2
+ =i i tantan

coscos
sinsin

=i
i
i

sinsin
4
1 12

2

+ =i c m

sinsin 1
1616
12

= -i tantan

4
1
4
1515

=i

sinsin
1616
15152

=i tantan
4
1515

1
4 1515= =i

J

L

K
K c

N

P

O
O m

sinsin
1616
1515

4
1515

= =i

Example 8: Find sin θ and tan θ if θ is an acute angle < <0 9090i% %a k and
tan θ = 6.

If the tangent of an angle is 6, then the ratio of the side opposite the angle
and the side adjacent to the angle is 6. Because all right triangles with this
ratio are similar, the hypotenuse can be found by choosing 1 and 6 as the
values of the two legs of the right triangle and then applying the
Pythagorean theorem.

r x y

r

r

r

r

6 1

3636 1

3737

3737

2 2 2

2 2 2

2

2

= +

= +

= +

=

=

sinsin hypotenusehypotenuse
lengthlength ofof sideside oppositeopposite

3737

6
= =i

i

coscos hypotenusehypotenuse
lengthlength ofof sideside adjacentadjacent toto

3737

1
= =i

i
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12 CliffsQuickReview Trigonometry

Trigonometric functions come in three pairs that are referred to as cofunc-
tions. The sine and cosine are cofunctions. The tangent and cotangent are
cofunctions. The secant and cosecant are cofunctions. From right triangle
XYZ, the following identities can be derived:

sinsin coscos sinsin coscos

tantan cotcot tantan cotcot

secsec csccsc secsec csccsc

X z
x Y Y z

y
X

X y
x Y Y x

y
X

X y
z Y Y x

z X

= = = =

= = = =

= = = =

Using Figure 1-5, observe that XE and YE are complementary.

Figure 1-5 Reference triangles.

Thus, in general:

sinsin coscos coscos sinsin

tantan cotcot cotcot tantan

secsec csccsc csccsc secsec

9090 9090

9090 9090

9090 9090

= - = -

= - = -

= - = -

a a a a

a a a a

a a a a

% %

% %

% %

a a

a a

a a

k k

k k

k k

Example 9: What are the values of the six trigonometric functions for
angles that measure 30°, 45°, and 60° (see Figure 1-6 and Table 1-1).

X

Z Y

y z

x
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Chapter 1: Trigonometric Functions 13

Figure 1-6 Drawings for Example 9.

Table 1-1 Trigonometric Ratios for 30°, 45°, and 60° Angles

θ sin θ csc θ cos θ sec θ tan θ cot θ

30° 2
1 2 2

3
3

2 3
3
3

3

40° 2
2

2 2
2

2 1 1

60° 2
3

3
2 3

2
1 2 3 3

3

Functions of General Angles
Acute angles in standard position are all in the first quadrant, and all of
their trigonometric functions exist and are positive in value. This is not
necessarily true of angles in general. Some of the six trigonometric func-
tions of quadrantal angles are undefined, and some of the six trigonomet-
ric functions have negative values, depending on the size of the angle.
Angles in standard position have their terminal side in or between one of

2

(a) (b)

3

2
11

1

45°

45°

60°

30°
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14 CliffsQuickReview Trigonometry

the four quadrants. Figure 1-7 shows a point A (x, y) located on the ter-
minal side of angle θ with r as the distance AO. Note that r is always pos-
itive. Based on the figures,

sinsin r
y

=i

;csccsc y
r y 0!=i

coscos r
x

=i

;secsec x
r x 0!=i

;tantan x
y

x 0!=i

;cotcot y
x y 0!=i

Figure 1-7 Positive angles in various quadrants.

(a) (b)

(c) (d)

y

x
O

y

x
O

r
r

A(x,y)

y

x
O

r

A(x,y)

A(x,y)

y

x
O

r A(x,y)
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Chapter 1: Trigonometric Functions 15

If angle θ is a quadrantal angle, then either x or y will be 0, yielding the
undefined values if the denominator is zero. The sign, positive or negative,
of the trigonometric functions depends on which quadrant this point A
(x, y) is located in. Table 1-2 summarizes this information.

Table 1-2 Signs of Trig Functions in Various Quadrants

Function Quadrant

I II III IV

sin θ, csc θ + + − −

cos θ, sec θ + − − +

tan θ, cot θ + − + −

One way to remember which functions are positive and which are nega-
tive in the various quadrants is to remember a simple four-letter acronym,
ASTC. This acronym can remind you that All are positive in quadrant I,
the Sine is positive in quadrant II, the Tangent is positive in quadrant III,
and the Cosine is positive in quadrant IV. This acronym could stand for
Arizona State Teacher’s College, All Students Take Classes, or some other
four-word expression that will help you remember the relationships.

Table 1-3 summarizes the values of the trigonometric functions of quad-
rantal angles. Note that undefined values result from division by 0.

Table 1-3 Values of Trig Functions for Various
Quadrantal Angles

sin θ cos θ tan θ cot θ sec θ csc θ

0° 0 1 0 undefined 1 undefined

90° 1 0 undefined 0 undefined 1

180° 0 −1 0 undefined −1 undefined

270° −1 0 undefined 0 undefined −1

The six trigonometric functions of angles that are not acute can be con-
verted back to functions of acute angles. These acute angles are called the
reference angles (see Table 1-4). The value of the function depends on
the quadrant of the angle. If angle θ is in the second, third, or fourth quad-
rant, then the six trigonometric functions of θ can be converted to equiv-
alent functions of an acute angle. Geometrically, if the angle is in quadrant
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16 CliffsQuickReview Trigonometry

II, reflect about the y-axis. If the angle is in quadrant IV, reflect about the
x-axis. If the angle is in quadrant III, rotate 180°. Keep in mind the sign
of the functions during these conversions to the reference angle.

Table 1-4 Reference Angle Values in Various Quadrants

Function Quadrant

II III IV

sin θ sin (180° − θ) −sin (θ − 180 °) −sin (360° − θ)

cos θ −cos (180° − θ) −cos (θ − 180°) cos (360° − θ)

tan θ −tan (180° − θ) tan (θ — 180°) −tan (360° − θ)

cot θ −cot (180° − θ) cot (θ − 180°) −cot (360° − θ)

sec θ −sec (180° − θ) −sec (θ − 180°) sec (360° − θ)

csc θ csc (180° − θ) −csc (θ − 180°) −csc (360° − θ)

Example 10: Find the six trigonometric functions of an angle α that is
in standard position and whose terminal side passes through the point 
(−5, 12).

From the Pythagorean theorem, the hypotenuse can be found. Then, the
six trigonometric functions follow from the definitions (Figure 1-8).

Figure 1-8 Drawing for Example 10.

y

x
-5

r
12
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Chapter 1: Trigonometric Functions 17

r x y

r

r

r

r

5 1212

2525 144144

169169

169169 1313

2 2 2

2 2 2

2

2

= +

= - +

= +

=

= =

^ h

sinsin

coscos

tantan

cotcot

secsec

csccsc

1313
1212

1313
5

5
1212

1212
5

5
1313

1212
1313

=

=-

=-

=-

=-

=

a

a

a

a

a

a

Example 11: If sin θ = 1/3, what is the value of the other five trigono-
metric functions if cos θ is negative?

Figure 1-9 Drawing for Example 11.

Because sin θ is positive and cos θ is negative, θ must be in the second
quadrant. From the Pythagorean theorem, 

; ;x x x1 3 1 9 82 2 2 2 2
+ = + = = ; x 8 2 2= =

and then it follows that

csccsc 3=i

secsec =- =-i

cotcot 2=-i

tantan =- =-i

coscos 3
2 2

2 2

1
4
2

2

2 2

3
4

3 2

=-i

y

x
3

x
1
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18 CliffsQuickReview Trigonometry

Example 12: What is the exact sine, cosine, and tangent of 330°?

Because 330° is in the fourth quadrant, sin 330° and tan 330° are nega-
tive and cos 330° is positive. The reference angle is 30°. Using the 30° −
60° − 90° triangle relationship, the ratios of the three sides are 1, 2, 3.
Therefore,

sinsin3030 2
1

=% sinsin330330 2
1

=-%

coscos3030 2
3

=% and coscos330330 2
3

=%

tantan3030 2
3

=% tantan330330
3

1
3
3

=- =-%

Tables of Trigonometric Functions
Calculators and tables are used to determine values of trigonometric func-
tions. Most scientific calculators have function buttons to find the sine,
cosine, and tangent of angles. The size of the angle is entered in degree or
radian measure, depending on the setting of the calculator. Degree mea-
sure will be used here unless specifically stated otherwise. When solving
problems using trigonometric functions, either the angle is known and the
value of the trigonometric function must be found, or the value of the
trigonometric function is known and the angle must be found. These two
processes are inverses of each other. Inverse notations are used to express
the angle in terms of the value of the trigonometric function. The expres-
sion .sinsin 0 42954295=i can be written as . .sinsinSinSin oror ArcArc0 42954295 0 429542951

= =i i-

and these two equations are both read as “theta equals Arcsin 0.4295.”
Sometimes the expression “inverse sine of 0.4295” is used. Some calcula-
tors have a button marked “arc,” which is pressed prior to the function key
to express “arc” functions. Arc functions are used to find the measure of
the angle if the value of the trigonometric function is known. If tables are
used instead of a calculator, the same table is used for either process. Note:
The use of calculators or tables gives only approximate answers. Even so,
an equal (=) sign is sometimes used instead of an approximate (. or ,)
sign.

Example 13: What is the sine of 48°?

. .sinsin4848 0 74314482557431448255 0 74317431. .%

Example 14: What angle has a cosine of 0.3912?

. . .CosCos 0 39123912 6666 9708124797081247 6666 97971 . .% %-
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Chapter 1: Trigonometric Functions 19

Although a calculator can find trigonometric functions of fractional angle
measure with ease, this may not be true if you must use a table to look up
the values. Tables cannot list all angles. Therefore, approximation must be
used to find values between those listed in the table. This method is known
as linear interpolation. The assumption is made that differences in func-
tion values are directly proportional to the differences of the measures of
the angles over small intervals. This is not really true, but yields a better
answer than just using the closest value in the table. This method is illus-
trated in the following examples.

Example 15: Using linear interpolation, find tan 28.43° given that tan
28.40° = 0.5407 and tan 28.50° = 0.5430.

x.0 0303
.

. .

. ?

. .

.

tantan

tantan

tantan

x thethe differencedifference0 1010

2828 4040 0 54075407

2828 4343

2828 5050 0 54305430

0 00230023

.

.

.

=

%

%

%
` j

Z

[

\

]
]

]
]

*

_

`

a

b
b

b
b

4

Set up a proportion using the variable x.

.

.
.

. . .

. .

.

x

x

x

x

0 1010
0 0303

0 00230023
0 0303 0 00230023 0 1010

0 000069000069 0 1010

0 00070007

.

.

.

.

^ ^h h

Because x is the difference between tan 28.40° and tan 28.43°,

. . . .tantan2828 4343 0 54075407 0 00070007 0 54145414. .+

Example 16: Find the first quadrant angle α where cos .0 26222622.a , given
that .coscos 7474 0 27562756.% and cos .7575 0 25882588.% .

x .0 01340134
.

. .

.

. .

.

coscos

coscos

coscos

x1 0

7474 0 0 27562756

0 26222622

7575 0 0 55885588

0 01680168 thethe differencedifference

.

.

.

=a

%

%

^ h

Z

[

\

]
]

]]

*

_

`

a

b
b

bb

4

Set up a proportion using the variable x.

. .
.

. .

.

x

x

x

1 0 0 01680168
0 01340134

0 01680168 0 01340134

0 8

.

.

.

Therefore, . . .7474 0 0 8 7474 8. .+a % % %.
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20 CliffsQuickReview Trigonometry

An interesting approximation technique exists for finding the sine and tan-
gent of angles that are less than 0.4 radians (approximately 23°). The sine
and tangent of angles less than 0.4 radians are approximately equal to the
angle measure. For example, using radian measure, . .sinsin0 1515 0 149149. and
tan . .0 1515 0 151151. .

Example 17: Find θ in Figure 1-10 without using trigonometry tables or
a calculator to find the value of any trigonometric functions.

Figure 1-10 Drawing for Example 17.

Because sin /5 2323=i .0 2173921739. , the size of the angle can be approximated
as 0.217 radians, which is approximately 12.46°. In reality, the answer is
closer to 0.219 radians, or 12.56°—quite close for an approximation. If
the Pythagorean theorem is used to find the third side of the triangle, the
process could also be used on the tangent.

.

x

x

x

x

5 2323

2525 529529

504504

504504 2222 4545

2 2 2

2

2

.

+ =

+ =

=

=

.
.tantan

2222 4545
5 0 223223.=i

Thus, θ ≈ 0.223 radians. 
Also, a close approximation.

Example 18: Find the measure of an acute angle α accurate to the near-
est minute if tan α = 0.8884.

Using a calculator

.

.

.

TanTan 0 88848884

4141 61796179

4141 0 61796179 6060

4141 3737

4141 3737

1

.

.

.

.

=

+

+

a

a

a

a

a

%

%

%

%

-

l

l

l

^ ^h h

23

x

5
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Chapter 1: Trigonometric Functions 21

Chapter  Checkout

Q&A
1. True or false: An angle of size  –20° is coterminal with an angle of

size 700°.

2. Write  34.603 using degrees, minutes, and seconds.

3. If 0° < θ < 90° and sin θ = 3
2, find cos θ.

4. If 0° < θ < 90° and tan θ = 3
4, find sin θ.

5. What is the exact cosine of 210°?

6. Find the measure of an angle to the nearest minute if its cosine is
0.678.

7. What angle has a tangent of 3.4?

Answers: 1. T 2. 34°36'10.8" 3. coscos 3
5

=i 4. sin θ = 4/5 5. 2
3

-

6. 47°19' 7. 73.61°.
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Chapter 2

TRIGONOMETRY OF TRIANGLES

Chapter  Checkin

❑ Figuring out trigonometric ratios to find missing parts of right 
triangles

❑ Using the law of cosines to solve triangles

❑ Applying the law of sines to solve triangles

❑ Finding the area of triangles by using trigonometric functions

Triangles are made up of three line segments. They meet to form three
angles. The sizes of the angles and the lengths of the sides are related

to one another. If you know the size (length) of three out of the six parts
of the triangle (at least one side must be included), you can find the sizes
of the remaining sides and angles. If the triangle is a right triangle, you can
use simple trigonometric ratios to find the missing parts. In a general tri-
angle (acute or obtuse), you need to use other techniques, including the
law of cosines and the law of sines. You can also find the area of triangles
by using trigonometric ratios.

Solving Right Triangles
All triangles are made up of three sides and three angles. If the three angles
of the triangle are labeled , ,A B CandandE E E , then the three sides of the tri-
angle should be labeled as a, b, and c. Figure 2-1 illustrates how lowercase
letters are used to name the sides of the triangle that are opposite the angles
named with corresponding uppercase letters. If any three of these six mea-
surements are known (other than knowing the measures of the three
angles), then you can calculate the values of the other three measurements.
The process of finding the missing measurements is known as solving the
triangle. If the triangle is a right triangle, then one of the angles is 90°.
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Chapter 2: Trigonometry of Triangles 23

Therefore, you can solve the right triangle if you are given the measures of
two of the three sides or if you are given the measure of one side and one
of the other two angles.

Figure 2-1 Drawing for Example 1.

Example 1: Solve the right triangle shown in Figure 2-1(b) if B 2222E = %and
b=16.

Because the three angles of a triangle must add up to 180°, 
∠A = 90° − ∠B. Thus, ∠A = 68°.

sinsin2222

.
.

sinsin

sinsin

B c
b

c
c

c

c

2222 1616

1616

37463746
1616

4242 7171

=

=

=

=

=

%

% tantan2222

.
.

tantan

tantan

B a
b

a
a

a

a

2222 1616

1616

40404040
1616

3939 6060

=

=

=

=

=

%

%

The following is an alternate way to solve for sides a and c:

.

.

csccsc

csccsc

csccsc

B b
c

c

c

c

c

2222
1616
1616 2222

1616 2 669669

4242 7171

=

=

=

=

=

%

%a

^

k

h .

.

cotcot

cotcot

cotcot

B b
a

a

a

a

a

2222
1616
1616 2222

1616 2 475475

3939 6060

=

=

=

=

=

%

%a

^

k

h

This alternate solution may be easier because no division is involved.

Example 2: Solve the right triangle shown in Figure 2-1(b) if b = 8 and 
a = 13.

C

A

Ba

cb

b

ac

B

A C

(a) (b)
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You can use the Pythagorean theorem to find the missing side, but trigono-
metric relationships are used instead. The two missing angle measurements
will be found first and then the missing side.

.

.

tantanB a
b

B

1313
8

0 61546154

3131 6E

=

=

=

= %
.

.

tantanA b
a

A

8
1313

1 625625

5858 4E

=

=

=

= %

.

.

.
.

sinsin

sinsin

sinsin

B c
b

c
c

c

c

3131 6 8

3131 6

8

0 52395239
8

1515 2727

=

=

=

=

=

%

%

In many applications, certain angles are referred to by special names. Two
of these special names are angle of elevation and angle of depression.
The examples shown in Figure 2-2 make use of these terms.

Figure 2-2 a) Angle of elevation and b) angle of depression.

Example 3: A large airplane (plane A) flying at 26,000 feet sights a smaller
plane (plane B) traveling at an altitude of 24,000 feet. The angle of depres-
sion is 40°. What is the line of sight distance (x) between the two planes?

Figure 2-3 illustrates the conditions of this problem.

Figure 2-3 Drawing for Example 3.

2000'

40°
A

B

x

angle of elevation

angle of depression

horizontal
(a)

horizontal

(b)

6389-0 Ch02.F  7/27/01  8:44 AM  Page 24



Chapter 2: Trigonometry of Triangles 25

From Figure 2-3, you can find the solution by using the sine of 40°:

sinsin4040

.
.

sinsin x
x

x

x

4040 20002000

20002000

64286428
20002000

31113111 4

=

=

=

=

%

% l

l

l

l

Example 4: A ladder must reach the top of a building. The base of the lad-
der will be 25' from the base of the building. The angle of elevation from
the base of the ladder to the top of the building is 64°. Find the height of
the building (h) and the length of the ladder (m).

Figure 2-4 illustrates the conditions of this problem.

Figure 2-4 Drawing for Example 4.

.

.

.

tantan h

h

h

h

6464
2525

2 0505
2525
2525 2 0505

5151 2525

=

=

=

=

%
l

l
l

l

^ ^h h

.

.
.

coscos m

m
m

m

6464 2525

43844384 2525

43844384
2525

5757 0202

=

=

=

=

% l

l

l

l

ExampIe 5: A woodcutter wants to determine the height of a tall tree. He
stands at some distance from the tree and determines that the angle of ele-
vation to the top of the tree is 40°. He moves 30' closer to the tree, and
now the angle of elevation is 50°. If the woodcutter’s eyes are 5' above the
ground, how tall is the tree?

25'

64°

mh
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Figure 2-5 can help you visualize the problem.

Figure 2-5 Drawing for Example 5.

From the small right triangle and from the large right triangle, the fol-
lowing relationships are evident:

.

cotcot x
y

x
y

5050

83918391

=

=

%

.y x0 83818381=

.

.

tantan
y

x

y
x

x y

4040
3030

83918391
3030

0 83918391 3030

=
+

=
+

= +

%
l

l

l` j

Substituting the first equation in the second yields:

. .

. .

. .

.

x x

x x

x

x

0 83918391 0 83918391 3030

0 70417041 2525 1717

29592959 2525 1717

8585 0606

= +

= +

=

=

l

l

l

l

^ h

Note that 5' must be added to the value of x to get the height of the tree,
or 90.06' tall.

Example 6: Using Figure 2-6, find the length of sides x and y and the area
of the large triangle.

5' 30' 5'

40° 50°

x

y
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Chapter 2: Trigonometry of Triangles 27

Figure 2-6 Drawing for Example 6.

Because this is an isosceles triangle, and equal sides are opposite equal
angles, the values of x and y are the same. If the triangle is divided into two
right triangles, the base of each will be 6. Therefore,

.

.
.

coscos x

x
x

x

7070 6

0 342342 6

0 342342
6

1717 5454

=

=

=

=

%
.

.

.

.

.

tantan

sqsq unitsunits

h

h

h

h

areaarea bhbh

7070
6

2 747747
6
6 2 747747

1616 4848

2

2
1212 1616 4848

9898 8888

=

=

=

=

=

=

=

%

^ ^

^ ^

h h

h h

Law of Cosines
The previous section covered the solving of right triangles. In this section,
and the next, you see formulas that can solve any triangle. If α, β, and γ
are the angles of any (right, acute, or obtuse) triangle, and a, b, and c are
the lengths of the three sides opposite α,β, and γ, respectively, then

coscos

coscos

coscos

a b c bcbc

b a c acac

c a b abab

2

2

2

2 2 2

2 2 2

2 2 2

= + -

= + -

= + -

a

b

c

These three formulas are called the Law of Cosines. Each follows from
the distance formula and is illustrated in Figure 2-7.

12

70° 70°

yx
h
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Figure 2-7 Reference triangle for Law of Cosines.

From the figure,

sinsin coscosb
y

andand b
x

= =c c

Thus the coordinates of A are

coscosx b andand y b sinsin= =c c

Remember, all three forms of the Law of Cosines are true even if γ is acute.
Using the distance formula,

sinsin coscos

sinsin coscos coscos

sinsin coscos coscos

coscos

c y x a

c b b a

c b b abab a

c b abab a

c a b abab

0

0

2

2

2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2

= - + -

= - + -

= + - +

= + - +

= + -

c c

c c c

c c c

c

` ^

` `

`

j h

j j

j

In the preceding formula, if γ is 90°, then the cos 90° = 0, yielding the
Pythagorean theorem for right triangles. If the orientation of the triangle
is changed to have A or B at the origin, then the other two versions of the
Law of Cosines can be obtained.

Two specific cases are of particular importance. First, use the Law of
Cosines to solve a triangle if the length of the three sides is known.

Example 7: If α, β, and γ are the angles of a triangle, and a, b, and c are
the lengths of the three sides opposite α, β, and γ, respectively, and a = 12,
b = 7, and c = 6, then find the measure of β.

x

y

b

C a

c

A(x,y)

B(a,0)
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Use the form of the Law of Cosines that uses the angle in question.

coscosb a c acac22 2 2
= + - b

Rewrite solving for cos β.

.

coscos

coscos

coscos

acac
a c b

2

2 1212 6
1212 6 7

144144
131131 0 90979097

2 2 2

2 2 2

.

=
+ -

=
+ -

=

b

b

b

^ ^ ^h h h

Because cos > < , < .

.

,andand ThusThus0 180180 9090

2424 5454

2424 3232

.

.

b b b

b

%

%

%

%

l

The measure of α can be found in a similar way.

coscosa b c bcbc22 2 2
= + - a

Rewrite solving for cos α.

.

coscos

coscos

coscos

bcbc
b c a

2

2 7 6
7 6 1212

8484
5959 0 70247024

2 2 2

2 2 2

.

=
+ -

=
+ -

=
-

-

a

a

a

^ ^ ^h h h

Because cos α < 0 and α < 180°, α > 90°. Thus, 

.134134 6262

134134 3737

.

.

a %

% l

Because the three angles of the triangle must add up to 180°,

. .

180180

180180 134134 6262 2424 5454.

= - -

- -

c a b

c

%

% % %

.2020 8484

2020 5050

.

.

c %

% l
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Next, solve a triangle knowing the lengths of two sides and the measure
of the included angle. First, find the length of the third side by using the
Law of Cosines. Then proceed as in Example 7 to find the other two
angles.

Example 8: Using Figure 2-8, find the length of side b.

Figure 2-8 Drawing for Example 8.

.

.

.

.

coscos

coscos

b a c acac

b

b

b

b

b

2

1111 1010 2 1111 1010 7171

121121 100100 220220 0 32563256

149149 3737

149149 3737

1212 2222

2 2 2

2 2 2

2

2

.

.

.

.

= + -

= + -

+ -

b

%^ ^ ^

^ ^

h h h

h h

Example 9: Find the area of the triangle in Example 8.

First reposition the triangle as shown in Figure 2-9 so that the known angle
is in standard position.

71°

b

a

c b

11

(b)(a)

10
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Figure 2-9 Drawing for Example 9.

The base of the triangle is 11. You can find the height of the triangle by
using the fact that

.

.

.

sinsin h

h

h

h

7171 1010

0 94559455 1010
1010 0 94559455

9 455455

.

.

.

=%

^ ^h h

Therefore,

areaarea
basebase heightheight

2
#

=

.
areaarea

areaarea sqsq unitsunits
2

1111 9 455455

5252

=

=

^ ^h h

Law of Sines
You can use the Law of Cosines discussed in the last section to solve gen-
eral triangles, but only under certain conditions. The formulas that will
be developed in this section provide more flexibility in solving these gen-
eral triangles.

The following discussion centers around Figure 2-10.

71°

b
h

11

10

y

x
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Figure 2-10 Reference triangles for Law of Sines.

Line segment CDCD is the altitude in each figure. Therefore ACDACDD and BCDBCDD
are right triangles. Thus,

sinsin sinsinb
h h b&= =a a

In Figure 2-10(b), CBDCBDE has the same measure as the reference angle for
β. Thus,

sinsin sinsina
h h a&= =b b

It follows that

sinsin sinsin

sinsin sinsin

sinsin sinsin

b h a

abab
b

abab
a

a b

= =

=

=

a b

a b

a b

Similarly, if an altitude is drawn from A,

sinsin sinsin

sinsin sinsin

sinsin sinsin

c h a

acac
c

acac

a c

= =

=

=

a c
a a c

a c

Combining the preceding two results yields what is known as the Law of
Sines.

sinsin sinsin sinsin
sinsin sinsin sinsina b c oror a b c

= = = =
a b c

a b c

In other words, in any given triangle, the ratio of the length of a side and
the sine of the angle opposite that side is a constant. The Law of Sines is

α α
β

β

γγ

a

c c

a
b b

h h

A D

C

B A B D

C

(a) (b)
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valid for obtuse triangles as well as acute and right triangles, because the
value of the sine is positive in both the first and second quadrant—that is,
for angles less than 180°. You can use this relationship to solve triangles
given the length of a side and the measure of two angles, or given the
lengths of two sides and one opposite angle. (Remember that the Law of
Cosines is used to solve triangles given other configurations of known sides
and angles.)

First, consider using the Law of Sines to solve a triangle given two angles
and one side.

Example 10: Solve the triangle in Figure 2-11 given =i 32°, z=77°, and
d = 12.

Figure 2-11 Drawing for Example 10.

It follows from the fact that there are 180° in any triangle that

o180180

180180 7777 3232

7171

= - -

= - -

=

d i

d

d

%

% % %

%

Y

From the Law of Sines, the following relationships are obtained:

sinsin sinsin sinsin3232 7171 7777

sinsin sinsin sinsin
d e

o
f

e f1212

= =

= =

i d

% %%

Y

Solving as two independent proportions,

f

e

d
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sinsin sinsin3232 7171

. .
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e
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0 52995299
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.
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.

e

e 2121 4141

.

.

^ ^h h

sinsin sinsin3232 7777

. .

.
.

f

f

1212

0 52995299
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0 97449744

0 52995299
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.

=% %

f .

.f 2222 0707.

^ ^h h

Example 11: Solve the triangle in Figure 2-12 given 125125=a %, 3535=b %, and
b, = 42.

Figure 2-12 Drawing for Example 11.

From the fact that there are 180° in any triangle, then

180180

180180 125125 3535

2020

= - -

= - -

=

c a b

c

c

%

% %

%

%

Again, using the Law of Sines,

sinsin sinsin3535 2020

. .

.
.

c

c

4242

0 57365736
4242

0 34203420

0 57365736
4242 0 34203420

.

=% %

c .

.c 2525 0404.

^ ^h h

a

b

c
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sinsin sinsin3535 125125

. .

.
.

.

a

a

a

a

4242

0 57365736
4242

0 81928192

0 57365736
4242 0 81928192

5959 9898

.

.

.

=% %

^ ^h h

The second use of the Law of Sines is for solving a triangle given the lengths
of two sides and the measure of the angle opposite one of them. In this
case, it is possible that more than one solution will exist, depending on the
values of the given parts of the triangle. The next example illustrates just
such a case.

Example 12: Solve the triangle(s) given a = 13, b = 20, and α = 35°.

Figure 2-13 shows two possible positions for side a. This will occur if
>a h. To determine if a is greater than h, the value of h is found.

Figure 2-13 Drawing for Example 12.

sinsin b
h

=a

.

.

sinsin h

h

h

3535 2020

2020 0 57365736

1111 4747

.

.

=%

^ ^h h

Therefore, >a h and the diagram shows two solutions for the triangle. From
the Law of Sines,

a h
ab

c'
c
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.

.

.

.
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a b

SinSin
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a b

b

b

b

b

b
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^ ^h h

Because sin β is positive in both quadrant I and quadrant II, β can have
two values and therefore two different solutions for the triangle.

.

. .

6161 9595

180180 6161 9595 118118 0505

.

. .-

b

b

%

% % %

Solution 1: The sum of the angles of a triangle is 180°. Thus, 

.

.

180180

180180 3535 6161 9595

8383 0505

.

.

= - -

- -

c a b

c

c

% % %

%

%

Using the Law of Sines,

sinsin3535

.

.
.

.

sinsin sinsin

sinsin
sinsin

sinsin

a c

c
a

c

c

c

1313 8383 0505

0 57365736
1313 0 99279927

2222 5050

.

.

.

=

=

a c

a
c

%
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^ ^
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h h

Solution 2: The sum of the angles of a triangle is 180°. Thus,

.

.

180180

180180 3535 118118 0505

2626 9595

= - -

= - -

=

c a b

c

c

%

% % %

%

l l

l

l
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Using the Law of Sines,

sinsin3535

.

.
.

sinsin sinsin

sinsin
sinsin

sinsin

a c
a

1313 2626 9595

0 57365736
1313 0 45324532

=
a c

a
c

%

%
c =

c .

c .

.c 1010 2727.

l

l

l
l

l

l

l

^ b

^ ^

h l

h h

Solving General Triangles
The process of solving triangles can be categorized into several distinct
groups. The following is a listing of these categories along with a proce-
dure to follow to solve for the missing parts of the triangle. The assump-
tion is made that all three missing parts are to be found. If only some of
the unknown values are to be determined, a modified approach may be in
order.

■ SSS: If the three sides of a triangle are known, first use the Law of
Cosines to find one of the angles. It is usually best to find the largest
angle first, the one opposite the longest side. Then, set up a propor-
tion using the Law of Sines to find the second angle. Finally, subtract
these angle measures from 180° to find the third angle. 

The reason that the Law of Cosines should be used to find the largest
angle in the triangle is that if the cosine is positive, the angle is acute.
If the cosine is negative, the angle is obtuse. If the cosine is zero, the
angle is a right angle. Once the largest angle of the triangle is known,
the other two angles must be acute. 

If the largest angle is not found by using the Law of Cosines but by
using the Law of Sines instead, the determination whether the angle
is acute or obtuse must be done using the Pythagorean theorem or
other means because the sine is positive for both acute (first quad-
rant) and obtuse (second quadrant) angles. This adds an extra step to
the solution of the problem. 

If the size of only one of the angles is needed, use the Law of Cosines.
The Law of Cosines may be used to find all the missing angles,
although a solution using the Law of Cosines is usually more com-
plex than one using the Law of Sines.
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■ SAS: If two sides and the included angle of a triangle are known, first
use the Law of Cosines to solve for the third side. Next, use the Law
of Sines to find the smaller of the two remaining angles. This is the
angle opposite the shortest or shorter side, not the longest side. Finally,
subtract these angle measures from 180° to find the third angle.
Again, you can use the Law of Cosines to find the two missing angles,
although a solution using the Law of Cosines is usually more com-
plex than one using the Law of Sines.

■ ASA: If two angles and the included side of a triangle are known, first
subtract these angle measures from 180° to find the third angle. Next,
use the Law of Sines to set up proportions to find the lengths of the
two missing sides. You can use the Law of Cosines to find the length
of the third side, but why bother if you can use the Law of Sines
instead?

■ AAS: If two angles and a nonincluded side of a triangle are known,
first subtract these angle measures from 180° to find the third angle.
Next, use the Law of Sines to set up proportions to find the lengths
of the two missing sides. The given side is opposite one of the two
given angles. If all that is needed is the length of the side opposite the
second given angle, then use the Law of Sines to calculate its value.

■ SSA: This is known as the ambiguous case. If two sides and a nonin-
cluded angle of a triangle are known, there are six possible configura-
tions, two if the given angle is obtuse or right and four if the given
angle is acute. These six possibilities are shown in Figures 2-14, 2-15,
and 2-16. In Figures 2-14 and 2-15, h is an altitude where h = a sin β
and β is an acute angle.

In Figure 2-14(a), if b < h, then b cannot reach the other side of the tri-
angle, and no solution is possible. This occurs when b < a sin β.

In Figure 2-14(b), if b = h = a sin β, then exactly one right triangle is
formed.
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Figure 2-14 Two cases for SSA.

In Figure 2-15(a), if h < b < a—that is, a sin β < b < a—then two differ-
ent solutions exist.

In Figure 2-15(b), if b ≥ a, then only one solution exists, and if b = a, then
the solution is an isosceles triangle.

Figure 2-15 Ambiguous cases for SSA.

If β is an obtuse or right angle, the following two possibilities exist.

In Figure 2-16(a), if b > a, then one solution is possible. 

In Figure 2-16(b), if b a# , then no solutions are possible.

a

a

h

h

b

b

b

b

(a)

(b)

a
h

a
b = h

b

(a) (b)
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Figure 2-16 Two cases for SSA.

Example 13: (SSS) Find the difference between the largest and smallest
angles of a triangle if the lengths of the sides are 10, 19, and 23, as shown
in Figure 2-17.

Figure 2-17 Drawing for Example 13.

First, use the Law of Cosines to find the size of the largest angle (β) which
is opposite the longest side (23).

coscos2323 1010 1919 2 1010 19192 2 2
= + - b^ ^ ^h h h

.

.

.

coscos

coscos

coscos

CosCos

2 1010 1919
1010 1919 2323

380380
6868

0 17891789

0 17891789

100100 3

2 2 2

1.

.

=
+ -

=
-

=-

-

b

b

b

b

b %

-

^ ^ ^h h h

Next, use the Law of Sines to find the size of the smallest angle (α), which
is opposite the shortest side (10).

10 19

23

(a) (b)

a

b

a

b
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.
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Thus, the difference between the largest and smallest angle is

. . .100100 3 2525 3333 7474 9797- =% %%

Example 14: (SAS) The legs of an isosceles triangle have a length of 28
and form a 17° angle (Figure 2-18). What is the length of the third side
of the triangle?

This is a direct application of the Law of Cosines.

.

.

.

.

coscosc

c

c

c

c

2828 2828 2 2828 2828 1717

784784 784784 15681568 0 95639563

6868 5252

6868 5252

8 278278

2 2 2

2

2

.

.

.

.

= + -
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%^ ^ ^

^ ^

h h h

h h

Figure 2-18 Drawing for Example 14.

28 28

17°

c
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Example 15: (ASA) Find the value of d in Figure 2-19.

Figure 2-19 Drawing for Example 15.

First, calculate the sizes of angles α and β. Then find the value of a using
the Law of Sines. Finally, use the definition of the sine to find the value
of d.
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.
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Finally,

.
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Example 16: (AAS) Find the value of x in Figure 2-20.

Figure 2-20 Drawing for Example 16.

First, calculate the size of angle α. Then use the Law of Sines to calculate
the value of x.
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4848 2222

2222

.
.

.
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4141 0 74317431

8181 3333

.

.

.

= - - =

=

a % % %

%

%

%

%

%
^ a

^ ^

h k

h h

Example 17: (SSA) One side of a triangle, of length 20, forms a 42° angle
with a second side of the triangle (Figure 2-21). The length of the third
side of the triangle is 14. Find the length of the second side.

Figure 2-21 Drawing for Example 17.

42°

14 14 20
h

b'
b

110°

41

22°
x
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The length of the altitude (h) is calculated first so that the number of solu-
tions (0, 1, or 2) can be determined.

. .sinsinh 2020 4242 2020 0 66916691 1313 3838. .= %^ b ^ ^h l h h

Because 13.38 < 14 < 20, there are two distinct solutions.

Solution 1: Use of the Law of Sines to calculate α.
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Use the fact that there are 180° in a triangle to calculate β.

.
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Use the Law of Sines to find the value of b.
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Solution 2: Use α to find α', and α' to find β'
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180180 180180 7272 9292 107107 0808

180180 4242 180180 4242 107107 0808 3030 9292
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Next, use the Law of Sines to find b'.
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Areas of Triangles
The most common formula for finding the area of a triangle is K = bhbh2

1 ,
where K is the area of the triangle, b is the base of the triangle, and h is the
height. (The letter K is used for the area of the triangle to avoid confusion
when using the letter A to name an angle of a triangle.) Three additional
categories of area formulas are useful.

Two sides and the included angle (SAS): Given OABC (Figure 2-22), the
height is given by h = c sinA. Therefore,

sinsin

sinsin

sinsin

K bhbh bcbc A

K bhbh acac B

K bhbh abab C

2
1

2
1

2
1

2
1

2
1

2
1

= =

= =

= =

Two angles and a side (AAS) or (ASA): Using the Law of Sines and substi-
tuting in the preceding three formulas leads to the following formulas:
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a C
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=
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Figure 2-22 Reference triangles for area formulas.

Similarly,

sinsin
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Three sides (SSS): A famous Greek philosopher and mathematician, Heron
(or Hero), developed a formula that calculates the area of triangles given
only the lengths of the three sides. This is known as Heron’s formula. If
a, b, and c are the lengths of the three sides of a triangle, and s is the
semiperimeter, then

s a b c2
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= + +^ h
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K s s a s b s c= - - -^ ^ ^h h h
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x
A
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One of many proofs of Heron’s formula starts out with the Law of Cosines:
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Example 18: (SAS) As shown in Figure 2-23, two sides of a triangle have
measures of 25 and 12. The measure of the included angle is 51°. Find the
area of the triangle.
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Figure 2-23 Drawing for Example 18.

Use the SAS formula:

%

.

.

sinsin

sinsin

K abab C

K

K

K

2
1

2
1 2525 1212 5151

2
1 2525 1212 0 77717771

116116 5757 sqsq unitsunits

.

.

=

= ^ ^

^ ^ ^

h h

h h h

Example 19: (AAS and ASA) Find the area of the triangle shown in 
Figure 2-24.

Figure 2-24 Drawing for Example 19.

First find the measure of the third angle of the triangle since all three angles
are used in the area formula.

% % % %

sinsin
sinsin sinsin

C

K c C
A B

180180 117117 2828 3535

2
1 2

E = - - =

=

117°
28°

22

c

a = 25

b = 12

B
51°

C

A
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%
% %

.
. .

.

sinsin
sinsin sinsinK

K

K

2
1 2222 3535

117117 2828

2
1 2222

0 57365736
0 89108910 0 46954695

176176 5 sqsq unitsunits

2

2

=

=

=

^

^
^ ^

h

h
h h

Example 20: (AAS orASA) Find the area of an equilateral triangle with a
perimeter of 78.

If the perimeter of an equilateral triangle is 78, then the measure of
each side is 26. The nontrigonometric solution of this problem yields an
answer of

.K
s

sqsq unitsunits
4

3
4

2626 3
4

676676 3
292292 7

2 2

. .= =

The trigonometric solution yields the same answer.

%
% %

.
. .

.

sinsin
sinsin sinsin

sinsin
sinsin sinsin

K c C
A B

K

K

K

2
1

2
1 2626

6060
6060 6060

2
1 2626

0 86608660
0 86608660 0 86608660

292292 7 sqsq unitsunits

2

2

2.

.

=

= ^

^
^ ^

h

h
h h

Example 21: (SSS) Find the area of a triangle if its sides measure 31, 44,
and 60.

Use Heron’s formula:

.

. . . .

. . . .

, .

K s s a s b s c

s a b c

s

K

K

K

K sqsq unitsunits

2
1

2
1 3131 4444 6060 6767 5

6767 5 6767 5 3131 6767 5 4444 6767 5 6060

6767 5 3636 5 2323 5 7 5

434434 235235 93759375

659659.

= - - -

= + +

= + + =

= - - -

=

=

^ ^ ^

^

^

^ ^ ^

^ ^ ^ ^

h h h

h

h

h h h

h h h h

Heron’s formula does not use trigonometric functions directly, but trigono-
metric functions were used in the development and proof of the formula.
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Chapter  Checkout

Q&A
1. In a right triangle, the two legs have lengths of 8 inches and 10 inches.

Find the size of the angle opposite the 10-inch side.

2. In a right triangle, the side opposite the 38° angle is 6.4 inches long.
Find the length of the hypotenuse.

3. You are standing 400 feet from the base of a building. The angle 
elevation to the top of the building is 28°. Find the height of the
building.

4. Find the size of the smallest angle in a triangle if the three sides mea-
sure 7 inches, 8 inches, and 10 inches.

5. Two sides of a triangle measure 12 feet and 18 feet, and the angle
between them measures 16°. Find the length of the third side.

6. True or False: In some cases, the law of sines will not provide you
with a unique answer.

7. Find the area of a triangle if its sides measure 10 feet, 14 feet, and
20 feet.

8. Find the area of a triangle if two of its sides measure 8 inches and
14 inches, and the angle between them measures 72°.

Answers: 1. 51.34° 2. 10.395 inches 3. 213 feet 4. 44.05° 5. 7.26 feet
6. True 7. 64.99 square feet 8. 53.26 square inches
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Chapter 3

GRAPHS OF TRIGONOMETRIC
FUNCTIONS

Chapter  Checkin

❑ Defining angles in terms of the radius of a circle

❑ Understanding the relationship between radian and degree measure

❑ Defining trig functions in terms of a unit circle

❑ Figuring out the period and symmetry of trig functions

❑ Creating the graphs of trig functions

You can measure angle sizes by using more than one scale. The degree
scale is probably the most well-known scale, although the radian scale

is equally as popular and useful. Although most applications deal only in
one of these two scales, it is important to understand their differences and
how to convert from one to the other.

You can define trig functions by using a unit circle, a circle with a radius
of 1. As a point revolves around the circle, its distance from the x-axis is
defined as the sine, and its distance from the y-axis is defined as the cosine.
These definitions match the previous definitions in terms of a right trian-
gle. The graphs of trigonometric functions are used to visually represent
their behavior.

Radians
A central angle of a circle has an angle measure of 1° if it subtends an arc
that is 1⁄360 of the circumference of the circle. This form of angle measure is
quite common. Another form of angle measure that is in use is radian
measure. If a central angle subtends an arc that is equal to the radius of
the circle (Figure 3-1a), then the central angle has a measure of one radian.
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Figure 3-1 Radian measure and subtended arcs.

If a central angle θ of a circle with radius r subtends an arc of length q
(Figure 3-1b), then its radian measure is defined as

r
q

radiansradians=i

Because both q and r are in the same units, when q is divided by r in the
preceding formula, the units cancel. Therefore, radian measure is unitless.

Example 1: What is the radian measure of a central angle in a circle with
radius 6 m if it subtends an arc of 24 m?

r
q

m
m radiansradians radrad

6
2424 4 4 4= = = = =i

(Note that if no units are listed for an angle measure, it is assumed to be
in radians.)

If θ is one complete revolution, then the subtended arc is the circumfer-
ence of the circle. In this case,

q r

r
r

2

2

2

=

=

=

r

i r

i r

Because one complete revolution is 360°,

360360 2

180180

=

=

r

r

%

%

r

r

(a)

q

r

(b)
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The fact that 180° is the same as π radians is extremely important. From
this relationship, the following proportion can be used to convert between
radian measure and degree measure:

180180 radrad
radrad

=
i

r
i

%
%

Example 2: What is the degree measure of 2.4 rad?

180180
.2 4

=
i

r%

.

.

180180 2 4 432432

137137 5.

= =i r r

i %

%^ ^h h

Example 3: What is the radian measure of 63°?

.

radrad

radrad

180180
6363

180180
6363

2020
7

1 1.

=

= =

r
i

i
r r

i

^ ^h h

The radian measures of many special angles follow directly from the radian-
degree relationships. Some of these are summarized in Table 3-1.

Table 3-1 Degree/Radian Equivalencies

degrees 0° 30° 45° 60° 90° 120° 135° 150° 180°

radians 0
6
r

4
r

3
r

2
r

3
2r

4
3r

6
5r r

The areas of sectors of a circle are directly proportional to the measures of
their central angles and directly proportional to the arcs subtended by the
central angles (Figure 3-2).

areaarea ofof thethe circlecircle
areaarea ofof a sectorsector ofof a circlecircle

sizesize ofof centralcentral angleangle ofof circlecircle
sizesize ofof centralcentral angleangle ofof sectorsector

=

r
A

A
r

A r

2

2

2

2

2

2

=

=

=

r r
i

r

r i

i

` ^j h
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Figure 3-2 Sector area.

Example 4: Find r given that Α = 14π and θ = π/2.

r
A

r

r

r

r

r

2

1414
2
2

2

1414 2

5656

5656

2 1414

2

2

2
2

2

=

=

=

=

=

=

r r
i

r
r

r

r

r

r r^ ^h h

Example 5: Find θ if A = 6 and r = 4.

r
A

2

4
6

2

1616
6 2

4
3

2

2

=

=

=

=

r r
i

r r
i

i r
r

i

^

^ ^

h

h h

Example 6: What is the angle measure, in radians, of the acute angle
formed by the minute and hour hands of a clock at 7:15?

The hour hand moves 1⁄12 of a complete revolution each hour. Therefore,
every 15 minutes (one quarter of an hour), the hour hand moves 1⁄48 of a
complete revolution. Therefore, at 7:15, the hour and minute hands are
17⁄48 of a revolution apart.

A

r
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.

ofof oneone completecomplete revolutionrevolution isis

radiansradians

1212
4

4848
1

4848
1616

4848
1

4848
1717

4848
1717 2

2424
1717 127127 5# .

+ = +

=r r %

Example 7: Find the area of the shaded portion of the sector of the circle
shown in Figure 3-3.

Figure 3-3 Drawing for Example 7.

First, use the Pythagorean theorem to find the value of a.

a r

a

a

a

a

3

3 6

6 3

2727

3 3

2 2 2

2 2 2

2 2 2

2

+ =

+ =

= -

=

=

The area of the triangular (unshaded) portion of the sector can be calcu-
lated using the area formula of a triangle.

area of unshaded portion = bhbh sqsq unitsunits2 3

6 3 3
9 3= =

a ^k h

.

.

sinsin

SinSin

6
3 0 5

0 51

= =

=

a

a -

r

r a

a

33
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radiansradians

3030

6

=

=

a

a r

%

It follows that 

radiansradians

120120

3
2

=

=

i

i r

%

areaarea ofof circlecircle
totaltotal areaarea ofof sectorsector

measuremeasure ofof centralcentral angleangle ofof circlecircle
measuremeasure ofof centralcentral angleangle ofof sectorsector

=

totaltotal areaarea ofof sectorsector
6 2

3
2

2 =
r r

r

^

c

h

m

totaltotal areaarea ofof sectorsector 3
2

2
1 3636=

r
r rc c ^m m h

totaltotal areaarea ofof sectorsector 1212= r

Therefore,

area of shaded portion

= area of total sector − area of unshaded portion

area of shaded portion = 1212 9 3 3 4 3 3- = -r ra k

area of shaded portion .2222 1111.

Circular Functions
The graph of the equation x2 + y2 = 1 is a circle in the rectangular coordi-
nate system. This graph is called the unit circle and has its center at the
origin and has a radius of 1 unit. Trigonometric functions are defined so
that their domains are sets of angles and their ranges are sets of real num-
bers. Circular functions are defined such that their domains are sets of
numbers that correspond to the measures (in radian units) of the angles of
analogous trigonometric functions. The ranges of these circular functions,
like their analogous trigonometric functions, are sets of real numbers. These
functions are called circular functions because radian measures of angles
are determined by the lengths of arcs of circles. In particular, trigonomet-
ric functions defined using the unit circle lead directly to these circular
functions.
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Begin with the unit circle x2 + y2 = 1 shown in Figure 3-4. Point A (1,0) is
located at the intersection of the unit circle and the x-axis. Let q be any
real number. Start at point A and measure |q| units along the unit circle in
a counterclockwise direction if q ≥ 0 and in a clockwise direction if q < 0,
ending up at point P(x,y). Define the sine and cosine of q as the coordi-
nates of point P. The other circular functions (the tangent, cotangent,
secant, and cosecant) can be defined in terms of the sine and cosine.

;

;

;

;

sinsin

coscos

tantan coscos
sinsin

coscos

cotcot sinsin
coscos

sinsin

secsec coscos coscos

csccsc sinsin sinsin

q y

q x

q q
q

q

q q
q

q

q q q

q q q

0

0

1 0

1 0

!

!

!

!

=

=

=

=

=

=

Figure 3-4 Unit circle reference.

Sin q and cos q exist for each real number q because (cos q, sin q) are the
coordinates of point P located on the unit circle, that corresponds to an
arc length of |q |. Because this arc length can be positive (counterclock-
wise) or negative (clockwise), the domain of each of these circular func-
tions is the set of real numbers. The range is more restricted. The cosine
and sine are the abscissa and ordinate of a point that moves around the

P(x,y)

A(1,0)

q

y

x
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unit circle, and they vary between − 1 and 1. Therefore, the range of each
of these functions is a set of real numbers z such that z1 1# #- (see 
Figure 3-5).

Figure 3-5 Range of values of trig functions.

Example 8: What value(s) x in the domain of the sine function between
−2π and 2π have a range value of 1 (Figure 3-6)?

Figure 3-6 Drawing for Example 8.

The range value of sin x is 1 when point / , /P 8 3 1 3-a k has coordinates
of (0, 1). This occurs when x = π/2 and x = −3π/2.

P(cos q, sin q)

(1,0)

-3π/2

π/2

y

x

P(cos q, sin q)

(1,0)

(0,1)

(0,-1)

(-1,0)

q

y

x
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Example 9: What value(s) x in the domain of the cosine function between
−2π and 2π have a range value of − 1 (Figure 3-7)?

Figure 3-7 Drawing for Example 9.

The range value of cos x is −1 when point P(cosx, sinx) has coordinates of
(−1, 0). This occurs when x = π and x = −π.

Example 10: The point P( 8/3,−1/3) is on the unit circle. The length of
the arc from point A(1,0) to point P is q units. What are the values of the
six circular functions of q?

The values of the sine and cosine follow from the definitions and are the
coordinates of point P. The other four functions are derived using the sine
and cosine.

sinsinq 3
1

=-

coscosq 3
8

=

tantan coscos
sinsin

q q
q

3
8

3
1

8

1
4
2

= =
-

=- =-

cotcot sinsin
coscos

q sqsq
q

3
1

3
8

8 2 2= =
-

=- =-

P(cos q, sin q)

(-1,0)

y

x
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secsec coscosq q
1

3
8

1

8

3
4

3 2
= = = =

csccsc sinsinq q
1

3
1

1 3= =
-

=-

The sign of each of the six circular functions (see Table 3-2) is dependent
upon the length of the arc q. Note that the four intervals for q correspond
directly to the four quadrants for trigonometric functions.

Table 3-2 Signs of Trig Functions in Various Quadrants

Function < <q0 2
r < <q2

r r < <q 2
3r r < <q2

3 2r

sin q, csc q + + − −

cos q, sec q + − − +

tan q, cot q + − + −

Periodic and Symmetric Trigonometric
Functions
The unit circle has a circumference of C = 2πr = 2π(1) = 2π. Therefore,
if a point P travels around the unit circle for a distance of 2π, it ends up
where it started. In other words, for any given value q, if 2π is added or
subtracted, the coordinates of point P remain unchanged (Figure 3-8).

Figure 3-8 Periodic coterminal angles.

P(x, y)
q

A(1,0)
q + 2π

y

x
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It follows that

sin (q + 2π) = sin q

sin (q − 2π) = sin q

cos (q + 2π) = cos q

cos (q − 2π) = cos q

If k is an integer,

sin (q − 2kπ) = sin q

cos (q + 2 k π) = cos q

Functions that have this property are called periodic functions. A func-
tion f is periodic if there is a positive real number q such that f (x+ q) = f (x)
for all x in the domain of f. The smallest possible value for q for which this
is true is called the period of f.

Example 11: If sin y = / /y 3 5 1010= ^ h , then what is the value of each of the
following: sin ,y 8+ r` j , ?sinsin sinsiny y6 210210- +r r` `j j

All three have the same value of /3 5 1010a k because the sine function is peri-
odic and has a period of 2π. 

The study of the periodic properties of circular functions leads to solutions
of many real-world problems. These problems include planetary motion,
sound waves, electric current generation, earthquake waves, and tide
movements.

Example 12: The graph in Figure 3-9 represents a function f that has a
period of 4. What would the graph look like for the interval −10 ≤ x ≤ 10?

Figure 3-9 Drawing for Example 12.

This graph covers an interval of 4 units. Because the period is given as 4,
this graph represents one complete cycle of the function. Therefore, sim-
ply replicate the graph segment to the left and to the right (Figure 3-10).

-10 -6 -2 2 6 10
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Figure 3-10 Drawing for Example 12.

The appearance of the graph of a function and the properties of that func-
tion are very closely related. It can be seen from Figure 3-11 that

cos (−q) = cosq

sin (−q) = −sinq

Figure 3-11 Even and odd trig functions.

The cosine is known as an even function, and the sine is known as an odd
function. Generally speaking,

g is an even function if g(−x) = g(x)

g is an odd function if g(−x) = −g(x)

for every value of x in the domain of g. Some functions are odd, some are
even, and some are neither odd nor even.

If a function is even, then the graph of the function will be symmetric with
the y-axis. Alternatively, for every point (x, y) on the graph, the point 
(−x, −y) will also be on the graph.

(b)

(x,y)

A(1,0) A(1,0)

(x,-y)

(-x,y)

(-x,-y)

y

x

(a)

y

x

q

-q

q

-q

-10 -6 -2 2 6 10
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If a function is odd, then the graph of the function will be symmetric with
the origin. Alternatively, for every point (x, y) on the graph, the point 
(−x, −y) will also be on the graph.

Example 13: Graph several functions and give their periods (Figure 3-12).

Figure 3-12 Drawings for Example 13.

Example 14: Graph several odd functions and give their periods (Fig-
ure 3-13).

Figure 3-13 Drawings for Example 14.

(a)

(c)

(b)

(d)

Period = 2π Period = 4

Period = 2Period = 6

-5 -4 -3 -2 -1 1 2 3 4 5

-3 -2 -1 1 2

-2 -1 1 2

3

-2π -π π 2π

(a)

(c)

(b)

(d)

Period = 2π
Period = 1

Period = 1Period = 4

x-x -5 -4 -3 -2 -1 1 2 3 4 5

-5 -4 -3 -2 -1 1 2 3 4 5
-5 -4 -3 -2 -1 1 2 3 4 5
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Example 15: Is the function f (x) = 2x3 + x even, odd, or neither?

x x x

x x

x x

f x

2

2

2

3

3

3

- = - + -

=- -

=- +

=-

f ^ ^ ^

`

^

h h h

j

h

Because f (–x) = –f (x), the function is odd.

Example 16: Is the function f (x) = sin x – cos x even, odd, or neither?

sinsin coscos

sinsin coscos

sinsin coscos

x x x

x x

x x

- = - - -

=- -

=- +

f ^ ^ ^

^

h h h

h

Because

and

sinsin coscos sinsin coscos

sinsin coscos sinsin coscos

x x x x

x x x x

!

!

- + - -

- + -

^ ^

^

h h

h

the function is neither even nor odd. Note: The sum of an odd function and
an even function is neither even nor odd.

Example 17: Is the function f (x) = x sin x cos x even, odd, or neither?

sinsin coscos

sinsin coscos

sinsin coscos

x x x x

x x x

x x x

f x

- = - - -

= - -

=

=

f ^ ^ ^ ^

^ ^

^

h h h h

h h

h

Because f (−x) = f (x), the function is even.

Graphs of the Sine and Cosine
To see how the sine and cosine functions are graphed, use a calculator, a
computer, or a set of trigonometry tables to determine the values of the
sine and cosine functions for a number of different degree (or radian) mea-
sures (see Table 3-3).
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Table 3-3 Values of the Sine and Cosine at Various Angles

degrees 0° 30° 45° 60° 90° 120°

radians 0
6
r

4
r

3
r

2
r

3
2r

sin x 0 0.500 0.707 0.866 1 0.866

cos x 1 0.866 0.707 0.500 0 −0.500

degrees 135° 150° 180° 210° 225° 240°

radians
4

3r
6

5r r
6

7r
4

5r
3

4r

sin x 0.707 0.500 0 −0.500 −0.707 −0.866

cos x −0.707 −0.866 −1 −0.866 −0.707 −0.500

degrees 270° 300° 315° 330° 360°

radians 2
3r

3
5r

4
7r

6
1111r 2r

sin x −1 −0.866 −0.707 −0.500 0

cos x 0 0.500 0.707 0.866 1

Next, plot these values and obtain the basic graphs of the sine and cosine
function (Figure 3-14).

Figure 3-14 One period of the a) sine function and b) cosine function.

The sine function and the cosine function have periods of 2π; therefore,
the patterns illustrated in Figure 3-14 are repeated to the left and right
continuously (Figure 3-15).

-2π -π π 2π 3π x

y

1

-1
y = sin x

(a)

-2π -π π 2π 3π x

y

1

-1
y = cos x

(b)
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Figure 3-15 Multiple periods of the a) sine function and b) cosine 
function.

Several additional terms and factors can be added to the sine and cosine
functions, which modify their shapes.

The additional term A in the function y = A + sin x allows for a vertical
shift in the graph of the sine functions. This also holds for the cosine func-
tion (Figure 3-16).

Figure 3-16 Examples of several vertical shifts of the sine function.

The additional factor B in the function y = B sin x allows for amplitude
variation of the sine function. The amplitude, |B |, is the maximum devi-
ation from the x-axis—that is, one half the difference between the maxi-
mum and minimum values of the graph. This also holds for the cosine
function (Figure 3-17).

Figure 3-17 Examples of several amplitudes of the sine function.

y

x
1
2
3

-3
-2
-1 x 2x

y = 3 sin x
y = 2 sin x
y = sin x
y = 1/2 sin x

y

x

4

-1
x 2x

y = 3 + sin x
y = 2 + sin x
y = 1 + sin x
y = sin x
y = -1 + sin x

-2π -π π 2π 3π x

y

1

-1
y = sin x

(a)

-2π -π π 2π 3π x

y

1

-1
y = cos x

(b)
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Combining these figures yields the functions y = A + B sin x and also 
y = A + B cos x. These two functions have minimum and maximum
values as defined by the following formulas. The maximum value of the
function is M A B= + . This maximum value occurs whenever sin x = 1 or
cos x = 1. The minimum value of the function is m A B= - . This mini-
mum occurs whenever sin x = −1 or cosx = −1.

Example 18: Graph the function y = 1 + 2 sin x. What are the maximum
and minimum values of the function?

The maximum value is 1 + 2 = 3. The minimum value is 1 −2 = −1 (Fig-
ure 3-18).

Figure 3-18 Drawing for Example 18.

Example 19: Graph the function y = 4 + 3 sin x. What are the maximum
and minimum values of the function?

The maximum value is 4 + 3 = 7. The minimum value is 4 − 3 = 1 (Fig-
ure 3-19).

Figure 3-19 Drawing for Example 19.

y

4
3

1

6
7

5

-1-π π 2π
x

y = 4 + 3 sin x

y

4
3

-1-π π 2π
x

y = 1 + 2 sin x
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The additional factor C in the function y = sin Cx allows for period 
variation (length of cycle) of the sine function. (This also holds for the
cosine function.) The period of the function y = sin Cx is / C2r . Thus,
the function y = sin 5x has a period of 2π/5. Figure 3-20 illustrates addi-
tional examples.

Figure 3-20 Examples of several frequencies of the a) sine function and
b) cosine function.

The additional term D in the function y = sin (x + D) allows for a phase
shift (moving the graph to the left or right) in the graph of the sine func-
tions. (This also holds for the cosine function.) The phase shift is | D |.
This is a positive number. It does not matter whether the shift is to the left
(if D is positive) or to the right (if D is negative). The sine function is odd,
and the cosine function is even. The cosine function looks exactly like the
sine function, except that it is shifted π/2 units to the left (Figure 3-21).
In other words,

sinsin coscos sinsinx x oror cosxcosx x2 2= - = +
r r

c cm m

Figure 3-21 Examples of several phase shifts of the sine function.

x

y

1

-1
x 2x 3x 4x

y = sin x y = sin (x - 2π/3)

x

y
1

-1
x 2x

y = sin x y = sin 2x y = sin 3x

x

y

1

-1
x 2x

y = cos x y = cos 2x y = cos 3x

(a)

(b)
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Example 20: What is the amplitude, period, phase shift, maximum, and
minimum values of

1. sinsiny x3 2 3 2= + -^ h

2. sinsiny x2 2
1

3
1 2=- + +c m

3. coscosy x4 2= r

Table 3-4 Attributes of the General Sine Function

Function Ampli- Phase Max- Min-
tude Period Shift imum imum

sinsiny x3 2 3 2= + -^ h 2 3
2r 2 rightright` j 5 1

sinsiny x2 2
1

3
1 2=- + +c m 2

1 6r rightright2 ` j 2
3

- 2
5

-

coscosy x4 2= r 4 1 0 4 −4

Example 21: Sketch the graph of y = cosπx.

Because cos x has a period of 2π, cos πx has a period of 2 (Figure 3-22).

Figure 3-22 Drawing for Example 21.

Example 22: Sketch the graph of y = 3 cos (2x + π/2).

Because cos x has a period of 2π, cos 2x has a period of π (Figure 3-23).

4321
-1

1

x

y
y = cos πx
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Figure 3-23 Drawing for Example 22.

The graph of the function y = −f (x) is found by reflecting the graph of the
function y = f (x) about the x-axis. Thus, Figure 3-23 can also represent the
graph of y = −3 sin 2x. Specifically,

−sin x = sin (x ± π)

−cos x = cos (x ± π)

−sin x = cos (x + π/2)

−cos x = sin (x − π/2)

It is important to understand the relationships between the sine and cosine
functions and how phase shifts can alter their graphs.

Graphs of Other Trigonometric Functions
The tangent is an odd function because

tantan
coscos

sinsin
coscos
sinsin tantanx

x
x

x
x x- =

-

-
=

-
=-^

^

^
h

h

h

The tangent has a period of π because

tantan
coscos

sinsin
coscos
sinsin tantanx

x
x

x
x x+ =

+

+
= -

-
=r

r
r

^
^

^
h

h

h

The tangent is undefined whenever cos x = 0. This occurs when x = qπ/2,
where q is an odd integer. At these points, the value of the tangent
approaches infinity and is undefined. When graphing the tangent, a dashed
line is used to show where the value of the tangent is undefined. These
lines are called asymptotes. The values of the tangent for various angle
sizes are shown in Table 3-5.

2ππ

-3

3

x

y
y = 3 cos (2x + π/2)
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Table 3-5 Values of the Tangent Function at Various Angles

degrees 0° 30° 45° 60° 75° 80° 85° 87° 90°

radians 0
6
r

4
r

3
r

1212
5r

9
4r

3636
1717r

6060
2929r

2
r

tan x 0 0.577 1 1.73 3.73 5.67 11.43 19.08 *
* undefined

The graph of the tangent function over the interval from 0 to π/2 is as
shown in Figure 3-24.

Figure 3-24 A portion of the tangent function.

The tangent is an odd function and is symmetric about the origin. The
graph of the tangent over several periods is shown in Figure 3-25. Note
that the asymptotes are shown as dashed lines, and the value of the tan-
gent is undefined at these points.

Figure 3-25 Several periods of the tangent function.

x

y

y = tan x

4
3

-2

π-π

x

y
y = tan x

4
3

-1
π/2
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The cotangent is the reciprocal of the tangent, and its graph is shown in
Figure 3-26. Note the difference between the graph of the tangent and the
cotangent in the interval from 0 to π/2.

Figure 3-26 A portion of the cotangent function.

As shown in Figure 3-27, in the graph of the cotangent, the asymptotes
are located at multiples of π.

Figure 3-27 Several periods of the cotangent function.

Because the graphs of both the tangent and cotangent extend without
bound both above and below the x-axis, the amplitude for the tangent and
cotangent is not defined.

The general forms of the tangent and cotangent functions are

y = A + B tan (Cx + D) and y = A + B cot (Cx + D)

x

y
y = cot x

4
3

-2

π 2π-π

x

y
y = cot x

4
3

-1
π/2
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The variables C and D determine the period and phase shift of the func-
tion as they did in the sine and cosine functions. The period is /Cr and
the phase shift is /D C . The shift is to the right if |D/C | < 0, and to the
left if |D/C | > 0. The variable B does not represent an amplitude because
the tangent and cotangent are unbounded, but it does represent how much
the graph is “stretched” in a vertical direction. The variable A represents
the vertical shift.

Example 23: Determine the period, phase shift, and the location of the
asymptotes for the function

tantany x3 6
= +

r r
c m

and graph at least two complete periods of the function.

The asymptotes can be found by solving /CxCx D 2+ = r and /CxCx D 2+ =- r
for x.

x

x

x

3 6 2

3 3
1

+ =

=

=

r r r

r r

x

x

x

3 6 2

3 3
2

2

+ =-

=-

=-

r r r

r r

The period of the function is

C
3

3= =
r

r
r

c m

The phase shift of the function is

C
D

3

6
2
1

= =
r

r

c

c

m

m

Because the phase shift is positive, it is to the left (Figure 3-28).
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Figure 3-28 Phase shift of the tangent function.

The amplitude is not defined for the secant or cosecant. The secant and
cosecant are graphed as the reciprocals of the cosine and sine, respectively,
and have the same period (2π). Therefore, the phase shift and period of
these functions is found by solving the equations Cx + D = 0 and Cx + D
= 2π for x.

Example 24: Determine the period, phase shift, and the location of the
asymptotes for the function

csccscy x2
1

2 2= +
r r

c m

and graph at least two periods of the function.

The asymptotes can be found by solving Cx + D = 0, Cx + D = π, and Cx
+ D = 2π for x.

x

x

x

x

2 2 0

2 2
2 2

1

+ =

=-

=-

=-

r r

r r

x

y

y = tan(πx/3 + π/6)

-3 -2 -1 1 2 3 4
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x

x
x

x

2 2

2 2

2 2
1

1

+ =

=

=

=

r r r
r r

x

x
x

x

2 2 2

2 2
3

2 2
3

3

+ =

=

=

=

r r r
r r

The period of the function is

C
2

2

2 4= =
r

r
r

c m

The phase shift of the function is

C
D

2

2
1= =

r

r

c

c

m

m

Because the phase shift is positive, it is to the left.

The graph of the reciprocal function

sinsiny x2 2 2= +
r r

c m

is shown in Figure 3-29. Graphing the sine (or cosine) can make it easier
to graph the cosecant (or secant).
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Figure 3-29 Several periods of the cosecant function and the sine 
function.

Graphs of Special Trigonometric Functions
A pure tone, such as one produced by a tuning fork, is a wave form that
looks like a sine curve. Sounds in general are more than just simple sine
waves. They are combinations of sine waves and other functions. A vibrat-
ing string on a violin or fiddle is made up of a combination of several sine
waves. The resulting wave form can be found by adding the ordinates of
the respective sine waves. This can easily be seen if all the component wave
forms are graphed on the same set of axes. Figures 3-30, 3-31, and 3-32
show the resulting wave form when two component wave forms are added
together.

Example 25: Graph the functions y = x and y = 4 sin x on the same coor-
dinates and graph their sum.

-1 1
1
2

-2
-1

3 5 7 x

y

y = 1/2 csc(πx/2 + π/2)
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Figure 3-30 Drawing for Example 25.

Example 26: Graph the functions y = x/2 and y = 4 sin x on the same coor-
dinates and graph their sum.

Figure 3-31 Drawing for Example 26.

Example 27: Graph the functions y = 10 sin x and y = 4 sin 3x on the same
coordinates and graph their sum.

y

xx

12

10

8

6

4

2

π 2π-2

-4

y = x/2

y = 4 sin x + x/2

y = 4 sin x

y

x

12

10

8

6

4

2

π 2π-2

-4

y = x

y = 4 sin xx + x

y = 4 sin x
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Figure 3-32 Drawing for Example 27.

Chapter  Checkout

Q&A
1. What is the radian measure of 83°?

2. What is the degree measure of 3.9 radians?

3. In radian measure, what is the size of the angle equal to one complete
revolution around the unit circle?

4. What is the period of the sine function in degrees?

5. True or False: The sine and the tangent are negative in the fourth
quadrant.

6. True or False: The sine and the tangent functions are odd functions.

7. True or False: The graph of the sine function and the graph of the
cosine function are the same except for a shift to the left or right.

8. What is the period of the tangent function in radians?

Answers: 1. 1.45 radians 2. 223.45° 3. 2π 4. 360° 5. F 6. T 7. T 
8. π radians.

y

x

12

10

8

6

4

2

π

2π

-2

-4
-6

-8
-10

-12

y = 10 sin x

y = 10 sin x + 4 sin 3x

y = 4 sin 3x
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Chapter 4

TRIGONOMETRIC IDENTITIES

Chapter  Checkin

❑ Defining several fundamental trigonometric identities

❑ Using sum and difference formulas to extend the fundamental 
identities

❑ Using double and half angle identities

❑ Understanding the tangent identities

❑ Using the product-to-sum and sum-to-product identities

Some equations are only true for one value of the unknown. Some equa-
tions are true for all values of the unknown. This second type of equa-

tion is called an identity because it is true for all values of the unknown
variables. The knowledge of these identities is useful in solving more com-
plex equations. As you explore new properties of trigonometric functions,
new identities are established and then those can be used to establish still
more identities, and so on. 

Fundamental Identities
If an equation contains one or more variables and is valid for all replace-
ment values of the variables for which both sides of the equation are
defined, then the equation is known as an identity. The equation x2 + 2x
= x(x + 2), for example, is an identity because it is valid for all replacement
values of x. 

If an equation is valid only for certain replacement values of the variable,
then it is called a conditional equation. The equation 3x + 4 = 25, for
example, is a conditional equation because it is not valid for all replace-
ment values of x. An equation that is said to be an identity without 
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stating any restrictions is, in reality, an identity only for those replacement
values for which both sides of the identity are defined. For example, the
identity

coscos
sinsin tantan=a

a a

is valid only for those values of α for which both sides of the equation are
defined.

The fundamental (basic) trigonometric identities can be divided into sev-
eral groups. First are the reciprocal identities. These include

cotcot tantan secsec coscos csccsc sinsin
1 1 1

= = =a a a a a a
Next are the quotient identities. These include

tantan coscos
sinsin cotcot sinsin

coscos
= =a a

a a a
a

Then there are the cofunction identities. These include

sin α = cos (90° − α) cot α = tan (90° − α)

cos α = sin (90° − α) sec α = csc (90° − α)

tan α = cot (90° − α) csc α = sec (90° − α)

Next there are the identities for negatives. These include 

sin (− α) = −sin α
cos (− α) = cos α
tan (− α) = −tan α

Finally there are the Pythagorean identities. These include 

sin2 α + cos2 α = 1

tan2 α + 1 =sec2 α
cot2 α + 1 = csc2 α

The second identity is obtained by dividing the first by cos2 α, and the
third identity is obtained by dividing the first by sin2 α. The process of
showing the validity of one identity based on previously known facts is
called proving the identity. The validity of the foregoing identities fol-
lows directly from the definitions of the basic trigonometric functions and
can be used to verify other identities.

No standard method for solving identities exists, but there are some gen-
eral rules or strategies that can be followed to help guide the process:

1. Try to simplify the more complicated side of the identity until it is
identical to the second side of the identity.
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2. Try to transform both sides of an identity into an identical third
expression.

3. Try to express both sides of the identity in terms of only sines and
cosines; then try to make both sides identical.

4. Try to apply the Pythagorean identities as much as possible.

5. Try to use factoring and combining of terms, multiplying one side
of the identity by an expression that is equal to 1, squaring both
sides of the identity, and other algebraic techniques to manipulate
equations.

Example 1: Use the basic trigonometric identities to determine the other
five values of the trigonometric functions given that

<sinsin andand coscos8
7 0=a a

sinsin coscos 12 2
+ =a a

coscos8
7 1

2
2

+ =ac m

coscos 1 8
72

2

= -a c m

coscos 1
6464
49492

= -a

coscos
6464
15152

=a

coscos
6464
1515

=a

coscos 8
1515

=-a

tantan coscos
sinsin

=a a
a

tantan

8
1515

8
7

=

-

a J

L

K
K

c

N

P

O
O

m

tantan
1515

7
=-a

tantan 1515
7 1515

=-a

cotcot tantan
1

=-a a

cotcot

1515
7 1515

1
=-

-

a J

L

K
K

N

P

O
O

cotcot
7 1515

1515
=-a

cotcot 7
1515

=-a

secsec coscos
1

=-a a

secsec

8
1515

1
=-

-

a J

L

K
K

N

P

O
O

secsec
1515

8
=-a

secsec 1515
8 1515

=-a

csccsc sinsin
1

=-a a

csccsc

8
7
1

=-a

csccsc 7
8

=a
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Example 2: Verify the identity cos α + sin α tan α = sec α.

coscos sinsin tantan secsec+ =a a a a identity to be verified

coscos coscos
coscos sinsin coscos

sinsin secsec+ + =a a
a a a

a a^ c ^ ch m h m quotient identity

coscos
coscos sinsin secsec

2 2
+

=a
a a a algebraic manipulation

coscos secsec1
=a a Pythagorean identity

secsec secsec=a a reciprocal identity

Example 3: Verify the identity

secsec
tantan

tantan
secsec

1
1

- =
+

a
a

a
a

secsec
tantan

tantan
secsec

1
1

- =
+

a
a

a
a identity to be verified

secsec secsec

tantan secsec
tantan

secsec

1 1

1 1

- +

+
=

+

a a
a a

a
a

^ ^

^ ^ ^

h h

h h h
algebraic manipulation

secsec

tantan secsec
tantan

secsec
1

1 1
2

-

+
=

+
a

a a
a

a^ ^h h
factoring rule

tantan

tantan secsec
tantan

secsec1 1
2

+
=

+
a

a a
a

a^ ^h h
Pythagorean identity

tantan
secsec

tantan
secsec1 1+

=
+

a
a

a
a algebraic manipulation

Example 4: Verify the identity

sinsin coscos
sinsin coscos

secsec3 3
2 1

1
1

2

2

+ -
+ -

= -a a
a a

a

sinsin coscos
sinsin coscos

secsec3 3
2 1

1
1

2

2

+ -
+ -

= -a a
a a

a identity to be verified

coscos coscos

coscos coscos

secsec1 3 3

1 2 1

1
1

2

2

- + -

- + -
= -a a

a a

a
`

`

j

j
Pythagorean identity

coscos coscos

coscos coscos

secsec3 2

2

1
1

2

2

- - +

- -
= -a a

a a

a
`

`

j

j
combining term

coscos coscos

coscos coscos
secsec1 2

2
1

1
- -

-
= -a a

a a
a^ ^

^ ^

h h

h h
factoring
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coscos
coscos

secsec1 1
1

- = -a
a

a algebraic manipulation

coscos
coscos

coscos
coscos

secsec1 1
1

-
= -

a
a

a
a

a
c

c

m

m

algebraic manipulation

coscos
secsec1 1

1
1

1

-
= -

a
a algebraic manipulation

secsec secsec1
1

1
1

- = -a a reciprocal identity

Addition Identities
The fundamental (basic) identities discussed in the previous section
involved only one variable. The following identities, involving two vari-
ables, are called trigonometric addition identities.

sinsin sinsin coscos coscos sinsin

sinsin sinsin coscos coscos sinsin

coscos coscos coscos sinsin sinsin

coscos coscos coscos sinsin sinsin

+ = +

- = -

+ = -

- = +

a b a b a b

a b a b a b

a b a b a b

a b a b a b

_

_

_

_

i

i

i

i

These four identities are sometimes called the sum identity for sine, the
difference identity for sine, the sum identity for cosine, and the dif-
ference identity for cosine, respectively. The verification of these four
identities follows from the basic identities and the distance formula
between points in the rectangular coordinate system. Explanations for each
step of the proof will be given only for the first few examples that follow.

Example 5: Change sin 80° cos 130° + cos 80° sin 130° into a trigono-
metric function in one variable (Figure 4-1).

sinsin coscos coscos sinsin8080 130130 8080 130130+ % %% %

sinsin

sinsin

sinsin

sinsin

rantrant

8080 130130

210210

210210 180180

3030

2
1

sumsum identityidentity forfor sinesine

sinesine isis negativenegativeinin thirdthird quadquad

= +

=

=- -

-

=-

% %

%

% %

%

a

a

a

k

k

k
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Figure 4-1 Drawing for Example 5.

Additional identities can be derived from the sum and difference identi-
ties for cosine and sine.

Example 6: Verify that coscos coscosx x180180 - =-%a k

coscos coscos coscos sinsin sinsin

coscos coscos sinsin

coscos coscos

x x x

x x x

x x

180180 180180 180180

180180 1 0

180180

- = +

- = - +

- =-

% % %

%

%

a

a ^ ^

a

k

k h h

k

Example 7: Verify that coscos coscosx x180180 + =-%b l

coscos coscos coscos sinsin sinsin

coscos coscos sinsin

coscos coscos

x x x

x x x

x x

180180 180180 180180

180180 1 0

180180

+ = -

+ = - -

+ =-

% %

%

%

%

b

b ^ ^

a

l

l h h

k

Example 8: Verify that coscos coscosx x360360 - =%a k

coscos coscos coscos sinsin sinsin

coscos coscos sinsin

coscos coscos

x x x

x x x

x x

360360 360360 360360

360360 1 0

360360

- = +

- = +

- =

% % %

%

%

a

a ^ ^

b

k

k h h

l

The preceding three examples verify three formulas known as the reduc-
tion formulas for cosine. These reduction formulas are useful in rewrit-
ing cosines of angles that are larger than 90° as functions of acute angles.

210°

30°
-1

2

y

x
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Example 9: Verify that sinsin sinsinx x180180 - =%b l

sinsin sinsin coscos coscos sinsin

sinsin coscos sinsin

sinsin sinsin

x x x

x x x

x x

180180 180180 180180

180180 0 1

180180

- = -

- = - -

- =

% % %

%

%

a

a ^ ^

a

k

k h h

k

Example 10: Verify that sinsin sinsinx x180180 + =-%a k

sinsin sinsin coscos coscos sinsin

sinsin coscos sinsin

sinsin sinsin

x x x

x x x

x x

180180 180180 180180

180180 0 1

180180

+ = +

+ = + -

+ =-

% % %

%

%

a

a ^ ^

a

k

k h h

k

Example 11: Verify that sinsin sinsinx x360360 - =-%b l

sinsin sinsin coscos coscos sinsin

sinsin coscos sinsin

sinsin sinsin

x x x

x x x

x x

360360 360360 360360

360360 0 1

360360

- = -

- = -

- =-

% % %

%

%

a

a ^ ^

a

k

k h h

k

The preceding three examples verify three formulas known as the reduc-
tion formulas for sine. These reduction formulas are useful in rewriting
sines of angles that are larger than 90° as functions of acute angles.

To recap, the following are the reduction formulas (identities) for sine and
cosine. They are valid for both degree and radian measure.

coscos coscos coscos coscos

coscos coscos coscos coscos

coscos coscos coscos coscos

sinsin sinsin sinsin sinsin

sinsin sinsin sinsin sinsin

sinsin sinsin sinsin sinsin

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

180180

180180

360360 2

180180

180180

360360 2

- =- - =-

+ =- + =-

- = - =

- = - =

+ =- + =-

- =- - =-

r

r

r

r

r

r

%

%

%

%

%

%

a ^

a ^

a ^

a ^

a ^

a ^

k h

k h

k h

k h

k h

k h
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Example 12: Verify that sin 2x = 2 sin x cos x.

sinsin sinsin

sinsin sinsin coscos coscos sinsin

sinsin sinsin coscos

x x x

x x x x x

x x x

2

2

2 2

= +

= +

=

^ h

Example 13: Write coscos coscos sinsin sinsinα α- - -b b b b_ _i i as a function of
one variable.

coscos coscos sinsin sinsin

coscos

coscos

α α

α

α

- - -

= + -

=

b b b b

b b

_ _

_

i i

i9 C

Example 14: Write cos 303° in the form , < <sinsin wherewhere 0 9090b b %.

coscos coscos

coscos

sinsin

sinsin

303303 360360 303303

5757

9090 5757

3333

= -

=

= -

=

% %

%

% %

%

%b

a

l

k

Example 15: Write sin 234° in the form cos < <0 9090b %.

sinsin sinsin

sinsin

sinsin

sinsin

coscos

coscos

234234 360360 234234

126126

180180 126126

5454

9090 5454

3636

=- -

=-

=- -

=-

=- -

=-

% % %

%

%

%

%

%

%

%

a

b

b

k

l

l

Example 16: Find sin (α + β) if ( ) ,sinsin sinsin coscos5
4

1717
1515ifif+ =- =a b a b , and 

α and β are fourth quadrant angles.

First find cos α and sin β. The sine is negative and the cosine is positive
in the fourth quadrant.
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sinsin coscos sinsin coscos

coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin

sinsin sinsin coscos coscos sinsin

sinsin

sinsin

sinsin

1 1

5
4 1 1717

1515 1

1 2525
1616 1 289289

225225

2525
9

289289
6464

5
3

1717
8

5
4

1717
1515

5
3

1717
8

8585
6060

8585
2424

8585
8484

2 2 2 2

2
2 2

2

2 2

2 2

+ = + =

-
+ = + =

= - = -

= =

= =-

+ = +

+ = - + -

+ = - + -

+ =-

a a b b

a b

b

a b

a b

a b a b a b

a b

a b

a b

c c

_

_ c c c c

_ c c

_

m m

i

i m m m m

i m m

i

Double-Angle and Half-Angle Identities
Special cases of the sum and difference formulas for sine and cosine yields
what are known as the double-angle identities and the half-angle iden-
tities. First, using the sum identity for the sine,

sin 2α = sin (α + α)

sin 2α = sin α cos α + cos α sin α

sin 2α = 2 sin α cos α

Similarly for the cosine,

coscos coscos

coscos coscos coscos sinsin sinsin

coscos coscos sinsin

2

2

2 2 2

= +

= -

= -

a a a

a a a a a

a a a

^ h

Using the Pythagorean identity, sinsin coscos 12 2
+ =a a , two additional cosine

identities can be derived.

coscos coscos sinsin

coscos sinsin sinsin

coscos sinsin

2

2 1

2 1 2

2 2

2 2

2

= -

= - -

= -

a a a

a a a

a a

` j

and
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coscos coscos sinsin

coscos coscos coscos

coscos coscos

2

2 1

2 2 1

2 2

2 2

2

= -

= - -

= -

a a a

a a a

a a

` j

The half-angle identities for the sine and cosine are derived from two of
the cosine identities described earlier.

coscos coscos

coscos coscos

coscos coscos

coscos coscos

2 2 1

2 2 2 2 1

2 2 1

2 2 1

2

2

2

2

= -

= -

= -

= +

a a

b b

b
b

b
b

e e

e

e

o o

o

o

coscos sinsin

coscos sinsin

coscos sinsin

sinsin coscos

2 1 2

2 2 1 2 2

1 2 2

2 2 1

2

2

2

2

= -

= -

= -

= -

a a
b b

b
b

b
b

e e

e

e

o o

o

o

coscos
coscos

sinsin
coscos

coscos
coscos

sinsin
coscos

2 2
1

2 2
1

2 2
1

2 2
1

2 2

! !

=
+

=
-

=
+

=
-

b b b b

b b b b

e e

e e

o o

o o

The sign of the two preceding functions depends on the quadrant in which
the resulting angle is located.

Example 17: Find the exact value for sin 105° using the half-angle 
identity.

In the following verification, remember that 105° is in the second quad-
rant, and sine functions in the second quadrant are positive. Also, 210° is
in the third quadrant, and cosine functions in the third quadrant are neg-
ative. From Figure 4-2, the reference triangle of 210° in the third quad-
rant is a 30°-60°-90° triangle. Therefore, cos 210° = − cos 30°.
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Figure 4-2 Drawing for Example 17.

Using the half-angle identity for sine,

sinsin sinsin

sinsin coscos

sinsin
coscos

sinsin

sinsin

sinsin

105105 2
210210

105105 2
1 210210

105105 2

1 3030

105105 2

1 2
3

105105
4

2 3

105105 2
2 3

=

=
-

=
- -

=

- -

=
+

=
+

% %

%

%
%

%

%

%

%

J

L

K
K

a

N

P

O
O

k

Example 18: Find the exact value for cos 165° using the half-angle 
identity.

In the following verification, remember that 165° is in the second quad-
rant, and cosine functions in the second quadrant are negative. Also, 330°
is in the fourth quadrant, and cosine functions in the fourth quadrant are
positive. From Figure 4-3, the reference triangle of 330° in the fourth quad-
rant is a 30°-60°-90° triangle. Therefore, cos 330° = cos 30°.

210°

105°

30°
-1

2

y

x3
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Figure 4-3 Drawing for Example 18.

Using the half-angle identity for the cosine,

coscos coscos

coscos coscos

coscos
coscos

coscos

coscos

coscos

165165 2
330330

165165 2
1 330330

165165 2

1 3030

165165 2

1 2
3

165165
4

2 3

165165 2
2 3

=

=
+

=
+

=-

+ -

=-
+

=-
+

% %

% %

%

%

%
%

%

J

L

K
K

b

N

P

O
O

l

Example 19: Use the double-angle identity to find the exact value for

cos 2x given that sin x = sin x = /5 5.

Because sin x is positive, angle x must be in the first or second quadrant.
The sign of cos 2x will depend on the size of angle x. If 0° < x < 45° or
135° < x < 180°, then 2x will be in the first or fourth quadrant and cos
2x will be positive. On the other hand, if 45° < x < 90° or 90° < x < 135°,
then 2x will be in the second or third quadrant and cos 2x will be 
negative.

330°

165°

30°
-1

2

y

x3
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coscos sinsinx x2 1 2

1 2 5
5

1 2 2525
5

1 5
2

5
3

2

2

!

!

!

!

!

= -

= -

= -

= -

=

J

L

K
K

`

c

c

N

P

O
O

j

m

m

R

T

S
S
S

=

V

X

W
W
W

G

Example 20: Verify the identity 1 − cos 2x = tanx sin 2x.

coscos tantan sinsin

coscos coscos
sinsin sinsin coscos

coscos sinsin

sinsin sinsin

sinsin sinsin

x x x

x x
x x x

x x

x x

x x

1 2 2

1 2 2

1 2 2

1 1 2 2

2 2

2

2 2

2 2

- =

- =

- =

- - =

=

c ^

`

m h

j

Tangent Identities
Formulas for the tangent function can be derived from similar formulas
involving the sine and cosine. The sum identity for tangent is derived as
follows:

tantan
coscos

sinsin

tantan
coscos coscos sinsin sinsin

sinsin coscos coscos sinsin

tantan

coscos coscos

coscos coscos

coscos coscos

sinsin sinsin

coscos coscos

sinsin coscos

coscos coscos

coscos sinsin

tantan
tantan tantan

tantan tantan

1

+ =
+

+

+ =
-

+ +

+ =

+

+

+ =
-

+

a b
a b

a b

a b
a b a b

a b a b

a b

a b
a b

a b
a b

a b
a b

a b
a b

a b
a b

a b

_
_

_

_

_

_

i
i

i

i

i

i
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To determine the difference identity for tangent, use the fact that 
tan (− β) = − tanβ.

tantan tantan

tantan
tantan tantan

tantan tantan

tantan
tantan tantan

tantan tantan

1

1

- = + -

- =
- -

+ -

- =
+

-

a b a b

a b
a b

a b

a b
a b

a b

_ _

_
_

_

_

i i

i
i

i

i

9 C

Example 21: Find the exact value of tan 75°.

Because

tantan tantan

7575 4545 3030

7575 4545 3030

= +

= +

% %

% %

%

%b l

tantan tantan1 4545 3030-
tantan tantan tantan

tantan

tantan

tantan

tantan

tantan

tantan

7575 4545 3030

7575

1 1
3

1

1
3

1

7575

3

3 1
3

3

3 1
3

7575
3 1

3 1

7575
3 1

3 1

3 1

3 1

7575 3 1
3 2 3 1

7575 2 3

=
+

=

-

+

=
-

+

=
-

+

=
-

+

+

+

= -
+ +

= +

% %
% %

%

%

%

%

%

%

%
J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

^

a

a

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

h

k

k
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Example 22: Verify that tan (180° − x) = −tan x.

tantan
tantan tantan

tantan tantan

tantan
tantan

tantan

tantan tantan

x
x

x

x
x

x

x x

180180
1 180180

180180

180180
1 0

0

180180

- =
+

-

- =
+

-

- =-

%
%

%

%

%
a

a
^

a

k

k
h

k

Example 23: Verify that tan (180° + x) = tan x.

tantan
tantan tantan

tantan tantan

tantan
tantan

tantan

tantan tantan

x
x

x

x
x

x

x x

180180
1 180180

180180

180180
1 0

0

180180

+ =
-

+

+ =
-

+

+ =

%
%

%

%

%

b

b
^

a

l

l
h

k

Example 24: Verify that tan (360° − x) = − tan x.

tantan
tantan tantan

tantan tantan

tantan
tantan

tantan

tantan tantan

x
x

x

x
x

x

x x

360360
1 360360

360360

360360
1 0

0

360360

- =
+

+

- =
+

-

- =

%
%

%

%

%

-

a

a
^

a

k

k
h

k

The preceding three examples verify three formulas known as the reduc-
tion identities for tangent. These reduction formulas are useful in rewrit-
ing tangents of angles that are larger than 90° as functions of acute angles.

The double-angle identity for tangent is obtained by using the sum iden-
tity for tangent.

tantan tantan

tantan tantan tantan
tantan tantan

tantan
tantan
tantan

2

2 1

2
1

2
2

= +

= -
+

=
-

a a a

a a a
a a

a
a

a

^ ^

^

^

h h

h

h

The half-angle identity for tangent can be written in three different
forms.

tantan coscos
coscos

tantan coscos
sinsin

tantan sinsin
coscos

2 1
1

2 1

2
1

!= +
-

= +

=
-

a
a
a

a
a

a

a
a
a
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In the first form, the sign is determined by the quadrant in which the angle
α/2 is located.

Example 25: Verify the identity

tantan coscos
coscos

tantan
coscos

sinsin

tantan
coscos

coscos

2 1
1

2
2

2

2
2

1
2

1

!

!

!

= +
-

=

=
+

-

a
a
a

a
a

a

a
a

a

tantan
coscos

coscos

tantan coscos
coscos

2

2

1

2

1

2 1
1

!

!

!

=
+

-

= +
-

a
a

a

a
a
a

Example 26: Verify the identity tan (α/2) = (1 − cos α)/sin α. 

tantan
coscos

sinsin

tantan
coscos

sinsin

coscos

sinsin

tantan
sinsin coscos

sinsin

tantan
sinsin

coscos

tantan sinsin
coscos

2
2

2

2
2

2

2 2

2 2

2 2 2 2

2 2

2 2 2

2 2
1

2
1

2

=

=

=
=

=

-

=
-

a
a

a

a
a

a

a

a

a
a a

a

a
a

a

a
a
a

J

L

K
K
K

J

L

K
K
K

c

N

P

O
O
O

N

P

O
O
O

m

Example 27: Verify the identity tan (α/2) = sin α/(1 + cos α). 

Begin with the identity in Example 26.
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tantan sinsin
coscos

tantan sinsin
coscos

coscos
coscos

tantan
sinsin coscos

coscos

tantan
sinsin coscos

sinsin

tantan coscos
sinsin

2
1

2
1

1
1

2 1
1

2 1

2 1

2

2

=
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=
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+
+

=
+
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=
+

= +

a
a
a

a
a
a

a
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a
a a

a

a
a a

a

a
a

a

c c
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^ ^

m m

h h

h h

Example 28: Use a half-angle identity for the tangent to find the exact
value for tan 15°.

What follows are two alternative solutions.

Solution A Solution B

sinsin3030

tantan tantan

tantan coscos

tantan

1515 2
3030

1515 1 3030

1515

2
1

1 2
3

=

=
-

=

-

% %

% %

%

%

J

L

K
K

c

N

P

O
O

m

coscos1 3030+

tantan tantan

tantan sinsin

tantan

1515 2
3030

1515 3030

1515

1 2
3

2
1

=

=

=

+

% %

% %

%

%

J

L

K
K

c

N

P

O
O
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Solution A Solution B

tantan

tantan

1515 2
2 3

1
2

1515 2 3

=
+

= -

%

%

J

L

K
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N

P

O
O m

tantan

tantan

tantan

tantan

1515 2
1

2 3

2

1515
2 3

1

1515
2 3

1

2 3

2 3

1515 2 3

=
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=
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P

O
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Product-Sum and Sum-Product Identities
The process of converting sums into products or products into sums can
make a difference between an easy solution to a problem and no solution
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at all. Two sets of identities can be derived from the sum and difference
identities that help in this conversion. The following set of identities is
known as the product-sum identities.

sinsin coscos sinsin sinsin

coscos sinsin sinsin sinsin

sinsin sinsin coscos coscos

coscos coscos coscos coscos

2
1

2
1

2
1

2
1

= + + -

= + - -

= - - +

= + + -

a b a b a b

a b a b a b

a b a b a b

a b a b a b

_ _

_ _

_ _

_ _

i i

i i

i i

i i

9

9

9

9

C

C

C

C

These identities are valid for degree or radian measure whenever both sides
of the identity are defined.

Example 29: Verify that sin α cos β =

sinsin coscos sinsin sinsin2
1

= + + -a b a b a b_ _i i9 C.

Start by adding the sum and difference identities for the sine.

sinsin sinsin coscos coscos sinsin

sinsin sinsin coscos coscos sinsin

sinsin sinsin sinsin coscos

sinsin coscos sinsin sinsin

2

2
1

+ = +

- = -

+ + - =

= + + -

a b a b a b

a b a b a b

a b a b a b

a b a b a b

_

_

_ _

_ _

i

i

i i

i i9 C

The other three product-sum identities can be verified by adding or sub-
tracting other sum and difference identities.

Example 30: Write cos 3x cos 2x as a sum.

coscos coscos coscos coscos

coscos coscos coscos coscos

coscos coscos coscos coscos

coscos coscos coscos coscos

x x x x x x

x x x x

x x x x

2
1

3 2 2
1 3 2 3 2

3 2 2
1 5

3 2 2
5

2

= + + -

= + + -

= +

= +

a b a b a b_ _

^ ^

^

i i

h h

h

9

8

C

B

Alternate forms of the product-sum identities are the sum-product 
identities.
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sinsin sinsin sinsin coscos

sinsin sinsin coscos sinsin

2 2 2

2 2 2

+ =
+ -

- =
+ -

a b
a b a b

a b
a b a b

coscos coscos coscos coscos

coscos coscos sinsin sinsin

2 2 2

2 2 2

+ =
+ -

- =-
+ -

a b
a b a b

a b
a b a b

These identities are valid for degree or radian measure whenever both sides
of the identity are defined.

Example 31: Verify that sin x + sin y = 2 sin 
x y

2
+

cos 
x y

2
-

.

sinsin coscos sinsin sinsin2
1

= + + -a b a b a b_ _i i9 C

Solve for α by adding the following two equations and then dividing by 2.
Solve for β by subtracting the two equations and then dividing by 2.

sinsin coscos sinsin sinsin

sinsin sinsin sinsin coscos

x

x y

x y

IfIf andand

ThenThen andand

y

x y x y

x y x y

x y x y
2
1

2

2 2

2 2

2 2

= + = -

= +

+ =

= =
+ -

+ -

+ -

a b a b

a b

` j

Example 32: Write the difference cos 8α − cos 2 α as a product.

coscos coscos sinsin sinsin

coscos coscos sinsin sinsin

2 2 2

8 2 2 5 3

- =-
+ -

- =-

a b
a b a b

a a a a

Example 33: Find the exact value of sin 75° + sin 15°.

sinsin sinsin sinsin coscos

sinsin sinsin sinsin coscos

sinsin sinsin

sinsin sinsin

sinsin sinsin

x y
x y x y

2 2 2

7575 1515 2 4545 3030
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Chapter  Checkout

Q&A
1. Use the fundamental trig identities to find the remaining five trig

functions if cos α = 2/3 and tan α < 0.

2. Establish this identity: sec θ − cos θ = tan θ sin θ.

3. True or False: The sum and difference formulas can be used to find
the exact value of the cosine of 75°.

4. True or False: When establishing an identity, you may only work on
one side of the identity at a time.

5. Establish this identity: csccsc 5
3 5

=-i .

Answers: 1. , , ,

,

sinsin tantan cotcot

secsec csccsc

3
5

2
5

5
2 5

2
3

5
3 5

=- =- =-

= =-

i i i

i i

2. secsec coscos tantan sinsin

coscos coscos
coscos

coscos
coscos

coscos
sinsin

coscos
sinsin sinsin

tantan sinsin

1

1

2

2

2

- =

- =

-
=

=

=

=

i i i i

i i
i

i
i

i
i

i
i i

i i

3. T 4. T 

5.
sinsin

coscos sinsin cotcot

sinsin
coscos

sinsin
sinsin

cotcot

cotcot

1

1

1

+
= +

+ =

+ =

+

i
i i i

i
i

i
i

i

i
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Chapter 5

VECTORS

Chapter  Checkin

❑ Understanding vectors and their components

❑ Applying the tip tail rule for combining vectors

❑ Using vectors to solve problems

❑ Defining vector operations involving addition and the dot product
rule

In the physical world, some quantities, such as mass, length, age, and
value, can be represented by only magnitude. Other quantities, such as

speed and force, also involve direction. You can use vectors to represent
those quantities that involve both magnitude and direction. One common
use of vectors involves finding the actual speed and direction of an aircraft
given its air speed and direction and the speed and direction of a tailwind.
Another common use of vectors involves finding the resulting force on an
object being acted upon by several separate forces. 

Vector Operations
Any quantity that has both size and direction is called a vector quantity.
If A and B are two points that are located in a plane, the directed line seg-
ment from point A to point B is denoted by ABAB. Point A is the initial
point, and point B is the terminal point. 

A geometric vector is a quantity that can be represented by a directional
line segment. From this point on, a vector will be denoted by a boldface
letter, such as v or u. The magnitude of a vector is the length of the
directed line segment. The magnitude is sometimes called the norm. Two
vectors have the same direction if they are parallel and point in the same
direction. Two vectors have opposite directions if they are parallel and point
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in opposite directions. A vector that has no magnitude and points in any
direction is called the zero vector. Two vectors are said to be equivalent
vectors if they have the same magnitude and same direction.

Figure 5-1 demonstrates vector addition using the tail-tip rule. To add
vectors v and u, translate vector u so that the initial point of u is at the ter-
minal point of v. The resulting vector from the initial point of v to the ter-
minal point of u is the vector v + u and is called the resultant. The vectors
v and u are called the components of the vector v + u. If the two vectors
to be added are not parallel, then the parallelogram rule can also be used.
In this case, the initial points of the vectors are the same, and the resultant
is the diagonal of the parallelogram formed by using the two vectors as
adjacent sides of the parallelogram.

Figure 5-1 Example of vector addition.

In order to multiply a vector u by a real number q, multiply the length of
u by |q | and reverse the direction of u if q < 0. This is called scalar mul-
tiplication. If a vector u is multiplied by −1, the resulting vector is 
designated as −u. It has the same magnitude as u but opposite direction.
Figure 5-2 demonstrates the use of scalars.

v

u

v + u
vv + u

u

6389-0 Ch05.F  7/27/01  9:00 AM  Page 100



Chapter 5: Vectors 101

Figure 5-2 Examples of vectors.

Example 1: A plane is traveling due west with an air speed of 400 miles
per hour. There is a tailwind blowing in a southwest direction at 50 miles
per hour. Draw a diagram that represents the plane’s ground speed and
direction (Figure 5-3).

Figure 5-3 Drawing for Example 1— vector representation.

The vector represented in the preceding example is known as a velocity
vector. The bearing of a vector v is the angle measured clockwise from
due north to v. In the example, the bearing of the plane is 270° and the
bearing of the wind is 225°. Redrawing the figure as a triangle using the
tail-tip rule, the length (ground speed of the plane) and bearing of the
resultant can be calculated (Figure 5-4).

400

50

-2u

2u

u

w + v

w

w - v

v

-v
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Figure 5-4 Drawing for Example 1— angle representation.

First, use the law of cosines to find the magnitude of the resultant.

coscos

coscos

c a b abab C

c

2

400400 5050 2 400400 5050 135135

2 2 2

2 2 2

= + -

= + - %^ ^ ^ ^h h h h

500500

284284

-,

,

000000 2 000000

500500 2828

784784

+

-

, , .

,

,

.

c

c

c
c

160160 4040 70717071

162162

190190

436436 8

2

2

2

.

.

.

.

-^ ^h h

Then, use the law of sines to find the bearing.

.

.
.

.

.

sinsin sinsin

sinsin sinsin

sinsin

sinsin

c
C

b
B

B

B

B

B

436436 8
135135

5050

436436 8
0 70717071 5050

0 08090809

4 6464

.

.

.

.

=

%

%

^ ^h h

The bearing, β, is therefore 270° − 4.64°, or approximately 265.4°.

Example 2: A plane flies at 300 miles per hour. There is a wind blowing
out of the southeast at 86 miles per hour with a bearing of 320°. At what
bearing must the plane head in order to have a true bearing (relative to the
ground) of 14°? What will be the plane’s groundspeed (Figure 5-5)?

400

270°

B225°

135°
C

50

A
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Figure 5-5 Drawing for Example 2.

Use the law of sines to calculate the bearing and the groundspeed. Because
these alternate interior angles are congruent, the 54° angle is the sum of
the 14° angle and the 40° angle.

.

.

.

sinsin sinsin

sinsin

sinsin

8686 300300
5454

300300
8686 0 809809

0 232232

1313 4

.

.

.

=
a

a

a

a %

%

^ ^h h

sinsin5454

.

.

.
.

.

sinsin sinsin

sinsin

x

x

x

x

300300
5454 180180 5454 1313 4

300300 112112 6

0 809809
300300 0 923923

342342 3

.

.

.

=
- - %

%
%

% ^

^ a

^ ^

h

h k

h h

Therefore, the bearing of the plane should be 14° + 13.4° = 27.4°. The
groundspeed of the plane is 342.3 miles per hour.

Any vector can be broken down into two component vectors, a horizon-
tal component and a vertical component. These component vectors are
called projections (Figure 5-6).

14°

320°

300

40°
86

54°

x
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Figure 5-6 Example of projections.

. .

coscos sinsin

coscos sinsin

x y

x y

x y

7171
2626

7171
2626

2626 7171 2626 7171

8 4646 2424 6.

= =

= =

=

%

% %

%

Example 3: A force of 11 pounds and a force of 6 pounds act on an object
at an angle of 41° with respect to one another. What is the magnitude of
the resultant force, and what angle does the resultant force form with the
11-pound force (Figure 5-7)?

Figure 5-7 Drawing for Example 3.

First, use the Law of Cosines to find the magnitude of the resultant force.

.

.

.

coscos

coscos

c a b abab C

v

v

v

v

2

6 1111 2 6 1111 139139

3636 121121 132132 0 755755
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v
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u u
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Next, use the Law of Sines.

.

.
.

.

.

sinsin sinsin

sinsin sinsin

sinsin

sinsin

a
A

b
B

6 1616 0202
139139

1616 0202
6 0 656656

0 246246

1414 2424

.

.

.

=

=
a

a

a

a %

%

^ h

Thus the resultant force is 16.02 pounds, and this force makes an angle of
14.24° with the 11-pound force.

Vectors in the Rectangular Coordinate
System
The following discussion is limited to vectors in a two-dimensional coor-
dinate plane, although the concepts can be extended to higher dimensions.

If vector ABAB is shifted so that its initial point is at the origin of the rectan-
gular coordinate plane, it is said to be in standard position. If vector OPOP
is equal to vector ABAB and has its initial point at the origin, it is said to be
the standard vector for ABAB. Other names for the standard vector include
radius vector and position vector (Figure 5-8).

Figure 5-8 Vectors drawn on a plane.

Vector OPOP is the standard vector for all vectors in the plane with the same
direction and magnitude as  OPOP. In order to find the standard vector for a

y

x
O

A

B

P
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geometric vector in the coordinate plane, only the coordinates of point P
must be found because point 0 is at the origin. If the coordinates of point
A are (xa, ya) and the coordinates of point B are (xb, yb), then the coordi-
nates of point P are (xb − xa, yab− ya).

Example 4: If the endpoints of a vector ABAB have coordinates of A (−2, 
−7) and B (3, 2), then what are the coordinates of point P such that OPOP is
a standard vector and OPOP = ABAB (see Figure 5-9)?

Figure 5-9 Drawing for Example 4.

If the coordinates of point P are (x, y),

x x x

y y y

3 2 5

4 5 9

b a

b a

= - = - - =

= - = - - =

^

^

h

h

An algebraic vector is an ordered pair of real numbers. An algebraic vec-
tor that corresponds to standard geometric vector OPOP is denoted as ,a b
if terminal point P has coordinates of (a, b). The numbers a and b are called
the components of vector ,a b (see Figure 5-10).

Figure 5-10 Components of a vector.

y

x

P(a,b)

u = <a,b>

O(0,0)

y

x
O

A(-2,-7)

B(3,2)

P(5,9)
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If a, b, c, and d are all real numbers such that a = c and b = d, then vector
v = ,a b and vector u = ,c d are said to be equal. That is, algebraic vec-
tors with equal corresponding components are equal. If both components
of a vector are equal to zero, the vector is said to be the zero vector. The
magnitude of a vector v = <a,b> is v a b2 2

= + .

Example 5: What is the magnitude of vector u = ,3 5- ?

u a b

u

u

u

3 5

9 2525

3434

2 2

2 2

= +

= + -

= +

=

^ h

Vector addition is defined as adding corresponding components of 
vectors—that is, if v = ,a b and u = ,c d , then v + u = ,a b c d+ +

(Figure 5-11).

Figure 5-11 Vector addition.

Scalar multiplication is defined as multiplying each component by a con-
stant—that is, if v = ,a b and q is a constant, then qv = q , ,a b qaqa qbqb= .

Example 6: If v = ,8 2- and w = ,3 7 then find 5v −2w.

5v − 2w = 5 ,8 2- − 2 ,3 7

5v − 2w = 5 ,4040 1010- − ,6 1414

5v − 2w = ,3434 2424-

y

x
O

(4,-2)

(7,2)

(3,4)

u

v

u + v
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A unit vector is a vector whose magnitude is 1. A unit vector v with the
same direction as a nonzero vector u can be found as follows:

v
u

u1
=

Example 7: Find a unit vector v with the same direction as the vector u
given that u = ,7 1- .

u

u

u

u

7 1

4949 1

5050

5 2

2 2= + -

= +

=

=

^ h

,

,

,

v
u

u

v

v

v

1

5 2

1 7 1

5 2

7

5 2

1

1010
7 2

1010
2

=

= -

=
-

=
-

Two special unit vectors, i = ,1 0 and j = ,0 1 , can be used to express
any vector v = ,a b .

v = ,a b
v = ,a 0 + , b0

v = ai + bj

Example 8: Write u = ,5 3 in terms of the i and j unit vectors (Fig-
ure 5-12).

u = ,5 3

u = 5 ,1 0 + 3 ,0 1

u = 5i + 3j
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Figure 5-12 Drawing for Example 8.

Vectors exhibit algebraic properties similar to those of real numbers 
(Table 5-1).

Table 5-1 Properties of Vectors

Associative property u + (v + w) = (u + v) + w a(bv) = (ab)v

Commutative property u + v = v + u

Distributive property a(u + v) = au + av (a + b)v = av + bv

Identity v + 0 = 0 + v = v 1v = v

Inverse v + (−v) = 0

Example 9: Find 4u + 5v if u = 7i − 3j and v = −2i + 5j.

4u + 5v = 4(7i − 3j) + 5(−2i + 5j)
4u + 5v = 28i − 12j − 10i + 25j

4u + 5v = (28 − 10)i + (−12 + 25)j
4u + 5v = 18i + 13j

j

3j

i 5i

u = 5i + 3j

y

x
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Given two vectors, u = ,a b = ai + bj and v = ,c d = ci + dj, the dot prod-
uct, written as u⋅v, is the scalar quantity u ⋅ v = ac + bd. If u, v, and w are
vectors and q is a real number, then dot products exhibit the following
properties:

coscos

q q q

u

u v v u

u v w u v u w

u v w u w v w

u v u v u v

v v v

u v u v

0 0

2

$ $

$ $ $

$ $ $

$ $ $

$

$

$

=

+ = +

+ = +

= =

=

=

= a

^

^

^ ` `

h

h

h j j

The last property, u ⋅v = |u| |v| cos α, can be used to find the angle between
the two nonzero vectors u and v. If two vectors are perpendicular to each
other and form a 90° angle, they are said to be orthogonal. Because cos
90°= 0, the dot product of any two orthogonal vectors is 0.

Example 10: Given that u = ,5 3- and v = ,6 1010 , show that u and v are
orthogonal by demonstrating that the dot product of u and v is equal to
zero.

u ⋅ v = ,5 3- ⋅ ,6 1010

u ⋅ v = 30 + (−30)

u ⋅ v = 0

Example 11: What is the angle between u = ,5 2- and v = ,6 1111 ?

, ,

.

.

coscos

coscos

coscos

coscos

u v
u v

5 2 6 1111

5 2 6 1111

2929 157157

8

0 119119

8383 2

2 2 2 2

$

$

.

.

=

=
+ - +

-

=

a

a

a

a

a %

^ h

An object is said to be in a state of static equilibrium if all the force vec-
tors acting on the object add up to zero.
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Example 12: A tightrope walker weighing 150 pounds is standing closer
to one end of the rope than the other. The shorter length of rope deflects
5° from the horizontal. The longer length of rope deflects 3°. What is the
tension on each part of the rope?

Draw a force diagram with all three force vectors in standard position (Fig-
ure 5-13).

Figure 5-13 Drawing for Example 12.

coscos sinsin

coscos v sinsin

u u i u j

v v i j

w j

5 5

3 3

150150

= - +

= +

=

%

% %

%

-

a a

b b

k k

l l

The sum of the force vectors must be zero for each component.

For the i component: coscos coscosu v5 3 0- + =% %

For the j component: sinsin coscosu v5 3 150150 0+ - =% %

Solve these two equations for |u| and |v|:

coscos coscos

sinsin coscos

u v

u v

5 3 0

5 3 150150 0

- + =

+ - =

% %

% %

Substituting the values for the sines and cosines:

. .

. .

u v

u v

0 99629962 0 99869986 0

0 08720872 0 05230523 150150 0

- + =

+ - =

w = -150

y

x
5° 3°vu
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Multiply the first equation by 0.0872 and the second by 0.9962:

. .

. . .

u v

u v

0 08690869 0 08710871 0

0 08690869 0 05210521 149149 4343

- + =

+ =

Add the two equations and solve for |v|:

. .

lbslbs

v

v

0 1392913929 149149 4343

10731073

=

=

Substitute and solve for |u|:

lbslbsu 10761076=

Chapter  Checkout

Q&A
1. An airplane is traveling with airspeed of 225 mph at a bearing of

205°. A 60 mph wind is blowing with a bearing of 100°. What is the
resultant ground speed and direction of the plane?

2. A force of 22 pounds and a force of 35 pounds act on an object at an
angle of 32° with respect to one another. What is the resultant force
on the object?

3. If the endpoints of a vector ABAB have coordinates of A(-4, 6), and
B(10,4), then what are the coordinates of a point P such that OPOP is a
standard vector and OPOP = ABAB?

4. True or False: The dot product of two orthogonal vectors is always
zero.

5. What is the angle between vector u = <5, 7> and v = <-6, 6> ?

Answers: 1. 217 mph, bearing 189.53° 2. 54.91 pounds 3. (14,−2)
4. True 5. 80.54°.
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POLAR COORDINATES AND
COMPLEX NUMBERS

Chapter  Checkin

❑ Defining polar coordinates in terms of rectangular coordinates

❑ Converting between polar and rectangular coordinates

❑ Recognizing the graphs of some important polar curves

❑ Defining complex numbers in terms of polar coordinates

❑ Converting between complex numbers and polar coordinates

❑ Defining and using De Moivre’s Theorem

Many systems and styles of measure are in common use today. When
graphing on a flat surface, the rectangular coordinate system and the

polar coordinate system are the two most popular methods for drawing
the graphs of relations. Polar coordinates are best used when periodic func-
tions are considered. Although either system can usually be used, polar
coordinates are especially useful under certain conditions. 

Polar Coordinates
The rectangular coordinate system is the most widely used coordinate sys-
tem. Second in importance is the polar coordinate system. It consists of
a fixed point 0 called the pole, or origin. Extending from this point is a
ray called the polar axis. This ray usually is situated horizontally and to
the right of the pole. Any point, P, in the plane can be located by specify-
ing an angle and a distance. The angle, θ, is measured from the polar axis
to a line that passes through the point and the pole. If the angle is mea-
sured in a counterclockwise direction, the angle is positive. If the angle is
measured in a clockwise direction, the angle is negative. The directed 

6389-0 Ch06.F  7/27/01  9:02 AM  Page 113



114 CliffsQuickReview Trigonometry

distance, r, is measured from the pole to point P. If point P is on the ter-
minal side of angle θ, then the value of r is positive. If point P is on the
opposite side of the pole, then the value of r is negative. The polar coor-
dinates of a point can be written as an ordered pair (r, θ). The location of
a point can be named using many different pairs of polar coordinates. Fig-
ure 6-1 illustrates three different sets of polar coordinates for the point P
(4,50°).

Figure 6-1 Polar forms of coterminal angles.

Conversion between polar coordinates and rectangular coordinates is illus-
trated as follows and in Figure 6-2.
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Figure 6-2 Polar to rectangular conversion.

Example1: Convert P (4,9) to polar coordinates.
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The polar coordinates for P (4, 9) are P ,9797 6666%a k.

Example 2: Convert P (5,20°) to rectangular coordinates.
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The rectangular coordinates for P (5,20°) are P (4.7, 1.7).

y

y

x

r

P (x, y)

x

P (r,   )
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Example 3: Transform the equation x2 + y2 + 5x = 0 to polar coordinate
form.

coscos

x y x

r x

r r

5 0

5 0

5 0

2 2

2

2

+ + =

+ =

+ =i^ h

coscos

coscos

r r
r r

5 0

5 0

2
+ =

+ =

i

i^ h

The equation r = 0 is the pole. Thus, keep only the other equation.

coscosr 5 0+ =i

Graphs of trigonometric functions in polar coordinates are very distinctive.
In Figure 6-3, several standard polar curves are illustrated. The variable a
in the equations of these curves determines the size (scale) of the curve.

Figure 6-3 Graphs of some common figures in polar form.
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a
a

Circle: r = a
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a
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6389-0 Ch06.F  7/27/01  9:02 AM  Page 116



Chapter 6: Polar Coordinates and Complex Numbers 117
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Geometry of Complex Numbers
Complex numbers can be represented in both rectangular and polar coor-
dinates. All complex numbers can be written in the form a + bi, where a
and b are real numbers and i2 =−1. Each complex number corresponds to
a point in the complex plane when a point with coordinates (a, b) is asso-
ciated with a complex number a + bi. In the complex plane, the x-axis is
named the real axis and the y-axis is named the imaginary axis.

Example 4: Plot 4− 2i −3 + 2i, and −5 − 3i in the complex plane (see Fig-
ure 6-4).

Figure 6-4 Complex numbers plotted in the complex plane.

Complex numbers can be converted to polar coordinates by using the rela-
tionships x = r cos θ and y = r sin θ. Thus, if z is a complex number:

z = x + iy = r cos θ + ir sin θ
z = x + jy = r(cos θ + i sin θ)

Sometimes the expression cos θ + sin θ is written as cis θ. The absolute
value, or modulus, of z is z x y2 2

= + . The angle formed between the
positive x-axis and a line drawn from the origin to z is called the argument
or amplitude of z. If z = x + iy is a complex number, then the conjugate
of z is written as z x iyiy= -

y

x

(4,-2)

(-3,2)

(-5,-3)
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Example 5: Convert the complex number 5 − 3i to polar coordinates (see
Figure 6-5).

.

coscos

coscos

r z

r z

5 3

3434

3434

5

0 857857

2 2

.

= = + -

= =

=i

i

^ h

Reference angle 3131.i %.

Since θ is in the fourth quadrant,

360360 3131 329329= - =i % % %

Figure 6-5 Drawing for Example 5.

Therefore,

coscos sinsini i5 3 3434 329329 329329- = +% %a k

To find the product of two complex numbers, multiply their absolute val-
ues and add their amplitudes.

coscos sinsin

coscos sinsin

coscos sinsin

IfIf z a i

andand w b i

thenthen zwzw abab i

= +

= +

= + + +

a a

b b

a b a b

^

_

_ _

h

i

i i9 C

y

x

(5,-3i)

r
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To find the quotient of two complex numbers, divide their absolute val-
ues and subtract their amplitudes.

coscos sinsin

coscos sinsin

coscos sinsin

IfIf z a i

andand w b i

thenthen w
z

b
a i

= +

= +

= - + -

a a

b b

a b a b

^

_

_ _

h

i

i i9 C

Example 6: If z = a(cosα + i sinα) and w = b(cosβ +i sinβ), then find their
product zw.

coscos sinsin coscos sinsin

coscos coscos coscos sinsin sinsin coscos sinsin sinsin

coscos coscos sinsin sinsin sinsin coscos coscos sinsin

coscos sinsin

zwzw a i b i

zwzw abab i i

zwzw abab i

zwzw abab i

1

= + +

= + + + -

= - + +

= + + +

a a b b

a b a b a b a b

a b a b a b a b

a b a b

^ _

^

_

_ _

h i

h

i

i i

8 9

8

9

9

B C

B

C

C

Example 7: If z = a(cosα + i sinα) and w = b(cosβ +i sinβ), then find their
quotient z/w.

coscos sinsin

coscos sinsin

coscos sinsin coscos sinsin

coscos sinsin coscos sinsin

coscos sinsin

coscos coscos coscos sinsin sinsin coscos sinsin sinsin

coscos coscos sinsin sinsin sinsin coscos coscos sinsin

coscos sinsin

w
z

b i

a i

w
z

b i i

a i i

w
z

b
a i i

w
z

b
a i

w
z

b
a i

1

1

1

2 2

=
+

+

=
+ -

+ -

=
- -

- + - -

=
+ + -

= - + -

b b

a a

b b b b

a a b b

b b

a b a b a b a b

a b a b a b a b

a b a b

_

^

_ _

^ _

^

^

^

_ _

_ _

i

h

i i

h i

h

h

h

i i

i i

8

8

9

9

B

B

C

C

Example 8: If z = 4(cos 65° + i sin 65°) and w = 7(cos 105° + i sin 105°),
then find zw and z/w.

coscos sinsin

coscos sinsin

coscos sinsin

zwzw i

zwzw i

w
z i

4 7 6565 105105 6565 105105

2828 170170 170170

7
4 6565 105105 6565 105105

= + + +

= +

= - + -

% % % %

% %

% % % %

^ ^ a a

a

a a

h h k k

k

k k

;

;

E

E
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coscos sinsin

coscos sinsin

w
z i

w
z i

7
4 4040 4040

7
4 320320 320320

= - + -

= +

%

%

%

%

a b

a b

k l

k l

<

<

F

F

De Moivre’s Theorem
The process of mathematical induction can be used to prove a very
important theorem in mathematics known as De Moivre’s theorem. If
the complex number z = r(cos α + i sin α), then

coscos sinsin coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin coscos sinsin

coscos coscos sinsin

coscos sinsin

z r i r i

z r i

z r i

z r i r i

z r i

z r i

z r i r i

z r i

z r i

2 2

2 2

2 2

3 3

3 3

3 3

4 4

2

2 2

2 2

3 2

3 3

3 3

4 3

4 4

4 4

+ +

= + + +

= +

= + +

= + + +

= +

= + +

= + + +

= +

a a a a

a a a a

a a

a a a a

a a a a

a a

a a a a

a a a a

a a

^ ^

^ ^

^

^ ^

^ ^

^

^ ^

^ ^

^

h h

h h

h

h h

h h

h

h h

h h

h

8 8

8

8

8

8 8

8

B B

B

B

B

B B

B

The preceding pattern can be extended, using mathematical induction, to
De Moivre’s theorem.

If z = r(cos α + i sin α), and n is a natural number, then

coscos sinsinz r n i nn n
= +a a^ h

Example 9: Write i3
7

+a k in the form s + bi.

First determine the radius:

r i

r

r

r

3

3 1

3 1

2

2 2

= +

= +

= +

=
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Since cos /3 2=a and sin α = 1/2, α must be in the first quadrant and
α = 30°. Therefore,

coscos sinsin

coscos sinsin

coscos sinsin

i i

i i

i i

i i

i i

i i

3 2 3030 3030

3 2 7 3030 7 3030

3 128128 210210 210210

3 128128 2
3

2
1

3 128128 2
3

2
1

3 6464 3 6464

7
7

7 7

7

7

7

7

$ $

+ = +

+ = +

+ = +

+ = - +
-

+ = - -

+ =- -

%

% %

% %

%

J

L

K
K

J

L

K
K

a b

a a a

a a

a

a

a

N

P

O
O

N

P

O
O

k l

k k k

k k

k

k

k

<

;

F

E

Example 10: Write i2 2
4

-a k in the form a + bi.

First determine the radius:

r i

r

r

r

2 2

2 2

2 2

2

2 2

= -

= + -

= +

=

a k

Since cos α = ! /2 2=a and sin α = /2 2- , α must be in the fourth quad-
rant and α = 315°. Therefore, 

coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin

i i

i i

i i

i i

i i

i i

i

2 2 2 315315 315315

2 2 2 4 315315 4 315315

2 2 1616 12601260 12601260

2 2 1616 180180 180180

2 2 1616 1 0

2 2 1616 0

2 2 1616

4
4

4 4

4

4

4

4

4

$ $

- = +

- = +

- = +

- = +

- = - +

- =- +

- =-

%

% %

%

%

% %

%

a b

a b b

a a

a b

a ^

a

a

k l

k l l

k k

k l

k h

k

k

<

<

F

F
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Problems involving powers of complex numbers can be solved using bino-
mial expansion, but applying De Moivre’s theorem is usually more direct.

De Moivre’s theorem can be extended to roots of complex numbers yield-
ing the nth root theorem. Given a complex number z = r(cos α + i sinα),
all of the nth roots of z are given by

coscos sinsinr n
k i n

k360360 360360/n1 $ $+
+

+a a% %J

L

K
Kf

N

P

O
Op

R

T

S
S
S

V

X

W
W
W

where k = 0, 1, 2, . . . , (n − 1)

If k = 0, this formula reduces to

coscos sinsinr n i n
/n1

+
a a

c cm m= G

This root is known as the principal nth root of z. If α = 0° and r = 1, then
z = 1 and the nth roots of unity are given by

coscos sinsinr n
k i n

k360360 360360/n1 $ $
+

% %J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

R

T

S
S
S

V

X

W
W
W

where k = 0, 1, 2, . . . , (n − 1)

Example 11: What are each of the five fifth-roots of z i3= + expressed
in trigonometric form?

r i

r

r

r

3

3 1

3 1

2

2 2

= +

= +

= +

=

Since /coscos 3 2=a and /sinsin 1 2=a , α is in the first quadrant and α = 30°.
Therefore, since the sine and cosine are periodic,

coscos sinsin

coscos sinsin

z r i

z k i k2 3030 360360 3030 360360$ $

= +

= + + +

a a

% % % %

^

a b

h

k l< F
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and applying the nth root theorem, the five fifth-roots of z are given by

coscos sinsink i k2 5
3030 360360

5
3030 360360/1 5 $ $+

+
+% %

f fp p

R

T

S
SS

V

X

W
WW

where k = 0, 1, 2, 3, and 4

Thus the five fifth-roots are

coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin

coscos sinsin

z i

z i

z i

z i

z i

2 6 6

2 7878 7878

2 150150 150150

2 222222 222222

2 294294 294294

/

/

/

/

/

1
1 5

2
1 5

3
1 5

4
1 5

5
1 5

= +

= +

= +

= +

= +

% %

% %

%

% %

% %

%

a

a

b

a

a

k

k

l

k

k

Observe the even spacing of the five roots around the circle in Figure 6-6.

Figure 6-6 Drawing for Example 11.

z2

z1
x (real)

y (imaginary)

z3

z4

21/5

z5
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Chapter  Checkout

Q&A
1. Convert P(2, 5) from rectangular coordinates to polar coordinates.

2. Convert P(8, 26°) from polar coordinates to rectangular coordinates.

3. True or False: The Rose: r = α sin 2 θ has two “petals.”

4. Convert the complex number 4 + 2i to polar coordinates.

5. If z = 2(cos70° + i sin 70°) and w=6(cos80° + i sin 80°), then find zw.

Answers: 1. ; .r 2929 6868 2= =i ° 2. P(7.2, 3.5) 3. F 
4. 2020(cos26.6° + i sin26.6°) 5. 12(cos 150° + i sin 150°).
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Chapter 7

INVERSE FUNCTIONS
AND EQUATIONS

Chapter  Checkin

❑ Defining inverse trig functions

❑ Demonstrating how to restrict the basic trig functions to certain 
quadrants

❑ Showing that the restricted trig functions are one to one and have
inverses

❑ Solving problems using inverse trig functions

❑ Identifying trig equations with primary solutions

❑ Solving trig equations

The standard trig functions are periodic, meaning that they repeat them-
selves. Therefore, the same output value appears for multiple input val-

ues of the function. This makes inverse functions impossible to construct.
In order to solve equations involving trig functions, it is imperative for
inverse functions to exist. Thus, mathematicians have to restrict the trig
function in order create these inverses. 

Inverse Cosine and Inverse Sine
To define an inverse function, the original function must be one-to-one.
For a one-to-one correspondence to exist, (1) each value in the domain
must correspond to exactly one value in the range, and (2) each value in
the range must correspond to exactly one value in the domain. The first
restriction is shared by all functions; the second is not. The sine function,
for example, does not satisfy the second restriction, since the same value
in the range corresponds to many values in the domain (see Figure 7-1).
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Figure 7-1 Sine function is not one to one.

To define the inverse functions for sine and cosine, the domains of these
functions are restricted. The restriction that is placed on the domain val-
ues of the cosine function is x π0 # # (see Figure 7-2). This restricted
function is called Cosine. Note the capital “C” in Cosine.

Figure 7-2 Graph of restricted cosine function.

The inverse cosine function is defined as the inverse of the restricted
Cosine function coscosx x xCosCos π01 # #=

-
^ h . Therefore,

y = Cos-1x, where 0 ≤ y ≤ π and −1 ≤ x ≤ 1

1

-1

(0,1)

(π,-1)

π

y = Cos x

Domain: 0 ≤ x ≤ π 

-1 ≤ y ≤ 1 Range: 

y

x

y

x
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Figure 7-3 Graph of inverse cosine function.

Identities for the cosine and inverse cosine:

cos (Cos−1x) = x −1 ≤ x ≤ 1

Cos−1 (cosx) = x 0 ≤ x ≤ π

The inverse sine function’s development is similar to that of the cosine.
The restriction that is placed on the domain values of the sine function is 

xπ π
2 2# #-

This restricted function is called Sine (see Figure 7-4). Note the capital “S”
in Sine.

Figure 7-4 Graph of restricted sine function.

-1

1

(-π/2,-1)

(π/2,1)

-π/2
π/2

y = Sin x

Domain: -π/2 ≤ x ≤ π/2 

-1 ≤ y ≤ 1 Range: 

y

x

-1 1

(1,0)

(-1,π) π

y = Cos-1 x

Domain: -1 ≤ x ≤ 1 

0 ≤ y ≤ π Range: 

y

x
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The inverse sine function (see Figure 7-5) is defined as the inverse of the
restricted Sine function y = Sin x,

xπ π
2 2# #-

Therefore,

xπ π
2 2# #- and ,y x y xSinSin wherewhere andandπ π

2 2 1 11 # # # #= - -
-

Figure 7-5 Graph of inverse sine function.

Identities for the sine and inverse sine:

sinsin x x xSinSin 1 11 # #= -
-

` j

x x xSinSin π π
2 2sinsin 1 # #= -

-
^ h

The graphs of the functions y = Cos x and y = Cos−1 x are reflections of
each other about the line y = x. The graphs of the functions y = Sinx and y =
Sin−1x are also reflections of each other about the line y = x (see Figure 7-6).

-1

1

(-π/2,-1)

(π/2,1)

-π/2

π/2
y = Sin-1 x

Domain: 

-π/2 ≤ y ≤ π/2 

-1 ≤ x ≤ 1 

Range: 

y

x
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Figure 7-6 Symmetry of inverse sine and cosine.

Example 1: Using Figure 7-7, find the exact value of /CosCos 3 21
-

-
a k.

, coscosy y yIfIf CosCos thenthen wherewhere π2
3

2
3

01 # #=
-

=
--

J

L

K
K

N

P

O
O

Thus, y = 5π/6 or y = 150°.

Figure 7-7 Drawing for Example 1.

Example 2: Using Figure 7-8, find the exact value of /SinSin 2 21-
a k

, sinsiny y xIfIf SinSin thenthen wherewhere
p p

2
2

2
2

2 2
1 # #= = -

-
J

L

K
K

N

P

O
O

y

x

1
2

150°
30°

3-

-1
-1

1

1
1

1

-1

-1
π π/2

π/2

-π/2

-π/2

(a) (b)

π

y = cos x

y = Cos-1 x
y = Sin-1 x

y = sin x

y

x

y

x
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Figure 7-8 Drawing for Example 2.

Thus, y = π/4 or y = 45°.

Example 3: Find the exact value of cos .CosCos 0 62621-
` j.

Use the cosine-inverse cosine identity:

. .coscos CosCos 0 6262 0 62621
=

-
` j

Other Inverse Trigonometric Functions
To define the inverse tangent, the domain of the tangent must be 
restricted to

< <xπ π
2 2-

This restricted function is called Tangent (see Figure 7-9). Note the capi-
tal “T” in Tangent.

Figure 7-9 Graph of restricted tangent function.

y

x

y = Tan x

π/2-π/2

2

y

x
1

1

45°
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The inverse tangent function (see Figure 7-10) is defined as the inverse
of the restricted Tangent function y = Tan x,

< <xπ π
2 2-

Therefore,

, < < < <y x y xTanTan wherewhere andandπ π
2 2

1 3 3= - -
-

Figure 7-10 Graph of inverse tangent function.

Identities for the tangent and inverse tangent:

< <

< <tantan

tantan

x x xTanTan π π

x x xTanTan

2 2
1

1 3 3= -

= -

-

-

`

^

j

h

The inverse tangent, inverse secant, and inverse cosecant functions are
derived from the restricted Sine, Cosine, and Tangent functions. The
graphs of these functions are shown in Figure 7-11.

y

x
y = Tan-1 x

π/2

-π/2

Domain: All real numbers 

Range: < x <π
2

- π
2
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Figure 7-11 Graphs of inverse cotangent, inverse secant, and inverse
cosecant functions.

Trigonometric identities involving inverse cotangent, inverse secant, and
inverse cosecant:

>

<

x x x

x x x

CotCot TanTan wherewhere

CotCot TanTan wherewhereπ

1 0

1 0

1 1

1 1

=

= +

- -

- -

x x x x

x x x x

SecSec CosCos wherewhere oror

CscCsc SinSin wherewhere oror

1 1 1

1 1 1

1 1

1 1

$ #

$ #

= -

= -

- -

- -

y = Cot-1 x
x

y

π/2 π/2

π/2

-π/2

π π

0
x

y

x

y

0

0

-1

-1

1

1

Domain:  All real numbers

Range:     0 < y < π

(a) (b)

(c)

Domain:  x ≤ -1 or x ≥ 1

Domain:  x ≤ -1 or x ≥ 1

Range:    0 ≤ y ≤ π, y ≠ π/2

Range:    -π/2 ≤ y ≤ π/2, y ≠ 0

y = Sec-1 x

y = Csc-1 x
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Example 4: Determine the exact value of sin [Sec−1 (−4)] without using a
calculator or tables of trigonometric functions.

,

, , /

IfIf SecSec thenthen

SecSec wherewhere

α
α α π α π

4

4 0 2

1

!# #

= -

=-

-
^ h

In this range, the cosine and the secant are negative in the second quad-
rant. From this reference triangle, calculate the third side and find the sine
(see Figure 7-12).

a

a

a

a

1 4

4 1

1616 1

1515

2 2 2

2 2 2

+ - =

= - -

= -

=

^

^

h

h

Figure 7-12 Drawing for Example 4.

Therefore,

sinsin sinsinSecSec α
α

4

4

4
1515

1
- =

=

=

-
^` hj

x

y

c

1

7

(1,7)
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Example 5: Determine the exact value of cos (Tan−1 7) without using a
calculator or tables of trigonometric functions.

,

, < <

IfIf TanTan thenthen

wherewhere

α

α π α π
7

7 2 2TanTan

1
=

= -

-

In this range, the tangent and the cotangent are positive in the first quad-
rant. From this reference triangle, calculate the third side and find the
cosine (see Figure 7-13).

c

c

c

c

1 7

5050

5050

5 2

2 2 2

2

= +

=

=

=

Figure 7-13 Drawing for Example 5.

Therefore,

coscos coscosTanTan α7

5 2

1

1010
2

1
=

=

=

-
` j

x

y

a

-1

4

(-1, a)
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Trigonometric Equations
Trigonometric identities are true for all replacement values for the variables
for which both sides of the equation are defined. Conditional trigonometric
equations are true for only some replacement values. Solutions in a specific
interval, such as 0 ≤ x ≤ 2π, are usually called primary solutions. A general
solution is a formula that names all possible solutions.

The process of solving general trigonometric equations is not a clear-cut
one. No rules exist that will always lead to a solution. The procedure usu-
ally involves the use of identities, algebraic manipulation, and trial and
error. The following guidelines can help lead to a solution.

If the equation contains more than one trigonometric function, use identi-
ties and algebraic manipulation (such as factoring) to rewrite the equation
in terms of only one trigonometric function. Look for expressions that are
in quadratic form and solve by factoring. Not all equations have solutions,
but those that do usually can be solved using appropriate identities and alge-
braic manipulation. Look for patterns. There is no substitute for experience.

Example 6: Find the exact solution:

,coscos coscos sinsinα α α α0 36036022 # #=- + % %

First, transform the equation by using the identity sin2 α + cos2α = 1.

coscos coscos coscos

coscos coscos

coscos coscos

α α α
α α

α α

1

2 1 0

2 1 1 0

2 2

2

=- + -

+ - =

- + =

`

^ ^

j

h h

Therefore,

,

coscos coscos

coscos coscos

coscos

α α
α α

α α

α

2 1 0 1 0

2 1 1

1 2 180180

0 3003006

- = + =

= =

= =

=

%

% %

-

Thus,

, ,6060 180180 300300=a % % %
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Example 7: Solve cos 2x = 3(sin x − 1) for all real values of x.

coscos sinsin

sinsin sinsin

sinsin sinsin

sinsin

x x

x x

x x

x

2 3 1

1 2 3 3

2 3 4 0

2 2

3 9 4 2 4

givengiven

doubledouble angleangle formulaformula

quadraticquadratic equationequation

useuse quadraticquadratic formulaformula

2

2

!

= -

- = -

+ - =

=
- - -

^

^ ^

^ ^ ^

h

h h

h h h

. .

sinsin

sinsin

x

x oror
4

3 4141

2 351351 0 85088508

!
=

-

=-

The first answer, −2.351, is not a solution, since the sine function must
range between − 1 and 1. The second answer, 0.8508, is a valid value.
Thus, if k is an integer,

. .x k x kSinSin SinSinπ π π0 85088508 2 0 85088508 21 1
= + = - +

- -

In radian form,

. .x k x kπ π1 01750175 2 2 124124 2= + = +

In degree form,

. .x k x k5858 3 360360 121121 7 360360= + = +% %% %b ^ b ^l h l h

Example 8: Find the exact solution:

, < <coscos coscos2 0 180180=i i i %%

First, transform the equation by using the double angle identity cos 2θ =
2 cos2θ − 1.

coscos coscos

coscos coscos

coscos coscos

coscos coscos

2

2 1

2 1 0

2 1 1 0

2

2

=

- =

- - =

+ - =

i i

i i

i i

i i^ ^h h
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Therefore,

coscos coscos

coscos coscos

coscos

2 1 0 1 0

2 1 1

0

120120

2
1

+ = - =

= =

=- =

=

i i

i i

i i

i

%

%

-

Thus,

,0 120120=i % %

Chapter  Checkout

Q&A
1. Solve sin θ = 2 cos2 θ − 1 where 0° ≤ θ < 360°.

2. Find the exact value of ( ( ))coscos sinsin 1
7
3-

- .

3. Find the exact value of ( )tantan sinsin 1
3
2- .

4. True or False: The inverse sine and inverse cosine are defined in the
same quadrants.

5. Find the exact value of ( )sinsin sinsin 1
8
3- .

6. Solve sin2 2 θ = 1.

Answers: 1. 30°, 150°, 270° 2. 7
2 1010 3. 5

2 5 4. F 5. 8
3 6. 45°, 225°.
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Chapter 8

ADDITIONAL TOPICS

Chapter  Checkin

❑ Defining an alternate form for the equation y = Α sin (Bt + C)

❑ Converting between y = Α sin (Bt + C) and y = M sin Bt + N cos Bt

❑ Finding period, frequency, and phase shift

❑ Defining uniform circular motion

❑ Using uniform circular motion to solve problems about linear velocity

❑ Defining simple harmonic motion in terms of uniform circular motion

❑ Solving problems using simple harmonic motion

Have you ever noticed that the motions of some objects seem to be very
rhythmic and repetitive? Motions like train wheels and linkages, a

child’s swing, the pistons in a car engine, throwing a ball, and bouncing a
ball are all related to harmonic motion and the sine curve. Understanding
simple harmonic motion and uniform circular motion can help explain
how most of these very common movements are related.

The Expression M sin Bt + N cos Bt
The equation y = M sin Bt + N cos Bt and the equation y = A sin (Bt + C)
are equivalent where the relationships of A, B, C, M, and N are as follows.
The proof is direct and follows from the sum identity for sine. The fol-
lowing is a summary of the properties of this relationship.

M sin Bt +NcosBt = M N2 2
+ sin (Bt + C) given that C is an angle with

a point P(M, N) on its terminal side (see Figure 8-1).
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sinsin

coscos

C
M N

N

C
M N

M

M N

B
B

B
C

amplitudeamplitude

periodperiod

frequencyfrequency

phasephase shiftshift

π

π

2

2

2 2

2 2

2 2

=
+

=
+

= +

=

=

=-

Figure 8-1 Reference graph for y = M sin Bt + N cos Bt.

Example 1: Convert the equation y 5= sin 3t + 2 cos 3t to the form y =
A sin (Bt + C). Find the period, frequency, amplitude, and phase shift (see
Figure 8-2).

.

.

sinsin

coscos

sinsin

M

N

B

R M N

C

C

C

y t

5

2

3

3

3
2

3
5

0 72977297

3 3 0 72977297

2 2

.

=

=

=

= + =

=

=

= +^ h

x

y

N C
R

M

P(M,N)
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.

.

. .

M N

B
B

B
C

amplitudeamplitude

periodperiod

frequencyfrequency

phasephase shiftshift

π π

π π

3

2
3

2 2 094094

2 2
3 0 477477

3
0 72977297 0 24322432

2 2

.

.

. .

= + =

= =

= =

=- - -

Figure 8-2 Drawing for Example 1.

Example 2: Convert the equation y = −sin πt + cos πt to the form y = A
sin (Bt + C). Find the period, frequency, amplitude, and phase shift (see 
Figure 8-3).

sinsin

coscos

sinsin

M

N

B

R M N

C

C

C

y t

π

π

π π

1

1

2

2
2

2
2

4
3

2
4

3

2 2

=-

=

=

= + =

=

=
-

=

= +c m

M N

B

B
C

amplitudeamplitude

periodperiod

frequencyfrequency

phasephase shiftshift

π
π
π

π
π

π

π

2

2 2 2

2 2
1

4
3

4
3

2 2

.

.

= + =

= =

= =

=- =- -

5

x

y

3
2
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Figure 8-3 Drawing for Example 2.

Uniform Circular Motion
If α is the measure of a central angle of a circle, measured in radians, then
the length of the intercepted arc (s) can be found by multiplying the radius
of the circle (r) by the size of the central angle (α); s = r α. Remember, α
must be measured in radians.

Example 3: Find the length (s) of the arc intercepted by a central angle of
size 3 radians if the radius of the circle is 5 centimeters (see Figure 8-4).

s r

s

s

5 3

1515

=

=

=

a

^ ^h h

Figure 8-4 Drawing for Example 3.

Thus, the length of the intercepted arc is 15 centimeters.

Example 4: Using Figure 8-5, find the length (s) of the arc intercepted by
a central angle of size − 100° if the radius of the circle is 7 centimeters.

5 3
x

y

2
1

-1

C
x

y
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Round the answer to two decimal places. (In this problem, the negative
value of the angle and the arc length refer to a negative direction.)

First, convert − 100° to radian measure.

.

π
180180 100100

1 7575

= -

=

a

a

c ^m h
.

.

s r

s

s

1 7575 7

1212 2525

=

=

=-

a

^ ^h h

Figure 8-5 Drawing for Example 4.

Thus, the length of the intercepted arc is −12.25 centimeters.

The linear velocity (v) of a point traveling at a constant speed along an arc
of a circle is given as:

v t
r

timetime
lengthlength ofof thethe arcarc

= =
a

Example 5: If the earth has a radius of 4,050 miles and rotates one com-
plete revolution (2π radians) each 24 hours, what is the linear velocity of
an object located on the equator?

.

v t
r

v

v

v

π
2424

40504050 2

2424
40504050 6 2828

10601060

.

.

=

=

a

^ ^

^ ^

h h

h h

Thus, the linear velocity of the object is 1,060 miles per hour.

x

y

7

-100°
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The angular velocity (ω) of a point traveling at a constant speed along an
arc of a circle is given as:

ttimetime
measuremeasure ofof angleangle ofof rotationrotation

ω = =
a

Angular and linear velocity are both positive if the movement is counter-
clockwise and negative if the movement is clockwise.

Example 6: Point P revolves counterclockwise around a point 0 making
7 complete revolutions in 5 seconds. If the radius of the circle shown in
Figure 8-6 is 8 centimeters, find the linear and angular velocities of point
P. Approximate π to two decimal places.

.

.

v t
r

v

v

v

π
5

8 7 2

5
8 7 6 2828

7070 3434

.

.

=

=

a

^ ^ ^

^ ^ ^

h h h

h h h

Figure 8-6 Drawing for Example 6.

Thus, the linear velocity is approximately 70.34 centimeters per second.

.

.

tω

ω

ω

ω

π
5

7 2

5
7 6 2828

8 7979

.

.

=

=

a

^ ^

^ ^

h h

h h

x

y

O

P

8
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Thus, the angular velocity is approximately 8.79 radians per second

Simple Harmonic Motion
Circular functions representing periodic motion that satisfy the equations

d=AsinBt and d=AcosBt

where d is an amount of displacement, A and B are constants determined
by the specific motion, and t is a measurement of time are referred to as
simple harmonic motion.

Example 7: If the instantaneous voltage in a current is given by the equa-
tion E = 204 sin 3680t, where E is expressed in volts and t is expressed in
seconds, find E if t = 0.27 seconds. Use 3.1416 for π.

.

.

sinsin

sinsin

sinsin

E t

E

E

204204 36803680

204204 36803680 0 2727

204204 993993 6

=

=

=

^ ^h h8 B

Since sinx = sin (x − 2kπ) and (993.6 ÷ 2π) = 158 with a remainder
of .8544,

.

. .

.

.

.

sinsin

sinsin

sinsin

E

E

E

E

E

204204 993993 6 158158 2

204204 993993 6 158158 6 28322832

204204 0 85448544

204204 0 75427542

153153 8686

.

.

= -

= -

=

r^ ^

^ ^

^ ^

h h

h h

h h

8

8

B

B

Example 8: The horizontal displacement (d) of the end of a pendulum is
d = Ksin 2πt. FindK if d =12 centimeters and t =3.25 seconds.

. .

.

.

sinsin

sinsin

sinsin

sinsin

d K t

K

K

K

K

K

π2

1212 2 3 14161416 3 2525

1212 2020 4242

2020 4141
1212

1
1212

1212

.

.

.

.

.

=

^ ^ ^h h h8 B
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Chapter  Checkout

Q&A
1. Given the equation y = 3sin 4t + 6 cos4t, find the amplitude and the

period of the function.

2. Find the length of an arc intercepted by a central angle of size 2.3
radians if the circle has a radius of 12 inches.

3. If a ball of radius 2 feet is spinning at 12 rpm, what is the linear veloc-
ity of a point on the equator of the ball?

4. If a point revolves around a circle of radius 12 at a constant rate of 4
revolutions every 2 minutes, find its angular velocity.

5. If the displacement of a spring (d) is given by d = Α cosαt  where A,
the initial displacement and d are expressed in inches, t in seconds,
and α = 8, find d when A is 10 inches and t = 2π.

Answers: 1. Amplitude = 3 5 period = π2 2. 27.6 inches 3. 48 π feet/min

4. ( )
t

πω π2
4 2

4= = =
a 5. 10 inches.
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CQR REVIEW

Use this CQR Review to practice what you’ve learned in this book. After
you work through the review questions, you’re well on your way to achiev-
ing your goal of understanding trigonometry.

Chapter 1
1. Convert 44.4714 to DM'S" form.

2. Find the exact value of cos270°. Do not use a calculator.

3. Find the exact value of cos60° cos 60 °. Do not use a calculator.

4. Determine the sign of the following trigonometric functions: a) sin 255°
b) tan 240° c) cos (−110°).

5. Find sin i and cos i for the acute angle i if tan i = 
2 2

1 .

6. What is the reference angle for −649°?

a. 109°
b. 19°
c. 161°
d. 71°

Chapter 2
7. Solve this triangle: α = 51°, β = 49°, b = 70.

8. Solve this triangle: a = 10, b = 11, α =27°.

9. Solve this triangle: b = 7, c = 4, α = 94°.

10. Solve this triangle: a = 11, b = 17, c = 14.

a. α = 84.78°, β = 40.12°, γ = 55.10°
b. α = 55.10°, β = 84.78°, γ = 40.12°
c. α = 40.12°, β = 84.78°, γ = 55.10°
d. α = 40.12°, β = 55.10°, γ = 84.78°
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11. Find the area of a triangle with a = 68°, b = 7 feet, and c = 7 feet.

a. 9.18 square feet
b. 45.43 square feet
c. 22.72 square feet
d. 24.50 square feet

12. Find the area of a triangle with sides 4 meters, 5 meters, and 6 meters.

Chapter 3
13. For a circle of radius 3 feet, find the arc length s subtended by a 

central angle of 6°.

14. Convert 171° to radian measure. Give the exact answer.

15. Find the exact value of sinsin tantanπ π
4 4

- . Do not use a calculator.

a.
6

2 3 3-

b. 2
1

c. 2
3-

d. 2
2 2-

16. If f (x) = tan x and f (a) = 9, find the exact value of f (a) + 
f (a + 3π) + f (a − 3π).

a. 9

b. 9
1

c. 3
1

d. 27

17. Find the exact value of tantan π3
2

-c m.

18. Find the amplitude and period of f (x) = −8sin(2x).
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Chapter 4
19. Is this statement an identity?

sinsin
coscos secsec tantanx

x x x1 -
= +

20. If ,sinsinA A7
3

2 # #=
r r and ,coscosB B8

5
2

3# #=- r r , find the exact

value of cos(A + B).

21. Establish this identity: coscos sinsin2+ =-i r ic m

22. Find the exact value of sin2i if , < <sinsin 5
3

2=i r i r.

23. The expression csc2i + cot2i forms an identity with which of the fol-
lowing?

a. tan i

b. tantan 2
i

c. cot i

d. cotcot 2
i

24. Express sin2 i cos7 i as a sum containing only sines or cosines.

a. ( )sinsin sinsin2
1 9 5+i i

b. ( )sinsin sinsin2
1 9 5-i i

c. sinsin sinsin2
9

2
5

-
i i

d. sin 5 i + sin2i

Chapter 5
25. Find the position vector of the vector ( , )v JKJK ifif J 5 4= = - and K = 

(−6, −7).

a. 11i + 3j
b. −11i + 3j
c. −11i − 3j
d. −2i − 11j
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26. If v = –3i + 7j and w = 5i + 10j, find v − w.

a. −8i + 3j
b. 2i − 17j
c. −8i + 3j
d. 2i + 17j

27. If v = 3i + 2j and w = 3i + 8j, find 5v – 3w and v w5 3- .

28. Find the unit vector having the same direction as v = −10i + 24j.

a. i j1313
5

1313
1212

- +

b. i j
3434

1010

3434

2424
- +

c. i j1717
5

1717
1212

- +

d. −i + j

29. If v = 5i − 9j and w = 27i + 15j, find v ⋅ w.

a. 270
b. −450
c. 360
d. 0

30. Find the measure of the angle between the vectors v = i + 4j and
w = −3i + 4j.

a. 73°
b. 129°
c. 51°
d. 49°

31. Find the component form of v given v 6= and the angle between
the direction of v and the positive x-axis is α = 150°.

32. Which of the following vectors is orthogonal to −10i + 6j?

a. 7i + 4j
b. 2i + 2j
c. −12i − 20j
d. −15i + 9j
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Chapter 6
33. Find the rectangular coordinates of (9, 30°).

a. ,2
9 3

2
9

J

L

K
K

N

P

O
O

b. ,2
9 2

2
9

J

L

K
K

N

P

O
O

c. ,2
9

2
9 3

J

L

K
K

N

P

O
O

d. ,2
9 3

2
9

-
J

L

K
K

N

P

O
O

34. Find the polar coordinates of (−12, −12) for r > 0, 0 ≤ i < 2π.

35. Determine the polar form of the complex number 2 − 4i. Express the
angle i in degrees where 0 ≤ i < 360°, and round numerical entries
to two decimal places.

Chapter 7
36. Find the exact value of tantan coscos 2

11-
ce mo.

a. 3

b. 2
3

c. 2
1

d. 3
3

37. Solve the equation coscosx2 3 3 0- = , where 0 ≤ x < 2r.

38. Solve the equation sin2
i + 2sin i + 1 = 0, where 0 ≤ i < 2r.

39. Solve the equation −sin i + 1 = 2cos2 
i, where 0 ≤ i < 2r.

a. i = 0, i = r

b. ,2 2
3

= =i r i r

c. , ,0 3
2

3
4

= = =i i r i r

d. , ,2 6
7

6
1111

= = =i r i r i r
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Chapter 8
40. A propeller, 2 meters from tip to tip, is rotating at a rate of 400 rev-

olutions per minute. Find the linear velocity of a tip of the propeller
in meters per second.

41. The horizontal displacement of a pendulum is described by the equa-
tion d = K sin2r. Find K if d = 20 and t

6
1

= .

42. The horizontal displacement of a pendulum is described by the equa-
tion d = K sin2r. Find d if t = 1.2 and K = 11.

Answers: 1. 44°28'17" 2. 0 3.
4
1 4. negative, positive, negative 

5. coscos 3
2 2

=i sinsin 3
1

=i 6. d 7. γ = 80°, a = 72.08, c = 91.34 8. c1 = 18.46,

β1 = 29.96°, γ1 = 123.04° and c2 = 1.14, β2 = 150.04° 9. a = 8.3, β =
57.3°, γ1 = 28.7° 10. c 11. c 12. 9.92 square meters 13. 0.31 feet

14. 2020
1919 r 15. d 16. d 17. 3 18. amplitude = 8 and period = π 19. Yes

20. ( )
5656
1 1010 1010 3 3939+ 21. coscos coscos coscos sinsin sinsin2 2 2+ = - =i r i r i r

c m

( )()( ) ( )coscos sinsin sinsin0 1- =-i i i 22. 2525
2424

- 23. c 24. b 25. c 26. a 27. 5v − 3w
= 6i − 14j, v w5 3 2 5858- = 28. a 29. d 30. c 31. i j3 3 3- + 32. c 

33. a 34. ,1212 2
4

5r
c m 35. 4.47(cos296.57° + i sin296.57°) 36. a 

37. ,
6 6

1111r r
c m 38. 2

3
=i r 39. d 40. 800π meters per minute 41. 3

4040 3

42. 10.45.
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CQR RESOURCE CENTER

CQR Resource Center offers the best resources available in print and online
to help you study and review the core concepts of trigonometry. You can
find additional resources, plus study tips and tools to help test your knowl-
edge, at www.cliffsnotes.com.

Books
This CliffsQuickReview book is one of many great books about trig-
onometry. If you want some additional resources, check out these other
publications:

Schaum’s Outline of Trigonometry, by Robert E. Moyer and Frank Ayres,
focuses on plane trigonometry and contains hundreds of problems.
McGraw-Hill Professional Book Group.

Trigonometry the Easy Way, by Douglas A. Downing, takes the form of
a fantasy novel where the King of Carmorra and his subjects solve 
practical problems by applying principles of trigonometry. Barron’s 
Educational Series, Inc.

Hungry Minds also has three Web sites that you can visit to read about all
the books we publish:

■ www.cliffsnotes.com

■ www.dummies.com

■ www.hungryminds.com

Internet
The Internet is loaded with web sites related to trigonometry. Many offer
tutorials. Some link to many other useful sites about trigonometry and
other related subjects. Just spend some time exploring, and you will prob-
ably find what you need. In particular, visit the following Web sites for
more information about trigonometry:

Dave’s short course in trigonometry, alephO.clarku.edu/~djoyce/
java/trig/, introduces you to trigonometry and has a few exercises.
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An introduction to Trigonometry, www.ping.be/math/, provides a more
advanced tutorial on trigonometry.

Syvum Homepage: Online Education and Interactive Learning,
www.syvum.com/math/trigonometry.html, offers a variety of math prob-
lems, including some on trigonometry.

SOSMath Homepage, www.sosmath.com/trig/trig.html, is a valuable
resource that lists hundreds of sites covering all phases of mathematics.

Next time you’re on the Internet, don’t forget to drop by www.
cliffsnotes.com.
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GLOSSARY

AAS reference to solving a triangle
given the measure of two angles and
the length of a non-included side.

absolute value of a complex number
square root of the sum of the squares
of its real and imaginary coefficients.

algebraic vector an ordered pair of
numbers representing the terminal
point of a standard vector.

amplitude of a complex number
same as the argument of a complex
number.

amplitude the vertical stretch of a
function.

angle a measure of rotation.

angle of depression an angle mea-
sured below the horizontal.

angle of elevation an angle measured
above the horizontal.

angular velocity defined in terms of
angle of rotation and time.

argument of a complex number
angle formed between the positive x-
axis and a line segment between the
origin and the number.

ASA reference to solving a triangle
given the measure of two angles and
the length of the included side.

ASTC an acronym representing which
trigonometric functions are positive
in the I, II, III, and IV quadrants
respectively.

asymptotes lines representing unde-
fined values for trigonometric 
functions.

bearing an angle measured clockwise
from due north to a vector.

circular functions functions whose
domains are angles measured in radi-
ans and whose ranges are values that
correspond to analogous trigonometric
functions.

cofunction identities fundamental
identities that involve the basic trig
functions of complementary angles.

cofunctions pairs of trigonometric
functions of complimentary angles
whose trigonometric ratios are equal.

complex plane a coordinate system
for complex numbers.

component vectors the horizontal
and vertical component vectors of a
given vector.

components the individual vectors
that are combined to yield the resul-
tant vector.

components of an algebraic vector
the ordered pair of numbers represent-
ing the vector.

conditional equation an equation
that is valid for a limited number of
values of the variable.

conditional trigonometric equations
true for only a limited number of
replacement values.
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conjugate of a complex number same
as original except for the sign of the
imaginary component.

cosecant the reciprocal of the sine
function.

cosine a trigonometric ratio equal to
the adjacent side divided by the
hypotenuse.

cotangent the reciprocal of the tangent
function.

coterminal two angles in standard
position that share a terminal side.

De Moivre’s theorem a theorem
involving powers of complex numbers.

degree a unit of angle measurement
equal to 1/360 of a revolution.

difference identities for tangent iden-
tities involving the tangents of differ-
ences of angles.

difference identity for cosine one of
the trigonometric addition identities.

difference identity for sine one of the
trigonometric addition identities.

directed line segment a line segment
of a given length and a given direction.

dot product a process of combining
two vectors yielding a single number.

double-angle identities useful in writ-
ing trig functions involving double
angles as trig functions of single angles.

double-angle identities for tangent
useful in writing trig functions involv-
ing double angles as functions of single
numbers.

equivalent vectors two vectors that
have the same magnitude and direction.

even function a function is even if 
f(-x) = f(x).

general solution solutions defined over
entire domain.

geometric vector a quantity that can
be represented by a directional line 
segment.

half-angle identities useful in writing
trig functions involving half angles as
trig functions of single angles.

half-angle identities for tangent use-
ful in writing trig functions involving
half angles as functions of single angles.

Heron’s formula a formula for finding
the area of a triangle given the lengths
of the three sides.

identities for negatives fundamental
identities that involve the basic trig
functions of negative angles.

identity see trigonometric identity.

imaginary axis an axis in the complex
plane.

initial point the beginning point of a
vector.

initial side side of angle where angle
measurement begins.

inverse cosecant function defined
in terms of the restricted sine function.

inverse cosine function inverse of the
restricted cosine function.

inverse cotangent function defined
in terms of the restricted tangent 
function.

inverse notation notation used to
express an angle in terms of the value of
trigonometric functions.
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inverse secant function defined in
terms of the restricted cosine function.

inverse sine function inverse of the
restricted sine function.

inverse tangent function inverse of the
restricted tangent function.

law of cosines a relationship between
the lengths of the three sides of a trian-
gle and the cosine of one of the angles.

law of sines a relationship between the
ratios of the sines of angles of a triangle
and the side opposite those angles.

linear interpolation a method of
approximating values in a table using
adjacent table values.

linear velocity defined in terms of arc
length and time.

magnitude of a vector the length of
the directional line segment.

mathematical induction a method of
mathematical proof.

maximum value largest value of a
function in a given interval.

minimum value smallest value of a
function in a given interval.

minute an angle measurement equal to
1/60 of a degree.

modulus of a complex number same
as absolute value of a complex number.

negative angle results from clockwise
rotation.

norm another name for the magnitude
of a vector.

nth root theorem an extension of De
Moivre’s theorem involving roots of
complex numbers.

odd function a function is odd if 
f(-x) = -f(x).

odd-even identities see identities for
negatives.

one-to-one a characteristic of functions
where each element in the domain is
pairs with one and only one element in
the range and vice versa.

orthogonal perpendicular.

parallelogram rule a process used to
add together two nonparallel vectors.

period the smallest value of q such that
f(x) = f(x+q) where f(x) is a periodic
function.

periodic functions trigonometric func-
tions whose values repeat once each
period.

phase shift the horizontal displacement
of a function to the right or left of the
vertical axis.

polar axis a ray extending from the
pole in a polar coordinate system.

polar coordinate system a coordinate
system using distance and angle for
position.

polar coordinates an ordered pair con-
sisting of a radius and an angle.

pole the fixed center of the polar coor-
dinate system.

position vector another name for a
standard vector.

positive angle results from counter-
clockwise rotation.

primary solutions solutions defined
over a limited domain.

principal nth root the unary root of a
complex number.
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product-sum identities useful in writ-
ing  the product of trig functions as the
sum and difference of trig functions.

projections another name for compo-
nent vectors.

proving the identity showing the
validity of one identity by using previ-
ously known facts.

Pythagorean identities fundamental
identities that relate the sine and cosine
functions and the Pythagorean 
Theorem.

quadrantal angle an angle in standard
position with its terminal side on a
coordinate axis.

quotient identities fundamental iden-
tities that involve the quotient of basic
trig functions.

radian the measure on an angle with
vertex at the center of a circle that sub-
tends an arc equal to the radius of the
circle.

radius vector another name for a stan-
dard vector.

real axis an axis in the complex plane.

reciprocal identities fundamental
identities that involve the reciprocals of
basic trig functions.

reduction formulas for cosine useful
in rewriting cosines of angles greater
than 90° as functions of acute angles.

reduction formulas for sine useful in
rewriting sines of angles greater than
90° as functions of acute angles.

reduction formulas for tangent useful
in rewriting tangents greater than 90°
as functions of acute angles.

reference angle an acute angle whose
trigonometric ratios are the same
(except for sign) as the given angle.

resultant vector the result obtained
after vector manipulation.

SAS reference to solving a triangle
given the lengths of two sides and the
measure of the included angle.

scalar multiplication changing the
magnitude of a vector without chang-
ing its direction.

scalar multiplication of algebraic vec-
tors a process of multiplying vector
components.

scalar quantity the value of a dot prod-
uct of two vectors.

secant the reciprocal of the cosine
function.

second an angle measurement equal to
1/60 of a minute.

sector a portion of a circle enclosed by
a central angle and its subtended arc.

semiperimeter one-half the perimeter
of a triangle.

similar triangles two triangles whose
angle measurements are the same.

simple harmonic motion a compo-
nent of uniform circular motion.

sine a trigonometric ratio equal to the
opposite side divided by the
hypotenuse.

solving the triangle a process for find-
ing the values of sides and angles of a
triangle given the values of the remain-
ing sides and angles.
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SSA reference to solving a triangle
given the lengths of two sides and the
measure of a non-included angle.

SSS reference to solving a triangle given
the lengths of the three sides.

standard position (angle) an angle
with its initial side on the positive x-
axis and vertex at the origin.

standard position (vector) a vector
that has been translated so that its ini-
tial point is at the origin.

standard vector a vector in standard
position.

static equilibrium the sum of all the
force vectors add up to zero.

sum identities for tangent identities
involving the tangents of sums of
angles.

sum identity for cosine one of the
trigonometric addition identities.

sum identity for sine one of the
trigonometric addition identities.

sum-product identities useful in writ-
ing the sum and difference of trig func-
tions as the product of trig functions.

tangent a trigonometric ratio equal to
the opposite side divided by the adja-
cent side.

terminal point the ending  point of a
vector.

terminal side side of angle where angle
measurement ends.

tip-tail rule a process for doing vector
addition.

trigonometric addition identities
identities involving the trig functions of
sums and differences of angles.

trigonometric identity an equation
made up of trigonometric functions of
an angle that is valid for all values of
the angle.

trigonometric ratios the ratios of the
length of two side of a right triangle.

uniform circular motion circular
motion about a point at a uniform lin-
ear and angular velocity.

unit circle a circle with a radius of one
unit.

vector addition process of combining
two vectors.

vector quantity a quantity that has
both size and direction.

velocity vector a vector representing
the speed and direction of a moving
object.

vertical shift the vertical displacement
of a function above or below the hori-
zontal axis.

zero algebraic vector an algebraic vec-
tor whose components are both zero.

zero vector a vector with a magnitude
of zero and any direction.

6389-0 Glossary.F  7/27/01  9:10 AM  Page 160



Index

A
AAS

definition, 156
examples, 43, 48–49
Law of Sines, 38

abscissa, circular functions, 57
absolute value of a complex number, 119, 156
acute angles

examples, 11–13
formulas, 10
reference triangles, 9
similar triangles, 9

algebraic vector, 106, 156
alpha, Greek letter, 9
ambiguous case, SSA, 38
amplitude, 66, 74, 156
amplitude of a complex number, 119, 156
amplitude, sine function, 66
An introduction to Trigonometry, Web site,

155
angle of depression, 24, 156
angle of elevation, 24, 156
angles

acute, functions of, 9–13
definition, 156
examples, 6–8
first quadrant angle, 5
fourth quadrant angle, 5
general, functions of, 13–18
negative, 4
positive, 4
rotation, 4
second quadrant angle, 5
third quadrant angle, 5

angular velocity, 156
arc functions, 18
Archimedes’ spiral, polar form graph, 117
Arcsin, 18
area of triangles

AAS area formula, 45–46
ASA area formula, 45–46

examples, 47–49
Heron’s formula, 46–47
reference, area formulas, 46
SAS area formula, 45
SSS area formula, 46–47
using to find area of circle sectors, 55

argument of a complex number, 119, 156
ASA

definition, 156
examples, 42, 48–49
Law of Sines, 38

Associative property, vectors, 109
ASTC

definition, 156
general angles, 16

asymptotes, 70, 73, 156
axis

imaginary, 119, 157
real, 119, 159

B
bearing, 101, 156

C
calculators, 19
cardioid, polar form graph, 117
circle, polar form graph, 117
circular functions

abscissa, 57
definition, 56, 156
domain, 57
examples, 58–60
ordinate, 57
range, 57–58
signs of trig functions in various

quadrants, 60
unit circle, 56

cofunction identities, 80, 156
cofunctions, 12, 156
Commutative property, vectors, 109

6389-0 Index.F  7/27/01  9:10 AM  Page 161



162 CliffsQuickReview Trigonometry

complex numbers
absolute value, 119, 156
amplitude, 119, 156
argument, 119, 156
De Moivre’s theorem, 122–125, 157
examples, 120–122
imaginary axis, 119, 157
modulus, 119, 158
real axis, 119, 159

complex plane, 119, 156
component vectors, 103, 156
components, 100, 156
components of an algebraic vector, 100,

106, 156
conditional equation, 79, 156
conditional trigonometric equations,

137, 156
conjugate of a complex number, 157
cosecant, 10, 12, 157
cosine

definition, 157
frequencies of, 68
period of, 65–66
values of at various angles, 64–65

cotangent, 10, 12, 72, 157
coterminal, 6–7, 157
coterminal angles, polar coordinates, 114

D
Dave’s short course on trigonometry,

Web site, 154
De Moivre’s theorem, 122–125, 157
degree, 4, 8–9, 53, 157
degree measure, 18
degree of scale, 51
depression, angle of, 24, 156
difference identities for tangent, 157
difference identity for cosine, 83, 157
difference identity for sine, 83, 157
different identity for cosine, 83
directed line segment, 99, 157
direction, vectors, 99
Distributive Property, vectors, 109
domain, circular functions, 57
dot product, 110, 157
double-angle identities, 87–91, 157
double-angle identities for tangent, 93, 157

E
elevation, angle of, 24, 156
equations, conditional, 79, 156
equivalent vectors, 100, 157
Euclid, 9
even function, 62–64, 157
exercises

acute angles, functions of, 21
angles, 21
areas of triangles, 50
circular functions, 78
complex numbers, 126
cosine graphs, 78
De Moivre’s Theorem, 126
general angles, functions of, 21
general triangles, 50
identities, 98
inverse cosecant, 139
inverse cosine, 139
inverse cotangent, 139
inverse secant, 139
inverse sine, 139
inverse tangent, 139
Law of Cosines, 50
Law of Sines, 50
M sin Bt + N cos Bt expression, 147
periodic trigonometric functions, 78
polar coordinates, 126
radians, 78
right triangles, 50
simple harmonic motion, 147
sine graphs, 78
symmetric trigonometric functions, 78
tangent graphs, 78
trigonometric equations, 137
uniform circular motion, 147
vectors, 112
wave forms, 78

F
first quadrant angle, 5
four-leaved rose graph, polar form, 118
fourth quadrant angle, 5
fractional angle measure, 19
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G
general angles

ASTC, 16
examples, 16–18
formulas, 14
standard position, 13–14

general solution, 137, 157
geometric vector, 99, 157
Greek letters, lower case, 9

H
half-angle identities, 87–91, 157
half-angle identities for tangent, 93, 157
Heron’s formula, 46–49, 157
horizontal line graph, polar form, 117
hypotenuse

acute angles, 9
Pythagorean theorem, 16

I
identities for negatives, 80, 157
identity

cofunction, 80
conditional equation, 79
definition, 79, 157
difference identity for sine, 83
different identity for cosine, 83
double-angle, 87–91
examples, 81–87
half-angle, 87–91
negatives, 80
product-sum, 95–97
proving, 80
Pythagorean, 80
reciprocal, 80
sum identity for cosine, 83
sum identity for sine, 83
sum-product, 96–97
tangent, 91–95
trigonometric addition, 83

Identity property, vectors, 109
imaginary axis

complex numbers, 119
definition, 157

initial point, 99, 157
initial side, 4, 157
Internet Web sites, 154–155
intervals, 19

inverse contangent function
definition, 157
graph, 134
trigonometric identity, 134

inverse cosecant function
definition, 157
graph, 134
trigonometric identity, 134

inverse cosine function
definition, 127, 157
examples, 131–132
formula, 128
graph, 129
one-to-one, 127–128
symmetry, 131

inverse notation, 157
Inverse property, vectors, 109
inverse secant function

definition, 158
graph, 134
trigonometric identity, 134

inverse sine function
definition, 158
examples, 131–132
formula, 130
graph, 130
symmetry, 131

inverse tangent function
definition, 158
graph, 132–133

L
Law of Cosines

definition, 158
examples, 28–31
formulas, 27
reference triangle, 28

Law of Sines
definition, 158
examples, 33–37
formulas, 32–33
reference triangles, 32

lemniscate, polar form graph, 118
line segment

definition, 22
directed, 99, 157

linear interpolation, 19, 158
linear velocity, 158
look up values, tables of, 19
lowercase letters, 22
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M
M sin Bt + N cos Bt expression, 140–143
magnitude of a vector, 99, 107, 158
mathematical induction, 158
maximum value, 67, 158
minimum value, 67, 158
minute, 8, 158
modulus of a complex number, 119, 158

N
negative angle, 15, 158
norm, 99, 158
nth root theorem, 124, 158
numbers, complex

absolute value, 119, 156
amplitude, 119, 156
argument, 119, 156
De Moivre’s theorem, 122–125, 157
examples, 120–122
imaginary axis, 119, 157
modulus, 119, 158
real axis, 119, 159

O
odd function, 62–64, 158
odd-even identities, 158
one-to-one, 127–128, 158
ordered pairs, polar coordinates, 114
origin, polar coordinate system, 113
orthogonal, 110, 158

P
parallelogram rule, 100, 158
period, 61, 68, 158
periodic coterminus angles, 60
periodic functions

definition, 60–61, 158
examples, 61–64
formulas, 61

phase shift, 68, 73, 158
plane, complex, 119, 156
polar axis, 113, 158
polar coordinate system

definition, 158
origin, 113
pole, 113

polar coordinates
coterminal angles, 114
definition, 113, 158
examples, 115–118
ordered pairs, 114
polar to rectangular conversion, 115

pole
definition, 158
polar coordinate system, 113

position vector, 158
positive angle, 14, 158
primary solutions, 137, 158
principal nth root, 124, 158
product-sum identities

definition, 95, 159
examples, 96–97
formulas, 96

projections
definition, 103, 159
examples, 104–105

proving the identity, 80, 159
Pythagorean identities, 80, 159
Pythagorean theorem

hypotenuse, 16
right triangles, 24
trigonometric identity, 10–11
using to find area of circle sector, 55

Q
quadrant angle, 5
quadrantal angle

definition, 4–5, 159
examples, 13, 15

quotient identities, 159

R
radian measure, 51
radians

definition, 9, 51, 159
degree equivalencies, 53
examples, 52–56
subtended arcs, 52
unitless quality, 52

radius vector, 159
range, circular functions, 57
real axis

complex numbers, 119
definition, 159
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reciprocal identities, 79, 159
reduction formulas for cosine, 84, 159
reduction formulas for sine, 85, 159
reduction formulas for tangent, 159
reference angles

definition, 159
values in various quadrants, 16

reference triangles
acute angles, 9, 12
law of cosines, 28

resultant vector, 100, 159
review questions, 148–153
right triangles

examples, 23–27
Pythagorean theorem, 24
solving, 23

rotation
clockwise, 4
counterclockwise, 4
measuring, 4

S
SAS

definition, 159
examples, 41, 47–48
Law of Cosines, 38

scalar multiplication, 100, 107, 159
scalar multiplication of algebraic vectors,

107, 159
scalar quantity, 159
scale, degree of, 51
Schaum’s Outline of Trigonometry, 154
secant, 10, 12, 159
second, 8, 159
second quadrant angle, 5
sector, 159
semiperimeter, 46, 159
similar triangles, 9, 159
simple harmonic motion

definition, 159
examples, 146

sine
amplitude, 66
attributes of, 69
definition, 159
examples, 67–70
frequencies of, 68
period of, 65–66
values of at various angles, 64–65
vertical shifts, 66

solving the triangle, 22, 159
SOSMAth Homepage, Web site, 155
sound waves, 76–78
SSA

ambiguous case, 38
definition, 156
example, 43–45

SSS
definition, 160
Law of Cosines, 37

standard position (angle), 4, 160
standard position (vector), 105, 160
standard vector, 160
static equilibrium, 110, 160
subtended arcs, radian measure, 52
sum identities for tangent, 160
sum identity for cosine, 83
sum identity for sine, 83, 160
sum-product identities, 96, 160
symmetric trigonometric functions, 60–64
Syvum Homepage, Web site, 155

T
tables, look up values, 19
tail-tip rule, 100, 160
Tangent, 132
tangent

asymptotes, 70
cotangents, 72
definition, 70, 160
examples, 73–76
identities, 91–95
values of at various angles, 71

terminal point, 99, 160
terminal side, 4, 13–14, 160
theta, Greek letter, 9
third quadrant angle, 5
three-leaved rose graph, polar form, 117–118
triangles. See also areas of triangles

AAS area formula, 45–46
ASA area formula, 45–46
examples, 47–49
Heron’s formula, 46–47
Pythagorean theorem, 24
reference, area formulas, 46
right, 23–27
SAS area formula, 45
SSS area formula, 46–47

trigonometric addition identities, 83, 160
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trigonometric equations
conditional, 137
examples, 137–139
general solution, 137
primary solutions, 137

trigonometric functions
acute angles, 10
examples, 18–20
signs of in various quadrants, 15
values of for various quadrantal angles, 15

trigonometric identity, 10, 160
trigonometric ratios, 9, 13, 22, 160
Trigonometry the Easy Way, 154

U
uniform circular motion

definition, 160
examples, 143–146

unit circle, 51, 56, 160
unit vectors, 108
unitless quality, radians measure, 52
uppercase letters, 22

V
vector addition, 100, 107, 160
vector quantity, 99
vectors, 99

addition, 160
algebraic, 106, 156
Associative Property, 109
bearing, 101, 156
Commutative property, 109
component, 103
components of, 100, 106, 156
direction, 99
Distributive Property, 109
dot product, 110, 157
equivalent, 100, 157
examples, 101–105, 108–112

geometric, 99, 157
Identity property, 109
initial point, 99
Inverse property, 109
magnitude, 99, 107, 158
orthogonal, 110, 158
projections, 103, 159
resultant, 100, 159
scalar multiplication of, 107, 159
standard position, 105
static equilibrium, 110, 160
tail-tip rule, 100, 160
terminal point, 99
unit, 108
vector quantity, 99
velocity, 101, 160
zero, 60, 100, 107

velocity vector, 101, 160
vertical line graph, polar form, 117
vertical shift, 66, 160

W
wave forms

adding together, 76–77
examples, 77–78

Web sites, recommended, 154–155

X
x-axis, 16, 119

Y
y-axis, 16, 119

Z
zero algebraic vector, 160
zero vector, 100, 107, 160
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